Introduction - Chadwick discovers the neutron
International Nuclear Information System (INIS)
Hendry, J.
1984-01-01
The background to Chadwick's discovery in 1932 of the neutron predicted by Rutherford is chronicled. In the same year Cockcroft and Walton split the atom, and the story of this event is told. 1932 also saw the demonstration by Blackett and Occhialini of the existence of the positron. These important contributions to nuclear physics were all made at the Cavendish Laboratory in Cambridge. Photographs, extracts from experimental notebooks and circuit diagrams illustrate this introduction. (UK)
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)
Chadwick: Symphony No. 3 in F; Barber: Vanessa-Intermezzo / Andrew Achenbach
Achenbach, Andrew
1994-01-01
Uuest heliplaadist "Chadwick: Symphony No. 3 in F; Barber: Vanessa-Intermezzo, Under the Willow Tree. Music for a scene from Shelley, Op. 7. Medea's Meditation and Dance of Vengeance, Op. 23a. Detroit Symphony Orchestra / Neeme Järvi." Chandos CD CHAN 9253
James Chadwick Nobel Prize for Physics 1935. Discovery of the neutron
International Nuclear Information System (INIS)
2004-01-01
James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)
Mushkin, I.; Solomon, S.
2017-10-01
We study the inverse contagion problem (ICP). As opposed to the direct contagion problem, in which the network structure is known and the question is when each node will be contaminated, in the inverse problem the links of the network are unknown but a sequence of contagion histories (the times when each node was contaminated) is observed. We consider two versions of the ICP: The strong problem (SICP), which is the reconstruction of the network and has been studied before, and the weak problem (WICP), which requires "only" the prediction (at each time step) of the nodes that will be contaminated at the next time step (this is often the real life situation in which a contagion is observed and predictions are made in real time). Moreover, our focus is on analyzing the increasing accuracy of the solution, as a function of the number of contagion histories already observed. For simplicity, we discuss the simplest (deterministic and synchronous) contagion dynamics and the simplest solution algorithm, which we have applied to different network types. The main result of this paper is that the complex problem of the convergence of the ICP for a network can be reduced to an individual property of pairs of nodes: the "false link difficulty". By definition, given a pair of unlinked nodes i and j, the difficulty of the false link (i,j) is the probability that in a random contagion history, the nodes i and j are not contaminated at the same time step (or at consecutive time steps). In other words, the "false link difficulty" of a non-existing network link is the probability that the observations during a random contagion history would not rule out that link. This probability is relatively straightforward to calculate, and in most instances relies only on the relative positions of the two nodes (i,j) and not on the entire network structure. We have observed the distribution of false link difficulty for various network types, estimated it theoretically and confronted it
A Network Model of Credit Risk Contagion
Directory of Open Access Journals (Sweden)
Ting-Qiang Chen
2012-01-01
Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.
Suicide contagion: a systematic review of definitions and research utility.
Directory of Open Access Journals (Sweden)
Qijin Cheng
Full Text Available Despite the common use of contagion to analogize the spread of suicide, there is a lack of rigorous assessment of the underlying concept or theory supporting the use of this term. The present study aims to examine the varied definitions and potential utility of the term contagion in suicide-related research.100 initial records and 240 reference records in English were identified as relevant with our research objectives, through systematic literature screening. We then conducted narrative syntheses of various definitions and assessed their potential value for generating new research.20.3% of the 340 records used contagion as equivalent to clustering (contagion-as-cluster; 68.5% used it to refer to various, often related mechanisms underlying the clustering phenomenon (contagion-as-mechanism; and 11.2% without clear definition. Under the category of contagion-as-mechanism, four mechanisms have been proposed to explain how suicide clusters occurred: transmission (contagion-as-transmission, imitation (contagion-as-imitation, contextual influence (contagion-as-context, and affiliation (contagion-as-affiliation. Contagion-as-cluster both confounds and constrains inquiry into suicide clustering by blending proposed mechanism with the phenomenon to be studied. Contagion-as-transmission is, in essence, a double or internally redundant metaphor. Contagion-as-affiliation and contagion-as-context involve mechanisms that are common mechanisms that often occur independently of apparent contagion, or may serve as a facilitating background. When used indiscriminately, these terms may create research blind spots. Contagion-as-imitation combines perspectives from psychology, sociology, and public health research and provides the greatest heuristic utility for examining whether and how suicide and suicidal behaviors may spread among persons at both individual and population levels.Clarifying the concept of "suicide contagion" is an essential step for more
Dueling biological and social contagions
Fu, Feng; Christakis, Nicholas A.; Fowler, James H.
2017-03-01
Numerous models explore how a wide variety of biological and social phenomena spread in social networks. However, these models implicitly assume that the spread of one phenomenon is not affected by the spread of another. Here, we develop a model of “dueling contagions”, with a particular illustration of a situation where one is biological (influenza) and the other is social (flu vaccination). We apply the model to unique time series data collected during the 2009 H1N1 epidemic that includes information about vaccination, flu, and face-to-face social networks. The results show that well-connected individuals are more likely to get vaccinated, as are people who are exposed to friends who get vaccinated or are exposed to friends who get the flu. Our dueling contagion model suggests that other epidemiological models may be dramatically underestimating the R0 of contagions. It also suggests that the rate of vaccination contagion may be even more important than the biological contagion in determining the course of the disease. These results suggest that real world and online platforms that make it easier to see when friends have been vaccinated (personalized vaccination campaigns) and when they get the flu (personalized flu warnings) could have a large impact on reducing the severity of epidemics. They also suggest possible benefits from understanding the coevolution of many kinds of dueling contagions.
THE THEORY OF INTERNATIONAL FINANCIAL CONTAGION
Directory of Open Access Journals (Sweden)
Iulia LUPU
2012-12-01
Full Text Available Financial contagion is a complex and multivariate process, with no widely accepted definition and an accurate measurement methodology. Contagion became more and more the central idea of research studies because it is perceived as a problem, and often associated with financial crises. The reason for that international diversification of investment portfolios is applied to protect against country risk, is no longer valid, correlations between markets largely vanishing its benefits. In this article we intend to present the ways in which the subject of international financial contagion was approached.
Determinants of social contagion during new product adoption
Langley, D.J.; Bijmolt, T.H.A.; Ortt, J.R.; Pals, N.
2012-01-01
Social contagion has been shown to play an important role during new product adoption by consumers. Social contagion is the process by which consumers influence each other to adopt and use a product in a specific way. Current literature makes a basic assumption that social contagion is caused by the
Cross-Border Exposures and Financial Contagion
Degryse, H.A.; Elahi, M.A.; Penas, M.F.
2009-01-01
Integrated financial markets provide opportunities for expansion and improved risk sharing, but also pose threats of contagion risk through cross-border exposures. This paper examines cross-border contagion risk over the period 1999-2006. To that purpose we use aggregate cross-border exposures of
Insolvency and contagion in the Brazilian interbank market
Souza, Sergio R. S.; Tabak, Benjamin M.; Silva, Thiago C.; Guerra, Solange M.
2015-08-01
This paper proposes a new way to model and analyze contagion in interbank networks. We use a unique dataset from the Brazilian financial system and include all active financial intermediaries. We show that the contagion chain has a short propagation path. We find that first-round contagion is generated only by banks and that medium-sized banks can generate contagion, which implies that size is not the sole determinant of importance within networks. Most vulnerable financial institutions are not banks. Finally, we compute a lower bound for the financial system expected losses in a 1-year horizon. The results contribute to the development of a financial stability-monitoring toolkit.
P2P Lending Risk Contagion Analysis Based on a Complex Network Model
Directory of Open Access Journals (Sweden)
Qi Wei
2016-01-01
Full Text Available This paper analyzes two major channels of P2P lending risk contagion in China—direct risk contagion between platforms and indirect risk contagion with other financial organizations as the contagion medium. Based on this analysis, the current study constructs a complex network model of P2P lending risk contagion in China and performs dynamics analogue simulations in order to analyze general characteristics of direct risk contagion among China’s online P2P lending platforms. The assumed conditions are that other financial organizations act as the contagion medium, with variations in the risk contagion characteristics set under the condition of significant information asymmetry in Internet lending. It is indicated that, compared to direct risk contagion among platforms, both financial organizations acting as the contagion medium and information asymmetry magnify the effect of risk contagion. It is also found that the superposition of media effects and information asymmetry is more likely to magnify the risk contagion effect.
A statistical procedure for testing financial contagion
Directory of Open Access Journals (Sweden)
Attilio Gardini
2013-05-01
Full Text Available The aim of the paper is to provide an analysis of contagion through the measurement of the risk premia disequilibria dynamics. In order to discriminate among several disequilibrium situations we propose to test contagion on the basis of a two-step procedure: in the first step we estimate the preference parameters of the consumption-based asset pricing model (CCAPM to control for fundamentals and to measure the equilibrium risk premia in different countries; in the second step we measure the differences among empirical risk premia and equilibrium risk premia in order to test cross-country disequilibrium situations due to contagion. Disequilibrium risk premium measures are modelled by the multivariate DCC-GARCH model including a deterministic crisis variable. The model describes simultaneously the risk premia dynamics due to endogenous amplifications of volatility and to exogenous idiosyncratic shocks (contagion, having controlled for fundamentals effects in the first step. Our approach allows us to achieve two goals: (i to identify the disequilibria generated by irrational behaviours of the agents, which cause increasing in volatility that is not explained by the economic fundamentals but is endogenous to financial markets, and (ii to assess the existence of contagion effect defined by exogenous shift in cross-country return correlations during crisis periods. Our results show evidence of contagion from the United States to United Kingdom, Japan, France, and Italy during the financial crisis which started in 2007-08.
Partially Overlapping Ownership and Contagion in Financial Networks
Directory of Open Access Journals (Sweden)
Micah Pollak
2017-01-01
Full Text Available Using historical banking data for the United States from the years 2000 to 2015 we characterize the probability and extent of a financial contagion using a calibrated network model of heterogeneous interbank exposures. Both the probability and the average extent of a contagion begin to rise in 2007 prior to the US financial crisis. Including a common asset in the model increases both the probability and extent of contagion, especially during the years of the financial crisis. Based on rising institutional ownership in the banking industry, we introduce a partially overlapping ownership asset that devalues endogenously. The addition of this asset increases the extent of a financial contagion. Our results show that trends in capital buffers and the distribution and type of assets have a significant effect on the predictions of financial network contagion models and that the rising trend in ownership of banks by banks amplifies shocks to the financial system.
Hedge Fund Contagion and Liquidity
Nicole M. Boyson; Christof W. Stahel; Rene M. Stulz
2008-01-01
Using hedge fund indices representing eight different styles, we find strong evidence of contagion within the hedge fund sector: controlling for a number of risk factors, the average probability that a hedge fund style index has extreme poor performance (lower 10% tail) increases from 2% to 21% as the number of other hedge fund style indices with extreme poor performance increases from zero to seven. We investigate how changes in funding and asset liquidity intensify this contagion, and find ...
CONTAGION EFFECTS OF US FINANCIAL CRISIS ON INDONESIA
Directory of Open Access Journals (Sweden)
Anika Sedyaning Wikanti
2011-09-01
Full Text Available This research analyzes the contagion effects of the US financial markets on Indonesian fi-nancial markets during the 2008 global financial crisis. It specifically investigates whether the slump in the US stock prices directly produced a slump in Indonesian stock prices, or indirectly through the slump in regional stock prices. It also examines whether the slump spilled over into rupiah exchange rate. Using Vector Autoregression and Vector Error Correction Model, the paper finds direct contagion effect of the US financial crisis into Indonesian stock markets. It also finds both direct and indirect contagion effect of the US financial crisis into foreign exchange market.Keywords: Contagion, stock price, exchange rate, financial crisisJEL classification numbers: G12, G15
Default contagion risks in Russian interbank market
Leonidov, A. V.; Rumyantsev, E. L.
2016-06-01
Systemic risks of default contagion in the Russian interbank market are investigated. The analysis is based on considering the bow-tie structure of the weighted oriented graph describing the structure of the interbank loans. A probabilistic model of interbank contagion explicitly taking into account the empirical bow-tie structure reflecting functionality of the corresponding nodes (borrowers, lenders, borrowers and lenders simultaneously), degree distributions and disassortativity of the interbank network under consideration based on empirical data is developed. The characteristics of contagion-related systemic risk calculated with this model are shown to be in agreement with those of explicit stress tests.
A Markov Chain Model for Contagion
Directory of Open Access Journals (Sweden)
Angelos Dassios
2014-11-01
Full Text Available We introduce a bivariate Markov chain counting process with contagion for modelling the clustering arrival of loss claims with delayed settlement for an insurance company. It is a general continuous-time model framework that also has the potential to be applicable to modelling the clustering arrival of events, such as jumps, bankruptcies, crises and catastrophes in finance, insurance and economics with both internal contagion risk and external common risk. Key distributional properties, such as the moments and probability generating functions, for this process are derived. Some special cases with explicit results and numerical examples and the motivation for further actuarial applications are also discussed. The model can be considered a generalisation of the dynamic contagion process introduced by Dassios and Zhao (2011.
Sensitivity analysis for contagion effects in social networks
VanderWeele, Tyler J.
2014-01-01
Analyses of social network data have suggested that obesity, smoking, happiness and loneliness all travel through social networks. Individuals exert “contagion effects” on one another through social ties and association. These analyses have come under critique because of the possibility that homophily from unmeasured factors may explain these statistical associations and because similar findings can be obtained when the same methodology is applied to height, acne and head-aches, for which the conclusion of contagion effects seems somewhat less plausible. We use sensitivity analysis techniques to assess the extent to which supposed contagion effects for obesity, smoking, happiness and loneliness might be explained away by homophily or confounding and the extent to which the critique using analysis of data on height, acne and head-aches is relevant. Sensitivity analyses suggest that contagion effects for obesity and smoking cessation are reasonably robust to possible latent homophily or environmental confounding; those for happiness and loneliness are somewhat less so. Supposed effects for height, acne and head-aches are all easily explained away by latent homophily and confounding. The methodology that has been employed in past studies for contagion effects in social networks, when used in conjunction with sensitivity analysis, may prove useful in establishing social influence for various behaviors and states. The sensitivity analysis approach can be used to address the critique of latent homophily as a possible explanation of associations interpreted as contagion effects. PMID:25580037
Interbank lending, network structure and default risk contagion
Zhang, Minghui; He, Jianmin; Li, Shouwei
2018-03-01
This paper studies the default risk contagion in banking systems based on a dynamic network model with two different kinds of lenders' selecting mechanisms, namely, endogenous selecting (ES) and random selecting (RS). From sensitivity analysis, we find that higher risk premium, lower initial proportion of net assets, higher liquid assets threshold, larger size of liquidity shocks, higher proportion of the initial investments and higher Central Bank interest rates all lead to severer default risk contagion. Moreover, the autocorrelation of deposits and lenders' selecting probability have non-monotonic effects on the default risk contagion, and the effects differ under two mechanisms. Generally, the default risk contagion is much severer under RS mechanism than that of ES, because the multi-money-center structure generated by ES mechanism enables borrowers to borrow from more liquid banks with lower interest rates.
Peer Contagion in Child and Adolescent Social and Emotional Development
Dishion, Thomas J.; Tipsord, Jessica M.
2012-01-01
In this article, we examine the construct of peer contagion in childhood and adolescence and review studies of child and adolescent development that have identified peer contagion influences. Evidence suggests that children's interactions with peers are tied to increases in aggression in early and middle childhood and amplification of problem behaviors such as drug use, delinquency, and violence in early to late adolescence. Deviancy training is one mechanism that accounts for peer contagion effects on problem behaviors from age 5 through adolescence. In addition, we discuss peer contagion relevant to depression in adolescence, and corumination as an interactive process that may account for these effects. Social network analyses suggest that peer contagion underlies the influence of friendship on obesity, unhealthy body images, and expectations. Literature is reviewed that suggests how peer contagion effects can undermine the goals of public education from elementary school through college and impair the goals of juvenile corrections systems. In particular, programs that “select” adolescents at risk for aggregated preventive interventions are particularly vulnerable to peer contagion effects. It appears that a history of peer rejection is a vulnerability factor for influence by peers, and adult monitoring, supervision, positive parenting, structure, and self-regulation serve as protective factors. PMID:19575606
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks.
Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-07-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-01-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Short-Term Liquidity Contagion in the Interbank Market
Leon Rincon, C.E.; Martínez, Constanza; Cepeda, Freddy
2016-01-01
We implement a modified version of DebtRank, a measure of systemic impact inspired in feedback centrality, to recursively measure the contagion effects caused by the default of a selected financial institution. In our case contagion is a liquidity issue, measured as the decrease in financial
Fundamental properties of cooperative contagion processes
Chen, Li; Ghanbarnejad, Fakhteh; Brockmann, Dirk
2017-10-01
We investigate the effects of cooperativity between contagion processes that spread and persist in a host population. We propose and analyze a dynamical model in which individuals that are affected by one transmissible agent A exhibit a higher than baseline propensity of being affected by a second agent B and vice versa. The model is a natural extension of the traditional susceptible-infected-susceptible model used for modeling single contagion processes. We show that cooperativity changes the dynamics of the system considerably when cooperativity is strong. The system exhibits discontinuous phase transitions not observed in single agent contagion, multi-stability, a separation of the traditional epidemic threshold into different thresholds for inception and extinction as well as hysteresis. These properties are robust and are corroborated by stochastic simulations on lattices and generic network topologies. Finally, we investigate wave propagation and transients in a spatially extended version of the model and show that especially for intermediate values of baseline reproduction ratios the system is characterized by various types of wave-front speeds. The system can exhibit spatially heterogeneous stationary states for some parameters and negative front speeds (receding wave fronts). The two agent model can be employed as a starting point for more complex contagion processes, involving several interacting agents, a model framework particularly suitable for modeling the spread and dynamics of microbiological ecosystems in host populations.
Fundamental properties of cooperative contagion processes
International Nuclear Information System (INIS)
Chen, Li; Ghanbarnejad, Fakhteh; Brockmann, Dirk
2017-01-01
We investigate the effects of cooperativity between contagion processes that spread and persist in a host population. We propose and analyze a dynamical model in which individuals that are affected by one transmissible agent A exhibit a higher than baseline propensity of being affected by a second agent B and vice versa. The model is a natural extension of the traditional susceptible-infected-susceptible model used for modeling single contagion processes. We show that cooperativity changes the dynamics of the system considerably when cooperativity is strong. The system exhibits discontinuous phase transitions not observed in single agent contagion, multi-stability, a separation of the traditional epidemic threshold into different thresholds for inception and extinction as well as hysteresis. These properties are robust and are corroborated by stochastic simulations on lattices and generic network topologies. Finally, we investigate wave propagation and transients in a spatially extended version of the model and show that especially for intermediate values of baseline reproduction ratios the system is characterized by various types of wave-front speeds. The system can exhibit spatially heterogeneous stationary states for some parameters and negative front speeds (receding wave fronts). The two agent model can be employed as a starting point for more complex contagion processes, involving several interacting agents, a model framework particularly suitable for modeling the spread and dynamics of microbiological ecosystems in host populations. (paper)
Mutual Information Based Analysis for the Distribution of Financial Contagion in Stock Markets
Directory of Open Access Journals (Sweden)
Xudong Wang
2017-01-01
Full Text Available This paper applies mutual information to research the distribution of financial contagion in global stock markets during the US subprime crisis. First, we symbolize the daily logarithmic stock returns based on their quantiles. Then, the mutual information of the stock indices is calculated and the block bootstrap approach is adopted to test the financial contagion. We analyze not only the contagion distribution during the entire crisis period but also its evolution over different stages by using the sliding window method. The empirical results prove the widespread existence of financial contagion and show that markets impacted by contagion tend to cluster geographically. The distribution of the contagion strength is positively skewed and leptokurtic. The average contagion strength is low at the beginning and then witnesses an uptrend. It has larger values in the middle stage and declines in the late phase of the crisis. Meanwhile, the cross-regional contagion between Europe and America is stronger than that between either America and Asia or Europe and Asia. Europe is found to be the region most deeply impacted by the contagion, whereas Asia is the least affected.
Directory of Open Access Journals (Sweden)
Monika Wróbel
2014-07-01
Full Text Available Background The Emotional Contagion Scale (ECS measures individual differences in susceptibility to catching emotions expressed by others. Although initially the scale was reported to have a unidimensional structure, recent validation studies have suggested that the concept of emotional contagion is multidimensional. The aim of the study was therefore to test whether the structure of the ECS in a Polish sample corresponds with that observed for other non-English speaking populations. Participants and procedure The scale, translated into Polish, was completed by 633 university students in four independent samples. To investigate the factor structure of the ECS, confirmatory factor analyses of five alternative models were conducted. Results The results supported a multifaceted solution, which confirmed that susceptibility to emotional contagion may be differentiated not only across positive vs. negative states but also across discrete emotions. Moreover, the verification of internal consistency, test-retest reliability and construct validity of the Polish version indicated that its parameters are acceptable and comparable with the characteristics of other adaptations. Conclusions The Polish ECS, together with other adaptations of the scale, shows that the construct developed in the United States can be successfully measured in other cultural contexts. Thus, the Polish version can be treated as a useful tool for measuring individual differences in susceptibility to emotional contagion.
Complex Contagion of Campaign Donations.
Traag, Vincent A
2016-01-01
Money is central in US politics, and most campaign contributions stem from a tiny, wealthy elite. Like other political acts, campaign donations are known to be socially contagious. We study how campaign donations diffuse through a network of more than 50,000 elites and examine how connectivity among previous donors reinforces contagion. We find that the diffusion of donations is driven by independent reinforcement contagion: people are more likely to donate when exposed to donors from different social groups than when they are exposed to equally many donors from the same group. Counter-intuitively, being exposed to one side may increase donations to the other side. Although the effect is weak, simultaneous cross-cutting exposure makes donation somewhat less likely. Finally, the independence of donors in the beginning of a campaign predicts the amount of money that is raised throughout a campaign. We theorize that people infer population-wide estimates from their local observations, with elites assessing the viability of candidates, possibly opposing candidates in response to local support. Our findings suggest that theories of complex contagions need refinement and that political campaigns should target multiple communities.
Complex Contagion of Campaign Donations.
Directory of Open Access Journals (Sweden)
Vincent A Traag
Full Text Available Money is central in US politics, and most campaign contributions stem from a tiny, wealthy elite. Like other political acts, campaign donations are known to be socially contagious. We study how campaign donations diffuse through a network of more than 50,000 elites and examine how connectivity among previous donors reinforces contagion. We find that the diffusion of donations is driven by independent reinforcement contagion: people are more likely to donate when exposed to donors from different social groups than when they are exposed to equally many donors from the same group. Counter-intuitively, being exposed to one side may increase donations to the other side. Although the effect is weak, simultaneous cross-cutting exposure makes donation somewhat less likely. Finally, the independence of donors in the beginning of a campaign predicts the amount of money that is raised throughout a campaign. We theorize that people infer population-wide estimates from their local observations, with elites assessing the viability of candidates, possibly opposing candidates in response to local support. Our findings suggest that theories of complex contagions need refinement and that political campaigns should target multiple communities.
Testing for Stock Market Contagion: A Quantile Regression Approach
S.Y. Park (Sung); W. Wang (Wendun); N. Huang (Naijing)
2015-01-01
markdownabstract__Abstract__ Regarding the asymmetric and leptokurtic behavior of financial data, we propose a new contagion test in the quantile regression framework that is robust to model misspecification. Unlike conventional correlation-based tests, the proposed quantile contagion test
The social contagion of aspirations
DEFF Research Database (Denmark)
Folmann, Birgitte
2017-01-01
among young men in Northern Uganda. The potential social contagion of aspirations is unfolded to provide a deeper understanding of social processes not only as dynamics between people but also as processes between people and their surroundings in a society which is subject to rapid change...... succeed, making some progress along this path seems important and fuels their ongoing aspiration for the good life. Having a ‘life style’ means being able to choose and consume, and getting a ‘life style’ reflects an aspiration for social mobility. Taking the emic approach helps to explain how social...... contagion occurs and how health-related practices are formed....
Contagion in Mass Killings and School Shootings.
Directory of Open Access Journals (Sweden)
Sherry Towers
Full Text Available Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed. We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015. We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001. All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.
Contagion in Mass Killings and School Shootings.
Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos
2015-01-01
Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event. We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.
Czech Academy of Sciences Publication Activity Database
Steiner, Jakub; Stewart, C.
2008-01-01
Roč. 3, č. 4 (2008), s. 431-458 ISSN 1555-7561 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : learning * contagion * case-base reasoning * global games Subject RIV: AH - Economics http://econtheory.org/ojs/index.php/te/article/view/20080431/112
Traditional and new media's influence on suicidal behavior and contagion.
Ortiz, Patricia; Khin Khin, Eindra
2018-03-01
The role of nonfictional and fictional media in suicide contagion has been well established, ostensibly beginning with the publication of Goethe's The Sorrows of Young Werther in 1774. In recent decades, the emergence of several new forms of media (e.g. websites, social media, blogs, smartphone applications) has revolutionized the communication and social interaction paradigms. This article reviews "the Werther effect" (or suicide contagion related to media), special populations who are more influential or susceptible, current media reporting guidelines and their effectiveness, and the latest research on new media and its effect on suicide and suicide contagion. The aim is to update recommendations on how to mitigate the potential negative effects of both traditional and new media on suicidal behavior and suicide contagion. Copyright © 2018 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Rui Wang
2014-01-01
Full Text Available A modified multiple structural changes model is built to test structural breaks of the financial system based on calculating the largest Lyapunov exponents of the financial time series. Afterwards, the Lorenz system is used as a simulation example to inspect the new model. As the Lorenz system has strong nonlinearity, the verification results show that the new model has good capability in both finding the breakpoint and revealing the changes in nonlinear characteristics of the time series. The empirical study based on the model used daily data from the S&P 500 stock index during the global financial crisis from 2005 to 2012. The results provide four breakpoints of the period, which divide the contagion into four stages: stationary, local outbreak, global outbreak, and recovery period. An additional significant result is the obvious chaos characteristic difference in the largest Lyapunov exponents and the standard deviation at various stages, particularly at the local outbreak stage.
The Asian crisis contagion: A dynamic correlation approach analysis
Directory of Open Access Journals (Sweden)
Essaadi Essahbi
2009-01-01
Full Text Available In this paper we are testing for contagion caused by the Thai baht collapse of July 1997. In line with earlier work, shift-contagion is defined as a structural change within the international propagation mechanisms of financial shocks. We adopt Bai and Perron's (1998 structural break approach in order to detect the endogenous break points of the pair-wise time-varying correlations between Thailand and seven Asian stock market returns. Our approach enables us to solve the misspecification problem of the crisis window. Our results illustrate the existence of shift-contagion in the Asian crisis caused by the crisis in Thailand.
Contagion in Mass Killings and School Shootings
Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos
2015-01-01
Background Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Methods Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent dat...
Information mirages and financial contagion in an asset market experiment
Noussair, Charles; Xu, Yilong
2015-01-01
Purpose – The purpose of this paper is to consider whether asymmetric information about correlations between assets can induce financial contagion. Contagion, unjustified by fundamentals, would arise if participants react in one market to uninformative trades in the other market that actually convey
SUBPRIME CRISIS AND FINANCIAL CONTAGION: EVIDENCE FROM TUNISIA
Directory of Open Access Journals (Sweden)
Mongi GHARSELLAOUI
2013-01-01
Full Text Available The purpose of this paper is to study the subprime crisis while focusing on the phenomenon of financial contagion. Subprime crisis is a crisis that has hit the U.S. mortgage sector and helped to trigger the financial crisis of 2007-2009. In the context of this study, we are interested in exposing the subprime crisis and the contagion first point. The second point will be reserved for the transmission channels of contagion and the third point; we will try to assess the impact of liquidity on the capital market returns. This study shows that the Tunisian financial market does not seem to be very influenced by the subprime crisis. This can be explained by the intrinsic characteristics of the Tunisian market, an underdeveloped market and elemental thing that can make him more or less immune to that crisis.
International Nuclear Information System (INIS)
Seeliger, D.
1983-01-01
The discovery of the neutron by J. Chadwick in 1932 was a milestone in the development of nuclear physics and technology. Apart from basic findings on the structure of atomic nuclei, this discovery has found various fields of application among which nuclear power technology is the most important. The relation between historical impact and topicality of certain objects of investigation in neutron physics is outlined on the basis of some lines of development. (author)
A method of emotion contagion for crowd evacuation
Cao, Mengxiao; Zhang, Guijuan; Wang, Mengsi; Lu, Dianjie; Liu, Hong
2017-10-01
The current evacuation model does not consider the impact of emotion and personality on crowd evacuation. Thus, there is large difference between evacuation results and the real-life behavior of the crowd. In order to generate more realistic crowd evacuation results, we present a method of emotion contagion for crowd evacuation. First, we combine OCEAN (Openness, Extroversion, Agreeableness, Neuroticism, Conscientiousness) model and SIS (Susceptible Infected Susceptible) model to construct the P-SIS (Personalized SIS) emotional contagion model. The P-SIS model shows the diversity of individuals in crowd effectively. Second, we couple the P-SIS model with the social force model to simulate emotional contagion on crowd evacuation. Finally, the photo-realistic rendering method is employed to obtain the animation of crowd evacuation. Experimental results show that our method can simulate crowd evacuation realistically and has guiding significance for crowd evacuation in the emergency circumstances.
Quantum signatures of chaos or quantum chaos?
International Nuclear Information System (INIS)
Bunakov, V. E.
2016-01-01
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Quantum signatures of chaos or quantum chaos?
Energy Technology Data Exchange (ETDEWEB)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Avalanche outbreaks emerging in cooperative contagions
Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter
2015-11-01
The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.
Popularity Contagion among Adolescents
Marks, Peter E. L.; Cillessen, Antonius H. N.; Crick, Nicki R.
2012-01-01
This study aimed to support the theory of popularity contagion, which posits that popularity spreads among friends spontaneously and regardless of behavioral changes. Peer nominations of status and behavior were collected annually between 6th and 12th grades from a total of 1062 adolescents. Longitudinal hypotheses were mostly supported using path…
Contagion in International Stock Markets during the Sub Prime Mortgage Crisis
Directory of Open Access Journals (Sweden)
Hsien-Yi Lee
2012-01-01
Full Text Available The sub prime mortgages crises took place in July, 2007 in US which causes the large scare in the global financial markets, and the international stock and foreign market suffer heavy shock. Using twenty international stock indexes, this study examines whether any contagion effect occurred across international markets after the sub-prime financial mortgage crisis in US. Using the heteroscedasticity biases based on correlation coefficients to examine the existence of the contagion effect, this study shows that stock markets of some countries (namely Hong Kong, Taiwan, Australia and New Zealand did suffer from the contagion effect.
The global financial crisis: Is there any contagion between real estate and equity markets?
Hui, Eddie Chi-man; Chan, Ka Kwan Kevin
2014-07-01
This study examines contagion across equity and securitized real estate markets of Hong Kong, US and UK during the global financial crisis by the Forbes-Rigobon, coskewness and cokurtosis tests. In particular, this is the first study to use the cokurtosis test to examine contagion between real estate and equity markets. The results show that the cokurtosis test can detect additional channels of contagion, and hence is a more powerful test. In contrary to Fry et al. (2010), we find that the cokurtosis test shows a highly significant evidence of contagion between the equity and real estate markets in both directions. In particular, the contagion between US's equity and real estate markets is the most significant. This reflects that US is the centre of shock of the global financial crisis.
Mathematical modelling of complex contagion on clustered networks
Directory of Open Access Journals (Sweden)
David J. P. O'Sullivan
2015-09-01
Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.
Defining contagion literacy: a Delphi study
Kilstadius, Margareta; Gericke, Niklas
2017-11-01
Against the background of climate change, which enables infectious diseases to move their frontiers and the increasing global mobility, which make people more exposed to contagion, we as citizens need to relate to this new scenario. A greater number of infectious diseases may also potentially lead to an increased need to use antibiotics and anti-parasitic substances. In view of this, the aim of this study was to identify the health literacy needed in the contemporary world and specify what should be taught in compulsory school. We present the findings of a Delphi study, performed in Sweden, regarding the opinions on contagion among experts in the field. We used Nutbeam's framework of health literacy and related it to Bloom's taxonomy of educational objectives in order to analyse and categorise the experts' responses, which were categorised into six main content themes: contagions, transmission routes, sexually transmitted diseases, hygiene, vaccinations and use of antibiotics and antibiotic resistance. These themes were then divided into the three levels of Nutbeam's framework: functional health literacy, which is about knowledge and understanding, interactive health literacy, which is about developing personal qualities and skills that promote health, and critical health literacy, which is about social and cognitive skills related to analysis and critical reflection. The implications for communication and education are then discussed and what should be taught in compulsory school is identified.
Gonzalez-Hermosillo Gonzalez, B.M.
2008-01-01
This research examines the role of contagion in transmitting shocks across markets. One possible conduit for contagion is shifts in international investors’ risk appetite. The aim of this research is to propose a methodology to address the current gaps in the literature of contagion. The thesis
Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.
Directory of Open Access Journals (Sweden)
Mauricio Herrera
Full Text Available There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.
Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.
Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica
2015-01-01
There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.
Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks
2015-01-01
There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions. PMID:26505473
Putting Like a Pro: The Role of Positive Contagion in Golf Performance and Perception
Lee, Charles; Linkenauger, Sally A.; Bakdash, Jonathan Z.; Joy-Gaba, Jennifer A.; Profitt, Dennis R.
2011-01-01
Many amateur athletes believe that using a professional athlete's equipment can improve their performance. Such equipment can be said to be affected with positive contagion, which refers to the belief of transference of beneficial properties between animate persons/objects to previously neutral objects. In this experiment, positive contagion was induced by telling participants in one group that a putter previously belonged to a professional golfer. The effect of positive contagion was examined for perception and performance in a golf putting task. Individuals who believed they were using the professional golfer's putter perceived the size of the golf hole to be larger than golfers without such a belief and also had better performance, sinking more putts. These results provide empirical support for anecdotes, which allege that using objects with positive contagion can improve performance, and further suggest perception can be modulated by positive contagion. PMID:22028804
Directory of Open Access Journals (Sweden)
Wang Kuan-Min
2013-01-01
Full Text Available This paper extends recent investigations into risk contagion effects on stock markets to the Vietnamese stock market. Daily data spanning October 9, 2006 to May 3, 2012 are sourced to empirically validate the contagion effects between stock markets in Vietnam, and China, Japan, Singapore, and the US. To facilitate the validation of contagion effects with market-related coefficients, this paper constructs a bivariate EGARCH model of dynamic conditional correlation coefficients. Using the correlation contagion test and Dungey et al.’s (2005 contagion test, we find contagion effects between the Vietnamese and four other stock markets, namely Japan, Singapore, China, and the US. Second, we show that the Japanese stock market causes stronger contagion risk in the Vietnamese stock market compared to the stock markets of China, Singapore, and the US. Finally, we show that the Chinese and US stock markets cause weaker contagion effects in the Vietnamese stock market because of stronger interdependence effects between the former two markets.
THE CONTAGION EFFECT AND THE RESPONSE OF THE EUROZONE TO THE SOVEREIGN DEBT PROBLEM
Directory of Open Access Journals (Sweden)
Claudiu Peptine
2013-09-01
Full Text Available This paper addresses a number of phenomena that characterize the euro area, one of them being the contagion effect. This is one of the mechanisms by which financial instability becomes so widespread that the crisis reached global dimensions. The following lines argue that contagion plays a crucial role in exacerbating the sovereign debt problems in the Eurozone. Consequently, the management of the crisis by the competent authorities should focus on policy measures that are able to mitigate the contagion. Therefore, many of the European Central Bank interventions (ECB in the European Union were motivated by the need for understanding and mitigating the contagion phenomenon.
Foreign Exchange Market Contagion in the Asian Crisis: A Regression-based Approach
van Horen, N.; Jager, H.; Klaassen, F.J.G.M.
2006-01-01
This paper investigates whether, during the Asian crisis, contagion occurred from Thailand to the other crisis countries through the foreign exchange market, and, if so, determines the contribution of this contagion to the crisis. More specifically, we examine whether the effect of the exchange
Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.
Directory of Open Access Journals (Sweden)
Aamena Alshamsi
Full Text Available Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.
Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.
Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad
2015-01-01
Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.
Social contagions on correlated multiplex networks
Wang, Wei; Cai, Meng; Zheng, Muhua
2018-06-01
The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.
The Simple Rules of Social Contagion
Hodas, Nathan O.; Lerman, Kristina
2014-03-01
It is commonly believed that information spreads between individuals like a pathogen, with each exposure by an informed friend potentially resulting in a naive individual becoming infected. However, empirical studies of social media suggest that individual response to repeated exposure to information is far more complex. As a proxy for intervention experiments, we compare user responses to multiple exposures on two different social media sites, Twitter and Digg. We show that the position of exposing messages on the user-interface strongly affects social contagion. Accounting for this visibility significantly simplifies the dynamics of social contagion. The likelihood an individual will spread information increases monotonically with exposure, while explicit feedback about how many friends have previously spread it increases the likelihood of a response. We provide a framework for unifying information visibility, divided attention, and explicit social feedback to predict the temporal dynamics of user behavior.
Individual differences in emotional contagion of salespersons: Its effect on performance and burnout
W.J.M.I. Verbeke (Willem)
1997-01-01
textabstractThis article explores the emotional contagion hypothesis, proposed by Hatfield, Cacioppo, and Rapson (1994), in a sales context. Specifically, the emotional contagion hypothesis explains how the emotions of two people (e.g., salesperson and customer) during a conversation are transmitted
Park, Sangin; Choi, Soo Ji; Mun, Sungchul; Whang, Mincheol
2018-04-19
The purpose of this study was to measure emotional contagion, determine its direction, and compare the intensity between positive and negative contagion using the synchronization of heart rhythm pattern (HRP). A total of 64 undergraduate students (32 women and 32 men) participated in the experiment, and were randomly categorized as either leaders or followers. Followers were required to imitate the facial expression (happy and sad) of the leader (emotional contagion) or of a facial image (emotional non-contagion). We found that emotional contagion significantly increased the correlation coefficient between leaders and followers' HRP for both positive and negative emotions, but emotional non-contagion did not. There was no significant difference in leaders' HRP before and after contagion, while followers' HRP changed significantly. During emotional contagion, the correlation coefficient for negative emotion was significantly higher than for positive emotion. The proposed method could measure low or high emotional contagion and determine its direction quantitatively. In our application study, a sales manager (leader) transmitted a positive emotion to a sales employee (follower), and the groups are organized as HEC or LEC (high or low emotional contagion) groups by evaluating the intensity of emotional contagion based on HRP synchrony between them. HEC group's performance was enhanced compared to the LEC group. Copyright © 2018. Published by Elsevier Inc.
Contagion risk in endogenous financial networks
International Nuclear Information System (INIS)
Li, Shouwei; Sui, Xin
2016-01-01
Highlights: • We propose an endogenous financial network model. • Endogenous networks include interbank networks, inter-firm networks and bank-firm networks. • We investigate contagion risk in endogenous financial networks. - Abstract: In this paper, we investigate contagion risk in an endogenous financial network, which is characterized by credit relationships connecting downstream and upstream firms, interbank credit relationships and credit relationships connecting firms and banks. The findings suggest that: increasing the number of potential lenders randomly selected can lead to an increase in the number of bank bankruptcies, while the number of firm bankruptcies presents a trend of increase after the decrease; after the intensity of choice parameter rises beyond a threshold, the number of bankruptcies in three sectors (downstream firms, upstream firms and banks) shows a relatively large margin of increase, and keeps at a relatively high level; there exists different trends for bankruptcies in different sectors with the change of the parameter of credits’ interest rates.
Optimal community structure for social contagions
Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.
2018-05-01
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
Revisiting the Contagion Hypothesis: Terrorism, News Coverage, and Copycat Attacks
Directory of Open Access Journals (Sweden)
Brigitte L. Nacos
2010-11-01
Full Text Available Contagion refers here to a form of copycat crime, whereby violence-prone individuals and groups imitate forms of (political violence attractive to them, based on examples usually popularized by mass media. In the late 1960s and early 1970s, for instance, Palestinian terrorists staged a number of spectacular hijackings of commercial airliners, exploited the often prolonged hostage situations to win massive news coverage for their political grievances, and appeared to inspire other groups to follow their example. Although terrorism scholars, government officials, and journalists have pondered the question of mass-mediated contagion for decades, they have arrived at different conclusions. Because of significant advances in communication and information technology, and changes in the global media landscape during the last decade or so, this article reconsiders arguments surrounding contagion theories and contends that various types of media are indeed important carriers of the virus of hate and political violence.
Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion.
Saito, Yumi; Yuki, Shoko; Seki, Yoshimasa; Kagawa, Hiroko; Okanoya, Kazuo
2016-11-01
Emotional contagion occurs when an individual acquires the emotional state of another via social cues, and is an important component of empathy. Empathic responses seen in rodents are often explained by emotional contagion. Rats emit 50kHz ultrasonic vocalizations (USVs) in positive contexts, and emit 22kHz USVs in negative contexts. We tested whether rats show positive or negative emotional contagion after hearing conspecific USVs via a cognitive bias task. We hypothesized that animals in positive emotional states would perceive an ambiguous cue as being good (optimistic bias) whereas animals in negative states would perceive the same cue as being bad (pessimistic bias). Rats were trained to respond differently to two sounds with distinct pitches, each of which signaled either a positive or a negative outcome. An ambiguous cue with a frequency falling between the two stimuli tested whether rats interpreted it as positive or negative. Results showed that rats responded to ambiguous cues as positive when they heard the 50kHz USV (positive vocalizations) and negative when they heard the 22kHz USV (negative vocalizations). This suggests that conspecific USVs can evoke emotional contagion, both for positive and negative emotions, to change the affective states in receivers. Copyright © 2016 Elsevier B.V. All rights reserved.
Manera, Valeria; Grandi, Elisa; Colle, Livia
2013-01-01
A smile is a context-dependent emotional expression. A smiling face can signal the experience of enjoyable emotions, but people can also smile to convince another person that enjoyment is occurring when it is not. For this reason, the ability to discriminate between felt and faked enjoyment expressions is a crucial social skill. Despite its importance, adults show remarkable individual variation in this ability. Revealing the factors responsible for these huge individual differences is a key challenge in this domain. Here we investigated, on a large sample of participants, whether individual differences in smile authenticity recognition are accounted for by differences in the predisposition to experience other people's emotions, i.e., by susceptibility to emotional contagion. Results showed that susceptibility to emotional contagion for negative emotions increased smile authenticity detection, while susceptibility to emotional contagion for positive emotions worsened detection performance, because it leaded to categorize most of the faked smiles as sincere. These findings suggest that susceptibility to emotional contagion plays a key role in complex emotion recognition, and point out the importance of analyzing the tendency to experience other people's positive and negative emotions as separate abilities.
Evidence of complex contagion of information in social media: An experiment using Twitter bots.
Directory of Open Access Journals (Sweden)
Bjarke Mønsted
Full Text Available It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion, or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using 'social bots' deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.
Evidence of complex contagion of information in social media: An experiment using Twitter bots.
Mønsted, Bjarke; Sapieżyński, Piotr; Ferrara, Emilio; Lehmann, Sune
2017-01-01
It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion), or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion)? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using 'social bots' deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.
Measuring Emotional Contagion in Social Media.
Ferrara, Emilio; Yang, Zeyao
2015-01-01
Social media are used as main discussion channels by millions of individuals every day. The content individuals produce in daily social-media-based micro-communications, and the emotions therein expressed, may impact the emotional states of others. A recent experiment performed on Facebook hypothesized that emotions spread online, even in absence of non-verbal cues typical of in-person interactions, and that individuals are more likely to adopt positive or negative emotions if these are over-expressed in their social network. Experiments of this type, however, raise ethical concerns, as they require massive-scale content manipulation with unknown consequences for the individuals therein involved. Here, we study the dynamics of emotional contagion using a random sample of Twitter users, whose activity (and the stimuli they were exposed to) was observed during a week of September 2014. Rather than manipulating content, we devise a null model that discounts some confounding factors (including the effect of emotional contagion). We measure the emotional valence of content the users are exposed to before posting their own tweets. We determine that on average a negative post follows an over-exposure to 4.34% more negative content than baseline, while positive posts occur after an average over-exposure to 4.50% more positive contents. We highlight the presence of a linear relationship between the average emotional valence of the stimuli users are exposed to, and that of the responses they produce. We also identify two different classes of individuals: highly and scarcely susceptible to emotional contagion. Highly susceptible users are significantly less inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to adopt positive emotions. In general, the likelihood of adopting positive emotions is much greater than that of negative emotions.
Measuring Emotional Contagion in Social Media.
Directory of Open Access Journals (Sweden)
Emilio Ferrara
Full Text Available Social media are used as main discussion channels by millions of individuals every day. The content individuals produce in daily social-media-based micro-communications, and the emotions therein expressed, may impact the emotional states of others. A recent experiment performed on Facebook hypothesized that emotions spread online, even in absence of non-verbal cues typical of in-person interactions, and that individuals are more likely to adopt positive or negative emotions if these are over-expressed in their social network. Experiments of this type, however, raise ethical concerns, as they require massive-scale content manipulation with unknown consequences for the individuals therein involved. Here, we study the dynamics of emotional contagion using a random sample of Twitter users, whose activity (and the stimuli they were exposed to was observed during a week of September 2014. Rather than manipulating content, we devise a null model that discounts some confounding factors (including the effect of emotional contagion. We measure the emotional valence of content the users are exposed to before posting their own tweets. We determine that on average a negative post follows an over-exposure to 4.34% more negative content than baseline, while positive posts occur after an average over-exposure to 4.50% more positive contents. We highlight the presence of a linear relationship between the average emotional valence of the stimuli users are exposed to, and that of the responses they produce. We also identify two different classes of individuals: highly and scarcely susceptible to emotional contagion. Highly susceptible users are significantly less inclined to adopt negative emotions than the scarcely susceptible ones, but equally likely to adopt positive emotions. In general, the likelihood of adopting positive emotions is much greater than that of negative emotions.
International Nuclear Information System (INIS)
Steiner, F.
1994-01-01
A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)
Capacity for Empathy and Emotional Contagion in Those With Psychopathic Personalities
Directory of Open Access Journals (Sweden)
Cherie Luckhurst
2017-10-01
Full Text Available People with psychopathic traits are sometimes adept at recognizing the emotions of others and using this knowledge in anti-social ways. However, data from incarcerated psychopaths suggest that they are incapable of true empathy. In this paper, we describe three studies that link psychopathic personality to emotional contagion and empathy, and we offer suggestions for reconciling the seemingly conflicting data. While most studies of psychopathic personality assess incarcerated respondents, the resulting data may not be generalizable to non-criminals; participants in these studies were recruited from the general population. The research confirms that empathy and emotional contagion are positively correlated and that each is negatively correlated with psychopathy, as expected. Unique to these studies is the finding that, when instructed, those with psychopathic traits can easily “catch” the emotions of others via the steps of the emotional contagion pathway, thus implying their capacity for empathy. However, without instruction, those with psychopathic traits did not automatically catch others’ emotions.
BRICS Countries and Democratic Contagion
Directory of Open Access Journals (Sweden)
Anna Bruno
2015-05-01
Full Text Available The article explores whether the interstate dynamics of the BRICS can activate those processes of convergence of politicalregimes and practices known as “democratic contagion.” As this contagion was experienced during the “third wave” ofdemocratization, mainly because of homogeneity among states and structural conditions for democratic attraction, theBRICS are not likely to repeat these dynamics. On the contrary, the only real constitutional homogeneity among the BRICScountries is the standard of non-interference in the internal affairs of each member. Non-interference also means abstainingfrom any initiative to condition the transformation of political regimes in consideration of the same interstate cooperation. Thedynamics of the BRICS shows that different political regimes can promote institutionalized forms of interstate cooperationwithout any mutual contamination at the constitutional level. The theories of “transition” and “democratic contagion” areinsufficient to understand these dynamics in the context of the BRICS; for this reason, the theory of democratic transitioncannot provide an adequate analysis of BRICS. With its members “split in unity,” as an institution the BRICS suggests anevolution toward a model of “not eurocentric dependence” that can overcome the “peripheral realism” of the role of eachstate in its own foreign policy.
Alcoholism, a contagious disease. A contribution towards an anthropological definition of contagion.
Fainzang, S
1996-12-01
The goal of this article is to show, from the discourses of drinkers' spouses, members of a "cured-drinkers" movement in France very different from the AA, what the idea of the contagious character of alcoholism means in the subjects' representations and by extension, what the idea of contagion may contain when seen from an anthropological perspective. This work rests on the observation that many people consider that their spouse's alcoholism makes them sick, and tend to identify with the sick person by finding effects of alcoholism on their own bodies. The notion of contagion qualifies here the perception of the impact of the other's sickness on oneself, by physical and social proximity to the drinker, insofar as the conditions for contagion to be possible include not only sharing the same physical (domestic) space, but also the existence of a social bond.
Pure Contagion and Investors Shifting Risk Appetite; Analytical Issues and Empirical Evidence
Manmohan S. Kumar; Avinash Persaud
2001-01-01
This paper discusses a "pure" form of financial contagion, unrelated to economic fundamentals - investors' shifting appetite for risk. It provides an analytical framework for identifying changes in investors' risk appetite and discusses whether it is possible to directly measure them in a way that can enable policy makers to differentiate between financial contagion and domestic fundamentals as the immediate source of a crisis. Daily measures of risk appetite are computed and their usefulness...
Contagion effect in Latin America big three
Directory of Open Access Journals (Sweden)
Marcos C. Holanda
2003-09-01
Full Text Available The article investigates the occurrence of contagion among the three main economies of Latin America during the second half of the 90's. The investigation is based on the Brady Bonds market for Brazil, Mexico and Argentina. Three methodologies are applied to quantify the contagion effect: correlation of Brady Bonds price, analyses of residuals of estimated regressions and signal extraction analyses through the Kalman filter.O artigo estuda a ocorrência de contágio entre as três principais economias da América Latina na segunda metade dos anos 90. O estudo baseia-se na análise do mercado de Brady Bonds do Brasil, México e Argentina. Três metodologias são aplicadas para medir o efeito contágio: correlação dos preços dos Bradies, análise do comportamento dos resíduos de regressões estimadas e extração de sinal a partir do filtro de Kalman.
Overview of Financial Contagion Channels in the Banking Sector of Baltic States
Directory of Open Access Journals (Sweden)
Laura Gudelytė
2014-10-01
Full Text Available AbstractThis article aims to determine and analyse the main features of channels of financial contagion in the banking sector of Baltic States. The most relevant channels seem to be the risk of common lender, the channel of real estate prices the channel of other macroeconomic shocks and the channel of volatility. This paper contributes to the further analysis of internal and external causes of financial crisis and its transmission channels in banking sector in Baltic States.Purpose To indicate and explain main problems related to the systemic risk and the channels of financial contagion in the banking sector of Baltic States.Design/methodology/approach – general overview of research papers presenting concepts and methodologies of assessment of systemic risk of the banking sector, statistical analysis of financial data.Findings determination of the main channels and extent of financial contagion that are relevant to banking sector of Baltic States.Research limitations/implications – the lack of information concerning the liquidity and asset structure of banking sector of Baltic States and the real estate prices in Baltic States. The most common problem analysing the financial contagion and systemic risk is the lack of information (especially about the structure of liabilities and assets of financial institutions, its maturity and the changing new banking regulatory conditions. Due the lack of data it is impossible to create stable and reliable statistical models describing the stochastic behaviour of financial contagion. We do not take into account the political factors concerning the reforms of financial market supervision that have also the impact on financial contagion and systemic risk ant the point of view to Baltic States of foreign investors. The findings of this article should ground the macro-prudential policy in the small countries of supervising institutions focussing on the external factors.Practical implications
The Stability of Interbank Market Network: A Perspective on Contagion and Risk Sharing
Directory of Open Access Journals (Sweden)
Chi Xie
2016-01-01
Full Text Available As an important part of the financial system, interbank market provides banks with liquidity and credit lending and also is the main channel for risk contagion. In this paper, we test the existence of systematic risk contagion within the Chinese interbank market. By building the networks of the Chinese interbank market for each year and using the measure of mutual information, we quantitatively detect the changes of interbank market networks and observe that the correlations between banks become increasingly tighter in recent years. With the bilateral risk exposure among Chinese listed commercial banks, we find that the possibility of systemic risk contagion in Chinese interbank market is fairly small. But of great concern on each individual bank, the matter is different. Our simulation shows that the failures of three special banks (i.e., Agricultural Bank of China and Bank of China and Industrial and Commercial Bank of China most likely lead to systemic risk contagion. Furthermore, we test the antirisk ability of the Chinese interbank market from the perspective of risk sharing and discover that the interbank market is stable when the loss scale is lower than forty percent of banks’ total core capital.
An emotional contagion model for heterogeneous social media with multiple behaviors
Xiong, Xi; Li, Yuanyuan; Qiao, Shaojie; Han, Nan; Wu, Yue; Peng, Jing; Li, Binyong
2018-01-01
The emotion varies and propagates with the spatial and temporal information of individuals through social media, which uncovers several interaction mechanisms and features the community structure in order to facilitate individuals' communication and emotional contagion in social networks. Aiming to show the detailed process and characteristics of emotional contagion within social media, we propose an emotional independent cascade model in which individual emotion can affect the subsequent emotion of his/her friends. The transmissibility is introduced to measure the capability of propagating emotion with respect to an individual in social networks. By analyzing the patterns of emotional contagion on Twitter data, we find that the value of transmissibility differs on different layers and on different community structures. Extensive experiments were conducted and the results reveal that, the polar emotion of hub users can lead to the disappearance of opposite emotion, and the transmissibility makes no sense. The final emotional distribution depends on the initial emotional distribution and the transmissibilities. Individuals from a small community are more likely to change their mood by the influence of community leaders. In addition, we compared the proposed model with two other models, the emotion-based spreader-ignorant-stifler model and the standard independent cascade model. The results demonstrate that the proposed model can reflect the real-world situation of emotional contagion for heterogeneous social media while the computational complexities of all these three models are similar.
Mathematical modelling of complex contagion on clustered networks
O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James
2015-09-01
The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.
Kuga, Kazuki; Tanimoto, Jun
2018-02-01
We consider two imperfect ways to protect against an infectious disease such as influenza, namely vaccination giving only partial immunity and a defense against contagion such as wearing a mask. We build up a new analytic framework considering those two cases instead of perfect vaccination, conventionally assumed as a premise, with the assumption of an infinite and well-mixed population. Our framework also considers three different strategy-updating rules based on evolutionary game theory: conventional pairwise comparison with one randomly selected agent, another concept of pairwise comparison referring to a social average, and direct alternative selection not depending on the usual copying concept. We successfully obtain a phase diagram in which vaccination coverage at equilibrium can be compared when assuming the model of either imperfect vaccination or a defense against contagion. The obtained phase diagram reveals that a defense against contagion is marginally inferior to an imperfect vaccination as long as the same coefficient value is used. Highlights - We build a new analytical framework for a vaccination game combined with the susceptible-infected-recovered (SIR) model. - Our model can evaluate imperfect provisions such as vaccination giving only partial immunity and a defense against contagion. - We obtain a phase diagram with which to compare the quantitative effects of partial vaccination and a defense against contagion.
Pure contagion effects in international banking: The case of BCCI’s failure
Angelos Kanas
2005-01-01
We test for pure contagion effects in international banking arising from the failure of the Bank of Credit and Commerce International (BCCI), one of the largest bank failures in the world. We focused on large individual banks in three developed countries where BCCI had established operations, namely the UK, the US, and Canada. Using event study methodology, we tested for contagion effects using time windows surrounding several known BCCI-related announcements. Our analysis provides strong evi...
Huwe, Terence K.
2009-01-01
"Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with…
Chaos in neurons and its application: perspective of chaos engineering.
Hirata, Yoshito; Oku, Makito; Aihara, Kazuyuki
2012-12-01
We review our recent work on chaos in neurons and its application to neural networks from perspective of chaos engineering. Especially, we analyze a dataset of a squid giant axon by newly combining our previous work of identifying Devaney's chaos with surrogate data analysis, and show that an axon can behave chaotically. Based on this knowledge, we use a chaotic neuron model to investigate possible information processing in the brain.
Voting contagion: Modeling and analysis of a century of U.S. presidential elections
de Aguiar, Marcus A. M.
2017-01-01
Social influence plays an important role in human behavior and decisions. Sources of influence can be divided as external, which are independent of social context, or as originating from peers, such as family and friends. An important question is how to disentangle the social contagion by peers from external influences. While a variety of experimental and observational studies provided insight into this problem, identifying the extent of contagion based on large-scale observational data with an unknown network structure remains largely unexplored. By bridging the gap between the large-scale complex systems perspective of collective human dynamics and the detailed approach of social sciences, we present a parsimonious model of social influence, and apply it to a central topic in political science—elections and voting behavior. We provide an analytical expression of the county vote-share distribution, which is in excellent agreement with almost a century of observed U.S. presidential election data. Analyzing the social influence topography over this period reveals an abrupt phase transition from low to high levels of social contagion, and robust differences among regions. These results suggest that social contagion effects are becoming more instrumental in shaping large-scale collective political behavior, with implications on democratic electoral processes and policies. PMID:28542409
Contagion Effect of Natural Disaster and Financial Crisis Events on International Stock Markets
Directory of Open Access Journals (Sweden)
Kuo-Jung Lee
2018-03-01
Full Text Available In the contemporary world bustling with global trade, a natural disaster or financial crisis in one country (or region can cause substantial economic losses and turbulence in the local financial markets, which may then affect the economic activities and financial assets of other countries (or regions. This study focuses on the major natural disasters that occurred worldwide during the last decade, especially those in the Asia–Pacific region, and the economic effects of global financial crises. The heteroscedasticity bias correlation coefficient method and exponential general autoregressive conditional heteroscedasticity model are employed to compare the contagion effect in the stock markets of the initiating country on other countries, determining whether economically devastating factors have contagion or spillover effects on other countries. The empirical results indicate that among all the natural disasters considered, the 2008 Sichuan Earthquake in China caused the most substantial contagion effect in the stock markets of neighboring Asian countries. Regarding financial crises, the financial tsunami triggered by the secondary mortgage fallout in the United States generated the strongest contagion effect on the stock markets of developing and emerging economies. When building a diversified global investment portfolio, investors should be aware of the risks of major natural disasters and financial incidents.
Wang Kuan-Min; Lai Hung-Cheng
2013-01-01
This paper extends recent investigations into risk contagion effects on stock markets to the Vietnamese stock market. Daily data spanning October 9, 2006 to May 3, 2012 are sourced to empirically validate the contagion effects between stock markets in Vietnam, and China, Japan, Singapore, and the US. To facilitate the validation of contagion effects with market-related coefficients, this paper constructs a bivariate EGARCH model of dynamic conditional correlation coefficients. Using the...
Contagion as Domino Effect in Global Stock Markets
T.D. Markwat (Thijs); H.J.W.G. Kole (Erik); D.J.C. van Dijk (Dick)
2008-01-01
textabstractThis paper shows that stock market contagion operates through a domino effect, where small crashes evolve into more severe crashes. Using a novel unifying framework we model the occurrence of local, regional and global crashes in terms of past occurrences of these different crashes and
Hunt, Brian R; Ott, Edward
2015-09-01
In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call "expansion entropy," and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.
Radical Contagion and Healthy Literature in Blackwood's Edinburgh Magazine.
Roberts, Jessica
During the late eighteenth and early nineteenth centuries, the revolution in France served as a catalyst for heavily allegorical political rhetoric, and the idea that radical politics were contagious became commonplace in conservative writing and oratory. This political contagion is described by Blackwood's as raging through the ranks of the rural poor as late as 1830. Confronted by this threat, Blackwood's promoted itself alternatively as a stimulant or as a cure for the metaphorical poison or infection that radical publications were seen to be spreading amongst the poor. Blackwood's also strove to maintain the political health of its readership by identifying healthy literature for its readers and the lower order. This article analyzes Blackwood's Edinburgh Magazine's application of the vocabulary of disease and contagion to radical politics and publications, and considers questions of taste, class, and Britishness in discussions of healthy reading habits.
Interbank exposures: quantifying the risk of contagion
C. H. Furfine
1999-01-01
This paper examines the likelihood that failure of one bank would cause the subsequent collapse of a large number of other banks. Using unique data on interbank payment flows, the magnitude of bilateral federal funds exposures is quantified. These exposures are used to simulate the impact of various failure scenarios, and the risk of contagion is found to be economically small.
Contagion effects of the global financial crisis in us and European real economy sectors
Directory of Open Access Journals (Sweden)
Kenourgios Dimitris
2014-01-01
Full Text Available This paper empirically investigates the contagion effects of the Global Financial Crisis (2007-2009 from the financial sector to the real economy by examining nine sectors of US and developed European region. We provide a regional analysis by testing stock market contagion on the aggregate level and the sector level, on the global level and the domestic/regional level. Results show evidence of global contagion in US and developed European aggregate stock market indices and all US sector indices, implying the limited benefits of portfolio diversification. On the other hand, most of the European regional sectors seem to be immune to the adverse effects of the crisis. Finally, all non-financial sectors of both geographical areas seem to be unaffected by their domestic financial systems. These findings have important implications for policy makers, investors and international organizations.
Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice
International Nuclear Information System (INIS)
Khellat, Farhad; Ghaderi, Akashe; Vasegh, Nastaran
2011-01-01
Highlights: → A globally nonlocal coupled map lattice is introduced. → A sufficient condition for the existence of Li-Yorke chaos is determined. → A sufficient condition for synchronous behaviors is obtained. - Abstract: This paper investigates a globally nonlocal coupled map lattice. A rigorous proof to the existence of chaos in the scene of Li-Yorke in that system is presented in terms of the Marotto theorem. Analytical sufficient conditions under which the system is chaotic, and has synchronous behaviors are determined, respectively. The wider regions associated with chaos and synchronous behaviors are shown by simulations. Spatiotemporal chaos, synchronous chaos and some other synchronous behaviors such as fixed points, 2-cycles and 2 2 -cycles are also shown by simulations for some values of the parameters.
International Nuclear Information System (INIS)
Cejnar, P.
2007-01-01
Chaos is a name given in physics to a branch which, within classical mechanics, studies the consequences of sensitive dependences of the behavior of physical systems on the starting conditions, i.e., the 'butterfly wing effect'. However, how to describe chaotic behavior in the world of quantum particles? It appears that quantum mechanics does not admit the sensitive dependence on the starting conditions, and moreover, predicts a substantial suppression of chaos also at the macroscopic level. Still, the quantum properties of systems that are chaotic in terms of classical mechanics differ basically from the properties of classically arranged systems. This topic is studied by a field of physics referred to as quantum chaos. (author)
Children's Knowledge of Contagion and Contamination as Causes of Illness.
Siegal, Michael
1988-01-01
Findings of three experiments indicated that preschool children have a more substantial knowledge of contagion and contamination than has been estimated previously. Results are discussed in terms of children's ability to understand causal relations. (RH)
International Nuclear Information System (INIS)
Friedrich, H.
1992-01-01
Rapid growth in the study of nonlinear dynamics and chaos in classical mechanics, has led physicists to reappraise their abandonment of this definition of atomic theory in favour of quantum mechanics adopted earlier this century. The concept of chaos in classical mechanics is examined in this paper and manifestations of chaos in quantum mechanics are explored. While quantum mechanics teaches that atomic particles must not be pictured as moving sharply in defined orbits, these precise orbits can be used to describe essential features of the measurable quantum mechanical spectra. (UK)
Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.
2013-01-01
: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation
Perrin, Paul B
2016-01-01
In her presidential address, N. J. Kaslow (see record 2015-33530-002) argued that psychologists have a responsibility to translate psychological science to the public and identifies various platforms for doing so. In this comment on her article, I advocate that psychology as a field immediately heed her call in the area of psychological science highlighting the media's contribution to contagion in mass shootings. I point out the psychological science documenting media contagion for suicide and mass shootings, the World Health Organization's (2008) guidelines for media in reporting suicide deaths to prevent that contagion, and discuss ways-based on Dr. Kaslow's suggestions-that psychologists can disseminate psychological science to prevent similar tragedies in the future. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Does chaos assist localization or delocalization?
Tan, Jintao; Lu, Gengbiao; Luo, Yunrong; Hai, Wenhua
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
Risk Measures and Contagion Matrix: an Application of CoVaR for the Brazilian Financial Market
Directory of Open Access Journals (Sweden)
Aléssio Tony Cavalcanti de Almeida
2012-12-01
Full Text Available The main point of this work is to assess how a financial distress in return series of the major Brazilian companies assets and relevant domestic market (Ibovespa and main international index (Dow Jones interact with each other, in an attempt to capture spillover effects. We try to capture the systemic risk, the contagion effect and the stress test. This paper uses the methodology CoVaR, described in the Adrian and Brunnermeier (2011 which use quantile regression. The main innovation of this work is the construction and estimation of the contagion matrix to domestic capital market. The results show that there is no relationship between risk measurements given by Value at Risk (VaR and CoVaR, moreover the systemic risk shows those assets that generate more negative externalities for the domestic financial market. The stress test indicates that a distress in domestic market indicator returns have more spillover effects on domestic papers than a distress in the international market returns. Finally, the contagion matrix reveals that the interrelationships of contagion between the firms’ returns are relevant sectorial evidence for assessment and management of risks.
[Shedding light on chaos theory].
Chou, Shieu-Ming
2004-06-01
Gleick (1987) said that only three twentieth century scientific theories would be important enough to continue be of use in the twenty-first century: The Theory of Relativity, Quantum Theory, and Chaos Theory. Chaos Theory has become a craze which is being used to forge a new scientific system. It has also been extensively applied in a variety of professions. The purpose of this article is to introduce chaos theory and its nursing applications. Chaos is a sign of regular order. This is to say that chaos theory emphasizes the intrinsic potential for regular order within disordered phenomena. It is to be hoped that this article will inspire more nursing scientists to apply this concept to clinical, research, or administrative fields in our profession.
ANALYZING CONTAGION FROM THE U.S. SUBPRIME MORTGAGE-BACKED SECURITIES MARKET
Directory of Open Access Journals (Sweden)
Lisa Sheenan
2017-12-01
Full Text Available This paper analyzes contagion from the U.S. subprime mortgage-backed securities market, represented by the ABX.HE indices, to several fixed income, equity and volatility markets in line with seminal literature on the subject. We analyze ‘spliced’ data set constructed in line with the literature, along with two traded ABX.HE indexes. A VAR framework is employed, firstly to extend existing analysis to include 2009, and then to analyze two traded indexes. In order to test the sensitivity of these results ABX returns are then included as an eighth endogenous variable in the VAR. Principal component analysis is employed to reduce the dimensionality of the data. The main principal component obtained is then included as an exogenous variable in the VAR framework and the sensitivity of these results is tested by including this principal component as an eighth endogenous variable. The results indicate evidence of contagion from the ABX indexes during the crisis of 2007-2009 but the source and intensity of this contagion varies across indexes. This highlights the differences across the three ABX data sets analyzed and suggests that splicing the ABX index may impact the results obtained. It also provides evidence that the traded ABX indexes are heterogeneous assets with varying sensitivities to risk factors during the crisis.
Bernet, Patrick M; Getzen, Thomas E
2008-03-01
Not-for-profit hospitals rely heavily on tax-exempt debt. Investor confidence in such instruments was shaken by the 1998 bankruptcy of the Allegheny Health and Education Research Foundation (AHERF), which was the largest U.S. not-for-profit failure up to that date and whose default was accompanied by claims of accounting irregularities. Such shocks can result in contagion whereby all hospitals are viewed as riskier. We test for the significance and duration of resulting contagion using an industry-specific model of interest cost determinants. Empirical tests indicate that contagion does occur, resulting in higher interest on new debt issues from other hospitals.
Kaszás, Bálint; Feudel, Ulrike; Tél, Tamás
2016-12-01
We investigate the death and revival of chaos under the impact of a monotonous time-dependent forcing that changes its strength with a non-negligible rate. Starting on a chaotic attractor it is found that the complexity of the dynamics remains very pronounced even when the driving amplitude has decayed to rather small values. When after the death of chaos the strength of the forcing is increased again with the same rate of change, chaos is found to revive but with a different history. This leads to the appearance of a hysteresis in the complexity of the dynamics. To characterize these dynamics, the concept of snapshot attractors is used, and the corresponding ensemble approach proves to be superior to a single trajectory description, that turns out to be nonrepresentative. The death (revival) of chaos is manifested in a drop (jump) of the standard deviation of one of the phase-space coordinates of the ensemble; the details of this chaos-nonchaos transition depend on the ratio of the characteristic times of the amplitude change and of the internal dynamics. It is demonstrated that chaos cannot die out as long as underlying transient chaos is present in the parameter space. As a condition for a "quasistatically slow" switch-off, we derive an inequality which cannot be fulfilled in practice over extended parameter ranges where transient chaos is present. These observations need to be taken into account when discussing the implications of "climate change scenarios" in any nonlinear dynamical system.
DEFF Research Database (Denmark)
Lindberg, Erik
1996-01-01
The chaotic behaviour of the Colpitts oscillator reported by M.P. Kennedy is further investigated by means of PSpice simulations. Chaos is also observed with the default Ebers-Moll BJT transistor model with no memory. When the model is extended with memory and losses chaos do not occur and a 3'rd...... order limit cycle is found. If the the forward Early voltage parameter is added chaos is observed again. An examination of the eigenvalues of the oscillator with the simple memoryless Ebers-Moll BJT injection model is presented. By adding bulk resistors to the model stable limit cycles of orders 1, 2, 3...
Noise tolerant spatiotemporal chaos computing.
Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L
2014-12-01
We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.
Cascading effect of contagion in Indian stock market: Evidence from reachable stocks
Directory of Open Access Journals (Sweden)
Rajan Sruthi
2017-12-01
Full Text Available The financial turbulence in a country percolates to another along the trajectories of reachable stocks owned by foreign investors. To indemnify the losses originating from the crisis country, foreign investors dispose of shares in other markets triggering a contagion in an unrelated market. This paper provides empirical evidence for the stock market crisis that spreads globally through investors owning international portfolios, with special reference to the global financial crisis of 2008–09. Using two-step Limited Information Maximum Likelihood estimation and Murphy-Topel variance estimate, the results show that reachability plays a crucial role in the transposal of distress from one country to another, explaining investor-induced contagion in the Indian stock market.
Enlightenment philosophers’ ideas about chaos
Directory of Open Access Journals (Sweden)
A. V. Kulik
2014-07-01
It is grounded that the philosopher and enlightener Johann Gottfried von Herder advanced an idea of objectivity of process of transformation chaos into order. It is shown that idea of «The law of nature» existing as for ordering chaos opened farreaching prospects for researches of interaction with chaos.
The cultural contagion of conflict
Gelfand, Michele; Shteynberg, Garriy; Lee, Tiane; Lun, Janetta; Lyons, Sarah; Bell, Chris; Chiao, Joan Y.; Bruss, C. Bayan; Al Dabbagh, May; Aycan, Zeynep; Abdel-Latif, Abdel-Hamid; Dagher, Munqith; Khashan, Hilal; Soomro, Nazar
2012-01-01
Anecdotal evidence abounds that conflicts between two individuals can spread across networks to involve a multitude of others. We advance a cultural transmission model of intergroup conflict where conflict contagion is seen as a consequence of universal human traits (ingroup preference, outgroup hostility; i.e. parochial altruism) which give their strongest expression in particular cultural contexts. Qualitative interviews conducted in the Middle East, USA and Canada suggest that parochial altruism processes vary across cultural groups and are most likely to occur in collectivistic cultural contexts that have high ingroup loyalty. Implications for future neuroscience and computational research needed to understand the emergence of intergroup conflict are discussed. PMID:22271785
Chaos Criminology: A critical analysis
McCarthy, Adrienne L.
There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.
Incorporating Contagion in Portfolio Credit Risk Models Using Network Theory
Directory of Open Access Journals (Sweden)
Ioannis Anagnostou
2018-01-01
Full Text Available Portfolio credit risk models estimate the range of potential losses due to defaults or deteriorations in credit quality. Most of these models perceive default correlation as fully captured by the dependence on a set of common underlying risk factors. In light of empirical evidence, the ability of such a conditional independence framework to accommodate for the occasional default clustering has been questioned repeatedly. Thus, financial institutions have relied on stressed correlations or alternative copulas with more extreme tail dependence. In this paper, we propose a different remedy—augmenting systematic risk factors with a contagious default mechanism which affects the entire universe of credits. We construct credit stress propagation networks and calibrate contagion parameters for infectious defaults. The resulting framework is implemented on synthetic test portfolios wherein the contagion effect is shown to have a significant impact on the tails of the loss distributions.
Risk Contagion in Chinese Banking Industry: A Transfer Entropy-Based Analysis
Directory of Open Access Journals (Sweden)
Jianping Li
2013-12-01
Full Text Available What is the impact of a bank failure on the whole banking industry? To resolve this issue, the paper develops a transfer entropy-based method to determine the interbank exposure matrix between banks. This method constructs the interbank market structure by calculating the transfer entropy matrix using bank stock price sequences. This paper also evaluates the stability of Chinese banking system by simulating the risk contagion process. This paper contributes to the literature on interbank contagion mainly in two ways: it establishes a convincing connection between interbank market and transfer entropy, and exploits the market information (stock price rather than presumptions to determine the interbank exposure matrix. Second, the empirical analysis provides an in depth understanding of the stability of the current Chinese banking system.
Simulation of emotional contagion using modified SIR model: A cellular automaton approach
Fu, Libi; Song, Weiguo; Lv, Wei; Lo, Siuming
2014-07-01
Emotion plays an important role in the decision-making of individuals in some emergency situations. The contagion of emotion may induce either normal or abnormal consolidated crowd behavior. This paper aims to simulate the dynamics of emotional contagion among crowds by modifying the epidemiological SIR model to a cellular automaton approach. This new cellular automaton model, entitled the “CA-SIRS model”, captures the dynamic process ‘susceptible-infected-recovered-susceptible', which is based on SIRS contagion in epidemiological theory. Moreover, in this new model, the process is integrated with individual movement. The simulation results of this model show that multiple waves and dynamical stability around a mean value will appear during emotion spreading. It was found that the proportion of initial infected individuals had little influence on the final stable proportion of infected population in a given system, and that infection frequency increased with an increase in the average crowd density. Our results further suggest that individual movement accelerates the spread speed of emotion and increases the stable proportion of infected population. Furthermore, decreasing the duration of an infection and the probability of reinfection can markedly reduce the number of infected individuals. It is hoped that this study will be helpful in crowd management and evacuation organization.
International Nuclear Information System (INIS)
Ge Zhengming; Hsu Maoyuan
2008-01-01
In this paper, chaos excited chaos synchronizations of generalized van der Pol systems with integral and fractional order are studied. Synchronizations of two identified autonomous generalized van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by the same function of chaotic states of a third nonautonomous or autonomous generalized van der Pol system. Numerical simulations, such as phase portraits, Poincare maps and state error plots are given. It is found that chaos excited chaos synchronizations exist for the fractional order systems with the total fractional order both less than and more than the number of the states of the integer order generalized van der Pol system
Erçetin, Şefika; Tekin, Ali
2014-01-01
The present work investigates global politics and political implications of social science and management with the aid of the latest complexity and chaos theories. Until now, deterministic chaos and nonlinear analysis have not been a focal point in this area of research. This book remedies this deficiency by utilizing these methods in the analysis of the subject matter. The authors provide the reader a detailed analysis on politics and its associated applications with the help of chaos theory, in a single edited volume.
Pintar, Matthew R; Resetarits, William J
2017-09-01
Habitat selection by colonizing organisms is an important factor in determining species abundance and community dynamics at multiple spatial scales. Many organisms select habitat patches based on intrinsic patch quality, but patches exist in complex landscapes linked by dispersal and colonization, forming metapopulations and metacommunities. Perceived patch quality can be influenced by neighbouring patches through spatial contagion, wherein perceived quality of one patch can extend beyond its borders and either increase or decrease the colonization of neighbouring patches and localities. These spatially explicit colonization dynamics can result in habitat compression, wherein more colonists occupy a patch or locality than in the absence of spatial context dependence. Previous work on contagion/compression focused primarily on the role of predators in driving colonization patterns. Our goal was to determine whether resource abundance can drive multi-scale colonization dynamics of aquatic beetles through the processes of contagion and compression in naturally colonized experimental pools. We established two levels (high/low quality) of within-patch resource abundances (leaf litter) using an experimental landscape of mesocosms, and assayed colonization by 35 species of aquatic beetles. Patches were arranged in localities (sets of two patches), which consisted of a combination of two patch-level resource levels in a 2 × 2 factorial design, allowing us to assay colonization at both locality and patch levels. We demonstrate that patterns of species abundance and richness of colonizing aquatic beetles are determined by patch quality and context-dependent processes at multiple spatial scales. Localities that consisted of at least one high-quality patch were colonized at equivalent rates that were higher than localities containing only low-quality patches, displaying regional reward contagion. In localities that consisted of one high- and one low-quality patch, reward
Stochastic Estimation via Polynomial Chaos
2015-10-01
AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic
An agent-based model for emotion contagion and competition in online social media
Fan, Rui; Xu, Ke; Zhao, Jichang
2018-04-01
Recent studies suggest that human emotions diffuse in not only real-world communities but also online social media. However, a comprehensive model that considers up-to-date findings and multiple online social media mechanisms is still missing. To bridge this vital gap, an agent-based model, which concurrently considers emotion influence and tie strength preferences, is presented to simulate the emotion contagion and competition. Our model well reproduces patterns observed in the empirical data, like anger's preference on weak ties, anger-dominated users' high vitalities and angry tweets' short retweet intervals, and anger's competitiveness in negative events. The comparison with a previously presented baseline model further demonstrates its effectiveness in modeling online emotion contagion. It is also surprisingly revealed by our model that as the ratio of anger approaches joy with a gap less than 12%, anger will eventually dominate the online social media and arrives the collective outrage in the cyber space. The critical gap disclosed here can be indeed warning signals at early stages for outrage control. Our model would shed lights on the study of multiple issues regarding emotion contagion and competition in terms of computer simulations.
Liquidity risk and contagion for liquid funds
Darolles , Serge; Dudek , Jeremy; Le Fol , Gaëlle
2014-01-01
Fund managers face liquidity problems but they have to distinguish the market liquidity risk implied by their assets and the funding liquidity risk. This latter is due to both the liquidity mismatch between assets and liabilities and the redemption risk due to the possible outflows from clients. The main contribution of this paper is the analysis of contagion looking at common market liquidity problems to detect funding liquidity problems. Using the CDS Bond Spread basis as a liquidity indica...
He, Temple; Habib, Salman
2013-09-01
Simple dynamical systems--with a small number of degrees of freedom--can behave in a complex manner due to the presence of chaos. Such systems are most often (idealized) limiting cases of more realistic situations. Isolating a small number of dynamical degrees of freedom in a realistically coupled system generically yields reduced equations with terms that can have a stochastic interpretation. In situations where both noise and chaos can potentially exist, it is not immediately obvious how Lyapunov exponents, key to characterizing chaos, should be properly defined. In this paper, we show how to do this in a class of well-defined noise-driven dynamical systems, derived from an underlying Hamiltonian model.
Shahzad, Syed Jawad Hussain; Nor, Safwan Mohd; Kumar, Ronald Ravinesh; Mensi, Walid
2017-01-01
This study examines the interdependence and contagion among US industry-level credit markets. We use daily data of 11 industries from 17 December 2007 to 31 December 2014 for the time-frequency, namely, wavelet squared coherence analysis. The empirical analysis reveals that Basic Materials (Utilities) industry credit market has the highest (lowest) interdependence with other industries. Basic Materials credit market passes cyclical effect to all other industries. The little ;shift-contagion; as defined by Forbes and Rigobon (2002) is examined using elliptical and Archimedean copulas on the short-run decomposed series obtained through Variational Mode Decomposition (VMD). The contagion effects between US industry-level credit markets mainly occurred during the global financial crisis of 2007-08.
Murphy, David
2011-01-01
About 20 years ago, while lost in the midst of his PhD research, the author mused over proposed titles for his thesis. He was pretty pleased with himself when he came up with "Chaos Rules" (the implied double meaning was deliberate), or more completely, "Chaos Rules: An Exploration of the Work of Instructional Designers in Distance Education." He…
Financial market volatility and contagion effect: A copula-multifractal volatility approach
Chen, Wang; Wei, Yu; Lang, Qiaoqi; Lin, Yu; Liu, Maojuan
2014-03-01
In this paper, we propose a new approach based on the multifractal volatility method (MFV) to study the contagion effect between the U.S. and Chinese stock markets. From recent studies, which reveal that multifractal characteristics exist in both developed and emerging financial markets, according to the econophysics literature we could draw conclusions as follows: Firstly, we estimate volatility using the multifractal volatility method, and find out that the MFV method performs best among other volatility models, such as GARCH-type and realized volatility models. Secondly, we analyze the tail dependence structure between the U.S. and Chinese stock market. The estimated static copula results for the entire period show that the SJC copula performs best, indicating asymmetric characteristics of the tail dependence structure. The estimated dynamic copula results show that the time-varying t copula achieves the best performance, which means the symmetry dynamic t copula is also a good choice, for it is easy to estimate and is able to depict both the upper and lower tail dependence structure. Finally, with the results of the previous two steps, we analyze the contagion effect between the U.S. and Chinese stock markets during the subprime mortgage crisis. The empirical results show that the subprime mortgage crisis started in the U.S. and that its stock market has had an obvious contagion effect on the Chinese stock market. Our empirical results should/might be useful for investors allocating their portfolios.
Chaos applications in telecommunications
Stavroulakis, Peter
2005-01-01
IntroductionPeter StavroulakisChaotic Signal Generation and Transmission Antonio Cândido Faleiros,Waldecir João Perrella,TâniaNunes Rabello,Adalberto Sampaio Santos, andNeiYoshihiro SomaChaotic Transceiver Design Arthur Fleming-DahlChaos-Based Modulation and DemodulationTechniques Francis C.M. Lau and Chi K. TseA Chaos Approach to Asynchronous DS-CDMASystems S. Callegari, G. Mazzini, R. Rovatti, and G. SettiChannel Equalization in Chaotic CommunicationSystems Mahmut CiftciOptical Communications using ChaoticTechniques Gregory D. VanWiggerenAPPENDIX AFundamental Concepts of the Theory ofChaos a
Energy Technology Data Exchange (ETDEWEB)
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Application of Chaos Theory to Engine Systems
Matsumoto, Kazuhiro; Diebner, Hans H.; Tsuda, Ichiro; Hosoi, Yukiharu
2008-01-01
We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is add...
Facebook’s Emotional Contagion Experiment as a Challenge to Research Ethics
Directory of Open Access Journals (Sweden)
Jukka Jouhki
2016-10-01
Full Text Available This article analyzes the ethical discussion focusing on the Facebook emotional contagion experiment published by the Proceedings of the National Academy of Sciences in 2014. The massive-scale experiment manipulated the News Feeds of a large amount of Facebook users and was successful in proving that emotional contagion happens also in online environments. However, the experiment caused ethical concerns within and outside academia mainly for two intertwined reasons, the first revolving around the idea of research as manipulation, and the second focusing on the problematic definition of informed consent. The article concurs with recent research that the era of social media and big data research are posing a significant challenge to research ethics, the practice and views of which are grounded in the pre social media era, and reflect the classical ethical stances of utilitarianism and deontology.
Hastily Formed Networks-Chaos to Recovery
2015-09-01
NETWORKS— CHAOS TO RECOVERY by Mark Arezzi September 2015 Thesis Co-Advisors: Douglas J. MacKinnon Brian Steckler THIS PAGE......systems to self-organize, adapt, and exert control over the chaos . Defining the role of communications requires an understanding of complexity, chaos
Bernard R. Parresol
2011-01-01
Studies of spatial patterns of landscapes are useful to quantify human impact, predict wildlife effects, or describe variability of landscape features. A common approach to identify and quantify landscape structure is with a landscape scale model known as a contagion index. A contagion index quantifies two distinct components of landscape diversity: composition and...
Puzzles in studies of quantum chaos
International Nuclear Information System (INIS)
Xu Gongou
1994-01-01
Puzzles in studies of quantum chaos are discussed. From the view of global properties of quantum states, it is clarified that quantum chaos originates from the break-down of invariant properties of quantum canonical transformations. There exist precise correspondences between quantum and classical chaos
Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi
2018-04-30
We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.
The Social Contagion of Antisocial Behavior The Social Contagion of Antisocial Behavior
Directory of Open Access Journals (Sweden)
Milena Tsvetkova
2015-01-01
Full Text Available Previous research has shown that reciprocity can be contagious when there is no option to repay the benefactor and the recipient instead channels repayment toward strangers. In this study, we test whether retaliation can also be contagious. Extending previous work on “paying it forward,” we tested two mechanisms for the social contagion of antisocial behavior: generalized reciprocity (a victim of antisocial behavior is more likely to pay it forward and third-party influence (an observer of antisocial behavior is more likely to emulate it. We used an online experiment with randomized trials to test the two hypothesized mechanisms and their interaction by manipulating the extent to which participants experienced and observed antisocial behavior. We found that people are more likely to harm others if they have been harmed and they are less likely to do so if they observe that others do not harm.
Directory of Open Access Journals (Sweden)
Elainie Alenkær Madsen
Full Text Available Contagious yawning has been reported for humans, dogs and several non-human primate species, and associated with empathy in humans and other primates. Still, the function, development and underlying mechanisms of contagious yawning remain unclear. Humans and dogs show a developmental increase in susceptibility to yawn contagion, with children showing an increase around the age of four, when also empathy-related behaviours and accurate identification of others' emotions begin to clearly evince. Explicit tests of yawn contagion in non-human apes have only involved adult individuals and examined the existence of conspecific yawn contagion. Here we report the first study of heterospecific contagious yawning in primates, and the ontogeny of susceptibility thereto in chimpanzees, Pan troglodytes verus. We examined whether emotional closeness, defined as attachment history with the yawning model, affected the strength of contagion, and compared the contagiousness of yawning to nose-wiping. Thirty-three orphaned chimpanzees observed an unfamiliar and familiar human (their surrogate human mother yawn, gape and nose-wipe. Yawning, but not nose-wiping, was contagious for juvenile chimpanzees, while infants were immune to contagion. Like humans and dogs, chimpanzees are subject to a developmental trend in susceptibility to contagious yawning, and respond to heterospecific yawn stimuli. Emotional closeness with the model did not affect contagion. The familiarity-biased social modulatory effect on yawn contagion previously found among some adult primates, seem to only emerge later in development, or be limited to interactions with conspecifics. The influence of the 'chameleon effect', targeted vs. generalised empathy, perspective-taking and visual attention on contagious yawning is discussed.
Dynamics of social contagions with limited contact capacity.
Wang, Wei; Shu, Panpan; Zhu, Yu-Xiao; Tang, Ming; Zhang, Yi-Cheng
2015-10-01
Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacities. Contact capacity plays an important role in dynamics of social contagions, which so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each adopted individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. There is a crossover phenomenon between the two types of dependence. More specifically, the crossover phenomenon can be induced by enlarging the contact capacity only when the degree exponent is above a critical degree exponent, while the final behavior adoption size always grows continuously for any contact capacity when degree exponent is below the critical degree exponent.
Directory of Open Access Journals (Sweden)
Boscoianu Mircea
2010-12-01
Full Text Available There is still a debate regarding a possible restoring of the confidence in European financial markets because there are still underlying problems from the super-sized finance that actually worsened. Anti crisis strategy efficiency and future costs of real reform make analysts more prudent in forecasts. In addition, a possible reduction risk appetite and the loss of confidence will fuel a negative perspective regarding the recovery of emerging economies, extreme fragile to regional or global contagion effects. In modern financial crises, the events spiral out of control, panic and contagion come very fast. Greek debt crisis is the most serious extreme financial event in the Eurozone, with severe contagion features. An analysis of Eurocontagion effects in the context of Greece crisis by using a dynamic version of the Hawkes jump-diffusion model is suggested.
Recent development of chaos theory in topological dynamics
Li, Jian; Ye, Xiangdong
2015-01-01
We give a summary on the recent development of chaos theory in topological dynamics, focusing on Li-Yorke chaos, Devaney chaos, distributional chaos, positive topological entropy, weakly mixing sets and so on, and their relationships.
Peer Contagion and Adolescent Depression: The Role of Failure Anticipation
van Zalk, Maarten Herman Walter; Kerr, Margaret; Branje, Susan J. T.; Stattin, Hakan; Meeus, Wim H. J.
2010-01-01
The current study investigated the mechanisms underlying peer contagion of depressive symptoms in adolescence. Five annual measurements of data were gathered from a large (N = 842) community-based network of adolescents (M = 14.3 years at first measurement). Results showed that, after controlling for selection and deselection of friends on the…
Directory of Open Access Journals (Sweden)
Tamás Meszéna
2017-04-01
Full Text Available We are faced with chaotic processes in many segments of our life: meteorology, environmental pollution, financial and economic processes, sociology, mechanics, electronics, biology, chemistry. The spreading of high-performance computers and the development of simulation methods made the examination of these processes easily available. Regular, periodic motions (pendulum, harmonic oscillatory motion, bouncing ball, as taught at secondary level, become chaotic even due minor changes. If it is true that the most considerable achievements of twentieth century physics were the theory of relativity, quantum mechanics and chaos theory, then it is presumably time to think about, examine and test how and to what extent chaos can be presented to the students. Here I would like to introduce a 12 lesson long facultative curriculum framework on chaos designed for students aged seventeen. The investigation of chaos phenomenon in this work is based on a freeware, “Dynamics Solver”. This software, with some assistance from the teacher, is suitable for classroom use at secondary level.
International Nuclear Information System (INIS)
Ge Zhengming; Chang Chingming; Chen Yensheng
2006-01-01
Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos. Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented
The Evolution of Epidemic Suicide on Guam: Context and Contagion
Booth, Heather
2010-01-01
Thirty years of suicide rates for Guam were analyzed by age, sex, period, and cohort. Youth suicide increased rapidly in the 1990s; certain cohorts have higher rates. Four explanatory factors are discussed, including ecological factors and migration from the Federated States of Micronesia. Direct and indirect suicide contagion followed the death…
Energy Technology Data Exchange (ETDEWEB)
Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)
2015-09-15
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Tél, Tamás
2015-09-01
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Further discussion on chaos in duopoly games
International Nuclear Information System (INIS)
Lu, Tianxiu; Zhu, Peiyong
2013-01-01
In this paper, we study Li–Yorke chaos, distributional chaos in a sequence, Li–Yorke sensitivity, sensitivity and distributional chaos of two-dimensional dynamical system of the form Φ(x, y) = (f(y), g(x))
2012 Symposium on Chaos, Complexity and Leadership
Erçetin, Şefika
2014-01-01
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Examination of Negative Peer Contagion in a Residential Care Setting
Huefner, Jonathan C.; Ringle, Jay L.
2012-01-01
There has been ongoing concern about the negative impact of residential treatment on youth in care. Research examining the impact of negative peer influence in juvenile justice, education, and residential care settings is reviewed. A study was conducted to examine the impact of negative peer contagion on the level of problem behavior in a…
The CHAOS-4 Geomagnetic Field Model
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Lühr, H.
We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal...... between the coordinate systems of the vector magnetometer and of the star sensor providing attitude information). The final CHAOS-4 model is derived by merging two sub-models: its low-degree part has been obtained using similar model parameterization and data sets as used for previous CHAOS models (but...
Nonlinear chaos control and synchronization
Huijberts, H.J.C.; Nijmeijer, H.; Schöll, E.; Schuster, H.G.
2007-01-01
This chapter contains sections titled: Introduction Nonlinear Geometric Control Some Differential Geometric Concepts Nonlinear Controllability Chaos Control Through Feedback Linearization Chaos Control Through Input-Output Linearization Lyapunov Design Lyapunov Stability and Lyapunov's First Method
Social contagion theory: examining dynamic social networks and human behavior.
Christakis, Nicholas A; Fowler, James H
2013-02-20
Here, we review the research we have conducted on social contagion. We describe the methods we have employed (and the assumptions they have entailed) to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a 'three degrees of influence' property, and we review statistical approaches we have used to characterize interpersonal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations. Copyright © 2012 John Wiley & Sons, Ltd.
Werther Goes Viral: Suicidal Contagion, Anti-Vaccination, and Infectious Sympathy.
Faubert, Michelle
The fear that suicidality could spread through textual contagion-that textually represented suicide could enter the reader's mind and cause self-destruction-took hold long before Émile Durkheim theorized it in the Victorian period. This article argues that the fear of suicidal contagion and the horror of vaccination, both of which raged in Britain in the long eighteenth century, were linked to ideas about sympathy and the importation of the Other into the Self. With reference to the psychoanalytic notions of extimité and étrangerété; the eighteenth-century medical theories of William Rowley and Edward Jenner; the philosophy of "sympathy," as adumbrated in the work of John Locke, Adam Smith, David Hume and Edmund Burke; and two key novels of sensibility (Jean-Jacques Rousseau's Julie and Johann Wolfgang von Goethe's The Sorrows of Young Werther), this article examines the root of a belief that exists even today: that, in a suicidal process, the invading Other could become the Self and, Trojan horse-style, destroy it from the inside.
Cryptography with chaos and shadowing
International Nuclear Information System (INIS)
Smaoui, Nejib; Kanso, Ali
2009-01-01
In this paper, we present a novel approach to encrypt a message (a text composed by some alphabets) using chaos and shadowing. First, we generate a numerical chaotic orbit based on the logistic map, and use the shadowing algorithm of Smaoui and Kostelich [Smaoui N, Kostelich E. Using chaos to shadow the quadratic map for all time. Int J Comput Math 1998;70:117-29] to show that there exists a finite number of true orbits that shadow the numerical orbit. Then, the finite number of maps generated is used in Baptista's algorithm [Baptista MS. Cryptography with chaos. Phys Lett A 1998;240:50-4] to encrypt each character of the message. It is shown that the use of chaos and shadowing in the encryption process enhances the security level.
Experimental Induction of Genome Chaos.
Ye, Christine J; Liu, Guo; Heng, Henry H
2018-01-01
Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.
Cryptography with chaos and shadowing
Energy Technology Data Exchange (ETDEWEB)
Smaoui, Nejib [Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)], E-mail: nsmaoui64@yahoo.com; Kanso, Ali [Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)], E-mail: akanso@hotmail.com
2009-11-30
In this paper, we present a novel approach to encrypt a message (a text composed by some alphabets) using chaos and shadowing. First, we generate a numerical chaotic orbit based on the logistic map, and use the shadowing algorithm of Smaoui and Kostelich [Smaoui N, Kostelich E. Using chaos to shadow the quadratic map for all time. Int J Comput Math 1998;70:117-29] to show that there exists a finite number of true orbits that shadow the numerical orbit. Then, the finite number of maps generated is used in Baptista's algorithm [Baptista MS. Cryptography with chaos. Phys Lett A 1998;240:50-4] to encrypt each character of the message. It is shown that the use of chaos and shadowing in the encryption process enhances the security level.
Using chaos theory: the implications for nursing.
Haigh, Carol
2002-03-01
The purpose of this paper is to review chaos theory and to examine the role that it may have in the discipline of nursing. In this paper, the fundamental ingredients of chaotic thinking are outlined. The earlier days of chaos thinking were characterized by an almost exclusively physiological focus. By the 21st century, nurse theorists were applying its principles to the organization and evaluation of care delivery with varying levels of success. Whilst the biological use of chaos has focused on pragmatic approaches to knowledge enhancement, nursing has often focused on the mystical aspects of chaos as a concept. The contention that chaos theory has yet to find a niche within nursing theory and practice is examined. The application of chaotic thinking across nursing practice, nursing research and statistical modelling is reviewed. The use of chaos theory as a way of identifying the attractor state of specific systems is considered and the suggestion is made that it is within statistical modelling of services that chaos theory is most effective.
Quantum chaos: Statistical relaxation in discrete spectrum
International Nuclear Information System (INIS)
Chirikov, B.V.
1991-01-01
The controversial phenomenon of quantum chaos is discussed using the quantized standard map, or the kicked rotator, as a simple model. The relation to the classical dynamical chaos is tracked down on the basis of the correspondence principle. Various mechanisms of the quantum suppression of classical chaos are considered with an application to the excitation and ionization of Rydberg atoms in a microwave field. Several definitions of the quantum chaos are discussed. (author). 27 refs
Torus Destruction and Chaos-Chaos Intermittency in a Commodity Distribution Chain
DEFF Research Database (Denmark)
Sosnovtseva, O.; Mosekilde, Erik
1997-01-01
The destruction of two-dimensional tori T2 and the transitions to chaos are studied in a high-dimensional model describing the decision-making behavior of human subjects in a simulated managerial environment (the beer production-distribution model). Two different routes from quasiperiodicity...... to chaos can be distinguished. Intermittency transitions between chaotic and hyperchaotic attractors are characterized, and transients in which the system "pursues the ghost" of a vanished hyperchaotic attractor are studied....
Chaos Modelling with Computers
Indian Academy of Sciences (India)
Chaos is one of the major scientific discoveries of our times. In fact many scientists ... But there are other natural phenomena that are not predictable though ... characteristics of chaos. ... The position and velocity are all that are needed to determine the motion of a .... a system of equations that modelled the earth's weather ...
Quasiperiodic transition to chaos in a plasma
International Nuclear Information System (INIS)
Weixing, D.; Huang Wei; Wang Xiaodong; Yu, C.X.
1993-01-01
The quasiperiodic transition to chaos in an undriven discharge plasma has been investigated. Results from the power spectrum and Lyapunov exponents quantitatively confirm the transition to chaos through quasiperiodicity. A low-dimension strange attractor has been found for this kind of plasma chaos
Towards chaos criterion in quantum field theory
Kuvshinov, V. I.; Kuzmin, A. V.
2002-01-01
Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.
Semiconductor Lasers Stability, Instability and Chaos
Ohtsubo, Junji
2013-01-01
This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended. In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...
Advances in chaos theory and intelligent control
Vaidyanathan, Sundarapandian
2016-01-01
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...
The CHAOS-4 geomagnetic field model
DEFF Research Database (Denmark)
Olsen, Nils; Lühr, H.; Finlay, Chris
2014-01-01
We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly...... to the core field, but the high-degree lithospheric field is regularized for n > 85. CHAOS-4 model is derived by merging two submodels: its low-degree part has been derived using similar model parametrization and data sets as used for previous CHAOS models (but of course including more recent data), while its...
Encounters with chaos and fractals
Gulick, Denny
2012-01-01
Periodic Points Iterates of Functions Fixed Points Periodic Points Families of Functions The Quadratic Family Bifurcations Period-3 Points The Schwarzian Derivative One-Dimensional Chaos Chaos Transitivity and Strong Chaos Conjugacy Cantor Sets Two-Dimensional Chaos Review of Matrices Dynamics of Linear FunctionsNonlinear Maps The Hénon Map The Horseshoe Map Systems of Differential Equations Review of Systems of Differential Equations Almost Linearity The Pendulum The Lorenz System Introduction to Fractals Self-Similarity The Sierpiński Gasket and Other "Monsters"Space-Filling Curves Similarity and Capacity DimensionsLyapunov Dimension Calculating Fractal Dimensions of Objects Creating Fractals Sets Metric Spaces The Hausdorff Metric Contractions and Affine Functions Iterated Function SystemsAlgorithms for Drawing Fractals Complex Fractals: Julia Sets and the Mandelbrot Set Complex Numbers and Functions Julia Sets The Mandelbrot Set Computer Programs Answers to Selected Exercises References Index.
Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom
International Nuclear Information System (INIS)
Musielak, D.E.; Musielak, Z.E.; Benner, J.W.
2005-01-01
New results are reported on the routes to chaos in increasingly complex Duffing oscillator systems, which are formed by coupling several oscillators, thereby increasing the number of degrees of freedom. Other forms of increasing system complexity through distributed excitation, different forcing function phasing, different excitation frequency ratios, and higher order coupling are also studied. Changes in the quantitative aspects of the chaotic regions and in the routes to chaos of complex Duffing systems are investigated by performing numerical simulations. It is shown that the number of chaotic regions in these systems is significantly reduced when compared to the original Duffing system, and that crisis replaces period doubling as the dominant route to chaos when the number of degrees of freedom is increased. A new discovered phenomenon is that chaos emerges in the symmetrically and asymmetrically coupled Duffing oscillators only after the quasi-periodic torus breaks down through a 3-periodic and 2-periodic window, respectively
4th international interdisciplinary chaos symposium
Banerjee, Santo; Caglar, Suleyman; Ozer, Mehmet; Chaos and complex systems
2013-01-01
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysic...
International Nuclear Information System (INIS)
Li Qianshu; Zhu Rui
2004-01-01
A three-variable model of the Belousov-Zhabotinsky reaction system subject to external sinusoidal perturbations is investigated by means of frequency spectrum analysis. In the period-1 window of the model, the transitions from periodicity to chaos are observed; in the chaotic window, the transitions from chaos to periodicity are found. The former might be understood by the circle map of two coupled oscillators, and the latter is partly explained by the resonance between the main frequency of the chaos and the frequency of the external periodic perturbations
Earnshow, R; Jones, H
1991-01-01
This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...
Quantum chaos: statistical relaxation in discrete spectrum
International Nuclear Information System (INIS)
Chirikov, B.V.
1990-01-01
The controversial phenomenon of quantum chaos is discussed using the quantized standard map, or the kicked rotator, as a simple model. The relation to the classical dynamical chaos is tracked down on the basis of the correspondence principle. Several definitions of the quantum chaos are discussed. 27 refs
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Ancient and Current Chaos Theories
Directory of Open Access Journals (Sweden)
Güngör Gündüz
2006-07-01
Full Text Available Chaos theories developed in the last three decades have made very important contributions to our understanding of dynamical systems and natural phenomena. The meaning of chaos in the current theories and in the past is somewhat different from each other. In this work, the properties of dynamical systems and the evolution of chaotic systems were discussed in terms of the views of ancient philosophers. The meaning of chaos in Anaximenes’ philosophy and its role in the Ancient natural philosophy has been discussed in relation to other natural philosophers such as of Anaximander, Parmenides, Heraclitus, Empedocles, Leucippus (i.e. atomists and Aristotle. In addition, the fundamental concepts of statistical mechanics and the current chaos theories were discussed in relation to the views in Ancient natural philosophy. The roots of the scientific concepts such as randomness, autocatalysis, nonlinear growth, information, pattern, etc. in the Ancient natural philosophy were investigated.
International Nuclear Information System (INIS)
Mueller, B.
1997-01-01
The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results
Energy Technology Data Exchange (ETDEWEB)
Mueller, B.
1997-09-22
The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results.
Nee, Sean
2018-05-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.
Chaos in body-vortex interactions
DEFF Research Database (Denmark)
Pedersen, Johan Rønby; Aref, Hassan
2010-01-01
of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between...... rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos....
PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL
DEFF Research Database (Denmark)
Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.
2010-01-01
The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear...... interaction among the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional time-discrete Kuramoto model, we outline the region of phase chaos in the parameter plane and determine the regions where phase chaos coexists with different periodic...
Robinson's chaos in set-valued discrete systems
International Nuclear Information System (INIS)
Roman-Flores, Heriberto; Chalco-Cano, Y.
2005-01-01
Let (X,d) be a compact metric space and f:X->X a continuous function. If we consider the space (K(X),H) of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d and f-bar :K(X)->K(X), f-bar (A)={f(a)/a-bar A}, then the aim of this work is to show that Robinson's chaos in f-bar implies Robinson's chaos in f. Also, we give an example showing that R-chaos in f does not implies R-chaos in f-bar
A quantum harmonic oscillator and strong chaos
International Nuclear Information System (INIS)
Oprocha, Piotr
2006-01-01
It is known that many physical systems which do not exhibit deterministic chaos when treated classically may exhibit such behaviour if treated from the quantum mechanics point of view. In this paper, we will show that an annihilation operator of the unforced quantum harmonic oscillator exhibits distributional chaos as introduced in B Schweizer and J SmItal (1994 Trans. Am. Math. Soc. 344 737-54). Our approach strengthens previous results on chaos in this model and provides a very powerful tool to measure chaos in other (quantum or classical) models
The chaos cookbook a practical programming guide
Pritchard, Joe
2014-01-01
The Chaos Cookbook: A Practical Programming Guide discusses the use of chaos in computer programming. The book is comprised of 11 chapters that tackle various topics relevant to chaos and programming. Chapter 1 reviews the concept of chaos, and Chapter 2 discusses the iterative functions. Chapters 3 and 4 cover differential and Lorenz equations. Chapter 5 talks about strange attractors, while Chapter 6 deals with the fractal link. The book also discusses the Mandelbrot set, and then covers the Julia sets. The other fractal systems and the cellular automata are also explained. The last chapter
Genome chaos: survival strategy during crisis.
Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H
2014-01-01
Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.
Markov transitions and the propagation of chaos
International Nuclear Information System (INIS)
Gottlieb, A.
1998-01-01
The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also show that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution
How to test for partially predictable chaos.
Wernecke, Hendrik; Sándor, Bulcsú; Gros, Claudius
2017-04-24
For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.
An Experiment on the Causes of Bank Run Contagions
Surajeet Chakravarty; Miguel A. Fonseca; Todd Kaplan
2012-01-01
To understand the mechanisms behind bank run contagions, we conduct bank run experiments in a modified Diamond-Dybvig setup with two banks (Left and Right). The banks' liquidity levels are either linked or independent. Left Bank depositors see their bank's liquidity level before deciding. Right Bank depositors only see Left Bank withdrawals before deciding. We find that Left Bank depositors' actions signicantly affect Right Bank depositors' behavior, even when liquidities are independent. Fur...
Energy Technology Data Exchange (ETDEWEB)
Bolotin, IU L; Gonchar, V IU; Truten, V I; Shulga, N F
1986-01-01
It is shown that axial channeling of relativistic electrons can give rise to the effect of dynamic chaos which involves essentially chaotic motion of a particle in the channel. The conditions leading to the effect of dynamic chaos and the manifestations of this effect in physical processes associated with the passage of particles through a crystal are examined using a silicon crystal as an example. 7 references.
Homoclinic tubes and chaos in perturbed sine-Gordon equation
International Nuclear Information System (INIS)
Li, Y. Charles
2004-01-01
Sine-Gordon equation under a quasi-periodic perturbation or a chaotic perturbation is studied. Existence of a homoclinic tube is proved. Established are chaos associated with the homoclinic tube, and 'chaos cascade' referring to the embeddings of smaller scale chaos in larger scale chaos
Chaos and complexity by design
Energy Technology Data Exchange (ETDEWEB)
Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics,Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)
2017-04-20
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame potential,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Chaos and complexity by design
International Nuclear Information System (INIS)
Roberts, Daniel A.; Yoshida, Beni
2017-01-01
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame potential,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Chaos in the atomic and subatomic world
International Nuclear Information System (INIS)
Nussenzveig, H.M.
1992-01-01
This work discusses the possibility of the existence of chaos in the quantum level. In the macroscopic scale, chaos can be explained by the use of classical mechanics. The problem is to know whether there is any manifestation of chaos in the evolution of a system following the quantum mechanical laws. (A.C.A.S.)
International Nuclear Information System (INIS)
Whelan, N.D.
1993-01-01
Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra
Quantum chaos: diffusion photoeffect in hydrogen
Energy Technology Data Exchange (ETDEWEB)
Shepelyanskij, D L
1987-05-01
Ionization process in highly excited hydrogen atom in electromagnetic field is presented in the form of an extraordinary photoeffect, in which ionization at the frequency, being much lower than ionization energy, occurs much quicker than single-photon one. Such a quick ionization is explained by dynamic chaos occurence. Question, related to quantum effect influence on chaotic movement of the electron (quantum chaos) is considered. Electron excitation in the chaos area is described by a diffusional equation.
Meaning Finds a Way: Chaos (Theory) and Composition
Kyburz, Bonnie Lenore
2004-01-01
The explanatory power provided by the chaos theory is explored. A dynamic and reciprocal relationship between culture and chaos theory indicates that the progressive cultural work may be formed by the cross-disciplinary resonance of chaos theory.
Chaos theory in geophysics: past, present and future
International Nuclear Information System (INIS)
Sivakumar, B.
2004-01-01
The past two decades of research on chaos theory in geophysics has brought about a significant shift in the way we view geophysical phenomena. Research on chaos theory in geophysics continues to grow at a much faster pace, with applications to a wide variety of geophysical phenomena and geophysical problems. In spite of our success in understanding geophysical phenomena also from a different (i.e. chaotic) perspective, there still seems to be lingering suspicions on the scope of chaos theory in geophysics. The goal of this paper is to present a comprehensive account of the achievements and status of chaos theory in geophysics, and to disseminate the hope and scope for the future. A systematic review of chaos theory in geophysics, covering a wide spectrum of geophysical phenomena studied (e.g. rainfall, river flow, sediment transport, temperature, pressure, tree ring series, etc.), is presented to narrate our past achievements not only in understanding and predicting geophysical phenomena but also in improving the chaos identification and prediction techniques. The present state of chaos research in geophysics (in terms of geophysical phenomena, problems, and chaos methods) and potential for future improvements (in terms of where, why and possibly how) are also highlighted. Our popular views of nature (i.e. stochastic and deterministic), and of geophysical phenomena in particular, are discussed, and the usefulness of chaos theory as a bridge between such views is also put forth
Suicidal Disclosures among Friends: Using Social Network Data to Understand Suicide Contagion*
Mueller, Anna S.; Abrutyn, Seth
2015-01-01
A robust literature suggests that suicide is socially contagious; however, we know little about how and why suicide spreads. Using network data from the National Longitudinal Study of Adolescent to Adult Health, we examine the effects of alter’s (1) disclosed and (2) undisclosed suicide attempts, (3) suicide ideation and (4) emotional distress on ego’s mental health one year later to gain insights into the emotional and cultural mechanisms that underlie suicide contagion. We find that when egos know about alter’s suicide attempt, they report significantly higher levels of emotional distress and are more likely to report suicidality, net of extensive controls; however, alter’s undisclosed suicide attempts and ideation have no significant effect on ego’s mental health. Finally, we find evidence that emotional distress is contagious in adolescence, though it does not seem to promote suicidality. We discuss the implications of our findings for suicide contagion specifically and sociology more generally. PMID:25722129
Chaos in World Politics: A Reflection
Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.
Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.
Controllable chaos in hybrid electro-optomechanical systems
Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying
2016-01-01
We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication. PMID:26948505
Controllable chaos in hybrid electro-optomechanical systems.
Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying
2016-03-07
We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Relativistic quantum chaos-An emergent interdisciplinary field.
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
Chaos and bifurcations in periodic windows observed in plasmas
International Nuclear Information System (INIS)
Qin, J.; Wang, L.; Yuan, D.P.; Gao, P.; Zhang, B.Z.
1989-01-01
We report the experimental observations of deterministic chaos in a steady-state plasma which is not driven by any extra periodic forces. Two routes to chaos have been found, period-doubling and intermittent chaos. The fine structures in chaos such as periodic windows and bifurcations in windows have also been observed
International Nuclear Information System (INIS)
Soloviev, V.G.
1995-01-01
Order and chaos and order-to-chaos transition are treated in terms of nuclear wave functions. A quasiparticle-phonon interaction is responsible for the fragmentation of one- and many-quasiparticle and phonon states and for the mixing of closely spaced states. Complete damping of one-quasiparticle states cannot be considered as a transition to chaos due to large many-quasiparticle or quasiparticle-phonon terms in their wave functions. An experimental investigation of the strength distribution of many-quasiparticle and quasiparticle-phonon states should uncover a new region of a regularity in nuclei at intermediate excitation energy. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. ((orig.))
Universal signatures of quantum chaos
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.; Steiner, F.
1994-02-01
We discuss fingerprints of classical chaos in spectra of the corresponding bound quantum systems. A novel quantity to measure quantum chaos in spectra is proposed and a conjecture about its universal statistical behaviour is put forward. Numerical as well as theoretical evidence is provided in favour of the conjecture. (orig.)
Directory of Open Access Journals (Sweden)
Damigos Dimitris
2008-08-01
Full Text Available Abstract Background The Emotional Contagion Scale (ECS is a self-report scale used to measure individual differences in susceptibility to converge towards the emotions expressed by others. The main aim of the present paper was to examine the psychometric properties of the Greek translation of the scale. Methods The Greek ECS was completed by 691 undergraduate students (312 males and 379 females. To investigate the factor structure of the ECS, principal components analysis (PCA was used. Results The results showed that a four-factor model was tenable. Regarding homogeneity, the Greek ECS version showed acceptable results for the full scale (α = 0.74 but not for all subscales. Gender differences were also identified concerning the susceptibility to emotional contagion between men and women. Women score significantly higher than men for all the different emotions described by the ECS (love, happiness, sadness except the anger emotion, where there was no significant difference. Conclusion The Greek version of the ECS showed good psychometric properties. It can be used to assess susceptibility to emotional contagion in correlation with psychopathological processes, mood and anxiety disorders primarily. The usefulness of the ECS in the fields of group psychotherapy and health psychology is also under consideration. Further investigation is needed in all these areas.
International Nuclear Information System (INIS)
Muñoz, L; Fernández-Ramírez, C; Relaño, A; Retamosa, J
2012-01-01
In the last decade quantum chaos has become a well established discipline with outreach to different fields, from condensed-matter to nuclear physics. The most important signature of quantum chaos is the statistical analysis of the energy spectrum, which distinguishes between systems with integrable and chaotic classical analogues. In recent years, spectral statistical techniques inherited from quantum chaos have been applied successfully to the baryon spectrum revealing its likely chaotic behaviour even at the lowest energies. However, the theoretical spectra present a behaviour closer to the statistics of integrable systems which makes theory and experiment statistically incompatible. The usual statement of missing resonances in the experimental spectrum when compared to the theoretical ones cannot account for the discrepancies. In this communication we report an improved analysis of the baryon spectrum, taking into account the low statistics and the error bars associated with each resonance. Our findings give a major support to the previous conclusions. Besides, analogue analyses are performed in the experimental meson spectrum, with comparison to theoretical models.
Household chaos and family sleep during infants' first year.
Whitesell, Corey J; Crosby, Brian; Anders, Thomas F; Teti, Douglas M
2018-05-21
Household chaos has been linked with dysregulated family and individual processes. The present study investigated linkages between household chaos and infant and parent sleep, a self-regulated process impacted by individual, social, and environmental factors. Studies of relations between household chaos and child sleep have focused on older children and teenagers, with little attention given to infants or parent sleep. This study examines these relationships using objective measures of household chaos and sleep while controlling for, respectively, maternal emotional availability at bedtime and martial adjustment, in infant and parent sleep. Multilevel modeling examined mean and variability of sleep duration and fragmentation for infants, mothers, and fathers when infants were 1, 3, 6, 9, and 12 months (N = 167). Results indicated infants in higher chaos homes experienced delays in sleep consolidation patterns, with longer and more variable sleep duration, and greater fragmentation. Parent sleep was also associated with household chaos such that in higher chaos homes, mothers and fathers experienced greater variability in sleep duration, which paralleled infant findings. In lower chaos homes, parents' sleep fragmentation mirrored infants' decreasingly fragmented sleep across the first year and remained lower at all timepoints compared to parents and infants in high chaos homes. Collectively, these findings indicate that after controlling for maternal emotional availability and marital adjustment (respectively) household chaos has a dysregulatory impact on infant and parent sleep. Results are discussed in terms of the potential for chaos-induced poor sleep to dysregulate daytime functioning and, in turn, place parent-infant relationships at risk. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Advertising and quality-dependent word-of-mouth in a contagion sales model
El Ouardighi, Fouad; Feichtinger, G.; Grass, D.; Hartl, R.F.; Kort, Peter M.
In the literature on marketing models, the assumption of mixed word-of-mouth has been limited to the Bass diffusion model. Yet explicit leveraging of the originating factors of such assumption is lacking. Apart from that example, mixed word-of-mouth has been disregarded in contagion sales models.
Does the U.S. exercise contagion on Italy? A theoretical model and empirical evidence
Cerqueti, Roy; Fenga, Livio; Ventura, Marco
2018-06-01
This paper deals with the theme of contagion in financial markets. At this aim, we develop a model based on Mixed Poisson Processes to describe the abnormal returns of financial markets of two considered countries. In so doing, the article defines the theoretical conditions to be satisfied in order to state that one of them - the so-called leader - exercises contagion on the others - the followers. Specifically, we employ an invariant probabilistic result stating that a suitable transformation of a Mixed Poisson Process is still a Mixed Poisson Process. The theoretical claim is validated by implementing an extensive simulation analysis grounded on empirical data. The countries considered are the U.S. (as the leader) and Italy (as the follower) and the period under scrutiny is very large, ranging from 1970 to 2014.
Quantum chaos in the Heisenberg picture
International Nuclear Information System (INIS)
McKellar, B.H.J.; Lancaster, M.; McCaw, J.
2000-01-01
Full text: We explore the possibility of defining quantum chaos in the algebra of quantum mechanical operators. The simple definition of the Lyapunov exponent in terms of a metric on that algebra has the expected properties for the quantum logistic map, as we confirm for the simple spin 1 system. We then show numerically and analytically that the Hamiltonian evolution of finite spin systems does not lead to chaos in this definition, and investigate alternative definitions of quantum chaos in the algebra of operators
Chaos the science of predictable random motion
Kautz, Richard
2011-01-01
Based on only elementary mathematics, this engaging account of chaos theory bridges the gap between introductions for the layman and college-level texts. It develops the science of dynamics in terms of small time steps, describes the phenomenon of chaos through simple examples, and concludes with a close look at a homoclinic tangle, the mathematical monster at the heart of chaos. The presentation is enhanced by many figures, animations of chaotic motion (available on a companion CD), and biographical sketches of the pioneers of dynamics and chaos theory. To ensure accessibility to motivated high school students, care has been taken to explain advanced mathematical concepts simply, including exponentials and logarithms, probability, correlation, frequency analysis, fractals, and transfinite numbers. These tools help to resolve the intriguing paradox of motion that is predictable and yet random, while the final chapter explores the various ways chaos theory has been put to practical use.
Resurvey of order and chaos in spinning compact binaries
International Nuclear Information System (INIS)
Wu Xin; Xie Yi
2008-01-01
This paper is mainly devoted to applying the invariant, fast, Lyapunov indicator to clarify some doubt regarding the apparently conflicting results of chaos in spinning compact binaries at the second-order post-Newtonian approximation of general relativity from previous literatures. It is shown with a number of examples that no single physical parameter or initial condition can be described as responsible for causing chaos, but a complicated combination of all parameters and initial conditions is responsible. In other words, a universal rule for the dependence of chaos on each parameter or initial condition cannot be found in general. Chaos does not depend only on the mass ratio, and the maximal spins do not necessarily bring the strongest effect of chaos. Additionally, chaos does not always become drastic when the initial spin vectors are nearly perpendicular to the orbital plane, and the alignment of spins cannot trigger chaos by itself
Chaos Theory and Post Modernism
Snell, Joel
2009-01-01
Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…
The three versions of distributional chaos
International Nuclear Information System (INIS)
Balibrea, F.; Smital, J.; Stefankova, M.
2005-01-01
The notion of distributional chaos was introduced by Schweizer and Smital [Trans. Amer. Math. Soc. 344 (1994) 737] for continuous maps of the interval. However, it turns out that, for continuous maps of a compact metric space three mutually nonequivalent versions of distributional chaos, DC1-DC3, can be considered. In this paper we consider the weakest one, DC3. We show that DC3 does not imply chaos in the sense of Li and Yorke. We also show that DC3 is not invariant with respect to topological conjugacy. In other words, there are lower and upper distribution functions Φ xy and Φxy* generated by a continuous map f of a compact metric space (M, ρ) such that Φxy*(t)>Φxy(t) for all t in an interval. However, f on the same space M, but with a metric ρ' generating the same topology as ρ is no more DC3.Recall that, contrary to this, either DC1 or DC2 is topological conjugacy invariant and implies Li and Yorke chaos (cf. [Chaos, Solitons and Fractals 21 (2004) 1125])
Chaotic dynamics and chaos control in nonlinear laser systems
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
2001-01-01
Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally
Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
International Nuclear Information System (INIS)
Angius, S.; Bisegni, C.; Ciuffetti, P.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of abstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
International Nuclear Information System (INIS)
Turiaci, Gustavo J.; Verlinde, Herman
2016-01-01
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
Nuclear spectroscopy and quantum chaos
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Yamamoto, Yoshifumi; Tsukuma, Hidehiko; Iwasawa, Kazuo.
1990-05-01
In this paper, a recent development of INS-TSUKUBA joint research project on large-amplitude collective motion is summerized. The classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock theory is recapitulated and decisive role of the level crossing in the single-particle dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the classical theory, we discuss a quantum theory of nuclear collective dynamics which allows us to properly define a concept of quantum chaos for each eigenfunction. By using numerical calculation, we illustrate what the quantum chaos for each eigenfunction means and its relation to usual definition based on the random matrix theory. (author)
Quantum mechanical suppression of chaos
International Nuclear Information System (INIS)
Bluemel, R.; Smilansky, U.
1990-01-01
The relation between determinism and predictability is the central issue in the study of 'deterministic chaos'. Much knowledge has been accumulated in the past 10 years about the chaotic dynamics of macroscopic (classical) systems. The implications of chaos in the microscopic quantum world is examined, in other words, how to reconcile the correspondence principle with the inherent uncertainties which reflect the wave nature of quantum dynamics. Recent atomic physics experiments demonstrate clearly that chaos is relevant to the microscopic world. In particular, such experiments emphasise the urgent need to clarify the genuine quantum mechanism which imposes severe limitations on quantum dynamics, and renders it so very different from its classical counterpart. (author)
Energy Technology Data Exchange (ETDEWEB)
Turiaci, Gustavo J. [Physics Department, Princeton University,Princeton NJ 08544 (United States); Verlinde, Herman [Physics Department, Princeton University,Princeton NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University,Princeton NJ 08544 (United States)
2016-12-21
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
Semiconductor lasers stability, instability and chaos
Ohtsubo, Junji
2017-01-01
This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...
Homoclinic chaos and energy condition violation
International Nuclear Information System (INIS)
Heinzle, J. Mark; Roehr, Niklas; Uggla, Claes
2006-01-01
In this letter we discuss the connection between so-called homoclinic chaos and the violation of energy conditions in locally rotationally symmetric Bianchi type IX models, where the matter is assumed to be nontilted dust and a positive cosmological constant. We show that homoclinic chaos in these models is an artifact of unphysical assumptions: it requires that there exist solutions with positive matter energy density ρ>0 that evolve through the singularity and beyond as solutions with negative matter energy density ρ<0. Homoclinic chaos is absent when it is assumed that the dust particles always retain their positive mass. In addition, we discuss more general models: for solutions that are not locally rotationally symmetric we demonstrate that the construction of extensions through the singularity, which is required for homoclinic chaos, is not possible in general
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03200 Iani Chaos This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed. Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Semiconductor Lasers Stability, Instability and Chaos
Ohtsubo, Junji
2008-01-01
This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.
Chua's circuit a paradigm for chaos
1993-01-01
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme
2017-01-20
AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos
CHAOS-BASED ADVANCED ENCRYPTION STANDARD
Abdulwahed, Naif B.
2013-05-01
This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed
Assessing News Contagion in Finance
Directory of Open Access Journals (Sweden)
Paola Cerchiello
2018-02-01
Full Text Available The analysis of news in the financial context has gained a prominent interest in the last years. This is because of the possible predictive power of such content especially in terms of associated sentiment/mood. In this paper, we focus on a specific aspect of financial news analysis: how the covered topics modify according to space and time dimensions. To this purpose, we employ a modified version of topic model LDA, the so-called Structural Topic Model (STM, that takes into account covariates as well. Our aim is to study the possible evolution of topics extracted from two well known news archive—Reuters and Bloomberg—and to investigate a causal effect in the diffusion of the news by means of a Granger causality test. Our results show that both the temporal dynamics and the spatial differentiation matter in the news contagion.
A Chaos Theory Perspective on International Migration
Directory of Open Access Journals (Sweden)
Anca Tănasie
2017-12-01
Full Text Available This paper aims at providing a different approach to international migration analysis, beyond classical models previously proposed by specialized literature. Chaos theory is getting more and more applied into macroeconomics once traditional linear models or even previous dynamic analysis become less suitable. Modern science sees chaos as unpredictable evolution, maybe even disorder. Still, chaos has got its own rules and can describe many dynamic phenomena within our world. Thus, we test whether international migration data falls under the rules of chaos and whether recent developments within the “European migration crisis” (the total daily migration inflows towards the coasts of Italy, by sea, from January 2014 to April 2017 could be described as chaotic.
2nd International Symposium on Chaos, Complexity and Leadership
Banerjee, Santo
2015-01-01
These proceedings from the 2013 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Prediction based chaos control via a new neural network
International Nuclear Information System (INIS)
Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui
2008-01-01
In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network
Chaos in electric drive systems analysis control and application
Chau, K T
2011-01-01
In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives.The first book to comprehensively treat chaos in electric drive systemsReviews chaos in various electrical engineering technologies and drive systemsPresents innovative approaches to stabilize and stimulate chaos in typical drivesDiscusses practical application of cha...
Discursive Maps at the Edge of Chaos
2017-05-25
Discursive Maps at the Edge of Chaos A Monograph by Major Mathieu Primeau Canadian Army, Royal Canadian Engineer School of Advanced Military...Master’s Thesis 3. DATES COVERED (From - To) JUN 2016 – MAY 2017 4. TITLE AND SUBTITLE Discursive Maps at the Edge of Chaos 5a. CONTRACT NUMBER 5b...meaning of boundaries and polarize conflict towards violence. The edge of chaos is the fine line between disorder and coherence. Discursive maps
Exploiting chaos for applications.
Ditto, William L; Sinha, Sudeshna
2015-09-01
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Exploiting chaos for applications
Energy Technology Data Exchange (ETDEWEB)
Ditto, William L., E-mail: wditto@hawaii.edu [Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822 (United States); Sinha, Sudeshna, E-mail: sudeshna@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli 140306, Punjab (India)
2015-09-15
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Chaos, decoherence and quantum cosmology
International Nuclear Information System (INIS)
Calzetta, Esteban
2012-01-01
In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)
Social contagion theory: examining dynamic social networks and human behavior
Christakis, Nicholas A.; Fowler, James H.
2012-01-01
Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a ...
Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos
Directory of Open Access Journals (Sweden)
Bin Wang
2015-01-01
Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.
Chaos, Chaos Control and Synchronization of a Gyrostat System
GE, Z.-M.; LIN, T.-N.
2002-03-01
The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.
Chaos and its Role in Design and Simulation of Railway Vehicles
DEFF Research Database (Denmark)
True, Hans
1996-01-01
First certain important properties of nonlinear problems are discussed. Thenthe concept of chaos is described. It can only appear in nonlinear systemsand it is very common in the real world. Certain characteristic features ofdeterministic chaos and in relation hereto tests for the existence...... of chaos indynamical systems are presented.\\ Next the relevance of chaos for railwaydynamics is discussed and examples of chaotic oscillations in railwaydynamical model are shown, whereby the distinction between a chaoticattractor and transient chaos is introduces. Some causes of chaos in railwaytechnology...... are discussed. Finally the effects of chaos on field tests andnumerical simulations are discussed....
A-coupled-expanding and distributional chaos
International Nuclear Information System (INIS)
Kim, Cholsan; Ju, Hyonhui; Chen, Minghao; Raith, Peter
2015-01-01
The concept of A-coupled-expanding maps is one of the more natural and useful ideas generalized from the horseshoe map which is commonly known as a criterion of chaos. It is well known that distributional chaos is one of the concepts which reflect strong chaotic behavior. In this paper, we focus on the relationship between A-coupled-expanding and distributional chaos. We prove two theorems which give sufficient conditions for a strictly A-coupled-expanding map to be distributionally chaotic in the senses of two kinds, where A is an m × m irreducible transition matrix
Ruette, Sylvie
2017-01-01
The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the "most interesting" part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gi...
Phase Chaos and Multistability in the Discrete Kuramoto Model
DEFF Research Database (Denmark)
Maistrenko, V. L.; Vasylenko, A. A.; Maistrenko, Y. L.
2008-01-01
The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear interact......The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear...... interaction of the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional discrete Kuramoto model, we outline the region of phase chaos in the parameter plane, distinguish the region where the phase chaos coexists with other periodic attractors...
Deterministic Chaos - Complex Chance out of Simple Necessity ...
Indian Academy of Sciences (India)
This is a very lucid and lively book on deterministic chaos. Chaos is very common in nature. However, the understanding and realisation of its potential applications is very recent. Thus this book is a timely addition to the subject. There are several books on chaos and several more are being added every day. In spite of this ...
Chaos of discrete dynamical systems in complete metric spaces
International Nuclear Information System (INIS)
Shi Yuming; Chen Guanrong
2004-01-01
This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces
Chaos concepts, control and constructive use
Bolotin, Yurii; Yanovsky, Vladimir
2017-01-01
This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interf...
Culture and the Contagion of Conflict: Social Science and Computational Approaches
2015-08-05
Psychology) presents another study on collectivism and contagion that captures situational dynamics of the phenomenon. In particular, we examined how...include information rich in the group-level biases of the storytellers , and lends itself to be analyzed with different approaches, as detailed below...summary, while the evolution of direct punishment has received considerable attention in the literature, the evolution of 3PP has not been well understood
Motor contagion during human-human and human-robot interaction.
Directory of Open Access Journals (Sweden)
Ambra Bisio
Full Text Available Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot. After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.
Motor contagion during human-human and human-robot interaction.
Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry
2014-01-01
Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.
Harnessing quantum transport by transient chaos.
Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M
2013-03-01
Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.
Global chaos synchronization with channel time-delay
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing; Chen Guanrong
2004-01-01
This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved
Some open questions in 'wave chaos'
International Nuclear Information System (INIS)
Nonnenmacher, Stéphane
2008-01-01
The subject area referred to as 'wave chaos', 'quantum chaos' or 'quantum chaology' has been investigated mostly by the theoretical physics community in the last 30 years. The questions it raises have more recently also attracted the attention of mathematicians and mathematical physicists, due to connections with number theory, graph theory, Riemannian, hyperbolic or complex geometry, classical dynamical systems, probability, etc. After giving a rough account on 'what is quantum chaos?', I intend to list some pending questions, some of them having been raised a long time ago, some others more recent. The choice of problems (and of references) is of course partial and personal. (open problem)
Nuclear physics, symmetries, and quantum chaos
International Nuclear Information System (INIS)
Bunakov, V.E.
1999-01-01
The reasons why the problem of chaos is of great topical interest in modern physics are briefly summarized, and it is indicated that ambiguities in the concept of quantum chaos present the greatest difficulties in these realms. The theory of random matrices and strength functions are generalized to demonstrate that chaotization of a system is associated with the violation of its symmetries. A criterion of quantum chaoticity is formulated in terms of the spreading width Γ spr . In the classical limit, this criterion reduces to Lyapunov's stability criteria. It is shown that the proposed criterion is applicable to standard problems of the modern theory of dynamical chaos
1989-01-01
Le mouvement brownien ; la mémoire des atomes ; le chaos ; déterminisme et prédictabilité ; déterminisme et chaos ; les phénomènes de physique et les échelles de longueur ; un ordre caché dans la matière désordonnée ; les verres de spin et l'étude des milieux désordonnés ; la convection ; la croissance fractale ; la physique de la matière hétérogène ; la matière ultradivisée.
A new approach for realizing electronic chaos generators
International Nuclear Information System (INIS)
Elwakeel, A.E.
1997-01-01
A dictionary definition of chaos is a 'formless primordial matter, utter confusion' [1]. The study of chaos is part of a larger program of study of so-called strongly nonlinear systems. No strict definition of chaos yet exists, however, nonrandom complicated motions that exhibit a very rapid growth of errors and that, despite perfect determinism, inhibit any ability to render accurate long-term prediction are usually termed chaotic. In other words, chaos may be referred to as deterministic randomness since it is the phenomenon where deterministic laws, are sometimes extremely simple, show random (or random-like) behaviours while random (or random-like) motions happen to follow strict deterministic laws. The sense of order in chaos can be usually observed in the space of dimensions where time is not a dimension, while the sense of randomness is usually evident when time is incorporated. 10 refs., 29 figs
The Capabilities of Chaos and Complexity
Directory of Open Access Journals (Sweden)
David L. Abel
2009-01-01
Full Text Available To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. Ã¢Â€ÂœSystemÃ¢Â€Â will be rigorously defined. Can a low-informational rapid succession of PrigogineÃ¢Â€Â™s dissipative structures self-order into bona fide organization?
Particle ratios, quarks, and Chao-Yang statistics
Energy Technology Data Exchange (ETDEWEB)
Chew, C K; Low, G B; Lo, S Y [Nanyang Univ. (Singapore). Dept. of Physics; Phua, K K [Argonne National Lab., IL (USA)
1980-01-01
By introducing quarks into Chao-Yang statistics for 'violent' collisions, particle ratios are obtained which are consistent with the Chao-Yang results. The present method can also be extended to baryon-meson and baryon-antibaryon ratios.
Approximate motion integrals and the quantum chaos problem
International Nuclear Information System (INIS)
Bunakov, V.E.; Ivanov, I.B.
2001-01-01
One discusses the problem of occurrence and seek for the motion integrals in the stationary quantum mechanics and its relation to the quantum chaos. One studies decomposition of quantum numbers and derives the criterion of chaos. To seek the motion integrals one applies the convergence method. One derived the approximate integrals in the Hennone-Hales problem. One discusses the problem of compatibility of chaos and integrability [ru
A Temporal-Causal Modelling Approach to Integrated Contagion and Network Change in Social Networks
Blankendaal, Romy; Parinussa, Sarah; Treur, Jan
2016-01-01
This paper introduces an integrated temporal-causal model for dynamics in social networks addressing the contagion principle by which states are affected mutually, and both the homophily principle and the more-becomes-more principle by which connections are adapted over time. The integrated model
Replication of chaos in neural networks, economics and physics
Akhmet, Marat
2016-01-01
This book presents detailed descriptions of chaos for continuous-time systems. It is the first-ever book to consider chaos as an input for differential and hybrid equations. Chaotic sets and chaotic functions are used as inputs for systems with attractors: equilibrium points, cycles and tori. The findings strongly suggest that chaos theory can proceed from the theory of differential equations to a higher level than previously thought. The approach selected is conducive to the in-depth analysis of different types of chaos. The appearance of deterministic chaos in neural networks, economics and mechanical systems is discussed theoretically and supported by simulations. As such, the book offers a valuable resource for mathematicians, physicists, engineers and economists studying nonlinear chaotic dynamics.
Nuclear physics and ideas of quantum chaos
International Nuclear Information System (INIS)
Zelevinsky, V.G.
2002-01-01
The field nowadays called 'many-body quantum chaos' was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented
Contagion among Central and Eastern European stock markets during the financial crisis
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Vácha, Lukáš
2013-01-01
Roč. 63, č. 5 (2013), s. 443-453 ISSN 0015-1920 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : wavelets * financial crisis * Central and Eastern European stock markets * comovement * contagion Subject RIV: AH - Economics Impact factor: 0.358, year: 2013 http://library.utia.cas.cz/separaty/2013/E/barunik-0396416.pdf
Chaos based encryption system for encrypting electroencephalogram signals.
Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De
2014-05-01
In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.
Chaos from simple models to complex systems
Cencini, Massimo; Vulpiani, Angelo
2010-01-01
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor
Towards CHAOS-5 - How can Swarm contribute?
DEFF Research Database (Denmark)
Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars
2014-01-01
The launch of ESA's satellite trio Swarm in November 2013 opens an exciting new chapter in the observation and monitoring of Earth's magnetic field from space. We report preliminary results from an extension of the CHAOS series of geomagnetic field models to include both scalar and vector field...... observations from the three Swarm satellites, along with the most recent quasi-definitive ground observatory data. The fit of this new update CHAOS field model to the Swarm observations will be presented in detail providing useful insight the initial Swarm data. Enhancements of the CHAOS modelling scheme...
Controlling chaos in a pendulum equation with ultra-subharmonic resonances
International Nuclear Information System (INIS)
Yang Jianping; Jing Zhujun
2009-01-01
Analytical and numerical results concerning control of chaos in a pendulum equation with parametric and external excitations are given by using Melnikov methods. We give the necessary conditions of chaos control with ultra-subharmonic resonances (i.e. Ω/ω=p/q,q>1,p,q are prime), where homoclinic chaos or heteroclinic chaos can be inhibited. Numerical simulations show that chaotic behavior can be converted to period-nq (n element of Z + ) orbits by adjusting amplitude and phase-difference of parametric excitation, and the distribution of maximum Lyapunov exponents in parameter-plane (Ψ,β) gives the regions in which chaos can be controlled.
Czech Academy of Sciences Publication Activity Database
Égert, B.; Kočenda, Evžen
-, č. 798 (2005), s. 1-30 Institutional research plan: CEZ:MSM0021620846 Keywords : contagion and spillover effects * market integration * European emerging market s Subject RIV: AH - Economics http://www.bus.umich.edu/KresgeLibrary/Collections/WorkingPapers/wdinum.htm
Ray and wave chaos in underwater acoustic waveguides
International Nuclear Information System (INIS)
Virovlyansky, Anatolii L; Makarov, Denis V; Prants, Sergei V
2012-01-01
In the 1990s, the study of the chaotic behavior of ray trajectories in inhomogeneous waveguides emerged as a new field in ocean acoustics. It turned out that at ranges on the order of or larger than 1000 km ray chaos is well developed and should be taken into account when describing long-range sound propagation in the ocean. The theoretical analysis of ray chaos and of its finite-wavelength manifestation, wave chaos, is to a large extent based on well-known methods and ideas from the theory of dynamical and quantum chaos. Concrete examples are used to review the results obtained in this field over the last two decades. (reviews of topical problems)
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Galloping instability to chaos of cables
Luo, Albert C J
2017-01-01
This book provides students and researchers with a systematic solution for fluid-induced structural vibrations, galloping instability and the chaos of cables. They will also gain a better understanding of stable and unstable periodic motions and chaos in fluid-induced structural vibrations. Further, the results presented here will help engineers effectively design and analyze fluid-induced vibrations.
Control of chaos in a three-well duffing system
International Nuclear Information System (INIS)
Yang Jianping; Jing Zhujun
2009-01-01
Analytical and numerical results concerning control of chaos in a three-well duffing system with two external excitations are given by using the Melnikov methods proposed by Chacon et al. [Chacon R. General results on chaos suppression for biharmonically driven dissipative systems. Phys Lett A 1999;257:293-300, Chacon R, Palmero F, Balibrea F. Taming chaos in a driven Josephson Junction. Int J Bifurc Chaos 2001;11(7):1897-909, Chacon R. Role of ultrasubharmonic resonances in taming chaos by weak harmonic perturbations. Europhys Lett 2001;54(2):148C153]. We theoretically give the parameter-space region and intervals of initial phase difference for primary and subharmonic resonance and the necessary condition for the superharmonic and supersubharmonic resonance, where homoclinic chaos or heteroclinic chaos can be suppressed. Numerical simulations show the consistency and difference with theoretical analysis and the chaotic behavior can be converted to periodic orbits by adjusting amplitude and phase-difference of inhibiting excitation. Moreover, we consider the influence of parametric frequency on maximum Lyapunov exponent (LE) for different phase-differences, and give the distribution of maximum Lyapunov exponents in parameter-plane, which indicates the regions of non-chaotic states (non-positive LE) and chaotic states (positive LE).
CHAOS: An SDN-Based Moving Target Defense System
Directory of Open Access Journals (Sweden)
Yuan Shi
2017-01-01
Full Text Available Moving target defense (MTD has provided a dynamic and proactive network defense to reduce or move the attack surface that is available for exploitation. However, traditional network is difficult to realize dynamic and active security defense effectively and comprehensively. Software-defined networking (SDN points out a brand-new path for building dynamic and proactive defense system. In this paper, we propose CHAOS, an SDN-based MTD system. Utilizing the programmability and flexibility of SDN, CHAOS obfuscates the attack surface including host mutation obfuscation, ports obfuscation, and obfuscation based on decoy servers, thereby enhancing the unpredictability of the networking environment. We propose the Chaos Tower Obfuscation (CTO method, which uses the Chaos Tower Structure (CTS to depict the hierarchy of all the hosts in an intranet and define expected connection and unexpected connection. Moreover, we develop fast CTO algorithms to achieve a different degree of obfuscation for the hosts in each layer. We design and implement CHAOS as an application of SDN controller. Our approach makes it very easy to realize moving target defense in networks. Our experimental results show that a network protected by CHAOS is capable of decreasing the percentage of information disclosure effectively to guarantee the normal flow of traffic.
Mass Media and the Contagion of Fear: The Case of Ebola in America.
Directory of Open Access Journals (Sweden)
Sherry Towers
Full Text Available In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as "digital epidemiology", but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends.We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data.We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model.
Mass Media and the Contagion of Fear: The Case of Ebola in America
Towers, Sherry; Afzal, Shehzad; Bernal, Gilbert; Bliss, Nadya; Brown, Shala; Espinoza, Baltazar; Jackson, Jasmine; Judson-Garcia, Julia; Khan, Maryam; Lin, Michael; Mamada, Robert; Moreno, Victor M.; Nazari, Fereshteh; Okuneye, Kamaldeen; Ross, Mary L.; Rodriguez, Claudia; Medlock, Jan; Ebert, David; Castillo-Chavez, Carlos
2015-01-01
Background In the weeks following the first imported case of Ebola in the U. S. on September 29, 2014, coverage of the very limited outbreak dominated the news media, in a manner quite disproportionate to the actual threat to national public health; by the end of October, 2014, there were only four laboratory confirmed cases of Ebola in the entire nation. Public interest in these events was high, as reflected in the millions of Ebola-related Internet searches and tweets performed in the month following the first confirmed case. Use of trending Internet searches and tweets has been proposed in the past for real-time prediction of outbreaks (a field referred to as “digital epidemiology”), but accounting for the biases of public panic has been problematic. In the case of the limited U. S. Ebola outbreak, we know that the Ebola-related searches and tweets originating the U. S. during the outbreak were due only to public interest or panic, providing an unprecedented means to determine how these dynamics affect such data, and how news media may be driving these trends. Methodology We examine daily Ebola-related Internet search and Twitter data in the U. S. during the six week period ending Oct 31, 2014. TV news coverage data were obtained from the daily number of Ebola-related news videos appearing on two major news networks. We fit the parameters of a mathematical contagion model to the data to determine if the news coverage was a significant factor in the temporal patterns in Ebola-related Internet and Twitter data. Conclusions We find significant evidence of contagion, with each Ebola-related news video inspiring tens of thousands of Ebola-related tweets and Internet searches. Between 65% to 76% of the variance in all samples is described by the news media contagion model. PMID:26067433
Path and semimartingale properties of chaos processes
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas; Graversen, Svend-Erik
2010-01-01
The present paper characterizes various properties of chaos processes which in particular include processes where all time variables admit a Wiener chaos expansion of a fixed finite order. The main focus is on the semimartingale property, p-variation and continuity. The general results obtained...
Controlling beam halo-chaos via backstepping design
International Nuclear Information System (INIS)
Gao Yuan; Kong Feng
2008-01-01
A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels (PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment
Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.
2001-01-01
The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!
Hyperbolic Chaos A Physicist’s View
Kuznetsov, Sergey P
2012-01-01
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
DEFF Research Database (Denmark)
Kristensen, Thomas; Israelsen, Poul
In the lean strategy is enabling formalization behaviour expected at the lower levels of management to be successful. We study the contagion effect between the superior, middle manager, of the lower level manager. This effect is proposed to be a dominant contingency variable for the use of costin...... models at the lower levels of management. Thus the use of costing models at the middle manager level is an important key to be successful with the lean package.......In the lean strategy is enabling formalization behaviour expected at the lower levels of management to be successful. We study the contagion effect between the superior, middle manager, of the lower level manager. This effect is proposed to be a dominant contingency variable for the use of costing...
DEFF Research Database (Denmark)
Hindhede, Anette Lykke
2018-01-01
-communicable diseases from a distinct sociological view of non- communicable diseases as infectious. I conduct a historical anamnesis of sociological theories that inform contemporary sociological thinking about contagion and/or collective action and the social clustering of (health) behaviour, with a particular focus...
Effortful control and school adjustment: The moderating role of classroom chaos.
Berger, Rebecca H; Valiente, Carlos; Eisenberg, Nancy; Hernandez, Maciel M; Thompson, Marilyn; Spinrad, Tracy; VanSchyndel, Sarah; Silva, Kassondra; Southworth, Jody
2017-11-01
Guided by the person by environment framework, the primary goal of this study was to determine whether classroom chaos moderated the relation between effortful control and kindergarteners' school adjustment. Classroom observers reported on children's ( N = 301) effortful control in the fall. In the spring, teachers reported on classroom chaos and school adjustment outcomes (teacher-student relationship closeness and conflict, and school liking and avoidance). Cross-level interactions between effortful control and classroom chaos predicting school adjustment outcomes were assessed. A consistent pattern of interactions between effortful control and classroom chaos indicated that the relations between effortful control and the school adjustment outcomes were strongest in high chaos classrooms. Post-hoc analyses indicated that classroom chaos was associated with poor school adjustment when effortful control was low, suggesting that the combination of high chaos and low effortful control was associated with the poorest school outcomes.
Chaos as a Social Determinant of Child Health: Reciprocal Associations?
Schmeer, Kammi K.; Taylor, Miles
2013-01-01
This study informs the social determinants of child health by exploring an understudied aspect of children’s social contexts: chaos. Chaos has been conceptualized as crowded, noisy, disorganized, unpredictable settings for child development (Evans et al., 2010). We measure chaos at two levels of children’s ecological environment - the microsystem (household) and the mesosystem (work-family-child care nexus) – and at two points in early childhood (ages 3 and 5). Using data from the Fragile Families and Child Wellbeing Study (N=3288), a study of predominantly low-income women and their partners in large US cities, we develop structural equation models that assess how maternal-rated child health (also assessed at ages 3 and 5) is associated with latent constructs of chaos, and whether there are important reciprocal effects. Autoregressive crosslagged path analysis suggest that increasing chaos (at both the household and maternal work levels) is associated with worse child health, controlling for key confounders like household economic status, family structure, and maternal health status. Child health has little effect on chaos, providing further support for the hypothesis that chaos is an important social determinant of child health in this sample of relatively disadvantaged children. This suggests child health may be improved by supporting families in ways that reduce chaos in their home and work/family environments, and that as researchers move beyond SES, race, and family structure to explore other sources of health inequalities, chaos and its proximate determinants may be a promising avenue for future research. PMID:23541250
Campbell, David
1987-11-01
I provide a brief overview of the current status of the field of deterministic "chaos" stressing its interrelations and applications to other fields and suggesting a number of important open problems for future study.
Chaos in plasma simulation and experiment
International Nuclear Information System (INIS)
Watts, C.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system
Chaos in plasma simulation and experiment
Energy Technology Data Exchange (ETDEWEB)
Watts, C. [Texas Univ., Austin, TX (United States). Fusion Research Center; Newman, D.E. [Oak Ridge National Lab., TN (United States); Sprott, J.C. [Wisconsin Univ., Madison, WI (United States). Plasma Physics Research
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.
On the efficiency of chaos optimization algorithms for global optimization
International Nuclear Information System (INIS)
Yang Dixiong; Li Gang; Cheng Gengdong
2007-01-01
Chaos optimization algorithms as a novel method of global optimization have attracted much attention, which were all based on Logistic map. However, we have noticed that the probability density function of the chaotic sequences derived from Logistic map is a Chebyshev-type one, which may affect the global searching capacity and computational efficiency of chaos optimization algorithms considerably. Considering the statistical property of the chaotic sequences of Logistic map and Kent map, the improved hybrid chaos-BFGS optimization algorithm and the Kent map based hybrid chaos-BFGS algorithm are proposed. Five typical nonlinear functions with multimodal characteristic are tested to compare the performance of five hybrid optimization algorithms, which are the conventional Logistic map based chaos-BFGS algorithm, improved Logistic map based chaos-BFGS algorithm, Kent map based chaos-BFGS algorithm, Monte Carlo-BFGS algorithm, mesh-BFGS algorithm. The computational performance of the five algorithms is compared, and the numerical results make us question the high efficiency of the chaos optimization algorithms claimed in some references. It is concluded that the efficiency of the hybrid optimization algorithms is influenced by the statistical property of chaotic/stochastic sequences generated from chaotic/stochastic algorithms, and the location of the global optimum of nonlinear functions. In addition, it is inappropriate to advocate the high efficiency of the global optimization algorithms only depending on several numerical examples of low-dimensional functions
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Contagion in the Brazilian interbank currency exchange market: an empirical analysis
Directory of Open Access Journals (Sweden)
Maria Tannuri-Pianto
2006-06-01
Full Text Available The risk of contagion is the possibility that the failure of a financial institution affected by an exogenous shock generates the failure of other institutions not initially affected by the shock. As pointed out by Upper and Worms (2002 and others, the domino effect in the payment system depends on the precise pattern of interbank linkages. This paper studies the occurrence of financial contagion after the exogenous failure of an institution authorized to operate in the Brazilian interbank currency market. The data contain information about all the actual transactions that occurred in this market from August 1st, 2000 to October 31st, 2002. The adopted methodology shows the occurrence of contagion propagation in several subsequent rounds after the initial failure. We quantify the number of institutions that breakdown and the financial losses of the market. There is a large increase in the number of failed institutions during the period of the presidential elections in 2002.O risco de contágio é a possibilidade de que a falência de uma instituição financeira afetada por algum choque exógeno gere a falência de outras instituições não afetadas pelo choque inicialmente. Como salienta Upper e Worms (2002 e outros, o efeito dominó no sistema de pagamentos depende do padrão das interligações bancárias. Este artigo estuda a ocorrência de contágio financeiro após a falência exógena de uma instituição autorizada a operar no mercado interbancário de câmbio no Brasil. Os dados contêm informações sobre todas as transações efetivamente realizadas no período 01/08/2000 a 31/10/2002. A metodologia adotada mostra a ocorrência da propagação do contágio após várias rodadas subseqüentes à falência inicial. O artigo quantifica o número de instituições que quebrariam e as perdas financeiras do mercado. Existe um aumento substancial no número de falências durante o período pré-eleitoral em 2002.
From chaos to order methodologies, perspectives and applications
Chen Guan Rong
1998-01-01
Chaos control has become a fast-developing interdisciplinary research field in recent years. This book is for engineers and applied scientists who want to have a broad understanding of the emerging field of chaos control. It describes fundamental concepts, outlines representative techniques, provides case studies, and highlights recent developments, putting the reader at the forefront of current research.Important topics presented in the book include: Fundamentals of nonlinear dynamical systems, essential for understanding and developing chaos control methods.; Parametric variation and paramet
Philosophical perspectives on quantum chaos: Models and interpretations
Bokulich, Alisa Nicole
2001-09-01
The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and
True quantum chaos? An instructive example
International Nuclear Information System (INIS)
Berry, M.V.
1992-01-01
Any chaotic classical system can be transformed into a quantum system that preserves the chaos, because the classical Liouville equation involving 2Ν phase-space variables q ,p has the form of a 'Schroedinger equation' with 'coordinates' Q=[q,p]. The feature of this quantum system that allows chaos to persist is linarity of the Hamiltonian' in the 2Ν 'momentum' operators conjugate to Q. (orig.)
Discrete chaos with applications in science and engineering
Elaydi, Saber N
2007-01-01
PREFACE FOREWORD The Stability of One-Dimensional Maps Introduction Maps vs. Difference Equations Maps vs. Differential Equations Linear Maps/Difference Equations Fixed (Equilibrium) Points Graphical Iteration and Stability Criteria for Stability Periodic Points and Their Stability The Period-Doubling Route to Chaos Applications Attraction and Bifurcation Introduction Basin of Attraction of Fixed Points Basin of Attraction of Periodic Orbits Singer's Theorem Bifurcation Sharkovsky's Theorem The Lorenz Map Period-Doubling in the Real World Poincaré Section/Map Appendix Chaos in One Dimension Introduction Density of the Set of Periodic Points Transitivity Sensitive Dependence Definition of Chaos Cantor Sets Symbolic Dynamics Conjugacy Other Notions of Chaos Rössler's Attractor Saturn's Rings Stability of Two-Dimensional Maps Linear Maps vs. Linear Systems Computing An Fundamental Set of Solutions Second-Order Difference Equations Phase Space ...
Manzoor, A.; Treur, J.
2015-01-01
This paper addresses an agent-based computational social agent model for the integration of emotion regulation, emotion contagion and decision making in a social context. The model integrates emotion-related valuing, in order to analyse the role of emotions in socially affected decision making. The
Facebook and Social Contagion of Mental Health Disorders Among College Students
Sharon J. Davis; Asher M. Pimpleton-Gray
2017-01-01
Non-suicidal self-injury is growing in popularity among young people. Studies suggest that the phenomenon of social contagion may be to blame. This study explored the influence of the popular social media site, Facebook, on mental health, non-suicidal self-injury, and suicidal behavior in college students. A total of 244 undergraduate students participated in this study. Results found that Facebook can increase personal anxiety and depression, but it is more likely to increase happiness and g...
Random matrices and chaos in nuclear physics: Nuclear structure
International Nuclear Information System (INIS)
Weidenmueller, H. A.; Mitchell, G. E.
2009-01-01
Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.
2002-01-01
(Released 11 June 2002) The Science This fractured surface belongs to a portion of a region called Gorgonum Chaos located in the southern hemisphere of Mars. Gorgonum Chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars and lolling tongues who lived in caves. As it turns out this is indeed a fitting name for this region of Mars because it contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of chaos. Upon closer examination one finds that these gullies and alluvial deposits, initially discovered by Mars Global Surveyor, are visible on the trough walls (best seen near the bottom of the image). These gullies appear to emanate from a specific layer in the walls. The gullies have been proposed to have formed by the subsurface release of water. The Story This fractured, almost spooky-looking surface belongs to a region called Gorgonum Chaos in the southern hemisphere of Mars. Chaos is a term used for regions of Mars with distinctive areas of broken terrain like the one seen above. This area of Martian chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars, and lolling tongues, who lived in caves. The Gorgons, including famous sister Medusa, could turn a person to stone, and their writhing, snakelike locks cause revulsion to this day. Given the afflicted nature of this contorted terrain, with all of its twisted, branching channels and hard, stony-looking hills in the top half of the image, this is indeed a fitting name for this region of Mars. The name also has great appeal, because the area contains a high density of gullies that 'snake' their way down the walls of the troughs located in this region of Martian chaos. Gullies are trenches cut into the land as accelerated streams of water (or another liquid) erode the surface. To see these, click on the
Some remarks on chaos in topological dynamics
Directory of Open Access Journals (Sweden)
Huoyung Wang
2011-10-01
Full Text Available Bau-Sen Du introduced a notion of chaos which is stronger than Li-Yorke sensitivity. A TDS (X, f is called chaotic if there is a positive e such that for any x and any nonempty open set V of X there is a point y in V such that the pair (x, y is proximal but not e-asymptotic. In this article, we show that a TDS (T, f is transitive but not mixing if and only if (T, f is Li-Yorke sensitive but not chaotic, where T is a tree. Moreover, we compare such chaos with other notions of chaos.
Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics
International Nuclear Information System (INIS)
Higuchi, Hisashi; Takatsuka, Kazuo
2002-01-01
The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is investigated. A couple of measures (indicators) that detect the extent of chaos in wave-packet dynamics on coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature, since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled potential functions
Chaos control using sliding-mode theory
International Nuclear Information System (INIS)
Nazzal, Jamal M.; Natsheh, Ammar N.
2007-01-01
Chaos control means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, a nonlinear Sliding-Mode Controller (SMC) is presented. Two nonlinear chaotic systems are chosen to be our case study in this paper, the well known Chua's circuit and Lorenz system. The study shows the effectiveness of the designed nonlinear Sliding-Mode Controller
Psychological "gel" to bind individuals' goal pursuit: gratitude facilitates goal contagion.
Jia, Lile; Tong, Eddie M W; Lee, Li Neng
2014-08-01
Past research demonstrates that gratitude affects individuals' self-regulation of behavior primarily through engendering a prosocial tendency. Based on theories proposing that gratitude plays an unique role in fostering communal relationship (e.g., Algoe, 2012), we propose that gratitude can have an incidental effect in facilitating goal contagion: automatically inferring and adopting the goal implied by a social other's behavior. This hypothesis is supported in 3 studies. In Study 1, after being exposed to the behaviors of a social target that implied either a cooperative or a competitive goal, individuals adopted the respective goal and behaved accordingly in a Resource Dilemma Task. This occurred, however, only when they were feeling gratitude and not when they were feeling joy or a neutral mood. In Study 2, after being exposed to a social target's behavior that implied the goal to make money, people feeling gratitude, as compared to those feeling pride or a neutral mood, strove for a future opportunity to earn money. Study 3 further demonstrated that individuals' goal striving behavior was mediated by a heightened level of goal activation. Finally, it was found that gratitude facilitated goal contagion only when the social target was a member of participants' own social group. Through this mechanism, gratitude, thus, seems to bind one's self-regulation with those of social others. Theoretical and practical implications of this new perspective are discussed.
Kalantari, Bahman
Polynomiography is the algorithmic visualization of iterative systems for computing roots of a complex polynomial. It is well known that iterations of a rational function in the complex plane result in chaotic behavior near its Julia set. In one scheme of computing polynomiography for a given polynomial p(z), we select an individual member from the Basic Family, an infinite fundamental family of rational iteration functions that in particular include Newton's. Polynomiography is an excellent means for observing, understanding, and comparing chaotic behavior for variety of iterative systems. Other iterative schemes in polynomiography are possible and result in chaotic behavior of different kinds. In another scheme, the Basic Family is collectively applied to p(z) and the iterates for any seed in the Voronoi cell of a root converge to that root. Polynomiography reveals chaotic behavior of another kind near the boundary of the Voronoi diagram of the roots. We also describe a novel Newton-Ellipsoid iterative system with its own chaos and exhibit images demonstrating polynomiographies of chaotic behavior of different kinds. Finally, we consider chaos for the more general case of polynomiography of complex analytic functions. On the one hand polynomiography is a powerful medium capable of demonstrating chaos in different forms, it is educationally instructive to students and researchers, also it gives rise to numerous research problems. On the other hand, it is a medium resulting in images with enormous aesthetic appeal to general audiences.
Contagion on complex networks with persuasion
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Collision analysis of one kind of chaos-based hash function
International Nuclear Information System (INIS)
Xiao Di; Peng Wenbing; Liao Xiaofeng; Xiang Tao
2010-01-01
In the last decade, various chaos-based hash functions have been proposed. Nevertheless, the corresponding analyses of them lag far behind. In this Letter, we firstly take a chaos-based hash function proposed very recently in Amin, Faragallah and Abd El-Latif (2009) as a sample to analyze its computational collision problem, and then generalize the construction method of one kind of chaos-based hash function and summarize some attentions to avoid the collision problem. It is beneficial to the hash function design based on chaos in the future.
Congenital high airway obstruction syndrome (CHAOS) associated with cervical myelomeningocele.
Adin, Mehmet Emin
2017-10-01
Congenital high airway obstruction syndrome (CHAOS) is a rare and potentially fatal entity resulting from complete or near complete developmental airway obstruction. Although most reported cases of CHAOS are sporadic, the condition may also be associated with certain syndromes and a variety of cervical masses. Meningocele and myelomeningocele have not yet been reported in association with CHAOS. We describe the typical constellation of sonographic findings in a case of early diagnosis of CHAOS associated with cervical myelomeningocele. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:507-510, 2017. © 2016 Wiley Periodicals, Inc.
Chaos analysis and chaotic EMI suppression of DC-DC converters
Zhang, Bo
2014-01-01
Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co
Colloquium: Random matrices and chaos in nuclear spectra
International Nuclear Information System (INIS)
Papenbrock, T.; Weidenmueller, H. A.
2007-01-01
Chaos occurs in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and other self-bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean-field theory) plus a residual interaction. The question is answered using a statistical approach (the two-body random ensemble): The matrix elements of the residual interaction are taken to be random variables. Chaos is shown to be a generic feature of the ensemble and some of its properties are displayed, emphasizing those which differ from standard random-matrix theory. In particular, the existence of correlations among spectra carrying different quantum numbers is demonstrated. These are subject to experimental verification
Bifurcation and chaos in neural excitable system
International Nuclear Information System (INIS)
Jing Zhujun; Yang Jianping; Feng Wei
2006-01-01
In this paper, we investigate the dynamical behaviors of neural excitable system without periodic external current (proposed by Chialvo [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] and with periodic external current as system's parameters vary. The existence and stability of three fixed points, bifurcation of fixed points, the conditions of existences of fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using bifurcation theory and center manifold theorem. The chaotic existence in the sense of Marotto's definition of chaos is proved. We then give the numerical simulated results (using bifurcation diagrams, computations of Maximum Lyapunov exponent and phase portraits), which not only show the consistence with the analytic results but also display new and interesting dynamical behaviors, including the complete period-doubling and inverse period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, simultaneous occurrence of two different routes (invariant cycle and period-doubling bifurcations) to chaos for a given bifurcation parameter, sudden disappearance of chaos at one critical point, a great abundance of period windows (period 2 to 10, 12, 19, 20 orbits, and so on) in transient chaotic regions with interior crises, strange chaotic attractors and strange non-chaotic attractor. In particular, the parameter k plays a important role in the system, which can leave the chaotic behavior or the quasi-periodic behavior to period-1 orbit as k varies, and it can be considered as an control strategy of chaos by adjusting the parameter k. Combining the existing results in [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] with the new results reported in this paper, a more complete description of the system is now obtained
Hamiltonian Chaos and Fractional Dynamics
International Nuclear Information System (INIS)
Combescure, M
2005-01-01
This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not
Chaos in nuclei: Theory and experiment
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
Stochastic chaos in a Duffing oscillator and its control
International Nuclear Information System (INIS)
Wu Cunli; Lei Youming; Fang Tong
2006-01-01
Stochastic chaos discussed here means a kind of chaotic responses in a Duffing oscillator with bounded random parameters under harmonic excitations. A system with random parameters is usually called a stochastic system. The modifier 'stochastic' here implies dependent on some random parameter. As the system itself is stochastic, so is the response, even under harmonic excitations alone. In this paper stochastic chaos and its control are verified by the top Lyapunov exponent of the system. A non-feedback control strategy is adopted here by adding an adjustable noisy phase to the harmonic excitation, so that the control can be realized by adjusting the noise level. It is found that by this control strategy stochastic chaos can be tamed down to the small neighborhood of a periodic trajectory or an equilibrium state. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation, so that the problem of controlling stochastic chaos can be reduced into the problem of controlling deterministic chaos in the equivalent system. Then the top Lyapunov exponent of the equivalent system is obtained by Wolf's method to examine the chaotic behavior of the response. Numerical simulations show that the random phase control strategy is an effective way to control stochastic chaos
Schuster, H G
2008-01-01
This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community.An interdisciplinary approach of interest to scientists and engineers working in a number of areas
Chaos Theory as a Model for Managing Issues and Crises.
Murphy, Priscilla
1996-01-01
Uses chaos theory to model public relations situations in which the salient feature is volatility of public perceptions. Discusses the premises of chaos theory and applies them to issues management, the evolution of interest groups, crises, and rumors. Concludes that chaos theory is useful as an analogy to structure image problems and to raise…
God's Stuff: The Constructive Powers of Chaos for Teaching Religion
Willhauck, Susan
2010-01-01
Order and organization are valued in the classroom, and there is a prevailing understanding that chaos should be avoided. Yet chaos can also be potent space or a source from which new things spring forth. This article investigates biblical, scientific, and cultural understandings of chaos to discover how these contribute to a revelatory metaphor…
Chaos in the fractional order Chen system and its control
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2004-01-01
In this letter, we study the chaotic behaviors in the fractional order Chen system. We found that chaos exists in the fractional order Chen system with order less than 3. The lowest order we found to have chaos in this system is 2.1. Linear feedback control of chaos in this system is also studied
The Nature (and Nurture) of Children's Perceptions of Family Chaos
Hanscombe, Ken B.; Haworth, Claire M. A.; Davis, Oliver S. P.; Jaffee, Sara R.; Plomin, Robert
2010-01-01
Chaos in the home is a key environment in cognitive and behavioural development. However, we show that children's experience of home chaos is partly genetically mediated. We assessed children's perceptions of household chaos at ages 9 and 12 in 2337 pairs of twins. Using child-specific reports allowed us to use structural equation modelling to…
Experimental study of chaos synchronization in the Belousov-Zhabotinsky chemical system
International Nuclear Information System (INIS)
Li Yanni; Chen Lan; Cai Zunsheng; Zhao Xuezhuang
2004-01-01
Employing self-adaptive parameter regulation scheme, chaos synchronization in the Belousov-Zhabotinsky-CSTR chemical system has been studied experimentally. By optimizing the combination of regulation parameters, the trend of chaos synchronization is observed and the prediction of chaos synchronization from numerical simulation is thus verified by the experiment. In addition, the difference of sensitivity to noise with the mass coupling scheme and the self-adaptive parameter regulation scheme in chaos synchronization has also been discussed
Scaling properties of localized quantum chaos
International Nuclear Information System (INIS)
Izrailev, F.M.
1991-01-01
Statistical properties of spectra and eigenfunctions are studied for the model of quantum chaos in the presence of dynamical localization. The main attention is paid to the scaling properties of localization length and level spacing distribution in the intermediate region between Poissonian and Wigner-Dyson statistics. It is shown that main features of such localized quantum chaos are well described by the introduced ensemble of band random matrices. 28 refs.; 7 figs
Home, Alice M.
1998-01-01
Data from 443 women combining work, family, and schooling showed that lower income increased their vulnerability to role conflict. Perceived intensity of student demands was the strongest predictor of role conflict, overload, and contagion (preoccupation with one role while performing another). Conflict and overload were eased somewhat by distance…
Individual chaos implies collective chaos for weakly mixing discrete dynamical systems
International Nuclear Information System (INIS)
Liao Gongfu; Ma Xianfeng; Wang Lidong
2007-01-01
Let X be a metric space (X,f) a discrete dynamical system, where f:X->X is a continuous function. Let f-bar denote the natural extension of f to the space of all non-empty compact subsets of X endowed with Hausdorff metric induced by d. In this paper we investigate some dynamical properties of f and f-bar . It is proved that f is weakly mixing (mixing) if and only if f-bar is weakly mixing (mixing, respectively). From this, we deduce that weak-mixing of f implies transitivity of f-bar , further, if f is mixing or weakly mixing, then chaoticity of f (individual chaos) implies chaoticity of f-bar (collective chaos) and if X is a closed interval then f-bar is chaotic (in the sense of Devaney) if and only if f is weakly mixing
Chaos in high-power high-frequency gyrotrons
International Nuclear Information System (INIS)
Airila, M.
2004-01-01
Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D
Calculating topological entropy for transient chaos with an application to communicating with chaos
International Nuclear Information System (INIS)
Jacobs, J.; Ott, E.; Hunt, B.R.
1998-01-01
Recent work on communicating with chaos provides a practical motivation for being able to determine numerically the topological entropy for chaotic invariant sets. In this paper we discuss numerical methods for evaluating topological entropy. To assess the accuracy and convergence of the methods, we test them in situations where the topological entropy is known independently. We also discuss the entropy of invariant chaotic saddles formed by those points in a given attractor that never visit some forbidden 'gap' region. Such gaps have been proposed as a means of providing noise immunity in schemes for communication with chaos, and we discuss the dependence of the topological entropy on the size of the gap. copyright 1998 The American Physical Society
National Research Council Canada - National Science Library
Morris, Jr, Gerald W
2007-01-01
.... The study investigates whether chaos theory, part of complexity science, can extract information from Katrina contracting data to help managers make better logistics decisions during disaster relief operations...
Age and Ethnic Differences in Cold Weather and Contagion Theories of Colds and Flu
Sigelman, Carol K.
2012-01-01
Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with…
Generic superweak chaos induced by Hall effect
Ben-Harush, Moti; Dana, Itzhack
2016-05-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.
Generalized Statistical Mechanics at the Onset of Chaos
Directory of Open Access Journals (Sweden)
Alberto Robledo
2013-11-01
Full Text Available Transitions to chaos in archetypal low-dimensional nonlinear maps offer real and precise model systems in which to assess proposed generalizations of statistical mechanics. The known association of chaotic dynamics with the structure of Boltzmann–Gibbs (BG statistical mechanics has suggested the potential verification of these generalizations at the onset of chaos, when the only Lyapunov exponent vanishes and ergodic and mixing properties cease to hold. There are three well-known routes to chaos in these deterministic dissipative systems, period-doubling, quasi-periodicity and intermittency, which provide the setting in which to explore the limit of validity of the standard BG structure. It has been shown that there is a rich and intricate behavior for both the dynamics within and towards the attractors at the onset of chaos and that these two kinds of properties are linked via generalized statistical-mechanical expressions. Amongst the topics presented are: (i permanently growing sensitivity fluctuations and their infinite family of generalized Pesin identities; (ii the emergence of statistical-mechanical structures in the dynamics along the routes to chaos; (iii dynamical hierarchies with modular organization; and (iv limit distributions of sums of deterministic variables. The occurrence of generalized entropy properties in condensed-matter physical systems is illustrated by considering critical fluctuations, localization transition and glass formation. We complete our presentation with the description of the manifestations of the dynamics at the transitions to chaos in various kinds of complex systems, such as, frequency and size rank distributions and complex network images of time series. We discuss the results.
Directory of Open Access Journals (Sweden)
Elisa Pelosin
2018-03-01
Full Text Available Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition and during a point-light display of a gymnast balancing on a rope (biological stimulus. Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries.
Design of High-Security USB Flash Drives Based on Chaos Authentication
Directory of Open Access Journals (Sweden)
Teh-Lu Liao
2018-05-01
Full Text Available This paper aims to propose a novel design of high-security USB flash drives with the chaos authentication. A chaos authentication approach with the non-linear encryption and decryption function design is newly proposed and realized based on the controller design of chaos synchronization. To complete the design of high-security USB flash drives, first, we introduce six parameters into the original Henon map to adjust and obtain richer chaotic state responses. Then a discrete sliding mode scheme is proposed to solve the synchronization problem of discrete hyperchaotic Henon maps. The proposed sliding mode controller can ensure the synchronization of the master-slave Henon maps. The selection of the switching surface and the existence of the sliding motion are also addressed. Finally, the obtained results are applied to design a new high-security USB flash drive with chaos authentication. We built discrete hyperchaotic Henon maps in the smartphone (master and microcontroller (slave, respectively. The Bluetooth module is used to communicate between the master and the slave to achieve chaos synchronization such that the same random and dynamical chaos signal can be simultaneously obtained at both the USB flash drive and smartphone, and pass the chaos authentication. When users need to access data in the flash drive, they can easily enable the encryption APP in the smartphone (master for chaos authentication. After completing the chaos synchronization and authentication, the ARM-based microcontroller allows the computer to access the data in the high-security USB flash drive.
Chaos: A Topic for Interdisciplinary Education in Physics
Bae, Saebyok
2009-01-01
Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…
International Nuclear Information System (INIS)
Bick, Christian; Kolodziejski, Christoph; Timme, Marc
2014-01-01
Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period
International Nuclear Information System (INIS)
Loskutov, Alexander
2010-01-01
This review introduces most of the concepts used in the study of chaotic phenomena in nonlinear systems and has as its objective to summarize the current understanding of results from the theory of chaotic dynamical systems and to describe the original ideas underlying the study of deterministic chaos. The presentation relies on informal analysis, with abstract mathematical ideas visualized geometrically or by examples from physics. Hyperbolic dynamics, homoclinic trajectories and tangencies, wild hyperbolic sets, and different types of attractors which appear in dynamical systems are considered. The key aspects of ergodic theory are discussed, and the basic statistical properties of chaotic dynamical systems are described. The fundamental difference between stochastic dynamics and deterministic chaos is explained. The review concludes with an investigation of the possibility of studying complex systems on the basis of the analysis of registered signals, i.e. the generated time series. (reviews of topical problems)
Bick, Christian; Kolodziejski, Christoph; Timme, Marc
2014-09-01
Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.
Energy Technology Data Exchange (ETDEWEB)
Bick, Christian [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Bernstein Center for Computational Neuroscience (BCCN), 37077 Göttingen (Germany); Institute for Mathematics, Georg–August–Universität Göttingen, 37073 Göttingen (Germany); Kolodziejski, Christoph [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); III. Physical Institute—Biophysics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Institute for Nonlinear Dynamics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany)
2014-09-01
Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.
Elimination of spiral chaos by periodic force for the Aliev-Panfilov model
Sakaguchi, Hidetsugu; Fujimoto, Takefumi
2003-01-01
Spiral chaos appears in the two dimensional Aliev-Panfilov model. The generation mechanism of the spiral chaos is related to the breathing instability of pulse trains. The spiral chaos can be eliminated by applying periodic force uniformly. The elimination of spiral chaos is most effective, when the frequency of the periodic force is close to that of the breathing motion.
Deterministic chaos in the processor load
International Nuclear Information System (INIS)
Halbiniak, Zbigniew; Jozwiak, Ireneusz J.
2007-01-01
In this article we present the results of research whose purpose was to identify the phenomenon of deterministic chaos in the processor load. We analysed the time series of the processor load during efficiency tests of database software. Our research was done on a Sparc Alpha processor working on the UNIX Sun Solaris 5.7 operating system. The conducted analyses proved the presence of the deterministic chaos phenomenon in the processor load in this particular case
Digital Communication Devices Based on Nonlinear Dynamics and Chaos
National Research Council Canada - National Science Library
Larson, Lawrence
2003-01-01
The final report of the ARO MURI "Digital Communications Based on Chaos and Nonlinear Dynamics" contains research results in the areas of chaos and nonlinear dynamics applied to wireless and optical communications...
Whitesell, Corey J; Teti, Douglas M; Crosby, Brian; Kim, Bo-Ram
2015-04-01
Household chaos is a construct often overlooked in studies of human development, despite its theoretical links with the integrity of individual well-being, family processes, and child development. The present longitudinal study examined relations between household chaos and well-established correlates of chaos (sociodemographic risk, major life events, and personal distress) and several constructs that, to date, are theoretically linked with chaos but never before assessed as correlates (quality of coparenting and emotional availability with infants at bedtime). In addressing this aim, we introduce a new measure of household chaos (the Descriptive In-home Survey of Chaos--Observer ReporteD, or DISCORD), wholly reliant on independent observer report, which draws from household chaos theory and prior empirical work but extends the measurement of chaos to include information about families' compliance with a home visiting protocol. Household chaos was significantly associated with socioeconomic risk, negative life events, less favorable coparenting, and less emotionally available bedtime parenting, but not with personal distress. These findings emphasize the need to examine household chaos as a direct and indirect influence on child and family outcomes, as a moderator of intervention attempts to improving parenting and child development, and as a target of intervention in its own right. (c) 2015 APA, all rights reserved).
Chaos and fractals. Applications to nuclear engineering
International Nuclear Information System (INIS)
Clausse, A.; Delmastro, D.F.
1990-01-01
This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es
Chaos and order in models of black hole pairs
International Nuclear Information System (INIS)
Levin, Janna
2006-01-01
Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our existing approximations are robust enough to offer convincing quantitative conclusions in the most highly nonlinear regime. It is intriguing to note that, in three different approximations to a black hole pair built of a spinning black hole and a nonspinning companion, two approximations exhibit chaos and one approximation does not. The fully relativistic scenario of a spinning test mass around a Schwarzschild black hole shows chaos, as does the post-Newtonian Lagrangian approximation. However, the approximately equivalent post-Newtonian Hamiltonian approximation does not show chaos when only one body spins. It is well known in dynamical systems theory that one system can be regular while an approximately related system is chaotic, so there is no formal conflict. However, the physical question remains: Is there chaos for comparable mass binaries when only one object spins? We are unable to answer this question given the poor convergence of the post-Newtonian approximation to the fully relativistic system. A resolution awaits better approximations that can be trusted in the highly nonlinear regime
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Lykke, Marianne; Lund, Haakon; Skov, Mette
2016-01-01
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500,000 broadcasts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings...
Does chaos theory have major implications for philosophy of medicine?
Holm, S
2002-12-01
In the literature it is sometimes claimed that chaos theory, non-linear dynamics, and the theory of fractals have major implications for philosophy of medicine, especially for our analysis of the concept of disease and the concept of causation. This paper gives a brief introduction to the concepts underlying chaos theory and non-linear dynamics. It is then shown that chaos theory has only very minimal implications for the analysis of the concept of disease and the concept of causation, mainly because the mathematics of chaotic processes entail that these processes are fully deterministic. The practical unpredictability of chaotic processes, caused by their extreme sensitivity to initial conditions, may raise practical problems in diagnosis, prognosis, and treatment, but it raises no major theoretical problems. The relation between chaos theory and the problem of free will is discussed, and it is shown that chaos theory may remove the problem of predictability of decisions, but does not solve the problem of free will. Chaos theory may thus be very important for our understanding of physiological processes, and specific disease entities, without having any major implications for philosophy of medicine.
Biologically inspired rate control of chaos.
Olde Scheper, Tjeerd V
2017-10-01
The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.
Quantum manifestations of chaos
International Nuclear Information System (INIS)
Borondo, F.; Benito, R.M.
1998-01-01
The correspondence between classical and quantum mechanics is considered both in the regular and chaotic regimes, and the main results regarding the quantum manifestations of chaos are reviewed. (Author) 16 refs
Nonlinear dynamics and chaos in a fractional-order financial system
International Nuclear Information System (INIS)
Chen Weiching
2008-01-01
This study examines the two most attractive characteristics, memory and chaos, in simulations of financial systems. A fractional-order financial system is proposed in this study. It is a generalization of a dynamic financial model recently reported in the literature. The fractional-order financial system displays many interesting dynamic behaviors, such as fixed points, periodic motions, and chaotic motions. It has been found that chaos exists in fractional-order financial systems with orders less than 3. In this study, the lowest order at which this system yielded chaos was 2.35. Period doubling and intermittency routes to chaos in the fractional-order financial system were found
Chaos synchronization of a new chaotic system via nonlinear control
International Nuclear Information System (INIS)
Zhang Qunjiao; Lu Junan
2008-01-01
This paper investigates chaos synchronization of a new chaotic system [Lue J, Chen G, Cheng D. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifurcat Chaos 2004;14:1507-37]. Two kinds of novel nonlinear controllers are designed based on the Lyapunov stability theory. It can be viewed as an improvement to the existing results of reference [Park JH. Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons and Fractals 2005;25:579-84] because we use less controllers but realize a global and exponential asymptotical synchronization. Numerical simulations are provided to show the effectiveness and advantage of this method
Chaos in charged AdS black hole extended phase space
Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.
2018-06-01
We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.
The chaos and order in nuclear molecular dynamics; Chaos i porzadek w jadrowej dynamice molekularnej
Energy Technology Data Exchange (ETDEWEB)
Srokowski, T. [Institute of Nuclear Physics, Cracow (Poland)
1995-12-31
The subject of the presented report is role of chaos in scattering processes in the frame of molecular dynamics. In this model, it is assumed that scattering particles (nuclei) consist of not-interacted components as alpha particles or {sup 12}C, {sup 16}O and {sup 20}Ne clusters. The results show such effects as dynamical in stabilities and fractal structure as well as compound nuclei decay and heavy-ion fusion. The goal of the report is to make the reader more familiar with the chaos model and its application to nuclear phenomena. 157 refs, 40 figs.
Chaos control applied to heart rhythm dynamics
Energy Technology Data Exchange (ETDEWEB)
Borem Ferreira, Bianca, E-mail: biaborem@gmail.com [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil); Souza de Paula, Aline, E-mail: alinedepaula@unb.br [Universidade de Brasi' lia, Department of Mechanical Engineering, 70.910.900 Brasilia, DF (Brazil); Amorim Savi, Marcelo, E-mail: savi@mecanica.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil)
2011-08-15
Highlights: > A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. > Responses related to normal and chaotic, pathological functioning of the heart are investigated. > Chaos control methods are applied to avoid pathological behaviors of heart dynamics. > Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.
Did the contagion effect exist? Evidence from Abu Dhabi, Jordan and America
Ho, Liang-Chun; Huang, Chia-Hsing
2014-01-01
This article aims to test the contagion effect between the stock markets of Abu Dhabi, Jordan and America. The Lagrange multiplier (LM) principle for causality in variance test is used in this study. Four American stock indexes, Dow Jones Industrial Average, NASDAQ Composite, RUSSELL 2000, and PHLX Semiconductor Sector Index, are in this study. The testing results of the four major American stock price indexes and the Jordan stock index (Amman) are significant. The testing results of the f...
Chaos and Christianity: A Response to Butz and a Biblical Alternative.
Watts, Richard E.; Trusty, Jerry
1997-01-01
M.R. Butz's position regarding chaos theory and Christianity is reviewed. The compatibility of biblical theology and the sciences is discussed. Parallels between chaos theory and the philosophical perspective of Soren Kierkegaard are explored. A biblical model is offered for counselors in assisting Christian clients in embracing chaos. (Author/EMK)
The 1833-1834 Cholera Epidemics at the Diocese of Guadalajara. Contagion routes and mortality
David Carbajal López
2011-01-01
This paper studies the contagion routes of cholera morbus inMexico, as well as the dissemination routes and the mortality caused by the cholera bacterium in the 130 parishes of the diocese ofGuadalajara during 1833 and 1843. The goal of this essay is to establish the differentiated demographic impact of the Asian illness in the various parishes of the large Guadalajaran diocese.
Flight-to-quality or contagion effect? An analysis from the Turkish and the US financial markets
Directory of Open Access Journals (Sweden)
Hatice Gaye Gencer
2015-09-01
Full Text Available In this paper, we investigate the presence of flight-to-quality from stocks to bonds as they are the two alternative asset classes predominantly used for hedging investment risk. A negative correlation between stock and bond markets is taken as a prognostication of flight-to-quality, while a positive correlation can be taken as a sign of contagion between the markets. We analyze the Turkish and US stock and government bond markets between June 6, 2006 and November 29, 2013, to make a comparison between the diversification benefits in a developed and an emerging market economy. We further divide our sample into two sub-periods to compare the patterns in crisis and tranquil periods. Our results reveal the existence of flight-to-quality in Turkey, whereas we find significant positive correlations between stocks and bonds in the US, implying a contagion effect. Additionally, we design portfolios of bonds/stocks and compute optimal weights and hedge ratios of the assets.
DEFF Research Database (Denmark)
Lykke, Marianne; Skov, Mette; Lund, Haakon
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500.000 broad-casts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings...
Effect of smoothing on robust chaos.
Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae
2010-08-01
In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.
Chaos Concepts, Control and Constructive Use
Bolotin, Yurii; Yanovsky, Vladimir
2009-01-01
The study of chaotic behaviour in nonlinear, dynamical systems is now a well established research domain with ramifications into all fields of sciences, spanning a vast range of applications, from celestial mechanics, via climate change, to the functioning of brownian motors in cells. A more recent discovery is that chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter itself for the system under investigation, stochastic resonance being a prime example. The present work is putting emphasis on the latter aspects, and after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing relevant algorithms for both Hamiltonian and dissipative systems amongst others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance and a survey of ratchet models. This short and concise pr...
Chaos-based hash function (CBHF) for cryptographic applications
International Nuclear Information System (INIS)
Amin, Mohamed; Faragallah, Osama S.; Abd El-Latif, Ahmed A.
2009-01-01
As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.
Chaos-based hash function (CBHF) for cryptographic applications
Energy Technology Data Exchange (ETDEWEB)
Amin, Mohamed [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: mamin04@yahoo.com; Faragallah, Osama S. [Dept. of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952 (Egypt)], E-mail: osam_sal@yahoo.com; Abd El-Latif, Ahmed A. [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: ahmed_rahiem@yahoo.com
2009-10-30
As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.
Chaos and the (un)predictability of evolution in a changing environment.
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-02-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Chaos-induced resonant effects and its control
International Nuclear Information System (INIS)
Zambrano, Samuel; Casado, Jose M.; Sanjuan, Miguel A.F.
2007-01-01
This Letter shows that a suitable chaotic signal can induce resonant effects analogous to those observed in presence of noise in a bistable system under periodic forcing. By constructing groups of chaotic and random perturbations with similar one-time statistics we show that in some cases chaos and noise induce indistinguishable resonant effects. This reinforces the conjecture by which in some situations where noise is supposed to play a key role maybe chaos is the key ingredient. Here we also show that the presence of a chaotic signal as the perturbation leading to a resonance opens new control perspectives based on our ability to stabilize chaos in different periodic orbits. A discussion of the possible implications of these facts is also presented at the end of the Letter
Chaos, complexity, and random matrices
Cotler, Jordan; Hunter-Jones, Nicholas; Liu, Junyu; Yoshida, Beni
2017-11-01
Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O(1) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.
International Nuclear Information System (INIS)
Zhang Fang-Fang; Liu Shu-Tang; Yu Wei-Yong
2013-01-01
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes. (general)
Bunimovich, Leonid A; Vela-Arevalo, Luz V
2015-09-01
"Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.
Extension of spatiotemporal chaos in glow discharge-semiconductor systems.
Akhmet, Marat; Rafatov, Ismail; Fen, Mehmet Onur
2014-12-01
Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].
Pryor, Robert; Bright, Jim
2004-01-01
This paper highlights five challenges to the accepted wisdom in career development theory and practice. It presents the chaos theory of careers and argues that the chaos theory provides a more complete and authentic account of human behaviour. The paper argues that positivism, reductionism and assumptions of linearity are inappropriate for…
Applying Chaos Theory to Lesson Planning and Delivery
Cvetek, Slavko
2008-01-01
In this article, some of the ways in which thinking about chaos theory can help teachers and student-teachers to accept uncertainty and randomness as natural conditions in the classroom are considered. Building on some key features of complex systems commonly attributed to chaos theory (e.g. complexity, nonlinearity, sensitivity to initial…
Directory of Open Access Journals (Sweden)
DIRCEU PEREIRA
2018-01-01
Full Text Available This research analyzes and extends the study of contagion for BRICS emerging stock markets in the context of the last two international financial crises: the Lehman Brothers Bankruptcy Crisis and the European Sovereign Debt Crisis. We investigate changes in the relationship and the co-movements between BRICS markets in response to international shocks that are originated in advanced markets like USA and Europe. Employing data of daily stock market indices of BRICS countries, this research tests for contagion, examining the interactions and characteristics of price movements of BRICS stock markets by applying cointegration, causality and VECM/Gonzalo-Granger statistic and variance decomposition methodology on stock returns as a measure of perceived country risk. The results exhibit that both long-run and short-run relationships patterns exist between BRICS stock markets and have drastically changed during turbulent periods compared with tranquil period, pointing towards the occurrence of contagion phenomenon among BRICS markets during the last two crises. These findings also indicate that changes in the USA and the Euro Zone indices affect BRICS stock markets in the short-run, acting as a leading indicator for investing in BRICS markets. Also imply an increasing degree of global market integration, bringing major implications for portfolio diversification and policy makers.
High-dimensional chaos from self-sustained collisions of solitons
Energy Technology Data Exchange (ETDEWEB)
Yildirim, O. Ozgur, E-mail: donhee@seas.harvard.edu, E-mail: oozgury@gmail.com [Cavium, Inc., 600 Nickerson Rd., Marlborough, Massachusetts 01752 (United States); Ham, Donhee, E-mail: donhee@seas.harvard.edu, E-mail: oozgury@gmail.com [Harvard University, 33 Oxford St., Cambridge, Massachusetts 02138 (United States)
2014-06-16
We experimentally demonstrate chaos generation based on collisions of electrical solitons on a nonlinear transmission line. The nonlinear line creates solitons, and an amplifier connected to it provides gain to these solitons for their self-excitation and self-sustenance. Critically, the amplifier also provides a mechanism to enable and intensify collisions among solitons. These collisional interactions are of intrinsically nonlinear nature, modulating the phase and amplitude of solitons, thus causing chaos. This chaos generated by the exploitation of the nonlinear wave phenomena is inherently high-dimensional, which we also demonstrate.
Early Exposure to Environmental Chaos and Children's Physical and Mental Health.
Coley, Rebekah Levine; Lynch, Alicia Doyle; Kull, Melissa
Environmental chaos has been proposed as a central influence impeding children's health and development, with the potential for particularly pernicious effects during the earliest years when children are most susceptible to environmental insults. This study evaluated a high-risk sample, following 495 low-income children living in poor urban neighborhoods from infancy to age 6. Longitudinal multilevel models tested the main tenets of the ecobiodevelopmental theory, finding that: (1) numerous distinct domains of environmental chaos were associated with children's physical and mental health outcomes, including housing disorder, neighborhood disorder, and relationship instability, with no significant results for residential instability; (2) different patterns emerged in relation to the timing of exposure to chaos, with more proximal exposure most strongly associated with children's functioning; and (3) the intensity of chaos also was a robust predictor of child functioning. Contrary to expectations, neither biological vulnerability (proxied through low birth weight status), maternal sensitivity, nor maternal distress moderated the role of chaos. Rather, maternal psychological distress functioned as a pathway through which environmental chaos was associated with children's functioning.
Right-ear precedence and vocal emotion contagion: The role of the left hemisphere.
Schepman, Astrid; Rodway, Paul; Cornmell, Louise; Smith, Bethany; de Sa, Sabrina Lauren; Borwick, Ciara; Belfon-Thompson, Elisha
2018-05-01
Much evidence suggests that the processing of emotions is lateralized to the right hemisphere of the brain. However, under some circumstances the left hemisphere might play a role, particularly for positive emotions and emotional experiences. We explored whether emotion contagion was right-lateralized, lateralized valence-specifically, or potentially left-lateralized. In two experiments, right-handed female listeners rated to what extent emotionally intoned pseudo-sentences evoked target emotions in them. These sound stimuli had a 7 ms ear lead in the left or right channel, leading to stronger stimulation of the contralateral hemisphere. In both experiments, the results revealed that right ear lead stimuli received subtly but significantly higher evocation scores, suggesting a left hemisphere dominance for emotion contagion. A control experiment using an emotion identification task showed no effect of ear lead. The findings are discussed in relation to prior findings that have linked the processing of emotional prosody to left-hemisphere brain regions that regulate emotions, control orofacial musculature, are involved in affective empathy processing areas, or have an affinity for processing emotions socially. Future work is needed to eliminate alternative interpretations and understand the mechanisms involved. Our novel binaural asynchrony method may be useful in future work in auditory laterality.
Advertising and quality-dependent word-of-mouth in a contagion sales model
El Ouardighi, Fouad; Feichtinger, Gustav; Grass, Dieter; Hartl, Richard F.; Kort, Peter M.
2016-01-01
Abstract: In the literature on marketing models, the assumption of mixed word-of-mouth has been limited to the Bass diffusion model. Yet explicit leveraging of the originating factors of such assumption is lacking. Apart from that example, mixed word-of-mouth has been disregarded in contagion sales models. This paper bridges the gap by suggesting a sales model, where both positive and negative word-of-mouth affect the attraction rate of new customers, along with advertising. The difference be...
The Chaos Theory of Careers: A User's Guide
Bright, Jim E. H.; Pryor, Robert G. L.
2005-01-01
The purpose of this article is to set out the key elements of the Chaos Theory of Careers. The complexity of influences on career development presents a significant challenge to traditional predictive models of career counseling. Chaos theory can provide a more appropriate description of career behavior, and the theory can be applied with clients…
International Nuclear Information System (INIS)
Chirikov, B.V.
1990-01-01
Classification of chaotic patterns in classical Hamiltonian systems is given as a series of levels with increasing disorder. Hamiltonian dynamics is presented, including the renormalization chaos, based upon the fairly simple resonant theory. First estimates for the critical structure and related statistical anomalies in arbitrary dimensions are discussed. 49 refs
Detecting Chaos from Agricultural Product Price Time Series
Directory of Open Access Journals (Sweden)
Xin Su
2014-12-01
Full Text Available Analysis of the characteristics of agricultural product price volatility and trend forecasting are necessary to formulate and implement agricultural price control policies. Taking wholesale cabbage prices as an example, a multiple test methodology has been adopted to identify the nonlinearity, fractality, and chaos of the data. The approaches used include the R/S analysis, the BDS test, the power spectra, the recurrence plot, the largest Lyapunov exponent, the Kolmogorov entropy, and the correlation dimension. The results show that there is chaos in agricultural wholesale price data, which provides a good theoretical basis for selecting reasonable forecasting models as prediction techniques based on chaos theory can be applied to forecasting agricultural prices.
Chaos, strange attractors, and fractal basin boundaries
International Nuclear Information System (INIS)
Grebogi, C.
1989-01-01
Even simple mathematical models of physical systems are often observed to exhibit rather complex time evolution. Upon observation, one often has the feeling that such complex time evolutions could, for most practical purposes, be best characterized by statistical properties rather than by detailed knowledge of the exact process. In such situations, the time evolution is often labeled chaotic or turbulent. The study of chaotic dynamics has recently undergone explosive growth. Motivation for this comes partly from the fact that chaotic dynamics is being found to be of fundamental importance in many branches of science and engineering. Examples illustrating the wide-ranging applications of chaotic dynamics to scientific and engineering problems are the following: fluid dynamics, biology, ecology, meteorology, optics, electronics, mechanical engineerings, physiology, economics, chemistry, accelerator technology, thermonuclear fusion, celestial mechanics, and oceanography. The common element in all of the above topics is that they involve nonlinearity in some way. Indeed chaos is expected to be common whenever nonlinearity plays a role. Since nonlinearity is inherent in so much of science and engineering, an understanding of chaos is essential. Given the varied nature of applications where chaos is important, it is natural that researchers in a broad range of fields have become interested in and have contributed to recent developments in chaos
Chaos theory: A fascinating concept for oncologists
International Nuclear Information System (INIS)
Denis, F.; Letellier, C.
2012-01-01
The oncologist is confronted daily by questions related to the fact that any patient presents a specific evolution for his cancer: he is challenged by very different, unexpected and often unpredictable outcomes, in some of his patients. The mathematical approach used today to describe this evolution has recourse to statistics and probability laws: such an approach does not ultimately apply to one particular patient, but to a given more or less heterogeneous population. This approach therefore poorly characterizes the dynamics of this disease and does not allow to state whether a patient is cured, to predict if he will relapse and when this could occur, and in what form, nor to predict the response to treatment and, in particular, to radiation therapy. Chaos theory, not well known by oncologists, could allow a better understanding of these issues. Developed to investigate complex systems producing behaviours that cannot be predicted due to a great sensitivity to initial conditions, chaos theory is rich of suitable concepts for a new approach of cancer dynamics. This article is three-fold: to provide a brief introduction to chaos theory, to clarify the main connecting points between chaos and carcinogenesis and to point out few promising research perspectives, especially in radiotherapy. (authors)
Chaos synchronization of coupled hyperchaotic system
International Nuclear Information System (INIS)
Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng
2009-01-01
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.
The 1833-1834 Cholera Epidemics at the Diocese of Guadalajara. Contagion routes and mortality
Directory of Open Access Journals (Sweden)
David Carbajal López
2011-04-01
Full Text Available This paper studies the contagion routes of cholera morbus inMexico, as well as the dissemination routes and the mortality caused by the cholera bacterium in the 130 parishes of the diocese ofGuadalajara during 1833 and 1843. The goal of this essay is to establish the differentiated demographic impact of the Asian illness in the various parishes of the large Guadalajaran diocese.
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
Williams, M.M.R.
2006-01-01
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Extension of spatiotemporal chaos in glow discharge-semiconductor systems
International Nuclear Information System (INIS)
Akhmet, Marat; Fen, Mehmet Onur; Rafatov, Ismail
2014-01-01
Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).
Switching control of linear systems for generating chaos
International Nuclear Information System (INIS)
Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong
2006-01-01
In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors
Neural chaos and schizophrenia
Czech Academy of Sciences Publication Activity Database
Bob, P.; Chládek, Jan; Šusta, M.; Glaslová, K.; Jagla, F.; Kukleta, M.
2007-01-01
Roč. 26, č. 4 (2007), s. 298-305 ISSN 0231-5882 Institutional research plan: CEZ:AV0Z20650511 Keywords : EDA * Lyapunov exponent * schizophrenia * chaos Subject RIV: FL - Psychiatry, Sexuology Impact factor: 1.286, year: 2007
Chaos control of Chen chaotic dynamical system
International Nuclear Information System (INIS)
Yassen, M.T.
2003-01-01
This paper is devoted to study the problem of controlling chaos in Chen chaotic dynamical system. Two different methods of control, feedback and nonfeedback methods are used to suppress chaos to unstable equilibria or unstable periodic orbits (UPO). The Lyapunov direct method and Routh-Hurwitz criteria are used to study the conditions of the asymptotic stability of the steady states of the controlled system. Numerical simulations are presented to show these results
Effect of social group dynamics on contagion
Zhao, Zhenyuan; Calderón, J. P.; Xu, Chen; Zhao, Guannan; Fenn, Dan; Sornette, Didier; Crane, Riley; Hui, Pak Ming; Johnson, Neil F.
2010-05-01
Despite the many works on contagion phenomena in both well-mixed systems and heterogeneous networks, there is still a lack of understanding of the intermediate regime where social group structures evolve on a similar time scale to individual-level transmission. We address this question by considering the process of transmission through a model population comprising social groups which follow simple dynamical rules for growth and breakup. Despite the simplicity of our model, the profiles produced bear a striking resemblance to a wide variety of real-world examples—in particular, empirical data that we have obtained for social (i.e., YouTube), financial (i.e., currency markets), and biological (i.e., colds in schools) systems. The observation of multiple resurgent peaks and abnormal decay times is qualitatively reproduced within the model simply by varying the time scales for group coalescence and fragmentation. We provide an approximate analytic treatment of the system and highlight a novel transition which arises as a result of the social group dynamics.
Topographic variations in chaos on Europa: Implications for diapiric formation
Schenk, Paul M.; Pappalardo, Robert T.
2004-01-01
Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Cam et al., 1998; Greenberg et al., 19991, or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 20001. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-10-17
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Synchronization and suppression of chaos in non-locally coupled ...
Indian Academy of Sciences (India)
Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently spatiotemporal chaos. We used the complex order parameter to quantify chaos synchronization for a one-dimensional chain of coupled logistic maps with a ...
International Nuclear Information System (INIS)
Fang Jinqing; Yu Xinghuo
2004-01-01
Study of beam halo-chaos has become a key issue of concern for many future important applications. Control of halo-chaos has been researched intensively. This is the first time that the synchronization of beam halo-chaos has been realized in this field so far. Two nonlinear feedback control methods are proposed for the cascading synchronizing halo-chaos in coupled lattices of a periodic focusing channel. The simulation results show that the methods are effective. The realization of the synchronization of beam halo-chaos is significant not only for halo-chaos control itself but also for halo-chaos-based secure communication which may become an innovative technique
Controlling Mackey-Glass chaos
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Energy Technology Data Exchange (ETDEWEB)
Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)
2016-02-01
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.
Controlling Mackey-Glass chaos.
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Spatiotemporal chaos from bursting dynamics
International Nuclear Information System (INIS)
Berenstein, Igal; De Decker, Yannick
2015-01-01
In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators
International Nuclear Information System (INIS)
Fitzpatrick, A. Liam; Kaplan, Jared
2016-01-01
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT_2 at large central charge c. The Lyapunov exponent λ_L, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ_L=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ_L that emerges at large c, focusing on CFT_2 and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
Controlling the optical field chaos in storage ring free-electron lasers
International Nuclear Information System (INIS)
Wang Wenjie
1995-01-01
The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained
Stavrova, O.; Meckel, Andrea
2017-01-01
This research examines the role of trait empathy in emotional contagion through non-social targets—art objects. Studies 1a and 1b showed that high- (compared to low-) empathy individuals are more likely to infer an artist’s emotions based on the emotional valence of the artwork and, as a result, are
Controlling chaos in the current-driven ion acoustic instability
International Nuclear Information System (INIS)
Fukuyama, T.; Taniguchi, K.; Kawai, Y.
2002-01-01
Control of intermittent chaos caused by the current-driven ion acoustic instability is attempted and the controlling mechanism is investigated. When a small negative dc voltage is applied to the chaotic system as a perturbation, the system changes from a chaotic state to a periodic state while maintaining the instability, indicating that the chaotic state caused by the ion acoustic instability is well controlled by applying a small negative dc voltage. A hysteresis structure is observed on the V-I curve of the mesh grid to which the negative dc voltage to control is applied. Furthermore, when a negative dc voltage is applied to the state which shows a laminar structure existing under same experimental conditions, the system becomes chaotic via a bifurcation. Driven-chaos is excited when a negative dc voltage is applied to the laminar state. Applying a small negative dc voltage leads to controlling intermittent chaos while exciting driven-chaos
Chaos Modelling with Computers
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Chaos Modelling with Computers Unpredicatable Behaviour of Deterministic Systems. Balakrishnan Ramasamy T S K V Iyer. General Article Volume 1 Issue 5 May 1996 pp 29-39 ...
THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT
International Nuclear Information System (INIS)
Lithwick, Yoram; Wu Yanqin
2011-01-01
We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.
Facebook and Social Contagion of Mental Health Disorders Among College Students
Directory of Open Access Journals (Sweden)
Sharon J. Davis
2017-12-01
Full Text Available Non-suicidal self-injury is growing in popularity among young people. Studies suggest that the phenomenon of social contagion may be to blame. This study explored the influence of the popular social media site, Facebook, on mental health, non-suicidal self-injury, and suicidal behavior in college students. A total of 244 undergraduate students participated in this study. Results found that Facebook can increase personal anxiety and depression, but it is more likely to increase happiness and good mood. However, for some individuals Facebook can lead to more self-injurious behavior, such as cutting.
Classical and quantum chaos in a circular billiard with a straight cut
International Nuclear Information System (INIS)
Ree, S.; Reichl, L.E.
1999-01-01
We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. Classically, this system can be integrable, nonintegrable with soft chaos, or nonintegrable with hard chaos as we vary the size of the cut. We plot Poincaracute e surfaces of section to study chaos. Quantum mechanically, we look at Husimi plots, and also use the quantum web, the technique primarily used in spin systems so far, to try to see differences in quantum manifestations of soft and hard chaos. copyright 1999 The American Physical Society
Chaos induced by quantum effect due to breakdown of the Born-Oppenheimer adiabaticity
International Nuclear Information System (INIS)
Fujisaki, Hiroshi; Takatsuka, Kazuo
2001-01-01
Chaos in the multimode nonadiabatic system constructed by Heller [J. Chem. Phys. >92, 1718 (1990)], which consists of two diabatic two-dimensional harmonic potentials with the Condon coupling, is studied. A thorough investigation is carried out by scanning the magnitudes of the Condon coupling and the Duschinsky angle. To elucidate mechanisms that can cause chaos in this quantum system, the statistical properties of the energy levels and eigenfunctions of the system are investigated. We find an evidence in terms of the nearest-neighbor spacing distribution of energy levels and other measures that a certain class of chaos is purely induced by the nonadiabatic interaction due to breakdown of the Born-Oppenheimer approximation. Since the nonadiabatic transition can induce repeated bifurcation and merging of a wave packet around the region of quasicrossing between two potential surfaces, and since this interaction does not have a counterpart in the lower adiabatic system, the present chaos deserves being called 'nonadiabatic chaos.' Another type of chaos in a nonadiabatic system was previously identified [D. M. Leitner et al., J. Chem. Phys. >104, 434 (1996)] that reflects the inherent chaos of a corresponding adiabatic potential. We present a comparative study to establish the similarity and difference between these kinds of chaos
Chaos controlling problems for circuit systems with Josephson junction
International Nuclear Information System (INIS)
Gou, X-F; Wang, X; Xie, J-L
2008-01-01
The complex dynamical characters of the Josephson junction circuit system are studied and the tunnel effect is considered. The dynamical equation of the system is established. The route from periodic motion to chaos is illustrated using bifurcation diagram. An adscititious coupling controller is constructed to control the chaos
How does the Xenopus laevis embryonic cell cycle avoid spatial chaos?
Gelens, Lendert; Huang, Kerwyn Casey; Ferrell, James E.
2015-01-01
Summary Theoretical studies have shown that a deterministic biochemical oscillator can become chaotic when operating over a sufficiently large volume, and have suggested that the Xenopus laevis cell cycle oscillator operates close to such a chaotic regime. To experimentally test this hypothesis, we decreased the speed of the post-fertilization calcium wave, which had been predicted to generate chaos. However, cell divisions were found to develop normally and eggs developed into normal tadpoles. Motivated by these experiments, we carried out modeling studies to understand the prerequisites for the predicted spatial chaos. We showed that this type of spatial chaos requires oscillatory reaction dynamics with short pulse duration, and postulated that the mitotic exit in Xenopus laevis is likely slow enough to avoid chaos. In systems with shorter pulses, chaos may be an important hazard, as in cardiac arrhythmias, or a useful feature, as in the pigmentation of certain mollusk shells. PMID:26212326
Specifying the Links Between Household Chaos and Preschool Children’s Development
Martin, Anne; Razza, Rachel; Brooks-Gunn, Jeanne
2011-01-01
Household chaos has been linked to poorer cognitive, behavioral, and self-regulatory outcomes in young children, but the mechanisms responsible remain largely unknown. Using a diverse sample of families in Chicago, the present study tests for the independent contributions made by five indicators of household chaos: noise, crowding, family instability, lack of routine, and television usually on. Chaos was measured at age 2; outcomes measured at age 5 tap receptive vocabulary, attention and behavior problems, and effortful control. Results show that controlling for all other measures of chaos, children with a lack of routine scored lower on receptive vocabulary and delayed gratification, while children whose television was generally on scored higher on aggression and attention problems. The provision of learning materials mediated a small part of the association between television and receptive vocabulary. Family instability, crowding, and noise did not predict any outcomes once other measures of chaos were controlled. PMID:22919120
[Chaos theory: a fascinating concept for oncologists].
Denis, F; Letellier, C
2012-05-01
The oncologist is confronted daily by questions related to the fact that any patient presents a specific evolution for his cancer: he is challenged by very different, unexpected and often unpredictable outcomes, in some of his patients. The mathematical approach used today to describe this evolution has recourse to statistics and probability laws: such an approach does not ultimately apply to one particular patient, but to a given more or less heterogeneous population. This approach therefore poorly characterizes the dynamics of this disease and does not allow to state whether a patient is cured, to predict if he will relapse and when this could occur, and in what form, nor to predict the response to treatment and, in particular, to radiation therapy. Chaos theory, not well known by oncologists, could allow a better understanding of these issues. Developed to investigate complex systems producing behaviours that cannot be predicted due to a great sensitivity to initial conditions, chaos theory is rich of suitable concepts for a new approach of cancer dynamics. This article is three-fold: to provide a brief introduction to chaos theory, to clarify the main connecting points between chaos and carcinogenesis and to point out few promising research perspectives, especially in radiotherapy. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Directory of Open Access Journals (Sweden)
Jian Liu
2014-11-01
Full Text Available This paper introduces a type of modified hybrid projective synchronization with complex transformationmatrix (CMHPS for different dimensional fractional-order complex chaos and fractional-order real hyper-chaos. The transformationmatrix in this type of chaotic synchronization is a non-square matrix, and its elements are complex numbers. Based on the stability theory of fractional-order systems, by employing the feedback control technique, necessary and sufficient criteria on CMHPS are derived. Furthermore, CMHPS between fractional-order real hyper-chaotic Rössler system and other two different dimensional fractional-order complex Lorenz-like chaotic systems is provided as two examples to discuss reduced order and increased order synchronization, respectively.
Czech Academy of Sciences Publication Activity Database
Beran, Zdeněk; Čelikovský, Sergej
2013-01-01
Roč. 23, č. 5 (2013), 1350084-1-1350084-9 ISSN 0218-1274 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperspace * chaos * shadowing * Bernoulli shift Subject RIV: BC - Control Systems Theory Impact factor: 1.017, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/beran-0392926.pdf
Emotional Contagion is not Altered in Mice Prenatally Exposed to Poly (I:C) on Gestational Day 9.
Gonzalez-Liencres, Cristina; Juckel, Georg; Esslinger, Manuela; Wachholz, Simone; Manitz, Marie-Pierre; Brüne, Martin; Friebe, Astrid
2016-01-01
Prenatal immune activation has been associated with increased risk of developing schizophrenia. The polyinosinic-polycytidylic acid (Poly(I:C)) mouse model replicates some of the endophenotype characteristic of this disorder but the social deficits observed in schizophrenia patients have not been well studied in this model. Therefore we aimed to investigate social behavior, in particular emotional contagion for pain, in this mouse model. We injected pregnant mouse dams with Poly(I:C) or saline (control) on gestation day 9 (GD9) and we evaluated their offspring in the pre-pulse inhibition (PPI) test at age 50-55 days old to confirm the reliability of our model. Mice were then evaluated in an emotional contagion test immediately followed by the light/dark test to explore post-test anxiety-like behavior at 10 weeks of age. In the emotional contagion test, an observer (prenatally exposed to Poly(I:C) or to saline) witnessed a familiar wild-type (WT) mouse (demonstrator) receiving electric foot shocks. Our results replicate the sensory gating impairments in the Poly(I:C) offspring but we only observed minor group differences in the social tasks. One of the differences we found was that demonstrators deposited fewer feces in the presence of control observers than of observers prenatally exposed to Poly(I:C), which we suggest could be due to the observers' behavior. We discuss the findings in the context of age, sex and day of prenatal injection, suggesting that Poly(I:C) on GD9 may be a valuable tool to assess other symptoms or symptom clusters of schizophrenia but perhaps not comprising the social domain.
Chaos Theory and Its Application to Education: Mehmet Akif Ersoy University Case
Akmansoy, Vesile; Kartal, Sadik
2014-01-01
Discussions have arisen regarding the application of the new paradigms of chaos theory to social sciences as compared to physical sciences. This study examines what role chaos theory has within the education process and what effect it has by describing the views of university faculty regarding chaos and education. The participants in this study…
Error function attack of chaos synchronization based encryption schemes.
Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu
2004-03-01
Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor. Copyright 2004 American Institute of Physics.
Early Exposure to Environmental Chaos and Children’s Physical and Mental Health
Coley, Rebekah Levine; Lynch, Alicia Doyle; Kull, Melissa
2015-01-01
Environmental chaos has been proposed as a central influence impeding children’s health and development, with the potential for particularly pernicious effects during the earliest years when children are most susceptible to environmental insults. This study evaluated a high-risk sample, following 495 low-income children living in poor urban neighborhoods from infancy to age 6. Longitudinal multilevel models tested the main tenets of the ecobiodevelopmental theory, finding that: (1) numerous distinct domains of environmental chaos were associated with children’s physical and mental health outcomes, including housing disorder, neighborhood disorder, and relationship instability, with no significant results for residential instability; (2) different patterns emerged in relation to the timing of exposure to chaos, with more proximal exposure most strongly associated with children’s functioning; and (3) the intensity of chaos also was a robust predictor of child functioning. Contrary to expectations, neither biological vulnerability (proxied through low birth weight status), maternal sensitivity, nor maternal distress moderated the role of chaos. Rather, maternal psychological distress functioned as a pathway through which environmental chaos was associated with children’s functioning. PMID:25844016
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418
Relations between distributional, Li-Yorke and ω chaos
International Nuclear Information System (INIS)
Guirao, Juan Luis Garcia; Lampart, Marek
2006-01-01
The forcing relations between notions of distributional, Li-Yorke and ω chaos were studied by many authors. In this paper we summarize all known connections between these three different types of chaos and fulfill the results for general compact metric spaces by the construction of a selfmap on a compact perfect set which is ω chaotic, not distributionally chaotic and has zero topological entropy
Chaos and the classical limit of quantum systems
Energy Technology Data Exchange (ETDEWEB)
Hogg, T; Huberman, B A [Xerox Palo Alto Research Center, CA (USA)
1984-10-01
The authors discuss the question of whether experiments can be designed to test the existence of quantum chaos. In particular, they show that high energies are not sufficient to guarantee that an initially localized wave packet will behave classically for long times. Computer simulations illustrating these ideas are presented and the question whether experiments can be designed to observe quantum chaos is commented on.
Relations between distributional, Li-Yorke and {omega} chaos
Energy Technology Data Exchange (ETDEWEB)
Guirao, Juan Luis Garcia [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, C/Paseo Alfonso XIII, 30203-Cartagena (Region de Murcia) (Spain)]. E-mail: juan.garcia@upct.es; Lampart, Marek [Mathematical Institute at Opava, Silesian University at Opava, Na Rybnicku 1, 746 01 Opava (Czech Republic)]. E-mail: marek.lampart@math.slu.cz
2006-05-15
The forcing relations between notions of distributional, Li-Yorke and {omega} chaos were studied by many authors. In this paper we summarize all known connections between these three different types of chaos and fulfill the results for general compact metric spaces by the construction of a selfmap on a compact perfect set which is {omega} chaotic, not distributionally chaotic and has zero topological entropy.
The Application of Chaos Theory to the Career-Plateaued Worker.
Duffy, Jean Ann
2000-01-01
Applies some of the principles of chaos theory to career-plateaued workers on the basis of a case study. Concludes that chaos theory provides career practitioners a useful application for working with this type of client. (Author/JDM)
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A. Liam [Department of Physics, Boston University,590 Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,3400 N. Charles St, Baltimore, MD 21218 (United States)
2016-05-12
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT{sub 2} at large central charge c. The Lyapunov exponent λ{sub L}, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ{sub L}=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ{sub L} that emerges at large c, focusing on CFT{sub 2} and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
International Nuclear Information System (INIS)
Kolesov, Andrei Yu; Rozov, Nikolai Kh
2009-01-01
A new definition of a chaotic invariant set is given for a continuous semiflow in a metric space. It generalizes the well-known definition due to Devaney and allows one to take into account a special feature occurring in the non-compact infinite-dimensional case: so-called turbulent chaos. The paper consists of two sections. The first contains several well-known facts from chaotic dynamics, together with new definitions and results. The second presents a concrete example demonstrating that our definition of chaos is meaningful. Namely, an infinite-dimensional system of ordinary differential equations is investigated having an attractor that is chaotic in the sense of the new definition but not in the sense of Devaney or Knudsen. Bibliography: 65 titles.
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.
2018-06-01
We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.
Dynamical topology and statistical properties of spatiotemporal chaos.
Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli
2012-12-01
For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.
Improved particle swarm optimization combined with chaos
International Nuclear Information System (INIS)
Liu Bo; Wang Ling; Jin Yihui; Tang Fang; Huang Dexian
2005-01-01
As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of particle swarm optimization (PSO), which is an evolutionary computation technique through individual improvement plus population cooperation and competition, hybrid particle swarm optimization algorithm is proposed by incorporating chaos. Firstly, adaptive inertia weight factor (AIWF) is introduced in PSO to efficiently balance the exploration and exploitation abilities. Secondly, PSO with AIWF and chaos are hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality
Entanglement as a signature of quantum chaos.
Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi
2004-01-01
We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.
Nonlinear dynamics and quantum chaos an introduction
Wimberger, Sandro
2014-01-01
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Dynamics and chaos control of gyrostat satellite
International Nuclear Information System (INIS)
Aslanov, Vladimir; Yudintsev, Vadim
2012-01-01
Highlights: ► Free dual-spin gyrostat with a small rotor asymmetry is considered. ► Equations in Andoyer-Deprit canonical dimensionless variables are obtained. ► Phase space heteroclinic and homoclinic trajectories are written in closed form. ► Modified Melnikov function is used to construct the control that eliminates chaos. - Abstract: We consider the chaotic motion of the free gyrostat consisting of a platform with a triaxial inertia ellipsoid and a rotor with a small asymmetry with respect to the axis of rotation. Dimensionless equations of motion of the system with perturbations caused by small asymmetries of the rotor are written in Andoyer-Deprit variables. These perturbations lead to separatrix chaos. For gyrostats with different ratios of moments of inertia heteroclinic and homoclinic trajectories are written in closed-form. These trajectories are used for constructing modified Melnikov function, which is used for determine the control that eliminates separatrix chaos. Melnikov function and phase space trajectory are built to show the effectiveness of the control.
Controlling chaos and synchronization for new chaotic system using linear feedback control
International Nuclear Information System (INIS)
Yassen, M.T.
2005-01-01
This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes
Crisis Phones - Suicide Prevention Versus Suggestion/Contagion Effects.
Stack, Steven
2015-01-01
There has been no systematic work on the short- or long-term impact of the installation of crisis phones on suicides from bridges. The present study addresses this issue. Data refer to 219 suicides from 1954 through 2013 on the Skyway Bridge in St. Petersburg, Florida. Six crisis phones with signs were installed in July 1999. In the first decade after installation, the phones were used by 27 suicidal persons and credited with preventing 26 or 2.6 suicides a year. However, the net suicide count increased from 48 in the 13 years before installation of phones to 106 the following 13 years or by 4.5 additional suicides/year (t =3.512, p < .001). Although the phones prevented some suicides, there was a net increase after installation. The findings are interpreted with reference to suggestion/contagion effects including the emergence of a controversial bridge suicide blog.
Intermittency route to chaos in a biochemical system.
De la Fuente, I M; Martinez, L; Veguillas, J
1996-01-01
The numerical analysis of a glycolytic model performed through the construction of a system of three differential-delay equations reveals a phenomenon of intermittency route to chaos. In our biochemical system, the consideration of delay time variations under constant input flux as well as frequency variations of the periodic substrate input flux allows us, in both cases, to observe a type of transition to chaos different from the 'Feigenbaum route'.
Chaos synchronization of the fractional-order Chen's system
International Nuclear Information System (INIS)
Zhu Hao; Zhou Shangbo; He Zhongshi
2009-01-01
In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora-Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.
2005-01-01
8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location. Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn
Complex contagions with timers
Oh, Se-Wook; Porter, Mason A.
2018-03-01
There has been a great deal of effort to try to model social influence—including the spread of behavior, norms, and ideas—on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays adoptions—i.e., changes of state—by the agents, which in turn delays the adoptions of their neighbors. With a homogeneously-distributed timer, in which all nodes have the same amount of delay, the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to the timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation for the Watts threshold model, and we find good agreement with numerical simulations. We also examine our new timer model on networks constructed from empirical data.
Chaos and Structures in Nonlinear Plasmas
Chen, James
In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.
Chaos, dynamical structure and climate variability
Energy Technology Data Exchange (ETDEWEB)
Stewart, H.B. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science
1995-09-01
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.
Chaos and its control in an impulsive differential system
International Nuclear Information System (INIS)
Jiang Guirong; Lu Qishao; Qian Linning
2007-01-01
In this paper, the existence of chaos and its control in an autonomous impulsive differential system are discussed both theoretically and numerically. The existence of a snap-back repeller, as well as the chaos in the sense of Li-Yorke, is proved based on the qualitative analysis using the Poincare map and the Lambert W-function. Moreover, the existence of the period-3 periodic window embedded in the chaotic region is also demonstrated. An algorithm of chaos control to stabilize the unstable periodic solutions is proposed. Detailed numerical results of chaotic attractors and stabilization of unstable periodic orbits by the impulsive effects, which are illustrated by an example, are in good agreement with the theoretical analysis
Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals
Ivancevic, Vladimir G
2008-01-01
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...
Suppression of chaos at slow variables by rapidly mixing fast dynamics
Abramov, R.
2012-04-01
One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.
Quantum chaos: entropy signatures
International Nuclear Information System (INIS)
Miller, P.A.; Sarkar, S.; Zarum, R.
1998-01-01
A definition of quantum chaos is given in terms of entropy production rates for a quantum system coupled weakly to a reservoir. This allows the treatment of classical and quantum chaos on the same footing. In the quantum theory the entropy considered is the von Neumann entropy and in classical systems it is the Gibbs entropy. The rate of change of the coarse-grained Gibbs entropy of the classical system with time is given by the Kolmogorov-Sinai (KS) entropy. The relation between KS entropy and the rate of change of von Neumann entropy is investigated for the kicked rotator. For a system which is classically chaotic there is a linear relationship between these two entropies. Moreover it is possible to construct contour plots for the local KS entropy and compare it with the corresponding plots for the rate of change of von Neumann entropy. The quantitative and qualitative similarities of these plots are discussed for the standard map (kicked rotor) and the generalised cat maps. (author)
Chaos detection and predictability
Gottwald, Georg; Laskar, Jacques
2016-01-01
Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniques for graduate students and non-specialists. The book cover...
Research on a family of n-scroll chaos generators
International Nuclear Information System (INIS)
Zhang, G; Yang, S-Z; He, L-F
2008-01-01
This paper studies a family of n-scroll chaos generators using a modified Chua's circuit. A mathematic model of the generators is established, the relationship between equilibrium points and scrolls is also analyzed, and a general theorem for generation of n-scroll chaos attractors is given. Numerical simulation is illustrated, showing excellent agreement with our theoretical predictions
Parrondo’s paradox for chaos control and anticontrol of fractional-order systems
International Nuclear Information System (INIS)
Danca, Marius-F; Tang, Wallace K S
2016-01-01
We present the generalized forms of Parrondo’s paradox existing in fractional-order nonlinear systems. The generalization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N ≥ 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words “winning” and “loosing” in the classical Parrondo’s paradox with “order” and “chaos', respectively, the PS algorithm leads to the generalized Parrondo’s paradox: chaos 1 + chaos 2 + ··· + chaos N = order and order 1 + order 2 + ··· + order N = chaos. Finally, the concept is well demonstrated with the results based on the fractional-order Chen system. (paper)
Oestreicher, Christian
2007-01-01
Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century, when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely, although they can be predicted to some extent, in line with the chaos theory. Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory. This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms.
Magnetic field induced dynamical chaos.
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-01
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
Oestreicher, Christian
2007-01-01
Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865
Next-order spin-orbit contributions to chaos in compact binaries
International Nuclear Information System (INIS)
Wang Yuzhao; Wu Xin
2011-01-01
This paper is mainly devoted to numerically investigating the effects of the next-order spin-orbit interactions including the 2.5 post-Newtonian order term of the equations of motion and the second post-Newtonian order terms of the spin precession equations on chaos in the conservative Lagrangian dynamics of a spinning compact binary system. It is shown sufficiently through individual orbit simulations, the dependence of the invariant fast Lyapunov indicators on the variations of initial spin angles and the phase space scans for chaos, that the next-order spin-orbit contributions do play an important role in the amplification of chaos.
Chaos in an imperfectly premixed model combustor.
Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O
2015-02-01
This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.
Control and synchronization of chaos in nonlinear systems and prospects for application. Pt.1
International Nuclear Information System (INIS)
Fang Jinqing
1996-01-01
Main progress in one challenging subject of nonlinear science--control and synchronization of chaos in nonlinear systems are reviewed systematically, including recent advance in controlling and synchronizing hyperchaos. Current methods and principles of schemes of chaos control and synchronization are classified and summarized in detail. Potential prospects for application are commented both in theory and experiment. The whole review is divided into two parts. In the first one, subject on the mechanism and method of chaos control are analyzed and discussed extensively. In the second one, the synchronization of non-chaos, chaos, hyperchaos and their control and application are described. Main trends for development of the subject is mentioned. (101 refs.)
Directory of Open Access Journals (Sweden)
Kratochvíl C.
2007-10-01
Full Text Available The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions.
Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system
International Nuclear Information System (INIS)
Kawabe, Tetsuji
2003-01-01
Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we show that this approach brings the same qualitative and quantitative information about order and chaos as has been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a sufficient condition to the criterion based on this geometric approach as to the stability condition
Chaos Theory and James Joyce's "ulysses": Leopold Bloom as a Human COMPLEX@SYSTEM^
Mackey, Peter Francis
1995-01-01
These four ideas apply as much to our lives as to the life of Leopold Bloom: (1) A trivial decision can wholly change a life. (2) A chance encounter can dramatically alter life's course. (3) A contingent nexus exists between consciousness and environment. (4) A structure of meaning helps us interpret life's chaos. These ideas also relate to a contemporary science called by some "chaos theory." The connection between Ulysses and chaos theory enhances our understanding of Bloom's day; it also suggests that this novel may be about the real process of life itself. The first chapter explains how Joyce's own essays and comments to friends compel attention to the links between Ulysses and chaos theory. His scientific contemporaries anticipated chaos theory, and their ideas seem to have rubbed off on him. We see this in his sense of trivial things and chance, his modernistic organizational impulses, and the contingent nature of Bloom's experience. The second chapter studies what chaos theory and Joyce's ideas tell us about "Ithaca," the episode which particularly implicates our processes of interpreting this text as well as life itself as we face their chaos. The third chapter examines Bloom's close feel for the aboriginal world, a contingency that clarifies his vulnerability to trivial changes. The fourth chapter studies how Bloom's stream of consciousness unfolds--from his chance encounters with trivial things. Beneath this stream's seeming chaos, Bloom's distinct personality endures, similar to how Joyce's schemas give Ulysses an imbedded, underlying order. The fifth chapter examines how trivial perturbations, such as Lyons' misunderstanding about "Throwaway," produce small crises for Bloom, exacerbating his seeming impotence before his lonely "fate.". The final chapter analyzes Bloom's views that fate and chance dictate his life. His views provide an opportunity to explore the implications chaos theory has for our understanding of free will and determinism. Ultimately
Parameter identification of chaos system based on unknown parameter observer
International Nuclear Information System (INIS)
Wang Shaoming; Luo Haigeng; Yue Chaoyuan; Liao Xiaoxin
2008-01-01
Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lue, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lue system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach
Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.
Zou, Yong; Donner, Reik V; Kurths, Jürgen
2012-03-01
Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic Rössler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.
Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee
2017-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426
Onset of dynamical chaos in topologically massive gauge theories
International Nuclear Information System (INIS)
Giansanti, A.; Simic, P.D.
1988-01-01
The onset of dynamical chaos is studied numerically in (2+1)-dimensional non-Abelian field theory with the Chern-Simons topological term. In the limit of strong fields, slowly varying in space (spatially homogeneous fields), this theory is an analog to a system of three charged particles moving in a plane in an orthogonal magnetic field and under the influence of a quartic potential. The ''phase transition'' (order chaos) is observed within a narrow energy range. The threshold of the transition depends on the sign of the angular momentum of the field reflecting parity violation in the underlying field theory. The transition region is investigated in some detail and the hyperfine structure of order-chaos-order-... transitions is observed suggesting the necessity of probabilistic description
Rank one chaos in a class of planar systems with heteroclinic cycle.
Chen, Fengjuan; Han, Maoan
2009-12-01
In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures.
Prediction of chaos in a Josephson junction by the Melnikov-function technique
DEFF Research Database (Denmark)
Bartuccelli, M.; Christiansen, Peter Leth; Pedersen, Niels Falsig
1986-01-01
The Melnikov function for prediction of Smale horseshoe chaos is applied to the rf-driven Josephson junction. Linear and quadratic damping resistors are considered. In the latter case the analytic solution including damping and dc bias is used to obtain an improved threshold curve for the onset...... of chaos. The prediction is compared to new computational solutions. The Melnikov technique provides a good, but slightly low, estimate of the chaos threshold....
Specifying the Links between Household Chaos and Preschool Children's Development
Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne
2012-01-01
Household chaos has been linked to poorer cognitive, behavioural, and self-regulatory outcomes in young children, but the mechanisms responsible remain largely unknown. Using a diverse sample of families in Chicago, the present study tests for the independent contributions made by five indicators of household chaos: noise, crowding, family…
Origin of chaos in 3-d Bohmian trajectories
International Nuclear Information System (INIS)
Tzemos, Athanasios C.; Contopoulos, George; Efthymiopoulos, Christos
2016-01-01
We study the 3-d Bohmian trajectories of a quantum system of three harmonic oscillators. We focus on the mechanism responsible for the generation of chaotic trajectories. We demonstrate the existence of a 3-d analogue of the mechanism found in earlier studies of 2-d systems [1,2], based on moving 2-d ‘nodal point–X-point complexes’. In the 3-d case, we observe a foliation of nodal point–X-point complexes, forming a ‘3-d structure of nodal and X-points’. Chaos is generated when the Bohmian trajectories are scattered at one or more close encounters with such a structure. - Highlights: • A mechanism for the emergence of 3-d Bohmian chaos is proposed. • We demonstrate the existence of a 3-d structure of nodal and X-points. • Chaos is generated when the trajectories are scattered by the X-points.
Origin of chaos in 3-d Bohmian trajectories
Energy Technology Data Exchange (ETDEWEB)
Tzemos, Athanasios C., E-mail: thanasistzemos@gmail.com; Contopoulos, George, E-mail: gcontop@academyofathens.gr; Efthymiopoulos, Christos, E-mail: cefthim@academyofathens.gr
2016-11-25
We study the 3-d Bohmian trajectories of a quantum system of three harmonic oscillators. We focus on the mechanism responsible for the generation of chaotic trajectories. We demonstrate the existence of a 3-d analogue of the mechanism found in earlier studies of 2-d systems [1,2], based on moving 2-d ‘nodal point–X-point complexes’. In the 3-d case, we observe a foliation of nodal point–X-point complexes, forming a ‘3-d structure of nodal and X-points’. Chaos is generated when the Bohmian trajectories are scattered at one or more close encounters with such a structure. - Highlights: • A mechanism for the emergence of 3-d Bohmian chaos is proposed. • We demonstrate the existence of a 3-d structure of nodal and X-points. • Chaos is generated when the trajectories are scattered by the X-points.
Communication with spatial periodic chaos synchronization
International Nuclear Information System (INIS)
Zhou, J.; Huang, H.B.; Qi, G.X.; Yang, P.; Xie, X.
2005-01-01
Based on the spatial periodic chaos synchronization in coupled ring and linear arrays, we proposed a random high-dimensional chaotic encryption scheme. The transmitter can choose hyperchaotic signals randomly from the ring at any different time and simultaneously transmit the information of chaotic oscillators in the ring to receiver through public channel, so that the message can be masked by different hyperchaotic signals in different time intervals during communication, and the receiver can decode the message based on chaos synchronization but the attacker does not know the random hyperchaotic dynamics and cannot decode the message. Furthermore, the high sensitivity to the symmetry of the coupling structure makes the attacker very difficult to obtain any useful message from the channel
Kac-Moody algebras and controlled chaos
International Nuclear Information System (INIS)
Wesley, Daniel H
2007-01-01
Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac-Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi-Yau, or M theory on a manifold of G 2 holonomy. (fast track communication)
International Nuclear Information System (INIS)
An Xinlei; Yu Jianning; Chu Yandong; Zhang Jiangang; Zhang Li
2009-01-01
In this paper, we discussed the fixed points and their linear stability of a new nonlinear autonomous system that introduced by J.C. Sprott. Based on Lyapunov stabilization theorem, a global chaos synchronization scheme of three coupled identical systems is investigated. By choosing proper coupling parameters, the states of all the three systems can be synchronized. Then this method was applied to secure communication through chaotic masking, used three coupled identical systems, propose a novel method of chaos encryption, after encrypting in the previous two transmitters, information signal can be recovered exactly at the receiver end. Simulation results show that the method can realize monotonous synchronization. Further more, the information signal can be recovered undistorted when applying this method to secure communication.
SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS
International Nuclear Information System (INIS)
Wu Yanqin; Lithwick, Yoram
2011-01-01
In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term 'secular migration') explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the 'warm Jupiters' at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.
Socioeconomic Risk Moderates the Link between Household Chaos and Maternal Executive Function
Deater-Deckard, Kirby; Chen, Nan; Wang, Zhe; Bell, Martha Ann
2012-01-01
We examined the link between household chaos (i.e., noise, clutter, disarray, lack of routines) and maternal executive function (i.e., effortful regulation of attention and memory), and whether it varied as a function of socioeconomic risk (i.e., single parenthood, lower mother and father educational attainment, housing situation, and father unemployment). We hypothesized that: 1) higher levels of household chaos would be linked with poorer maternal executive function, even when controlling for other measures of cognitive functioning (e.g., verbal ability), and 2) this link would be strongest in the most socioeconomically distressed or lowest-socioeconomic status households. The diverse sample included 153 mothers from urban and rural areas who completed a questionnaire and a battery of cognitive executive function tasks and a verbal ability task in the laboratory. Results were mixed for hypothesis 1, and consistent with hypothesis 2. Two-thirds of the variance overlapped between household chaos and maternal executive function, but only in families with high levels of socioeconomic risk. This pattern was not found for chaos and maternal verbal ability, suggesting that the potentially deleterious effects of household chaos may be specific to maternal executive function. The findings implicate household chaos as a powerful statistical predictor of maternal executive function in socioeconomically distressed contexts. PMID:22563703
Controlling chaos (OGY) implemented on a reconstructed ecological two-dimensional map
International Nuclear Information System (INIS)
Sakai, Kenshi; Noguchi, Yuko
2009-01-01
We numerically demonstrate a way to stabilize an unstable equilibrium in the ecological dynamics reconstructed from real-world time series data, namely, alternate bearing of citrus trees. The reconstruction of deterministic dynamics from short and noisy ecological time series has been a crucial issue since May's historical work [May RM. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 1974;186:645-7; Hassell MP, Lawton JH, May RM. Patterns of dynamical behavior in single species populations. J Anim Ecol 1976;45:471-86]. Response surface methodology, followed by the differential equation approach is recognized as a promising method of reconstruction [Turchin P. Rarity of density dependence or population with lags? Nature 1990;344:660-3; Turchin P, Taylor AD. Complex dynamics in ecological time series. Ecology 1992;73:289-305; Ellner S, Turchin P. Chaos in a noisy world: new method and evidence from time series analysis. Am Nat 1995;145(3):343-75; Turchin P, Ellner S. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 2000;8(11):3116]. Here, the reconstructed ecological dynamics was described by a two-dimensional map derived from the response surface created by the data. The response surface created was experimentally validated in four one-year forward predictions in 2001, 2002, 2003 and 2004. Controlling chaos is very important when applying chaos theory to solving real-world problems. The OGY method is the first and most popular methodology for controlling chaos and can be used as an algorithm to stabilize an unstable fixed point by putting the state on a stable manifold [Ott E, Grebogi C, York JA. Controlling chaos. Phys Rev Lett 1990;64:1996-9]. We applied the OGY method to our reconstructed two-dimensional map and as a result were able to control alternate bearing in numerical simulations.
Chaos in reversed-field-pinch plasma simulation and experiment
International Nuclear Information System (INIS)
Watts, C.; Newman, D.E.; Sprott, J.C.
1994-01-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed-field-pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear-analysis techniques is used to identify low-dimensional chaos. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents, and short-term predictability. In addition, nonlinear-noise-reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS computer code, which models global RFP dynamics, and the dissipative trapped-electron-mode model, which models drift-wave turbulence. Data from both simulations show strong indications of low-dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low-dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate that the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
EMOTIONAL CONTAGION AND MOOD IN CROWD SERVING AS AUDIENCE
Directory of Open Access Journals (Sweden)
Beno Arnejcic
2015-06-01
Full Text Available The global world is gradually becoming a world of separated crowds despite the artificial wire and wireless connection through television and the Internet. Crowds remain a prevailing subject of research in different social studies, and the research of changes in the psychological structure of crowds and their characteristics is still of primary interest. The main focus of the research is on the interpretation of the results of the research paper about a special separated crowd called audience. It was observed how students, constituting the crowd, perceive a crowd on video. The observation was focused on the research of emotional contagion and mood in the crowd serving as audience. While watching a mass event on a big screen, the crowd serving as audience emotionally converges with someone else, in our case with public speakers.
Dynamical chaos: systems of classical mechanics
International Nuclear Information System (INIS)
Loskutov, A Yu
2007-01-01
This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol'd-Moser theory, the Poincare-Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems - unpredictability, irreversibility, and decay of temporal correlations - are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years - billiards with oscillating boundaries - are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate. (methodological notes)
Huber, Annika; Barber, Anjuli L A; Faragó, Tamás; Müller, Corsin A; Huber, Ludwig
2017-07-01
Emotional contagion, a basic component of empathy defined as emotional state-matching between individuals, has previously been shown in dogs even upon solely hearing negative emotional sounds of humans or conspecifics. The current investigation further sheds light on this phenomenon by directly contrasting emotional sounds of both species (humans and dogs) as well as opposed valences (positive and negative) to gain insights into intra- and interspecies empathy as well as differences between positively and negatively valenced sounds. Different types of sounds were played back to measure the influence of three dimensions on the dogs' behavioural response. We found that dogs behaved differently after hearing non-emotional sounds of their environment compared to emotional sounds of humans and conspecifics ("Emotionality" dimension), but the subjects responded similarly to human and conspecific sounds ("Species" dimension). However, dogs expressed more freezing behaviour after conspecific sounds, independent of the valence. Comparing positively with negatively valenced sounds of both species ("Valence" dimension), we found that, independent of the species from which the sound originated, dogs expressed more behavioural indicators for arousal and negatively valenced states after hearing negative emotional sounds. This response pattern indicates emotional state-matching or emotional contagion for negative sounds of humans and conspecifics. It furthermore indicates that dogs recognized the different valences of the emotional sounds, which is a promising finding for future studies on empathy for positive emotional states in dogs.
Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators
International Nuclear Information System (INIS)
Sabarathinam, S.; Thamilmaran, K.
2015-01-01
Highlights: •We have examined transient chaos in globally coupled oscillators. •We analyze transient chaos using new techniques. •We give experimental confirmation of transient chaos. -- Abstract: In this work, transient chaos in a ring and globally coupled system of nearly conservative Hamiltonian Duffing oscillators is reported. The networks are formed by coupling of three, four and six Duffing oscillators. The nearly conservative Hamiltonian nature of the coupled system is proved by stability analysis. The transient phenomenon is confirmed through various numerical investigations such as recurrence analysis, 0–1 test and Finite Time Lyapunov Exponents. Further, the effect of damping and the average transient lifetime of three, four and six coupled schemes for randomly generated initial conditions have been analyzed. The experimental confirmation of transient chaos in an illustrative system of three ringly coupled Duffing oscillators is also presented
Doroshin, Anton V.
2018-06-01
In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.
Self-generation and management of spin-electromagnetic wave solitons and chaos
International Nuclear Information System (INIS)
Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.
2014-01-01
Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.
Bifurcation and chaos response of a cracked rotor with random disturbance
Leng, Xiaolei; Meng, Guang; Zhang, Tao; Fang, Tong
2007-01-01
The Monte-Carlo method is used to investigate the bifurcation and chaos characteristics of a cracked rotor with a white noise process as its random disturbance. Special attention is paid to the influence of the stiffness change ratio and the rotating speed ratio on the bifurcation and chaos response of the system. Numerical simulations show that the affect of the random disturbance is significant as the undisturbed response of the cracked rotor system is a quasi-periodic or chaos one, and such affect is smaller as the undisturbed response is a periodic one.
Fibonacci order in the period-doubling cascade to chaos
International Nuclear Information System (INIS)
Linage, G.; Montoya, Fernando; Sarmiento, A.; Showalter, K.; Parmananda, P.
2006-01-01
In this contribution, we describe how the Fibonacci sequence appears within the Feigenbaum scaling of the period-doubling cascade to chaos. An important consequence of this discovery is that the ratio of successive Fibonacci numbers converges to the golden mean in every period-doubling sequence and therefore the convergence to φ, the most irrational number, occurs in concert with the onset of deterministic chaos
Fibonacci order in the period-doubling cascade to chaos
Energy Technology Data Exchange (ETDEWEB)
Linage, G. [Facultad de Ciencias UAEM, Avenida Universidad 1001, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Montoya, Fernando [Facultad de Ciencias UAEM, Avenida Universidad 1001, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Sarmiento, A. [Instituto de Matematicas, UNAM, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Showalter, K. [Department of Chemistry, West Virginia University, Morgantown, WV 26506-6045 (United States); Parmananda, P. [Facultad de Ciencias UAEM, Avenida Universidad 1001, Colonia Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico)]. E-mail: punit@servm.fc.uaem.mx
2006-12-11
In this contribution, we describe how the Fibonacci sequence appears within the Feigenbaum scaling of the period-doubling cascade to chaos. An important consequence of this discovery is that the ratio of successive Fibonacci numbers converges to the golden mean in every period-doubling sequence and therefore the convergence to {phi}, the most irrational number, occurs in concert with the onset of deterministic chaos.
CHAOS-BASED ADVANCED ENCRYPTION STANDARD
Abdulwahed, Naif B.
2013-01-01
This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores
Analysis of chaos attractors of MCG-recordings.
Jiang, Shiqin; Yang, Fan; Yi, Panke; Chen, Bo; Luo, Ming; Wang, Lemin
2006-01-01
By studying the chaos attractor of cardiac magnetic induction strength B(z) generated by the electrical activity of the heart, we found that its projection in the reconstructed phase space has a similar shape with the map of the total current dipole vector. It is worth noting that the map of the total current dipole vector is computed with MCG recordings measured at 36 locations, whereas the chaos attractor of B(z) is generated by only one cardiac magnetic field recordings on the measured plan. We discuss only two subjects of different ages in this paper.
Chaos and random matrices in supersymmetric SYK
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
Signatures of chaos in the Brillouin zone.
Barr, Aaron; Barr, Ariel; Porter, Max D; Reichl, Linda E
2017-10-01
When the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.
Shape of power spectrum of intermittent chaos
International Nuclear Information System (INIS)
So, B.C.; Mori, H.
1984-01-01
Power spectra of intermittent chaos are calculated analytically. It is found that the power spectrum near onset point consists of a large number of Lorentzian lines with two peaks around frequencies ω = 0 and ω = ω 0 , where ω 0 is a fundamental frequency of a periodic orbit before the onset point, and furthermore the envelope of lines around ω = 0 obeys the power law 1/ + ω +2 , whereas the envelope around ω 0 obeys 1/ + ω-ω 0 +4 . The universality of these power law dependence in a certain class of intermittent chaos are clarified from a phenomenological view point. (author)
On the suppression of chaos in quantum and classical physics
International Nuclear Information System (INIS)
Fried, H.M.; Gabellini, Y.
1997-01-01
A brief outline is presented of an example of potential-theory quantum chaos, which is suppressed by the full radiative corrections of quantum field theory. A similar mechanism may be devised and applied to classically chaotic systems, and provides an example in which an explicit diminution of the original chaos becomes apparent. (author)
Chaos Control in a New Three-Dimensional Chaotic T System
International Nuclear Information System (INIS)
Chen Yong; Yan Zhenya
2008-01-01
In this paper, we study chaos control of the new 3D chaotic system. We use three feedback methods (the linear, speed, doubly-periodic function controller) to suppress the chaos to unstable equilibrium. As a result, some controllers are obtained. Moreover, numerical simulations are used to verify the effectiveness of the obtained controllers
Manzoor, A.; Treur, J.
2015-01-01
This paper addresses an agent-based computational social agent model for the integration of emotion regulation, emotion contagion and decision making in a social context. The model integrates emotion-related valuing, in order to analyse the role of emotions in socially affected decision making. The agent-based model is illustrated for the interaction between two persons. Simulation experiments for different kinds of scenarios help to understand how decisions can be affected by regulating the ...
Analysis of chaos in high-dimensional wind power system.
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping
2018-01-01
A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.
Chaos, Hubbub, and Order Scale and Health Risk Behaviors in Adolescents in Los Angeles.
Chatterjee, Avik; Gillman, Matthew W; Wong, Mitchell D
2015-12-01
To determine the relationship between household chaos and substance use, sexual activity, and violence-related risk behaviors in adolescents. We analyzed cross-sectional data among 929 high-school students in Los Angeles who completed a 90-minute interview that assessed health behaviors and household chaos with the 14-question Chaos, Hubbub, and Order Scale (CHAOS). Using the generalized estimating equation and adjusting for personal, parental, and family covariates, we examined associations of CHAOS score with substance use, sexual activity, and violent behavior outcome variables. We also examined the role of depression and school engagement as mediators. Mean (SD) age of the 929 students was 16.4 (1.3) years, 516 (55%) were female, and 780 (84%) were Latino. After adjustment, compared with students with CHAOS score 0, those students with the greatest scores (5-14) had ORs of 3.1 (95% CI 1.1-8.7) for smoking, 2.6 (95% CI 1.6-4.4) for drinking, 6.1 (95% CI 1.8-21) for substance use at school, and 1.9 (95% CI 1.1-3.3) for fighting in the past 12 months. Associations between CHAOS score and sexual risk and other violent behaviors were not significant. Depression and school engagement attenuated the associations. In this group of adolescents, greatest CHAOS score was associated with increased odds of risky health behaviors, with depression and school engagement as potential mediators. In the future, CHAOS score could be measured to assess risk for such behaviors or be a target for intervention to reduce chances of engaging in these behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Jesse A. Logan; Fred P. Hain
1990-01-01
Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected dynamical richness that underlies behavior of even the simplest non-linear mathematical models. Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos, has been coined to describe the resulting dynamics. This term captures the notion...
Hyperchaos-chaos-hyperchaos transition in modified Roessler systems
International Nuclear Information System (INIS)
Nikolov, Svetoslav; Clodong, Sebastien
2006-01-01
We consider in this paper a family of modified hyperchaotic Roessler systems and investigate both problems of understanding hyperchaos-chaos-hyperchaos transition and computing the prediction time. These systems were obtained and numerically investigated by Nikolov and Clodong [Nikolov S, Clodong S. Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems. Chaos, Solitons and Fractals 2004;22:407-31]. Our studies confirm that transition hyperchaos-chaos-hyperchaos (i) depends on the change of the sign of the corresponding characteristic equation roots or (ii) can be obtained as a result of the absorption/repulsion of the repeller originally located out of the attractor by the growing attractor. It is also shown that the prediction time is a more reliable predictor of the evolution than the information dimension. We conclude that the prediction time in hyperchaotic regimes is at least one order of magnitude smaller than those in chaotic zones
Chaos in oil prices? Evidence from futures markets
International Nuclear Information System (INIS)
Adrangi, B.; Chatrath, A.; Dhanda, K.K.; Raffiee, K.
2001-01-01
We test for the presence of low-dimensional chaotic structure in crude oil, heating oil, and unleaded gasoline futures prices from the early 1980s. Evidence on chaos will have important implications for regulators and short-term trading strategies. While we find strong evidence of non-linear dependencies, the evidence is not consistent with chaos. Our test results indicate that ARCH-type processes, with controls for seasonal variation in prices, generally explain the non-linearities in the data. We also demonstrate that employing seasonally adjusted price series contributes to obtaining robust results via the existing tests for chaotic structure. Maximum likelihood methodologies, that are robust to the non-linear dynamics, lend support for Samuelson's hypothesis on contract-maturity effects in futures price-changes. However, the tests for chaos are not found to be sensitive to the maturity effects in the futures contracts. The results are robust to controls for the oil shocks of 1986 and 1991
Wirth, Andrea; Reinelt, Tilman; Gawrilow, Caterina; Schwenck, Christina; Freitag, Christine M; Rauch, Wolfgang A
2017-02-01
This study examines the interrelations of parenting practices, emotional climate, and household chaos in families with children with and without ADHD. In particular, indirect pathways from children's ADHD symptomatology to inadequate parenting and negative emotional climate via household chaos were investigated. Parenting, emotional climate, and household chaos were assessed using questionnaires and a speech sample of parents of 31 children with and 53 without ADHD, aged 7 to 13 years. Group differences were found for certain parenting dimensions, the parent-child relationship, critical comments, and household chaos. While we found significant indirect effects between children's ADHD and certain parenting dimensions through household chaos, no effects were found for any aspect of emotional climate. Children's ADHD symptoms translate into inadequate parenting through household chaos, which underlines the need for interventions to improve household organization skills in parents of children with ADHD.
DEFF Research Database (Denmark)
Koppel, Jonathan Mark; Wohl, Dana; Meksin, Robert
2014-01-01
Speakers reshape listeners’ memories through at least two discrete means: (1) social contagion and (2) socially shared retrieval-induced forgetting (SS-RIF). Three experiments explored how social relationships between speaker and listener moderate these conversational effects, focusing specifically......-RIF than untrustworthy speakers. These findings suggest that how speakers shape listeners’ memories depends on the social dynamic that exists between speaker and listener....... on two speaker characteristics, expertise and trustworthiness. We examined their effect on SS-RIF and contrasted, within-subjects, their effects on both SS-RIF and the previously studied social contagion. Experiments 1 and 2 explored the effects of perceived expertise; Experiment 3 explored trust. We...
Natural ventilation for the prevention of airborne contagion.
Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A
2007-02-01
doors maximises natural ventilation so that the risk of airborne contagion is much lower than with costly, maintenance-requiring mechanical ventilation systems. Old-fashioned clinical areas with high ceilings and large windows provide greatest protection. Natural ventilation costs little and is maintenance free, and is particularly suited to limited-resource settings and tropical climates, where the burden of TB and institutional TB transmission is highest. In settings where respiratory isolation is difficult and climate permits, windows and doors should be opened to reduce the risk of airborne contagion.
Socioeconomic risk moderates the link between household chaos and maternal executive function.
Deater-Deckard, Kirby; Chen, Nan; Wang, Zhe; Bell, Martha Ann
2012-06-01
We examined the link between household chaos (i.e., noise, clutter, disarray, lack of routines) and maternal executive function (i.e., effortful regulation of attention and memory), and whether it varied as a function of socioeconomic risk (i.e., single parenthood, lower mother and father educational attainment, housing situation, and father unemployment). We hypothesized that: 1) higher levels of household chaos would be linked with poorer maternal executive function, even when controlling for other measures of cognitive functioning (e.g., verbal ability), and 2) this link would be strongest in the most socioeconomically distressed or lowest-socioeconomic status households. The diverse sample included 153 mothers from urban and rural areas who completed a questionnaire and a battery of cognitive executive function tasks and a verbal ability task in the laboratory. Results were mixed for Hypothesis 1, and consistent with Hypothesis 2. Two-thirds of the variance overlapped between household chaos and maternal executive function, but only in families with high levels of socioeconomic risk. This pattern was not found for chaos and maternal verbal ability, suggesting that the potentially deleterious effects of household chaos may be specific to maternal executive function. The findings implicate household chaos as a powerful statistical predictor of maternal executive function in socioeconomically distressed contexts. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Chaos Theory and International Relations
2016-12-01
King Oscar II 12 James E. Glenn, Chaos Theory: The Essentials for Military Applications (Newport, RI...Adolf Hitler in Germany, Alexander’s conquest of the Persian Empire, the arrival of Attila to Europe, the onset of the two Gulf Wars, the Arab Spring
Secure image encryption algorithm design using a novel chaos based S-Box
International Nuclear Information System (INIS)
Çavuşoğlu, Ünal; Kaçar, Sezgin; Pehlivan, Ihsan; Zengin, Ahmet
2017-01-01
Highlights: • A new chaotic system is developed for creating S-Box and image encryption algorithm. • Chaos based random number generator is designed with the help of the new chaotic system. NIST tests are run on generated random numbers to verify randomness. • A new S-Box design algorithm is developed to create the chaos based S-Box to be utilized in encryption algorithm and performance tests are made. • The new developed S-Box based image encryption algorithm is introduced and image encryption application is carried out. • To show the quality and strong of the encryption process, security analysis are performed and compared with the AES and chaos algorithms. - Abstract: In this study, an encryption algorithm that uses chaos based S-BOX is developed for secure and speed image encryption. First of all, a new chaotic system is developed for creating S-Box and image encryption algorithm. Chaos based random number generator is designed with the help of the new chaotic system. Then, NIST tests are run on generated random numbers to verify randomness. A new S-Box design algorithm is developed to create the chaos based S-Box to be utilized in encryption algorithm and performance tests are made. As the next step, the new developed S-Box based image encryption algorithm is introduced in detail. Finally, image encryption application is carried out. To show the quality and strong of the encryption process, security analysis are performed. Proposed algorithm is compared with the AES and chaos algorithms. According to tests results, the proposed image encryption algorithm is secure and speed for image encryption application.
Effects on the upstream flood inundation caused from the operation of Chao Phraya Dam
Directory of Open Access Journals (Sweden)
Sutham Visutimeteegorn
2007-11-01
Full Text Available During the flooding events, the operation of Chao Phraya Dam to control downstream water discharge is one of the causes of the inundation occuring over the upstream area. The purposes of this research are to study the effects of the operation of Chao Phraya Dam upon the upstream flood inundation and to find out the new measures of the flood mitigation in the upstream areas of Chao Phraya Dam by using a hydrodynamic model. The results show that Manning's n in the Chao Phraya River and its tributaries is 0.030-0.035 in the main channels and 0.050-0.070 in the flood plain areas. The backwater due to the operation of the Chao Praya dam affects as far as 110 kilometers upstream. New methods of water diversion can mitigate the flood inundation without the effect on the floating rice fields. The construction of reservoirs in the Upper Sakaekang River Basin and the Upper Yom River Basin will mitigate the flood not only in their own basins but also in the Lower Chao Phraya River Basin. The coordinated operation of the Chao Phraya Dam, the regulators and the upper basin reservoirs will efficiently mitigate the flood inundation.
Coherence and chaos in condensed matter
International Nuclear Information System (INIS)
Bishop, A.R.
1989-01-01
This paper discusses the following topics: nonlinearity in condensed matter; coherence and chaos in spatially extended condensed matter systems; nonlinearity and magnetism; and solitons and conducting polymers. 52 refs., 7 figs
Lack of evidence for low-dimensional chaos in heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Holstein-Rathlou, N H; Agner, E
1994-01-01
INTRODUCTION: The term chaos is used to describe erratic or apparently random time-dependent behavior in deterministic systems. It has been suggested that the variability observed in the normal heart rate may be due to chaos, but this question has not been settled. METHODS AND RESULTS: Heart rate...... in the experimental data, but the prediction error as a function of the prediction length increased at a slower rate than characteristic of a low-dimensional chaotic system. CONCLUSION: There is no evidence for low-dimensional chaos in the time series of RR intervals from healthy human subjects. However, nonlinear...
Application of Chaos Theory to Psychological Models
Blackerby, Rae Fortunato
This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in