WorldWideScience

Sample records for chaperone dysfunction revealed

  1. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome.

    Directory of Open Access Journals (Sweden)

    Melody S Clark

    Full Text Available BACKGROUND: The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS: The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp. In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS, providing a resource for population and also gene function studies. CONCLUSIONS: This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding

  2. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  3. Spinal Muscular Atrophy: From Defective Chaperoning of snRNP Assembly to Neuromuscular Dysfunction

    Directory of Open Access Journals (Sweden)

    Maia Lanfranco

    2017-06-01

    Full Text Available Spinal Muscular Atrophy (SMA is a neuromuscular disorder that results from decreased levels of the survival motor neuron (SMN protein. SMN is part of a multiprotein complex that also includes Gemins 2–8 and Unrip. The SMN-Gemins complex cooperates with the protein arginine methyltransferase 5 (PRMT5 complex, whose constituents include WD45, PRMT5 and pICln. Both complexes function as molecular chaperones, interacting with and assisting in the assembly of an Sm protein core onto small nuclear RNAs (snRNAs to generate small nuclear ribonucleoproteins (snRNPs, which are the operating components of the spliceosome. Molecular and structural studies have refined our knowledge of the key events taking place within the crowded environment of cells and the numerous precautions undertaken to ensure the faithful assembly of snRNPs. Nonetheless, it remains unclear whether a loss of chaperoning in snRNP assembly, considered as a “housekeeping” activity, is responsible for the selective neuromuscular phenotype in SMA. This review thus shines light on in vivo studies that point toward disturbances in snRNP assembly and the consequential transcriptome abnormalities as the primary drivers of the progressive neuromuscular degeneration underpinning the disease. Disruption of U1 snRNP or snRNP assembly factors other than SMN induces phenotypes that mirror aspects of SMN deficiency, and splicing defects, described in numerous SMA models, can lead to a DNA damage and stress response that compromises the survival of the motor system. Restoring the correct chaperoning of snRNP assembly is therefore predicted to enhance the benefit of SMA therapeutic modalities based on augmenting SMN expression.

  4. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation

    Science.gov (United States)

    Kuan, Lisa; Schaffer, Jessica N.; Zouzias, Christos D.

    2014-01-01

    Proteus mirabilis is a Gram-negative enteric bacterium that causes complicated urinary tract infections, particularly in patients with indwelling catheters. Sequencing of clinical isolate P. mirabilis HI4320 revealed the presence of 17 predicted chaperone-usher fimbrial operons. We classified these fimbriae into three groups by their genetic relationship to other chaperone-usher fimbriae. Sixteen of these fimbriae are encoded by all seven currently sequenced P. mirabilis genomes. The predicted protein sequence of the major structural subunit for 14 of these fimbriae was highly conserved (≥95 % identity), whereas three other structural subunits (Fim3A, UcaA and Fim6A) were variable. Further examination of 58 clinical isolates showed that 14 of the 17 predicted major structural subunit genes of the fimbriae were present in most strains (>85 %). Transcription of the predicted major structural subunit genes for all 17 fimbriae was measured under different culture conditions designed to mimic conditions in the urinary tract. The majority of the fimbrial genes were induced during stationary phase, static culture or colony growth when compared to exponential-phase aerated culture. Major structural subunit proteins for six of these fimbriae were detected using MS of proteins sheared from the surface of broth-cultured P. mirabilis, demonstrating that this organism may produce multiple fimbriae within a single culture. The high degree of conservation of P. mirabilis fimbriae stands in contrast to uropathogenic Escherichia coli and Salmonella enterica, which exhibit greater variability in their fimbrial repertoires. These findings suggest there may be evolutionary pressure for P. mirabilis to maintain a large fimbrial arsenal. PMID:24809384

  5. LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease

    OpenAIRE

    Rothaug, Michelle; Stroobants, Stijn; Schweizer, Michaela; Peters, Judith; Zunke, Friederike; Allerding, Mirka; D?Hooge, Rudi; Saftig, Paul; Blanz, Judith

    2015-01-01

    The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with ...

  6. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  7. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.

    Science.gov (United States)

    Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun

    2017-09-01

    Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.

  8. Structural and biochemical characterization of phage λ FI protein (gpFI) reveals a novel mechanism of DNA packaging chaperone activity.

    Science.gov (United States)

    Popovic, Ana; Wu, Bin; Arrowsmith, Cheryl H; Edwards, Aled M; Davidson, Alan R; Maxwell, Karen L

    2012-09-14

    One of the final steps in the morphogenetic pathway of phage λ is the packaging of a single genome into a preformed empty head structure. In addition to the terminase enzyme, the packaging chaperone, FI protein (gpFI), is required for efficient DNA packaging. In this study, we demonstrate an interaction between gpFI and the major head protein, gpE. Amino acid substitutions in gpFI that reduced the strength of this interaction also decreased the biological activity of gpFI, implying that this head binding activity is essential for the function of gpFI. We also show that gpFI is a two-domain protein, and the C-terminal domain is responsible for the head binding activity. Using nuclear magnetic resonance spectroscopy, we determined the three-dimensional structure of the C-terminal domain and characterized the helical nature of the N-terminal domain. Through structural comparisons, we were able to identify two previously unannotated prophage-encoded proteins with tertiary structures similar to gpFI, although they lack significant pairwise sequence identity. Sequence analysis of these diverse homologues led us to identify related proteins in a variety of myo- and siphophages, revealing that gpFI function has a more highly conserved role in phage morphogenesis than was previously appreciated. Finally, we present a novel model for the mechanism of gpFI chaperone activity in the DNA packaging reaction of phage λ.

  9. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones.

    Science.gov (United States)

    Barik, Sailen

    2018-01-01

    The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.

  10. The Role of Chaperone-subunit Usher Domain Interactions in the Mechanism of Bacterial Pilus Biogenesis Revealed by ESI-MS*

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C.; Toste Rêgo, Ana; Phan, Gilles; Allen, William J.; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E.; Radford, Sheena E.

    2012-01-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species. PMID:22371487

  11. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS.

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C; Toste Rêgo, Ana; Phan, Gilles; Allen, William J; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E; Radford, Sheena E

    2012-07-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species.

  12. Quantitative proteomics and network analysis of SSA1 and SSB1 deletion mutants reveals robustness of chaperone HSP70 network in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jarnuczak, Andrew F; Eyers, Claire E; Schwartz, Jean-Marc; Grant, Christopher M; Hubbard, Simon J

    2015-09-01

    Molecular chaperones play an important role in protein homeostasis and the cellular response to stress. In particular, the HSP70 chaperones in yeast mediate a large volume of protein folding through transient associations with their substrates. This chaperone interaction network can be disturbed by various perturbations, such as environmental stress or a gene deletion. Here, we consider deletions of two major chaperone proteins, SSA1 and SSB1, from the chaperone network in Sacchromyces cerevisiae. We employ a SILAC-based approach to examine changes in global and local protein abundance and rationalise our results via network analysis and graph theoretical approaches. Although the deletions result in an overall increase in intracellular protein content, correlated with an increase in cell size, this is not matched by substantial changes in individual protein concentrations. Despite the phenotypic robustness to deletion of these major hub proteins, it cannot be simply explained by the presence of paralogues. Instead, network analysis and a theoretical consideration of folding workload suggest that the robustness to perturbation is a product of the overall network structure. This highlights how quantitative proteomics and systems modelling can be used to rationalise emergent network properties, and how the HSP70 system can accommodate the loss of major hubs. © 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Benech Philippe

    2009-08-01

    Full Text Available Abstract Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM. It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA and 5 heterozygous (GA PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p Conclusion The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.

  14. Proteomic signatures of infertile men with clinical varicocele and their validation studies reveal mitochondrial dysfunction leading to infertility

    Directory of Open Access Journals (Sweden)

    Ashok Agarwal

    2016-01-01

    Full Text Available To study the major differences in the distribution of spermatozoa proteins in infertile men with varicocele by comparative proteomics and validation of their level of expression. The study-specific estimates for each varicocele outcome were combined to identify the proteins involved in varicocele-associated infertility in men irrespective of stage and laterality of their clinical varicocele. Expression levels of 5 key proteins (PKAR1A, AK7, CCT6B, HSPA2, and ODF2 involved in stress response and sperm function including molecular chaperones were validated by Western blotting. Ninety-nine proteins were differentially expressed in the varicocele group. Over 87% of the DEP involved in major energy metabolism and key sperm functions were underexpressed in the varicocele group. Key protein functions affected in the varicocele group were spermatogenesis, sperm motility, and mitochondrial dysfunction, which were further validated by Western blotting, corroborating the proteomics analysis. Varicocele is essentially a state of energy deprivation, hypoxia, and hyperthermia due to impaired blood supply, which is corroborated by down-regulation of lipid metabolism, mitochondrial electron transport chain, and Krebs cycle enzymes. To corroborate the proteomic analysis, expression of the 5 identified proteins of interest was validated by Western blotting. This study contributes toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters.

  15. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly.

    OpenAIRE

    Slonim, L N; Pinkner, J S; Brändén, C I; Hultgren, S J

    1992-01-01

    The assembly of adhesive pili in Gram-negative bacteria is modulated by specialized periplasmic chaperone systems. PapD is the prototype member of the superfamily of periplasmic pilus chaperones. Previously, the alignment of chaperone sequences superimposed on the three dimensional structure of PapD revealed the presence of invariant, conserved and variable amino acids. Representative residues that protruded into the PapD cleft were targeted for site directed mutagenesis to investigate the pi...

  16. A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome

    Directory of Open Access Journals (Sweden)

    Julie Thompson Legault

    2015-11-01

    Full Text Available A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines, as well as unexpected markers of cardiometabolic risk (insulin and adiponectin, amino acid catabolism linked to NADH status (α-hydroxybutyrate, and NAD+ biosynthesis (kynurenine and 3-hydroxyanthranilic acid. Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases.

  17. 18F-FDG PET Reveals Fronto-temporal Dysfunction in Children with Fever-Induced Refractory Epileptic Encephalopathy

    International Nuclear Information System (INIS)

    Mazzuca, M.; Dulac, O.; Chiron, C.; Jambaque, I.; Hertz-Pannier, L.; Bouilleret, V.; Archambaud, F.; Rodrigo, S.; Dulac, O.; Chiron, C.; Jambaque, I.; Hertz-Pannier, L.; Bouilleret, V.; Archambaud, F.; Rodrigo, S.; Chiron, C.; Hertz-Pannier, L.; Rodrigo, S.; Dulac, O.; Chiron, C.; Caviness, V.

    2011-01-01

    Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a recently described epileptic entity whose etiology remains unknown. Brain abnormalities shown by MRI are usually limited to mesial-temporal structures and do not account for the catastrophic neuro-psychologic findings. Methods: We conducted FIRES studies in 8 patients, aged 6-13 y, using 18 F-FDG PET to disclose eventual neo-cortical dysfunction. Voxel-based analyses of cerebral glucose metabolism were performed using statistical parametric mapping and an age-matched control group. Results: Group analysis revealed a widespread inter-ictal hypo-metabolic network including the temporo-parietal and orbito-frontal cortices bilaterally. The individual analyses in patients identified hypo-metabolic areas corresponding to the predominant electroencephalograph foci and neuro-psychologic deficits involving language, behavior, and memory. Conclusion: Despite clinical heterogeneity, 18 F-FDG PET reveals a common network dysfunction in patients with sequelae due to fever-induced refractory epileptic encephalopathy. (authors)

  18. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery.

    Science.gov (United States)

    Savage, Lisa M; Hall, Joseph M; Resende, Leticia S

    2012-06-01

    Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.

  19. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  20. Isolation of Chromatin from Dysfunctional Telomeres Reveals an Important Role for Ring1b in NHEJ-Mediated Chromosome Fusions

    Directory of Open Access Journals (Sweden)

    Cristina Bartocci

    2014-05-01

    Full Text Available When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation.

  1. Histone chaperone networks shaping chromatin function

    DEFF Research Database (Denmark)

    Hammond, Colin; Strømme, Caroline Bianchi; Huang, Hongda

    2017-01-01

    and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone...... chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin....

  2. Review: The HSP90 molecular chaperone-an enigmatic ATPase.

    Science.gov (United States)

    Pearl, Laurence H

    2016-08-01

    The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc.

  3. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Directory of Open Access Journals (Sweden)

    Katerina Markopoulou

    Full Text Available Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L, which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may

  4. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    Science.gov (United States)

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the

  5. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Soundara Raghavan Pavithra

    2007-09-01

    Full Text Available Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein-protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70-Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology.

  6. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  7. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence.

    Science.gov (United States)

    Felek, Suleyman; Jeong, Jenny J; Runco, Lisa M; Murray, Susan; Thanassi, David G; Krukonis, Eric S

    2011-03-01

    Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.

  8. Revealing the impact of local access-site complications and upper extremity dysfunction post transradial percutaneous coronary procedures

    NARCIS (Netherlands)

    Zwaan, E.M.; Koopman, A.G.M.M.; Holtzer, C.A.J.; Zijlstra, F.; Ritt, M.J.P.F.; Amoroso, G.; Moerman, E.; Kofflard, M.J.M.; Ijsselmuiden, A.J.J.

    2015-01-01

    Objectives Little is known about local access-site complications and upper extremity dysfunction after transradial percutaneous coronary procedures (TR-PCP). This systematic review study aimed to summarise the current knowledge on the incidences of access-site complications and upper extremity

  9. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-06-08

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.

  10. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Ray, Sougata Sinha; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18. PMID:26098662

  11. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Sinha Ray, Sougata; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31-43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25-43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min(-1). Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.

  12. Insight into the assembly of chaperones

    Energy Technology Data Exchange (ETDEWEB)

    May, R P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Stegmann, R; Manakova, E; Roessle, M; Hermann, T; Heumann, H [Max-Planck-Institut fuer Biochemie, Martinsried (Germany); Axmann, S; Plueckthun, A [Zurich Univ. (Switzerland); Wiedenmann, A [HMI, Berlin (Germany)

    1997-04-01

    Chaperones are proteins that help other proteins (substrate proteins) to acquire a `good` conformation. The folding is a dynamic process and involves repetitive binding and release of the chaperone components and of the substrate protein. Small-angle neutron scattering is used to investigate the structural changes that appear to happen during the folding process. (author). 2 refs.

  13. Chaperone-client complexes: A dynamic liaison

    Science.gov (United States)

    Hiller, Sebastian; Burmann, Björn M.

    2018-04-01

    Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.

  14. Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin

    Directory of Open Access Journals (Sweden)

    Panchanan Maiti

    2014-01-01

    Full Text Available The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.

  15. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction

    Science.gov (United States)

    Tulpule, Asmin; Kelley, James M.; Lensch, M. William; McPherson, Jade; Park, In Hyun; Hartung, Odelya; Nakamura, Tomoka; Schlaeger, Thorsten M.; Shimamura, Akiko; Daley, George Q.

    2013-01-01

    Summary Shwachman-Diamond syndrome (SDS), a rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS by knock-down of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two SDS patients. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated auto-digestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease. PMID:23602541

  16. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  17. The conformational dynamics of the mitochondrial Hsp70 chaperone.

    Science.gov (United States)

    Mapa, Koyeli; Sikor, Martin; Kudryavtsev, Volodymyr; Waegemann, Karin; Kalinin, Stanislav; Seidel, Claus A M; Neupert, Walter; Lamb, Don C; Mokranjac, Dejana

    2010-04-09

    Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments. 2010 Elsevier Inc. All rights reserved.

  18. Pharmacological chaperoning: a primer on mechanism and pharmacology.

    Science.gov (United States)

    Leidenheimer, Nancy J; Ryder, Katelyn G

    2014-05-01

    Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast

  19. Polypeptide binding properties of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C S; Heegaard, N H; Holm, A

    2000-01-01

    Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains to be elu......Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains...

  20. Quantitative analysis of the interplay between hsc70 and its co-chaperone HspBP1

    Directory of Open Access Journals (Sweden)

    Hicham Mahboubi

    2015-12-01

    Full Text Available Background. Chaperones and their co-factors are components of a cellular network; they collaborate to maintain proteostasis under normal and harmful conditions. In particular, hsp70 family members and their co-chaperones are essential to repair damaged proteins. Co-chaperones are present in different subcellular compartments, where they modulate chaperone activities.Methods and Results. Our studies assessed the relationship between hsc70 and its co-factor HspBP1 in human cancer cells. HspBP1 promotes nucleotide exchange on hsc70, but has also chaperone-independent functions. We characterized the interplay between hsc70 and HspBP1 by quantitative confocal microscopy combined with automated image analyses and statistical evaluation. Stress and the recovery from insult changed significantly the subcellular distribution of hsc70, but had little effect on HspBP1. Single-cell measurements and regression analysis revealed that the links between the chaperone and its co-factor relied on (i the physiological state of the cell and (ii the subcellular compartment. As such, we identified a linear relationship and strong correlation between hsc70 and HspBP1 distribution in control and heat-shocked cells; this correlation changed in a compartment-specific fashion during the recovery from stress. Furthermore, we uncovered significant stress-induced changes in the colocalization between hsc70 and HspBP1 in the nucleus and cytoplasm.Discussion. Our quantitative approach defined novel properties of the co-chaperone HspBP1 as they relate to its interplay with hsc70. We propose that changes in cell physiology promote chaperone redistribution and thereby stimulate chaperone-independent functions of HspBP1.

  1. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Claas Wodarczyk

    2009-09-01

    Full Text Available Polycystin-1 (PC-1, the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD, is a very large (approximately 520 kDa plasma membrane receptor localized in several subcellular compartments including cell-cell/matrix junctions as well as cilia. While heterologous over-expression systems have allowed identification of several of the potential biological roles of this receptor, its precise function remains largely elusive. Studying PC-1 in vivo has been a challenging task due to its complexity and low expression levels. To overcome these limitations and facilitate the study of endogenous PC-1, we have inserted HA- or Myc-tag sequences into the Pkd1 locus by homologous recombination. Here, we show that our approach was successful in generating a fully functional and easily detectable endogenous PC-1. Characterization of PC-1 distribution in vivo showed that it is expressed ubiquitously and is developmentally-regulated in most tissues. Furthermore, our novel tool allowed us to investigate the role of PC-1 in brain, where the protein is abundantly expressed. Subcellular localization of PC-1 revealed strong and specific staining in ciliated ependymal and choroid plexus cells. Consistent with this distribution, we observed hydrocephalus formation both in the ubiquitous knock-out embryos and in newborn mice with conditional inactivation of the Pkd1 gene in the brain. Both choroid plexus and ependymal cilia were morphologically normal in these mice, suggesting a role for PC-1 in ciliary function or signalling in this compartment, rather than in ciliogenesis. We propose that the role of PC-1 in the brain cilia might be to prevent hydrocephalus, a previously unrecognized role for this receptor and one that might have important implications for other genetic or sporadic diseases.

  2. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging.

    Science.gov (United States)

    Loos, Ben; Klionsky, Daniel J; Wong, Esther

    2017-09-01

    Accumulation of toxic protein aggregates in the nerve cells is a hallmark of neuronal diseases and brain aging. Mechanisms to enhance neuronal surveillance to improve neuronal proteostasis have a direct impact on promoting neuronal health and forestalling age-related decline in brain function. Autophagy is a lysosomal degradative pathway pivotal for neuronal protein quality control. Different types of autophagic mechanisms participate in protein handling in neurons. Macroautophagy targets misfolded and aggregated proteins in autophagic vesicles to the lysosomes for destruction, while chaperone-mediated autophagy (CMA) degrades specific soluble cytosolic proteins delivered to the lysosomes by chaperones. Dysfunctions in macroautophagy and CMA contribute to proteo- and neuro-toxicity associated with neurodegeneration and aging. Thus, augmenting or preserving both autophagic mechanisms pose significant benefits in delaying physiological and pathological neuronal demises. Recently, life-style interventions that modulate metabolite ketone bodies, energy intake by caloric restriction and energy expenditure by exercise have shown to enhance both autophagy and brain health. However, to what extent these interventions affect neuronal autophagy to promote brain fitness remains largely unclear. Here, we review the functional connections of how macroautophagy and CMA are affected by ketone bodies, caloric restriction and exercise in the context of neurodegeneration. A concomitant assessment of yeast Saccharomyces cerevisiae is performed to reveal the conserved nature of such autophagic responses to substrate perturbations. In doing so, we provide novel insights and integrated evidence for a potential adjuvant therapeutic strategy to intervene in the neuronal decline in neurodegenerative diseases by controlling both macroautophagy and CMA fluxes favorably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  4. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides.

    Science.gov (United States)

    Guichard, Cécile; Ivanyi-Nagy, Roland; Sharma, Kamal Kant; Gabus, Caroline; Marc, Daniel; Mély, Yves; Darlix, Jean-Luc

    2011-10-01

    Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.

  5. Mitochondrial dysfunction, oxidative stress and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Mark H.; Qian, Weijun; Wang, Haixing; Petyuk, Vladislav A.; Bloom, Joshua S.; Sforza, Daniel M.; Lacan, Goran; Liu, Dahai; Khan, Arshad H.; Cantor, Rita M.; Bigelow, Diana J.; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.

    2008-02-10

    The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list provides a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.

  6. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB.

    Science.gov (United States)

    Tang, Fenfen; Xia, Hongjie; Wang, Peipei; Yang, Jie; Zhao, Tianyong; Zhang, Qi; Hu, Yuanyang; Zhou, Xi

    2014-09-01

    Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg(2+) and Zn(2+), were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Sarowar, Samema; Hu, Olivia J.; Werneburg, Glenn T.; Thanassi, David G.; Li, Huilin; Christie, P. J.

    2016-06-27

    ABSTRACT

    The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains ofEscherichia coliuse this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in the periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 β-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function.

    IMPORTANCEPili are critical virulence factors for many bacterial pathogens. UropathogenicE. colirelies on P and type 1 pili assembled by the chaperone/usher pathway to

  8. PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Anat Florentin

    2017-11-01

    Full Text Available Summary: The deadly malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid, known as the apicoplast, that functions to produce essential metabolites, and drugs that target the apicoplast are clinically effective. Several prokaryotic caseinolytic protease (Clp genes have been identified in the Plasmodium genome. Using phylogenetic analysis, we focused on the Clp members that may form a regulated proteolytic complex in the apicoplast. We genetically targeted members of this complex and generated conditional mutants of the apicoplast-localized PfClpC chaperone and PfClpP protease. Conditional inhibition of the PfClpC chaperone resulted in growth arrest and apicoplast loss and was rescued by addition of the essential apicoplast-derived metabolite IPP. Using a double-conditional mutant parasite line, we discovered that the chaperone activity is required to stabilize the mature protease, revealing functional interactions. These data demonstrate the essential function of PfClpC in maintaining apicoplast integrity and its role in regulating the proteolytic activity of the Clp complex. : Plasmodium falciparum contains a unique organelle, the apicoplast. Using genetic and phenotypic assays, Florentin et al. characterize the apicoplast Clp chaperone and protease. They find that the chaperone is essential for protease stability and that together they function to maintain organelle integrity and segregation into daughter cells. Keywords: malaria, Plasmodium, apicoplast, IPP, Clp, chaperone, caseinolytic protease

  9. Allosteric mechanism controls traffic in the chaperone/usher pathway.

    Science.gov (United States)

    Di Yu, Xiao; Dubnovitsky, Anatoly; Pudney, Alex F; Macintyre, Sheila; Knight, Stefan D; Zavialov, Anton V

    2012-11-07

    Many virulence organelles of Gram-negative bacterial pathogens are assembled via the chaperone/usher pathway. The chaperone transports organelle subunits across the periplasm to the outer membrane usher, where they are released and incorporated into growing fibers. Here, we elucidate the mechanism of the usher-targeting step in assembly of the Yersinia pestis F1 capsule at the atomic level. The usher interacts almost exclusively with the chaperone in the chaperone:subunit complex. In free chaperone, a pair of conserved proline residues at the beginning of the subunit-binding loop form a "proline lock" that occludes the usher-binding surface and blocks usher binding. Binding of the subunit to the chaperone rotates the proline lock away from the usher-binding surface, allowing the chaperone-subunit complex to bind to the usher. We show that the proline lock exists in other chaperone/usher systems and represents a general allosteric mechanism for selective targeting of chaperone:subunit complexes to the usher and for release and recycling of the free chaperone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit......Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length...... than 5 amino acids showed binding and a clear correlation with hydrophobicity was demonstrated for oligomers of different hydrophobic amino acids. Insertion of hydrophilic amino acids in a hydrophobic sequence diminished or abolished binding. In conclusion our results show that calreticulin has...

  11. Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment.

    Science.gov (United States)

    Chen, Yaomin; Wang, Bin; Liu, Dan; Li, Jing Jing; Xue, Yueqiang; Sakata, Kazuko; Zhu, Ling-qiang; Heldt, Scott A; Xu, Huaxi; Liao, Francesca-Fang

    2014-02-12

    The excessive accumulation of soluble amyloid peptides (Aβ) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), particularly in synaptic dysfunction. The role of the two major chaperone proteins, Hsp70 and Hsp90, in clearing misfolded protein aggregates has been established. Despite their abundant presence in synapses, the role of these chaperones in synapses remains elusive. Here, we report that Hsp90 inhibition by 17-AAG elicited not only a heat shock-like response but also upregulated presynaptic and postsynaptic proteins, such as synapsin I, synaptophysin, and PSD95 in neurons. 17-AAG treatment enhanced high-frequency stimulation-evoked LTP and protected neurons from synaptic damage induced by soluble Aβ. In AD transgenic mice, the daily administration of 17-AAG over 7 d resulted in a marked increase in PSD95 expression in hippocampi. 17-AAG treatments in wild-type C57BL/6 mice challenged by soluble Aβ significantly improved contextual fear memory. Further, we demonstrate that 17-AAG activated synaptic protein expression via transcriptional mechanisms through the heat shock transcription factor HSF1. Together, our findings identify a novel function of Hsp90 inhibition in regulating synaptic plasticity, in addition to the known neuroprotective effects of the chaperones against Aβ and tau toxicity, thus further supporting the potential of Hsp90 inhibitors in treating neurodegenerative diseases.

  12. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    Science.gov (United States)

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  13. Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production

    Science.gov (United States)

    Martínez-Alonso, Mónica; Villaverde, Antonio

    2010-01-01

    Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield. PMID:21326941

  14. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    Science.gov (United States)

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  15. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    Science.gov (United States)

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  16. Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease.

    Science.gov (United States)

    Koga, Hiroshi; Martinez-Vicente, Marta; Arias, Esperanza; Kaushik, Susmita; Sulzer, David; Cuervo, Ana Maria

    2011-12-14

    Autophagy contributes to the removal of prone-to-aggregate proteins, but in several instances these pathogenic proteins have been shown to interfere with autophagic activity. In the case of Huntington's disease (HD), a congenital neurodegenerative disorder resulting from mutation in the huntingtin protein, we have previously described that the mutant protein interferes with the ability of autophagic vacuoles to recognize cytosolic cargo. Growing evidence supports the existence of cross talk among autophagic pathways, suggesting the possibility of functional compensation when one of them is compromised. In this study, we have identified a compensatory upregulation of chaperone-mediated autophagy (CMA) in different cellular and mouse models of HD. Components of CMA, namely the lysosome-associated membrane protein type 2A (LAMP-2A) and lysosomal-hsc70, are markedly increased in HD models. The increase in LAMP-2A is achieved through both an increase in the stability of this protein at the lysosomal membrane and transcriptional upregulation of this splice variant of the lamp-2 gene. We propose that CMA activity increases in response to macroautophagic dysfunction in the early stages of HD, but that the efficiency of this compensatory mechanism may decrease with age and so contribute to cellular failure and the onset of pathological manifestations.

  17. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  18. Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones.

    Science.gov (United States)

    Gao, Mimi; Estel, Kathrin; Seeliger, Janine; Friedrich, Ralf P; Dogan, Susanne; Wanker, Erich E; Winter, Roland; Ebbinghaus, Simon

    2015-04-07

    The cellular environment determines the structure and function of proteins. Marginal changes of the environment can severely affect the energy landscape of protein folding. However, despite the important role of chaperones on protein folding, less is known about chaperonal modulation of protein aggregation and fibrillation considering different classes of chaperones. We find that the pharmacological chaperone O4, the chemical chaperone proline as well as the protein chaperone serum amyloid P component (SAP) are inhibitors of the type 2 diabetes mellitus-related aggregation process of islet amyloid polypeptide (IAPP). By applying biophysical methods such as thioflavin T fluorescence spectroscopy, fluorescence anisotropy, total reflection Fourier-transform infrared spectroscopy, circular dichroism spectroscopy and atomic force microscopy we analyse and compare their inhibition mechanism. We demonstrate that the fibrillation reaction of human IAPP is strongly inhibited by formation of globular, amorphous assemblies by both, the pharmacological and the protein chaperones. We studied the inhibition mechanism under cell-like conditions by using the artificial crowding agents Ficoll 70 and sucrose. Under such conditions the suppressive effect of proline was decreased, whereas the pharmacological chaperone remains active.

  19. Disaggregases, molecular chaperones that resolubilize protein aggregates

    Directory of Open Access Journals (Sweden)

    David Z. Mokry

    2015-08-01

    Full Text Available The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.

  20. Proteomic analysis of coronary sinus serum reveals leucine-rich α2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure.

    LENUS (Irish Health Repository)

    Watson, Chris J

    2011-03-01

    Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.

  1. Proteomic analysis of coronary sinus serum reveals leucine-rich alpha2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure.

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-02-01

    BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF. METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich alpha2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P<\\/=0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-alpha (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-betaR1 (P<0.001) and alpha-smooth muscle actin (P=0.025) expression. CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, beta-blocker therapy, and BNP.

  2. Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome

    Directory of Open Access Journals (Sweden)

    Ayala Shiber

    2014-07-01

    Full Text Available Molecular chaperones were originally discovered as heat shock-induced proteins that facilitate proper folding of proteins with non-native conformations. While the function of chaperones in protein folding has been well documented over the last four decades, more recent studies have shown that chaperones are also necessary for the clearance of terminally misfolded proteins by the Ub-proteasome system. In this capacity, chaperones protect misfolded degradation substrates from spontaneous aggregation, facilitate their recognition by the Ub ligation machinery and finally shuttle the ubiquitylated substrates to the proteasome. The physiological importance of these functions is manifested by inefficient proteasomal degradation and the accumulation of protein aggregates during ageing or in certain neurodegenerative diseases, when chaperone levels decline. In this review, we focus on the diverse roles of stress-induced chaperones in targeting misfolded proteins to the proteasome and the consequences of their compromised activity. We further discuss the implications of these findings to the identification of new therapeutic targets for the treatment of amyloid diseases.

  3. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    Science.gov (United States)

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  4. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease.

    Science.gov (United States)

    Chaari, Ali; Hoarau-Véchot, Jessica; Ladjimi, Moncef

    2013-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD. Published by Elsevier B.V.

  5. Current trends in chaperone use by plastic and reconstructive surgeons.

    Science.gov (United States)

    Choudry, Umar; Barta, Ruth J; Kim, Nicholas

    2013-06-01

    There is a paucity of literature regarding the use of chaperones by surgeons when examining patients. Use of a chaperone not only makes the patient comfortable but also potentially protects the surgeon from perceived misconduct. This is especially true for plastic surgeons who examine sensitive areas commonly. The purpose of this study was to determine the current trends in chaperone use by plastic surgeons when examining patients. A 23-question online survey was sent to all members of the American Society of Plastic Surgeons. Data collected online were analyzed using Student t test and Pearson χ test. A P use by plastic surgeons during all examinations of patients was 30%. This rate increased up to 60% while examining sensitive areas. Male surgeons reported a higher frequency of chaperone use than female surgeons (P use compared to reconstructive surgeons (P = 0.001). Similarly, surgeons who had been in practice for more than 20 years reported a higher rate of chaperone use compared to surgeons in practice for less than 20 years (P = 0.032). Sixty-one (7.6%; 56 male and 5 female) surgeons reported being accused of inappropriate behavior by patients, of whom 49 (80%) did not have a chaperone present. There was no significant difference among male and female surgeons in rates of being accused of inappropriate behavior (7.9% vs 4.2%, P = 0.19). There was a higher rate of chaperone use by male plastic surgeons, surgeons with more than 20 years experience, and cosmetic surgeons. Despite the difference in chaperone use between the sexes, both had similar rates of being accused of inappropriate behavior during examinations by patients, and although these incidents were quite low, most had no chaperone present during those examinations.

  6. Erectile Dysfunction

    Science.gov (United States)

    ... or other heart problems take medications that contain nitrates to help the blood flow better to the ... erectile dysfunction can affect the way that the nitrates work—and cause blood pressure to drop to ...

  7. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia.

    Science.gov (United States)

    Xu, Zhongwei; Jin, Xiaohan; Cai, Wei; Zhou, Maobin; Shao, Ping; Yang, Zhen; Fu, Rong; Cao, Jin; Liu, Yan; Yu, Fang; Fan, Rong; Zhang, Yan; Zou, Shuang; Zhou, Xin; Yang, Ning; Chen, Xu; Li, Yuming

    2018-04-20

    Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study was conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method was performed. IHC and western blot were performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. We totally quantified 1372 proteins and screened 132 altering expressed mitochondrial proteins, including 86 down-regulated expression proteins and 46 up-regulated expression proteins (pelectron transport chain and oxidative phosphorylation. Especially, mitochondrial related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM and NDUFV1, were involved in energy production process in the matrix and membrane of mitochondria. Our results showed that abnormal electron transport, excessive oxidative stress and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and was related to the pathogenesis of EOS-PE. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    Science.gov (United States)

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. A primate specific extra domain in the molecular chaperone Hsp90.

    Directory of Open Access Journals (Sweden)

    Vishwadeepak Tripathi

    Full Text Available Hsp90 (heat shock protein 90 is an essential molecular chaperone that mediates folding and quality control of client proteins. Many of them such as protein kinases, steroid receptors and transcription factors are involved in cellular signaling processes. Hsp90 undergoes an ATP hydrolysis dependent conformational cycle to assist folding of the client protein. The canonical Hsp90 shows a typical composition of three distinct domains and interacts with individual cochaperone partners such as Hop, Cdc37 and Aha1 (activator of Hsp90 ATPase that regulate the reaction cycle of the molecular chaperone. A bioinformatic survey identified an additional domain of 122 amino acids in front of the canonical Hsp90 sequence. This extra domain (E domain is specific to the Catarrhini or drooping nose monkeys, a subdivision of the higher primates that includes man, the great apes and the old world monkeys but is absent from all other species. Our biochemical analysis reveals that Hsp103 associates with cochaperone proteins such as Hop, Cdc37 and Aha1 similar to Hsp90. However, the extra domain reduces the ATP hydrolysis rate to about half when compared to Hsp90 thereby acting as a negative regulator of the molecular chaperonés intrinsic ATPase activity.

  10. Molecular transformers in the cell: lessons learned from the DegP protease-chaperone.

    Science.gov (United States)

    Sawa, Justyna; Heuck, Alexander; Ehrmann, Michael; Clausen, Tim

    2010-04-01

    Structure-function analysis of DegP revealed a novel mechanism for protease and chaperone regulation. Binding of unfolded proteins induces the oligomer reassembly from the resting hexamer (DegP6) into the functional protease-chaperone DegP12/24. The newly formed cage exhibits the characteristics of a proteolytic folding chamber, shredding those proteins that are severely misfolded while stabilizing and protecting proteins present in their native state. Isolation of native DegP complexes with folded outer membrane proteins (OMPs) highlights the importance of DegP in OMP biogenesis. The encapsulated OMP beta-barrel is significantly stabilized in the hydrophobic chamber of DegP12/24 and thus DegP seems to employ a reciprocal mechanism to those chaperones assisting the folding of water soluble proteins via polar interactions. In addition, we discuss in this review similarities to other complex proteolytic machines that, like DegP, are under control of a substrate-induced or stress-induced oligomer conversion.

  11. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  12. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    International Nuclear Information System (INIS)

    Marcianò, G.; Huang, D. T.

    2016-01-01

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding

  13. FKBP immunophilins and Alzheimer's disease: A chaperoned affair

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... FKBP immunophilins and Alzheimer's disease: A chaperoned affair. Weihuan Cao Mary ... Keywords. Alzheimer's disease; amyloid precursor protein; beta amyloid; FKBP; FK506; immunophilins; tau ... 43 | Issue 1. March 2018.

  14. Modulation of chaperone-like and membranolytic activities of major ...

    Indian Academy of Sciences (India)

    C Sudheer Kumar

    2017-06-20

    Jun 20, 2017 ... Keywords. Capacitation; membranolytic activity; molecular chaperone; oxidative stress ... also shown to extract phospholipids from the membrane resulting ..... Gulcin I 2006 Antioxidant and antiradical activities of L-carnitine.

  15. The use of a chaperone in obstetrical and gynaecological practice.

    LENUS (Irish Health Repository)

    Afaneh, I

    2012-02-01

    The aim of this study was to assess the use of a chaperone in obstetrical and gynaecological practice in Ireland and to explore patients\\' opinions. Two questionnaires were designed; one for patients and the other one was sent to 145 gynaecologists in Ireland. One hundred and fifty two women took part in this survey of whom 74 were gynaecological and 78 were obstetric patients. Ninety five (65%) patients felt no need for a chaperone during a vaginal examination (VE) by a male doctor. On the other hand 34 (23%) participating women would request a chaperone if being examined by a female doctor. Among clinicians 116 (80%) responded by returning the questionnaire. Overall 60 (52%) always used a chaperone in public practice, in contrast to 24 (27%) in private practice. The study demonstrated that most patients do not wish to have a chaperone during a VE but a small proportion would still request one regardless of the examiner\\'s gender. Patients should be offered the choice of having a chaperone and their opinion should be respected and documented.

  16. The use of a chaperone in obstetrical and gynaecological practice.

    LENUS (Irish Health Repository)

    Afaneh, I

    2010-05-01

    The aim of this study was to assess the use of a chaperone in obstetrical and gynaecological practice in Ireland and to explore patients\\' opinions. Two questionnaires were designed; one for patients and the other one was sent to 145 gynaecologists in Ireland. One hundred and fifty two women took part in this survey of whom 74 were gynaecological and 78 were obstetric patients. Ninety five (65%) patients felt no need for a chaperone during a vaginal examination (VE) by a male doctor. On the other hand 34 (23%) participating women would request a chaperone if being examined by a female doctor. Among clinicians 116 (80%) responded by returning the questionnaire. Overall 60 (52%) always used a chaperone in public practice, in contrast to 24 (27%) in private practice. The study demonstrated that most patients do not wish to have a chaperone during a VE but a small proportion would still request one regardless of the examiner\\'s gender. Patients should be offered the choice of having a chaperone and their opinion should be respected and documented.

  17. Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo

    Directory of Open Access Journals (Sweden)

    Baik L. Seong

    2011-03-01

    Full Text Available The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.

  18. Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.

    Science.gov (United States)

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications.

    Science.gov (United States)

    Liu, Xiaolei; Huang, Sihua; Wang, Xingqin; Tang, Beisha; Li, Wenming; Mao, Zixu

    2015-08-01

    Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a recognized KFERQ-like motif in lysosomes and is important for cellular homeostasis. CMA activity declines with age and is altered in neurodegenerative diseases. Its impairment leads to the accumulation of aggregated proteins, some of which may be directly tied to the pathogenic processes of neurodegenerative diseases. Its induction may accelerate the clearance of pathogenic proteins and promote cell survival, representing a potential therapeutic approach for the treatment of neurodegenerative diseases. In this review, we summarize the current findings on how CMA is involved in neurodegenerative diseases, especially in Parkinson's disease.

  20. Chemical chaperones exceed the chaperone effects of RIC-3 in promoting assembly of functional α7 AChRs.

    Directory of Open Access Journals (Sweden)

    Alexander Kuryatov

    Full Text Available Functional α7 nicotinic acetylcholine receptors (AChRs do not assemble efficiently in cells transfected with α7 subunits unless the cells are also transfected with the chaperone protein RIC-3. Despite the presence of RIC-3, large amounts of these subunits remain improperly assembled. Thus, additional chaperone proteins are probably required for efficient assembly of α7 AChRs. Cholinergic ligands can act as pharmacological chaperones to promote assembly of mature AChRs and upregulate the amount of functional AChRs. In addition, we have found that the chemical chaperones 4-phenylbutyric acid (PBA and valproic acid (VPA greatly increase the amount of functional α7 AChRs produced in a cell line expressing both α7 and RIC-3. Increased α7 AChR expression allows assay of drug action using a membrane potential-sensitive fluorescent indicator. Both PBA and VPA also increase α7 expression in the SH-SY5Y neuroblastoma cell line that endogenously expresses α7 AChRs. VPA increases expression of endogenous α7 AChRs in hippocampal neurons but PBA does not. RIC-3 is insufficient for optimal assembly of α7 AChRs, but provides assay conditions for detecting additional chaperones. Chemical chaperones are a useful pragmatic approach to express high levels of human α7 AChRs for drug selection and characterization and possibly to increase α7 expression in vivo.

  1. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.

    Science.gov (United States)

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A

    2015-08-11

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity.

  2. Erectile Dysfunction

    Science.gov (United States)

    ... cut out alcohol. Excess alcohol can contribute to erectile dysfunction. If you choose to drink alcohol, do so in moderation. For healthy adults, that means up to one drink a day for men older than age 65, and up to two drinks ...

  3. Structural and Biochemical Characterization of SrcA, a Multi-cargo Type III Secretion Chaperone in Salmonella Required for Pathogenic Association with a Host

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C.; Zhang, K; Andres, S; Fnag, Y; Kaniuk, N; Hannemann, M; Brumell, J; Foster, L; Junop, M; Coombes, B

    2010-01-01

    Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 {angstrom} revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  4. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    Directory of Open Access Journals (Sweden)

    Colin A Cooper

    2010-02-01

    Full Text Available Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2 is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2 and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  5. Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp

    Directory of Open Access Journals (Sweden)

    Inken Rothkirch

    demonstrates abnormal reciprocal excitatory connectivity in the cortico-cerebellar circuitry. These results highlight the dysfunctional cerebello-cortical as well as basalganglio-cortical interaction in WC. Keywords: Dynamic causal modeling, Focal hand dystonia, Writer's cramp, Network disorder, Cerebellum

  6. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    Science.gov (United States)

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype

  7. Chaperone-usher fimbriae in a diverse selection of Gallibacterium genomes

    DEFF Research Database (Denmark)

    Kudirkiene, Egle; Bager, Ragnhild Jørgensen; Johnson, Timothy J.

    2014-01-01

    Background Fimbriae are bacterial cell surface organelles involved in the pathogenesis of many bacterial species, including Gallibacterium anatis, in which a F17-like fimbriae of the chaperone-usher (CU) family was recently shown to be an important virulence factor and vaccine candidate. To reveal...... that their expression may require other in vitro or in vivo conditions. Conclusions This is the first approach establishing a systematic fimbria classification system within Gallibacterium spp., which indicates a species-wide distribution of γ4 CU fimbriae among a diverse collection of Gallibacterium isolates...

  8. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    2014-06-01

    Full Text Available A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple

  9. Organizational Dysfunctions: Sources and Areas

    Directory of Open Access Journals (Sweden)

    Jacek Pasieczny

    2016-12-01

    Full Text Available Objective:The purpose of this article is to identify and describe various types and sources of organizational dysfunctions. Research Design & Methods: The findings are based on literature review and an ongoing empirical research project conducted in private sector organisations. The empirical study can be situated within interpretative approach. In this qualitative project open interviews and observations were used to collect data. Findings: The study indicates that various types and sources of organizational dysfunctions can be identified in organizations operating in Poland. The sources of dysfunctions may be found both within the organization and its environment. Regardless of its specific features, most of the dysfunctions may be interpreted as an undesirable goal displacement. Very often areas of these dysfunctions are strongly interconnected and create a system that hinders organizational performance. Yet, it is difficult to study these phenomena as respondents are unwilling, for various reasons, to disclose the problems faced by their organizations. Implications & Recommendations: The results imply that the issue of organisational dysfunctions requires open, long-lasting and comparative studies. Recommendations for further studies are formulated in the last section of the paper. Contribution & Value Added: The paper provides insight into "the dark side of organising" by identifying sources and areas of dysfunctions. It also reveals difficulties connected with conducting research on dysfunctions in the Polish context.

  10. Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus.

    Science.gov (United States)

    Akeda, Yukihiro; Okayama, Kanna; Kimura, Tomomi; Dryselius, Rikard; Kodama, Toshio; Oishi, Kazunori; Iida, Tetsuya; Honda, Takeshi

    2009-07-01

    Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus. In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30-100 amino acids and an amino terminal secretion signal encompassing the first 5-20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.

  11. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  12. Executive Dysfunction

    Science.gov (United States)

    Rabinovici, Gil D.; Stephens, Melanie L.; Possin, Katherine L.

    2015-01-01

    Purpose of Review: Executive functions represent a constellation of cognitive abilities that drive goal-oriented behavior and are critical to the ability to adapt to an ever-changing world. This article provides a clinically oriented approach to classifying, localizing, diagnosing, and treating disorders of executive function, which are pervasive in clinical practice. Recent Findings: Executive functions can be split into four distinct components: working memory, inhibition, set shifting, and fluency. These components may be differentially affected in individual patients and act together to guide higher-order cognitive constructs such as planning and organization. Specific bedside and neuropsychological tests can be applied to evaluate components of executive function. While dysexecutive syndromes were first described in patients with frontal lesions, intact executive functioning relies on distributed neural networks that include not only the prefrontal cortex, but also the parietal cortex, basal ganglia, thalamus, and cerebellum. Executive dysfunction arises from injury to any of these regions, their white matter connections, or neurotransmitter systems. Dysexecutive symptoms therefore occur in most neurodegenerative diseases and in many other neurologic, psychiatric, and systemic illnesses. Management approaches are patient specific and should focus on treatment of the underlying cause in parallel with maximizing patient function and safety via occupational therapy and rehabilitation. Summary: Executive dysfunction is extremely common in patients with neurologic disorders. Diagnosis and treatment hinge on familiarity with the clinical components and neuroanatomic correlates of these complex, high-order cognitive processes. PMID:26039846

  13. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

    Directory of Open Access Journals (Sweden)

    Karl Andrew Rodriguez

    2014-11-01

    Full Text Available Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24mg/kg (14 ppm rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS, heat shock factor 1 (HSF1, and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.

  14. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    Science.gov (United States)

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  15. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. Copyright © 2014 Mosby, Inc. All rights reserved.

  16. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    Science.gov (United States)

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  17. Hsp100/ClpB Chaperone Function and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vierling, Elizabeth [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Biochemistry and Molecular Biology

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  18. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat

    DEFF Research Database (Denmark)

    Germain, Dominique P; Hughes, Derralynn A; Nicholls, Kathleen

    2016-01-01

    BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The...

  19. Presence of chaperones during pelvic examinations in southeast ...

    African Journals Online (AJOL)

    2012-12-12

    Dec 12, 2012 ... preferred male physicians and 88 (38.3%) had no gender preference. ... is recommended as a standard practice by many medical ... Department of Obstetrics and Gynecology, University of Nigeria ... and eliminates postconsultation bias. .... chaperones gave prevention of sexual harassment as a reason.

  20. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

    Directory of Open Access Journals (Sweden)

    José Pedro Castro

    2018-04-01

    Full Text Available The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis, cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD, Parkinson’s (PD or even Huntington’s (HD diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.

  1. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks

    DEFF Research Database (Denmark)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase......, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required...... for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling...

  2. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    Science.gov (United States)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  3. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.

    Science.gov (United States)

    Gaude, H; Aznar, N; Delay, A; Bres, A; Buchet-Poyau, K; Caillat, C; Vigouroux, A; Rogon, C; Woods, A; Vanacker, J-M; Höhfeld, J; Perret, C; Meyer, P; Billaud, M; Forcet, C

    2012-03-22

    LKB1 is a tumor suppressor that is constitutionally mutated in a cancer-prone condition, called Peutz-Jeghers syndrome, as well as somatically inactivated in a sizeable fraction of lung and cervical neoplasms. The LKB1 gene encodes a serine/threonine kinase that associates with the pseudokinase STRAD (STE-20-related pseudokinase) and the scaffolding protein MO25, the formation of this heterotrimeric complex promotes allosteric activation of LKB1. We have previously reported that the molecular chaperone heat shock protein 90 (Hsp90) binds to and stabilizes LKB1. Combining pharmacological studies and RNA interference approaches, we now provide evidence that the co-chaperone Cdc37 participates to the regulation of LKB1 stability. It is known that the Hsp90-Cdc37 complex recognizes a surface within the N-terminal catalytic lobe of client protein kinases. In agreement with this finding, we found that the chaperones Hsp90 and Cdc37 interact with an LKB1 isoform that differs in the C-terminal region, but not with a novel LKB1 variant that lacks a portion of the kinase N-terminal lobe domain. Reconstitution of the two complexes LKB1-STRAD and LKB1-Hsp90-Cdc37 with recombinant proteins revealed that the former is catalytically active whereas the latter is inactive. Furthermore, consistent with a documented repressor function of Hsp90, LKB1 kinase activity was transiently stimulated upon dissociation of Hsp90. Finally, disruption of the LKB1-Hsp90 complex favors the recruitment of both Hsp/Hsc70 and the U-box dependent E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein) that triggers LKB1 degradation. Taken together, our results establish that the Hsp90-Cdc37 complex controls both the stability and activity of the LKB1 kinase. This study further shows that two chaperone complexes with antagonizing activities, Hsp90-Cdc37 and Hsp/Hsc70-CHIP, finely control the cellular level of LKB1 protein.

  5. Blocking the chaperone kinome pathway: Mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Abhinav [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Shandilya, Ashutosh [Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Agrawal, Vibhuti; Pratik, Piyush; Bhasme, Divya; Bisaria, Virendra S. [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Sundar, Durai, E-mail: sundar@dbeb.iitd.ac.in [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India)

    2011-01-07

    Research highlights: {yields} Withaferin A and 17-DMAG synergistically inhibit the Hsp90-Cdc37 chaperone pair. {yields} Binding of WA to Cdc37 cleft suppresses its kinase binding activity. {yields} 17-DMAG binding to the association complex results in H-bonds with 60% clustering. {yields} The ligands' bound complex was found structurally and thermodynamically stable. -- Abstract: The chaperone Hsp90 is involved in regulating the stability and activation state of more than 200 'client' proteins and takes part in the cancer diseased states. The major clientele-protein kinases depend on Hsp90 for their proper folding and functioning. Cdc37, a kinase targeting co-chaperone of Hsp90, mediates the interactions between Hsp90 and protein kinases. Targeting of Cdc37 has the prospect of delivering predominantly kinase-selective molecular responses as compared to the current pharmacologic Hsp90 inhibitors. The present work reports a bio-computational study carried out with the aim of exploring the dual inhibition of Hsp90/Cdc37 chaperone/co-chaperone association complex by the naturally occurring drug candidates withaferin A and 17-DMAG along with their possible modes of action. Our molecular docking studies reveal that withaferin A in combination with 17-DMAG can act as potent chaperone system inhibitors. The structural and thermodynamic stability of the ligands' bound complex was also observed from molecular dynamics simulations in water. Our results suggest a novel tumor suppressive action mechanism of herbal ligands which can be looked forward for further clinical investigations for possible anticancer drug formulations.

  6. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.

    Science.gov (United States)

    Garcia, S S; Du, Q; Wu, H

    2016-12-01

    The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly.

    Science.gov (United States)

    Martinez, Natalia J; Chang, Hao-Ming; Borrajo, Jacob de Riba; Gregory, Richard I

    2013-11-01

    Argonaute2 (Ago2) protein and associated microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC) for target messenger RNA cleavage and post-transcriptional gene silencing. Although Ago2 is essential for RISC activity, the mechanism of RISC assembly is not well understood, and factors controlling Ago2 protein expression are largely unknown. A role for the Hsc70/Hsp90 chaperone complex in loading small RNA duplexes into the RISC has been demonstrated in cell extracts, and unloaded Ago2 is unstable and degraded by the lysosome in mammalian cells. Here we identify the co-chaperones Fkbp4 and Fkbp5 as Ago2-associated proteins in mouse embryonic stem cells. Pharmacological inhibition of this interaction using FK506 or siRNA-mediated Fkbp4/5 depletion leads to decreased Ago2 protein levels. We find FK506 treatment inhibits, whereas Fkbp4/5 overexpression promotes, miRNA-mediated stabilization of Ago2 expression. Simultaneous treatment with a lysosome inhibitor revealed the accumulation of unloaded Ago2 complexes in FK506-treated cells. We find that, consistent with unloaded miRNAs being unstable, FK506 treatment also affects miRNA abundance, particularly nascent miRNAs. Our results support a role for Fkbp4/5 in RISC assembly.

  8. The chaperone like function of the nonhistone protein HMGB1

    International Nuclear Information System (INIS)

    Osmanov, Taner; Ugrinova, Iva; Pasheva, Evdokia

    2013-01-01

    Highlights: ► The HMGB1 protein strongly enhanced the formation of nucleosome particles. ► The target of HMGB1 action as a chaperone is the DNA not the histone octamer. ► The acetylation of HMGB1 decreases the stimulating effect of the protein. -- Abstract: Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box’s A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear “architectural” factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the “architectural” property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post

  9. Mapping the ER Interactome: The P Domains of Calnexin and Calreticulin as Plurivalent Adapters for Foldases and Chaperones.

    Science.gov (United States)

    Kozlov, Guennadi; Muñoz-Escobar, Juliana; Castro, Karla; Gehring, Kalle

    2017-09-05

    The lectin chaperones calreticulin (CRT) and calnexin (CNX) contribute to the folding of glycoproteins in the ER by recruiting foldases such as the protein disulfide isomerase ERp57 and the peptidyl prolyl cis-trans isomerase CypB. Recently, CRT was shown to interact with the chaperone ERp29. Here, we show that ERp29 directly binds to the P domain of CNX. Crystal structures of the D domain of ERp29 in complex with the P domains from CRT and calmegin, a tissue-specific CNX homolog, reveal a commonality in the mechanism of binding whereby the tip of the P domain functions as a plurivalent adapter to bind a variety of folding factors. We show that mutation of a single residue, D348 in CNX, abrogates binding to ERp29 as well as ERp57 and CypB. The structural diversity of the accessory factors suggests that these chaperones became specialized for glycoprotein folding through convergent evolution of their P-domain binding sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9.

    Science.gov (United States)

    Vu, Michael T; Zhai, Peng; Lee, Juhye; Guerra, Cecilia; Liu, Shirley; Gustin, Michael C; Silberg, Jonathan J

    2012-02-01

    Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones. Copyright © 2011 The Protein Society.

  11. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival.

    Science.gov (United States)

    Hayashi, Teruo; Su, Tsung-Ping

    2007-11-02

    Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.

  12. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy.

    Science.gov (United States)

    Fang, Xi; Bogomolovas, Julius; Wu, Tongbin; Zhang, Wei; Liu, Canzhao; Veevers, Jennifer; Stroud, Matthew J; Zhang, Zhiyuan; Ma, Xiaolong; Mu, Yongxin; Lao, Dieu-Hung; Dalton, Nancy D; Gu, Yusu; Wang, Celine; Wang, Michael; Liang, Yan; Lange, Stephan; Ouyang, Kunfu; Peterson, Kirk L; Evans, Sylvia M; Chen, Ju

    2017-08-01

    Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.

  13. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  14. Chaperone use during intimate examinations in primary care: postal survey of family physicians

    Directory of Open Access Journals (Sweden)

    Upshur Ross EG

    2005-12-01

    Full Text Available Abstract Background Physicians have long been advised to have a third party present during certain parts of a physical examination; however, little is known about the frequency of chaperone use for those specific intimate examinations regularly performed in primary care. We aimed to determine the frequency of chaperone use among family physicians across a variety of intimate physical examinations for both male and female patients, and also to identify the factors associated with chaperone use. Methods Questionnaires were mailed to a randomly selected sample of 500 Ontario members of the College of Family Physicians of Canada. Participants were asked about their use of chaperones when performing a variety of intimate examinations, namely female pelvic, breast, and rectal exams and male genital and rectal exams. Results 276 of 500 were returned (56%, of which 257 were useable. Chaperones were more commonly used with female patients than with males (t = 9.09 [df = 249], p Conclusion Clinical practice concerning the use of chaperones during intimate exams continues to be discordant with the recommendations of medical associations and medico-legal societies. Chaperones are used by only a minority of Ontario family physicians. Chaperone use is higher for examinations of female patients than of male patients and is highest for female pelvic exams. The availability of a nurse in the clinic to act as a chaperone is associated with more frequent use of chaperones.

  15. Metal chaperones: a holistic approach to the treatment of AD

    Directory of Open Access Journals (Sweden)

    Paul Anthony Adlard

    2012-03-01

    Full Text Available As the burden of proof for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer’s disease, where the use of metal chaperones (that transport metals, as opposed to chelators (which exclude metals from biological interactions, may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology, modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more holistic approach to the treatment of this disease.

  16. In vitro reconstitution of chaperone-mediated human RISC assembly.

    Science.gov (United States)

    Naruse, Ken; Matsuura-Suzuki, Eriko; Watanabe, Mariko; Iwasaki, Shintaro; Tomari, Yukihide

    2018-01-01

    To silence target mRNAs, small RNAs and Argonaute (Ago) proteins need to be assembled into RNA-induced silencing complexes (RISCs). Although the assembly of Drosophila melanogaster RISC was recently reconstituted by Ago2, the Dicer-2/R2D2 heterodimer, and five chaperone proteins, the absence of a reconstitution system for mammalian RISC assembly has posed analytical challenges. Here we describe reconstitution of human RISC assembly using Ago2 and five recombinant chaperone proteins: Hsp90β, Hsc70, Hop, Dnaja2, and p23. Our data show that ATP hydrolysis by both Hsp90β and Hsc70 is required for RISC assembly of small RNA duplexes but not for that of single-stranded RNAs. The reconstitution system lays the groundwork for further studies of small RNA-mediated gene silencing in mammals. © 2018 Naruse et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Cloning and molecular characterization of a copper chaperone gene ...

    African Journals Online (AJOL)

    The cDNA encoding a copper chaperone, designated as HbCCH1, was isolated from Hevea brasiliensis. HbCC1 was 589 bp long containing a 261 bp open reading frame encoding a putative protein of 86 amino acids, flanked by a 103 bp 5'UTR and a 225 bp 3'UTR. The predicted molecular mass of HbCCH1 was 9.2 kDa, ...

  18. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  19. A S52P mutation in the 'α-crystallin domain' of Mycobacterium leprae HSP18 reduces its oligomeric size and chaperone function.

    Science.gov (United States)

    Nandi, Sandip K; Rehna, Elengikal A A; Panda, Alok K; Shiburaj, Sugathan; Dharmalingam, Kuppamuthu; Biswas, Ashis

    2013-12-01

    Mycobacterium leprae HSP18 is a small heat shock protein (sHSP). It is a major immunodominant antigen of M. leprae pathogen. Previously, we have reported the existence of two M. leprae HSP18 variants in various leprotic patients. One of the variants has serine at position 52, whereas the other one has proline at the same position. We have also reported that HSP18 having proline at position 52 (HSP18P(52)) is a nonameric protein and exhibits chaperone function. However, the structural and functional characterization of wild-type HSP18 having serine at position 52 (HSP18S(52)) is yet to be explored. Furthermore, the implications of the S52P mutation on the structure and chaperone function of HSP18 are not well understood. Therefore, we cloned and purified these two HSP18 variants. We found that HSP18S(52) is also a molecular chaperone and an oligomeric protein. Intrinsic tryptophan fluorescence and far-UV CD measurements revealed that the S52P mutation altered the tertiary and secondary structure of HSP18. This point mutation also reduced the oligomeric assembly and decreased the surface hydrophobicity of HSP18, as revealed by HPLC and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding studies, respectively. Mutant protein was less stable against thermal and chemical denaturation and was more susceptible towards tryptic cleavage than wild-type HSP18. HSP18P(52) had lower chaperone function and was less effective in protecting thermal killing of Escherichia coli than HSP18S(52). Taken together, our data suggest that serine 52 is important for the larger oligomerization and chaperone function of HSP18. Because both variants differ in stability and function, they may have different roles in the survival of M. leprae in infected hosts. © 2013 FEBS.

  20. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli.

    Science.gov (United States)

    Bao, Rui; Liu, Yang; Savarino, Stephen J; Xia, Di

    2016-12-01

    The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone-usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor-strand complementation (DSC) and cleft-mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone-subunit complex and the cleft-mediated anchorage of the subunit C-terminus additionally assist in subunit refolding. Surprisingly, over-stabilization of the chaperone-subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off-pathway self-polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Molecular Microbiology published by John Wiley & Sons Ltd.

  1. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Casey Carlisle

    2017-12-01

    Full Text Available Protein folding factors (chaperones are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS, have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.

  2. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  3. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.

    Science.gov (United States)

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A

    2015-04-10

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development of GMP-1 a molecular chaperone network modulator protecting mitochondrial function and its assessment in fly and mice models of Alzheimer's disease.

    Science.gov (United States)

    Pavlov, Pavel F; Hutter-Paier, Birgit; Havas, Daniel; Windisch, Manfred; Winblad, Bengt

    2018-04-27

    Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and may play an important role in the pathogenesis of disease. It has been shown that amyloid beta peptide (Aβ) and amyloid precursor protein (APP) interact with mitochondria contributing to the mitochondrial dysfunction in AD. Prevention of abnormal protein targeting to mitochondria can protect normal mitochondrial function, increase neuronal survival and at the end, ameliorate symptoms of AD and other neurodegenerative disorders. First steps of mitochondrial protein import are coordinated by molecular chaperones Hsp70 and Hsp90 that bind to the newly synthesized mitochondria-destined proteins and deliver them to the protein import receptors on the surface of organelle. Here, we have described the development of a novel compound named GMP-1 that disrupts interactions between Hsp70/Hsp90 molecular chaperones and protein import receptor Tom70. GMP-1 treatment of SH-SY5Y cells results in decrease in mitochondria-associated APP and protects SH-SY5Y cells from toxic effect of Aβ 1-42 exposure. Experiments in drosophila and mice models of AD demonstrated neuroprotective effect of GMP-1 treatment, improvement in memory and behaviour tests as well as restoration of mitochondrial function. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Ssb1 chaperone is a [PSI+] prion-curing factor.

    Science.gov (United States)

    Chacinska, A; Szczesniak, B; Kochneva-Pervukhova, N V; Kushnirov, V V; Ter-Avanesyan, M D; Boguta, M

    2001-04-01

    Yeast SUP7' or SUP11 nonsense suppressors have no phenotypic expression in strains deficient in the isopentenylation of A37 in tRNA. Here we show that such strains spontaneously produce cells with a nonsense suppressor phenotype which is related to the cytoplasmically inherited determinant and manifests all the key features of the [PSI+] prion. A screen of a multicopy yeast genomic library for genes that inactivate the [PSI+]-related suppressor phenotype resulted in the isolation of the SSB1 gene. Moreover, we demonstrate that multicopy plasmid encoding the Ssb1 chaperone cures cells of the [PSI+] prion.

  6. Autoregulation of Co-Chaperone BAG3 Gene Transcription

    OpenAIRE

    Gentilella, Antonio; Khalili, Kamel

    2009-01-01

    The Bcl-2-associated athanogene, BAG, protein family through their BAG domain associates with the heat shock protein 70 (HSP-70) and modulates its chaperone activity. One member of this family, BAG3, appears to play an important role in protein homeostasis, as its expression promotes cell survival by preventing polyubiquitination of Hsp-70 client proteins. Expression of BAG3 is enhanced by a variety of stress-inducing agents. Here we describe a role for BAG3 to modulate transcription of its o...

  7. Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers

    NARCIS (Netherlands)

    Mannini, Benedetta; Cascella, Roberta; Zampagni, Mariagioia; Van Waarde-Verhagen, Maria; Meehan, Sarah; Roodveldt, Cintia; Campioni, Silvia; Boninsegna, Matilde; Penco, Amanda; Relini, Annalisa; Kampinga, Harm H.; Dobson, Christopher M.; Wilson, Mark R.; Cecchi, Cristina; Chiti, Fabrizio

    2012-01-01

    Chaperones are the primary regulators of the proteostasis network and are known to facilitate protein folding, inhibit protein aggregation, and promote disaggregation and clearance of misfolded aggregates inside cells. We have tested the effects of five chaperones on the toxicity of misfolded

  8. Chaperone-like properties of tobacco plastid thioredoxins f and m

    Science.gov (United States)

    Sanz-Barrio, Ruth; Fernández-San Millán, Alicia; Carballeda, Jon; Corral-Martínez, Patricia; Seguí-Simarro, José M.; Farran, Inmaculada

    2012-01-01

    Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein. PMID:21948853

  9. Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity

    NARCIS (Netherlands)

    Eerde, André van; Hamiaux, Cyril; Pérez, Javier; Parsot, Claude; Dijkstra, Bauke W.

    2004-01-01

    Type III secretion (TTS) systems are used by many Gram-negative pathogens to inject virulence proteins into the cells of their hosts. Several of these virulence effectors require TTS chaperones that maintain them in a secretion-competent state. Whereas most chaperones bind only one effector, Spa15

  10. Information encoded in non-native states drives substrate-chaperone pairing.

    Science.gov (United States)

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Study of receptor-chaperone interactions using the optical technique of spectroscopic ellipsometry.

    Science.gov (United States)

    Kriechbaumer, Verena; Tsargorodskaya, Anna; Mustafa, Mohd K; Vinogradova, Tatiana; Lacey, Joanne; Smith, David P; Abell, Benjamin M; Nabok, Alexei

    2011-07-20

    This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Degradation of AF1Q by chaperone-mediated autophagy

    International Nuclear Information System (INIS)

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru; Li, Huanjie; Cui, Taixing; Li Wang, Xing; Tang, Dongqi; Ji, Chunyan

    2014-01-01

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components

  14. A passive physical model for DnaK chaperoning

    Science.gov (United States)

    Uhl, Lionel; Dumont, Audrey; Dukan, Sam

    2018-03-01

    Almost all living organisms use protein chaperones with a view to preventing proteins from misfolding or aggregation either spontaneously or during cellular stress. This work uses a reaction-diffusion stochastic model to describe the dynamic localization of the Hsp70 chaperone DnaK in Escherichia coli cells during transient proteotoxic collapse characterized by the accumulation of insoluble proteins. In the model, misfolded (‘abnormal’) proteins are produced during alcoholic stress and have the propensity to aggregate with a polymerization-like kinetics. When aggregates diffuse more slowly they grow larger. According to Michaelis-Menten-type kinetics, DnaK has the propensity to bind with misfolded proteins or aggregates in order to catalyse refolding. To match experimental fluorescence microscopy data showing clusters of DnaK-GFP localized in multiple foci, the model includes spatial zones with local reduced diffusion rates to generate spontaneous assemblies of DnaK called ‘foci’. Numerical simulations of our model succeed in reproducing the kinetics of DnaK localization experimentally observed. DnaK starts from foci, moves to large aggregates during acute stress, resolves those aggregates during recovery and finally returns to its initial punctate localization pattern. Finally, we compare real biological events with hypothetical repartitions of the protein aggregates or DnaK. We then notice that DnaK action is more efficient on protein aggregates than on protein homogeneously distributed.

  15. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  16. Degradation of AF1Q by chaperone-mediated autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Li, Huanjie; Cui, Taixing; Li Wang, Xing [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@sdu.edu.cn [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250033 (China); Ji, Chunyan, E-mail: jichunyan@sdu.edu.cn [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  17. UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl; Kampmeyer, Caroline; Kriegenburg, Franziska

    2017-01-01

    of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2...

  18. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines

    Directory of Open Access Journals (Sweden)

    Michael William Graner

    2015-01-01

    Full Text Available The endoplasmic reticulum (ER is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat shock protein/chaperone protein-based cancer vaccines called CRCL (Chaperone-Rich Cell Lysate that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically-resected tumor samples. Of note, these preparations contained at least ten ER chaperones and a number of other residents, along with many other chaperones/heat shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes.

  19. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Directory of Open Access Journals (Sweden)

    Jyoti K. Jha

    2017-04-01

    Full Text Available Replication of Vibrio cholerae chromosome 2 (Chr2 depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.

  20. Proteotoxicity is not the reason for the dependence of cancer cells on the major chaperone Hsp70.

    Science.gov (United States)

    Colvin, Teresa A; Gabai, Vladimir L; Sherman, Michael Y

    2014-01-01

    Several years ago a hypothesis was proposed that the survival of cancer cells depend on elevated expression of molecular chaperones because these cells are prone to proteotoxic stress. A critical prediction of this hypothesis is that depletion of chaperones in cancer cells should lead to proteotoxicity. Here, using the major chaperone Hsp70 as example, we demonstrate that its depletion does not trigger proteotoxic stress, thus refuting the model. Accordingly, other functions of chaperones, e.g., their role in cell signaling, might define the requirements for chaperones in cancer cells, which is critical for rational targeting Hsp70 in cancer treatment.

  1. Advances in sepsis-associated liver dysfunction

    OpenAIRE

    Wang, Dawei; Yin, Yimei; Yao, Yongming

    2014-01-01

    Recent studies have revealed liver dysfunction as an early event in sepsis. Sepsis-associated liver dysfunction is mainly resulted from systemic or microcirculatory disturbances, spillovers of bacteria and endotoxin (lipopolysaccharide, LPS), and subsequent activation of inflammatory cytokines as well as mediators. Three main cell types of the liver which contribute to the hepatic response in sepsis are Kupffer cells (KCs), hepatocytes and liver sinusoidal endothelial cells (LSECs). In additi...

  2. Cellular Chaperones As Therapeutic Targets in ALS to Restore Protein Homeostasis and Improve Cellular Function

    Directory of Open Access Journals (Sweden)

    Bernadett Kalmar

    2017-09-01

    Full Text Available Heat shock proteins (Hsps are ubiquitously expressed chaperone proteins that enable cells to cope with environmental stresses that cause misfolding and denaturation of proteins. With aging this protein quality control machinery becomes less effective, reducing the ability of cells to cope with damaging environmental stresses and disease-causing mutations. In neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS, such mutations are known to result in protein misfolding, which in turn results in the formation of intracellular aggregates cellular dysfunction and eventual neuronal death. The exact cellular pathology of ALS and other neurodegenerative diseases has been elusive and thus, hindering the development of effective therapies. However, a common scheme has emerged across these “protein misfolding” disorders, in that the mechanism of disease involves one or more aspects of proteostasis; from DNA transcription, RNA translation, to protein folding, transport and degradation via proteosomal and autophagic pathways. Interestingly, members of the Hsp family are involved in each of these steps facilitating normal protein folding, regulating the rate of protein synthesis and degradation. In this short review we summarize the evidence that suggests that ALS is a disease of protein dyshomeostasis in which Hsps may play a key role. Overwhelming evidence now indicates that enabling protein homeostasis to cope with disease-causing mutations might be a successful therapeutic strategy in ALS, as well as other neurodegenerative diseases. Novel small molecule co-inducers of Hsps appear to be able to achieve this aim. Arimoclomol, a hydroxylamine derivative, has shown promising results in cellular and animal models of ALS, as well as other protein misfolding diseases such as Inclusion Body Myositis (IBM. Initial clinical investigations of Arimoclomol have shown promising results. Therefore, it is possible that the long series of

  3. Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones

    Science.gov (United States)

    Burns, J. Nicole; Orwig, Susan D.; Harris, Julia L.; Watkins, J. Derrick; Vollrath, Douglas; Lieberman, Raquel L.

    2010-01-01

    Mutations in myocilin cause an inherited form of open angle glaucoma, a prevalent neurodegenerative disorder associated with increased intraocular pressure. Myocilin forms part of the trabecular meshwork extracellular matrix presumed to regulate intraocular pressure. Missense mutations, clustered in the olfactomedin (OLF) domain of myocilin, render the protein prone to aggregation in the endoplasmic reticulum of trabecular meshwork cells, causing cell dysfunction and death. Cellular studies have demonstrated temperature-sensitive secretion of myocilin mutants, but difficulties in expression and purification have precluded biophysical characterization of wild-type (wt) myocilin and disease-causing mutants in vitro. We have overcome these limitations by purifying wt and select glaucoma-causing mutant (D380A, I477N, I477S, K423E) forms of the OLF domain (228–504) fused to maltose binding protein (MBP) from E. coli. Monomeric fusion proteins can be isolated in solution. To determine the relative stability of wt and mutant OLF domains, we developed a fluorescence thermal stability assay without removal of MBP, and provide the first direct evidence that mutated OLF is folded but less thermally stable than wt. We tested the ability of seven chemical chaperones to stabilize mutant myocilin. Only sarcosine and trimethylamine N-oxide were capable of shifting the melting temperature of all mutants tested to near that of wt OLF. Our work lays the foundation for the identification of tailored small molecules capable of stabilizing mutant myocilin and promoting secretion to the extracellular matrix, to better control intraocular pressure and ultimately delay the onset of myocilin glaucoma. PMID:20334347

  4. Chaperones and intimate physical examinations: what do male and female patients want?

    Science.gov (United States)

    Fan, V C; Choy, H T; Kwok, G Yj; Lam, H G; Lim, Q Y; Man, Y Y; Tang, C K; Wong, C C; Yu, Y F; Leung, G Kk

    2017-02-01

    Many studies of patients' perception of a medical chaperone have focused on female patients; that of male patients are less well studied. Moreover, previous studies were largely based on patient populations in English-speaking countries. Therefore, this study was conducted to investigate the perception and attitude of male and female Chinese patients to the presence of a chaperone during an intimate physical examination. A cross-sectional guided questionnaire survey was conducted on a convenient sample of 150 patients at a public teaching hospital in Hong Kong. Over 90% of the participants considered the presence of a chaperone appropriate during intimate physical examination, and 84% felt that doctors, irrespective of gender, should always request the presence of a chaperone. The most commonly cited reasons included the availability of an objective account should any legal issue arise, protection against sexual harassment, and to provide psychological support. This contrasted with the experience of those who had previously undergone an intimate physical examination of whom only 72.6% of women and 35.7% of men had reportedly been chaperoned. Among female participants, 75.0% preferred to be chaperoned during an intimate physical examination by a male doctor, and 28.6% would still prefer to be chaperoned when being examined by a female doctor. Among male participants, over 50% indicated no specific preference but a substantial minority reported a preference for chaperoned examination (21.2% for male doctor and 25.8% for female doctor). Patients in Hong Kong have a high degree of acceptance and expectations about the role of a medical chaperone. Both female and male patients prefer such practice regardless of physician gender. Doctors are strongly encouraged to discuss the issue openly with their patients before they conduct any intimate physical examination.

  5. Sylvie Chaperon, Les origines de la sexologie (1850-1900

    Directory of Open Access Journals (Sweden)

    Anne-Claire Rebreyend

    2008-07-01

    Full Text Available Le mot sexologie apparaît seulement au début des années 1910 en France. Mais dès la seconde moitié du XIXe siècle s’affirme un nouveau savoir médical sur la sexualité, une protosexologie dont Sylvie Chaperon retrace l’histoire par le biais de sources médicales et policières, de romans érotiques, de mémoires. « Premier panorama synthétique » (p. 11 d’une histoire de la sexologie encore lacunaire en France, Les origines de la sexologie pointe la lente émergence d’une nouvelle discipline sur la...

  6. Sylvie Chaperon, Les origines de la sexologie (1850-1900)

    OpenAIRE

    Anne-Claire Rebreyend

    2008-01-01

    Le mot sexologie apparaît seulement au début des années 1910 en France. Mais dès la seconde moitié du XIXe siècle s’affirme un nouveau savoir médical sur la sexualité, une protosexologie dont Sylvie Chaperon retrace l’histoire par le biais de sources médicales et policières, de romans érotiques, de mémoires. « Premier panorama synthétique » (p. 11) d’une histoire de la sexologie encore lacunaire en France, Les origines de la sexologie pointe la lente émergence d’une nouvelle discipline sur la...

  7. The chaperone BAG6 captures dislocated glycoproteins in the cytosol.

    Directory of Open Access Journals (Sweden)

    Jasper H L Claessen

    Full Text Available Secretory and membrane (glycoproteins are subject to quality control in the endoplasmic reticulum (ER to ensure that only functional proteins reach their destination. Proteins deemed terminally misfolded and hence functionally defective may be dislocated to the cytosol, where the proteasome degrades them. What we know about this process stems mostly from overexpression of tagged misfolded proteins, or from situations where viruses have hijacked the quality control machinery to their advantage. We know of only very few endogenous substrates of ER quality control, most of which are degraded as part of a signaling pathway, such as Insig-1, but such examples do not necessarily represent terminally misfolded proteins. Here we show that endogenous dislocation clients are captured specifically in association with the cytosolic chaperone BAG6, or retrieved en masse via their glycan handle.

  8. Burden of Sexual Dysfunction.

    Science.gov (United States)

    Balon, Richard

    2017-01-02

    Similar to the burden of other diseases, the burden of sexual dysfunction has not been systematically studied. However, there is growing evidence of various burdens (e.g., economic, symptomatic, humanistic) among patients suffering from sexual dysfunctions. The burden of sexual dysfunction has been studied a bit more often in men, namely the burden of erectile dysfunction (ED), premature ejaculation (PE) and testosterone deficiency syndrome (TDS). Erectile dysfunction is frequently associated with chronic conditions such as cardiovascular disease, diabetes, and depression. These conditions could go undiagnosed, and ED could be a marker of those diseases. The only available report from the United Kingdom estimated the total economic burden of ED at £53 million annually in terms of direct costs and lost productivity. The burden of PE includes significant psychological distress: anxiety, depression, lack of sexual confidence, poor self-esteem, impaired quality of life, and interpersonal difficulties. Some suggest that increase in female sexual dysfunction is associated with partner's PE, in addition to significant interpersonal difficulties. The burden of TDS includes depression, sexual dysfunction, mild cognitive impairment, and osteoporosis. One UK estimate of the economic burden of female sexual dysfunctions demonstrated that the average cost per patient was higher than the per annum cost of ED. There are no data on burden of paraphilic disorders. The burden of sexual dysfunctions is underappreciated and not well studied, yet it is significant for both the patients and the society.

  9. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  10. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    International Nuclear Information System (INIS)

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-01-01

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets

  11. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish.

    Science.gov (United States)

    Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi

    2013-05-01

    ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.

  12. Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine.

    Science.gov (United States)

    Volkan, Ender; Ford, Bradley A; Pinkner, Jerome S; Dodson, Karen W; Henderson, Nadine S; Thanassi, David G; Waksman, Gabriel; Hultgren, Scott J

    2012-06-12

    P pili are prototypical chaperone-usher pathway-assembled pili used by Gram-negative bacteria to adhere to host tissues. The PapC usher contains five functional domains: a transmembrane β-barrel, a β-sandwich Plug, an N-terminal (periplasmic) domain (NTD), and two C-terminal (periplasmic) domains, CTD1 and CTD2. Here, we delineated usher domain interactions between themselves and with chaperone-subunit complexes and showed that overexpression of individual usher domains inhibits pilus assembly. Prior work revealed that the Plug domain occludes the pore of the transmembrane domain of a solitary usher, but the chaperone-adhesin-bound usher has its Plug displaced from the pore, adjacent to the NTD. We demonstrate an interaction between the NTD and Plug domains that suggests a biophysical basis for usher gating. Furthermore, we found that the NTD exhibits high-affinity binding to the chaperone-adhesin (PapDG) complex and low-affinity binding to the major tip subunit PapE (PapDE). We also demonstrate that CTD2 binds with lower affinity to all tested chaperone-subunit complexes except for the chaperone-terminator subunit (PapDH) and has a catalytic role in dissociating the NTD-PapDG complex, suggesting an interplay between recruitment to the NTD and transfer to CTD2 during pilus initiation. The Plug domain and the NTD-Plug complex bound all of the chaperone-subunit complexes tested including PapDH, suggesting that the Plug actively recruits chaperone-subunit complexes to the usher and is the sole recruiter of PapDH. Overall, our studies reveal the cooperative, active roles played by periplasmic domains of the usher to initiate, grow, and terminate a prototypical chaperone-usher pathway pilus.

  13. Loneliness and Sexual Dysfunctions.

    Science.gov (United States)

    Mijuskovic, Ben

    1987-01-01

    Argues that sexual dysfunctions result from early childhood experiences which were originally nonsexual in nature. Contends that psychological difficulties centered around problems of loneliness tend to generate certain sexual dysfunctions. Extends and explores suggestion that genesis of sexual conflicts is in nonsexual infant separation anxiety…

  14. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease.

    Science.gov (United States)

    Fries, Gabriel R; Gassen, Nils C; Rein, Theo

    2017-12-05

    Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels-transcription, post-transcription, and post-translation-and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51's involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.

  15. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    Science.gov (United States)

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  16. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    International Nuclear Information System (INIS)

    Lilic, M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella

  17. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.

    Science.gov (United States)

    Verma, Sharad; Singh, Amit; Mishra, Abha

    2012-07-01

    Hsp90 (heat shock protein 90), a molecular chaperone, stabilizes more than 200 mutated and over expressed oncogenic proteins in cancer development. Cdc37 (cell division cycle protein 37), a co-chaperone of Hsp90, has been found to facilitate the maturation of protein kinases by acting as an adaptor and load these kinases onto the Hsp90 complex. Taxifolin (a natural phytochemical) was found to bind at ATP-binding site of Hsp90 and stabilized the inactive "open" or "lid-up" conformation as evidenced by molecular dynamic simulation. Furthermore, taxifolin was found to bind to interface of Hsp90 and Cdc37 complex and disrupt the interaction of residues of both proteins which were essential for the formation of active super-chaperone complex. Thus, taxifolin was found to act as an inhibitor of chaperoning process and may play a potential role in the cancer chemotherapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Hsp90 molecular chaperone: structure, functions and participation in cardio-vascular pathologies

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2009-10-01

    Full Text Available The review is devoted to the analysis of structural and functional properties of molecular chaperon Hsp90. Hsp90 is a representative of highly widespread family of heat shock proteins. The protein is found in eubacteria and all branches of eukarya, but it is apparently absent in archaea. It is one of key regulators of numerous signalling pathways, cell growth and development, apoptosis, induction of autoimmunity, and progression of heart failure. The full functional activity of Hsp90 shows up in a complex with other molecular chaperones and co-chaperones. Molecular interactions between chaperones, different signalling proteins and protein-partners are highly crucial for the normal functioning of signalling pathways and their destruction causes an alteration in the cell physiology up to its death.

  19. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Erica L. Gorenberg

    2017-05-01

    Full Text Available Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs: Cysteine String Protein alpha (CSPα; DNAJC5, auxilin (DNAJC6, and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13. These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70, enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110, which interacts with Hsc70, DNAJAs, and

  20. [Social dysfunction in schizotypy].

    Science.gov (United States)

    de Wachter, O; De La Asuncion, J; Sabbe, B; Morrens, M

    2016-01-01

    Schizotypy is a personality organisation that is closely related to schizotypal personality disorder and schizophrenia and is characterised by deficits in social functioning. Although the dimensions of social dysfunction have not yet been fully explored certain aspects of social dysfunction are promising predictive markers for schizophrenia. To describe schizotypy and its influence on social functioning. We reviewed the literature systematically using the online databases PubMed and PsycINFO. The disorder known as schizotypy lies at the basis of schizotypal personality disorder. Both disorders are characterised by an increased risk for schizophrenia. The social dysfunctioning seen in schizotypy corresponds to the social dysfunction seen in schizophrenia. Impairments in social cognition are causal factors of this social dysfunction. Both the negative and the positive dimension of schizotypy influence social cognition. More focused, objective and interactive research to the various aspects of social functioning in schizotypy is needed in order to discover potential premorbid markers for schizophrenia.

  1. Investigation of original multivalent iminosugars as pharmacological chaperones for the treatment of Gaucher disease.

    Science.gov (United States)

    Laigre, Eugénie; Hazelard, Damien; Casas, Josefina; Serra-Vinardell, Jenny; Michelakakis, Helen; Mavridou, Irene; Aerts, Johannes M F G; Delgado, Antonio; Compain, Philippe

    2016-06-24

    Multivalent iminosugars conjugated with a morpholine moiety and/or designed as prodrugs have been prepared and evaluated as new classes of pharmacological chaperones for the treatment of Gaucher disease. This study further confirms the interest of the prodrug concept and shows that the addition of a lysosome-targeting morpholine unit into iminosugar cluster structures has no significant impact on the chaperone activity on Gaucher cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  3. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    OpenAIRE

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster reson...

  4. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc

    2008-02-01

    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning-possibly mediated by intrinsically disordered protein segments-is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.

  5. A study for the structural and functional regulation of chaperon protein by radiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Chung, Byung Yeoup; Kim, Jin Hong

    2011-01-01

    The purpose of the this project provides new application areas for radiation technology for improvement of protein activities using radiation through the structural changes and functional regulations of molecular chaperon. Research scope includes 1) isolation of molecular chaperon proteins related radiation response from Psedomonads and purification of recombinant protein from E. coli., 2) the establishment of effective irradiation dose for the structural changes of chaperon protein, 3) analysis of the structural and functional changes of molecular chaperon by gamma irradiation. Main results are as follow: the chaperon activities of 2-Cys peroxiredxin show the maximum (about 3 times) at 15-30 kGy of gamma irradiation, but they were reduced greater than 30 kGy of gamma rays: the peroxidase activities show a tendency to decrease with increasing gamma irradiation: the structural change of peroxiredoxin (PP1084 and PA3529) by gamma irradiation (the formation of low molecular weight complexes or fragmentation of peroxiredoxin by gamma irradiation, the increase of beta-sheet and random coil by gamma irradiation and the decrease of alpha-helix and turn by gamma irradiation, and increased chaperon activity is related with increased hydrophobicity)

  6. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  7. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  9. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.

    Directory of Open Access Journals (Sweden)

    Hermann Hämmerle

    Full Text Available In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A(15 and ADP were shown to bind to tripartite binding motifs (ARE circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65 in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.

  10. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Science.gov (United States)

    Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla

    2012-01-01

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  11. Diastolic dysfunction characterizes cirrhotic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Piyush O. Somani

    2014-11-01

    Conclusions: Present study shows that although diastolic dysfunction is a frequent event in cirrhosis, it is usually of mild degree and does not correlate with severity of liver dysfunction. There are no significant differences in echocardiographic parameters between alcoholic and non-alcoholic cirrhosis. HRS is not correlated to diastolic dysfunction in cirrhotic patients. There is no difference in survival at one year between patients with or without diastolic dysfunction. Diastolic dysfunction in cirrhosis is unrelated to circulatory dysfunction, ascites and HRS.

  12. [Ultrasonic methods and semiotics in patients with vasculogenic erectile dysfunction].

    Science.gov (United States)

    Zhukov, O B; Zubarev, A R

    2001-01-01

    The authors have developed criteria for ultrasonic assessment of cavernous bodies, arterial and venous circulation in normal penile vessels and in erectile dysfunction in 125 patients; describe modern ultrasound modalities in differential diagnosis of various forms of vasculogenic erectile dysfunction basing on the experience with 92 patients; validate hydrodynamic role of the tunica albuginea in pathogenesis of venocorporal dysfunction and pathological venous drainage. Early ischemic signs of arterial insufficiency were revealed.

  13. Fab Chaperone-Assisted RNA Crystallography (Fab CARC).

    Science.gov (United States)

    Sherman, Eileen; Archer, Jennifer; Ye, Jing-Dong

    2016-01-01

    Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.

  14. Investigation of novel pharmacological chaperones for Gaucher Disease.

    Science.gov (United States)

    Yilmazer, Buge; Yagci, Z Begum; Bakar, Emre; Ozden, Burcu; Ulgen, Kutlu; Ozkirimli, Elif

    2017-09-01

    Beta-Glucocerebrosidase (GBA) is a lysosomal protein that is responsible for the hydrolysis of glycosylceramide into glucose and ceramide. Mutations in GBA lead to the accumulation of glycosylceramide in the lysosome causing an enlargement of the spleen and the liver and skeletal deformations. This disease is called Gaucher Disease. Enzyme replacement therapies and substrate reduction methods that are used to treat Gaucher Disease fail when the disease is neuropathic because they fail to pass the blood brain barrier. In this work, QSAR, virtual screening, docking and molecular dynamics simulations were performed to obtain a set of compounds that might be pharmacological chaperones for GBA. ZINC Database was screened using ligand-based and structure-based pharmacophore hypotheses. After docking of these molecules and filtration based on druglikeness, top ranking ligands were identified and their binding stabilities were examined using MD simulations. As a result, seven new compounds that can potentially cross the blood brain barrier were proposed as GBA inhibitors. Three of the seven compounds have a tricyclic pyrido-thieno-pyrimidine scaffold and one has the dioxino quinolone scaffold. Derivatives of these scaffolds have been reported as antiallergic agents, antibiotic and anticancer compounds. These results offer a new approach for the development of new drugs against neuropathic Gaucher Disease Type 2 and Type 3. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  16. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  17. Chronic pelvic floor dysfunction.

    Science.gov (United States)

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  19. Erec tile dysfunction

    African Journals Online (AJOL)

    2009-01-29

    Jan 29, 2009 ... Successful treatment of ED has been demonstrated to ... Incidence. Sexual dysfunction is highly prevalent in men and women. ... an important role in the integration and control of reproductive and sexual .... stress disorder.

  20. Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Teresa Mena-Barragán

    2018-04-01

    Full Text Available A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido, the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase. The 1-deoxynojirimycin (DNJ-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM. At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.

  1. Pattern of erectile dysfunction in Jeddah city.

    Science.gov (United States)

    Al Helali, N S; Abolfotouh, M A; Ghanem, H M

    2001-01-01

    The aim of this study was to determine the demographic features of erectile dysfunction patients attending different specialized clinics in Jeddah city, and to identify possible risk factors associated with erectile dysfunction problem. All newly erectile dysfunction patients (n=388) who attended 6 andrology and urology clinics within a period of 3 months were subjected to a modified structural interview questionnaire to collect demographic data and risk factors for erectile dysfunction. The study revealed the following results among erectile dysfunction patients; Saudi patients constituted (81%). The age ranged from 20-86 years with mean age of 43.23+12.56 years, 73% were married with one wife, 23.5% married with two wives, and 8% were single. About one-half (43%) were less than secondary education level. Retired patients constituted (13%) of all patients. Lack of exercise was the most frequent risk factor among 82% of patients, followed by smoking (56%), use of regular medication (44%), diabetes (30%), hypertension (15%), history of pelvic surgery (14%) alcoholism (13%), and drug addict (8%). Erectile dysfunction is a problem of not only old age but also of middle and young age. This might be attributed to the high frequency of some risk factors such as diabetes mellitus, hypertension, smoking, alcohol consumption, and drug addiction. This finding may reflect the necessity for construction of prevention strategies.

  2. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Science.gov (United States)

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  3. Improvement effect of green tea on hepatic dysfunction, lipid ...

    African Journals Online (AJOL)

    We have evaluated the antioxidant effect of green tea on cadmium-induced hepatic dysfunction and stress oxidant in rats. Adult male Wistar rats were administered cadmium by injection with 20 μmoles/Kg bw/3 days for six months. Results revealed a significant (p < 0.05) liver dysfunction, lipid peroxidation and a decline in ...

  4. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Jyoti K.; Li, Mi; Ghirlando, Rodolfo; Miller Jenkins, Lisa M.; Wlodawer, Alexander; Chattoraj, Dhruba; Dunny, Gary M.

    2017-04-18

    Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations inrctBthat reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid—the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding. IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication ofVibrio choleraeChr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that

  5. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Casas, Caty; Herrando-Grabulosa, Mireia; Manzano, Raquel; Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2013-01-01

    Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis. PMID:23531559

  6. Murine but not human basophil undergoes cell-specific proteolysis of a major endoplasmic reticulum chaperone.

    Directory of Open Access Journals (Sweden)

    Bei Liu

    Full Text Available Basophil has been implicated in anti-parasite defense, allergy and in polarizing T(H2 response. Mouse model has been commonly used to study basophil function although the difference between human and mouse basophils is underappreciated. As an essential chaperone for multiple Toll-like receptors and integrins in the endoplasmic reticulum, gp96 also participates in general protein homeostasis and in the ER unfolded protein response to ensure cell survival during stress. The roles of gp96 in basophil development are unknown.We genetically delete gp96 in mice and examined the expression of gp96 in basophils by Western blot and flow cytometry. We compared the expression pattern of gp96 between human and mouse basophils.We found that gp96 was dispensable for murine basophil development. Moreover, gp96 was cleaved by serine protease(s in murine but not human basophils leading to accumulation of a nun-functional N-terminal ∼50 kDa fragment and striking induction of the unfolded protein response. The alteration of gp96 was unique to basophils and was not observed in any other cell types including mast cells. We also demonstrated that the ectopic expression of a mouse-specific tryptase mMCP11 does not lead to gp96 cleavage in human basophils.Our study revealed a remarkable biochemical event of gp96 silencing in murine but not human basophils, highlighting the need for caution in using mouse models to infer the function of basophils in human immune response. Our study also reveals a novel mechanism of shutting down gp96 post-translationally in regulating its function.

  7. Murine but not human basophil undergoes cell-specific proteolysis of a major endoplasmic reticulum chaperone.

    Science.gov (United States)

    Liu, Bei; Staron, Matthew; Li, Zihai

    2012-01-01

    Basophil has been implicated in anti-parasite defense, allergy and in polarizing T(H)2 response. Mouse model has been commonly used to study basophil function although the difference between human and mouse basophils is underappreciated. As an essential chaperone for multiple Toll-like receptors and integrins in the endoplasmic reticulum, gp96 also participates in general protein homeostasis and in the ER unfolded protein response to ensure cell survival during stress. The roles of gp96 in basophil development are unknown. We genetically delete gp96 in mice and examined the expression of gp96 in basophils by Western blot and flow cytometry. We compared the expression pattern of gp96 between human and mouse basophils. We found that gp96 was dispensable for murine basophil development. Moreover, gp96 was cleaved by serine protease(s) in murine but not human basophils leading to accumulation of a nun-functional N-terminal ∼50 kDa fragment and striking induction of the unfolded protein response. The alteration of gp96 was unique to basophils and was not observed in any other cell types including mast cells. We also demonstrated that the ectopic expression of a mouse-specific tryptase mMCP11 does not lead to gp96 cleavage in human basophils. Our study revealed a remarkable biochemical event of gp96 silencing in murine but not human basophils, highlighting the need for caution in using mouse models to infer the function of basophils in human immune response. Our study also reveals a novel mechanism of shutting down gp96 post-translationally in regulating its function.

  8. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    Science.gov (United States)

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  9. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  10. Effect of glycation on α-crystallin structure and chaperone-like function

    Science.gov (United States)

    Kumar, P. Anil; Kumar, M. Satish; Reddy, G. Bhanuprakash

    2007-01-01

    The chaperone-like activity of α-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of α-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of α-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of α-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of α-crystallin. Modification of α-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [Nϵ-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of α-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of α-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, α-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE

  11. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Directory of Open Access Journals (Sweden)

    Jose M. Requena

    2015-01-01

    Full Text Available Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges for drug discovery and improving of current treatments against leishmaniasis.

  12. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Science.gov (United States)

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  13. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding.

    Science.gov (United States)

    Hageman, Jurre; Vos, Michel J; van Waarde, Maria A W H; Kampinga, Harm H

    2007-11-23

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.

  14. ATP-dependent molecular chaperones in plastids--More complex than expected.

    Science.gov (United States)

    Trösch, Raphael; Mühlhaus, Timo; Schroda, Michael; Willmund, Felix

    2015-09-01

    Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1.

    Science.gov (United States)

    Derrington, Edmund; Gabus, Caroline; Leblanc, Pascal; Chnaidermann, Jonas; Grave, Linda; Dormont, Dominique; Swietnicki, Wieslaw; Morillas, Manuel; Marck, Daniel; Nandi, Pradip; Darlix, Jean-Luc

    2002-01-01

    The function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins.

  16. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  17. Effect of hesperetin on chaperone activity in selenite-induced cataract

    Directory of Open Access Journals (Sweden)

    Nakazawa Yosuke

    2016-01-01

    Full Text Available Background. Chaperone activity of α-crystallin in the lens works to prevent protein aggregation and is important to maintain the lens transparency. This study evaluated the effect of hesperetin on lens chaperone activity in selenite-induced cataracts. Methodology. Thirteen-day-old rats were divided into four groups. Animals were given hesperetin (groups G2 and G4 or vehicle (G1 and G3 on Days 0, 1, and 2. Rats in G3 and G4 were administered selenite subcutaneously 4 hours after the first hesperetin injection. On Days 2, 4, and 6, cataract grades were evaluated using slit-lamp biomicroscopy. The amount of a-crystallin and chaperone activity in water-soluble fraction were measured after animals sacrificed. Results. G3 on day 4 had developed significant cataract, as an average cataract grading of 4.6 ± 0.2. In contrast, G4 had less severe central opacities and lower stage cataracts than G3, as an average cataract grading of 2.4 ± 0.4. The a-crystallin levels in G3 lenses were lower than in G1, but the same as G4. Additionally, chaperone activity was weaker in G3 lenses than G1, but the same as in G4. Conclusions. Our results suggest that hesperetin can prevent the decreasing lens chaperone activity and a-crystallin water solubility by administered of selenite.

  18. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    Science.gov (United States)

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  20. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-05-01

    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  1. Exercise and reproductive dysfunction.

    Science.gov (United States)

    Chen, E C; Brzyski, R G

    1999-01-01

    To provide an overview of our current understanding of exercise-induced reproductive dysfunction and an approach to its evaluation and management. A MEDLINE search was performed to review all articles with title words related to menstrual dysfunction, amenorrhea, oligomenorrhea, exercise, and athletic activities from 1966 to 1998. The pathophysiology, proposed mechanisms, clinical manifestations, evaluation, and management of exercise-associated reproductive dysfunction were compiled. Exercise-induced menstrual irregularity appears to be multifactorial in origin and remains a diagnosis of exclusion. The underlying mechanisms are mainly speculative. Clinical manifestations range from luteal phase deficiency to anovulation, amenorrhea, and even delayed menarche. Evaluation should include a thorough history and a complete physical plus pelvic examination. Most cases are reversible with dietary and exercise modifications. Hormonal replacement in cases of a prolonged hypoestrogenic state with evidence of increased bone loss is recommended, although the long-term consequences of prolonged hormonal deficiency are ill-defined.

  2. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.

    Science.gov (United States)

    Iwasaki, Shintaro; Kobayashi, Maki; Yoda, Mayuko; Sakaguchi, Yuriko; Katsuma, Susumu; Suzuki, Tsutomu; Tomari, Yukihide

    2010-07-30

    Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Immune dysfunction in cirrhosis

    Science.gov (United States)

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-01-01

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592

  5. Switch I-dependent allosteric signaling in a G-protein chaperone-B12 enzyme complex.

    Science.gov (United States)

    Campanello, Gregory C; Lofgren, Michael; Yokom, Adam L; Southworth, Daniel R; Banerjee, Ruma

    2017-10-27

    G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Virus-Induced Chaperone-Enriched (VICE domains function as nuclear protein quality control centers during HSV-1 infection.

    Directory of Open Access Journals (Sweden)

    Christine M Livingston

    2009-10-01

    Full Text Available Virus-Induced Chaperone-Enriched (VICE domains form adjacent to nuclear viral replication compartments (RC during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70, the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42 degrees C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection.

  7. Neuromodulation in bladder dysfunction.

    Science.gov (United States)

    Hasan, S T; Neal, D E

    1998-10-01

    Neuromodulation is one option for the management of a wide variety of lower urinary tract disorders, including non-neuropathic and neuropathic bladder dysfunctions. The mechanisms of action of the reported techniques remain unclear; urodynamic changes are minimal, but symptomatic improvements are common. Although the treatment is relatively free from side-effects compared with more aggressive surgical options, the placebo effect is likely to be significant. Its exact cost effectiveness is unclear, but the technology is a welcome addition to the range of treatment options for lower urinary tract dysfunctions, such as urgency and urge incontinence.

  8. Interplay between Molecular Chaperones and the Ubiquitin-Proteasome System in Targeting of Misfolded Proteins for Degradation

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl

    interacting with purified 26S proteasomes, and the subsequent characterization of two novel proteasome interacting proteins. The third study was aimed at analyzing the chaperone-assisted pathway leading to degradation of misfolded kinetochore proteins in S. pombe. In this study chaperones, E2s, E3s and DUBs...

  9. Multiscale Modeling of a Conditionally Disordered pH-Sensing Chaperone

    OpenAIRE

    Ahlstrom, Logan S.; Law, Sean M.; Dickson, Alex; Brooks, Charles L.

    2015-01-01

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodyn...

  10. Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates

    Directory of Open Access Journals (Sweden)

    Vladimir F. Lazarev

    2017-05-01

    Full Text Available The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.

  11. Effects of HSP27 chaperone on THP-1 tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Maroshkina, A N; Belkina, M V

    2012-11-01

    The role of Hsp27 (heat shock protein 27) chaperone in regulation of THP-1 tumor cell apoptosis was studied. Realization of tumor cell apoptosis under conditions of in vitro culturing with Hsp27 specific inhibitor (KRIBB3) was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Measurements of Bcl-2 family proteins (Bcl-2, Bax, Bad) in tumor cells incubated with Hsp27 inhibitor were carried out by Western blotting. Chaperone Hsp27 acted as apoptosis inhibitor in THP-1 tumor cells modulating the proportion of antiapoptotic (Bcl-2) and proapoptotic (Bax and Bad) proteins.

  12. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Science.gov (United States)

    Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J

    2008-11-01

    Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  13. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2008-11-01

    Full Text Available Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  14. Gene expression and molecular characterization of a chaperone protein HtpG from Bacillus licheniformis.

    Science.gov (United States)

    Lo, Hui-Fen; Chen, Bo-En; Lin, Min-Guan; Chi, Meng-Chun; Wang, Tzu-Fan; Lin, Long-Liu

    2016-04-01

    Heat shock protein 90 (Hsp90/HtpG) is a highly abundant and ubiquitous ATP-dependent molecular chaperone consisting of three flexibly linked regions, an N-terminal nucleotide-binding domain, middle domain, and a C-terminal domain. Here the putative htpG gene of Bacillus licheniformis was cloned and heterologously expressed in Escherichia coli M15 cells. Native-gel electrophoresis, size exclusion chromatography, and cross-linking analysis revealed that the recombinant protein probably exists as a mixture of monomer, dimer and other oligomers in solution. The optimal conditions for the ATPase activity of B. licheniformis HtpG (BlHtpG) were 45°C and pH 7.0 in the presence of 0.5mM Mg(2+) ions. The molecular architecture of this protein was stable at higher temperatures with a transition point (Tm) of 45°C at neutral pH, whereas the Tm value was reduced to 40.8°C at pH 10.5. Acrylamide quenching experiment further indicated that the dynamic quenching constant (Ksv) of BlHtpG became larger at higher pH values. BlHtpG also experienced a significant change in the protein conformation upon the addition of ATP and organic solvents. Collectively, our experiment data may provide insights into the molecular properties of BlHtpG and identify the alteration of protein structure to forfeit the ATPase activity at alkaline conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The molecular chaperone α-crystallin inhibits UV-induced protein aggregation

    International Nuclear Information System (INIS)

    Borkman, R.F.; Knight, Grady; Obi, Bettie

    1996-01-01

    Solutions of γ-crystallin, and various enzymes, at neutral pH and 24-26 o C, became turbid upon exposure to UV radiation at 295 or 308 nm. SDS-PAGE analysis revealed interchain cross-linking and aggregate formation compared to dark control solutions as reported previously. When α-crystallin was added to the protein solutions in stoichiometric amounts. UV irradiation resulted in significantly less turbidity than in the absence of α-crystallin. For example, addition of 0.5 mg of α-crystallin to 0.5 mg of γ-crystallin in 1.0 ml solution yielded only 25% of the turbidity seen in the absence of α-crystallin. Addition of 2.0 mg of α-crystallin resulted in 20% of the turbidity. Given the molecular weights of α- and γ-crystallin (about 800 kDa and 20 kDa, respectively), A γ/α 1:1 weight ratio corresponds to a 40:1 molar ratio, and a γ-/α 1:4 weight ratio corresponds to a 10:1 molar ratio. Hence, the molar ratio of α-crystallin needed to effectively protect γ-crystallin from photochemical opacification was γ/α = n:1, where n was in the range 10-40. In terms of subunits, this ratio is γ/α = 1:m, where m = 1-4. Thus, each γ-crystallin molecule needs 1-4 α subunits for protection. Similar stoichiometries were observed for protection of the other proteins studied. The protection stems in part from screening of UV radiation by α-crystallin but more importantly from a chaperone effect analogous to that seen in thermal aggregation experiments. (author)

  16. Advances in sepsis-associated liver dysfunction

    Directory of Open Access Journals (Sweden)

    Dawei Wang

    2014-07-01

    Full Text Available Recent studies have revealed liver dysfunction as an early event in sepsis. Sepsis-associated liver dysfunction is mainly resulted from systemic or microcirculatory disturbances, spillovers of bacteria and endotoxin (lipopolysaccharide, LPS, and subsequent activation of inflammatory cytokines as well as mediators. Three main cell types of the liver which contribute to the hepatic response in sepsis are Kupffer cells (KCs, hepatocytes and liver sinusoidal endothelial cells (LSECs. In addition, activated neutrophils, which are also recruited to the liver and produce potentially destructive enzymes and oxygen-free radicals, may further enhance acute liver injury. The clinical manifestations of sepsis-associated liver dysfunction can roughly be divided into two categories: Hypoxic hepatitis and jaundice. The latter is much more frequent in the context of sepsis. Hepatic failure is traditionally considered as a late manifestation of sepsis-induced multiple organ dysfunction syndrome. To date, no specific therapeutics for sepsis-associated liver dysfunction are available. Treatment measure is mainly focused on eradication of the underlying infection and management for severe sepsis. A better understanding of the pathophysiology of liver response in sepsis may lead to further increase in survival rates.

  17. Postirradiation cardiovascular dysfunction

    International Nuclear Information System (INIS)

    Hawkins, R.N.; Cockerham, L.G.

    1987-01-01

    Cardiovascular dysfunction may be defined as the inability of any element of the cardiovascular system to perform adequately upon demand, leading to inadequate performance and nutritive insufficiency of various parts of the body. Exposure to supralethal doses of radiation (accidental and therapeutic) has been show to induce significant alterations in cardiovascular function in man. These findings indicate that, after irradiation, cardiovascular function is a major determinant of continued performance and even survival. For the two persons who received massive radiation doses (45 and 88 Gy, respectively) in criticality accidents, the inability to maintain systematic arterial blood pressure (AP) was the immediate cause of death. In a study of cancer patients given partial-body irradiation, two acute lethalities were attributed to myocardial infarction after an acute hypotensive episode during the first few hours postexposure. Although radiation-induced cardiovascular dysfunction has been observed in many species, its severity, duration, and even etiology may vary with the species, level of exposure, and dose rate. For this reason, our consideration of the effects of radiation on cardiovascular performance is limited to the circulatory derangements that occur in rat, dog, and monkey after supralethal doses and lead to radiation-induced cardiovascular dysfunction in these experimental models. The authors consider other recent data as they pertain to the etiology of cardiovascular dysfunction in irradiated animals

  18. Female sexual dysfunction

    DEFF Research Database (Denmark)

    Giraldi, Annamaria; Wåhlin-Jacobsen, Sarah

    2016-01-01

    Female sexual dysfunction (FSD) is a controversial condition, which has prompted much debate regarding its aetiology, components, and even its existence. Our inability to work together as clinicians, psychologists, patients, and advocates hinders our understanding of FSD, and we will only improve...

  19. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  20. Erectile Dysfunction (ED)

    Science.gov (United States)

    ... Talking to Your Kids About VirginityTalking to Your Kids About Sex Home Diseases and Conditions Erectile Dysfunction (ED) Condition ... Well-Being Mental Health Sex and Birth Control Sex and Sexuality Birth Control ... and Toddlers Kids and Teens Pregnancy and Childbirth Women Men Seniors ...

  1. Mitochondrial dysfunction in epilepsy

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Kunz, W.S.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 35-40 ISSN 1567-7249 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292 Institutional research plan: CEZ:AV0Z50110509 Keywords : epilepsy * mitochondrial dysfunction * neurodegeneration Subject RIV: FH - Neurology Impact factor: 4.025, year: 2012

  2. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis

    OpenAIRE

    Li, Haiming; Chang, Limei; Howell, Jenika M.; Turner, Raymond J.

    2010-01-01

    Many bacterial oxidoreductases depend on the Tat translocase for correct cell localization. Substrates for the Tat translocase possess twin-arginine leaders. System specific chaperones or redox enzyme maturation proteins (REMPs) are a group of proteins implicated in oxidoreductase maturation. DmsD is a REMP discovered in Escherichia coli, which interacts with the twin-arginine leader sequence of DmsA, the catalytic subunit of DMSO reductase. In this study, we identified several potential inte...

  3. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    Science.gov (United States)

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  4. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  5. Animal models of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Snehlata V Gajbhiye

    2015-01-01

    Full Text Available Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were "ED and experimental models," "ED and nervous stimulation," "ED and cavernous nerve stimulation," "ED and central stimulation," "ED and diabetes mellitus," "ED and ageing," "ED and hypercholesteremia," "ED and Peyronie′s disease," "radiation induced ED," "telemetric recording," "ED and mating test" and "ED and non-contact erection test."

  6. The Yersinia enterocolitica type three secretion chaperone SycO is integrated into the Yop regulatory network and binds to the Yop secretion protein YscM1

    Directory of Open Access Journals (Sweden)

    Heesemann Jürgen

    2007-07-01

    Full Text Available Abstract Background Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica share a virulence plasmid encoding a type three secretion system (T3SS. This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins, the specific Yop chaperones (Sycs, and the Ysc (Yop secretion proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study. Results We have established the large-scale production of recombinant SycO in its outright form. We confirm that Y. enterocolitica SycO forms homodimers which is typical for Syc chaperones. SycO overproduction in Y. enterocolitica decreases secretion of Yops into the culture supernatant suggesting a regulatory role of SycO in type III secretion. We demonstrate that in vitro SycO interacts with YscM1, a negative regulator of Yop expression in Y. enterocolitica. However, the SycO overproduction phenotype was not mediated by YscM1, YscM2, YopO or YopP as revealed by analysis of isogenic deletion mutants. Conclusion We present evidence that SycO is integrated into the regulatory network of the Yersinia T3SS. Our picture of the Yersinia T3SS interactome is supplemented by identification of the SycO/YscM1 interaction. Further, our results suggest that at least one additional interaction partner of SycO has to be identified.

  7. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity.

    Directory of Open Access Journals (Sweden)

    Amit P Bhavsar

    Full Text Available To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.

  8. Dysfunctions in public psychiatric bureaucracies.

    Science.gov (United States)

    Marcos, L R

    1988-03-01

    The author describes common dysfunctions in public psychiatric organizations according to the model of bureaucracy articulated by Max Weber. Dysfunctions are divided into the categories of goal displacement, outside interference, unclear authority structure and hierarchy, and informal relations in the work place. The author emphasizes the bureaucratic nature of public psychiatry and the need for mental health professionals to understand the dysfunctions of the organizations in which they work, including the impact of these dysfunctions on the provision of quality care.

  9. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2017-09-01

    Full Text Available Multifunctional factor progranulin (PGRN plays an important role in lysosomes, and its mutations and insufficiency are associated with lysosomal storage diseases, including neuronal ceroid lipofuscinosis and Gaucher disease (GD. The first breakthrough in understanding the molecular mechanisms of PGRN as regulator of lysosomal storage diseases came unexpectedly while investigating the role of PGRN in inflammation. Challenged PGRN null mice displayed typical features of GD. In addition, GRN gene variants were identified in GD patients and the serum levels of PGRN were significantly lower in GD patients. PGRN directly binds to and functions as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCaase, whose mutations cause GD. In addition, its C-terminus containing granulin E domain, termed Pcgin (PGRN C-terminus for GCase Interaction, is required for the association between PGRN and GCase. The concept that PGRN acts as a chaperone of lysosomal enzymes was further supported and extended by a recent article showing that PGRN acts as a chaperone molecule of lysosomal enzyme cathepsin D (CSTD, and the association between PGRN and CSTD is also mediated by PGRN's C-terminal granulin E domain. Collectively, these reports suggest that PGRN may act as a shared chaperone and regulates multiple lysosomal enzymes.

  10. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  11. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  12. Characterization of the recombinant copper chaperone (CCS) from the plant Glycine (G.) max.

    Science.gov (United States)

    Sagasti, Sara; Yruela, Inmaculada; Bernal, Maria; Lujan, Maria A; Frago, Susana; Medina, Milagros; Picorel, Rafael

    2011-02-01

    The goal of the present work was to characterize the recombinant copper chaperone (CCS) from soybean. Very little is known about plant copper chaperones, which makes this study of current interest, and allows for a comparison with the better known homologues from yeast and humans. To obtain sizeable amounts of pure protein suitable for spectroscopic characterization, we cloned and overexpressed the G. max CCS chaperone in E. coli in the presence of 0.5 mM CuSO(4) and 0.5 mM ZnSO(4) in the broth. A pure protein preparation was obtained by using two IMAC steps and pH gradient chromatography. Most of the proteins were obtained as apo-form, devoid of copper atoms. The chaperone showed a high content (i.e., over 40%) of loops, turns and random coil as determined both by circular dichroism and homology modelling. The homology 3-D structural model suggests the protein might fold in three structural protein domains. The 3-D model along with the primary structure and spectroscopic data may suggest that copper atoms occupy the two metal binding sites, MKCEGC and CTC, within the N-terminal domain I and C-terminal domain III, respectively. But only one Zn-binding site was obtained spectroscopically.

  13. Association of HSP70 and its co-chaperones with Alzheimer's disease

    NARCIS (Netherlands)

    L. Broer (Linda); M.A. Ikram (Arfan); M. Schuur (Maaike); A.L. DeStefano (Anita); J.C. Bis (Joshua); F. Liu (Fan); F. Rivadeneira Ramirez (Fernando); A.G. Uitterlinden (André); A. Beiser (Alexa); W.T. Longstreth Jr; A. Hofman (Albert); Y.S. Aulchenko (Yurii); S. Seshadri (Sudha); A.L. Fitzpatrick (Annette); B.A. Oostra (Ben); M.M.B. Breteler (Monique); P. Tikka-Kleemola (Päivi)

    2011-01-01

    textabstractThe heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer's disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected

  14. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding

    NARCIS (Netherlands)

    Hageman, Jurre; Vos, Michel J.; van Waarde, Maria A. W. H.; Kampinga, Harm H.

    2007-01-01

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are

  15. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    Science.gov (United States)

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  16. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease

    DEFF Research Database (Denmark)

    Hughes, Derralynn A.; Nicholls, Kathleen; Shankar, Suma P.

    2017-01-01

    Background Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement t...

  17. Promiscuous histone mis-assembly is actively prevented by chaperones | Center for Cancer Research

    Science.gov (United States)

    About the Cover Chaperone HJURP drives the proper loading of protein CENP-A to the centromere of a chromosome. The effect of HJURP on CENP-A's structural dynamics are observed and explained using dual-resolution in silico simulations, while in vivo experiments demonstrate how CENP-A mutations influence its specific localization in human cells. Abstract

  18. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.

    Science.gov (United States)

    Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A

    1997-03-15

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes

  19. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may

  20. [Thyroid dysfunction and amiodarone].

    Science.gov (United States)

    Lima, Jandira; Carvalho, Patrícia; Molina, M Auxiliadora; Rebelo, Marta; Dias, Patrícia; Vieira, José Diniz; Costa, José M Nascimento

    2013-02-01

    Although most patients remain clinically euthyroid, some develop amiodarone-induced hyperthyroidism (HPEAI) or hypothyroidism (HPOAI). The authors present a retrospective analysis of ten patients with amiodarone-induced thyroid dysfunction. Six patients were female and mean amiodarone intake was 17.7 months. HPOIA was more common (six patients). From all the patients with HPEAI, two had type 2, one had type 1, and one had type 3 hyperthyroidism. Symptoms suggestive of thyroid dysfunction occurred in five patients, most of them with HPOAI. In HPEAI, the most frequent symptom was exacerbation of arrhythmia (three patients). Discontinuation of amiodarone and treatment with levothyroxine was chosen in 83.3% of the HPOAI cases, while thyonamide treatment with corticosteroids and without amiodarone was the option in 75% of the HPEAI cases. There were three deaths, all in patients with HPEAI. HPEAI is potentially fatal. The clinical picture may be vague, so the thyroid monitoring is mandatory.

  1. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  2. Thyroid dysfunction in pregnancy

    Directory of Open Access Journals (Sweden)

    El Baba KA

    2012-03-01

    Full Text Available Khalid A El Baba1, Sami T Azar21Department of Internal Medicine, Division of Endocrinology, Bahrain Specialist Hospital, Manama, Bahrain; 2Department of Internal Medicine, Division of Endocrinology, American University of Beirut-Medical Center, New York, NY, USAAbstract: Timely treatment of thyroid disease during pregnancy is important in preventing adverse maternal and fetal outcomes. Thyroid abnormalities are very often subclinical in nature and not easily recognized without specific screening programs. Even mild maternal thyroid hormone deficiency may lead to neurodevelopment complications in the fetus. The main diagnostic indicator of thyroid disease is the measurement of serum thyroid-stimulating hormone and free thyroxine levels. Availability of gestation-age-specific thyroid-stimulating hormone thresholds is an important aid in the accurate diagnosis and treatment of thyroid dysfunction. Pregnancy-specific free thyroxine thresholds not presently available are also required. Large-scale intervention trials are urgently needed to assess the efficacy of preconception or early pregnancy screening for thyroid disorders. Accurate interpretation of both antepartum and postpartum levels of thyroid hormones is important in preventing pregnancy-related complication secondary to thyroid dysfunction. This article sheds light on the best ways of management of thyroid dysfunction during pregnancy in order to prevent any possible maternal or fetal complication.Keywords: TSH, HCG, TBG

  3. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU.

    Science.gov (United States)

    Silberg, Jonathan J; Tapley, Tim L; Hoff, Kevin G; Vickery, Larry E

    2004-12-24

    The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle. Affinity sensor studies revealed that whereas IscU binds both ADP (R-state) and ATP (T-state) HscA complexes, HscB interacts only with an ATP-bound state. Studies of ATPase activity under single-turnover and rapid mixing conditions showed that both IscU and HscB interact with the low peptide affinity T-state of HscA (HscA++.ATP) and that both modestly accelerate (3-10-fold) the rate-determining steps in the HscA reaction cycle, k(hyd) and k(T-->R). When present together, IscU and HscB synergistically stimulate both k(hyd) (approximately = 500-fold) and k(T-->R) (approximately = 60-fold), leading to enhanced formation of the HscA.ADP-IscU complex (substrate capture). Following ADP/ATP exchange, IscU also stimulates k(R-->T) (approximately = 50-fold) and thereby accelerates the rate at which the low peptide affinity HscA++.ATP T-state is regenerated. Because HscA nucleotide exchange is fast, the overall rate of the chaperone cycle in vivo will be determined by the availability of the IscU-HscB substrate-co-chaperone complex.

  5. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  6. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  7. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x.

    Directory of Open Access Journals (Sweden)

    Michael O Daniyan

    Full Text Available Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1 or a human Hsp70 (HSPA1A, indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.

  8. Methodological issues of postoperative cognitive dysfunction research

    DEFF Research Database (Denmark)

    Funder, Kamilia S; Steinmetz, Jacob; Rasmussen, Lars S

    2010-01-01

    Postoperative cognitive dysfunction (POCD) is a subtle impairment of memory, concentration, and speed of information processing. It is a frequent complication following surgery and can have a debilitating effect on patients' recovery and future prognosis. Neuropsychological testing is needed...... to reveal postoperative cognitive decline, and questionnaires are not useful for this purpose. There is a profound lack of consensus regarding the research methodology for detection of cognitive deterioration, especially the diagnostic criteria. Issues, such as baseline performance, learning effects...

  9. Chloroplast SRP43 acts as a chaperone for glutamyl-tRNA reductase, the rate-limiting enzyme in tetrapyrrole biosynthesis.

    Science.gov (United States)

    Wang, Peng; Liang, Fu-Cheng; Wittmann, Daniel; Siegel, Alex; Shan, Shu-Ou; Grimm, Bernhard

    2018-04-10

    Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.

  10. Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism.

    Science.gov (United States)

    Alazami, Anas M; Al-Owain, Mohammad; Alzahrani, Fatema; Shuaib, Taghreed; Al-Shamrani, Hussain; Al-Falki, Yahya H; Al-Qahtani, Saleh M; Alsheddi, Tarfa; Colak, Dilek; Alkuraya, Fowzan S

    2012-10-01

    Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family. Analysis reveals a novel underlying mechanism for PD involving depletion of 7SK, an abundant cellular noncoding RNA (ncRNA), due to mutation of its chaperone LARP7. We show that 7SK levels are tightly linked to LARP7 expression across cell lines, and that this chaperone is ubiquitously expressed in the mouse embryo. The 7SK is known to influence the expression of a wide array of genes through its inhibitory effect on the positive transcription elongation factor b (P-TEFb) as well as its competing role in HMGA1-mediated transcriptional regulation. This study documents a critical role played by ncRNA in human development and adds to the growing list of molecular mechanisms that, when perturbed, converge on the PD phenotype. © 2012 Wiley Periodicals, Inc.

  11. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer

    Science.gov (United States)

    Godet, Julien; Kenfack, Cyril; Przybilla, Frédéric; Richert, Ludovic; Duportail, Guy; Mély, Yves

    2013-01-01

    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway. PMID:23511968

  12. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli

    Science.gov (United States)

    Hoff, Kevin G.; Silberg, Jonathan J.; Vickery, Larry E.

    2000-01-01

    The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron–sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron–sulfur complex (IscU–Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent Km for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron–sulfur cluster proteins. PMID:10869428

  13. [Biliary dysfunction in obese children].

    Science.gov (United States)

    Aleshina, E I; Gubonina, I V; Novikova, V P; Vigurskaia, M Iu

    2014-01-01

    To examine the state of the biliary system, a study of properties of bile "case-control") 100 children and adolescents aged 8 to 18 years, held checkup in consultative and diagnostic center for chronic gastroduodenitis. BMI children were divided into 2 groups: group 1-60 children with obesity (BMI of 30 to 40) and group 2-40 children with normal anthropometric indices. Survey methods included clinical examination pediatrician, endocrinologist, biochemical parameters (ALT, AST, alkaline phosphatase level, total protein, bilirubin, lipidogram, glucose, insulin, HOMA-index), ultrasound of the abdomen and retroperitoneum, EGD with aspiration of gallbladder bile. Crystallography bile produced by crystallization of biological substrates micromethods modification Prima AV, 1992. Obese children with chronic gastroduodenita more likely than children of normal weight, had complaints and objective laboratory and instrumental evidence of insulin resistance and motor disorders of the upper gastrointestinal and biliary tract, liver enlargement and biliary "sludge". Biochemical parameters of obese children indicate initial metabolic changes in carbohydrate and fat metabolism and cholestasis, as compared to control children. Colloidal properties of bile in obese children with chronic gastroduodenita reduced, as indicated by the nature of the crystallographic pattern. Conclusions: Obese children with chronic gastroduodenitis often identified enlarged liver, cholestasis and biliary dysfunction, including with the presence of sludge in the gallbladder; most often--hypertonic bile dysfunction. Biochemical features of carbohydrate and fat metabolism reflect the features of the metabolic profile of obese children. Crystallography bile in obese children reveals the instability of the colloidal structure of bile, predisposing children to biliary sludge, which is a risk factor for gallstones.

  14. Structural and Functional Consequences of Chaperone Site Deletion in αA-Crystallin

    Science.gov (United States)

    Santhoshkumar, Puttur; Karmakar, Srabani; Sharma, Krishna K.

    2016-01-01

    The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70–88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70–76 and αAΔ70–88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70–88 was completely inactive as a chaperone, while αAΔ70–76 demonstrated a 40–50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70–88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45 °C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70–88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53 °C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70–88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70–88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins. PMID:27524665

  15. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Vegge, Christina Skovgaard; Skórko-Glonek, Joanna

    2011-01-01

    activity is sufficient for growth at high temperature or oxidative stress, whereas the HtrA protease activity is only essential at conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat-shock response even at optimal......The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope such as HtrA and SurA. HtrA displays both chaperone and protease activity......, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone...

  16. Relationship of the FKBP5 C/T polymorphism with dysfunctional attitudes predisposing to depression.

    Science.gov (United States)

    Suzuki, Akihito; Matsumoto, Yoshihiko; Sadahiro, Ryoichi; Enokido, Masanori; Goto, Kaoru; Otani, Koichi

    2014-08-01

    FK506-binding protein 51 (FKBP5) is a co-chaperone of the glucocorticoid receptor, and plays an important role in the negative feedback regulation of the hypothalamic-pituitary-adrenal axis. The C/T single nucleotide polymorphism in the intron 2 of the FKBP5 gene affects cortisol secretion, and has been implicated in the pathophysiology of depression. In this study, the relationship of the FKBP5 C/T polymorphism with dysfunctional attitudes predisposing to depression was examined. The subjects were 300 healthy Japanese. The FKBP5 genotypes were determined by a real-time PCR and cycling probe technology for SNP typing. Dysfunctional attitudes were assessed by the 24-item version of the Dysfunctional Attitude Scale (DAS-24), which has the Achievement, Self-control, and Dependency subscales. DAS-24 total scores were significantly higher in the group with the T allele than in that without this allele (p=0.001). Regarding the subscales, scores of the Achievement (p=0.003) and Self-control (p=0.009) subscales, but not those of the Dependency subscale, were significantly higher in the former group than in the latter group. The present study suggests that the FKBP5 C/T polymorphism is implicated in formation of dysfunctional attitudes, especially those about achievement and self-control. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    Introduction: Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of

  18. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor

    NARCIS (Netherlands)

    Buijink, A. W. G.; Broersma, M.; van der Stouwe, A. M. M.; van Wingen, G. A.; Groot, P. F. C.; Speelman, J. D.; Maurits, N. M.; van Rootselaar, A. F.

    2015-01-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar

  19. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    Science.gov (United States)

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  1. Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination.

    Science.gov (United States)

    Bailey, Lucas J; Sheehy, Kimberly M; Dominik, Pawel K; Liang, Wenguang G; Rui, Huan; Clark, Michael; Jaskolowski, Mateusz; Kim, Yejoon; Deneka, Dawid; Tang, Wei-Jen; Kossiakoff, Anthony A

    2018-02-02

    Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Ellgaard, Lars; Hartmann-Petersen, Rasmus

    2012-01-01

    The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein...... conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation...... via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize...

  3. The molecular chaperone function of α-crystallin is impaired by UV photolysis

    International Nuclear Information System (INIS)

    Borkman, R.F.; McLaughlin, J.

    1995-01-01

    Buffer solutions of the lens protein γ-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 o C or to UV radiation at 308 nm. When α-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of α-crystallin. Hence, normal α-crystallin functioned as a ''molecular chaperone,'' providing protection against both UV and heat-induced protein aggregation. When α-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doss. (author)

  4. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  5. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  6. The Role of System-Specific Molecular Chaperones in the Maturation of Molybdoenzymes in Bacteria

    Directory of Open Access Journals (Sweden)

    Meina Neumann

    2011-01-01

    Full Text Available Biogenesis of prokaryotic molybdoenzymes is a complex process with the final step representing the insertion of a matured molybdenum cofactor (Moco into a folded apoenzyme. Usually, specific chaperones of the XdhC family are required for the maturation of molybdoenzymes of the xanthine oxidase family in bacteria. Enzymes of the xanthine oxidase family are characterized to contain an equatorial sulfur ligand at the molybdenum center of Moco. This sulfur ligand is inserted into Moco while bound to the XdhC-like protein and before its insertion into the target enzyme. In addition, enzymes of the xanthine oxidase family bind either the molybdopterin (Mo-MPT form of Moco or the modified molybdopterin cytosine dinucleotide cofactor (MCD. In both cases, only the matured cofactor is inserted by a proofreading process of XdhC. The roles of these specific XdhC-like chaperones during the biogenesis of enzymes of the xanthine oxidase family in bacteria are described.

  7. Endoplasmic reticulum chaperone glucose regulated protein 170-Pokemon complexes elicit a robust antitumor immune response in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua

    2012-07-01

    Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    Science.gov (United States)

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  9. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast.

    Science.gov (United States)

    Johnson, Courtney R; Weems, Andrew D; Brewer, Jennifer M; Thorner, Jeremy; McMurray, Michael A

    2015-04-01

    Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases. © 2015 Johnson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Proteomic Data From Human Cell Cultures Refine Mechanisms of Chaperone-Mediated Protein homeostasis

    OpenAIRE

    Finka, Andrija; Goloubinoff, Andrija Finka and Pierre

    2013-01-01

    In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here “the chaperome,” which can prevent formation of potentially harmful misfolded protein conformers and use the...

  11. Multiscale modeling of a conditionally disordered pH-sensing chaperone.

    Science.gov (United States)

    Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L

    2015-04-24

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rescue of a pathogenic mutant human glucagon receptor by pharmacological chaperones.

    Science.gov (United States)

    Yu, Run; Chen, Chun-Rong; Liu, Xiaohong; Kodra, János T

    2012-10-01

    We have previously demonstrated that a homozygous inactivating P86S mutation of the glucagon receptor (GCGR) causes a novel human disease of hyperglucagonemia, pancreatic α-cell hyperplasia, and pancreatic neuroendocrine tumors (Mahvash disease). The mechanisms for the decreased activity of the P86S mutant (P86S) are abnormal receptor localization to the endoplasmic reticulum (ER) and defective interaction with glucagon. To search for targeted therapies for Mahvash disease, we examined whether P86S can be trafficked to the plasma membrane by pharmacological chaperones and whether novel glucagon analogs restore effective receptor interaction. We used enhanced green fluorescent protein-tagged P86S stably expressed in HEK 293 cells to allow fluorescence imaging and western blotting and molecular modeling to design novel glucagon analogs in which alanine 19 was replaced with serine or asparagine. Incubation at 27 °C largely restored normal plasma membrane localization and normal processing of P86S but osmotic chaperones had no effects. The ER stressors thapsigargin and curcumin partially rescued P86S. The lipophilic GCGR antagonist L-168,049 also partially rescued P86S, so did Cpd 13 and 15 to a smaller degree. The rescued P86S led to more glucagon-stimulated cAMP production and was internalized by glucagon. Compared with the native glucagon, the novel glucagon analogs failed to stimulate more cAMP production by P86S. We conclude that the mutant GCGR is partially rescued by several pharmacological chaperones and our data provide proof-of-principle evidence that Mahvash disease can be potentially treated with pharmacological chaperones. The novel glucagon analogs, however, failed to interact with P86S more effectively.

  13. Enhanced Transport Capabilities via Nanotechnologies: Impacting Bioefficacy, Controlled Release Strategies, and Novel Chaperones

    Directory of Open Access Journals (Sweden)

    Thomai Panagiotou

    2011-01-01

    side affects and providing improved therapeutic interventions. Innovative nanotechnology applications, such as simultaneous targeting, imaging and delivery to tumors, are now possible through use of novel chaperones. Other examples include nanoparticles attachment to T-cells, release from novel hydrogel implants, and functionalized encapsulants. Difficult tasks such as drug delivery to the brain via the blood brain barrier and/or the cerebrospinal fluid are now easier to accomplish.

  14. Dysfunction of Rapid Neural Adaptation in Dyslexia.

    Science.gov (United States)

    Perrachione, Tyler K; Del Tufo, Stephanie N; Winter, Rebecca; Murtagh, Jack; Cyr, Abigail; Chang, Patricia; Halverson, Kelly; Ghosh, Satrajit S; Christodoulou, Joanna A; Gabrieli, John D E

    2016-12-21

    Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Lower limb vascular dysfunction in cyclists

    Directory of Open Access Journals (Sweden)

    Thiago Ayala Melo Di Alencar

    2013-06-01

    Full Text Available Sports-related vascular insufficiency affecting the lower limbs is uncommon, and early signs and symptoms can be confused with musculoskeletal injuries. This is also the case among professional cyclists, who are always at the threshold between endurance and excess training. The aim of this review was to analyze the occurrence of vascular disorders in the lower limbs of cyclists and to discuss possible etiologies. Eighty-five texts, including papers and books, published from 1950 to 2012, were used. According to the literature reviewed, some cyclists receive a late diagnosis of vascular dysfunction due to a lack of familiarity of the medical team with this type of dysfunction. Data revealed that a reduced blood flow in the external iliac artery, especially on the left, is much more common than in the femoral and popliteal arteries, and that vascular impairment is responsible for the occurrence of early fatigue and reduced performance in cycling.

  16. Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death.

    Science.gov (United States)

    Choi, Soo Hyun; Kim, Dae Won; Kim, So Young; An, Jae Jin; Lee, Sun Hwa; Choi, Hee Soon; Sohn, Eun Jung; Hwang, Seok-Il; Won, Moo Ho; Kang, Tae-Cheon; Kwon, Hyung Joo; Kang, Jung Hoon; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2005-12-31

    Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

  17. Structural characterization of the RNA chaperone Hfq from the nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1.

    Science.gov (United States)

    Kadowaki, Marco Antonio Seiki; Iulek, Jorge; Barbosa, João Alexandre Ribeiro Gonçalves; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Monteiro, Rose Adele; de Oliveira, Marco Aurélio Schüler; Steffens, Maria Berenice Reynaud

    2012-02-01

    The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qβ replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the β-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted β-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis.

    Science.gov (United States)

    Ito, Shinya; Ogawa, Koji; Takeuchi, Koh; Takagi, Motoki; Yoshida, Masahito; Hirokawa, Takatsugu; Hirayama, Shoshiro; Shin-Ya, Kazuo; Shimada, Ichio; Doi, Takayuki; Goshima, Naoki; Natsume, Tohru; Nagata, Kazuhiro

    2017-12-08

    Fibrosis can disrupt tissue structure and integrity and impair organ function. Fibrosis is characterized by abnormal collagen accumulation in the extracellular matrix. Pharmacological inhibition of collagen secretion therefore represents a promising strategy for the management of fibrotic disorders, such as liver and lung fibrosis. Hsp47 is an endoplasmic reticulum (ER)-resident collagen-specific molecular chaperone essential for correct folding of procollagen in the ER. Genetic deletion of Hsp47 or inhibition of its interaction with procollagen interferes with procollagen triple helix production, which vastly reduces procollagen secretion from fibroblasts. Thus, Hsp47 could be a potential and promising target for the management of fibrosis. In this study, we screened small-molecule compounds that inhibit the interaction of Hsp47 with collagen from chemical libraries using surface plasmon resonance (BIAcore), and we found a molecule AK778 and its cleavage product Col003 competitively inhibited the interaction and caused the inhibition of collagen secretion by destabilizing the collagen triple helix. Structural information obtained with NMR analysis revealed that Col003 competitively binds to the collagen-binding site on Hsp47. We propose that these structural insights could provide a basis for designing more effective therapeutic drugs for managing fibrosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.

    Science.gov (United States)

    Park, Chang-Jin; Seo, Young-Su

    2015-12-01

    As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  20. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Dufresne, Karine; Saulnier-Bellemare, Julie; Daigle, France

    2018-01-01

    The human-specific pathogen Salmonella enterica serovar Typhi causes typhoid, a major public health issue in developing countries. Several aspects of its pathogenesis are still poorly understood. S . Typhi possesses 14 fimbrial gene clusters including 12 chaperone-usher fimbriae ( stg, sth, bcf , fim, saf , sef , sta, stb, stc, std, ste , and tcf ). These fimbriae are weakly expressed in laboratory conditions and only a few are actually characterized. In this study, expression of all S . Typhi chaperone-usher fimbriae and their potential roles in pathogenesis such as interaction with host cells, motility, or biofilm formation were assessed. All S . Typhi fimbriae were better expressed in minimal broth. Each system was overexpressed and only the fimbrial gene clusters without pseudogenes demonstrated a putative major subunits of about 17 kDa on SDS-PAGE. Six of these (Fim, Saf, Sta, Stb, Std, and Tcf) also show extracellular structure by electron microscopy. The impact of fimbrial deletion in a wild-type strain or addition of each individual fimbrial system to an S . Typhi afimbrial strain were tested for interactions with host cells, biofilm formation and motility. Several fimbriae modified bacterial interactions with human cells (THP-1 and INT-407) and biofilm formation. However, only Fim fimbriae had a deleterious effect on motility when overexpressed. Overall, chaperone-usher fimbriae seem to be an important part of the balance between the different steps (motility, adhesion, host invasion and persistence) of S . Typhi pathogenesis.

  1. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    International Nuclear Information System (INIS)

    Van Molle, Inge; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri

    2005-01-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°

  2. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    Energy Technology Data Exchange (ETDEWEB)

    Van Molle, Inge, E-mail: ivmolle@vub.ac.be; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri [Laboratorium voor Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium)

    2005-04-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°.

  3. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

    Directory of Open Access Journals (Sweden)

    Christine R Langlois

    2016-11-01

    Full Text Available Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.

  4. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation

    Science.gov (United States)

    Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085

  5. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Fränzel, Benjamin; Wolters, Dirk; Nowrousian, Minou

    2012-05-01

    Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development. © 2012 Blackwell Publishing Ltd.

  6. Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline.

    Science.gov (United States)

    Lane, Darius J R; Richardson, Des R

    2014-08-15

    How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.

  7. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  8. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  9. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    Science.gov (United States)

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  10. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  11. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins.

    Science.gov (United States)

    Baindur-Hudson, Swati; Edkins, Adrienne L; Blatch, Gregory L

    2015-01-01

    The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrP(C). The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrP(C). While Hop has been shown to have various cellular functions, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseases states.

  12. The fragile X mental retardation protein has nucleic acid chaperone properties.

    Science.gov (United States)

    Gabus, Caroline; Mazroui, Rachid; Tremblay, Sandra; Khandjian, Edouard W; Darlix, Jean-Luc

    2004-01-01

    The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA-RNA interactions and thus on the structural status of mRNAs.

  13. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

    Directory of Open Access Journals (Sweden)

    Chang-Jin Park

    2015-12-01

    Full Text Available As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs or resistance (R proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  14. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves A; Cheng, Zhenyu; Bush, Jenifer; Ausubel, Frederick M

    Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.

  15. Ciliary dysfunction and obesity.

    Science.gov (United States)

    Mok, C A; Héon, E; Zhen, M

    2010-01-01

    Obesity associates with increased health risks such as heart disease, stroke and diabetes. The steady rise in the obese population worldwide poses an increasing burden on health systems. Genetic factors contribute to the development of obesity, and the elucidation of their physiological functions helps to understand the cause, and improve the prevention, diagnosis and treatment for this disorder. Primary cilia are evolutionarily conserved organelles whose dysfunctions lead to human disorders now defined as ciliopathies. Human ciliopathies present pleiotropic and overlapping phenotypes that often include retinal degeneration, cystic renal anomalies and obesity. Increasing evidence implicates an intriguing involvement of cilia in lipid/energy homeostasis. Here we discuss recent studies in support of the key roles of ciliary genes in the development and pathology of obesity in various animal models. Genes affecting ciliary development and function may pose promising candidate underlying genetic factors that contribute to the development of common obesity.

  16. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  17. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  18. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  19. Development and validation of 26-item dysfunctional attitude scale.

    Science.gov (United States)

    Ebrahimi, Amrollah; Samouei, Rahele; Mousavii, Sayyed Ghafour; Bornamanesh, Ali Reza

    2013-06-01

    Dysfunctional Attitude Scale is one of the most common instruments used to assess cognitive vulnerability. This study aimed to develop and validate a short form of Dysfunctional Attitude Scale appropriate for an Iranian clinical population. Participants were 160 psychiatric patients from medical centers affiliated with Isfahan Medical University, as well as 160 non-patients. Research instruments were clinical interviews based on the Diagnostic and Statistical Manual-IV-TR, Dysfunctional Attitude Scale and General Heath Questionnaire (GHQ-28). Data was analyzed using multicorrelation calculations and factor analysis. Based on the results of factor analysis and item-total correlation, 14 items were judged candidates for omission. Analysis of the 26-item Dysfunctional Attitude Scale (DAS-26) revealed a Cronbach's alpha of 0.92. Evidence for the concurrent criterion validity was obtained through calculating the correlation between the Dysfunctional Attitude Scale and psychiatric diagnosis (r = 0.55), GHQ -28 (r = 0.56) and somatization, anxiety, social dysfunction, and depression subscales (0.45,0.53,0.48, and 0.57, respectively). Factor analysis deemed a four-factor structure the best. The factors were labeled as success-perfectionism, need for approval, need for satisfying others, and vulnerability-performance evaluation. The results showed that the Iranian version of the Dysfunctional Attitude Scale (DAS-26) bears satisfactory psychometric properties suggesting that this cognitive instrument is appropriate for use in an Iranian cultural context. Copyright © 2012 Wiley Publishing Asia Pty Ltd.

  20. Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its implications for Parkinson disease.

    Science.gov (United States)

    Jung, Olive; Patnaik, Samarjit; Marugan, Juan; Sidransky, Ellen; Westbroek, Wendy

    2016-05-01

    Gaucher disease, caused by pathological mutations GBA1, encodes the lysosome-resident enzyme glucocerebrosidase, which cleaves glucosylceramide into glucose and ceramide. In Gaucher disease, glucocerebrosidase deficiency leads to lysosomal accumulation of substrate, primarily in cells of the reticulo-endothelial system. Gaucher disease has broad clinical heterogeneity, and mutations in GBA1 are a risk factor for the development of different synucleinopathies. Insights into the cell biology and biochemistry of glucocerebrosidase have led to new therapeutic approaches for Gaucher disease including small chemical chaperones. Such chaperones facilitate proper enzyme folding and translocation to lysosomes, thereby preventing premature breakdown of the enzyme in the proteasome. This review discusses recent progress in developing chemical chaperones as a therapy for Gaucher disease, with implications for the treatment of synucleinopathies. It focuses on the development of non-inhibitory glucocerebrosidase chaperones and their therapeutic advantages over inhibitory chaperones, as well as the challenges involved in identifying and validating chemical chaperones.

  1. Working with Chronically Dysfunctional Families.

    Science.gov (United States)

    Younger, Robert; And Others

    This paper reviews family therapy with chronically dysfunctional families including the development of family therapy and current trends which appear to give little guidance toward working with severely dysfunctional families. A theoretical stance based upon the systems approach to family functioning and pathology is presented which suggests: (1)…

  2. Bladder Dysfunction and Vesicoureteral Reflux

    Directory of Open Access Journals (Sweden)

    Ulla Sillén

    2008-01-01

    Full Text Available In this overview the influence of functional bladder disturbances and of its treatment on the resolution of vesicoureteral reflux (VUR in children is discussed. Historically both bladder dysfunction entities, the overactive bladder (OAB and the dysfunctional voiding (DV, have been described in conjunction with VUR. Treatment of the dysfunction was also considered to influence spontaneous resolution in a positive way. During the last decades, however, papers have been published which could not support these results. Regarding the OAB, a prospective study with treatment of the bladder overactivity with anticholinergics, did not influence spontaneous resolution rate in children with a dysfunction including also the voiding phase, DV and DES (dysfunctional elimination syndrome, most studies indicate a negative influence on the resolution rate of VUR in children, both before and after the age for bladder control, both with and without treatment. However, a couple of uncontrolled studies indicate that there is a high short-term resolution rate after treatment with flow biofeedback. It should be emphasized that the voiding phase dysfunctions (DV and DES are more severe than the genuine filling phase dysfunction (OAB, with an increased frequency of UTI and renal damage in the former groups. To be able to answer the question if treatment of bladder dysfunction influence the resolution rate of VUR in children, randomized controlled studies must be performed.

  3. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented...... implications of muscle dysfunction in cancer patients. The efficacy of exercise training to prevent and/or mitigate cancer-related muscle dysfunction is also discussed. DESIGN: We identified 194 studies examining muscular outcomes in cancer patients by searching PubMed and EMBASE databases. RESULTS: Muscle...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...

  4. Hypothalamic dysfunction following whole-brain irradiation

    International Nuclear Information System (INIS)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-01-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage

  5. [Thyroid dysfunction during pregnancy].

    Science.gov (United States)

    Díez, Juan J; Iglesias, Pedro; Donnay, Sergio

    2015-10-21

    Recent clinical practice guidelines on thyroid dysfunction and pregnancy have changed health care provided to pregnant women, although their recommendations are under constant revision. Trimester- and area-specific reference ranges for serum thyroid-stimulating hormone are required for proper diagnosis of hypothyroidism and hyperthyroidism. There is no doubt on the need of therapy for overt hypothyroidism, while therapy for subclinical hypothyroidism is controversial. Further research is needed to settle adverse effects of isolated hypothyroxinemia and thyroid autoimmunity. Differentiation between hyperthyroidism due to Graves' disease and the usually self-limited gestational transient thyrotoxicosis is critical. It is also important to recognize risk factors for postpartum thyroiditis. Supplementation with iodine is recommended to maintain adequate iodine nutrition during pregnancy and avoid serious consequences in offspring. Controversy remains about universal screening for thyroid disease during pregnancy or case-finding in high-risk women. Opinions of some scientific societies and recent cost-benefit studies favour universal screening. Randomized controlled studies currently under development should reduce the uncertainties that still remain in this area. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  6. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality

    Czech Academy of Sciences Publication Activity Database

    Bíbová, Ilona; Hot, D.; Keidel, Kristina; Amman, F.; Slupek, S.; Černý, Ondřej; Gross, R.; Večerek, Branislav

    2015-01-01

    Roč. 12, č. 2 (2015), s. 175-185 ISSN 1547-6286 R&D Projects: GA ČR(CZ) GAP302/11/1940; GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) 7AMB14AR028; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Bsp22 * Hfq * infection Subject RIV: CE - Biochemistry Impact factor: 4.076, year: 2015

  7. Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism.

    Directory of Open Access Journals (Sweden)

    Nilima Biswas

    Full Text Available RATIONALE: The chromogranin A-derived peptide pancreastatin (PST is a dysglycemic, counter-regulatory peptide for insulin action, especially in liver. Although previous evidence for a PST binding protein has been reported, such a receptor has not been identified or sequenced. METHODS AND RESULTS: We used ligand affinity to purify the PST target, with biotinylated human PST (hCHGA273-301-amide as "bait" and mouse liver homogenate as "prey", and identified GRP78 (a.k.a. "78 kDa Glucose Regulated Protein", HSPA5, BIP as a major interacting partner of PST. GRP78 belongs to the family of heat shock proteins (chaperones, involved in several cellular processes including protein folding and glucose metabolism. We analyzed expression of GRP78 in the absence of PST in a mouse knockout model lacking its precursor CHGA: hepatic transcriptome data revealed global over-expression of not only GRP78 but also other heat shock transcripts (of the "adaptive UPR" in CHGA(-/- mice compared to wild-type (+/+. By contrast, we found a global decline in expression of hepatic pro-apoptotic transcripts in CHGA(-/- mice. GRP78's ATPase enzymatic activity was dose-dependently inhibited by PST (IC50∼5.2 µM. PST also inhibited the up-regulation of GRP78 expression during UPR activation (by tunicamycin in hepatocytes. PST inhibited insulin-stimulated glucose uptake in adipocytes, and increased hepatic expression of G6Pase (the final step in gluconeogenesis/glycogenolysis. In hepatocytes not only PST but also other GRP78-ATPase inhibitors (VER-155008 or ADP increased G6Pase expression. GRP78 over-expression inhibited G6Pase expression in hepatocytes, with partial restoration by GRP78-ATPase inhibitors PST, VER-155008, or ADP. CONCLUSIONS: Our results indicate that an unexpected major hepatic target of PST is the adaptive UPR chaperone GRP78. PST not only binds to GRP78 (in pH-dependent fashion, but also inhibits GRP78's ATPase enzymatic activity, and impairs its biosynthetic

  8. Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

    Science.gov (United States)

    Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A

    2017-10-01

    By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.

  9. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  10. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    International Nuclear Information System (INIS)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H.; Prodromou, Chrisostomos

    2015-01-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90) 2 –Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes

  11. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor.

    Science.gov (United States)

    Fujimoto, Michiko; Hayashi, Teruo; Urfer, Roman; Mita, Shiro; Su, Tsung-Ping

    2012-07-01

    The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders. Copyright © 2012 Wiley Periodicals, Inc.

  12. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H., E-mail: laurence.pearl@sussex.ac.uk; Prodromou, Chrisostomos, E-mail: laurence.pearl@sussex.ac.uk [University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom)

    2015-05-01

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90){sub 2}–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.

  13. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Science.gov (United States)

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  14. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Directory of Open Access Journals (Sweden)

    Jingjing Liang

    2017-01-01

    Full Text Available Ebola (EBOV and Marburg (MARV viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3, a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs, as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA. Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  15. Cognitive dysfunction after cardiovascular surgery

    DEFF Research Database (Denmark)

    Funder, K S; Steinmetz, J; Rasmussen, L S

    2009-01-01

    This review describes the incidence, risk factors, and long-term consequences of cognitive dysfunction after cardiovascular surgery. Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important complication, especially in the elderly. A highly sensitive neuropsychol......This review describes the incidence, risk factors, and long-term consequences of cognitive dysfunction after cardiovascular surgery. Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important complication, especially in the elderly. A highly sensitive...... neuropsychological test battery must be used to detect POCD and a well-matched control group is very useful for the analysis and interpretation of the test RESULTS: Cardiovascular surgery is associated with a high incidence of POCD. Cardiopulmonary bypass was thought to explain this difference, but randomized...

  16. Sexual dysfunction associated with infertility'

    African Journals Online (AJOL)

    1989-07-15

    Jul 15, 1989 ... incidence of sexual dysfunction during this phase; loss of libido was the ... association with decreased orgasmic response and diminished sexual satisfaction (Fig. 2). ..... Human Sexual Inadequacy. Boston: Little, Brown,.

  17. Oral Health and Erectile Dysfunction

    OpenAIRE

    Singh, Vijendra P.; Nettemu, Sunil K.; Nettem, Sowmya; Hosadurga, Rajesh; Nayak, Sangeeta U.

    2017-01-01

    Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP) and erectile dysfunction (ED) by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this...

  18. Psychological model of adolescent dysfunctionality

    Directory of Open Access Journals (Sweden)

    Cvetkov A. V.

    2016-05-01

    Full Text Available teenage dysfunctionality could be caused by a number of factors, which are an integral part of modern life. Particularly, in this work we considered such factors as uncertainty, frustration, and a mismatch of sexual behavior setting. The path analysis based on using structural equations. The results proved that teenage dysfunctionality is a consequence of the direct effect of the interconnection between moral reflection and moral and ethical responsibility on the perception level of social frustration, corporeality and sexual mismatch.

  19. Thyroid dysfunction and pregnancy outcomes

    Directory of Open Access Journals (Sweden)

    Sima Nazarpour

    2015-07-01

    Full Text Available Background: Pregnancy has a huge impact on the thyroid function in both healthy women and those that have thyroid dysfunction. The prevalence of thyroid dysfunction in pregnant women is relatively high. Objective: The objective of this review was to increase awareness and to provide a review on adverse effect of thyroid dysfunction including hyperthyroidism, hypothyroidism and thyroid autoimmune positivity on pregnancy outcomes. Materials and Methods: In this review, Medline, Embase and the Cochrane Library were searched with appropriate keywords for relevant English manuscript. We used a variety of studies, including randomized clinical trials, cohort (prospective and retrospective, case-control and case reports. Those studies on thyroid disorders among non-pregnant women and articles without adequate quality were excluded. Results: Overt hyperthyroidism and hypothyroidism has several adverse effects on pregnancy outcomes. Overt hyperthyroidism was associated with miscarriage, stillbirth, preterm delivery, intrauterine growth retardation, low birth weight, preeclampsia and fetal thyroid dysfunction. Overt hypothyroidism was associated with abortion, anemia, pregnancy-induced hypertension, preeclampsia, placental abruption, postpartum hemorrhage, premature birth, low birth weight, intrauterine fetal death, increased neonatal respiratory distress and infant neuro developmental dysfunction. However the adverse effect of subclinical hypothyroidism, and thyroid antibody positivity on pregnancy outcomes was not clear. While some studies demonstrated higher chance of placental abruption, preterm birth, miscarriage, gestational hypertension, fetal distress, severe preeclampsia and neonatal distress and diabetes in pregnant women with subclinical hypothyroidism or thyroid autoimmunity; the other ones have not reported these adverse effects. Conclusion: While the impacts of overt thyroid dysfunction on feto-maternal morbidities have been clearly

  20. Lack of the RNA chaperone Hfq attenuates pathogenicity of several Escherichia coli pathotypes towards Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Jakobsen, Henrik; Struve, Carsten

    2012-01-01

    as a model for virulence characterization and screening for novel antimicrobial entities. Several E. coli human pathotypes are also pathogenic towards C. elegans, and we show here that lack of the RNA chaperone Hfq significantly reduces pathogenicity of VTEC, EAEC, and UPEC in the nematode model. Thus, Hfq...... is intrinsically essential to pathogenic E. coli for survival and virulence exerted in the C. elegans host.......Escherichia coli is an important agent of Gram-negative bacterial infections worldwide, being one of the leading causes of diarrhoea and urinary tract infections. Strategies to understand pathogenesis and develop therapeutic compounds include the use of the nematode Caenorhabditis elegans...

  1. Sexual dysfunction in infertile couples: evaluation and treatment of infertility

    International Nuclear Information System (INIS)

    Bayar, U.; Arikan, I.I.; Barut, A.; Harma, M.; Harma, M.; Atasoy, N.

    2014-01-01

    Objective: To evaluate the diagnostic and the predictive value of Arizona Sexual Experience Scale among primary infertile couples regarding sexual dysfunction. Methods: The cross-sectional and prospective pre, post study comprising primary infertile patients was carried out at Bulent Ecevit University Hospital, Zonguldak, Turkey. Fifty consecutive primary infertile couples not treated previously were investigated between 2003 and 2007 for the presence of sexual dysfunction by a psychiatrist. Arizona Sexual Experience Scale scoring was self-administered to determine sexual dysfunction among couples before treatment and also 3 months after the initiation of the treatment. Results: Pretreatment mean values of the index parametres in both women and men were significantly increased after treatment. Statistically significant positive correlation was observed between pre- and post-treatment total scores in both women (r=0.83; p 14 (Sensitivity: 57%; Specificity: 90%) and >13 (Sensitivity: 83%; Specificity: 93%), respectively. Pre- and post-treatment scores in men were >10 (Sensitivity: 65%; Specificity: 61%), >11 (Sensitivity: 83%; Specificity: 62%), respectively. Binary logistic regression analyses revealed women's pre-treatment and post-treatment scores as a significant factor for prediction of sexual dysfunction independent of sociodemographic factors (p=0.001 and p=0.001, respectively). Conclusion: Evaluation and treatment of infertility is an important risk factor for sexual dysfunction. Pre- and post-treatment Arizona Sexual Experience Scale score could be used as a screening test for sexual dysfunction and might be used to decide pre/post-treatment consultation of couples with a specialist. (author)

  2. Aging and recurrent urinary tract infections are associated with bladder dysfunction in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lin

    2012-09-01

    Conclusion: The urodynamic study revealed a temporal effect on bladder function, and women with diabetic voiding dysfunction were found to have had a longer duration of DM than women with an overactive detrusor. However, aging and recurrent urinary tract infections are the two independent factors that contribute to impaired voiding function and diabetic bladder dysfunction.

  3. Bem Sex Role Inventory Undifferentiated Score: A Comparison of Sexual Dysfunction Patients with Sexual Offenders.

    Science.gov (United States)

    Dwyer, Margretta; And Others

    1988-01-01

    Examined Bem Sex Role undifferentiated scores on 93 male sex offenders as compared with 50 male sexually dysfunctional patients. Chi-square analyses revealed significant difference: offenders obtained undifferentiated scores more often than did sexual dysfunctional population. Concluded that Bem Sex Role Inventory is useful in identifying sexual…

  4. Further Commentary on Mitochondrial Dysfunction in Autism Spectrum Disorder: Assessment and Treatment Considerations

    Science.gov (United States)

    Dager, Stephen R.; Corrigan, Neva M.; Estes, Annette; Shaw, Dennis W. W.

    2012-01-01

    The authors respond to a recent letter (Rossignol and Frye 2011) critical of their paper, "Proton magnetic resonance spectroscopy and MRI reveal no evidence for brain mitochondrial dysfunction in children with autism spectrum disorder" (Corrigan et al. 2011). Further considerations regarding the assessment of mitochondrial dysfunction in autism…

  5. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L. (Scripps); (GIT)

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  6. Posterior tibial tendon dysfunction by bone imprisonment | Zejjari ...

    African Journals Online (AJOL)

    The posterior tibial muscle is the main functional support of the plantar arch its dysfunction is the main cause of acquired flat foot. This is a 32 year old patient who consults for progressive pain of the inside of the ankle and right foot with a considerable decrease in its sporting and professional activity. Examination reveals a ...

  7. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    Science.gov (United States)

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-04-01

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  8. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone

    Science.gov (United States)

    Xia, Hongjie; Wang, Peipei; Wang, Guang-Chuan; Yang, Jie; Sun, Xianlin; Wu, Wenzhe; Qiu, Yang; Shu, Ting; Zhao, Xiaolu; Yin, Lei; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our

  9. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro.

    Science.gov (United States)

    Pachulska-Wieczorek, Katarzyna; Stefaniak, Agnieszka K; Purzycka, Katarzyna J

    2014-07-03

    The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (-) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5'UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may

  10. The Chemical Chaperone Phenylbutyrate Rescues MCT8 Mutations Associated With Milder Phenotypes in Patients With Allan-Herndon-Dudley Syndrome.

    Science.gov (United States)

    Braun, Doreen; Schweizer, Ulrich

    2017-03-01

    Mutations in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) prevent appropriate entry of thyroid hormones into brain cells during development and cause severe mental retardation in affected patients. The current treatment options are thyromimetic compounds that enter the brain independently of MCT8. Some MCT8-deficient patients (e.g., those carrying MCT8delF501) will not be as severely affected as most others. We have shown that the MCT8delF501 protein has decreased protein stability but important residual function once it reaches the plasma membrane. We were able to rescue protein expression and the function of MCT8delF501 in a Madin-Darby canine kidney cell model by application of the chemical chaperone sodium phenylbutyrate (NaPB), a drug that has been used to treat patients with cystic fibrosis and urea cycle defects for extended periods of time. In the present study, we have extended our previous study and report on the NaPB-dependent rescue of a series of other pathogenic MCT8 mutants associated with milder patient phenotypes. We show that NaPB can functionally rescue the expression and activities of Ser194Phe, Ser290Phe, Leu434Trp, Arg445Cys, Leu492Pro, and Leu568Pro mutations in MCT8 in a dose-dependent manner. The soy isoflavone genistein, a dietary supplement, which was effective in MCT8delF501, was also effective in increasing the expression and transport of these MCT8 mutants; however, the effect size differed among mutants. Kinetic analyses revealed that the Michaelis constants of the mutants toward the primary substrate 3,3',5-triiodothyronine were not much different from the wild-type value, suggesting that these mutants are not impaired in their interaction with substrate but rather destabilized by the mutation and degraded. Copyright © 2017 by the Endocrine Society.

  11. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Elisa [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Bonvini, Paolo, E-mail: paolo.bonvini@unipd.it [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza (Italy)

    2011-10-21

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.

  12. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Science.gov (United States)

    Zorzi, Elisa; Bonvini, Paolo

    2011-01-01

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells. PMID:24213118

  13. A role for the RNA chaperone Hfq in controlling adherent-invasive Escherichia coli colonization and virulence.

    Directory of Open Access Journals (Sweden)

    Karina T Simonsen

    Full Text Available Adherent-invasive Escherichia coli (AIEC has been linked with the onset and perpetuation of inflammatory bowel diseases. The AIEC strain LF82 was originally isolated from an ileal biopsy from a patient with Crohn's disease. The pathogenesis of LF82 results from its abnormal adherence to and subsequent invasion of the intestinal epithelium coupled with its ability to survive phagocytosis by macrophages once it has crossed the intestinal barrier. To gain further insight into AIEC pathogenesis we employed the nematode Caenorhabditis elegans as an in vivo infection model. We demonstrate that AIEC strain LF82 forms a persistent infection in C. elegans, thereby reducing the host lifespan significantly. This host killing phenotype was associated with massive bacterial colonization of the nematode intestine and damage to the intestinal epithelial surface. C. elegans killing was independent of known LF82 virulence determinants but was abolished by deletion of the LF82 hfq gene, which encodes an RNA chaperone involved in mediating posttranscriptional gene regulation by small non-coding RNAs. This finding reveals that important aspects of LF82 pathogenesis are controlled at the posttranscriptional level by riboregulation. The role of Hfq in LF82 virulence was independent of its function in regulating RpoS and RpoE activity. Further, LF82Δhfq mutants were non-motile, impaired in cell invasion and highly sensitive to various chemical stress conditions, reinforcing the multifaceted function of Hfq in mediating bacterial adaptation. This study highlights the usefulness of simple non-mammalian infection systems for the identification and analysis of bacterial virulence factors.

  14. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  15. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  16. Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.

    Directory of Open Access Journals (Sweden)

    Michael Reidy

    2014-10-01

    Full Text Available Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.

  17. Sp1-mediated transcription regulation of TAF-Ialpha gene encoding a histone chaperone.

    Science.gov (United States)

    Asaka, Masamitsu N; Murano, Kensaku; Nagata, Kyosuke

    2008-11-28

    TAF-I, one of histone chaperones, consists of two subtypes, TAF-Ialpha and TAF-Ibeta. The histone chaperone activity of TAF-I is regulated by dimer patterns of these subtypes. TAF-Ibeta is expressed ubiquitously, while the expression level of TAF-Ialpha with less activity than TAF-Ibeta differs among cell types. It is, therefore, assumed that the expression level of TAF-Ialpha in a cell is important for the TAF-I activity level. Here, we found that TAF-Ialpha and TAF-Ibeta genes are under the control of distinct promoters. Reporter assays and gel shift assays demonstrated that Sp1 binds to three regions in the TAF-Ialpha promoter and two or all mutaions of the three Sp1 binding regions reduced the TAF-Ialpha promoter activity. ChIP assays demonstrated that Sp1 binds to the TAF-Ialpha promoter in vivo. Furthermore, the expression level of TAF-Ialpha mRNA was reduced by knockdown of Sp1 using siRNA method. These studies indicated that the TAF-Ialpha promoter is under the control of Sp1.

  18. Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen's chaperone activity.

    Directory of Open Access Journals (Sweden)

    Gonçalo da Costa

    Full Text Available Familial amyloidotic polyneuropathy (FAP is a systemic conformational disease characterized by extracellular amyloid fibril formation from plasma transthyretin (TTR. This is a crippling, fatal disease for which liver transplantation is the only effective therapy. More than 80 TTR point mutations are associated with amyloidotic diseases and the most widely accepted disease model relates TTR tetramer instability with TTR point mutations. However, this model fails to explain two observations. First, native TTR also forms amyloid in systemic senile amyloidosis, a geriatric disease. Second, age at disease onset varies by decades for patients bearing the same mutation and some mutation carrier individuals are asymptomatic throughout their lives. Hence, mutations only accelerate the process and non-genetic factors must play a key role in the molecular mechanisms of disease. One of these factors is protein glycation, previously associated with conformational diseases like Alzheimer's and Parkinson's. The glycation hypothesis in FAP is supported by our previous discovery of methylglyoxal-derived glycation of amyloid fibrils in FAP patients. Here we show that plasma proteins are differentially glycated by methylglyoxal in FAP patients and that fibrinogen is the main glycation target. Moreover, we also found that fibrinogen interacts with TTR in plasma. Fibrinogen has chaperone activity which is compromised upon glycation by methylglyoxal. Hence, we propose that methylglyoxal glycation hampers the chaperone activity of fibrinogen, rendering TTR more prone to aggregation, amyloid formation and ultimately, disease.

  19. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis.

    Science.gov (United States)

    Finka, Andrija; Goloubinoff, Pierre

    2013-09-01

    In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10% of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.

  20. Phosphorylation-mediated control of histone chaperone ASF1 levels by Tousled-like kinases.

    Directory of Open Access Journals (Sweden)

    Maxim Pilyugin

    Full Text Available Histone chaperones are at the hub of a diverse interaction networks integrating a plethora of chromatin modifying activities. Histone H3/H4 chaperone ASF1 is a target for cell-cycle regulated Tousled-like kinases (TLKs and both proteins cooperate during chromatin replication. However, the precise role of post-translational modification of ASF1 remained unclear. Here, we identify the TLK phosphorylation sites for both Drosophila and human ASF1 proteins. Loss of TLK-mediated phosphorylation triggers hASF1a and dASF1 degradation by proteasome-dependent and independent mechanisms respectively. Consistent with this notion, introduction of phosphorylation-mimicking mutants inhibits hASF1a and dASF1 degradation. Human hASF1b is also targeted for proteasome-dependent degradation, but its stability is not affected by phosphorylation indicating that other mechanisms are likely to be involved in control of hASF1b levels. Together, these results suggest that ASF1 cellular levels are tightly controlled by distinct pathways and provide a molecular mechanism for post-translational regulation of dASF1 and hASF1a by TLK kinases.

  1. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    Science.gov (United States)

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-06-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.

  2. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites.

    Directory of Open Access Journals (Sweden)

    Sarah C Charnaud

    Full Text Available Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.

  3. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.

    Science.gov (United States)

    Wang, Lei; Li, Li; Gu, Kai; Xu, Xiao-Li; Sun, Yuan; You, Qi-Dong

    2017-01-01

    The Hsp90 chaperone protein regulates the folding, maturation and stability of a wide variety of oncoproteins. In recent years, many Hsp90 inhibitors have entered into the clinical trials while all of them target ATPase showing similar binding capacity and kinds of side-effects so that none have reached to the market. During the regulation progress, numerous protein- protein interactions (PPI) such as Hsp90 and client proteins or cochaperones are involved. With the Hsp90-cochaperones PPI networks being more and more clear, many cancerous proteins have been reported to be tightly correlated to Hsp90-cochaperones PPI. Among them, Hsp90-Cdc37 PPI has been widely reported to associate with numerous protein kinases, making it a novel target for the treatment of cancers. In this paper, we briefly review the strategies and modulators targeting Hsp90-Cdc37 complex including direct and indirect regulation mechanism. Through these discussions we expect to present inspirations for new insights into an alternative way to inhibit Hsp90 chaperone function. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro.

    Science.gov (United States)

    Petzoldt, Svenja; Kahra, Dana; Kovermann, Michael; Dingeldein, Artur P G; Niemiec, Moritz S; Ådén, Jörgen; Wittung-Stafshede, Pernilla

    2015-06-01

    After Ctr1-mediated copper ion (Cu) entry into the human cytoplasm, chaperones Atox1 and CCS deliver Cu to P1B-type ATPases and to superoxide dismutase, respectively, via direct protein-protein interactions. Although the two Cu chaperones are presumed to work along independent pathways, we here assessed cross-reactivity between Atox1 and the first domain of CCS (CCS1) using biochemical and biophysical methods in vitro. By NMR we show that CCS1 is monomeric although it elutes differently from Atox1 in size exclusion chromatography (SEC). This property allows separation of Atox1 and CCS1 by SEC and, combined with the 254/280 nm ratio as an indicator of Cu loading, we demonstrate that Cu can be transferred from one protein to the other. Cu exchange also occurs with full-length CCS and, as expected, the interaction involves the metal binding sites since mutation of Cu-binding cysteine in Atox1 eliminates Cu transfer from CCS1. Cross-reactivity between CCS and Atox1 may aid in regulation of Cu distribution in the cytoplasm.

  5. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    Science.gov (United States)

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  6. Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90

    International Nuclear Information System (INIS)

    Picard, Didier

    2006-01-01

    p23 is a component of the Hsp90 molecular chaperone machine. It binds and stabilizes the ATP-bound dimeric form of Hsp90. Since Hsp90 binds protein substrates in the ATP conformation, p23 has been proposed to stabilize Hsp90-substrate complexes. In addition, p23 can also function as a molecular chaperone by itself and even possesses an unrelated enzymatic activity. Whether it fulfills the latter functions in cells while bound to Hsp90 remains unknown and is difficult to extrapolate from cell-free biochemical experiments. Using the 'fluorescence recovery after photobleaching' (FRAP) technology, I have examined the dynamics of human p23, expressed as a fusion protein with the green fluorescent protein (GFP), in living human HeLa cells. GFP-p23 is distributed throughout the cell, and its mobility is identical in the cytoplasm and in the nucleus. When the Hsp90 interaction is disrupted either with the Hsp90 inhibitor geldanamycin or by introduction of point mutations into p23, the mobility of p23 is greatly accelerated. Under these conditions, its intracellular movement may be diffusion-controlled. In contrast, when wild-type p23 is able to bind Hsp90, a more complex FRAP behavior is observed, suggesting that it is quantitatively bound in Hsp90 complexes undergoing a multitude of other interactions

  7. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    Science.gov (United States)

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  8. Fluorinated Chaperone-β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease.

    Science.gov (United States)

    García-Moreno, M Isabel; de la Mata, Mario; Sánchez-Fernández, Elena M; Benito, Juan M; Díaz-Quintana, Antonio; Fustero, Santos; Nanba, Eiji; Higaki, Katsumi; Sánchez-Alcázar, José A; García Fernández, José M; Ortiz Mellet, Carmen

    2017-03-09

    Amphiphilic glycomimetics encompassing a rigid, undistortable nortropane skeleton based on 1,6-anhydro-l-idonojirimycin and a polyfluorinated antenna, when formulated as the corresponding inclusion complexes with β-cyclodextrin (βCD), have been shown to behave as pharmacological chaperones (PCs) that efficiently rescue lysosomal β-glucocerebrosidase mutants associated with the neuronopathic variants of Gaucher disease (GD), including the highly refractory L444P/L444P and L444P/P415R single nucleotide polymorphs, in patient fibroblasts. The body of work here presented includes the design criteria for the PC prototype, the synthesis of a series of candidates, the characterization of the PC:βCD complexes, the determination of the selectivity profiles toward a panel of commercial and human lysosomal glycosidases, the evaluation of the chaperoning activity in type 1 (non-neuronopathic), type 2 (acute neuronopathic), and type 3 (adult neuronopathic) GD fibroblasts, the confirmation of the rescuing mechanism by immunolabeling, and the analysis of the PC:GCase binding mode by docking experiments.

  9. Gamma-irradiation effects to posttranslational modification and chaperon function of bovine α-crystalline

    International Nuclear Information System (INIS)

    Hiroki, K; Matsumoto, S.; Awakura, M.; Fujii, N.

    2001-01-01

    The formation of D-asparate (D-Asp) in αA-crystallin of the aged human eye and the cataract crystalline lens has been reported. Crystalline lens keeps the transparency by forming α-crystallin which consists of a high order association of αA-and αB-crystallin. Bovine α-crystallin for investigating a chaperone function which protects the crystalline lens from getting to opaque or disordered agglutination with heat or light, is irradiated by gamma-ray (Co-60) at 0, 1, 2, 3, and 4 kGy, respectively. The irradiated bovine α-crystallin are analyzed with electrophoresis, gel permeation chromatograph, and UV absorption spectrometer for checking on the agglutination and the isomerization of macromolecules. Oxidation of methionine residues (Met-1) and isomerization of asparagine residues (Asp-151) in the αA-crystallin are ascertained in molecular levels with reversed phase liquid chromatography. The Met-1 oxidation and the Asp-151 isomerization depend on gamma-irradiation doses. It is thought that OH radical and H radical in water generated by the irradiation lead to the oxidation and the isomerization. Stereoinversion in the α-crystallin following to such a chemical change are considered to lead to the agglutination of polymer and the reduction of chaperon function. (M. Suetake)

  10. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    Science.gov (United States)

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability.

    Directory of Open Access Journals (Sweden)

    Zi Yang

    Full Text Available Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q/asparagine (N-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller "seeds." We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI(+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI(+] or [URE3] prions. We explore in detail the events leading to the loss (curing of [PSI(+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI(+].

  12. The Cryoelectron Microscopy Structure of the Type 1 Chaperone-Usher Pilus Rod.

    Science.gov (United States)

    Hospenthal, Manuela K; Zyla, Dawid; Costa, Tiago R D; Redzej, Adam; Giese, Christoph; Lillington, James; Glockshuber, Rudi; Waksman, Gabriel

    2017-12-05

    Adhesive chaperone-usher pili are long, supramolecular protein fibers displayed on the surface of many bacterial pathogens. The type 1 and P pili of uropathogenic Escherichia coli (UPEC) play important roles during urinary tract colonization, mediating attachment to the bladder and kidney, respectively. The biomechanical properties of the helical pilus rods allow them to reversibly uncoil in response to flow-induced forces, allowing UPEC to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2-Å resolution cryo-EM structure of the type 1 pilus rod, which together with the previous P pilus rod structure rationalizes the remarkable "spring-like" properties of chaperone-usher pili. The cryo-EM structure of the type 1 pilus rod differs in its helical parameters from the structure determined previously by a hybrid approach. We provide evidence that these structural differences originate from different quaternary structures of pili assembled in vivo and in vitro. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins?

    Science.gov (United States)

    Nakanishi, Kotaro

    2016-09-01

    RNA silencing is a eukaryote-specific phenomenon in which microRNAs and small interfering RNAs degrade messenger RNAs containing a complementary sequence. To this end, these small RNAs need to be loaded onto an Argonaute protein (AGO protein) to form the effector complex referred to as RNA-induced silencing complex (RISC). RISC assembly undergoes multiple and sequential steps with the aid of Hsc70/Hsp90 chaperone machinery. The molecular mechanisms for this assembly process remain unclear, despite their significance for the development of gene silencing techniques and RNA interference-based therapeutics. This review dissects the currently available structures of AGO proteins and proposes models and hypotheses for RISC assembly, covering the conformation of unloaded AGO proteins, the chaperone-assisted duplex loading, and the slicer-dependent and slicer-independent duplex separation. The differences in the properties of RISC between prokaryotes and eukaryotes will also be clarified. WIREs RNA 2016, 7:637-660. doi: 10.1002/wrna.1356 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.

  14. Vocal cord dysfunction in children.

    Science.gov (United States)

    Noyes, Blakeslee E; Kemp, James S

    2007-06-01

    Vocal cord dysfunction is characterised by paradoxical vocal cord adduction that occurs during inspiration, resulting in symptoms of dyspnoea, wheeze, chest or throat tightness and cough. Although the condition is well described in children and adults, confusion with asthma often triggers the use of an aggressive treatment regimen directed against asthma. The laryngoscopic demonstration of vocal cord adduction during inspiration has been considered the gold standard for the diagnosis of vocal cord dysfunction, but historical factors and pulmonary function findings may provide adequate clues to the correct diagnosis. Speech therapy, and in some cases psychological counselling, is often beneficial in this disorder. The natural course and prognosis of vocal cord dysfunction are still not well described in adults or children.

  15. Sexual dysfunctions in psoriatic patients

    Directory of Open Access Journals (Sweden)

    Maria Isabela Sarbu

    2015-04-01

    Full Text Available Psoriasis is a chronic, immune-mediated disorder with a worldwide occurrence characterized by well-defined infiltrated erythematous papules and plaques, covered by silvery white or yellowish scales. It is a physically, socially and emotionally invalidating disorder that affects 1-2% of the population. Sexual health is an important part of general health and sexual dysfunctions can negatively affect self-esteem, confidence, interpersonal relationships and the quality of life. Dermatology Life Quality Index (DLQI, Psoriasis Disability Index (PDI and the Impact of Psoriasis on Quality of Life (IPSO questionnaire are all questionnaires used to assess the quality of life of patients with psoriasis and each has one question regarding sexual dysfunction. Several scales were also designed to particularly assess sexual satisfaction in men and women. The aim of this paper is to perform an overview of the existing studies on sexual dysfunction in psoriatic patients.

  16. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  17. Cognitive dysfunction in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Joana eGuimarães

    2012-05-01

    Full Text Available In Multiple Sclerosis (MS prevalence studies of community and clinical samples, indicate that 45–60% of patients are cognitively impaired. These cognitive dysfunctions have been traditionally described as heterogeneous, but more recent studies suggest that there is a specific pattern of MS-related cognitive dysfunctions. With the advent of disease-modifying medications for MS and emphasis on early intervention and treatment, detection of cognitive impairment at its earliest stage becomes particularly important. In this review the authors address: the cognitive domains most commonly impaired in MS (memory, attention, executive functions, speed of information processing and visual spatial abilities; the physiopathological mechanism implied in MS cognitive dysfunction and correlated brain MRI features; the importance of neuropsychological assessment of MS patients in different stages of the disease and the influence of its course on cognitive performance; the most used tests and batteries for neuropsychological assessment; therapeutic strategies to improve cognitive abilities.

  18. Bladder Dysfunction and Urinary Incontinence

    OpenAIRE

    F. faizi

    2009-01-01

      "nIn the name of God. Dear colleagues, ladies and gentlemen, it is a great honor to be here. Bladder dysfunction is serious enough to seek serious help. If you may know I am working in a private clinic which it is impossible to follow the patients so this lecture is based on unusual and rare cases who came to me. Bladder dysfunction (BD) is common among 30% of young and old people who are suffering from it, however it is more common in old ages. According to a research, women ...

  19. Hormonal Changes and Sexual Dysfunction.

    Science.gov (United States)

    Zhou, Eric S; Frederick, Natasha N; Bober, Sharon L

    2017-11-01

    Sexual dysfunction is a common concern for many patients with cancer after treatment. Hormonal changes as a result of cancer-directed therapy can affect both male and female sexual health. This has the potential to significantly impact patients' quality of life, but is underreported and undertreated in the oncology setting. This review discusses commonly reported sexual issues and the role that hormonal changes play in this dysfunction. Although medical and psychosocial intervention strategies exist, there is a clear need for further research to formally develop programming that can assist people whose sexual health has been impacted by cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Methods and methodology of sexual dysfunctions with males. Chapter 5

    International Nuclear Information System (INIS)

    2000-01-01

    Examination of patients (liquidators of Chernobyl accident) was carried out in Republican Hospital for Great War Invalids. Sexual function of patients was estimated with help G.V. Vasilenko's questionnaire 'Men's sexual function'. For consideration of sexual dysfunctions the scale for qualitative estimation of potention dysfunction level was used. For revealing of vegetative nervous system dysfunction with examined patients the Ashner effect was studied. The functional status of pituitary gland - gonad system was studied by content of hormones in blood (follicle stimulating and luteinizing hormones). Results of investigations of both the sexual function and hormone level in blood were processed by method of variation statistics. For determination of each factors influence from all acting factors on sexual function the multifactorial dispersion analysis was carried out

  1. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase.

    Science.gov (United States)

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph; Marquardt, Iris; Donsante, Anthony; Yi, Ling; Hicks, Julia D; Steinbach, Peter J; Wilson, Callum; Elpeleg, Orly; Møller, Lisbeth Birk; Christodoulou, John; Kaler, Stephen G; Gärtner, Jutta

    2012-08-01

    Copper (Cu) is a trace metal that readily gains and donates electrons, a property that renders it desirable as an enzyme cofactor but dangerous as a source of free radicals. To regulate cellular Cu metabolism, an elaborate system of chaperones and transporters has evolved, although no human Cu chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the Cu chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution of a highly conserved arginine residue at position 163, with tryptophan in domain II of CCS, which interacts directly with superoxide dismutase 1 (SOD1). Biochemical analyses of the patient's fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result, this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal Cu homeostasis. CCS-Arg163Trp represents the primary example of a human mutation in a gene coding for a Cu chaperone. © 2012 Wiley Periodicals, Inc.

  2. c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Diana M. Dunn

    2015-08-01

    Full Text Available The ability of Heat Shock Protein 90 (Hsp90 to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific “client” proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1, promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.

  3. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  4. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios

    NARCIS (Netherlands)

    Mansson, Cecilia; Kakkar, Vaishali; Monsellier, Elodie; Sourigues, Yannick; Harmark, Johan; Kampinga, Harm H.; Melki, Ronald; Emanuelsson, Cecilia

    Expanded polyglutamine (polyQ) stretches lead to protein aggregation and severe neurodegenerative diseases. A highly efficient suppressor of polyQ aggregation was identified, the DNAJB6, when molecular chaperones from the HSPH, HSPA, and DNAJ families were screened for huntingtin exon 1 aggregation

  5. Conformational Activation of Argonaute by Distinct yet Coordinated Actions of the Hsp70 and Hsp90 Chaperone Systems.

    Science.gov (United States)

    Tsuboyama, Kotaro; Tadakuma, Hisashi; Tomari, Yukihide

    2018-05-17

    Loading of small RNAs into Argonaute, the core protein in RNA silencing, requires the Hsp70/Hsp90 chaperone machinery. This machinery also activates many other clients, including steroid hormone receptors and kinases, but how their structures change during chaperone-dependent activation remains unclear. Here, we utilized single-molecule Förster resonance energy transfer (smFRET) to probe the conformational changes of Drosophila Ago2 mediated by the chaperone machinery. We found that empty Ago2 exists in various closed conformations. The Hsp70 system (Hsp40 and Hsp70) and the Hsp90 system (Hop, Hsp90, and p23) together render Ago2 into an open, active form. The Hsp70 system, but not the Hsp90 system alone, is sufficient for Ago2 to partially populate the open form. Instead, the Hsp90 system is required to extend the dwell time of Ago2 in the open state, which must be transiently primed by the Hsp70 system. Our data uncover distinct and coordinated actions of the chaperone machinery, where the Hsp70 system expands the structural ensembles of Ago2 and the Hsp90 system captures and stabilizes the active form. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    Science.gov (United States)

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  7. Study of chaperone-like activity of human haptoglobin: conformational changes under heat shock conditions and localization of interaction sites

    Czech Academy of Sciences Publication Activity Database

    Ettrich, R.; Brandt, W.; Kopecký ml., V.; Baumruk, V.; Hofbauerová, Kateřina; Pavlíček, Z.

    2002-01-01

    Roč. 383, č. 10 (2002), s. 1667-1676 ISSN 1431-6730 Grant - others:GA UK(CZ) 220/2000/B-CH; Volkswagen Foundation(DE) I/74679 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100001 Keywords : chaperone * haptoglobin * molecular modeling Subject RIV: BO - Biophysics Impact factor: 2.548, year: 2002

  8. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  9. Apathy and Olfactory Dysfunction in Early Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jin Yong Hong

    2015-01-01

    Full Text Available Objective Olfactory and emotional dysfunctions are very common in patients with Parkinson’s disease (PD. Olfaction and emotions share common neuroanatomical substrates. Therefore, in this study, we evaluated the association between olfactory and emotional dysfunctions in patients with PD. Methods Parkinson’s disease patients who had been assessed for their olfactory function and neuropsychiatric symptoms including emotional dysfunction were included. A logistic regression analysis was performed to evaluate the association between low olfaction and different neuropsychiatric symptoms. Results The patients with low olfaction (cross cultural smell identification test score ≤ 6 showed a higher prevalence of apathy when compared with those with high olfaction, whereas the frequencies of other neuropsychiatric symptoms were comparable between the two groups. A multivariate logistic regression analysis revealed that the presence of apathy/indifference [odds ratio (OR = 2.859, p = 0.007], age 70 years or more (OR = 2.281, p = 0.009, and the male gender (OR = 1.916, p = 0.030 were significantly associated with low olfaction. Conclusions Our results demonstrate that apathy/indifference is a unique emotional dysfunction associated with olfactory dysfunction in PD. The findings also suggest that PD patients with low olfaction have a high prevalence of apathy.

  10. Incontinence and Erectile Dysfunction Following Radical Prostatectomy: A Review

    Directory of Open Access Journals (Sweden)

    Gerasimos Alivizatos

    2005-01-01

    Full Text Available Radical prostatectomy remains the treatment of choice for localized prostate cancer in age-appropriate and health-appropriate men. Although cancer control is the most important aspect of a radical prostatectomy, minimization of postoperative morbidity, especially urinary incontinence and erectile dysfunction, is becoming a greater concern. We reviewed recent data available on Medline regarding the incidence, pathophysiology, evaluation, and treatment of incontinence and sexual dysfunction after radical prostatectomy. Health-related quality of life issues have been specifically addressed. Although low incidences of incontinence and erectile dysfunction after radical prostatectomy have been reported in the hands of experienced surgeons, the literature review revealed a great variety, with incontinence rates ranging from 0.3–65.6% and potency rates ranging from 11–87%. Several factors contribute to this wide difference, the most important being the application of a meticulous surgical technique. General and cancer-specific health-related quality of life is not being affected after radical prostatectomy. The incidence of incontinence and erectile dysfunction is higher after radical prostatectomy when compared to the incidence observed when other therapies for localized prostate cancer are applied. However, the majority of the patients undergoing radical prostatectomy would vote for the operation again. Today, avoidance of major complications after radical prostatectomy depends mostly on a high-quality surgical technique. When incontinence or erectile dysfunction persists after radical prostatectomy, the majority of the treated patients can be managed effectively by various methods.

  11. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.

    Science.gov (United States)

    Nelson, Gregory M; Huffman, Holly; Smith, David F

    2003-01-01

    Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.

  12. Medical therapy and smell dysfunction

    NARCIS (Netherlands)

    Hellings, P. W.; Rombaux, P.

    2009-01-01

    Olfactory dysfunction is deemed to be a significant contributor to poor quality of life in different nasal inflammatory conditions like common cold, allergic rhinitis, and acute and chronic rhinosinusitis with and without nasal polyps (NP). The mechanism underlying olfactory impairment in

  13. Sweating dysfunction in Parkinson's disease

    NARCIS (Netherlands)

    Swinn, L; Schrag, A; Viswanathan, R; Lees, A; Quinn, N; Bloem, Bastiaan R.

    2003-01-01

    We sought to determine the prevalence and nature of sweating disturbances in patients with Parkinson's disease (PD), and investigated their correlation with other clinical features and with Quality of Life (QoL) measures. A questionnaire on symptoms and consequences of sweating dysfunction was

  14. Ageing with neurogenic bowel dysfunction

    DEFF Research Database (Denmark)

    Nielsen, S D; Faaborg, Pia Møller; Finnerup, Nanna Brix

    2017-01-01

    The aim of this longitudinal study with postal survey was to describe changes in the patterns of neurogenic bowel dysfunction and bowel management in a population of people with spinal cord injury (SCI) followed for two decades. In 1996, a validated questionnaire on bowel function was sent to the...

  15. Defining sphincter of oddi dysfunction

    DEFF Research Database (Denmark)

    Funch-Jensen, Peter

    1996-01-01

    Sphincter of Oddi (SO) dysmotility may give rise to pain. The golden standard for the demonstration of SO dysfunction is endoscopic manometry. A number of abnormalities are observed in patients with postcholecystectomy pain and in patients with idiopathic recurrent pancreatitis. Criteria for defi...

  16. Regulation of human Nfu activity in Fe-S cluster delivery-characterization of the interaction between Nfu and the HSPA9/Hsc20 chaperone complex.

    Science.gov (United States)

    Wachnowsky, Christine; Liu, Yushi; Yoon, Taejin; Cowan, J A

    2018-01-01

    Iron-sulfur cluster biogenesis is a complex, but highly regulated process that involves de novo cluster formation from iron and sulfide ions on a scaffold protein, and subsequent delivery to final targets via a series of Fe-S cluster-binding carrier proteins. The process of cluster release from the scaffold/carrier for transfer to the target proteins may be mediated by a dedicated Fe-S cluster chaperone system. In human cells, the chaperones include heat shock protein HSPA9 and the J-type chaperone Hsc20. While the role of chaperones has been somewhat clarified in yeast and bacterial systems, many questions remain over their functional roles in cluster delivery and interactions with a variety of human Fe-S cluster proteins. One such protein, Nfu, has recently been recognized as a potential interaction partner of the chaperone complex. Herein, we examined the ability of human Nfu to function as a carrier by interacting with the human chaperone complex. Human Nfu is shown to bind to both chaperone proteins with binding affinities similar to those observed for IscU binding to the homologous HSPA9 and Hsc20, while Nfu can also stimulate the ATPase activity of HSPA9. Additionally, the chaperone complex was able to promote Nfu function by enhancing the second-order rate constants for Fe-S cluster transfer to target proteins and providing directionality in cluster transfer from Nfu by eliminating promiscuous transfer reactions. Together, these data support a hypothesis in which Nfu can serve as an alternative carrier protein for chaperone-mediated cluster release and delivery in Fe-S cluster biogenesis and trafficking. © 2017 Federation of European Biochemical Societies.

  17. Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system.

    Science.gov (United States)

    Loh, Qiuting; Leong, Siew Wen; Tye, Gee Jun; Choong, Yee Siew; Lim, Theam Soon

    2015-05-15

    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Christine Bard, Sylvie Chaperon (dirs), Dictionnaire des féministes. France xviiie-

    OpenAIRE

    Rouch, Marine

    2017-01-01

    Dix années auront été nécessaires pour la réalisation de cet ouvrage, véritable événement éditorial de l’année 2017 pour celles et ceux qui s’intéressent de près ou de loin au féminisme, à ses figures, à ses groupes. Comme l’indiquent Christine Bard et Sylvie Chaperon, les directrices de publication, il est désormais le premier du genre à alimenter l’« espace mémoriel immatériel du féminisme » (p. IX) et à inviter au « voyage dans le temps et l’espace du féminisme » (p. X). Il faut souligner ...

  19. Two for the Price of One: A Neuroprotective Chaperone Kit within NAD Synthase Protein NMNAT2.

    Directory of Open Access Journals (Sweden)

    Angela Lavado-Roldán

    2016-07-01

    Full Text Available One of the most fascinating properties of the brain is the ability to function smoothly across decades of a lifespan. Neurons are nondividing mature cells specialized in fast electrical and chemical communication at synapses. Often, neurons and synapses operate at high levels of activity through sophisticated arborizations of long axons and dendrites that nevertheless stay healthy throughout years. On the other hand, aging and activity-dependent stress strike onto the protein machineries turning proteins unfolded and prone to form pathological aggregates associated with neurodegeneration. How do neurons protect from those insults and remain healthy for their whole life? Ali and colleagues now present a molecular mechanism by which the enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2 acts not only as a NAD synthase involved in axonal maintenance but as a molecular chaperone helping neurons to overcome protein unfolding and protein aggregation.

  20. Deletion of the Mitochondrial Chaperone TRAP-1 Uncovers Global Reprogramming of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Sofia Lisanti

    2014-08-01

    Full Text Available Reprogramming of metabolic pathways contributes to human disease, especially cancer, but the regulators of this process are unknown. Here, we have generated a mouse knockout for the mitochondrial chaperone TRAP-1, a regulator of bioenergetics in tumors. TRAP-1−/− mice are viable and showed reduced incidence of age-associated pathologies, including obesity, inflammatory tissue degeneration, dysplasia, and spontaneous tumor formation. This was accompanied by global upregulation of oxidative phosphorylation and glycolysis transcriptomes, causing deregulated mitochondrial respiration, oxidative stress, impaired cell proliferation, and a switch to glycolytic metabolism in vivo. These data identify TRAP-1 as a central regulator of mitochondrial bioenergetics, and this pathway could contribute to metabolic rewiring in tumors.

  1. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    Science.gov (United States)

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  3. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    International Nuclear Information System (INIS)

    Qualley, Dominic F.; Sokolove, Victoria L.; Ross, James L.

    2015-01-01

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC

  4. The crystal structure of the human co-chaperone P58(IPK.

    Directory of Open Access Journals (Sweden)

    Maria Svärd

    Full Text Available P58(IPK is one of the endoplasmic reticulum- (ER- localised DnaJ (ERdj proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58(IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58(IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58(IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58(IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58(IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58(IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding.

  5. Chaperones CCS, ATOX and COXIV responses to copper supplementation in healthy adults.

    Science.gov (United States)

    Araya, Magdalena; Andrews, Monica; Pizarro, Fernando; Arredondo, Miguel

    2012-04-01

    Assessment of proteins in blood and other tissues has failed to identify markers of early copper effects on health. Studies in animal models show that chaperone of SOD (CCS) respond to changes of copper status. Evidence about other copper chaperones (COXIV, ATOX) is not clear. The aim of this study was to assess by means of an in vitro challenge the mRNA relative abundance of ccs, sod1, coxIV, mtIIa and atox in peripheral mononuclear cells (PMNCs) obtained from healthy individuals, acutely and chronically supplemented with small-to-moderate amounts of copper. Healthy participants received 8 mg Cu/d (supplemented group, SG) or placebo, (placebo group, PG) for 2 months. Biochemical indicators were assessed at basal (T0) and after 2 (T2) and 60 days (T60). At these times PMNCs were obtained, challenged with 1, 5 or 20 μM Cu-histidine for 20 h and the mRNA relative abundance of the selected genes assessed by real time PCR. The results showed that at T0, intracellular copper was not different between experimental and control groups. This increased at T2 and T60 when the copper in the media increased (two-way ANOVA, P CCS mRNA transcripts showed no significant changes (two-way ANOVA) at T2 and T60. In SG, CCS changed by treatment, time and interaction (two-way ANOVA, all P CCS but not SOD, ATOX or COXIV responded consistently to controlled changes of copper availability in an in vitro copper challenge.

  6. Mitochondrial carrier protein biogenesis: role of the chaperones Hsc70 and Hsp90.

    Science.gov (United States)

    Zara, Vincenzo; Ferramosca, Alessandra; Robitaille-Foucher, Philippe; Palmieri, Ferdinando; Young, Jason C

    2009-04-15

    Metabolite carrier proteins of the mitochondrial inner membrane share homology in their transmembrane domains, which also carries their targeting information. In addition, some carriers have cleavable presequences which are not essential for targeting, but have some other function before import. The cytosolic chaperones Hsc70 (heat-shock cognate 70) and Hsp90 (heat-shock protein 90) complex with carrier precursors and interact specifically with the Tom (translocase of the mitochondrial outer membrane) 70 import receptor to promote import. We analysed how the presequences of the PiC (phosphate carrier) and CIC (citrate carrier) relate to the mechanisms of chaperone-mediated import. Deletion of the PiC presequence reduced the efficiency of import but, notably, not by causing aggregation. Instead, binding of the protein to Hsc70 was reduced, as well as the dependence on Hsc70 for import. Hsp90 binding and function in import was not greatly affected, but it could not entirely compensate for the lack of Hsc70 interaction. Deletion of the presequence from CIC was shown to cause its aggregation, but had little effect on the contribution to import of either Hsc70 or Hsp90. The presequence of PiC, but not that of CIC, conferred Hsc70 binding to dihydrofolate reductase fusion proteins. In comparison, OGC (oxoglutarate carrier) lacks a presequence and was more soluble, though it is still dependent on both Hsc70 and Hsp90. We propose that carrier presequences evolved to improve targeting competence by different mechanisms, depending on physical properties of the precursors in the cytosolic targeting environment.

  7. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Qualley, Dominic F., E-mail: dqualley@berry.edu; Sokolove, Victoria L.; Ross, James L.

    2015-03-13

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC.

  8. Echocardiographic evaluation of heart valve prosthetic dysfunction

    Directory of Open Access Journals (Sweden)

    Yuriy Ivaniv

    2018-02-01

    Full Text Available Patients with replaced heart valve submitted to echocardiographic examination may have symptoms related either to valvular malfunction or ventricular dysfunction from different causes. Clinical examination is not reliable in a prosthetic valve evaluation and the main information regarding its function could be obtained using different cardiac ultrasound modalities. This review provides a description of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. For the interpretation of echocardiography there is a need in special knowledge of prosthesis types and possible reasons of prosthetic function deterioration. Echocardiography allows to reveal valve thrombosis, pannus formation, vegetation and such complications of infective endocarditis as valve ring abscess or dehiscence. Transthoracic echocardiography requires different section plane angles and unconventional views. Transesophageal echocardiography is more often used than in native valve examination due to better visualization of prosthetic valve structure and function. Three-dimensional echocardiography could provide more detailed visual information especially in the assessment of paravalvular regurgitation or valve obstruction.

  9. Autonomic dysfunction in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Dümcke, Christine Winkler; Møller, Søren

    2008-01-01

    Liver cirrhosis and portal hypertension are frequently associated with signs of circulatory dysfunction and peripheral polyneuropathy, which includes defects of the autonomic nervous system. Autonomic dysfunction, which is seen in both alcoholic and non-alcoholic liver cirrhosis and increases...

  10. History of the Treatment of Female Sexual Dysfunction(s).

    Science.gov (United States)

    Kleinplatz, Peggy J

    2018-01-22

    This article reviews the history of the treatment of women's sexual problems from the Victorian era to the twenty-first century. The contextual nature of determining what constitutes female sexual psychopathology is highlighted. Conceptions of normal sexuality are subject to cultural vagaries, making it difficult to identify female sexual dysfunctions. A survey of the inclusion, removal, and collapsing of women's sexual diagnoses in the Diagnostic and Statistical Manual of Mental Disorders from 1952 to 2013 illuminates the biases in the various editions. Masters and Johnson's models of sexual response and dysfunction paved the way for the diagnosis and treatment of women's sexual dysfunctions. Their sex therapy paradigm is described. Conceptions of and treatments for anorgasmia, arousal difficulties, vaginismus, dyspareunia, and low desire are reviewed. The medicalization of human sexuality and the splintering of sex therapy are discussed, along with current trends and new directions in sexual health care for women. Expected final online publication date for the Annual Review of Clinical Psychology Volume 14 is May 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  11. Erectile dysfunction among men attending surgical outpatients ...

    African Journals Online (AJOL)

    Background: Erectile dysfunction is becoming a public health issue with high incidences reported in community studies. Objective: To evaluate the characteristics and outcome of treatment in men with erectile dysfunction in a tertiary center in Ibadan southwestern Nigeria. Methods: Data of men with erectile dysfunction was ...

  12. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.

    Directory of Open Access Journals (Sweden)

    Marquiza Sablón-Carrazana

    Full Text Available The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP:NCHCHF, and in the amyloid pharmacophore fragments (Aβ17-42 and Aβ16-21:NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the

  13. Oral Health and Erectile Dysfunction.

    Science.gov (United States)

    Singh, Vijendra P; Nettemu, Sunil K; Nettem, Sowmya; Hosadurga, Rajesh; Nayak, Sangeeta U

    2017-01-01

    Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP) and erectile dysfunction (ED) by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this relationship as well as improvement in ED with periodontal treatment. Systemic exposure to the periodontal pathogen and periodontal infection-induced systemic inflammation was thought to associate with these conditions. The objective of this review was to highlight the evidence of the link between CP and ED and the importance of oral health in preventing the systemic conditions.

  14. COGNITIVE DYSFUNCTIONS IN DIABETIC POLYNEUROPATHY

    Directory of Open Access Journals (Sweden)

    Mirena Valkova

    2011-12-01

    Full Text Available Introduction: The objective of our study was to examine cognitive status, short – term memory, delayed recall and the retention of visual information in diabetics with polyneuropathy and to establish the impacts of some risk factors on cognitive performance.Contingent and methods: We assessed 47 diabetic patients with polyneuropathy, using the Mini Mental State Examination, 10 words test, the Benton visual retention test and the Hamilton scale.Results: Global cognitive dysfunction, decline in verbal memory and visual retention and tendency for depressive mood were observed. We found statistically significant interaction of ageing, sex, severity of pain, duration and late onset of diabetes mellitus (DM on cognitive functioning. Therapy association on cognition was not found.Conclusions: Our study confirms the hypothesis of global cognitive dysfunction, associated with diabetic polyneuropathy. The interactions of sex and pain severity require further study. We arise a hypothesis of asymmetrical brain injury in diabetics.

  15. Oral health and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Vijendra P Singh

    2017-01-01

    Full Text Available Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP and erectile dysfunction (ED by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this relationship as well as improvement in ED with periodontal treatment. Systemic exposure to the periodontal pathogen and periodontal infection-induced systemic inflammation was thought to associate with these conditions. The objective of this review was to highlight the evidence of the link between CP and ED and the importance of oral health in preventing the systemic conditions.

  16. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  17. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  18. Ambulatory anaesthesia and cognitive dysfunction

    DEFF Research Database (Denmark)

    Rasmussen, Lars S; Steinmetz, Jacob

    2015-01-01

    serious adverse outcomes, hence difficult to obtain sound scientific evidence for avoiding complications. RECENT FINDINGS: Few studies have assessed recovery of cognitive function after ambulatory surgery, but it seems that both propofol and modern volatile anaesthetics are rational choices for general...... anaesthesia in the outpatient setting. Cognitive complications such as delirium and postoperative cognitive dysfunction are less frequent in ambulatory surgery than with hospitalization. SUMMARY: The elderly are especially susceptible to adverse effects of the hospital environment such as immobilisation...

  19. Insulin dysfunction and Tau pathology

    Directory of Open Access Journals (Sweden)

    Noura eEl Khoury

    2014-02-01

    Full Text Available The neuropathological hallmarks of Alzheimer's disease (AD include senile plaques of β-amyloid (Aβ peptides (a cleavage product of the Amyloid Precursor Protein, or APP and neurofibrillary tangles (NFT of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF. NFT pathology is important since it correlates with the degree of cognitive impairment in AD.Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99% is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease.Insulin dysfunction, manifested by diabetes mellitus (DM might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM and type 2 diabetes (T2DM are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment.Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting on Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  20. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu [Wakayama Medical Coll. (Japan)

    1996-04-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author).

  1. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu

    1996-01-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author)

  2. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  3. Erectile dysfunction and amatorial cycling.

    Science.gov (United States)

    Colpi, Giovanni Maria; Contalbi, Gianfranco; Ciociola, E; Mihalca, Radu

    2008-09-01

    Today cycling is considered a useful form of exercise for reducing cardiovascular risk, but it may also represent a risk factor for erectile dysfunction and perineal-genital paresthesia. These disorders are attributed to the local reduction of oxygen in the perineal-genital area, secondary to the perineal compression. Numerous studies have been carried out measuring the penile oxygen pressure or penile blood flow by echo-colour-Doppler: a reduced inflow of blood and oxygen to the cavernous tissue was demonstrated. The attention of the specialist is therefore concentrated on the compression of the perineum on the bicycle saddle and how to reduce this through the position of the cyclist on the bicycle (i.e. height and tilt of the saddle), the different shapes of saddle available (i.e. noseless, grooved, wide, etc.) and the padding materials of the saddle. In order to reduce perineal compression, the posterior part of the saddle should be as wide as the distance between the two ischiatic tuberosities. In addition, the saddle should be studied on the basis of the biotype of the cyclist: ectomorphic, mesomorphic or endomorphic. However, in the genesis of the erectile dysfunction of the cyclist, apart from the above-mentioned factors, an "individual predisposition to developing erectile dysfunction" linked to the perineal-genital anatomy (i.e. type of insertion of the perineum into the root of the penis, number of layers of the tunica albuginea of the corpus cavernosum) cannot be excluded.

  4. Diaphragm Dysfunction in Critical Illness.

    Science.gov (United States)

    Supinski, Gerald S; Morris, Peter E; Dhar, Sanjay; Callahan, Leigh Ann

    2018-04-01

    The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  5. [Studying dysfunctional personality trends among sex offenders].

    Science.gov (United States)

    Perrot, M; Bénony, H; Chahraoui, K; Juif, C

    2014-10-01

    A review of the literature reveals a consensus on the high prevalence of personality disorders among sexual offenders. Studies show that there is no unique personality profile for sex offenders. In France, little research has been conducted on this population with standardized assessment tools. The objective of the present study is to identify the distribution of personality disorders among sexual offenders using a new French questionnaire, i.e. the TD12. In view of the literature, we postulate that this tool will identify the diversity of personality disorders observed by various authors, but with a higher proportion of cluster B disorders. This study was conducted among 56 men, including 28 sex offenders aged from 21 to 70 years old, and a control group of 28 men without psychiatric disorders. The sex offenders in this study are men convicted or charged with sex offenses of various kinds: exhibitionism, the recording, distribution and possession of pornography depicting minors, aggravated corruption of a minor, sexual assault of a minor, or rape of a minor. They were examined using an inventory of dysfunctional trends recently developed by Rolland and Pichot with the aim of assessing dysfunctional personality styles. The TD-12 questionnaire is composed of 140 items describing thoughts, feelings and behaviors. It is based on the diagnostic criteria of Axis II of DSM IV-TR and consists of twelve scales that match the personality disorders described in this diagnostic manual (ten officially recognized disorders and two additional disorders). From a categorical viewpoint, results indicate rigid dysfunctional trends with regard to avoidant personality disorder in sex offenders compared to the control group (Chi(2)=9.16; P=0.005). However, there were no significant differences between the two groups regarding the number of rigid dysfunctional trends. Potentially controllable dysfunctional personality trends are identified for the dependent personality (Chi(2

  6. Revealing Rembrandt

    Directory of Open Access Journals (Sweden)

    Andrew J Parker

    2014-04-01

    Full Text Available The power and significance of artwork in shaping human cognition is self-evident. The starting point for our empirical investigations is the view that the task of neuroscience is to integrate itself with other forms of knowledge, rather than to seek to supplant them. In our recent work, we examined a particular aspect of the appreciation of artwork using present-day functional magnetic resonance imaging (fMRI. Our results emphasised the continuity between viewing artwork and other human cognitive activities. We also showed that appreciation of a particular aspect of artwork, namely authenticity, depends upon the co-ordinated activity between the brain regions involved in multiple decision making and those responsible for processing visual information. The findings about brain function probably have no specific consequences for understanding how people respond to the art of Rembrandt in comparison with their response to other artworks. However, the use of images of Rembrandt’s portraits, his most intimate and personal works, clearly had a significant impact upon our viewers, even though they have been spatially confined to the interior of an MRI scanner at the time of viewing. Neuroscientific studies of humans viewing artwork have the capacity to reveal the diversity of human cognitive responses that may be induced by external advice or context as people view artwork in a variety of frameworks and settings.

  7. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli

    Directory of Open Access Journals (Sweden)

    Wu Xiangping

    2012-09-01

    Full Text Available Abstract Background Microbial lipases particularly Pseudomonas lipases are widely used for biotechnological applications. It is a meaningful work to design experiments to obtain high-level active lipase. There is a limiting factor for functional overexpression of the Pseudomonas lipase that a chaperone is necessary for effective folding. As previously reported, several methods had been used to resolve the problem. In this work, the lipase (LipA and its chaperone (LipB from a screened strain named AB which belongs to Pseudomonas aeruginosa were overexpressed in E. coli with two dual expression plasmid systems to enhance the production of the active lipase LipA without in vitro refolding process. Results In this work, we screened a lipase-produced strain named AB through the screening procedure, which was identified as P. aeruginosa on the basis of 16S rDNA. Genomic DNA obtained from the strain was used to isolate the gene lipA (936 bp and lipase specific foldase gene lipB (1023 bp. One single expression plasmid system E. coli BL21/pET28a-lipAB and two dual expression plasmid systems E. coli BL21/pETDuet-lipA-lipB and E. coli BL21/pACYCDuet-lipA-lipB were successfully constructed. The lipase activities of the three expression systems were compared to choose the optimal expression method. Under the same cultured condition, the activities of the lipases expressed by E. coli BL21/pET28a-lipAB and E. coli BL21/pETDuet-lipA-lipB were 1300 U/L and 3200 U/L, respectively, while the activity of the lipase expressed by E. coli BL21/pACYCDuet-lipA-lipB was up to 8500 U/L. The lipase LipA had an optimal temperature of 30°C and an optimal pH of 9 with a strong pH tolerance. The active LipA could catalyze the reaction between fatty alcohols and fatty acids to generate fatty acid alkyl esters, which meant that LipA was able to catalyze esterification reaction. The most suitable fatty acid and alcohol substrates for esterification were octylic acid and hexanol

  8. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase

    DEFF Research Database (Denmark)

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph

    2012-01-01

    chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the Cu chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution...... of a highly conserved arginine residue at position 163, with tryptophan in domain II of CCS, which interacts directly with superoxide dismutase 1 (SOD1). Biochemical analyses of the patient's fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation...... support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result, this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal Cu homeostasis. CCS-Arg163Trp represents the primary example of a human mutation...

  9. dysfunction

    African Journals Online (AJOL)

    pulmonary vascular resistance falls and left coronary blood flow diminishes. Decreased ... The septal and posterior walls of the left ventricle, as well .... pathologische A e und Physiologie und für klinische Medizin, Berlin 1911; 203: 413–420. 3.

  10. Antipsychotics and Sexual Dysfunction: Sexual Dysfunction - Part III

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-11-01

    Full Text Available Satisfying sexual experience is an essential part of a healthy and enjoyable life for most people. Antipsychotic drugs are among the various factors that affect optimal sexual functioning. Both conventional and novel antipsychotics are associated with significant sexual side effects. This review has presented various studies comparing different antipsychotic drugs. Dopamine antagonism, increased serum prolactin, serotonergic, adrenergic and cholinergic mechanisms are all proposed to be the mechanisms for sexual dysfunction. Drug treatment for this has not given satisfactory long-term results. Knowledge of the receptor pharmacology of an individual antipsychotic will help to determine whether it is more or less likely to cause sexual side effects and its management.

  11. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  12. Structural biology studies of CagA from Helicobacter pylori and histone chaperone CIA/ASF1

    International Nuclear Information System (INIS)

    Senda, Toshiya

    2015-01-01

    Crystal structures of proteins and their complexes have become critical information for molecular-based life science. Biochemical and biological analysis based on tertiary structural information is a powerful tool to unveil complex molecular processes in the cell. Here, we present two examples of the structure-based life science study, structural biology studies of CagA, an effector protein from Helicobacter pylori, and histone chaperone CIA/ASF1, which is involved in transcription initiation. (author)

  13. A Proteomic Screen Identified Stress-Induced Chaperone Proteins as Targets of Akt Phosphorylation in Mesangial Cells

    OpenAIRE

    Barati, Michelle T.; Rane, Madhavi J.; Klein, Jon B.; McLeish, Kenneth R.

    2006-01-01

    The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90α, Hsp90β, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphoryl...

  14. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family.

    Science.gov (United States)

    Shaner, Lance; Trott, Amy; Goeckeler, Jennifer L; Brodsky, Jeffrey L; Morano, Kevin A

    2004-05-21

    The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.

  15. SigE Is a Chaperone for the Salmonella enterica Serovar Typhimurium Invasion Protein SigD

    OpenAIRE

    Darwin, K. Heran; Robinson, Lloyd S.; Miller, Virginia L.

    2001-01-01

    SigD is translocated into eucaryotic cells by a type III secretion system. In this work, evidence that the putative chaperone SigE directly interacts with SigD is presented. A bacterial two-hybrid system demonstrated that SigE can interact with itself and SigD. In addition, SigD was specifically copurified with SigE-His6 on a nickel column.

  16. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.

    Science.gov (United States)

    Yamasaki, Takashi; Nakazaki, Yosuke; Yoshida, Masasuke; Watanabe, Yo-hei

    2011-07-01

    ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer. © 2011 The Authors Journal compilation © 2011 FEBS.

  17. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution

    OpenAIRE

    Bennion, Brian J.; Daggett, Valerie

    2004-01-01

    Proteins are very sensitive to their solvent environments. Urea is a common chemical denaturant of proteins, yet some animals contain high concentrations of urea. These animals have evolved an interesting mechanism to counteract the effects of urea by using trimethylamine N-oxide (TMAO). The molecular basis for the ability of TMAO to act as a chemical chaperone remains unknown. Here, we describe molecular dynamics simulations of a small globular protein, chymotrypsin inhibitor 2, in 8 M urea ...

  18. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    Directory of Open Access Journals (Sweden)

    Gabrielle Stetz

    2017-01-01

    Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of

  19. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    Science.gov (United States)

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  20. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro.

    Science.gov (United States)

    Liu, Shing-Hwa; Yang, Ching-Chin; Chan, Ding-Cheng; Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis.

  2. Heat shock protein 90 (Hsp90) chaperone complex. A molecular target for enhancement of thermosensitivity and radiosensitivity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Kitamoto, Yoshizumi; Sakurai, Hideyuki

    2002-01-01

    Heat shock protein 90 (Hsp90) is a highly conserved heat shock protein in animal and plants, and exists abundantly in the cytoplasm in unstressed condition, accounting for 1-2% in cytoplasmic proteins. Main difference of Hsp90 from other Hsps are its substrate that Hsp90 binds to. These substrates include various signal transduction proteins, kinase, steroid receptors and transcription factors, therefore, Hsp90 plays a key role in maintaining cellular signal transduction networks. Many chaperoned proteins (client proteins) of Hsp90 are associated with cellular proliferation or malignant transformation, thus Hsp90 chaperone complex has been focused as targets for cancer therapy. Among the client proteins, there are several molecules that have been defined as targets or factors for determination or enhancement of radiosensitivity or thermosensitivity. Thus, it is easily speculated that Hsp90 chaperone complex inhibitors that disrupt association of Hsp90 and client protein in combination with radiation or/and heat has potential effect on enhancement of radiosensitivity or thermosensitivity. In this paper, possible mechanisms in enhancing radiosensitivity or thermosensitivity according to the client proteins will be summarized. (author)

  3. HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells.

    Science.gov (United States)

    Rao, Rekha; Fiskus, Warren; Yang, Yonghua; Lee, Pearl; Joshi, Rajeshree; Fernandez, Pravina; Mandawat, Aditya; Atadja, Peter; Bradner, James E; Bhalla, Kapil

    2008-09-01

    Histone deacetylase 6 (HDAC6) is a heat shock protein 90 (hsp90) deacetylase. Treatment with pan-HDAC inhibitors or depletion of HDAC6 by siRNA induces hyperacetylation and inhibits ATP binding and chaperone function of hsp90. Treatment with 17-allylamino-demothoxy geldanamycin (17-AAG) also inhibits ATP binding and chaperone function of hsp90, resulting in polyubiquitylation and proteasomal degradation of hsp90 client proteins. In this study, we determined the effect of hsp90 hyperacetylation on the anti-hsp90 and antileukemia activity of 17-AAG. Hyperacetylation of hsp90 increased its binding to 17-AAG, as well as enhanced 17-AAG-mediated attenuation of ATP and the cochaperone p23 binding to hsp90. Notably, treatment with 17-AAG alone also reduced HDAC6 binding to hsp90 and induced hyperacetylation of hsp90. This promoted the proteasomal degradation of HDAC6. Cotreatment with 17-AAG and siRNA to HDAC6 induced more inhibition of hsp90 chaperone function and depletion of BCR-ABL and c-Raf than treatment with either agent alone. In addition, cotreatment with 17-AAG and tubacin augmented the loss of survival of K562 cells and viability of primary acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) samples. These findings demonstrate that HDAC6 is an hsp90 client protein and hyperacetylation of hsp90 augments the anti-hsp90 and antileukemia effects of 17-AAG.

  4. The Hsp90 co-chaperones Sti1, Aha1, and P23 regulate adaptive responses to antifungal azoles

    Directory of Open Access Journals (Sweden)

    Xiaokui Gu

    2016-10-01

    Full Text Available Heat Shock Protein 90 (Hsp90 is essential for tumor progression in humans and drug resistance in fungi. However, the roles of its many co-chaperones in antifungal resistance are unknown. In this study, by susceptibility test of Neurospora crassa mutants lacking each of 18 Hsp90/Calcineurin system member genes (including 8 Hsp90 co-chaperone genes to antifungal drugs and other stresses, we demonstrate that the Hsp90 co-chaperones Sti1 (Hop1 in yeast, Aha1, and P23 (Sba1 in yeast were required for the basal resistance to antifungal azoles and heat stress. Deletion of any of them resulted in hypersensitivity to azoles and heat. Liquid chromatography–mass spectrometry (LC-MS analysis showed that the toxic sterols eburicol and 14α-methyl-3,6-diol were significantly accumulated in the sti1 and p23 deletion mutants after ketoconazole treatment, which has been shown before to led to cell membrane stress. At the transcriptional level, Aha1, Sti1, and P23 positively regulate responses to ketoconazole stress by erg11 and erg6, key genes in the ergosterol biosynthetic pathway. Aha1, Sti1, and P23 are highly conserved in fungi, and sti1 and p23 deletion also increased the susceptibility to azoles in Fusarium verticillioides. These results indicate that Hsp90-cochaperones Aha1, Sti1, and P23 are critical for the basal azole resistance and could be potential targets for developing new antifungal agents.

  5. The determinants and engagement patterns of chaperones and chauffeurs by Australian doctors in after-hours house-call services.

    Science.gov (United States)

    Ifediora, Chris Onyebuchi

    2017-01-01

    The use of escorts (chauffeurs and chaperones) while on duty in after-hours-house-call (AHHC) is one key protective option available to doctors in the service, and has been linked to low burnout and increased satisfaction in AHHC. This study aims to explore the patterns of engagement of escorts in Australian AHHC. This is a questionnaire-based, electronic survey of all 300 doctors involved in AHHC through the National Home Doctor Service (NHDS), Australia's largest providers of the service. The survey explored the doctor's experiences over the 12-month period from October 2013 to September 2014. This survey received a total of 168 valid responses, giving a response rate of 56%. Nearly 61% of the doctors involved in AHHC engaged escorts (chauffeurs and chaperones). Of those doctors that engage chauffeurs, three-quarters do so "all or most times", while only one-quarter engaged chaperones to the same degree of frequency. Hiring escorts is very popular among Brisbane (91.7%) and Sydney-based (88.2%) practitioners, but is unpopular in the City of Gold Coast (26.1%). There were moderate patronages in Adelaide (52.9%) and Melbourne Area (46.4%). Compared to males, females were less likely to drive themselves without escorts (OR 0.20; P  doctors involved in the Australian AHHC, particularly given their proven benefits in the service. Future studies may be needed to fully explore the real reasons behind the significant associations identified in this study.

  6. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control.

    Science.gov (United States)

    Carroni, Marta; Franke, Kamila B; Maurer, Michael; Jäger, Jasmin; Hantke, Ingo; Gloge, Felix; Linder, Daniela; Gremer, Sebastian; Turgay, Kürşad; Bukau, Bernd; Mogk, Axel

    2017-11-22

    Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.

  7. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, APP levels were increased and APP was found to interact with ER-chaperones in a perinuclear region, as determined by co-immunoprecipitation and fluorescence microscopy studies. Lactic acid had only a very modest effect on cellular pH, did increase the levels of ER chaperones Grp78 and Grp94 and led to APP aggregate formation reminiscent of aggresomes. CONCLUSIONS/SIGNIFICANCE: These findings suggest that sustained elevations in lactic acid levels could be a risk factor in amyloidogenesis related to Alzheimer's disease through enhanced APP interaction with ER chaperone proteins and aberrant APP processing leading to increased generation of amyloid peptides and APP aggregates.

  8. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  9. Erectile dysfunction in haemodialysis patients

    International Nuclear Information System (INIS)

    Mumtaz, A.; Hussain, S.; Nazir, M.

    2009-01-01

    There is a very high prevalence of Erectile Dysfunction (ED) in dialysis patients. There is no as such available data on ED and factors affecting it in our patients. Analytical, cross-sectional, hospital based study conducted from January to March 2008, Haemodialysis unit of Shalimar and Mayo Hospital, Lahore. All male patients of end stage renal disease (ESRD) on maintenance haemodialysis therapy, whose spouses are alive and able to perform intercourse, were included in the study. Patient with cognitive and communication deficits were excluded from study. International index of erectile function-5 (IIEF-5), adopted in Urdu was used for the determination of prevalence of erectile function. Categorization of erectile dysfunction was done as mild, moderate and severe. Demographic data were collected and certain laboratory parameters (haemoglobin, haematocrit, urea, HBsAg and Anti HCV) were sent. Total numbers of patient were fifty. Major cause of ESRD was diabetes mellitus 28 (56%). Most of the patients 33 (66%) have passed 10th grade or they were under 10th grade. Prevalence of ED was 86% with mean IIEF-5 score of 10.36+-7.13. Majority of patients 33 (64.7%) were suffering from severe degree of ED. Factors responsible for ED are diabetes mellitus, age more than 50 year, high pre dialysis urea and Anti HCV positive patients. In this study, smoking, duration of dialysis and monthly spending is not related with ED. Majority of the patients suffering from ESRD, on maintenance haemodialysis are having ED. None of the patients suffering from ED were taking any treatment for it. Haemodialysis does not improve sexual dysfunction. Major factors responsible for ED are diabetes mellitus, age more than 50 years, high pre dialysis urea and Anti HCV positive patients. (author)

  10. Pseudotumor Cerebri and Glymphatic Dysfunction

    Directory of Open Access Journals (Sweden)

    Marcio Luciano de Souza Bezerra

    2018-01-01

    Full Text Available In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF through the brain parenchyma along paravascular spaces (PVSs and by exchanges with the interstitial fluid (IF. Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH. The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer’s disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  11. Pseudotumor Cerebri and Glymphatic Dysfunction.

    Science.gov (United States)

    Bezerra, Marcio Luciano de Souza; Ferreira, Ana Carolina Andorinho de Freitas; de Oliveira-Souza, Ricardo

    2017-01-01

    In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer's disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  12. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  13. Drug addiction and sexual dysfunction.

    Science.gov (United States)

    Zaazaa, Adham; Bella, Anthony J; Shamloul, Rany

    2013-09-01

    This article attempts to review the most current and the well-established facts concerning drug addiction and sexual dysfunction. Surprisingly, even though alcohol is prevalent in many societies with many myths surrounding its sexual-enhancing effects, current scientific research cannot provide a solid conclusion on its effect on sexual function. Unfortunately, the same concept applies to tobacco smoking; however, most of the current knowledge tends to support the notion that it, indeed, can negatively affect sexual function. Similar ambiguities also prevail with substances of abuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography

    Science.gov (United States)

    Koirala, Deepak; Shelke, Sandip A; Dupont, Marcel; Ruiz, Stormy; DasGupta, Saurja; Bailey, Lucas J; Benner, Steven A; Piccirilli, Joseph A

    2018-01-01

    Abstract Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3–6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5′-GNGACCC-3′ consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab–RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography. PMID:29309709

  15. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis

    Science.gov (United States)

    Park, Sei-Kyoung; Hong, Joo Y.; Arslan, Fatih; Tietsort, Alex; Tank, Elizabeth M. H.; Li, Xingli

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. PMID:28531192

  16. An Intramolecular Chaperone Inserted in Bacteriophage P22 Coat Protein Mediates Its Chaperonin-independent Folding*

    Science.gov (United States)

    Suhanovsky, Margaret M.; Teschke, Carolyn M.

    2013-01-01

    The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation. PMID:24126914

  17. The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking.

    Science.gov (United States)

    Zhang, Houbin; Constantine, Ryan; Frederick, Jeanne M; Baehr, Wolfgang

    2012-12-15

    Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d(-/-) mouse. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function.

    Science.gov (United States)

    Suh, Jaehong; Choi, Se Hoon; Romano, Donna M; Gannon, Moira A; Lesinski, Andrea N; Kim, Doo Yeon; Tanzi, Rudolph E

    2013-10-16

    The generation of Aβ, the main component of senile plaques in Alzheimer's disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that cosegregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgenic mice expressing human ADAM10 in brain. In Tg2576 AD mice, both mutations attenuated α-secretase activity of ADAM10 and shifted APP processing toward β-secretase-mediated cleavage, while enhancing Aβ plaque load and reactive gliosis. We also demonstrated ADAM10 expression potentiates adult hippocampal neurogenesis, which is reduced by the LOAD mutations. Mechanistically, both LOAD mutations impaired the molecular chaperone activity of ADAM10 prodomain. Collectively, these findings suggest that diminished α-secretase activity, owing to LOAD ADAM10 prodomain mutations, leads to AD-related pathology, strongly supporting ADAM10 as a promising therapeutic target for this devastating disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Co-chaperone p23 regulates C. elegans Lifespan in Response to Temperature.

    Directory of Open Access Journals (Sweden)

    Makoto Horikawa

    2015-04-01

    Full Text Available Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122, insulin/IGF-1 signaling (daf-16/FOXO, and steroidal signaling (daf-12/FXR. Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.

  20. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    Science.gov (United States)

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  1. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER protein sigma-1 receptor represents unique chaperone activity in the central nervous system, and it exerts a potent influence on a number of neurotransmitter systems. Several lines of evidence suggest that activation of sigma-1 receptor plays a role in the pathophysiology of neuropsychiatric diseases, as well as in the mechanisms of some therapeutic drugs and neurosteroids. Preclinical studies showed that some selective serotonin reuptake inhibitors (SSRIs; fluvoxamine, fluoxetine, excitalopram, donepezil, and ifenprodil act as sigma-1 receptor agonists. Furthermore, sigma-1 receptor agonists could improve the N-methyl-D-aspartate (NMDA antagonist phencyclidine (PCP-induced cognitive deficits in mice. A study using positron emission tomography have demonstrated that an oral administration of fluvoxamine or donepezil could bind to sigma-1 receptor in the healthy human brain, suggesting that sigma-1 receptor might be involved in the therapeutic mechanisms of these drugs. Moreover, case reports suggest that sigma-1 receptor agonists, including fluvoxamine, and ifenprodil, may be effective in the treatment of cognitive impairment in schizophrenia, delirium in elderly people, and flashbacks in post-traumatic stress disorder. In this review article, the author would like to discuss the clinical implication of sigma-1 receptor agonists, including endogenous neurosteroids, in the neuropsychiatric diseases.

  2. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.

    Science.gov (United States)

    Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki

    2015-11-01

    Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. © 2015 Wiley Periodicals, Inc.

  3. Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition

    Directory of Open Access Journals (Sweden)

    Seung-Wook Shin

    2012-11-01

    During the maternal-to-zygotic transition (MZT, maternal proteins in oocytes are degraded by the ubiquitin–proteasome system (UPS, and new proteins are synthesized from the zygotic genome. However, the specific mechanisms underlying the UPS at the MZT are not well understood. We identified a molecule named zygote-specific proteasome assembly chaperone (ZPAC that is specifically expressed in mouse gonads, and expression of ZPAC was transiently increased at the mouse MZT. ZPAC formed a complex with Ump1 and associated with precursor forms of 20S proteasomes. Transcription of ZPAC genes was also under the control of an autoregulatory feedback mechanism for the compensation of reduced proteasome activity similar to Ump1 and 20S proteasome subunit gene expression. Knockdown of ZPAC in early embryos caused a significant reduction of proteasome activity and decrease in Ump1 and mature proteasomes, leading to accumulation of proteins that need to be degraded at the MZT and early developmental arrest. Therefore, a unique proteasome assembly pathway mediated by ZPAC is important for progression of the mouse MZT.

  4. Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres.

    Science.gov (United States)

    Cacciottolo, M; Nogalska, A; D'Agostino, C; Engel, W K; Askanas, V

    2013-12-01

    Sporadic inclusion-body myositis (s-IBM) is an age-associated degenerative muscle disease. Characteristic features are muscle-fibre vacuolization and intramuscle-fibre accumulations of multiprotein aggregates, which may result from the demonstrated impairments of the 26S proteasome and autophagy. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal degradation targeting proteins carrying the KFERQ motif. Lysosome-associated membrane protein type 2A (LAMP2A) and the heat-shock cognate protein 70 (Hsc70) constitute specific CMA components. Neither CMA components nor CMA activity has been studied in normal or disease human muscle, to our knowledge. We studied CMA components by immunocytochemistry, immunoblots, real-time PCR and immunoprecipitation in: (a) 16 s-IBM, nine aged-matched normal and nine disease control muscle biopsies; and (b) cultured human muscle fibres (CHMFs) with experimentally inhibited activities of either the 26S proteasome or autophagy. Compared with age-matched controls, in s-IBM muscle, LAMP2A and Hsc70 were on a given transverse section accumulated as aggregates in approximately 5% of muscle fibres, where they (a) colocalized with each other and α-synuclein (α-syn), a CMA-targeted protein; and (b) were bound to each other and to α-syn by immunoprecipitation. By immunoblots, LAMP2A was increased sevenfold P pathogenic aspect in s-IBM. © 2013 British Neuropathological Society.

  5. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?

    Directory of Open Access Journals (Sweden)

    Judith Toneatto

    2014-11-01

    Full Text Available It is well known that glucocorticoids and mineralocorticoids are part of the list of hormones that control adipogenesis as well as different aspects of the physiology of the adipose tissue. Their actions are mediated through their binding to the glucocorticoid and the mineralocorticoid receptors (GR and MR, respectively, in complex with heat shock proteins (Hsps and high molecular weight immunophilins (IMMs. Albeit many aspects of the molecular mechanism of the corticosteroid receptors are not fully elucidated yet, it was not until recently that the first evidences of the functional importance of Hsps and IMMs in the process of adipocyte differentiation have been described. Hsp90 and the high molecular weight IMM FKBP51 modulate GR and MR activity at multiple levels, that is, hormone binding affinity, their subcellular distribution, and the transcriptional status, among other aspects of the NR function. Interestingly, it has recently been described that Hsp90 and FKBP51 also participate in the control of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the nuclear architecture through its participation in the reorganization of the nuclear lamina and the control of the subnuclear distribution of GR. Thus, the aim of this review is to integrate and discuss the actual understanding of the role of corticosteroid receptors, their chaperones and cochaperones, in the process of adipocyte differentiation.

  6. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.

    Science.gov (United States)

    Behl, Christian

    2016-08-01

    Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Urinary tract infections of Escherichia coli strains of chaperone-usher system.

    Science.gov (United States)

    Zalewska-Piatek, Beata M

    2011-01-01

    Urinary tract infections are a very serious health and economic problem affecting millions of people each year worldwide. The most common etiologic agent of this type of bacterial infections, involving the upper and lower urinary tract, are E. coli strains representing approximately 80% of cases. Uropathogenic E. coli strains produce several urovirulence factors which can be divided into two main types, surface virulence factors and exported virulence factors. Surface-exposed structures include mainly extracellular adhesive organelles such as fimbriae/pili necessary in adhesion, invasion, biofilm formation and cytokine induction. Among the surface-exposed polymeric adhesive structures there are three most invasive groups, type 1 pili, type P pili and Dr family of adhesins which are bioassembled via the conserved, among Gram-negative bacteria, chaperone-usher secretion system. Type 1 and P-piliated E. coli cause cystitis and pyelonephritis. The Dr family of adhesins recognizing DAF receptor is responsible for cystitis, pyelonephritis (especially in pregnant women) and diarrhoea (in infants). In addition, Dr-positive E. coli strains carry the risk of recurrent urinary tract infections. Pyelonephritis in pregnant women leads to a series of complications such as bacteremia, urosepsis, acute respiratory distress syndrome and even death. In the era of increasing drug resistance of bacteria, the development of vaccines, drugs termed pilicides and inhibitors of adhesion may be a promising tool in the fight against urogenital infections.

  8. Orgasmic Dysfunction after Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Paolo Capogrosso

    2017-04-01

    Full Text Available In addition to urinary incontinence and erectile dysfunction, several other impairments of sexual function potentially occurring after radical prostatectomy (RP have been described; as a whole, these less frequently assessed disorders are referred to as neglected side effects. In particular, orgasmic dysfunctions (ODs have been reported in a non-negligible number of cases, with detrimental impacts on patients’ overall sexual life. This review aimed to comprehensively discuss the prevalence and physiopathology of post-RP ODs, as well as potential treatment options. Orgasm-associated incontinence (climacturia has been reported to occur in between 20% and 93% of patients after RP. Similarly, up to 19% of patients complain of postoperative orgasm-associated pain, mainly referred pain at the level of the penis. Moreover, impairment in the sensation of orgasm or even complete anorgasmia has been reported in 33% to 77% of patients after surgery. Clinical and surgical factors including age, the use of a nerve-sparing technique, and robotic surgery have been variably associated with the risk of ODs after RP, although robust and reliable data allowing for a proper estimation of the risk of postoperative orgasmic function impairment are still lacking. Likewise, little evidence regarding the management of postoperative ODs is currently available. In general, physicians should be aware of the prevalence of ODs after RP, in order to properly counsel all patients both preoperatively and immediately post-RP about the potential occurrence of bothersome and distressful changes in their overall sexual function.

  9. Orgasmic Dysfunction after Radical Prostatectomy

    Science.gov (United States)

    Ventimiglia, Eugenio; Cazzaniga, Walter; Montorsi, Francesco; Salonia, Andrea

    2017-01-01

    In addition to urinary incontinence and erectile dysfunction, several other impairments of sexual function potentially occurring after radical prostatectomy (RP) have been described; as a whole, these less frequently assessed disorders are referred to as neglected side effects. In particular, orgasmic dysfunctions (ODs) have been reported in a non-negligible number of cases, with detrimental impacts on patients' overall sexual life. This review aimed to comprehensively discuss the prevalence and physiopathology of post-RP ODs, as well as potential treatment options. Orgasm-associated incontinence (climacturia) has been reported to occur in between 20% and 93% of patients after RP. Similarly, up to 19% of patients complain of postoperative orgasm-associated pain, mainly referred pain at the level of the penis. Moreover, impairment in the sensation of orgasm or even complete anorgasmia has been reported in 33% to 77% of patients after surgery. Clinical and surgical factors including age, the use of a nerve-sparing technique, and robotic surgery have been variably associated with the risk of ODs after RP, although robust and reliable data allowing for a proper estimation of the risk of postoperative orgasmic function impairment are still lacking. Likewise, little evidence regarding the management of postoperative ODs is currently available. In general, physicians should be aware of the prevalence of ODs after RP, in order to properly counsel all patients both preoperatively and immediately post-RP about the potential occurrence of bothersome and distressful changes in their overall sexual function. PMID:28459142

  10. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  11. Cognitive Dysfunctions in Epileptic Syndromes

    Directory of Open Access Journals (Sweden)

    Semih Ayta

    2014-05-01

    Full Text Available Some children with epilepsy display a low level of intelligence, learning disabilities, attention deficit hyperactivity disorder, mood disorders and anxiety. Besides specific learning disabilities like reading, writing, arithmetics, learning problems may involve other major areas of intellectual functions such as speech and language, attention, memory, fine motor coordination. Even in the presence of common pathology that leads to epilepsy and mental dysfunctions, seizures cause additional cognitive problems. Age at seizure onset, type of seizures and epileptic syndromes are some variables that determine the effect of epilepsy on cognition. As recurrent seizures may have some negative impact on the developing brain, the use of antiepileptic drugs should be considered not only to aim reducing seizures but also to prevent possible seizure-induced cortical dysfunctions. Epilepsy is a disorder requiring a complicated psychological adjustment for the patients and indeed is a disease that affects the whole family. Thus, the management of epilepsy must include educational, psychotherapeutic and behavioral interventions as well as drug treatment.

  12. Cardiovascular drugs and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Terzić Branka M.

    2014-01-01

    Full Text Available Erectile dysfunction (ED is a disorder, which basically can have organic nature, psychological or mixed. ED is not a rarity, and data on its prevalence vary, depending on the areas in which the survey was conducted, followed by a period of research and the definition of the disorder. Most of the men associate ED problem with using drugs, especially cardiac. Even though there is some truth in it, mainly the real causes of ED are not well known even to professionals. Contemporary studies of risk factors for cardiovascular disease, particularly coronary heart disease, have shown the clear link between erectile dysfunction and coronary heart disease, wherein ED first manifests. While, ED precedes the onset of symptoms of coronary heart disease and show to the patient and the physician a clear signal of the direction for conducting diagnostic tests and further treatment in the interest of the health of patients. Endocrine, and neurological disorders, as well as bad habits in addition to the cardiac and kidney disease, lead to ED. It is known also, that the use of cardiac medicines may contribute to ED occurrence. Better knowledge of adverse reactions to medicines, a better understanding of the nature of the disease and the implementation of necessary diagnostic procedures, with a good choice of medication, contribute to solving problems related to ED. If all mentioned do not help, there is the possibility of using new drugs to correct ED.

  13. Acute renal dysfunction in liver diseases

    OpenAIRE

    Betrosian, Alex P; Agarwal, Banwari; Douzinas, Emmanuel E

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (HRS) is a unique form of renal failure associated with advanced liver dise...

  14. Sexual dysfunction in Obsessive-Compulsive disorder

    Directory of Open Access Journals (Sweden)

    Firoozeh Raisi

    2015-05-01

    Conclusion: High prevalence of sexual dysfunction in OCD women and significant correlation between male sexual dysfunction and OCD (r= -481.0 between total score of OCI-R with erectile dysfunction and r= -458.0 between total score of OCI-R and sexual satisfaction could confirm a relation between OCD and sexual disorders. So, evaluation of sexual function in all patients with OCD is recommended.

  15. The treatment of autonomic dysfunction in tetanus

    Directory of Open Access Journals (Sweden)

    T van den Heever

    2017-07-01

    Full Text Available We report a case of generalised tetanus in a 50-year-old female patient after sustaining a wound to her right lower leg. She developed autonomic dysfunction, which included labile hypertension alternating with hypotension and sweating. The autonomic dysfunction was treated successfully with a combination of morphine sulphate infusion, magnesium sulphate, and clonidine. She also received adrenaline and phenylephrine infusions as needed for hypotension. We then discuss the pathophysiology, clinical features and treatment options of autonomic dysfunction.

  16. Olfactory dysfunction in persian patients suffering from parkinson's disease.

    Science.gov (United States)

    Soltanzadeh, Akbar; Shams, Mehdi; Noorolahi, Hamid; Ghorbani, Askar; Fatehi, Farzad

    2011-01-01

    Looking in literature reveals that aging is accompanied by olfactory dysfunction and hyposmia/anosmia is a common manifestation in some neurodegenerative disorders. Olfactory dysfunction is regarded as non-motor manifestations of Parkinson disease (PD). The main goal of this study was to examine the extent of olfactory dysfunction in Persian PD patients. We used seven types of odors including rosewater, mint, lemon, garlic which were produced by Barij Essence Company in Iran. Additionally, coffee and vinegar were used. Subjects had to distinguish and name between seven previously named odors, stimuli were administered to each nostril separately. Totally, 92 patients and 40 controls were recruited. The mean (standard deviation) (SD) age patients was 64.88 (11.30) versus 61.05 (7.93) in controls. The male: female ratio in patients was 50:42 versus 22:18 in control group. Also, mean UPDRS score (SD) in patients was 24.42 (5.08) and the disease duration (SD) was 3.72 (3.53). Regarding the number of truly detected odors, there were a significant higher number of correct identified odors in control group in comparison with the PD patients. Furthermore, there was a significant negative correlation between number of correct diagnosed smells and UPDRS (Pearson Correlation= -0.27, P = 0.009); conversely, no significant correlation between the duration of Parkinson disease and number of correct diagnosed smells (P > 0.05). Smelling dysfunction is a major problem in Persian PD patients and it requires vigilant investigation for the cause of olfactory dysfunction exclusively in elder group and looking for possible PD disease.

  17. Executive dysfunctions in pedophilic and nonpedophilic child molesters.

    Science.gov (United States)

    Schiffer, Boris; Vonlaufen, Corinne

    2011-07-01

    There is some evidence that child molesters show neuropsychological abnormalities which might reflect specific structural and/or functional brain alterations, but there are also inconsistencies in the existing findings which need to be clarified. Most of the different outcomes can either be explained by the fact that different types of child molesters were examined or by not having accounted for basically confounding factors such as age, education/intelligence, or criminality. The present study therefore sought to determine whether pedophilic and nonpedophilic child molesters, compared to relevant control groups, show different profiles of executive dysfunction when accounting for potentially confounding factors. The performance of 30 child molesters (15 pedophilic and 15 nonpedophilic) and 33 age- and education-matched controls (16 nonsexual offenders and 17 healthy controls) was assessed regarding several neuropsychological functions. Scores on different neurocognitive tests and semistructured diagnostical interviews. Results indicate that pedophilic child molesters exhibited less performance deficits in cognitive functioning than nonpedophilic child molesters. Compared to healthy controls and nonsexual offenders, the pedophilic child molesters only showed executive dysfunction concerning response inhibition, whereas the nonpedophilic child molesters revealed more severe dysfunction, especially on tasks associated with cognitive flexibility and verbal memory. These results enhance our knowledge about executive dysfunction associated with criminality and/or pedophilia, as they suggest different profiles of impairment between groups. In summary, data suggest that nonpedophilic child molesters showed more severe cognitive deficits than pedophilic child molesters. However, as response inhibition is associated with prefrontal (i.e., orbitofrontal) functioning, the deficits observed in both child molester groups indicate dysfunction in the orbitofrontal cortex. This

  18. Aging and recurrent urinary tract infections are associated with bladder dysfunction in type 2 diabetes.

    Science.gov (United States)

    Lin, Tzu-Li; Chen, Gin-Den; Chen, Yi-Ching; Huang, Chien-Ning; Ng, Soo-Cheen

    2012-09-01

    The objective of this study was to demonstrate the diversity of urodynamic findings and temporal effects on bladder dysfunction in diabetes as well as to evaluate the predisposing factors that attenuate the storage and voiding function of diabetic women. In this prospective study, 181 women with type 2 diabetes mellitus (DM) and lower urinary tract dysfunction underwent complete urogynecological evaluations and urodynamic studies. The patients' histories of DM and the treatment agents used were documented from chart records and interviews. The urodynamic diagnoses were recategorized into two groups for comparison, namely overactive detrusor (detrusor overactivity and/or increased bladder sensation as well as mixed incontinence) and voiding dysfunction (detrusor hyperactivity with insufficient contractility and detrusor underactivity with poor voiding efficiency) in order to evaluate the temporal effect of DM on diabetic bladder dysfunction. The development of bladder dysfunction showed a trend involving time-dependent progression, beginning with storage problems (i.e. advancing from urodynamic stress incontinence to detrusor overactivity and/or increased bladder sensation) and eventually led to impaired voiding function. The duration of DM relative to the urodynamic diagnoses of these women was longer in women with voiding dysfunction (6.8 ± 2.8 years with urodynamic stress incontinence, 7.3 ± 6.5 years with detrusor overactivity and/or increased bladder sensation, and 10.4 ± 8.3 years with women with voiding dysfunction). Notwithstanding these findings, stepwise logistic regression analysis indicated that age and recurrent urinary tract infections were the two independent factors associated with developing voiding dysfunction. The urodynamic study revealed a temporal effect on bladder function, and women with diabetic voiding dysfunction were found to have had a longer duration of DM than women with an overactive detrusor. However, aging and recurrent

  19. Comparison of dysfunctional attitudes and social adjustment among infertile employed and unemployed women in Iran.

    Science.gov (United States)

    Fatemi, Azadeh S; Younesi, Seyed Jalal; Azkhosh, Manouchehr; Askari, Ali

    2010-04-01

    This study aims to compare dysfunctional attitudes and social adjustment in infertile employed and unemployed females. Due to the stresses of infertility, infertile females are faced with a variety of sexual and psychological problems, as well as dysfunctional attitudes that can lead to depression. Moreover, infertility problems provoke women into maladjustment and inadvertent corruption of relationships. In this regard, our goal is to consider the effects of employment in conjunction with education on dysfunctional attitudes and social adjustment among infertile women in Iran. In this work, we employed the survey method. We recruited 240 infertile women, utilizing the cluster random sampling method. These women filled out the Dysfunctional Attitudes Scale and the social adjustment part of the California Test of Personality. Next, multivariate analysis of variance was performed to test the relationship of employment status and education with dysfunctional attitudes and social adjustment. Our results indicated that dysfunctional attitudes were far more prevalent in infertile unemployed women than in infertile employed women. Also, social adjustment was better in infertile employed women than in infertile unemployed women. It was shown that education level alone does not have significant effect on dysfunctional attitudes and social adjustment. However, we demonstrated that the employment status of infertile women in conjunction with their education level significantly affects the two dimensions of dysfunctional attitudes (relationships, entitlements) and has insignificant effects on social adjustment. It was revealed that in employed infertile women in Iran, the higher education level, the less dysfunctional were attitudes in relationships and entitlements, whereas in unemployed infertile women, those with a college degree had the least and those with master's or higher degrees had the most dysfunctional attitudes in terms of relationships and entitlements.

  20. Cardiovascular dysfunction in infants with neonatal encephalopathy.

    LENUS (Irish Health Repository)

    Armstrong, Katey

    2012-04-01

    Severe perinatal asphyxia with hypoxic ischaemic encephalopathy occurs in approximately 1-2\\/1000 live births and is an important cause of cerebral palsy and associated neurological disabilities in children. Multiorgan dysfunction commonly occurs as part of the asphyxial episode, with cardiovascular dysfunction occurring in up to a third of infants. This narrative paper attempts to review the literature on the importance of early recognition of cardiac dysfunction using echocardiography and biomarkers such as troponin and brain type natriuretic peptide. These tools may allow accurate assessment of cardiac dysfunction and guide therapy to improve outcome.

  1. Sexual Dysfunction and Intimacy for Ostomates.

    Science.gov (United States)

    Albaugh, Jeffrey A; Tenfelde, Sandi; Hayden, Dana M

    2017-07-01

    Sex and intimacy presents special challenges for the ostomate. Since some colorectal surgery patients will require either temporary or permanent stomas, intimacy and sexuality is a common issue for ostomates. In addition to the stoma, nerve damage, radiotherapy, and chemotherapy are often used in conjunction with stoma creation for cancer patients, thereby adding physiological dysfunction to the personal psychological impact of the stoma, leading to sexual dysfunction. The purpose of this paper is to describe the prevalence, etiology, and the most common types of sexual dysfunction in men and women after colorectal surgery and particularly those patients with stomas. In addition, treatment strategies for sexual dysfunction will also be described.

  2. Imaging for evaluation of erectile dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyup [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2001-03-15

    Penile erection is a complex phenomenon that includes coordinated intraaction of the nervous, arterial, venous, and sinusoidal systems. A defect in any of these systems may result in erectile dysfunction. Erectile dysfunction is defined as the consistent inability to generate or maintain an erection of sufficient rigidity for sexual intercourse. Although the introduction of sildenafil citrate made the information from imaging studies less critical in the management of the patients with erectile dysfunction, still the imaging studies such as Doppler US, penile arteriography, and cavemosonetry/cavemosography remain the major modalities in the evaluation of erectile dysfunction.

  3. Dysfunctional gaze processing in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Cristina Berchio

    2017-01-01

    The present study provides neurophysiological evidence for abnormal gaze processing in BP and suggests dysfunctional processing of direct eye contact as a prominent characteristic of bipolar disorder.

  4. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  5. Dysfunctional internet behaviour symptoms in association with personality traits.

    Science.gov (United States)

    Tsiolka, E; Bergiannaki, I D; Margariti, M; Malliori, M; Papageorgiou, Ch

    2017-01-01

    Internet addiction is a matter of great interest for researchers, taking into consideration Internet's rapid spread and its ever growing use in children, adolescents and adults. It has been associated with multiple psychological symptoms and social difficulties, therefore raising even greater concerns for its adverse consequences. The present study that consists part of a broader research, aims to investigate the association between excessive Internet use and personality traits in an adult population. Specifically, the research examined the relation between dysfunctional internet behaviour and personality traits as neuroticism and extraversion, the two personality dimensions that have arisen as the most important ones in all relevant research. Our main hypotheses are that dysfunctional internet behaviour would be positively associated with neuroticism but negatively linked to extraversion. The 1211 participants aged over 18 years, completed the IAT (Internet Addiction Test) by Kimberly Young and the Eysenck Personality Questionnaire (EPQ) and some other questionnaires detecting psychopathology. Additionally, part of the administered questionnaires concerned socio-demographic characteristics of the participant subjects: specifically sex, age, marital status, education (educational years), place of residence -urban, semi-urban and rural-, whether they suffer from somatic or mental health disorder and if they take medication for any of the above categories. All the questionnaires have been electronically completed by each participant. Results showed that 7.7% showed dysfunctional internet behaviour that concerns both medium and severe degree of dependence by the use of Internet, as measured by the use of IAT. The univariate logistic regression analysis revealed that the individuals exhibiting symptoms of dysfunctional internet behaviour were more likely to suffer from a chronic mental health disorder, to use psychotropic medication and to score higher on neuroticism

  6. Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction.

    Science.gov (United States)

    Chen, Si; Knight, Walter E; Yan, Chen

    2018-04-23

    Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.

  7. Hereditary esophageal dysfunction in the Miniature Schnauzer dog.

    Science.gov (United States)

    Cox, V S; Wallace, L J; Anderson, V E; Rushmer, R A

    1980-03-01

    Miniature Schnauzers maintained in a colony for 9 years were used to study the inheritance of esophageal dysfunction (canine achalasia, megaesophagus). All dogs were evaluated radiographically, using a barium swallow contrast technique which clearly distinguished normal and affected pups. At 4 to 6 months of age, all affected dogs had recovered clinically except one, and radiographic evidence of dysfunction was markedly diminished. None of the affected dogs required a special feeding regimen. Analysis of breeding pairs revealed a ratio of 9 affected/11 normal dogs when an affected male was mated with a normal female, and a 13/3 ratio was observed when two affected dogs were mated. These ratios were compatible with a simple autosomal dominant or a 60% penetrance autosomal-recessive mode of inheritance. Outbreeding to an affected Miniature Schnauzer/Poodle crossbred dog resulted in only two of 30 affected pups, indicating a polygenic mode of inheritance in outbred populations.

  8. Psychopathy: cognitive and neural dysfunction.

    Science.gov (United States)

    R Blair, R James

    2013-06-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause-ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder.

  9. Sleep Dysfunction and Gastrointestinal Diseases.

    Science.gov (United States)

    Khanijow, Vikesh; Prakash, Pia; Emsellem, Helene A; Borum, Marie L; Doman, David B

    2015-12-01

    Sleep deprivation and impaired sleep quality have been associated with poor health outcomes. Many patients experience sleep disturbances, which can increase the risk of medical conditions such as hypertension, obesity, stroke, and heart disease as well as increase overall mortality. Recent studies have suggested that there is a strong association between sleep disturbances and gastrointestinal diseases. Proinflammatory cytokines, such as tumor necrosis factor, interleukin-1, and interleukin-6, have been associated with sleep dysfunction. Alterations in these cytokines have been seen in certain gastrointestinal diseases, such as gastroesophageal reflux disease, inflammatory bowel disease, liver disorders, and colorectal cancer. It is important for gastroenterologists to be aware of the relationship between sleep disorders and gastrointestinal illnesses to ensure good care for patients. This article reviews the current research on the interplay between sleep disorders, immune function, and gastrointestinal diseases.

  10. Psychopathy: cognitive and neural dysfunction

    Science.gov (United States)

    R. Blair, R. James

    2013-01-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause—ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder. PMID:24174892

  11. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  12. Thyroid dysfunction in infertile women

    International Nuclear Information System (INIS)

    Elahi, S.; Tanseem, A.; Nazir, I.; Nagra, S.A.

    2007-01-01

    To determine the frequency of thyroid dysfunction in infertile women referred for thyroid evaluation. Age matched infertile (n=140 each) and fertile women (n=152 each) referred to CENUM for thyroid evaluation were investigated for incidence of hyperthyroidism (TSH 20 IU/L). Serum free T4 (FT4), free T3 (FT3) and antithyroid peroxidase antibody (TPO-Ab) was determined by radioimmunoassay (RIA) and TSH by immunoradiometric assay (IRMA). Most of the infertile women (89.3%), like control women (93.4%), were euthyroid. The difference of overall thyroid dysfunction was not statistically significant in infertile and control women (10.7% vs. 7.9%; p=0.395). The same was true for incidence of hyperthyroidism (4.3% vs. 5.3%; p=0.701) as well as hypothyroidism (6.4% vs. 2.6%; p=0.104). In infertile women, the incidence of hypothyroidism (6.4%) was slightly higher as compared to hyperthyroidism (4.3%). In euthyroid women of both groups, mean FT4, FT3 and TSH levels were significantly higher (p 2.5 mIU/L compared to fertile women (31.2% vs. 15.6%; p 20 IU/L) than control women (7.2% vs. 1.4%; p<0.05). Increased incidence of high normal TSH and raised TPO-Ab titer indicate relatively more frequent occurrence of compensated thyroid function in infertile women than normal women of reproductive age. This necessitates considering them a subgroup of women in which all aspects of pituitary-thyroid axis should be thoroughly investigated than merely TSH testing. (author)

  13. Radiation-induced neurobehavioral dysfunctions

    International Nuclear Information System (INIS)

    Manda, Kailash

    2013-01-01

    There is a lacuna between sparsely reported immediate effects and the well documented delayed effects on cognitive functions seen after ionizing radiation exposure. We reported the radiation-dose dependent incongruity in the early cognitive changes and its correlation with the structural aberration as reported by imaging study. The delayed effect of radiation was investigated to understand the role of hippocampal neurogenesis in the functional recovery of cognition. C57BL/6 mice were exposed to different doses of γ-radiation and 24 hrs after exposure, the stress and anxiety levels were examined in the Open Field Exploratory Paradigms (OFT). 48hrs after irradiation, the hippocampal dependent recognition memory was observed by the Novel Object Recognition Test (NORT) and the cognitive function related to memory processing and recall was tested using the Elevated Plus Maze (EPM). Visualization of damage to the brain was done by diffusion tensor imaging at 48 hours post-irradiation. Results indicate a complex dose independent effect on the cognitive functions immediately after exposure to gamma rays. Radiation exposure caused short term memory dysfunctions at lower doses which were seen to be abrogated at higher doses, but the long term memory processing was disrupted at higher doses. The Hippocampus emerged as one of the sensitive regions to be affected by whole body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. While evaluating the delayed effect of radiation on the hippocampal neurogenesis, we observed that higher doses groups showed comparatively more adaptive regenerative neurogenic potential which they could not sustain at later stages. Our studies reported an important hitherto uncovered phenomenon of neurobehavioral dysfunctions in relation to radiation dose. Nevertheless, a

  14. Test Performance Related Dysfunctional Beliefs

    Directory of Open Access Journals (Sweden)

    Recep TÜTÜNCÜ

    2012-11-01

    Full Text Available Objective: Examinations by using tests are very frequently used in educational settings and successful studying before the examinations is a complex matter to deal with. In order to understand the determinants of success in exams better, we need to take into account not only emotional and motivational, but also cognitive aspects of the participants such as dysfunctional beliefs. Our aim is to present the relationship between candidates’ characteristics and distorted beliefs/schemata just before an examination. Method: The subjects of the study were 30 female and 30 male physicians who were about to take the medical specialization exam (MSE in Turkey. Dysfunctional Attitude Scale (DAS and Young Schema Questionnaire Short Form (YSQ-SF were applied to the subjects. The statistical analysis was done using the F test, Mann-Whitney, Kruskal-Wallis, chi-square test and spearman’s correlation test. Results: It was shown that some of the DAS and YSQ-SF scores were significantly higher in female gender, in the group who could not pass the exam, who had repetitive examinations, who had their first try taking an examination and who were unemployed at the time of the examination. Conclusion: Our findings indicate that candidates seeking help before MSE examination could be referred for cognitive therapy or counseling even they do not have any psychiatric diagnosis due to clinically significant cognitive distortion. Measurement and treatment of cognitive distortions that have negative impact on MSE performance may improve the cost-effectiveness and mental well being of the young doctors.

  15. Sexual activity and sexual dysfunction of women in the perinatal period: a longitudinal study.

    Science.gov (United States)

    Wallwiener, Stephanie; Müller, Mitho; Doster, Anne; Kuon, Ruben Jeremias; Plewniok, Katharina; Feller, Sandra; Wallwiener, Markus; Reck, Corinna; Matthies, Lina Maria; Wallwiener, Christian

    2017-04-01

    Reduced sexual activity and dysfunctional problems are highly prevalent in the perinatal period, and there is a lack of data regarding the degree of normality during pregnancy. Several risk factors have been independently associated with a greater extent of Female Sexual Dysfunction (FSD). Therefore, this study aimed to assess the prevalence of sexual inactivity and sexual dysfunctions in German women during the perinatal period and the verification of potential risk factors. Questionnaires were administered to 315 women prenatally (TI 3rd trimester) and postpartum (TII 1 week, TIII 4 months), including the Female Sexual Function Index (FSFI), the Edinburgh Postnatal Depression Scale (EPDS), and the Questionnaire of Partnership (PFB). The frequency of sexual inactivity was 24% (TI), 40.5% (TII), and 19.9% (TIII). Overall, 26.5-34.8% of women were at risk of sexual dysfunction (FSFI score Sexual desire disorder was the most prevalent form of Female sexual dysfunction. Furthermore, especially breastfeeding and low partnership quality were revealed as significant risk factors for sexual dysfunctional problems postpartum. Depressive symptoms having a cesarean section and high maternal education were correlated with dysfunctional problems in several subdomains. Findings indicated that women at risk of FSD differed significantly in aspects of partnership quality, breastfeeding, mode of delivery, maternal education, and depressive symptoms. Aspects of perinatal sexuality should be routinely implemented in the counseling of couples in prenatal classes.

  16. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  17. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    International Nuclear Information System (INIS)

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin; Ahn, Sung-Min; Jang, Ho Hee; Lee, Sang Yeol

    2012-01-01

    Highlights: ► hPrx1 has RNA-binding properties. ► hPrx1 exhibits helix-destabilizing activity. ► Cold stress increases hPrx1 level in the nuclear fraction. ► hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem–loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  18. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases.

    Science.gov (United States)

    Penke, Botond; Fulop, Livia; Szucs, Maria; Frecska, Ede

    2018-01-01

    Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. Research articles on Sigma-1 receptor were reviewed. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. The RNA Chaperone Hfq Is Involved in Stress Tolerance and Virulence in Uropathogenic Proteus mirabilis

    Science.gov (United States)

    Wang, Min-Cheng; Liaw, Shwu-Jen

    2014-01-01

    Hfq is a bacterial RNA chaperone involved in the riboregulation of diverse genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Proteus mirabilis to effectively colonize the bladder and kidneys in a murine urinary tract infection (UTI) model and to establish burned wound infection of the rats. In this regard, we found the hfq mutant induced higher IL-8 and MIF levels of uroepithelial cells and displayed reduced intra-macrophage survival. The loss of hfq affected bacterial abilities to handle H2O2 and osmotic pressures and to grow at 50°C. Relative to wild-type, the hfq mutant had reduced motility, fewer flagella and less hemolysin expression and was less prone to form biofilm and to adhere to and invade uroepithelial cells. The MR/P fimbrial operon was almost switched to the off phase in the hfq mutant. In addition, we found the hfq mutant exhibited an altered outer membrane profile and had higher RpoE expression, which indicates the hfq mutant may encounter increased envelope stress. With the notion of envelope disturbance in the hfq mutant, we found increased membrane permeability and antibiotic susceptibilities in the hfq mutant. Finally, we showed that Hfq positively regulated the RpoS level and tolerance to H2O2 in the stationary phase seemed largely mediated through the Hfq-dependent RpoS expression. Together, our data indicate that Hfq plays a critical role in P. mirabilis to establish UTIs by modulating stress responses, surface structures and virulence factors. This study suggests Hfq may serve as a scaffold molecule for development of novel anti-P. mirabilis drugs and P. mirabilis hfq mutant is a vaccine candidate for preventing UTIs. PMID:24454905

  20. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica.

    Directory of Open Access Journals (Sweden)

    Tamara Kakoschke

    Full Text Available To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.

  1. New Features about Tau Function and Dysfunction

    Directory of Open Access Journals (Sweden)

    Miguel Medina

    2016-04-01

    Full Text Available Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD. Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future.

  2. New Features about Tau Function and Dysfunction

    Science.gov (United States)

    Medina, Miguel; Hernández, Félix; Avila, Jesús

    2016-01-01

    Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future. PMID:27104579

  3. The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein.

    Science.gov (United States)

    Treweek, Teresa M; Thorn, David C; Price, William E; Carver, John A

    2011-06-01

    α(S)-Casein, the major milk protein, comprises α(S1)- and α(S2)-casein and acts as a molecular chaperone, stabilizing an array of stressed target proteins against precipitation. Here, we report that α(S)-casein acts in a similar manner to the unrelated small heat-shock proteins (sHsps) and clusterin in that it does not preserve the activity of stressed target enzymes. However, in contrast to sHsps and clusterin, α-casein does not bind target proteins in a state that facilitates refolding by Hsp70. α(S)-Casein was also separated into α- and α-casein, and the chaperone abilities of each of these proteins were assessed with amorphously aggregating and fibril-forming target proteins. Under reduction stress, all α-casein species exhibited similar chaperone ability, whereas under heat stress, α-casein was a poorer chaperone. Conversely, α(S2)-casein was less effective at preventing fibril formation by modified κ-casein, whereas α- and α(S1)-casein were comparably potent inhibitors. In the presence of added salt and heat stress, α(S1)-, α- and α(S)-casein were all significantly less effective. We conclude that α(S1)- and α-casein stabilise each other to facilitate optimal chaperone activity of α(S)-casein. This work highlights the interdependency of casein proteins for their structural stability. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Nadja Kettern

    Full Text Available The maturation of mouse macrophages and dendritic cells involves the transient deposition of ubiquitylated proteins in the form of dendritic cell aggresome-like induced structures (DALIS. Transient DALIS formation was used here as a paradigm to study how mammalian cells influence the formation and disassembly of protein aggregates through alterations of their proteostasis machinery. Co-chaperones that modulate the interplay of Hsc70 and Hsp70 with the ubiquitin-proteasome system (UPS and the autophagosome-lysosome pathway emerged as key regulators of this process. The chaperone-associated ubiquitin ligase CHIP and the ubiquitin-domain protein BAG-1 are essential for DALIS formation in mouse macrophages and bone-marrow derived dendritic cells (BMDCs. CHIP also cooperates with BAG-3 and the autophagic ubiquitin adaptor p62 in the clearance of DALIS through chaperone-assisted selective autophagy (CASA. On the other hand, the co-chaperone HspBP1 inhibits the activity of CHIP and thereby attenuates antigen sequestration. Through a modulation of DALIS formation CHIP, BAG-1 and HspBP1 alter MHC class I mediated antigen presentation in mouse BMDCs. Our data show that the Hsc/Hsp70 co-chaperone network controls transient protein aggregation during maturation of professional antigen presenting cells and in this way regulates the immune response. Similar mechanisms may modulate the formation of aggresomes and aggresome-like induced structures (ALIS in other mammalian cell types.

  5. Identifying and Working with Dysfunctional Families.

    Science.gov (United States)

    Bilynsky, Natalie Sufler; Vernaglia, Elizabeth Rudow

    1999-01-01

    A school counselor is often called upon to intervene when a child's progress and the classroom environment begin to suffer because of the child's dysfunctional family. The article presents a six-stage, problem-solving model for school counselors in their work with children from dysfunctional families. Presents a case example to illustrate the…

  6. Sociodemographic and clinical correlates of sexual dysfunction ...

    African Journals Online (AJOL)

    Background: Sexual dysfunction is common in patients receiving psychotropic medications and may reduce their quality of life and medication adherence with resultant negative impact on treatment outcomes. Objectives: In this study, we described the various types of sexual dysfunction among psychiatric outpatients ...

  7. Suspecting Neurological Dysfunction From E Mail Messages ...

    African Journals Online (AJOL)

    A non medical person suspected and confirmed neurological dysfunction in an individual, based only on e mail messages sent by the individual. With email communication becoming rampant “peculiar” email messages may raise the suspicion of neurological dysfunction. Organic pathology explaining the abnormal email ...

  8. Thyroid stimulating hormone and subclinical thyroid dysfunction

    International Nuclear Information System (INIS)

    Guo Yongtie

    2008-01-01

    Subclinical thyroid dysfunction has mild clinical symptoms. It is nonspecific and not so noticeable. It performs only for thyroid stimulating hormone rise and decline. The value of early diagnosis and treatment of thyroid stimulating hormone in subclinical thyroid dysfunction were reviewed. (authors)

  9. Symptoms of Nerve Dysfunction After Hip Arthroscopy

    DEFF Research Database (Denmark)

    Dippmann, Christian; Thorborg, Kristian; Kraemer, Otto

    2014-01-01

    PURPOSE: The primary purpose of this study was to analyze the rate, pattern, and severity of symptoms of nerve dysfunction after hip arthroscopy (HA) by reviewing prospectively collected data. The secondary purpose was to study whether symptoms of nerve dysfunction were related to traction time...

  10. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  11. Male Pseudoheterosexuality and Minimal Sexual Dysfunction

    Science.gov (United States)

    Gutstadt, Joseph P.

    1976-01-01

    There is often a correlation between "pseudoheterosexuality" and minor sexual dysfunction. Insight alone is not sufficient to provide relief, but when the patient can be helped to a comfortable acceptance of his homosexual feelings as a normal and healthy facet of his personality, very often the dysfunction is relieved. (Author)

  12. On the Etiology of Sexual Dysfunction

    Science.gov (United States)

    Apfelbaum, Bernard

    1977-01-01

    Lack of consideration of the sexually functional population has led to misconceptions about causes of sexual dysfunction functioning. Automatic functioning can mask effects of pathogenic influences on sexuality, making these effects appear random, confounding etiological issues and creating the belief that causes of sexual dysfunction and disorder…

  13. Herpes zoster producing temporary erectile dysfunction.

    Science.gov (United States)

    Rix, G H; Carroll, D N; MacFarlane, J R

    2001-12-01

    Varicella Zoster affecting the sacral dermatomes is a rare but well recognised cause of urinary retention. Only one case of erectile dysfunction associated with Varicella Zoster has previously been described, which was longstanding, but no cases of transient erectile dysfunction following Zoster infection are recorded. We present one such case.

  14. Understanding taste dysfunction in patients with cancer.

    Science.gov (United States)

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  15. Sexual dysfunctions after prostate cancer radiation therapy

    International Nuclear Information System (INIS)

    Droupy, S.

    2010-01-01

    Sexual dysfunctions are a quality of life main concern following prostate cancer treatment. After both radiotherapy and brachytherapy, sexual function declines progressively, the onset of occurrence of erectile dysfunction being 12-18 months after both treatments. The pathophysiological pathways by which radiotherapy and brachytherapy cause erectile dysfunction are multi-factorial, as patient co-morbidities, arterial damage, exposure of neurovascular bundle to high levels of radiation, and radiation dose received by the corpora cavernosa at the crurae of the penis may be important in the aetiology of erectile dysfunction. Diagnosis and treatment of postradiation sexual dysfunctions must integrate pre-therapeutic evaluation and information to provide to the patient and his partner a multidisciplinary sexual medicine management. (authors)

  16. Dysfunctional C8 beta chain in patients with C8 deficiency.

    Science.gov (United States)

    Tschopp, J; Penea, F; Schifferli, J; Späth, P

    1986-12-01

    Two sera from unrelated individuals, each lacking C8 activity, were examined by Western blot analysis. Using antisera raised against whole C8, the two sera are shown to lack the C8 beta chain, indicating a C8 beta deficiency, which is frequently observed in cases of dysfunctional C8. In contrast, by means of a specific anti-C8-beta antiserum, a C8 beta-like polypeptide chain of apparently identical molecular weight compared to normal C8 beta was detected. Digestion of normal and dysfunctional C8 beta with Staphylococcus aureus V8 protease revealed distinct differences in the enzymatic digestion pattern. We conclude that the dysfunction in the C8 protein in these two patients resides in the dysfunctional C8 beta chain, and that this form of C8 deficiency is distinct from C8 deficiencies previously reported, in which one or both C8 subunits are lacking.

  17. A case of late-onset allgrove syndrome presenting with predominant autonomic dysfunction

    Directory of Open Access Journals (Sweden)

    Debmalya Sanyal

    2013-01-01

    Full Text Available Allgrove Syndrome or triple A syndrome is a rare familial multisystem disorder characterized by achalasia, alacrima and adrenal insufficiency. The objective was to describe a case of 4A syndrome where autonomic dysfunction was the presenting feature. A 22-year-old male presented with erectile dysfunction and loss of spontaneous morning erections for six months. He was having nocturnal diarrhea and recurrent postural dizziness for three months. He was found to have hyperpigmentation at pressure points, postural hypotension and other features of autonomic dysfunction. Laboratory investigations and imaging studies revealed hypoadrenalism, achalasia, alacrima and peripheral neuropathy. Autonomic neuropathy-related features persisted even after correction of hypoadrenalism. Based on clinical features and investigation he was diagnosed as a case of 4A syndrome presenting with autonomic dysfunction. Allgrove or 4A syndrome should be considered as a rare differential diagnosis of someone presenting with features of autonomic neuropathy.

  18. Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Gaplovska-Kysela, Katarina; Zuber, Christian; Roth, Jürgen

    2007-04-01

    To evaluate the effect of chemical chaperones on the trafficking of secretion-incompetent primary open-angle glaucoma-associated mutant myocilin and the possibility to rescue cells coexpressing mutant and wild-type myocilin from endoplasmic reticulum (ER) stress and apoptosis. CHO-K1, HEK293 and human trabecular meshwork cells were transfected to express wild-type or mutant (C245Y, G364V, P370L, Y437H) myocilin-green fluorescent protein fusion protein and were treated or not with various chemical chaperones (glycerol, dimethylsulfoxide, or sodium 4-phenylbutyrate) for different time periods. The secretion, Triton X-100 solubility, and intracellular distribution of wild-type and mutant myocilin were analyzed by immunoprecipitation, Western blotting, and confocal double immunofluorescence. The effect of sodium 4-phenylbutyrate on ER stress proteins and apoptosis was examined in cells coexpressing mutant and wild-type myocilin. Treatment with sodium 4-phenylbutyrate, but not with glycerol or dimethylsulfoxide, reduced the amount of detergent-insoluble myocilin aggregates, diminished myocilin interaction with calreticulin, and restored the secretion of mutant myocilin. Heteromeric complexes formed by mutant and wild-type myocilin induced the ER stress-associated phosphorylated form of ER-localized eukaryotic initiation factor (eIF)-2alpha kinase and the active form of caspase 3, which resulted in an increased rate of apoptosis. Sodium 4-phenylbutyrate treatment of cells coexpressing mutant and wild-type myocilin relieved ER stress and significantly reduced the rate of apoptosis. These findings indicate that sodium 4-phenylbutyrate protects cells from the deleterious effects of ER-retained aggregated mutant myocilin. These data point to the possibility of a chemical chaperone treatment for myocilin-caused primary open-angle glaucoma.

  19. The chaperone role of the pyridoxal 5'-phosphate and its implications for rare diseases involving B6-dependent enzymes.

    Science.gov (United States)

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Astegno, Alessandra; Voltattorni, Carla Borri

    2014-02-01

    The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of amino-sugars. In the catalytic process of PLP-dependent enzymes, the substrate amino acid forms a Schiff base with PLP and the electrophilicity of the PLP pyridine ring plays important roles in the subsequent catalytic steps. While the essential role of PLP in the acquisition of biological activity of many proteins is long recognized, the finding that some PLP-enzymes require the coenzyme for refolding in vitro points to an additional role of PLP as a chaperone in the folding process. Mutations in the genes encoding PLP-enzymes are causative of several rare inherited diseases. Patients affected by some of these diseases (AADC deficiency, cystathionuria, homocystinuria, gyrate atrophy, primary hyperoxaluria type 1, xanthurenic aciduria, X-linked sideroblastic anaemia) can benefit, although at different degrees, from the administration of pyridoxine, a PLP precursor. The effect of the coenzyme is not limited to mutations that affect the enzyme-coenzyme interaction, but also to those that cause folding defects, reinforcing the idea that PLP could play a chaperone role and improve the folding efficiency of misfolded variants. In this review, recent biochemical and cell biology studies highlighting the chaperoning activity of the coenzyme on folding-defective variants of PLP-enzymes associated with rare diseases are presented and discussed. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.