WorldWideScience

Sample records for channels inhibit epsps

  1. Statistical computer model analysis of the reciprocal and recurrent inhibitions of the Ia-EPSP in α-motoneurons.

    Science.gov (United States)

    Gradwohl, G; Grossman, Y

    2013-01-01

    We simulate the inhibition of Ia-glutamatergic excitatory postsynaptic potential (EPSP) by preceding it with glycinergic recurrent (REN) and reciprocal (REC) inhibitory postsynaptic potentials (IPSPs). The inhibition is evaluated in the presence of voltage-dependent conductances of sodium, delayed rectifier potassium, and slow potassium in five α-motoneurons (MNs). We distribute the channels along the neuronal dendrites using, alternatively, a density function of exponential rise (ER), exponential decay (ED), or a step function (ST). We examine the change in EPSP amplitude, the rate of rise (RR), and the time integral (TI) due to inhibition. The results yield six major conclusions. First, the EPSP peak and the kinetics depending on the time interval are either amplified or depressed by the REC and REN shunting inhibitions. Second, the mean EPSP peak, its TI, and RR inhibition of ST, ER, and ED distributions turn out to be similar for analogous ranges of G. Third, for identical G, the large variations in the parameters' values can be attributed to the sodium conductance step (g(Na_step)) and the active dendritic area. We find that small g(Na_step) on a few dendrites maintains the EPSP peak, its TI, and RR inhibition similar to the passive state, but high g(Na_step) on many dendrites decrease the inhibition and sometimes generates even an excitatory effect. Fourth, the MN's input resistance does not alter the efficacy of EPSP inhibition. Fifth, the REC and REN inhibitions slightly change the EPSP peak and its RR. However, EPSP TI is depressed by the REN inhibition more than the REC inhibition. Finally, only an inhibitory effect shows up during the EPSP TI inhibition, while there are both inhibitory and excitatory impacts on the EPSP peak and its RR.

  2. Kv4 Potassium Channels Modulate Hippocampal EPSP-Spike Potentiation and Spatial Memory in Rats

    Science.gov (United States)

    Truchet, Bruno; Manrique, Christine; Sreng, Leam; Chaillan, Franck A.; Roman, Francois S.; Mourre, Christiane

    2012-01-01

    Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.c.v.) infusion increased and…

  3. Subdoses de sulfosate sobre a inibição da atividade da EPSPs em plantas de milho Sub-lethal rates of sulfosate on the inhibition of EPSPs activity in corn

    Directory of Open Access Journals (Sweden)

    A.H. Gonçalves

    2002-12-01

    higher the sulfosate rate, the higher was the EPSPs activity inhibition, 24 hours of application, and more evident the phytotoxicity symptoms on corn plants. At 16% of the recommended rate, this inhibition reached 72.6%.

  4. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.

    Science.gov (United States)

    Fernández de Sevilla, David; Fuenzalida, Marco; Porto Pazos, Ana B; Buño, Washington

    2007-05-01

    Pyramidal neuron dendrites express voltage-gated conductances that control synaptic integration and plasticity, but the contribution of the Ca(2+)-activated K(+)-mediated currents to dendritic function is not well understood. Using dendritic and somatic recordings in rat hippocampal CA1 pyramidal neurons in vitro, we analyzed the changes induced by the slow Ca(2+)-activated K(+)-mediated afterhyperpolarization (sAHP) generated by bursts of action potentials on excitatory postsynaptic potentials (EPSPs) evoked at the apical dendrites by perforant path-Schaffer collateral stimulation. Both the amplitude and decay time constants of EPSPs (tau(EPSP)) were reduced by the sAHP in somatic recordings. In contrast, the dendritic EPSP amplitude remained unchanged, whereas tau(EPSP) was reduced. Temporal summation was reduced and spatial summation linearized by the sAHP. The amplitude of the isolated N-methyl-D-aspartate component of EPSPs (EPSP(NMDA)) was reduced, whereas tau(NMDA) was unaffected by the sAHP. In contrast, the sAHP did not modify the amplitude of the isolated EPSP(AMPA) but reduced tau(AMPA) both in dendritic and somatic recordings. These changes are attributable to a conductance increase that acted mainly via a selective "shunt" of EPSP(NMDA) because they were absent under voltage clamp, not present with imposed hyperpolarization simulating the sAHP, missing when the sAHP was inhibited with isoproterenol, and reduced under block of EPSP(NMDA). EPSPs generated at the basal dendrites were similarly modified by the sAHP, suggesting both a somatic and apical dendritic location of the sAHP channels. Therefore the sAHP may play a decisive role in the dendrites by regulating synaptic efficacy and temporal and spatial summation.

  5. Inhibiting bacterial toxins by channel blockage.

    Science.gov (United States)

    Bezrukov, Sergey M; Nestorovich, Ekaterina M

    2016-03-01

    Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.

  6. Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Wang, Xiaodong; Axelsen, Lene Nygaard

    2015-01-01

    remains unclear. OBJECTIVES: We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability thereby prolonging the effective refractory...

  7. A New Echeloned Poisson Series Processor (EPSP)

    Science.gov (United States)

    Ivanova, Tamara

    2001-07-01

    A specialized Echeloned Poisson Series Processor (EPSP) is proposed. It is a typical software for the implementation of analytical algorithms of Celestial Mechanics. EPSP is designed for manipulating long polynomial-trigonometric series with literal divisors. The coefficients of these echeloned series are the rational or floating-point numbers. The Keplerian processor and analytical generator of special celestial mechanics functions based on the EPSP are also developed.

  8. Transient sodium current at subthreshold voltages: activation by EPSP waveforms.

    Science.gov (United States)

    Carter, Brett C; Giessel, Andrew J; Sabatini, Bernardo L; Bean, Bruce P

    2012-09-20

    Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo.

  9. EPSP合成酶的纯化与制备%Purification and Preparation of EPSP Synthase

    Institute of Scientific and Technical Information of China (English)

    向文胜; 王相晶; 覃兆海; 任天瑞; 张雅莉; 张文吉; 苏少泉

    2000-01-01

    The rapid purification(less than 1.5 h) of EPSP synthase from bean seedling by S ephadex G-50 and Mono-Q chromtography was reported. Specific activity of E PSP synthase obtained by the method was 175.2 nmol.min-1.mg-1.Conc entrated enzyme solution after adjusting to 50% glycerol(V/V) and 1mg.mL -1BSA, was stored at -20℃. EPSP synthase activity was stable at least f or 150 days.The activity of EPSP synthase was inhibited approximately 50% by 6.3 μmol.L-1 glyphosate. It showed that the purified EPSP synth ase as herbicide screening model is possible. This purified method has been used to study enzyme mechanism of the glyphosate resistant bean.

  10. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  11. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available BACKGROUND: Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels. METHODS AND RESULTS: Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action. CONCLUSIONS: The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  12. Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives

    Directory of Open Access Journals (Sweden)

    Ellen C. Gleeson

    2015-04-01

    Full Text Available A set of fluorophenoxyanilides, designed to be simplified analogues of previously reported ω-conotoxin GVIA mimetics, were prepared and tested for N-type calcium channel inhibition in a SH-SY5Y neuroblastoma FLIPR assay. N-type or Cav2.2 channel is a validated target for the treatment of refractory chronic pain. Despite being significantly less complex than the originally designed mimetics, up to a seven-fold improvement in activity was observed.

  13. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  14. Morphine decreases enteric neuron excitability via inhibition of sodium channels.

    Directory of Open Access Journals (Sweden)

    Tricia H Smith

    Full Text Available Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrode recordings from whole mount myenteric plexus preparations in guinea pigs. Here we have developed a Swiss-Webster mouse myenteric neuron culture and examined their electrophysiological properties by patch-clamp techniques and determined the mechanism for morphine-induced decrease in neuronal excitability. Isolated neurons in culture were confirmed by immunostaining with pan-neuronal marker, β-III tubulin and two populations were identified by calbindin and calretinin staining. Distinct neuronal populations were further identified based on the presence and absence of an afterhyperpolarization (AHP. Cells with AHP expressed greater density of sodium currents. Morphine (3 µM significantly reduced the amplitude of the action potential, increased the threshold for spike generation but did not alter the resting membrane potential. The decrease in excitability resulted from inhibition of sodium currents. In the presence of morphine, the steady-state voltage dependence of Na channels was shifted to the left with almost 50% of channels unavailable for activation from hyperpolarized potentials. During prolonged exposure to morphine (two hours, action potentials recovered, indicative of the development of tolerance in single enteric neurons. These results demonstrate the feasibility of isolating mouse myenteric neurons and establish sodium channel inhibition as a mechanism for morphine-induced decrease in neuronal excitability.

  15. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  16. Analysis of the interaction between the dendritic conductance density and activated area in modulating alpha-motoneuron EPSP: statistical computer model.

    Science.gov (United States)

    Gradwohl, Gideon; Grossman, Yoram

    2008-06-01

    Five reconstructed alpha-motoneurons (MNs) are simulated under physiological and morphological realistic parameters. We compare the resulting excitatory postsynaptic potential (EPSP) of models, containing voltage-dependent channels on the dendrites, with the EPSP of a passive MN and an active soma and axon model. In our simulations, we apply three different distribution functions of the voltage-dependent channels on the dendrites: a step function (ST) with uniform spatial dispersion; an exponential decay (ED) function, with proximal to the soma high-density location; and an exponential rise (ER) with distally located conductance density. In all cases, the synaptic inputs are located as a gaussian function on the dendrites. Our simulations lead to eight key observations. (1) The presence of the voltage-dependent channels conductance (g(Active)) in the dendrites is vital for obtaining EPSP peak boosting. (2) The mean EPSP peaks of the ST, ER, and ED distributions are similar when the ranges of G (total conductance) are equal. (3) EPSP peak increases monotonically when the magnitude of g(Na_step) (maximal g(Na) at a particular run) is increased. (4) EPSP kinetics parameters were differentially affected; time integral was decreased monotonically with increased g(Na_step), but the rate of rise (the decay time was not analyzed) does not show clear relations. (5) The total G can be elevated by increasing the number of active dendrites; however, only a small active area of the dendritic tree is sufficient to get the maximal boosting. (6) The sometimes large variations in the parameters values for identical G depend on the g(Na_step) and active dendritic area. (7) High g(Na_step) in a few dendrites is more efficient in amplifying the EPSP peak than low g(Na_step) in many dendrites. (8) The EPSP peak is approximately linear with respect to the MNs' R(N) (input resistance).

  17. Gap-junction channels inhibit transverse propagation in cardiac muscle

    Directory of Open Access Journals (Sweden)

    Ramasamy Lakshminarayanan

    2005-01-01

    Full Text Available Abstract The effect of adding many gap-junctions (g-j channels between contiguous cells in a linear chain on transverse propagation between parallel chains was examined in a 5 × 5 model (5 parallel chains of 5 cells each for cardiac muscle. The action potential upstrokes were simulated using the PSpice program for circuit analysis. Either a single cell was stimulated (cell A1 or the entire chain was stimulated simultaneously (A-chain. Transverse velocity was calculated from the total propagation time (TPT from when the first AP crossed a Vm of -20 mV and the last AP crossed -20 mV. The number of g-j channels per junction was varied from zero to 100, 1,000 and 10,000 (Rgj of ∞, 100 MΩ, 10 MΩ, 1.0 MΩ, respectively. The longitudinal resistance of the interstitial fluid (ISF space between the parallel chains (Rol2 was varied between 200 KΩ (standard value and 1.0, 5.0, and 10 MΩ. The higher the Rol2 value, the tighter the packing of the chains. It was found that adding many g-j channels inhibited transverse propagation by blocking activation of all 5 chains, unless Rol2 was greatly increased above the standard value of 200 KΩ. This was true for either method of stimulation. This was explained by, when there is strong longitudinal coupling between all 5 cells of a chain awaiting excitation, there must be more transfer energy (i.e., more current to simultaneously excite all 5 cells of a chain.

  18. Identification of genetic elements associated with EPSPs gene amplification.

    Directory of Open Access Journals (Sweden)

    Todd A Gaines

    Full Text Available Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S A. palmeri, and that only one of these was amplified in glyphosate-resistant (R A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.

  19. Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol.

    Science.gov (United States)

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2008-11-13

    The degree to which NMDA receptors contribute to hippocampal CA(1) stratum radiatum excitatory postsynaptic potentials (EPSP) is a matter of debate. This experiment was designed to resolve the issue by documenting and positively identifying the elements of the NMDA dependent component in the extracellularly recorded stratum radiatum CA(1) field potential under low stimulation conditions and in the presence of physiologic levels of Mg(2+). We show that EPSP generation consists of activation of both AMPA and NMDA receptor channels, which mediate distinct components of the recorded field potential. We propose that the EPSP is a combination of two waves rather than one, which sometimes has been attributed to the exclusive activation of AMPA channels. Our data suggest that the three recorded peaks signify different events. The first peak reflects the presynaptic volley while the other two represent the actual EPSP. The first peak of the EPSP is determined mainly by flow of ions through AMPA channels. The second peak most likely is determined by the concurrence of two phenomena: ionic flow through NMDA channels and the source corresponding to the sink generated at the cell bodies in the pyramidal layer. The NMDA dependent component was recorded when Mg(2+) was present in physiological concentrations. The presynaptic volley and second peak do not saturate over a 10-fold increase of the stimulation charge and their amplitudes are highly correlated. The first peak amplitude rapidly saturates. The sensitivity of the recorded signals is different, the first peak being the most sensitive (1.25-0.26 mV/nC). Isolation of NMDA dependent components under physiological conditions when using a single pulse low stimulation protocol would allow more precise investigations of the NMDA dependent forms of synaptic plasticity.

  20. δ-opioid Receptor Induced Inhibition of Sodium Channel Function

    Institute of Scientific and Technical Information of China (English)

    康学智; 顾全保; 丁光宏; 晁东满; 王英伟; G Balboni; LH Lazarus; 夏萤

    2008-01-01

    Objective: To study the precise role of DOR in the regulation of sodium channels at present. Methods: With Xenopus oocytes co-expressing sodium channel subtype 2 (Nav1.2) and DOR. Results: 1) Nav1.2 expression induced tetrodotoxin-sensitive inward currents; 2) DOR expression reduced the inward currents; 3) activation of DOR reduced the amplitude of the current and rightly shifted the activation curve of the current in the oocytes with both Nav1.2 and DOR, but not in ones with Nav1.2 alone; 4) the DOR agonist-induced inhibition of Nav1.2 currents was in a dose-dependent manner and saturable; 5) the DOR agonist had no effect on naive oocytes. Conclusion: These data represent the first demonstration that activation of DOR inhibits Na+ channel function by decreasing the amplitude of sodium currents and increasing its threshold of activation. This novel finding has far-reaching impacts on novel solutions of certain neurological disorders such as hypoxic/ischemic injury, epilepsy and pain. Also, our data may improve the understanding of the mechanisms underlying acupuncture since acupuncture is known to activate the brain opioid system.%目的:研究δ-阿片受体表达和激活对钠通道1.2亚型的电流特性的影响.方法:用双电极电压钳技术,在δ-阿片受体和钠通道亚型1.2共表达的非洲爪蟾第V期卵母细胞上,观察δ-阿片受体表达和/或激活后,钠通道1.2亚型电流特性的变化.结果:1)钠通道1.2亚型的表达产生河豚毒素(tetrodotoxin,TTX)敏感的内向电流;2)δ-阿片受体的表达减少钠通道激活电流的幅度;3)δ-阿片受体和钠通道1.2亚型共表达的卵母细胞中,δ-阿片受体激动剂可以抑制钠通道激活电流的幅度和电导,而只有钠通道1.2亚型表达的卵母细胞则无此现象;4)δ-阿片受体激动剂抑制钠电流的作用具有剂量依赖关系,并能达到饱和状态;5)δ-阿片受体激动剂对未表达外派陛蛋白的卵母细胞无影响.结论:本结

  1. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  2. EPSPs in rat neocortical neurons in vitro. I. Electrophysiological evidence for two distinct EPSPs

    OpenAIRE

    Sutor, Bernd; Hablitz, John H.

    1989-01-01

    1. To investigate excitatory postsynaptic potentials (EPSPs), intracellular recordings were performed in layer II/III neurons of the rat medial frontal cortex. The average resting membrane potential of the neurons was more than -75 mV and their average input resistance was greater than 20 M omega. The amplitudes of the action potentials evoked by injection of depolarizing current pulses were greater than 100 mV. The electrophysiological properties of the neurons recorded were similar to those...

  3. The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction.

    Science.gov (United States)

    López-Izquierdo, Angélica; Ponce-Balbuena, Daniela; Moreno-Galindo, Eloy G; Aréchiga-Figueroa, Iván A; Rodríguez-Martínez, Martín; Ferrer, Tania; Rodríguez-Menchaca, Aldo A; Sánchez-Chapula, José A

    2011-04-01

    The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.

  4. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Frankel, Adam

    2011-01-01

    Cardiac sodium channels are established therapeutic targets for the management of inherited and acquired arrhythmias by class I anti-arrhythmic drugs (AADs). These drugs share a common target receptor bearing two highly conserved aromatic side chains, and are subdivided by the Vaughan...... the inhibition of cardiac sodium channels by clinically relevant drugs and provide information for the directed design of AADs....

  5. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  6. Inhibition of Kv1.3 Channels in Human Jurkat T Cells by Xanthohumol and Isoxanthohumol.

    Science.gov (United States)

    Gąsiorowska, Justyna; Teisseyre, Andrzej; Uryga, Anna; Michalak, Krystyna

    2015-08-01

    Using whole-cell patch-clamp technique, we investigated influence of selected compounds from groups of prenylated chalcones and flavonoids: xanthohumol and isoxanthohumol on the activity of Kv1.3 channels in human leukemic Jurkat T cells. Obtained results provide evidence that both examined compounds were inhibitors of Kv1.3 channels in these cells. The inhibitory effects occurred in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC50) was about 3 μM for xanthohumol and about 7.8 μM for isoxanthohumol. The inhibition of Kv1.3 channels by examined compounds was not complete. Upon an application of the compounds at the maximal concentrations equal to 30 μM, the activity of Kv1.3 channels was inhibited to about 0.13 of the control value. The inhibitory effect was reversible. The application of xanthohumol and isoxanthohumol did not change the currents' activation and inactivation rate. These results may confirm our earlier hypothesis that the presence of a prenyl group in a molecule is a factor that facilitates the inhibition of Kv1.3 channels by compounds from the groups of flavonoids and chalcones. The inhibition of Kv1.3 channels might be involved in antiproliferative and proapoptotic effects of the compounds observed in cancer cell lines expressing these channels.

  7. Biochemical requirements for inhibition of Connexin26-containing channels by natural and synthetic taurine analogs.

    Science.gov (United States)

    Tao, Liang; Harris, Andrew L

    2004-09-10

    Previous work has shown that protonated taurine and aminosulfonate pH buffers, including HEPES, can directly and reversibly inhibit connexin channels that contain connexin26 (Cx26) (Bevans, C. G., and Harris, A. L. (1999) J. Biol. Chem. 274, 3711-3719). The structural requirements for this inhibition were explored by studies of the effects of structural analogs of taurine on the activity of Cx26-containing reconstituted hemichannels from native tissue. Several analogs inhibited the channels, with a range of relative affinities and efficacies. Each active compound contains a protonated amine separated from an ionized sulfonate or sulfinate moiety by several methylene groups. The inhibition is eliminated if the sulfonate/sulfinate moiety or the amine is not present. Compounds that contain a protonated amine but lack a sulfonate/sulfinate moiety do not inhibit but do competitively block the effect of the active compounds. Compounds that lack the protonated amine do not significantly inhibit or antagonize inhibition. The results suggest involvement of the protonated amine in binding and of the ionized sulfur-containing moiety in effecting the inhibition. The maximal effect of the inhibitory compounds is enhanced when a carboxyl group is linked to the alpha-carbon. Inhibition but not binding is stereospecific, with l-isomers being inhibitory and the corresponding d-isomers being inactive but able to antagonize inhibition by the l-isomers. Whereas not all connexins are sensitive to aminosulfonates, the well defined structural requirements described here argue strongly for a highly specific regulatory interaction with some connexins. The finding that cytoplasmic aminosulfonates inhibit connexin channels whereas other cytoplasmic compounds antagonize the inhibition suggests that gap junction channels are regulated by a complex interplay of cytoplasmic ligands.

  8. Expression of CP4 EPSPS in microspores and tapetum cells of cotton (Gossypium hirsutum) is critical for male reproductive development in response to late-stage glyphosate applications.

    Science.gov (United States)

    Chen, Yun-Chia Sophia; Hubmeier, Christopher; Tran, Minhtien; Martens, Amy; Cerny, R Eric; Sammons, R Doug; CaJacob, Claire

    2006-09-01

    Plants expressing Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) are known to be resistant to glyphosate, a potent herbicide that inhibits the activity of the endogenous plant EPSPS. The RR1445 transgenic cotton line (current commercial line for Roundup Ready Cotton) was generated using the figwort mosaic virus (FMV) 35S promoter to drive the expression of the CP4 EPSPS gene, and has excellent vegetative tolerance to glyphosate. However, with high glyphosate application rates at developmental stages later than the four-leaf stage (late-stage applications: applications that are inconsistent with the Roundup labels), RR1445 shows male sterility. Another transgenic cotton line, RR60, was generated using the FMV 35S promoter and the Arabidopsis elongation factor-1alpha promoter (AtEF1alpha) for the expression of CP4 EPSPS. RR60 has excellent vegetative and reproductive tolerance to applications of glyphosate at all developmental stages. Histochemical analyses were conducted to examine the male reproductive development at the cellular level of these cotton lines in response to glyphosate applications, and to investigate the correlation between glyphosate injury and the expression of CP4 EPSPS in male reproductive tissues. The expression of CP4 EPSPS in RR60 was found to be strong in all male reproductive cell types. Conversely, CP4 EPSPS expression in RR1445 was low in pollen mother cells, male gametophytes and tapetum, three crucial male reproductive cell types. Our results indicate that the FMV 35S promoter, although expressing strongly in most vegetative tissues in plants, has extremely low activity in these cell types.

  9. SOC and now also SIC: store-operated and store-inhibited channels.

    Science.gov (United States)

    Moreno, Claudia; Vaca, Luis

    2011-10-01

    There is a specialized form of calcium influx that involves a close communication between endoplasmic reticulum and the channels at the plasma membrane. In one side store depletion activates channels known as store-operated channels (SOC), which are responsible of the well-studied store-operated calcium entry (SOCE). SOC comprises two different types of channels. Orai, which is exclusively activated by store depletion being the channel responsible of the calcium release-activated calcium current, and transient receptor potential canonical channel, which in contrast, is activated by store depletion only under specific conditions and carries nonselective cationic currents. On the other hand, it has been recently shown that store depletion also inhibits calcium channels. The first member identified, of what we named as store-inhibited channels (SIC), is the L-type voltage-gated calcium channel. Stores control both SOC and SIC by means of the multifunctional protein STIM1. The identification of SOC and SIC opens a new scenario for the role of store depletion in the modulation of different calcium entry pathways, which may satisfy different cellular processes.

  10. Inhibition of hERG Potassium Channels by Celecoxib and Its Mechanism

    Science.gov (United States)

    Frolov, Roman V.; Ignatova, Irina I.; Singh, Satpal

    2011-01-01

    Background Celecoxib (Celebrex), a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels. Methods and Results Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action. Conclusions The above channels play a significant role in drug-induced long QT syndrome (LQTS) and short QT syndrome (SQTS). Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities. PMID:22039467

  11. Characterization of inward-rectifier K+ channel inhibition by antiarrhythmic piperazine.

    Science.gov (United States)

    Xu, Yanping; Lu, Zhe

    2004-12-14

    Strong inward-rectifier K(+) (Kir) channels play a significant role in shaping the cardiac action potential: they help produce its long plateau and accelerate its rate of repolarization. Consequently, genetic deletion of the gene encoding the strongly rectifying K(+) channel IRK1 (Kir2.1) prolongs the cardiac action potential in mice. In principle, broadening the action potential lengthens the refractory period, which may in turn be antiarrhythmogenic. Interestingly, previous studies showed that piperazine, an inexpensive and safe anthelmintic, both inhibits IRK1 channels and is antiarrhythmic in some animal preparations. This potential pharmacological benefit motivated us to further characterize the energetic, kinetic, and molecular properties of IRK1 inhibition by piperazine. We show how its blocking characteristics, in particular, its shallow voltage dependence, allow piperazine to be effective even in the presence of high-affinity polyamine blockers. We also examine the channel selectivity of piperazine and its molecular determinants.

  12. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  13. Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying Kin channels in Arabidopsis guard cells

    Institute of Scientific and Technical Information of China (English)

    XUE ShaoWu; YANG Pin; HE YiKun

    2008-01-01

    We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib-ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele-vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan-nels, resulting in stomatal opening suppressed subsequently.

  14. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom

    Science.gov (United States)

    Lee, Seok-Yong; MacKinnon, Roderick

    2004-07-01

    Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.

  15. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.)

    Science.gov (United States)

    Background: 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the wheat EPSPS gen...

  16. Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic beta-cells.

    OpenAIRE

    Plant, T D; Henquin, J C

    1990-01-01

    1. The effects of phentolamine and yohimbine on adenosine 5'-triphosphate (ATP)-sensitive K+ channels were studied in normal mouse beta-cells. 2. In the presence of 3 mM glucose, many ATP-sensitive K+ channels are open in the beta-cell membrane. Under these conditions, phentolamine inhibited 86Rb efflux from the islets. This inhibition was faster with 100 than with 20 microM phentolamine but its steady-state magnitude was similar with both concentrations. Yohimbine (20-100 microM) also inhibi...

  17. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  18. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    Science.gov (United States)

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  19. Identification of genetic elements associated with EPSPS gene amplification

    Science.gov (United States)

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved to confer resistance to glyphosate, the world's most important herbicide, in the wee...

  20. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation.

    Directory of Open Access Journals (Sweden)

    Cheryl Carson

    Full Text Available Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.

  1. Stereoselective inhibition of the hERG1 potassium channel

    Directory of Open Access Journals (Sweden)

    Liliana eSintra Grilo

    2010-11-01

    Full Text Available A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1 channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

  2. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Jespersen, Thomas

    2011-01-01

    We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent ...

  3. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  4. Shikonin inhibits intestinal calcium-activated chloride channels and prevents rotaviral diarrhea

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-08-01

    Full Text Available Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel CFTR. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In-vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in-vivo. Taken together, the results suggested that shikonin inhibited enterocyte CaCCs, the inhibitory effect was partially through inhbition of basolateral K+ channel acitivty, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  5. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Agnieszka I Wlodarczyk

    2013-12-01

    Full Text Available Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm. This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm, and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10 µM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency produced by current injection of 2 rheobases (500 ms. However, when larger current injections (3-6 rheobases were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modelling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50. When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.

  6. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons.

    Science.gov (United States)

    Wlodarczyk, Agnieszka I; Xu, Chun; Song, Inseon; Doronin, Maxim; Wu, Yu-Wei; Walker, Matthew C; Semyanov, Alexey

    2013-01-01

    Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm). This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm), and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10μM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency) produced by current injection of 2 rheobases (500 ms). However, when larger current injections (3-6 rheobases) were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modeling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50). When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.

  7. Subtype-specific, bi-component inhibition of SK channels by low internal pH

    DEFF Research Database (Denmark)

    Peitersen, Torben; Jespersen, Thomas; Jorgensen, Nanna K;

    2006-01-01

    The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6...

  8. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten;

    2011-01-01

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also...... modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based...... on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting...

  9. Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4.

    Science.gov (United States)

    Alcaino, Constanza; Knutson, Kaitlyn; Gottlieb, Philip A; Farrugia, Gianrico; Beyder, Arthur

    2017-01-13

    Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In response to mechanical stimuli EC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular details of EC cell mechanosensitivity are poorly understood. Recently, our group found that human and mouse EC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a human EC cell model QGP-1 were blocked by the mechanosensitive channel blocker D-GsMTx4. In the present study we aimed to characterize the effects of the mechanosensitive ion channel inhibitor spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2 transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition of Piezo2 mechanosensitive currents by the spider peptide D-GsMTx4.

  10. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  11. Fluoxetine-induced inhibition of synaptosomal ( sup 3 H)5-HT release: Possible Ca sup 2+ -channel inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Stauderman, K.A. (Marion Merrell Dow Research Inst., Cincinnati, OH (United States)); Gandhi, V.C.; Jones, D.J. (Univ. of Texas Health Science Center, San Antonio, TX (United States))

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K{sup +}-induced ({sup 3}H)5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K{sup +} used to depolarize the synaptosomes and the concentration of external Ca{sup 2+}. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of ({sup 3}H)5-HT release induced by the Ca{sup 2+}-ionophore A 23187 or Ca{sup 2+}-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K{sup +}-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca{sup 2+} channels and Ca{sup 2+} entry.

  12. No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri.

    Science.gov (United States)

    Vila-Aiub, Martin M; Goh, Sou S; Gaines, Todd A; Han, Heping; Busi, Roberto; Yu, Qin; Powles, Stephen B

    2014-04-01

    Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.

  13. Interaction of baseline synaptic noise and Ia EPSPs: evidence for appreciable negative correlation under physiological conditions.

    Science.gov (United States)

    Solodkin, M; Jiménez, I; Collins, W F; Mendell, L M; Rudomin, P

    1991-04-01

    1. In the anesthetized cat, simultaneous intracellular recordings from pairs of spinal motoneurons were undertaken to see whether the amplitude of single-fiber excitatory postsynaptic potentials (EPSPs) in both cells fluctuated in a coordinated manner that would indicate correlative mechanisms at either pre- or post-synaptic level. Although these recordings revealed correlated fluctuations in the baseline, the single-fiber Ia/EPSPs recorded with the spike-triggered averaging technique exhibited no correlated fluctuations and, unexpectedly, virtually no increase in baseline variance associated with the EPSP. However, the fact that these experiments were carried out under conditions of high baseline synaptic noise (i.e., with muscle stretch) may have influenced the outcome because of interaction between EPSP and synaptic noise, and this possibility was evaluated explicitly. 2. A given connection was studied under low noise by electrically stimulating a single Ia fiber in the absence of muscle stretch. The same connection was analyzed under conditions of high noise by activating the fiber and all other stretch receptor afferents with muscle stretch and by using spike-triggered averaging to extract the EPSP. The differences in mean EPSP amplitude at a given connection under conditions of low noise and high noise were minimal. 3. Fluctuations in EPSP amplitude were then determined to see whether these were influenced by presence of baseline synaptic noise and whether the interaction was nonlinear. Two methods were used to measure EPSP fluctuations: measurement of the variance associated with the EPSP, and determination by the use of deconvolution methods of the discrete amplitude components associated with the EPSP. 4. An increase in baseline variance was observed during the EPSP evoked under low noise conditions at all six connections studied in this way. This increase disappeared at two of these connections when examined under high noise. This may help to explain the

  14. Estradiol inhibits Ca2+ and K+ channels in smooth muscle cells from pregnant rat myometrium.

    Science.gov (United States)

    Okabe, K; Inoue, Y; Soeda, H

    1999-07-02

    The purpose of this study was to investigate the actions of 17beta-estradiol on the electrical activity of pregnant rat myometrium. The longitudinal layer of the myometrium was dissected from pregnant rats (17 to 19 days of gestation), and single cells were isolated by enzymatic digestion. Calcium currents and potassium currents were recorded by the whole-cell voltage-clamp method, and the single calcium-dependent potassium current was recorded by the outside-out patch-clamp method. The effects of 17beta-estradiol on these currents were investigated. When a myometrial cell was held at -50 mV, depolarization to a potential more positive than -30 mV produced an inward current followed by a slowly developing outward current. Application of tetraethylammonium inhibited the outward current while the inward current was completely abolished in a calcium-free solution. Estradiol at high concentrations (> 3 microM) inhibited both inward and outward currents in a voltage-dependent manner. Removal of estradiol restored the amplitude of the outward but not of the inward current. Estradiol (30 microM) also inhibited the activity of single calcium-dependent potassium channels without changing single channel conductance. In conclusion, estradiol at high concentrations inhibited: (1) voltage-dependent calcium, (2) calcium-dependent potassium and (3) voltage-dependent potassium currents. These actions of estradiol would prevent action potential generation and after-hyperpolarizations. Suppression of the after-hyperpolarization might further prevent spike generation due to slowing of the calcium channel's recovery from the inactivated state.

  15. Differential effects of (-)-baclofen on Ia and descending monosynaptic EPSPs.

    Science.gov (United States)

    Jiménez, I; Rudomin, P; Enriquez, M

    1991-01-01

    1. In cats anesthetized with alpha-chloralose, population synaptic responses of motoneurons produced by stimulation of group I afferents were recorded from ventral roots with a sucrose gap or extracellularly from the motor pool. These responses were depressed, and often abolished, following the intravenous injection of 1-3 mg/kg of (-)-baclofen, a presumed GABAb agonist. 2. The monosynaptic population responses of motoneurons produced by stimulation of the ipsilateral ventromedial funiculus (VMF), the bulbar reticular formation or the vestibular nucleus, were also depressed following the administration of (-)-baclofen, but to a lesser degree than responses produced by stimulation of group I fibers. 3. Depression of the synaptic actions of Ia and of descending fibers following the administration of (-)-baclofen occurred without significant changes in the presynaptic volley recorded from the cord dorsum. However, in 3/4 experiments the intraspinally recorded Ia terminal potential was reduced following the injection of (-)-baclofen. The VMF terminal potentials were also depressed, but to a lesser degree. 4. Intracellular recordings from spinal motoneurons indicate that the (-)-baclofen-induced depression of the monosynaptic Ia- and VMF-EPSPs occurred without important changes in the time course of EPSP decay. This suggests that with the amounts used, postsynaptic changes were not contributing significantly to the EPSP depression. 5. It is suggested that (-)-baclofen depresses synaptic transmission probably by activation of GABAb receptors located at the intraspinal terminations of Ia and descending fibers. The lower sensitivity of VMF actions to (-)-baclofen would be accounted for by a relatively low density of baclofen receptors in descending fiber terminals.

  16. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel.

    Science.gov (United States)

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-12-01

    Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.

  17. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting TRPA1 channel

    Science.gov (United States)

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A.; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-01-01

    While feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons, express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously, which are known to trigger migraine or cluster headache attacks, as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel, and renders peptidergic, TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide. PMID:23933184

  18. CRAC channel is inhibited by neomycin in a Ptdlns(4,5)P2-independent manner.

    Science.gov (United States)

    Huang, Kun; Wang, Xuemei; Liu, Yanjun; Zhao, Yi

    2015-03-01

    Depletion of intracellular Ca(2+) stores evokes store-operated Ca(2+) entry through the Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we found that the store-operated Ca(2+) entry was inhibited by neomycin, an aminoglycoside that strongly binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Patch clamp recordings revealed that neomycin blocked the CRAC currents reconstituted by co-expression of Orai1 and Stim1 in HEK293 cells. Using a rapamycin-inducible PtdIns(4,5)P2-specific phosphatase (Inp54p) system to manipulate the PtdIns(4,5)P2 in the plasma membrane, we found that the CRAC current was not altered by PtdIns(4,5)P2 depletion. This result suggests that PtdIns(4,5)P2 is not required for CRAC channel activity, and thereby, neomycin inhibits CRAC channels in a manner that is independent of neomycin-PtdIns(4,5)P2 binding.

  19. Ca2+ channel inhibition by endomorphins via the cloned mu-opioid receptor expressed in NG108-15 cells.

    Science.gov (United States)

    Mima, H; Morikawa, H; Fukuda, K; Kato, S; Shoda, T; Mori, K

    1997-12-11

    Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor.

  20. Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system.

    Science.gov (United States)

    StGelais, Corine; Tuthill, Tobias J; Clarke, Dean S; Rowlands, David J; Harris, Mark; Griffin, Stephen

    2007-10-01

    Chemotherapy for patients chronically infected with hepatitis C virus (HCV) is ineffective in over 50% of cases, generating a high demand for new drug targets. The p7 protein of HCV displays membrane channel activity in vitro and is essential for replication in vivo though its precise role in the virus life cycle is unknown. p7 channel activity can be specifically inhibited by several classes of compounds, making this protein an attractive candidate for drug development, though techniques used to date in characterising this protein are unsuited to compound library screening. Here we describe an assay for the channel forming ability of p7 based on the release of a fluorescent indicator from liposomes. We show that recombinant p7 from genotype 1b HCV causes a dose-dependent release of dye when mixed with liposomes and that this property is enhanced at acidic pH. We demonstrate that this activity is due to the formation of a size-selective pore rather than non-specific disruption of liposomes and that activity can be blocked by amantadine and several other compounds, validating it as a measure of p7 channel function. This system provides the first convenient in vitro assay for exploiting p7 as a therapeutic target.

  1. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1996-01-01

    arterioles with the chloride channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Renin secretion was equally enhanced by omission of extracellular calcium and by addition of 0.5 mM DIDS. The inhibitory effect of calcium was blocked by DIDS. The stimulatory effects of low calcium [with....... Norepinephrine (5 x 10(-7)-1 x 10(-6) M) and angiotensin II (1 x 10(-8)-10(-6) M) evoked reversible and dose-dependent contractions of microperfused rabbit afferent arterioles. DIDS (0.5 mM) did not affect the basal diameter of the arterioles but strongly inhibited the response to angiotensin II and attenuated...... the duration of the contractile response to norepinephrine. The results support the hypothesis that DIDS-sensitive calcium-activated chloride channels are involved in regulation of renin release and in the afferent arteriolar contraction after angiotensin II but do not play a pivotal role in the response...

  2. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    Science.gov (United States)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  3. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss.

    Science.gov (United States)

    Ramadoss, Jayanth; Lunde, Emilie R; Ouyang, Nengtai; Chen, Wei-Jung A; Cudd, Timothy A

    2008-08-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.

  4. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  5. Mutant connexin 50 (S276F) inhibits channel and hemichannel functions inducing cataract

    Indian Academy of Sciences (India)

    Yuanyuan Liu; Chen Qiao; Tanwei Wei; Fang Zheng; Shuren Guo; Qiang Chen; Ming Yan; Xin Zhou

    2015-06-01

    This study was designed to detect the expression, detergent resistance, subcellular localization, and channel and hemichannel functions of mutant Cx50 to understand the forming mechanism for inducing congenital cataract by a novel mutation p.S276F in connexin 50 (Cx50) reported previously by us. HeLa and human lens epithelial (HLE) cells were transfected with wild-type Cx50 and mutant Cx50 (S276F). We examined the functional characteristics of mutant Cx50 (S276F) in comparison with those of wild-type Cx50 using immunoblot, confocal fluorescence microscopy, dye transfer analysis and dye uptake assay. The mutant and wild-type Cx50 were expressed in equal levels and could efficiently localize to the plasma membrane without transportation and assembly problems. Scrape loading dye transfer was significantly evident in cells transfected with wild-type Cx50 compared to those in cells transfected with mutant Cx50 and cotransfected with wild-type and mutant Cx50. The dye uptake was found to be significantly lower in cells transfected with mutant Cx50 than in cells transfected with wild-type Cx50 and cells cotransfected with wild-type and mutant Cx50. The transfected HeLa and HLE cell lines showed similar performance in all the experiments. These results indicated that the mutant Cx50 (S276F) might inhibit the function of gap junction channel in a dominant negative manner, but inhibit the hemichannel function in a recessive negative manner.

  6. Myricetin inhibits Kv1.5 channels in HEK293 cells.

    Science.gov (United States)

    Ou, Xianhong; Bin, Xiaohong; Wang, Luzhen; Li, Miaoling; Yang, Yan; Fan, Xinrong; Zeng, Xiaorong

    2016-02-01

    Myricetin (Myr) is a flavonoid that exerts anti-arrhythmic effects. However, its potential effects on ion channels have remained elusive. The aim of the present study was to investigate the effects of Myr on Kv1.5 channels in HEK293 cells. The current of Kv1.5 channels (Ikur) in HEK293 cells was recorded using the whole-cell patch-clamp technique and the expression of the Kv1.5 protein was measured using western blot analysis 24 h after treatment with Myr. The results showed that 5 µM Myr significantly reduced Ikur from 215.04 ± 40.59 to 77.72 ± 17.94 pA/pF (PHEK293 cells treated with 10 µM Myr for 5 min. Furthermore, Myr reduced hKv1.5 protein expression in a dose-dependent manner. These results demonstrated that Myr inhibited Ikur and the expression of hKv1.5 in HEK293 cells in a dose-, time- and frequency-dependent manner. These observations partly explained the mechanisms by which Myr exerts anti-arrhythmic effect.

  7. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  8. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  9. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action.

    Science.gov (United States)

    Vonderlin, Nadine; Fischer, Fathima; Zitron, Edgar; Seyler, Claudia; Scherer, Daniel; Thomas, Dierk; Katus, Hugo A; Scholz, Eberhard P

    2015-01-01

    Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG) channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 μM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 μM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam.

  10. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  11. Estimates of EPSP amplitude based on changes in motoneuron discharge rate and probability.

    Science.gov (United States)

    Powers, Randall K; Türker, K S

    2010-10-01

    When motor units are discharging tonically, transient excitatory synaptic inputs produce an increase in the probability of spike occurrence and also increase the instantaneous discharge rate. Several researchers have proposed that these induced changes in discharge rate and probability can be used to estimate the amplitude of the underlying excitatory post-synaptic potential (EPSP). We tested two different methods of estimating EPSP amplitude by comparing the amplitude of simulated EPSPs with their effects on the discharge of rat hypoglossal motoneurons recorded in an in vitro brainstem slice preparation. The first estimation method (simplified-trajectory method) is based on the assumptions that the membrane potential trajectory between spikes can be approximated by a 10 mV post-spike hyperpolarization followed by a linear rise to the next spike and that EPSPs sum linearly with this trajectory. We hypothesized that this estimation method would not be accurate due to interspike variations in membrane conductance and firing threshold that are not included in the model and that an alternative method based on estimating the effective distance to threshold would provide more accurate estimates of EPSP amplitude. This second method (distance-to-threshold method) uses interspike interval statistics to estimate the effective distance to threshold throughout the interspike interval and incorporates this distance-to-threshold trajectory into a threshold-crossing model. We found that the first method systematically overestimated the amplitude of small (EPSPs and underestimated the amplitude of large (>5 mV EPSPs). For large EPSPs, the degree of underestimation increased with increasing background discharge rate. Estimates based on the second method were more accurate for small EPSPs than those based on the first model, but estimation errors were still large for large EPSPs. These errors were likely due to two factors: (1) the distance to threshold can only be directly

  12. Eugenol dilates rat cerebral arteries by inhibiting smooth muscle cell voltage-dependent calcium channels.

    Science.gov (United States)

    Peixoto-Neves, Dieniffer; Leal-Cardoso, Jose Henrique; Jaggar, Jonathan H

    2014-11-01

    Plants high in eugenol, a phenylpropanoid compound, are used as folk medicines to alleviate diseases including hypertension. Eugenol has been demonstrated to relax conduit and ear arteries and reduce systemic blood pressure, but mechanisms involved are unclear. Here, we studied eugenol regulation of resistance-size cerebral arteries that control regional brain blood pressure and flow and investigated mechanisms involved. We demonstrate that eugenol dilates arteries constricted by either pressure or membrane depolarization (60 mM K) in a concentration-dependent manner. Experiments performed using patch-clamp electrophysiology demonstrated that eugenol inhibited voltage-dependent calcium (Ca) currents, when using Ba as a charge carrier, in isolated cerebral artery smooth muscle cells. Eugenol inhibition of voltage-dependent Ca currents involved pore block, a hyperpolarizing shift (∼-10 mV) in voltage-dependent inactivation, an increase in the proportion of steady-state inactivating current, and acceleration of inactivation rate. In summary, our data indicate that eugenol dilates cerebral arteries by means of multimodal inhibition of voltage-dependent Ca channels.

  13. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  14. A novel CaV2.2 channel inhibition by piracetam in peripheral and central neurons.

    Science.gov (United States)

    Bravo-Martínez, Jorge; Arenas, Isabel; Vivas, Oscar; Rebolledo-Antúnez, Santiago; Vázquez-García, Mario; Larrazolo, Arturo; García, David E

    2012-10-01

    No mechanistic actions for piracetam have been documented to support its nootropic effects. Voltage-gated calcium channels have been proposed as a promising pharmacological target of nootropic drugs. In this study, we investigated the effect of piracetam on Ca(V)2.2 channels in peripheral neurons, using patch-clamp recordings from cultured superior cervical ganglion neurons. In addition, we tested if Ca(V)2.2 channel inhibition could be related with the effects of piracetam on central neurons. We found that piracetam inhibited native Ca(V)2.2 channels in superior cervical ganglion neurons in a dose-dependent manner, with an IC(50) of 3.4 μmol/L and a Hill coefficient of 1.1. GDPβS dialysis did not prevent piracetam-induced inhibition of Ca(V)2.2 channels and G-protein-coupled receptor activation by noradrenaline did not occlude the piracetam effect. Piracetam altered the biophysical characteristics of Ca(V)2.2 channel such as facilitation ratio. In hippocampal slices, piracetam and ω-conotoxin GVIA diminished the frequency of excitatory postsynaptic potentials and action potentials. Our results provide evidence of piracetam's actions on Ca(V)2.2 channels in peripheral neurons, which might explain some of its nootropic effects in central neurons.

  15. Prostaglandin metabolite induces inhibition of TRPA1 and channel-dependent nociception

    Directory of Open Access Journals (Sweden)

    Weng Yingqi

    2012-09-01

    Full Text Available Abstract Background The Transient Receptor Potential (TRP ion channel TRPA1 is a key player in pain pathways. Irritant chemicals activate ion channel TRPA1 via covalent modification of N-terminal cysteines. We and others have shown that 15-Deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2 similarly activates TRPA1 and causes channel-dependent nociception. Paradoxically, 15d-PGJ2 can also be anti-nociceptive in several pain models. Here we hypothesized that activation and subsequent desensitization of TRPA1 in dorsal root ganglion (DRG neurons underlies the anti-nociceptive property of 15d-PGJ2. To investigate this, we utilized a battery of behavioral assays and intracellular Ca2+ imaging in DRG neurons to test if pre-treatment with 15d-PGJ2 inhibited TRPA1 to subsequent stimulation. Results Intraplantar pre-injection of 15d-PGJ2, in contrast to mustard oil (AITC, attenuated acute nocifensive responses to subsequent injections of 15d-PGJ2 and AITC, but not capsaicin (CAP. Intraplantar 15d-PGJ2—administered after the induction of inflammation—reduced mechanical hypersensitivity in the Complete Freund’s Adjuvant (CFA model for up to 2 h post-injection. The 15d-PGJ2-mediated reduction in mechanical hypersensitivity is dependent on TRPA1, as this effect was absent in TRPA1 knockout mice. Ca2+ imaging studies of DRG neurons demonstrated that 15d-PGJ2 pre-exposure reduced the magnitude and number of neuronal responses to AITC, but not CAP. AITC responses were not reduced when neurons were pre-exposed to 15d-PGJ2 combined with HC-030031 (TRPA1 antagonist, demonstrating that inhibitory effects of 15d-PGJ2 depend on TRPA1 activation. Single daily doses of 15d-PGJ2, administered during the course of 4 days in the CFA model, effectively reversed mechanical hypersensitivity without apparent tolerance or toxicity. Conclusions Taken together, our data support the hypothesis that 15d-PGJ2 induces activation followed by persistent inhibition of TRPA1 channels

  16. Synergistic antiarrhythmic effect of combining inhibition of Ca(2+)-activated K(+) (SK) channels and voltage-gated Na(+) channels in an isolated heart model of atrial fibrillation

    DEFF Research Database (Denmark)

    Kirchhoff, Jeppe Egedal; Goldin Diness, Jonas; Sheykhzade, Majid;

    2015-01-01

    of the adverse effect profile could be an additional advantage if compound concentrations could be reduced. OBJECTIVE: The purpose of this study was to test the hypothesis that combined inhibition of Ca(2+)-activated K(+) channels (SK channels) and voltage-gated Na(+) channels, in concentrations that would......)thiazol-2-amine (ICA) in a Langendorff-perfused guinea pig heart model in which AF was induced after acetylcholine application and burst pacing. RESULTS: AF duration was reduced when both flecainide and ranolazine were combined with ICA in doses that did not reduce AF as monotherapy. At higher...... concentrations, both flecainide and ranolazine revealed proarrhythmic properties. CONCLUSION: A synergistic effect in AF treatment was obtained by combining low concentrations of SK and Na(+) channel blockers....

  17. Like Extinction, Latent Inhibition of Conditioned Fear in Mice Is Blocked by Systemic Inhibition of L-Type Voltage-Gated Calcium Channels

    Science.gov (United States)

    Blouin, Ashley M.; Cain, Chris K.; Barad, Mike

    2004-01-01

    Having recently shown that extinction of conditioned fear depends on L-type voltage-gated calcium channels (LVGCCs), we have been seeking other protocols that require this unusual induction mechanism. We tested latent inhibition (LI) of fear, because LI resembles extinction except that cue exposures precede, rather than follow, cue-shock pairing.…

  18. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells.

    Science.gov (United States)

    Beech, D J; Zhang, H; Nakao, K; Bolton, T B

    1993-10-01

    1. Whole-cell and inside-out patch recordings were made from single smooth muscle cells that had been isolated enzymatically and mechanically from the rabbit portal vein. 2. In whole-cells the inclusion in the recording pipette solution of nucleotide diphosphates (NDPs), but not tri- or monophosphates, induced a K-current that developed gradually over 5 to 15 min. Intracellular 1 mM guanosine 5'-diphosphate (GDP) induced a slowly developing outward K-current at -37 mV that reached a maximum on average of 72 +/- 4 pA (n = 40). Half maximal effect was estimated to occur with about 0.2 mM GDP. Except for ADP, other NDPs had comparable effects. At 0.1 mM, ADP was equivalent to GDP but at higher concentration ADP was less effective. ADP induced its maximum effect at 1 mM but had almost no effect at 10 mM. 3. In 14% of inside-out patches exposed to 1 mM GDP at the intracellular surface, characteristic K channel activity was observed which showed long (> 1 s) bursts of openings separated by longer closed periods. The current-voltage relationship for the channel was linear in a 60 mM:130 mM K-gradient and the unitary conductance was 24 pS. 4. Glibenclamide applied via the extracellular solution was found to be a potent inhibitor of GDP-induced K-current (IK(GDP)) in the whole-cell. The Kd was 25 nM and the inhibition was fully reversible on wash-out. 5. IK(GDP) was not evoked if Mg ions were absent from the pipette solution. In contrast the omission of extracellular Mg ions had no effect on outward or inward IK(GDP). 6. Inclusion of 1 mM ATP in the recording pipette solution reduced IK(GDP) and also attenuated its decline during long (25 min) recordings. 7. When perforated-patch whole-cell recording was used, metabolic poisoning with cyanide and 2-deoxy-D-glucose induced a glibenclamide-sensitive K-current. This current was not observed when conventional whole-cell recording was used. Possible reasons for this difference are discussed. 8. These K channels appear similar to

  19. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    Science.gov (United States)

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  20. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins.

    Science.gov (United States)

    Yu, Lili; Rodriguez, Roberto A; Chen, L Laurie; Chen, Liao Y; Perry, George; McHardy, Stanton F; Yeh, Chih-Ko

    2016-02-01

    Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients.

  1. Acute simvastatin inhibits K ATP channels of porcine coronary artery myocytes.

    Directory of Open Access Journals (Sweden)

    Sai Wang Seto

    Full Text Available BACKGROUND: Statins (3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors consumption provides beneficial effects on cardiovascular systems. However, effects of statins on vascular KATP channel gatings are unknown. METHODS: Pig left anterior descending coronary artery and human left internal mammary artery were isolated and endothelium-denuded for tension measurements and Western immunoblots. Enzymatically-dissociated/cultured arterial myocytes were used for patch-clamp electrophysiological studies and for [Ca(2+]i, [ATP]i and [glucose]o uptake measurements. RESULTS: The cromakalim (10 nM to 10 µM- and pinacidil (10 nM to 10 µM-induced concentration-dependent relaxation of porcine coronary artery was inhibited by simvastatin (3 and 10 µM. Simvastatin (1, 3 and 10 µM suppressed (in okadaic acid (10 nM-sensitive manner cromakalim (10 µM- and pinacidil (10 µM-mediated opening of whole-cell KATP channels of arterial myocytes. Simvastatin (10 µM and AICAR (1 mM elicited a time-dependent, compound C (1 µM-sensitive [(3H]-2-deoxy-glucose uptake and an increase in [ATP]i levels. A time (2-30 min- and concentration (0.1-10 µM-dependent increase by simvastatin of p-AMPKα-Thr(172 and p-PP2A-Tyr(307 expression was observed. The enhanced p-AMPKα-Thr(172 expression was inhibited by compound C, ryanodine (100 µM and KN93 (10 µM. Simvastatin-induced p-PP2A-Tyr(307 expression was suppressed by okadaic acid, compound C, ryanodine, KN93, phloridzin (1 mM, ouabain (10 µM, and in [glucose]o-free or [Na(+]o-free conditions. CONCLUSIONS: Simvastatin causes ryanodine-sensitive Ca(2+ release which is important for AMPKα-Thr(172 phosphorylation via Ca(2+/CaMK II. AMPKα-Thr(172 phosphorylation causes [glucose]o uptake (and an [ATP]i increase, closure of KATP channels, and phosphorylation of AMPKα-Thr(172 and PP2A-Tyr(307 resulted. Phosphorylation of PP2A-Tyr(307 occurs at a site downstream of AMPKα-Thr(172 phosphorylation.

  2. Endostatin is protective against monocrotaline-induced right heart disease through the inhibition of T-type Ca(2+) channel.

    Science.gov (United States)

    Imoto, Keisuke; Kumatani, Sayaka; Okada, Muneyoshi; Yamawaki, Hideyuki

    2016-07-01

    Endostatin (ES), a C-terminal fragment of collagen XVIIIα1, has a potent anti-angiogenic effect. ES prevents tumor proliferation through inhibiting T-type Ca(2+) channel. T-type Ca(2+) channel is re-expressed during heart diseases including monocrotaline (MCT)-induced right heart failure. The present study aimed to clarify the effects of ES on T-type Ca(2+) channel and pathogenesis of MCT-induced right ventricular disease. MCT or saline was injected intraperitoneally to rats. After cardiomyocytes were isolated from right ventricles (RVs), T-type Ca(2+) channel current (I CaT) was measured by a patch-clamp method. After ES small interfering RNA (siRNA) or control siRNA (20 μg) was administrated for 1 week via the right jugular vein 1 week after MCT injection, echocardiography and histological analysis were done. I CaT was significantly increased in RV from MCT-injected rats, and ES significantly inhibited it. The survival rate of ES siRNA-administrated MCT rats (MCT ES si group) was decreased. In echocardiography, although ES siRNA did not affect pulmonary arterial pressure, RV systolic function was impaired in MCT ES si group compared with control siRNA-administrated MCT rats (MCT cont si group). In the histological analysis of RV, ES expression was increased in MCT cont si group, and ES siRNA inhibited it. Furthermore, although MCT cont si group showed only cardiomyocyte hypertrophy, MCT ES si group showed notable enlargement of intercellular spaces. The present study for the first time revealed that ES inhibits T-type Ca(2+) channel activity in RV from MCT-injected rats. ES gene knockdown deteriorates MCT-induced right heart disease. ES is thus cardioprotective possibly through inhibiting T-type Ca(2+) channel activity.

  3. 17beta-Estradiol reduces excitatory postsynaptic potential (EPSP) amplitude in rat basolateral amygdala neurons.

    Science.gov (United States)

    Womble, Mark D; Andrew, James A; Crook, Joseph J

    2002-10-11

    We examined the actions of estrogen on excitatory synaptic transmission in the basolateral amygdala (BLA), a brain region involved in learning, emotions, and the effects of stress. Intracellular recordings of monosynaptic excitatory postsynaptic potentials (EPSPs) were obtained from BLA neurons in a slice preparation. Bath application of 17beta-estradiol (2 micro M) reduced EPSP amplitude by an average of 77%. This reduction was readily reversed by washing with control saline and was not mimicked by the inactive isomer 17 alpha-estradiol. Other passive and active properties of BLA neurons were unaffected by 17beta-estradiol. The observed EPSP reduction is in sharp contrast to the potentiation of EPSPs by estrogen observed in other brain regions.

  4. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  5. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias.

    Science.gov (United States)

    Cubeddu, Luigi X

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended.

  6. The facilitating effect of systemic administration of Kv7/M channel blocker XE991 on LTP induction in the hippocampal CA1 area independent of muscarinic activation.

    Science.gov (United States)

    Song, Ming-Ke; Cui, Yong-Yao; Zhang, Wei-Wei; Zhu, Liang; Lu, Yang; Chen, Hong-Zhuan

    2009-09-11

    A large amount of in vitro studies demonstrate suppression of M-current in hippocampal neurons by Kv7/M channel blocker results in depolarization of membrane potential and release of neurotransmitters, such as acetylcholine and glutamate, suggesting that Kv7/M channel may play important roles in regulating synaptic plasticity. In the present study, we examined the in vivo effect of Kv7/M channel inhibition on the long-term potentiation (LTP) induction at basal dendrites in hippocampal CA1 area of urethane-anaesthetized rats. The Kv7/M channel was inhibited by intraperitoneal injection of XE991 (10mg/kg) and the LTP of field excitatory postsynaptic potential (fEPSP) was induced by supra-threshold high frequency stimulation (S1 HFS). A weak protocol which was just below the threshold for evoking LTP was used as sub-threshold high frequency stimulation (S2 HFS). XE991 did not significantly alter the slope of fEPSP and the magnitude of LTP induced by S1 HFS, suggesting that Kv7/M channel inhibition had little or no effect on glutamatergic transmission under basal conditions. However, XE991 could make S2 HFS evoke LTP even after the application of the muscarinic cholinergic (mACh) receptor antagonist scopolamine, suggesting that Kv7/M channel inhibition lowered the threshold for LTP induction and the effect was independent of muscarinic activation. Based on the above findings, we concluded that the facilitating effect of XE991 on LTP induction is not mediated by its ability to enhance the release of acetylcholine; therefore, Kv7/M channel blockers may provide a therapeutic benefit to cholinergic deficiency-related cognitive impairment, e.g., Alzheimer's disease.

  7. Involvement of facultative apomixis in inheritance of EPSPS gene amplification in glyphosate-resistant Amaranthus palmeri.

    Science.gov (United States)

    Ribeiro, Daniela N; Pan, Zhiqiang; Duke, Stephen O; Nandula, Vijay K; Baldwin, Brian S; Shaw, David R; Dayan, Franck E

    2014-01-01

    The inheritance of glyphosate resistance in two Amaranthus palmeri populations (R1 and R2) was examined in reciprocal crosses (RC) and second reciprocal crosses (2RC) between glyphosate-resistant (R) and -susceptible (S) parents of this dioecious species. R populations and Female-R × Male-S crosses contain higher 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copy numbers than the S population. EPSPS expression, EPSPS enzyme activity, EPSPS protein quantity, and level of resistance to glyphosate correlated positively with genomic EPSPS relative copy number. Transfer of resistance was more influenced by the female than the male parent in spite of the fact that the multiple copies of EPSPS are amplified in the nuclear genome. This led us to hypothesize that this perplexing pattern of inheritance may result from apomictic seed production in A. palmeri. We confirmed that reproductively isolated R and S female plants produced seeds, indicating that A. palmeri can produce seeds both sexually and apomictically (facultative apomixis). This apomictic trait accounts for the low copy number inheritance in the Female-S × Male-R offsprings. Apomixis may also enhance the stability of the glyphosate resistance trait in the R populations in the absence of reproductive partners.

  8. Inhibition of mitochondrial permeability transition pore contributes to the neuroprotection induced by activation of mitochondrial ATP-sensitive potassium channel

    Institute of Scientific and Technical Information of China (English)

    Li-pingWU; FangSHEN; QiangXIA

    2004-01-01

    AIM: To investigate whether the neuroprotection via activating mitochondrial ATP-sensitive potassium channel (mitoKTP) is mediated by the inhibition of mitochondrial permeability transition pore (MPTP). METHODS: Adult male Sprague-Dawleyrats were undergoing 90 min of middle cerebral artery occlusion(MCAO) by introducing a nylon monofilament through the external

  9. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K;

    1999-01-01

    T lymphocytes express a plethora of distinct ion channels that participate in the control of calcium homeostasis and signal transduction. Potassium channels play a critical role in the modulation of T cell calcium signaling, and the significance of the voltage-dependent K channel, Kv1.3, is well...... established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T...

  10. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  11. A tale of switched functions: from cyclooxygenase inhibition to M-channel modulation in new diphenylamine derivatives.

    Directory of Open Access Journals (Sweden)

    Asher Peretz

    Full Text Available Cyclooxygenase (COX enzymes are molecular targets of nonsteroidal anti-inflammatory drugs (NSAIDs, the most used medication worldwide. However, the COX enzymes are not the sole molecular targets of NSAIDs. Recently, we showed that two NSAIDs, diclofenac and meclofenamate, also act as openers of Kv7.2/3 K(+ channels underlying the neuronal M-current. Here we designed new derivatives of diphenylamine carboxylate to dissociate the M-channel opener property from COX inhibition. The carboxylate moiety was derivatized into amides or esters and linked to various alkyl and ether chains. Powerful M-channel openers were generated, provided that the diphenylamine moiety and a terminal hydroxyl group are preserved. In transfected CHO cells, they activated recombinant Kv7.2/3 K(+ channels, causing a hyperpolarizing shift of current activation as measured by whole-cell patch-clamp recording. In sensory dorsal root ganglion and hippocampal neurons, the openers hyperpolarized the membrane potential and robustly depressed evoked spike discharges. They also decreased hippocampal glutamate and GABA release by reducing the frequency of spontaneous excitatory and inhibitory post-synaptic currents. In vivo, the openers exhibited anti-convulsant activity, as measured in mice by the maximal electroshock seizure model. Conversion of the carboxylate function into amide abolished COX inhibition but preserved M-channel modulation. Remarkably, the very same template let us generating potent M-channel blockers. Our results reveal a new and crucial determinant of NSAID-mediated COX inhibition. They also provide a structural framework for designing novel M-channel modulators, including openers and blockers.

  12. Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.

    Science.gov (United States)

    Li, Dimin; Wei, Yuan; Babilonia, Elisa; Wang, Zhijian; Wang, Wen-Hui

    2006-04-01

    We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa alpha-subunit (p110alpha) of PI3K compared with rats on a normal-K diet. Because low K intake increases superoxide levels (2), the possibility that increases in superoxide anions may be responsible for the effect of low K intake on the expression of PI3K is supported by finding that addition of H(2)O(2) stimulates the expression of p110alpha in M1 cells. Inhibition of PI3K with either wortmannin or LY-294002 significantly increased channel activity in the CCD from rats on a K-deficient (KD) diet or on a normal-K diet. The stimulatory effect of wortmannin on ROMK channel activity cannot be mimicked by inhibition of phospholipase C with U-73122. This suggests that the effect of inhibiting PI3K was not the result of increasing the phosphatidylinositol 4,5-bisphosphate level. Moreover, application of the exogenous phosphatidylinositol 3,4,5-trisphosphate analog had no effect on channel activity in excised patches. Because low K intake has been shown to increase the activity of protein tyrosine kinase (PTK), we explored the role of the interaction between PTK and PI3K in the regulation of the SK channel activity. Inhibition of PTK increased SK channel activity in the CCD from rats on a KD diet. However, addition of wortmannin did not further increase ROMK channel activity. Also, the effect of wortmannin was abolished by treatment of CCD with phalloidin. We conclude that PI3K is involved in mediating the effect of low K intake on ROMK channel activity in the CCD and that the effect of PI3K on SK channels requires the involvement of PTK and the cytoskeleton.

  13. Ba2+- and bupivacaine-sensitive background K+ conductances mediate rapid EPSP attenuation in oligodendrocyte precursor cells.

    Science.gov (United States)

    Chan, Chu-Fang; Kuo, Tzu-Wei; Weng, Ju-Yun; Lin, Yen-Chu; Chen, Ting-Yu; Cheng, Jen-Kun; Lien, Cheng-Chang

    2013-10-01

    Glutamatergic transmission onto oligodendrocyte precursor cells (OPCs) may regulate OPC proliferation, migration and differentiation. Dendritic integration of excitatory postsynaptic potentials (EPSPs) is critical for neuronal functions, and mechanisms regulating dendritic propagation and summation of EPSPs are well understood. However, little is known about EPSP attenuation and integration in OPCs. We developed realistic OPC models for synaptic integration, based on passive membrane responses of OPCs obtained by simultaneous dual whole-cell patch-pipette recordings. Compared with neurons, OPCs have a very low value of membrane resistivity, which is largely mediated by Ba(2+)- and bupivacaine-sensitive background K(+) conductances. The very low membrane resistivity not only leads to rapid EPSP attenuation along OPC processes but also sharpens EPSPs and narrows the temporal window for EPSP summation. Thus, background K(+) conductances regulate synaptic responses and integration in OPCs, thereby affecting activity-dependent neuronal control of OPC development and function.

  14. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels.

    Science.gov (United States)

    Bautista, Diana M; Sigal, Yaron M; Milstein, Aaron D; Garrison, Jennifer L; Zorn, Julie A; Tsuruda, Pamela R; Nicoll, Roger A; Julius, David

    2008-07-01

    In traditional folk medicine, Xanthoxylum plants are referred to as 'toothache trees' because their anesthetic or counter-irritant properties render them useful in the treatment of pain. Psychophysical studies have identified hydroxy-alpha-sanshool as the compound most responsible for the unique tingling and buzzing sensations produced by Szechuan peppercorns or other Xanthoxylum preparations. Although it is generally agreed that sanshool elicits its effects by activating somatosensory neurons, the underlying cellular and molecular mechanisms remain a matter of debate. Here we show that hydroxy-alpha-sanshool excites two types of sensory neurons, including small-diameter unmyelinated cells that respond to capsaicin (but not mustard oil) as well as large-diameter myelinated neurons that express the neurotrophin receptor TrkC. We found that hydroxy-alpha-sanshool excites neurons through a unique mechanism involving inhibition of pH- and anesthetic-sensitive two-pore potassium channels (KCNK3, KCNK9 and KCNK18), providing a framework for understanding the unique and complex psychophysical sensations associated with the Szechuan pepper experience.

  15. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.

  16. Genome-wide Analysis of the EPSPS Genes in Upland Cotton%陆地棉 EPSPS 基因全基因组分析

    Institute of Scientific and Technical Information of China (English)

    巩元勇; 徐珍珍; 郭书巧; 束红梅; 蒋璐; 倪万潮

    2016-01-01

    当前在 NCBI 中提交的来源于陆地棉的 EPSPS 基因有2个,随着陆地棉基因组测序结果的公布,为在陆地棉基因组中全面鉴定 EPSPS 基因的存在提供了便利条件。从陆地棉异源四倍体标准系 TM-1基因组数据库中共搜寻获得4个 EPSPS 同源基因,这4个基因分别分布在 A07、A12、D07和 D12亚基因组。从这4个基因的核苷酸序列、氨基酸序列和基因结构的比对,构建进化树的系统发育分析以及基因的转录情况研究来看,定位在 A07和 D07亚基因组的2个基因属于共线性高度同源基因,定位在 A12和 D12亚基因组的2个基因也是相同的情况。序列比对结果表明,已经在 NCBI 中提交的2个 EPSPS 基因分别是定位在 A12和 D12亚基因组上的基因,研究结果为定位在 A07和D07亚基因组上 EPSPS 基因的克隆和功能研究提供了基础理论依据。%Currently,two EPSPS genes from Gossypium hirsutum have been submitted to NCBI.It is more con-vinent to identify EPSPS genes in genome level of upland cotton comprehensively following the publication of Gos-sypium hirsutum genomic sequence.Four EPSPS homologous genes were identified from the genome sequence data-base of allotetraploid cotton (Gossypium hirsutum L.acc.TM-1),and they were found to be distributed on subge-nomes of A07,A12,D07 and D12.Under the comperation of nucleotide sequences,amino acid sequences and gene structures,phylogenetic analysis of constructing phylogenetic tree and the study of transcription situation of these four genes,it was more clearly that the two genes located on A07 and D07 subgenomes belong to highly homologous co-linear gene,and the two genes located on A12 and D12 subgenomes as well.Sequence alignment results showed that the two EPSPS genes submitted to NCBI were the two genes located on A12 and D12 subgenomes respectively. The study results of this paper would provide an theoretical basis on cloning and functional

  17. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.

    Science.gov (United States)

    Kim, Yonjung; Anderson, Marc O; Park, Jinhong; Lee, Min Goo; Namkung, Wan; Verkman, A S

    2015-10-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP.

  18. Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels.

    Science.gov (United States)

    Montecinos-Oliva, C; Schuller, A; Parodi, J; Melo, F; Inestrosa, N C

    2014-01-01

    Tetrahydrohyperforin (IDN5706) is a semi-synthetic compound derived from hyperforin (IDN5522) and is the main active principle of St. John's Wort. IDN5706 has shown numerous beneficial effects when administered to wild-type and double transgenic (APPswe/PSEN1ΔE9) mice that model Alzheimer's disease. However, its mechanism of action is currently unknown. Toward this end, we analysed field excitatory postsynaptic potentials (fEPSPs) in mouse hippocampal slices incubated with IDN5706 and in the presence of the TRPC3/6/7 activator 1-oleoyl-2-acetyl-sn-glycerol (OAG), the TRPC channel blocker SKF96365, and neurotoxic amyloid β-protein (Aβ) oligomers. To study spatial memory, Morris water maze (MWM) behavioural tests were conducted on wild-type mice treated with IDN5706 and SKF96365. In silico studies were conducted to predict a potential pharmacophore. IDN5706 and OAG had a similar stimulating effect on fEPSPs, which was inhibited by SKF96365. IDN5706 protected from reduced fEPSPs induced by Aβ oligomers. IDN5706 improved spatial memory in wild-type mice, an effect that was counteracted by co-administration of SKF96365. Our in silico studies suggest strong pharmacophore similarity of IDN5706 and other reported TRPC6 activators (IDN5522, OAG and Hyp9). We propose that the effect of IDN5706 is mediated through activation of the TRPC3/6/7 channel subfamily. The unveiling of the drug's mechanism of action is a necessary step toward the clinical use of IDN5706 in Alzheimer's disease.

  19. 5,6-EET potently inhibits T-type calcium channels

    DEFF Research Database (Denmark)

    Cazade, M.; Bidaud, I.; Hansen, Pernille B. Lærkegaard;

    2014-01-01

    T-type calcium channels (T-channels) are important actors in neuronal pacemaking, in heart rhythm, and in the control of the vascular tone. T-channels are regulated by several endogenous lipids including the primary eicosanoid arachidonic acid (AA), which display an important role in vasodilation...

  20. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  1. Role of physiological mechanisms and EPSPS gene expression in glyphosate resistance in wild soybeans (Glycine soja).

    Science.gov (United States)

    Gao, Yue; Tao, Bo; Qiu, Lijuan; Jin, Longguo; Wu, Jing

    2014-02-01

    The physiological mechanisms underlying glyphosate resistance in wild soybean germplasm and relevant EPSPS gene expression were evaluated. These germplasms were selected by gradually increasing glyphosate selection pressure started from 2010. As indicated by a whole-plant dose response bioassay, ZYD-254 plants were resistant to glyphosate at concentrations of 1230gaeha(-1), but the susceptible plants (ZYD-16) were unable to survive in the presence of 300gaeha(-1) glyphosate. The ED50 values of resistant germplasm were approximately 8.8 times of the susceptible germplasm. Chlorophyll content was significantly decreased in ZYD-16 plants in comparison with ZYD-254 plants. ZYD-16 plants accumulated 10.1 times more shikimate in leaves at 5days after glyphosate treatment at 1230gaeha(-1) than ZYD-254 did. GST activity differed between ZYD-254 and ZYD-16 in three tissues. It was highest in leaves. There were no significant differences in EPSPS1 or EPSPS3 expression between two germplasms before exposure to glyphosate treatment. After glyphosate treatment, there was a 2- to 4-fold increase in EPSPS1 mRNA levels in ZYD-254, but there was no change in EPSPS3 mRNA levels in ZYD-254 or ZYD-16.

  2. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    Science.gov (United States)

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  3. Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells.

    Science.gov (United States)

    Kim, Han Sol; Li, Hongliang; Kim, Hye Won; Shin, Sung Eun; Choi, Il-Whan; Firth, Amy L; Bang, Hyoweon; Bae, Young Min; Park, Won Sun

    2016-12-01

    We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Sertraline decreased the Kv channel current in a dose-dependent manner, with an IC50 value of 0.18 mu M and a slope value (Hill coefficient) of 0.61. Although the application of 1 mu M sertraline did not affect the steady-state activation curves, sertraline caused a significant, negative shift in the inactivation curves. Pretreatment with another SSRI, paroxetine, had no significant effect on Kv currents and did not alter the inhibitory effects of sertraline on Kv currents. From these results, we concluded that sertraline dose-dependently inhibited Kv currents independently of serotonin reuptake inhibition by shifting inactivation curves to a more negative potential.

  4. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway.

    Science.gov (United States)

    Cui, Yujie; Liu, Xiaoyu; Yang, Tingting; Mei, Yan-Ai; Hu, Changlong

    2014-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50Hz, 0.2mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.

  5. L—type calcium channel blockers inhibit the development but not the expression of sensitization to morphine in mice

    Institute of Scientific and Technical Information of China (English)

    ZhanQ; ZhenJW

    2002-01-01

    The relationship between opioid actions and L-type calcium channel blockers has been well documented.However,there is no report relevant to L-type calcium channel blockers and morphinesensitization,which is suggested to be an analog of behaviors that are the characteristics of drug addiction.Here the effects of three L-type calcium channel blockers,nimodipine,nifedipine and verapamil,on morphine-induced locomotor activity,the development and the expression of sensitization to morphine were studied systematically.The results showed that both nimodipine and verapamil attenuated,while nifedipine had only a tendency to decrease morphine-induced locomotor activity.All the three drugs inhibited the development of sensitization to morphine.However,none of them showed any effects on the expression of morphine sensitization.These results indicate that blocking L-tpye calcium channel attenuates the locomotor stimulating effects of morphine and inhibits the development but not the expression of morphine-sensitization.

  6. Generation of Glyphosate-resistant Transgenic Rice Harboring Single Copy of 2mG2-epsps Gene by Clean DNA Transformation%洁净DNA转化获得2mG2-epsps 基因单拷贝整合的抗草甘膦水稻

    Institute of Scientific and Technical Information of China (English)

    赵艳; 邓春泉; 邓丽蝶

    2014-01-01

    洁净DNA转化是基因枪介导外源基因表达框导入植物的转化技术,能从根本上消除载体框架序列对转基因植株的不利影响.2mG2-epsps 基因是具有重要育种价值的草甘膦除草剂抗性基因.以日本晴为材料,研究了草甘膦对水稻愈伤组织生长及分化的影响,采用洁净DNA转化技术将2mG2-epsps 基因表达框导入水稻.结果表明:1)草甘膦对水稻愈伤组织的生长及分化有明显的抑制作用,当草甘膦浓度为2 mmol/L时,愈伤组织绿苗分化率为18.97%,较对照71.67%显著降低.2)基因枪介导2mG2-epsps 基因表达框转化水稻时,经草甘膦筛选获得抗性愈伤后,在植株再生培养基中去除筛选剂利于抗性愈伤的分化,转化率为17.20%.经 Southern 杂交分析,2mG2-epsps 基因表达框均以单拷贝整合到受体基因组.52.17%(12/23)转基因株系可耐受12~50 mmol/L的草甘膦.%Clean DNA transformation is the technology of introducing exotic gene expression cassette into plant genome via particle bombardment,which can eliminate the disadvantageous impact of vector backbone sequence on transgenic plant fundamentally.Gene 2mG2-epsps is an important glyphosate herbicide resistance gene with important breeding value.The effect of glyphosate on rice callus growth and differentiation was studied using japonica rice Nipponbare as material,and 2mG2-epsps gene cassette was transformed into rice by clean DNA transformation.Results showed:1 ) The growth and differentiation of rice callus can be notably inhibited by glyphosate.The regeneration frequency of green plantlet decreased significantly to 18.97%,comparing with that of the control 71.67%,at 2 mmol/L glyphosate;2) During rice transformation with 2mG2-epsps gene expression cassette via particle bombardment,removal of the screening agent from regeneration medium is beneficial to the differentiation of the glyphosate-resistant calli,which were screened out under glyphosate

  7. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Sørensen, Ulrik S; Nissen, Jakob Dahl

    2010-01-01

    Recently, evidence has emerged that small-conductance Ca(2+)-activated K(+) (SK) channels are predominantly expressed in the atria in a number of species including human. In rat, guinea pig, and rabbit ex vivo and in vivo models of atrial fibrillation (AF), we used 3 different SK channel inhibito...

  8. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  9. Lacosamide Inhibition of Nav1.7 Voltage-Gated Sodium Channels: Slow Binding to Fast-Inactivated States.

    Science.gov (United States)

    Jo, Sooyeon; Bean, Bruce P

    2017-04-01

    Lacosamide is an antiseizure agent that targets voltage-dependent sodium channels. Previous experiments have suggested that lacosamide is unusual in binding selectively to the slow-inactivated state of sodium channels, in contrast to drugs like carbamazepine and phenytoin, which bind tightly to fast-inactivated states. Using heterologously expressed human Nav1.7 sodium channels, we examined the state-dependent effects of lacosamide. Lacosamide induced a reversible shift in the voltage dependence of fast inactivation studied with 100-millisecond prepulses, suggesting binding to fast-inactivated states. Using steady holding potentials, lacosamide block was very weak at -120 mV (3% inhibition by 100 µM lacosamide) but greatly enhanced at -80 mV (43% inhibition by 100 µM lacosamide), where there is partial fast inactivation but little or no slow inactivation. During long depolarizations, lacosamide slowly (over seconds) put channels into states that recovered availability slowly (hundreds of milliseconds) at -120 mV. This resembles enhancement of slow inactivation, but the effect was much more pronounced at -40 mV, where fast inactivation is complete, but slow inactivation is not, than at 0 mV, where slow inactivation is maximal, more consistent with slow binding to fast-inactivated states than selective binding to slow-inactivated states. Furthermore, inhibition by lacosamide was greatly reduced by pretreatment with 300 µM lidocaine or 300 µM carbamazepine, suggesting that lacosamide, lidocaine, and carbamazepine all bind to the same site. The results suggest that lacosamide binds to fast-inactivated states in a manner similar to other antiseizure agents but with slower kinetics of binding and unbinding.

  10. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    Science.gov (United States)

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  11. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  12. Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop.

    Science.gov (United States)

    Michalski, Kevin; Kawate, Toshimitsu

    2016-02-01

    Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.

  13. Voltage-independent inhibition of Cav2.2 channels is delimited to a specific region of the membrane potential in rat SCG neurons

    Institute of Scientific and Technical Information of China (English)

    Oscar Vivas; Isabel Arenas; David E.García

    2012-01-01

    Neurotransmitters and hormones regulate Cav2.2 channels through a voltage-independent pathway which is not well understood.It has been suggested that this voltageindependent inhibition is constant at all membrane voltages.However,changes in the percent of voltageindependent inhibition of Cav2.2 have not been tested within a physiological voltage range.Here,we used a double-pulse protocol to isolate the voltage-independent inhibition of Cav2.2 channels induced by noradrenaline in rat superior cervical ganglion neurons.To assess changes in the percent of the voltage-independent inhibition,the activation voltage of the channels was tested between -40 and +40 mV.We found that the percent of voltage-independent inhibition induced by noradrenaline changed with the activation voltage used.In addition,voltage-independent inhibition induced by oxo-M,a muscarinic agonist,exhibited thesame dependence on activation voltage,which supports that this pattern is not exclusive for adrenergic activation.Our results suggested that voltage-independent inhibition of Cav2.2 channels depends on the activation voltage of the channel in a physiological voltage range.This may have relevant implications in the understanding of the mechanism involved in voltage-independent inhibition.

  14. Phentolamine inhibits the pacemaker activity of mouse interstitial cells of Cajal by activating ATP-sensitive K+ channels.

    Science.gov (United States)

    Ahn, Seung Whan; Kim, Sang Hun; Kim, Jin Ho; Choi, Seok; Yeum, Cheol Ho; Wie, Hee Wook; Sun, Jae Myeong; So, Insuk; Jun, Jae Yeoul

    2010-03-01

    The aim of this study was to clarify if phentolamine has proven effects on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine involving the ATPsensitive K(+) channels and adrenergic receptor. The actions of phentolamine on pacemaker activities were investigated using whole-cell patch-clamp technique and intracellular Ca(2+) analysis at 30 degrees C in cultured mouse intestinal ICC. ICC generated spontaneous pacemaker currents at a holding potential of -70 mV. Treatment with phentolamine reduced the frequency and amplitude of the pacemaker currents and increased the resting outward currents. Moreover, under current clamping (I = 0), phentolamine hyperpolarized the ICC membrane and decreased the amplitude of the pacemaker potentials. We also observed that phentolamine inhibited spontaneous [Ca(2+)](i) oscillations in ICC. The alpha-adrenergic drugs prazosin, yohimbine, methoxamine, and clonidine had no effect on ICC intestinal pacemaker activity and did not block phentolamine-induced effects. Phentolamine-induced effects on the pacemaker currents and the pacemaker potentials were significantly inhibited by ATP sensitive K(+) channel blocker glibenclamide, but not by TEA, apamin, or 4-aminopyridine. In addition, the NO synthase inhibitor, L-NAME and the guanylate cyclase inhibitor, ODQ were incapable of blocking the phentolamine-induced effects. These results demonstrate that phentolamine regulates the pacemaker activity of ICC via ATP-sensitive K(+) channel activation. Phentolamine could act through an adrenergic receptor- and also through NO-independent mechanism that involves intracellular Ca(2+) signaling.

  15. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension.

  16. INVESTIGATION OF SEIZURE ACTIVITY AFTER CYCLIC NUCLEOTIDE PHOSPHODIESTERASE INHIBITION WITH SECOND MESSENGER AND CALCIUM ION CHANNEL INHIBITION IN MICE

    Directory of Open Access Journals (Sweden)

    J Nandhakumar

    2012-03-01

    Full Text Available The role of PDE-4 inhibitor etazolate, was evaluated in the presence of PDE-7 inhibitor, BRL-50481, in animal models of epilepsy. Seizures were induced in the animals by subjecting them to injection of chemical convulsants, Pilocarpine, Kainic acid (KA and maximal electroshock (MES. The combination of etazolate and BRL50481 treated mice showed a significant (P<0.001 quick onset of action, jerky movements and convulsion when compared to gabapentin. The combination of etazolate and sGC inhibitor, methylene blue (MB treated mice showed a significant (P<0.001 delay in onset of action, jerky movements and convulsion when compare to gabapentin as well as against the combination of etazolate with BRL 50481.The present study mainly highlights the individual effects of etazolate and combination with BRL-50481 potentiates (P<0.001 the onset of seizure activity against all models of convulsion. The study mainly comprises the onset of seizures, mortality/recovery, percentage of prevention of seizures (anticonvulsant and total duration of convulsive time. The total convulsive time was prolonged significantly (P<0.05 and P<0.01 in combination of methylene blue with etazolate treated (28.59% and 35.15 % groups, compared to DMSO received group (100% in the MES model. In the same way, the combination of calcium channel modulator (CCM and calcium channel blocker (CCB amiodarone and nifedipine respectively, with etazolate showed a significant (P<0.001 delay in onset of seizures, compared to DMSO and etazolate treated groups in all models of epilepsy. This confirms that both CCM and CCB possess anticonvulsant activity. Finally, the study reveals that identification of new cAMP mediated phosphodiesterases family members offers a potential new therapy for epilepsy management in future.

  17. Involvement of presynaptic voltage-dependent Kv3 channel in endothelin-1-induced inhibition of noradrenaline release from rat gastric sympathetic nerves.

    Science.gov (United States)

    Nakamura, Kumiko; Shimizu, Takahiro; Tanaka, Kenjiro; Taniuchi, Keisuke; Yokotani, Kunihiko

    2012-11-05

    We previously reported that two types of K(+) channels, the BK type Ca(2+)-activated K(+) channel coupled with phospholipase C (PLC) and the voltage-dependent K(+) channel (Kv channel), are, respectively, involved in the prostanoid TP receptor- and muscarinic M(2) receptor-mediated inhibition of noradrenaline (NA) release from rat gastric sympathetic nerves. In the present study, therefore, we examined whether these K(+) channels are involved in endothelin-1-induced inhibition of NA release, using an isolated, vascularly perfused rat stomach. The gastric sympathetic postganglionic nerves around the left gastric artery were electrically stimulated twice at 2.5 Hz for 1 min, and endothelin-1 was added during the second stimulation. Endothelin-1 (1, 2 and 10 nM) dose-dependently inhibited gastric NA release. Endothelin-1 (2 nM)-induced inhibition of NA release was neither attenuated by PLC inhibitors [U-73122 (3 μM) and ET-18-OCH(3) (3 μM)] nor by Ca(2+)-activated K(+) channel blockers [charybdotoxin (0.1 μM) (a blocker of BK type K(+) channel) and apamin (0.3 μM) (a blocker of SK type K(+) channel)]. The endothelin-1-induced inhibitory response was also not attenuated by α-dendrotoxin (0.1 μM) (a selective inhibitor of Kv1 channel), but abolished by 4-aminopyridine (20 μM) (a selectively inhibitory dose for Kv3 channel). These results suggest the involvement of a voltage-dependent Kv3 channel in the endothelin-1-induced inhibition of NA release from the gastric sympathetic nerves in rats.

  18. Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels.

    Science.gov (United States)

    Hansen, Daniel Bloch; Ye, Zu-Cheng; Calloe, Kirstine; Braunstein, Thomas Hartig; Hofgaard, Johannes Pauli; Ransom, Bruce R; Nielsen, Morten Schak; MacAulay, Nanna

    2014-09-19

    Astrocytes and neurons express several large pore (hemi)channels that may open in response to various stimuli, allowing fluorescent dyes, ions, and cytoplasmic molecules such as ATP and glutamate to permeate. Several of these large pore (hemi)channels have similar characteristics with regard to activation, permeability, and inhibitor sensitivity. Consequently, their behaviors and roles in astrocytic and neuronal (patho)physiology remain undefined. We took advantage of the Xenopus laevis expression system to determine the individual characteristics of several large pore channels in isolation. Expression of connexins Cx26, Cx30, Cx36, or Cx43, the pannexins Px1 or Px2, or the purinergic receptor P2X7 yielded functional (hemi)channels with isoform-specific characteristics. Connexin hemichannels had distinct sensitivity to alterations of extracellular Ca(2+) and their permeability to dyes and small atomic ions (conductance) were not proportional. Px1 and Px2 exhibited conductance at positive membrane potentials, but only Px1 displayed detectable fluorescent dye uptake. P2X7, in the absence of Px1, was permeable to fluorescent dyes in an agonist-dependent manner. The large pore channels displayed overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized the divalent cation-sensitive permeation pathway in primary cultured astrocytes. We observed no activation of membrane conductance or Cx43-mediated dye uptake in astrocytes nor in Cx43-expressing C6 cells. Our data underscore that although Cx43-mediated transport is observed in overexpressing cell systems, such transport may not be detectable in native cells under comparable experimental conditions.

  19. Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Marei Typlt

    Full Text Available Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection.

  20. Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel

    Science.gov (United States)

    Joo, Nam Soo; Jeong, Jin Hyeok; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    Mucociliary clearance (MCC) is a critical host innate defense mechanism in airways, and it is impaired in cystic fibrosis (CF) and other obstructive lung diseases. Epithelial fluid secretion and absorption modify MCC velocity (MCCV). We tested the hypotheses that inhibiting fluid absorption accelerates MCCV, whereas inhibiting fluid secretion decelerates it. In airways, ENaC is mainly responsible for fluid absorption, while anion channels, including CFTR and Ca2+-activated chloride channels mediate anion/fluid secretion. MCCV was increased by the cAMP-elevating agonists, forskolin or isoproterenol (10 μM) and by the Ca2+-elevating agonist, carbachol (0.3 μM). The CFTR-selective inhibitor, CFTRinh-172, modestly reduced MCCV-increases induced by forskolin or isoproterenol but not increases induced by carbachol. The ENaC inhibitor benzamil increased basal MCCV as well as MCCV increases produced by forskolin or carbachol. MCC velocity was most dramatically accelerated by the synergistic combination of forskolin and carbachol, which produced near-maximal clearance rates regardless of prior treatment with CFTR or ENaC inhibitors. In CF airways, where CFTR-mediated secretion (and possibly synergistic MCC) is lost, ENaC inhibition via exogenous agents may provide therapeutic benefit, as has long been proposed. PMID:27830759

  1. Selective serotonin reuptake inhibitor sertraline inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells

    Indian Academy of Sciences (India)

    HAN SOL KIM; HONGLIANG LI; HYE WON KIM; SUNG EUN SHIN; IL-WHAN CHOI; AMY L FIRTH; HYOWEON BANG; YOUNG MIN BAE; WON SUN PARK

    2016-12-01

    We examined the effects of the selective serotonin reuptake inhibitor (SSRI) sertraline on voltage-dependent K+ (Kv)channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Sertralinedecreased the Kv channel current in a dose-dependent manner, with an IC50 value of 0.18 μM and a slope value (Hillcoefficient) of 0.61. Although the application of 1 μM sertraline did not affect the steady-state activation curves,sertraline caused a significant, negative shift in the inactivation curves. Pretreatment with another SSRI, paroxetine,had no significant effect on Kv currents and did not alter the inhibitory effects of sertraline on Kv currents. From theseresults, we concluded that sertraline dose-dependently inhibited Kv currents independently of serotonin reuptakeinhibition by shifting inactivation curves to a more negative potential.

  2. Tolperisone-type drugs inhibit spinal reflexes via blockade of voltage-gated sodium and calcium channels.

    Science.gov (United States)

    Kocsis, Pál; Farkas, Sándor; Fodor, László; Bielik, Norbert; Thán, Márta; Kolok, Sándor; Gere, Anikó; Csejtei, Mónika; Tarnawa, István

    2005-12-01

    The spinal reflex depressant mechanism of tolperisone and some of its structural analogs with central muscle relaxant action was investigated. Tolperisone (50-400 microM), eperisone, lanperisone, inaperisone, and silperisone (25-200 microM) dose dependently depressed the ventral root potential of isolated hemisected spinal cord of 6-day-old rats. The local anesthetic lidocaine (100-800 microM) produced qualitatively similar depression of spinal functions in the hemicord preparation, whereas its blocking effect on afferent nerve conduction was clearly stronger. In vivo, tolperisone and silperisone as well as lidocaine (10 mg/kg intravenously) depressed ventral root reflexes and excitability of motoneurons. However, in contrast with lidocaine, the muscle relaxant drugs seemed to have a more pronounced action on the synaptic responses than on the excitability of motoneurons. Whole-cell measurements in dorsal root ganglion cells revealed that tolperisone and silperisone depressed voltage-gated sodium channel conductance at concentrations that inhibited spinal reflexes. Results obtained with tolperisone and its analogs in the [3H]batrachotoxinin A 20-alpha-benzoate binding in cortical neurons and in a fluorimetric membrane potential assay in cerebellar neurons further supported the view that blockade of sodium channels may be a major component of the action of tolperisone-type centrally acting muscle relaxant drugs. Furthermore, tolperisone, eperisone, and especially silperisone had a marked effect on voltage-gated calcium channels, whereas calcium currents were hardly influenced by lidocaine. These data suggest that tolperisone-type muscle relaxants exert their spinal reflex inhibitory action predominantly via a presynaptic inhibition of the transmitter release from the primary afferent endings via a combined action on voltage-gated sodium and calcium channels.

  3. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.

    Science.gov (United States)

    Tosha, Takehiko; Behera, Rabindra K; Theil, Elizabeth C

    2012-11-05

    Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.

  4. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren

    2016-01-01

    Background Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund’s Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. Results We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund’s Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Conclusions Our work identified Hsc70 and its ATPase activity as a central

  5. EPSP合酶的研究进展%The Research Progress of EPSP Synthase

    Institute of Scientific and Technical Information of China (English)

    徐杰; 蒋世云; 傅凤鸣; 耿鹏飞; 黄凯

    2014-01-01

    5-烯醇式丙酮酰莽草酸-3-磷酸合酶(5-Enolpyruvylshikimate-3-phosphate synthase,EPSP合酶)是莽草酸途径中的第六位酶,参与合成芳香族氨基酸以及部分次生代谢的产物,同时EPSP合酶不仅是除草剂草甘膦、抗菌素、抗寄生虫药物的作用靶酶,而且也是促进生物体内莽草酸积累的重要调控位点。近年来,随着分子生物学技术的快速发展和对EPSP合酶的深入研究, EPSP合酶基因在耐草甘膦转基因作物、医药卫生等方面被广泛应用。对EPSP合酶的研究进展进行综述及展望。%5-Enolpyruvylshikimate-3-phosphate synthase(EPSP synthase for short), is the sixth enzyme of shikimic acid pathway and participates in the synthesis of aromatic amino acids and some of secondary metabolites. Meanwhile, EPSP synthase are not only targets of the herbicide(glyphosate), antibiotics, anti-parasitic drugs, but also is important regulatory site of promoting the accumulation of shikimic acid in the organism. In recent years, with the rapid development of molecular biology technology and the in-depth study of EPSP synthase, EPSP synthase genes have been widely used in resistance to glyphosate genetically modified crops, medicine and health, etc. The research progress of EPSP synthase were reviewed and prospects in this paper.

  6. Channel catfish reovirus (CRV) inhibits replication of channel catfish herpesvirus (CCV) by two distinct mechanisms: viral interference and induction of an anti-viral factor.

    Science.gov (United States)

    Chinchar, V G; Logue, O; Antao, A; Chinchar, G D

    1998-06-19

    Catfish reovirus (CRV), a double stranded RNA virus, inhibited channel catfish herpes-virus (CCV) replication by 2 different mechanisms: (1) directly as a consequence of its own replication, and (2) indirectly due to the induction of an anti-viral factor. In the former, prior infection with CRV significantly reduced subsequent CCV protein synthesis and virus yield. CRV mediated-interference was greatest when CRV infection preceded CCV infection by 16 h, and was least when cell cultures were simultaneously infected with both viruses. in the latter case, the infection of channel catfish ovary (CCO) cultures with UV-inactivated CRV resulted in the synthesis (or release) of an anti-viral factor. Cells producing the factor were protected from CCV infection, as were cells which had been treated with spent culture medium containing anti-viral activity. Interestingly an anti-viral activity was constitutively present in long-term cultures of catfish T-cells and macrophages. Whether this factor and the one induced by UV-inactivated CRV are identical is not known, but analogy to mammalian systems suggests that the former may be similar to type II interferon, whereas the latter may be the piscine equivalent of type I interferon. These results suggest that UV-inactivated CRV may prove useful in the induction and characterization of interferon-like anti-viral proteins in the channel catfish and that long-term cultures of catfish T-cells and monocytes may serve as a ready source of additional anti-viral factors.

  7. Inhibition of KV7 channels protects against myocardial ischemia and reperfusion injury

    DEFF Research Database (Denmark)

    Hedegaard, Elise Røge; Johnsen, Jacob; Povlsen, Jonas Agerlund;

    2015-01-01

    Aims: KV7 channel are activated by ischemia and mediate hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion (IR) injury and the interaction with cardioprotection by ischemic preconditioning (IPC). Methods and Results: We investigated......-flow, global ischemia and reperfusion with and without IPC. Infarct size (IS) was quantified by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Hemodynamics were measured using a catheter inserted in the left ventricle. Functional studies on isolated coronary arteries were performed in a wire myograph. KV7.......1, KV7.4 and KV7.5 were expressed in rat coronary arteries and all KV7 subtypes (KV7.1-5) in the left and right ventricles of the heart. KV7 channel blockade by XE991 and linopirdine reduced infarct size additive to infarct reduction by IPC. Flupirtine abolished infarct size reduction by IPC...

  8. Filter gate closure inhibits ion but not water transport through potassium channels.

    Science.gov (United States)

    Hoomann, Torben; Jahnke, Nadin; Horner, Andreas; Keller, Sandro; Pohl, Peter

    2013-06-25

    The selectivity filter of K(+) channels is conserved throughout all kingdoms of life. Carbonyl groups of highly conserved amino acids point toward the lumen to act as surrogates for the water molecules of K(+) hydration. Ion conductivity is abrogated if some of these carbonyl groups flip out of the lumen, which happens (i) in the process of C-type inactivation or (ii) during filter collapse in the absence of K(+). Here, we show that K(+) channels remain permeable to water, even after entering such an electrically silent conformation. We reconstituted fluorescently labeled and constitutively open mutants of the bacterial K(+) channel KcsA into lipid vesicles that were either C-type inactivating or noninactivating. Fluorescence correlation spectroscopy allowed us to count both the number of proteoliposomes and the number of protein-containing micelles after solubilization, providing the number of reconstituted channels per proteoliposome. Quantification of the per-channel increment in proteoliposome water permeability with the aid of stopped-flow experiments yielded a unitary water permeability pf of (6.9 ± 0.6) × 10(-13) cm(3)⋅s(-1) for both mutants. "Collapse" of the selectivity filter upon K(+) removal did not alter pf and was fully reversible, as demonstrated by current measurements through planar bilayers in a K(+)-containing medium to which K(+)-free proteoliposomes were fused. Water flow through KcsA is halved by 200 mM K(+) in the aqueous solution, which indicates an effective K(+) dissociation constant in that range for a singly occupied channel. This questions the widely accepted hypothesis that multiple K(+) ions in the selectivity filter act to mutually destabilize binding.

  9. The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

    Science.gov (United States)

    Laver, Derek R; Hamada, Tomoyo; Fessenden, James D; Ikemoto, Noriaki

    2007-12-01

    In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

  10. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release

    OpenAIRE

    2012-01-01

    Lysosomal lipid accumulation, defects in membrane trafficking, and altered Ca2+ homeostasis are common features in many lysosomal storage diseases. Mucolipin TRP channel 1 (TRPML1) is the principle Ca2+ channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca2+ release, measured using a genetically-encoded Ca2+ indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells....

  11. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    Science.gov (United States)

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers.

  12. Competitive inhibition of the nondepolarizing muscle relaxant rocuronium on nicotinic acetylcholine receptor channels in the rat superior cervical ganglia.

    Science.gov (United States)

    Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng

    2014-05-01

    A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.

  13. Inhibition of voltage-gated calcium channels by sequestration of beta subunits.

    Science.gov (United States)

    Cuchillo-Ibañez, Inmaculada; Aldea, Marcos; Brocard, Jacques; Albillos, Almudena; Weiss, Norbert; Garcia, Antonio G; De Waard, Michel

    2003-11-28

    The auxiliary Ca(v)beta subunit is essential for functional expression of high-voltage activated Ca(2+) channels. Here, we describe a lure sequence designed to sequester the Ca(v)beta subunits in transfected bovine chromaffin cells. This sequence is composed of the extracellular and transmembrane domains of the alpha chain of the human CD8, the I-II loop of Ca(v)2.1 subunit, and EGFP. We showed that expressing the CD8-I-II-EGFP sequence in chromaffin cells led to a >50% decrease in overall Ca(2+) current density. Although this decrease involved all the Ca(2+) channel types (L, N, P/Q, R), the proportion of each type supporting the remaining current was altered. A similar effect was observed after transfection when measuring the functional role of Ca(2+) channels in catecholamine release by chromaffin cells: global decrease of release and change of balance between the different channel types supporting it. Possible explanations for this apparent discrepancy are further discussed.

  14. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2010-01-01

    for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain...

  15. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    Science.gov (United States)

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  16. The immunophilin FKBP52 inhibits the activity of the epithelial Ca2+ channel TRPV5

    NARCIS (Netherlands)

    Gkika, D.; Topala, C.N.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2006-01-01

    In the kidney, the epithelial Ca(2+) channel TRPV5 constitutes the apical entry pathway in the process of active Ca(2+) reabsorption. The regulation of Ca(2+) influx through TRPV5 is of crucial importance, because it determines the final amount of Ca(2+) excreted in the urine. The present study iden

  17. The Inhibition by Oxaliplatin, a Platinum-Based Anti-Neoplastic Agent, of the Activity of Intermediate-Conductance Ca2+-Activated K+ Channels in Human Glioma Cells

    Directory of Open Access Journals (Sweden)

    Mei-Han Huang

    2015-10-01

    Full Text Available Oxaliplatin (OXAL is a third-generation organoplatinum which is effective against advanced cancer cells including glioma cells. How this agent and other related compounds interacts with ion channels in glioma cells is poorly understood. OXAL (100 µM suppressed the amplitude of whole-cell K+ currents (IK; and, either DCEBIO or ionomycin significantly reversed OXAL-mediated inhibition of IK in human 13-06-MG glioma cells. In OXAL-treated cells, TRAM-34 did not suppress IK amplitude in these cells. The intermediate-conductance Ca2+-activated K+ (IKCa channels subject to activation by DCEBIO and to inhibition by TRAM-34 or clotrimazole were functionally expressed in these cells. Unlike cisplatin, OXAL decreased the probability of IKCa-channel openings in a concentration-dependent manner with an IC50 value of 67 µM. No significant change in single-channel conductance of IKCa channels in the presence of OXAL was demonstrated. Neither large-conductance Ca2+-activated K+ channels nor inwardly rectifying K+ currents in these cells were affected in the presence of OXAL. OXAL also suppressed the proliferation and migration of 13-06-MG cells in a concentration- and time-dependent manner. OXAL reduced IKCa-channel activity in LoVo colorectal cancer cells. Taken together, the inhibition by OXAL of IKCa channels would conceivably be an important mechanism through which it acts on the functional activities of glioma cells occurring in vivo.

  18. Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons.

    Science.gov (United States)

    Zucca, Stefano; Valenzuela, C Fernando

    2010-05-12

    Fetal alcohol spectrum disorder (FASD) is associated with learning and memory alterations that could be, in part, a consequence of hippocampal damage. The CA3 hippocampal subfield is one of the regions affected by ethanol (EtOH), including exposure during the third trimester-equivalent (i.e., neonatal period in rats). However, the mechanism of action of EtOH is poorly understood. In CA3 pyramidal neurons from neonatal rats, dendritic BDNF release causes long-term potentiation of the frequency of GABAA receptor-mediated spontaneous postsynaptic currents (LTP-GABAA) and this mechanism is thought to play a role in GABAergic synapse maturation. Here, we show that short- and long-term exposure of neonatal male rats to low EtOH concentrations abolishes LTP-GABAA by inhibiting L-type voltage-gated Ca2+ channels. These findings support the recommendation that even light drinking should be avoided during pregnancy.

  19. Inhibition of ANO1/TMEM16A Chloride Channel by Idebenone and Its Cytotoxicity to Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Yohan Seo

    Full Text Available The expression levels of anoctamin 1 (ANO1, TMEM16A, a calcium-activated chloride channel (CaCC, are significantly increased in several tumors, and inhibition of ANO1 is known to reduce cell proliferation and migration. Here, we performed cell-based screening of a collection of natural products and drug-like compounds to identify inhibitors of ANO1. As a result of the screening, idebenone, miconazole and plumbagin were identified as novel ANO1 inhibitors. Electrophysiological studies showed that idebenone, a synthetic analog of coenzyme Q10, completely blocked ANO1 activity in FRT cells expressing ANO1 without any effect on intracellular calcium signaling and CFTR, a cAMP-regulated chloride channel. The CaCC activities in PC-3 and CFPAC-1 cells expressing abundant endogenous ANO1 were strongly blocked by idebenone. Idebenone inhibited cell proliferation and induced apoptosis in PC-3 and CFPAC-1 cells, but not in A549 cells, which do not express ANO1. These data suggest that idebenone, a novel ANO1 inhibitor, has potential for use in cancer therapy.

  20. ZD7288, a selective hyperpolarization-activated cyclic nucleotide-gated channel blocker, inhibits hippocampal synaptic plasticity

    Institute of Scientific and Technical Information of China (English)

    Xiao-xue Zhang; Xiao-chun Min; Xu-lin Xu; Min Zheng; Lian-jun Guo

    2016-01-01

    The selective hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker 4-(N-ethyl-N-phenylamino)-1,2-dimeth-yl-6-(methylamino) pyrimidinium chloride (ZD7288) blocks the induction of long-term potentiation in the perforant path–CA3 region in rat hippocampusin vivo. To explore the mechanisms underlying the action of ZD7288, we recorded excitatory postsynaptic potentials in perforant path–CA3 synapses in male Sprague-Dawley rats. We measured glutamate content in the hippocampus and in cultured hip-pocampal neurons using high performance liquid chromatography, and determined intracellular Ca2+ concentration ([Ca2+]i) using Fura-2. ZD7288 inhibited the induction and maintenance of long-term potentiation, and these effects were mirrored by the nonspeciifc HCN channel blocker cesium. ZD7288 also decreased glutamate release in hippocampal tissue and in cultured hippocampal neurons. Further-more, ZD7288 attenuated glutamate-induced rises in [Ca2+]i in a concentration-dependent manner and reversed 8-Br-cAMP-mediated facilitation of these glutamate-induced [Ca2+]i rises. Our results suggest that ZD7288 inhibits hippocampal synaptic plasticity both gluta-mate release and resultant [Ca2+]i increases in rat hippocampal neurons.

  1. Phenolic acids isolated from the fungus Schizophyllum commune exert analgesic activity by inhibiting voltage-gated sodium channels.

    Science.gov (United States)

    Yao, Hui-Min; Wang, Gan; Liu, Ya-Ping; Rong, Ming-Qiang; Shen, Chuan-Bin; Yan, Xiu-Wen; Luo, Xiao-Dong; Lai, Ren

    2016-09-01

    The present study was designed to search for compounds with analgesic activity from the Schizophyllum commune (SC), which is widely consumed as edible and medicinal mushroom world. Thin layer chromatography (TLC), tosilica gel column chromatography, sephadex LH 20, and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify compounds from SC. Structural analysis of the isolated compounds was based on nuclear magnetic resonance (NMR). The effects of these compounds on voltage-gated sodium (NaV) channels were evaluated using patch clamp. The analgesic activity of these compounds was tested in two types of mouse pain models induced by noxious chemicals. Five phenolic acids identified from SC extracts in the present study included vanillic acid, m-hydroxybenzoic acid, o-hydroxybenzeneacetic acid, 3-hydroxy-5-methybenzoic acid, and p-hydroxybenzoic acid. They inhibited the activity of both tetrodotoxin-resistant (TTX-r) and tetrodotoxin-sensitive (TTX-s) NaV channels. All the compounds showed low selectivity on NaV channel subtypes. After intraperitoneal injection, three compounds of these compounds exerted analgesic activity in mice. In conclusion, phenolic acids identified in SC demonstrated analgesic activity, facilitating the mechanistic studies of SC in the treatment of neurasthenia.

  2. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss

    OpenAIRE

    Ramadoss, Jayanth; Lunde, Emilie R.; Ouyang, Nengtai; Chen, Wei-Jung A.; Cudd, Timothy A.

    2008-01-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury...

  3. Structural Basis for the Function and Inhibition of an Influenze Virus Proton Channel

    Energy Technology Data Exchange (ETDEWEB)

    Stouffer,A.; Acharya, R.; Salom, D.; Levine, A.; Di Costanzo, L.; Soto, C.; Tershko, V.; Nanda, V.; Stayrook, S.; DeGrado, W.

    2008-01-01

    The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating2. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses3, 4. Binding of amantadine physically occludes the pore, and might also perturb the pKa of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.

  4. Deltamethrin Inhibits the Human T-type Voltage-Sensitive Calcium Channel (Cav3.2

    Directory of Open Access Journals (Sweden)

    Steven B. Symington

    2009-01-01

    Full Text Available The goal of this study was to determine the effect of deltamethrin, a pyrethroid insecticide, on CaV3.2, a human T-type voltage-sensitive calcium channel expressed in Xenopus laevis (X.laevis oocytes. Cav3.2 cDNA was transcribed into cRNA; the cRNA was then injected into X.laevis oocytes and electrophysiologically characterized using the two-electrode voltage clamp technique with Ba2+ as a charge carrier. Deltamethrin (10-7 M reduced peak current in a nonreversible manner compared to the untreated control, but had no effect on the voltagedependent activation and inactivation kinetics. These findings confirm that human CaV3.2 is a target for deltamethrin and quite possibly other pyrethroid insecticides. These studies provide insight into the molecular mechanisms of the effect that pyrethroids have on voltage-sensitive calcium channels in general. This information will allow a more complete understanding of the molecular and cellular nature of pyrethroid-induced toxicity and expand our knowledge of the structure-activity relationships of pyrethroids with regard to their action on voltage-sensitive calcium channels.

  5. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels

    Directory of Open Access Journals (Sweden)

    Goldstein Peter A

    2005-01-01

    Full Text Available Abstract Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.

  6. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  7. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Bingfu eGuo; Yong eGuo; Huilong eHong; Longguo eJin; Lijuan eZhang; Ru-Zhen eChang; Wei eLu; Min eLin; Li-Juan eQiu

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  8. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  9. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK.

    Science.gov (United States)

    Beltrán, Leopoldo R; Dawid, Corinna; Beltrán, Madeline; Gisselmann, Guenter; Degenhardt, Katharina; Mathie, Klaus; Hofmann, Thomas; Hatt, Hanns

    2013-01-01

    For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P) potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1), TASK-3 (K2P 9.1), and TRESK (K2P 18.1) channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreased the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine.

  10. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK

    Directory of Open Access Journals (Sweden)

    Leopoldo Raul Beltran

    2013-11-01

    Full Text Available For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1, TASK-3 (K2P 9.1, and TRESK (K2P 18.1 channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreases the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine.

  11. Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons.

    Science.gov (United States)

    Cao, Qingqing; Wang, Wei; Gu, Juan; Jiang, Guohui; Bian, Xiling; Wang, Kewei; Xu, Zucai; Li, Jie; Chen, Guojun; Wang, Xuefeng

    2016-01-01

    Recent studies have indicated that acid-sensing ion channels may play a significant role in the termination of epilepsy. In particular, acid-sensing ion channel 3 (ASIC3) is expressed in the central nervous system and is most sensitive to extracellular pH. However, whether ASIC3 plays a role in epilepsy is unknown. In this study, qRT-PCR, Western blot, immunohistochemistry, double immunofluorescence labeling, and slice recordings were used. We first detected elevated ASIC3 expression patterns in the brains of temporal lobe epilepsy patients and epileptic rats. ASIC3 was expressed in neurons and glia in both humans and in an experimental model of epilepsy, and ASIC3 was colocalized with inhibitory GABAergic interneurons. By blocking ASIC3 with its antagonist APETx2, we observed that injected APETx2 shortened the latency to seizure and increased the incidence of generalized tonic clonic seizure compared to the control group in models of both pilocarpine- and pentylenetetrazole (PTZ)-induced seizures. Additionally, blocking ASIC3 significantly decreased the frequency of action potential (AP) firing in interneurons. Moreover, APETx2 significantly reduced the amplitudes and frequencies of miniature inhibitory postsynaptic currents (mIPSCs) while showed no differences with the APETx2 + bicuculline group and the bicuculline group. These findings suggest that elevated levels of ASIC3 may serve as an anti-epileptic mechanism via postsynaptic mechanisms in interneurons. It could represent a novel therapeutic strategy for epilepsy treatment.

  12. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition.

    Science.gov (United States)

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-02-05

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.

  13. The Effect of Increased Electrical Field Strength of 950 MHz Waves on the EPSP Slope

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Firoozabadi

    2009-03-01

    Full Text Available Introduction: Over the last decade, exposure to electromagnetic waves due to base station antennas has increased. This study was planned to evaluate the effects of different electrical field strengths with 950 MHz waves of the GSM mobile phone system on the excitatory postsynaptic potentiation (EPSP slope of the dentate gyrus long-term potentiation (LTP. Material and Methods: Twenty four naive male Wistar rats (3 months old, weighing 220 + 15 g were randomly divided into three groups (sham–exposed, GSM with 50.4 V/m and GSM with 60 V/m electrical field strength. The exposure program was carried out for 10 sessions during 3 days. The animals were exposed to the electromagnetic field for 45 minutes in a plastic chamber. Immediately after the exposure, anesthesia was induced for LTP induction and the field potentials were recorded for 60 minutes, then the EPSP slope and maintenance were analyzed. Results: Our data showed that whole-body exposure to 950 MHz waves of the GSM mobile phone system with 60 V/m electrical field strength could change the EPSP slope in rat brain hippocampus. Discussion and Conclusion: Increasing the electrical field strength could change synaptic plasticity and LTP characteristics in rat brain hippocampus.

  14. Rem, a member of the RGK GTPases, inhibits recombinant CaV1.2 channels using multiple mechanisms that require distinct conformations of the GTPase.

    Science.gov (United States)

    Yang, Tingting; Xu, Xianghua; Kernan, Timothy; Wu, Vincent; Colecraft, Henry M

    2010-05-15

    Rad/Rem/Gem/Kir (RGK) GTPases potently inhibit Ca(V)1 and Ca(V)2 (Ca(V)1-2) channels, a paradigm of ion channel regulation by monomeric G-proteins with significant physiological ramifications and potential biotechnology applications. The mechanism(s) underlying how RGK proteins inhibit I(Ca) is unknown, and it is unclear how key structural and regulatory properties of these GTPases (such as the role of GTP binding to the nucleotide binding domain (NBD), and the C-terminus which contains a membrane-targeting motif) feature in this effect. Here, we show that Rem inhibits Ca(V)1.2 channels by three independent mechanisms that rely on distinct configurations of the GTPase: (1) a reduction in surface density of channels is accomplished by enhancing dynamin-dependent endocytosis, (2) a diminution of channel open probability (P(o)) that occurs without impacting on voltage sensor movement, and (3) an immobilization of Ca(V) channel voltage sensors. The presence of both the Rem NBD and C-terminus (whether membrane-targeted or not) in one molecule is sufficient to reconstitute all three mechanisms. However, membrane localization of the NBD by a generic membrane-targeting module reconstitutes only the decreased P(o) function (mechanism 2). A point mutation that prevents GTP binding to the NBD selectively eliminates the capacity to immobilize voltage sensors (mechanism 3). The results reveal an uncommon multiplicity in the mechanisms Rem uses to inhibit I(Ca), predict new physiological dimensions of the RGK GTPase-Ca(V) channel crosstalk, and suggest original approaches for developing novel Ca(V) channel blockers.

  15. Chick RGS2L demonstrates concentration-dependent selectivity for pertussis toxin-sensitive and -insensitive pathways that inhibit L-type Ca2+ channels.

    Science.gov (United States)

    Tosetti, Patrizia; Parente, Valeria; Taglietti, Vanni; Dunlap, Kathleen; Toselli, Mauro

    2003-05-15

    In neuronal cells, the influx of Ca2+ ions through voltage-dependent L-type calcium (L) channels couples excitation to multiple cellular functions. In addition to voltage, several neurotransmitters, hormones and cytokines regulate L channel gating via binding to G-protein-coupled receptors. Intracellular molecules that modify G-protein activity - such as regulator of G-protein-signalling (RGS) proteins - are therefore potential candidates for regulating Ca2+ influx through L channels. Here we show that a novel RGS2 splice variant from chick dorsal root ganglion (DRG) neurons, RGS2L, reduces bradykinin (BK)-mediated inhibition of neuronal L channels and accelerates recovery from inhibition. Chick RGS2 reduces the inhibition mediated by both the pertussis toxin (PTX)-sensitive (Gi/o-coupled) and the PTX-insensitive (presumably Gq/11-coupled) pathways. However, we demonstrate for the first time in a living cell that the extent of coupling to each pathway varies with RGS2L concentration. A low concentration of recombinant chick RGS2L (10 nM) preferentially reduces the inhibition mediated by the PTX-insensitive pathway, whereas a 100-fold higher concentration attenuates both PTX-sensitive- and PTX-insensitive-mediated components equally. Our data suggest that factors promoting RGS2L gene induction may regulate Ca2+ influx through L channels by recruiting low-affinity interactions with Gi/o that are absent at basal RGS2L levels.

  16. Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis.

    Science.gov (United States)

    Garcia, Maria L; Priest, Birgit T; Alonso-Galicia, Magdalena; Zhou, Xiaoyan; Felix, John P; Brochu, Richard M; Bailey, Timothy; Thomas-Fowlkes, Brande; Liu, Jessica; Swensen, Andrew; Pai, Lee-Yuh; Xiao, Jianying; Hernandez, Melba; Hoagland, Kimberly; Owens, Karen; Tang, Haifeng; de Jesus, Reynalda K; Roy, Sophie; Kaczorowski, Gregory J; Pasternak, Alexander

    2014-01-01

    The renal outer medullary potassium (ROMK) channel, which is located at the apical membrane of epithelial cells lining the thick ascending loop of Henle and cortical collecting duct, plays an important role in kidney physiology by regulating salt reabsorption. Loss-of-function mutations in the human ROMK channel are associated with antenatal type II Bartter's syndrome, an autosomal recessive life-threatening salt-wasting disorder with mild hypokalemia. Similar observations have been reported from studies with ROMK knockout mice and rats. It is noteworthy that heterozygous carriers of Kir1.1 mutations associated with antenatal Bartter's syndrome have reduced blood pressure and a decreased risk of developing hypertension by age 60. Although selective ROMK inhibitors would be expected to represent a new class of diuretics, this hypothesis has not been pharmacologically tested. Compound A [5-(2-(4-(2-(4-(1H-tetrazol-1-yl)phenyl)acetyl)piperazin-1-yl)ethyl)isobenzofuran-1(3H)-one)], a potent ROMK inhibitor with appropriate selectivity and characteristics for in vivo testing, has been identified. Compound A accesses the channel through the cytoplasmic side and binds to residues lining the pore within the transmembrane region below the selectivity filter. In normotensive rats and dogs, short-term oral administration of compound A caused concentration-dependent diuresis and natriuresis that were comparable to hydrochlorothiazide. Unlike hydrochlorothiazide, however, compound A did not cause any significant urinary potassium losses or changes in plasma electrolyte levels. These data indicate that pharmacologic inhibition of ROMK has the potential for affording diuretic/natriuretic efficacy similar to that of clinically used diuretics but without the dose-limiting hypokalemia associated with the use of loop and thiazide-like diuretics.

  17. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors.

    Science.gov (United States)

    Steiner, Alexandre A; Turek, Victoria F; Almeida, Maria C; Burmeister, Jeffrey J; Oliveira, Daniela L; Roberts, Jennifer L; Bannon, Anthony W; Norman, Mark H; Louis, Jean-Claude; Treanor, James J S; Gavva, Narender R; Romanovsky, Andrej A

    2007-07-11

    An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).

  18. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    Directory of Open Access Journals (Sweden)

    Elias Leiva-Salcedo

    2011-01-01

    Full Text Available The purinergic P2X7 receptor (P2X7R plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.

  19. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    Science.gov (United States)

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  20. Selective inhibition of caspases in skeletal muscle reverses the apoptotic synaptic degeneration in slow-channel myasthenic syndrome.

    Science.gov (United States)

    Zhu, Haipeng; Pytel, Peter; Gomez, Christopher M

    2014-01-01

    Slow-channel syndrome (SCS) is a congenital myasthenic disorder caused by point mutations in subunits of skeletal muscle acetylcholine receptor leading to Ca(2+) overload and degeneration of the postsynaptic membrane, nuclei and mitochondria of the neuromuscular junction (NMJ). In both SCS muscle biopsies and transgenic mouse models for SCS (mSCS), the endplate regions are shrunken, and there is evidence of DNA damage in the subsynaptic region. Activated caspase-9, -3 and -7 are intensely co-localized at the NMJ, and the Ca(2+)-activated protease, calpain, and the atypical cyclin-dependent kinase (Cdk5) are overactivated in mSCS. Thus, the true mediator(s) of the disease process is not clear. Here, we demonstrate that selective inhibition of effector caspases, caspase-3 and -7, or initiator caspase, caspase-9, in limb muscle in vivo by localized expression of recombinant inhibitor proteins dramatically decreases subsynaptic DNA damage, increases endplate area and improves ultrastructural abnormalities in SCS transgenic mice. Calpain and Cdk5 are not affected by this treatment. On the other hand, inhibition of Cdk5 by expression of a dominant-negative form of Cdk5 has no effect on the degeneration. Together with previous studies, these results indicate that focal activation of caspase activity at the NMJ is the principal pathological process responsible for the synaptic apoptosis in SCS. Thus, treatments that reduce muscle caspase activity are likely to be of benefit for SCS patients.

  1. Arctigenin, a Potential Anti-Arrhythmic Agent, Inhibits Aconitine-Induced Arrhythmia by Regulating Multi-Ion Channels

    Directory of Open Access Journals (Sweden)

    Zhenying Zhao

    2013-11-01

    Full Text Available Background/Aims: Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. Methods: A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD, sodium current (INa, L-type calcium current (ICa, L and transient outward potassium current (Ito were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Results: Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90 were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited INa and ICa,L and attenuated the aconitine-increased INa and ICa,L by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Conclusions: Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, INa, ICa, L, and Ito may be multiple targets of arctigenin, leading to its antiarrhythmic effect.

  2. Inhibition of voltage-gated calcium channels as common mode of action for (mixtures of) distinct classes of insecticides.

    Science.gov (United States)

    Meijer, Marieke; Dingemans, Milou M L; van den Berg, Martin; Westerink, Remco H S

    2014-09-01

    Humans are exposed to distinct structural classes of insecticides with different neurotoxic modes of action. Because calcium homeostasis is essential for proper neuronal function and development, we investigated the effects of insecticides from different classes (pyrethroid: (α-)cypermethrin; organophosphate: chlorpyrifos; organochlorine: endosulfan; neonicotinoid: imidacloprid) and mixtures thereof on the intracellular calcium concentration ([Ca(2+)]i). Effects of acute (20 min) exposure to (mixtures of) insecticides on basal and depolarization-evoked [Ca(2+)]i were studied in vitro with Fura-2-loaded PC12 cells and high resolution single-cell fluorescence microscopy. The data demonstrate that cypermethrin, α-cypermethrin, endosulfan, and chlorpyrifos concentration-dependently decreased depolarization-evoked [Ca(2+)]i, with 50% (IC50) at 78nM, 239nM, 250nM, and 899nM, respectively. Additionally, acute exposure to chlorpyrifos or endosulfan (10μM) induced a modest increase in basal [Ca(2+)]i, amounting to 68 ± 8nM and 53 ± 8nM, respectively. Imidacloprid did not disturb basal or depolarization-evoked [Ca(2+)]i at 10μM. Following exposure to binary mixtures, effects on depolarization-evoked [Ca(2+)]i were within the expected effect additivity range, whereas the effect of the tertiary mixture was less than this expected additivity effect range. These results demonstrate that different types of insecticides inhibit depolarization-evoked [Ca(2+)]i in PC12 cells by inhibiting voltage-gated calcium channels (VGCCs) in vitro at concentrations comparable with human occupational exposure levels. Moreover, the effective concentrations in this study are below those for earlier described modes of action. Because inhibition of VGCCs appears to be a common and potentially additive mode of action of several classes of insecticides, this target should be considered in neurotoxicity risk assessment studies.

  3. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  4. Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants

    Science.gov (United States)

    Garg, Bharti; Gill, Sarvajeet S.; Biswas, Dipul K.; Sahoo, Ranjan K.; Kunchge, Nandkumar S.; Tuteja, Renu; Tuteja, Narendra

    2017-01-01

    To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

  5. Anesthetic drug midazolam inhibits cardiac human ether-à-go-go-related gene channels: mode of action

    Directory of Open Access Journals (Sweden)

    Vonderlin N

    2015-02-01

    Full Text Available Nadine Vonderlin,1 Fathima Fischer,1 Edgar Zitron,1,2 Claudia Seyler,1 Daniel Scherer,1 Dierk Thomas,1,2 Hugo A Katus,1,2 Eberhard P Scholz1 1Department of Internal Medicine III, University Hospital Heidelberg, 2German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Heidelberg, Germany Abstract: Midazolam is a short-acting benzodiazepine that is in wide clinical use as an anxiolytic, sedative, hypnotic, and anticonvulsant. Midazolam has been shown to inhibit ion channels, including calcium and potassium channels. So far, the effects of midazolam on cardiac human ether-à-go-go-related gene (hERG channels have not been analyzed. The inhibitory effects of midazolam on heterologously expressed hERG channels were analyzed in Xenopus oocytes using the double-electrode voltage clamp technique. We found that midazolam inhibits hERG channels in a concentration-dependent manner, yielding an IC50 of 170 µM in Xenopus oocytes. When analyzed in a HEK 293 cell line using the patch-clamp technique, the IC50 was 13.6 µM. Midazolam resulted in a small negative shift of the activation curve of hERG channels. However, steady-state inactivation was not significantly affected. We further show that inhibition is state-dependent, occurring within the open and inactivated but not in the closed state. There was no frequency dependence of block. Using the hERG pore mutants F656A and Y652A we provide evidence that midazolam uses a classical binding site within the channel pore. Analyzing the subacute effects of midazolam on hERG channel trafficking, we further found that midazolam does not affect channel surface expression. Taken together, we show that the anesthetic midazolam is a low-affinity inhibitor of cardiac hERG channels without additional effects on channel surface expression. These data add to the current understanding of the pharmacological profile of the anesthetic midazolam. Keywords: midazolam, anesthetics, human ether

  6. Inhibition of voltage-gated calcium channels after subchronic and repeated exposure of PC12 cells to different classes of insecticides

    NARCIS (Netherlands)

    Meijer, Marieke; Brandsema, Joske A R; Nieuwenhuis, Desirée; Wijnolts, Fiona M J; Dingemans, Milou M L; Westerink, Remco H S

    2015-01-01

    We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, since human exposure to chemicals is usually chronic and repeated, we investigated if selected insec

  7. Inhibition of SK4 Potassium Channels Suppresses Cell Proliferation, Migration and the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells.

    Science.gov (United States)

    Zhang, Panshi; Yang, Xiaowei; Yin, Qian; Yi, Jilin; Shen, Wenzhuang; Zhao, Lu; Zhu, Zhi; Liu, Jinwen

    2016-01-01

    Treatments for triple-negative breast cancer (TNBC) are limited; intermediate-conductance calcium-activated potassium (SK4) channels are closely involved in tumor progression, but little is known about these channels in TNBC. We aimed to investigate whether SK4 channels affect TNBC. First, by immunohistochemistry (IHC) and western blotting (WB), increased SK4 protein expression in breast tumor tissues was detected relative to that in non-tumor breast tissues, but there was no apparent expression difference between various subtypes of breast cancer (p>0.05). Next, functional SK4 channels were detected in the TNBC cell line MDA-MB-231 using WB, real-time PCR, immunofluorescence and patch-clamp recording. By employing SK4 specific siRNAs and blockers, including TRAM-34 and clotrimazole, in combination with an MTT assay, a colony-formation assay, flow cytometry and a cell motility assay, we found that the suppression of SK4 channels significantly inhibited cell proliferation and migration and promoted apoptosis in MDA-MB-231 cells (pMDA-MB-231 cells to undergo the epithelial-mesenchymal transition (EMT) and to show increased SK4 mRNA expression. In addition, the down-regulation of SK4 expression inhibited the EMT markers Vimentin and Snail1. Collectively, our findings suggest that SK4 channels are expressed in TNBC and are involved in the proliferation, apoptosis, migration and EMT processes of TNBC cells.

  8. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics.

    Science.gov (United States)

    Stoetzer, C; Doll, T; Stueber, T; Herzog, C; Echtermeyer, F; Greulich, F; Rudat, C; Kispert, A; Wegner, F; Leffler, A

    2016-06-01

    The sodium channel α-subunit (Nav) Nav1.5 is regarded as the most prevalent cardiac sodium channel required for generation of action potentials in cardiomyocytes. Accordingly, Nav1.5 seems to be the main target molecule for local anesthetic (LA)-induced cardiotoxicity. However, recent reports demonstrated functional expression of several "neuronal" Nav's in cardiomyocytes being involved in cardiac contractility and rhythmogenesis. In this study, we examined the relevance of neuronal tetrodotoxin (TTX)-sensitive Nav's for inhibition of cardiac sodium channels by the cardiotoxic LAs ropivacaine and bupivacaine. Effects of LAs on recombinant Nav1.2, 1.3, 1.4, and 1.5 expressed in human embryonic kidney cell line 293 (HEK-293) cells, and on sodium currents in murine, cardiomyocytes were investigated by whole-cell patch clamp recordings. Expression analyses were performed by reverse transcription PCR (RT-PCR). Cultured cardiomyocytes from neonatal mice express messenger RNA (mRNA) for Nav1.2, 1.3, 1.5, 1.8, and 1.9 and generate TTX-sensitive sodium currents. Tonic and use-dependent block of sodium currents in cardiomyocytes by ropivacaine and bupivacaine were enhanced by 200 nM TTX. Inhibition of recombinant Nav1.5 channels was similar to that of TTX-resistant currents in cardiomyocytes but stronger as compared to inhibition of total sodium current in cardiomyocytes. Recombinant Nav1.2, 1.3, 1.4, and 1.5 channels displayed significant differences in regard to use-dependent block by ropivacaine. Finally, bupivacaine blocked sodium currents in cardiomyocytes as well as recombinant Nav1.5 currents significantly stronger in comparison to ropivacaine. Our data demonstrate for the first time that cardiac TTX-sensitive sodium channels are relevant for inhibition of cardiac sodium currents by LAs.

  9. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States).

    Science.gov (United States)

    Salas, Reiofeli A; Scott, Robert C; Dayan, Franck E; Burgos, Nilda R

    2015-07-01

    Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance.

  10. Retina derived relaxation is mediated by K(ir) channels and the inhibition of Ca(2+) sensitization in isolated bovine retinal arteries.

    Science.gov (United States)

    Takır, Selçuk; Uydeş-Doğan, B Sönmez; Özdemir, Osman

    2015-03-01

    Retinal relaxing factor (RRF) has recently been identified as a novel paracrine regulator of retinal circulation acting differently from well known mediators of the endothelium and the retina. Herein, we aimed to characterize the relaxing mechanism of the retina, i.e. RRF, by evaluating the role of Ca(+2)-dependent and -independent signaling mechanisms as well as inward rectifier K(+) (Kir) channels. Retinal relaxation was determined by placing a piece of retinal tissue just on top of the precontracted bovine retinal arteries mounted in a wire myograph. The retina produced a complete relaxation response, which display a biphasic character, in depolarized arteries contracted by L-type Ca(2+) channel agonist, Bay k 8644. Blockade of L-type Ca(2+) channel by nifedipine, inhibition of sarcoplasmic reticulum Ca(2+)-ATPase by cyclopiazonic acid or removal of extracellular Ca(2+) did not influence the prominent relaxation to the retina. Originally, retinal relaxation was found to be unaffected from the inhibition of myosin light chain kinase by ML7, whereas, completely abolished in the presence of myosin light chain phosphatase (MLCP) inhibitor, Calyculin A. Moreover, the inhibition of Rho kinase by its putative inhibitor, Y-27632 displayed comparable relaxant effects to RRF in retinal arteries precontracted either by prostaglandin F2α or K(+), and augmented the moderate response to the retina in K(+) precontracted arteries. In addition, retinal relaxation was significantly inhibited and lost its biphasic character in the presence of Kir channel blocker, Ba(2+). Our results suggested that inhibition of Ca(2+) sensitization through the activation of MLCP, possibly via interfering with Rho kinase, and the opening of Kir channels are likely to be involved in the inhibitory influence of RRF on the retinal arteries.

  11. Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.

    Science.gov (United States)

    Babilonia, Elisa; Li, Dimin; Wang, Zhijian; Sun, Peng; Lin, Dao-Hong; Jin, Yan; Wang, Wen-Hui

    2006-10-01

    It was demonstrated previously that low dietary potassium (K) intake stimulates Src family protein tyrosine kinase (PTK) expression via a superoxide-dependent signaling. This study explored the role of mitogen-activated protein kinase (MAPK) in mediating the effect of superoxide anions on PTK expression and ROMK (Kir 1.1) channel activity. Western blot analysis demonstrated that low K intake significantly increased the phosphorylation of P38 MAPK (P38) and extracellular signal-regulated kinase (ERK) but had no effect on phosphorylation of c-JUN N-terminus kinase in renal cortex and outer medulla. The stimulatory effect of low K intake on P38 and ERK was abolished by treatment of rats with tempol. The possibility that increases in superoxide and related products that are induced by low K intake were responsible for stimulating phosphorylation of P38 and ERK also was supported by the finding that application of H(2)O(2) increased the phosphorylation of ERK and P38 in the cultured mouse collecting duct cells. Simultaneous blocking of ERK and P38 completely abolished the effect of H(2)O(2) on c-Src expression in mouse collecting duct cells. For determination of the role of P38 and ERK in the regulation of ROMK-like small-conductance K (SK) channels, the patch-clamp technique was used to study the effect of inhibiting P38 and ERK on SK channels in the cortical collecting duct from rats that were on a control K diet (1.1%) and on a K-deficient diet for 1 d. Inhibition of ERK, c-JUN N-terminus kinase, or P38 alone had no effect on SK channels. In contrast, simultaneous inhibition of P38 and ERK significantly increased channel activity. The effect of inhibiting MAPK on SK channels was not affected in the presence of herbimycin A, a PTK inhibitor, and was larger in rats that were on a K-deficient diet than in rats that were on a normal-K diet. However, the stimulatory effect of inhibiting ERK and P38 on SK was absent in the cortical collecting duct that was treated with

  12. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitine mediated by interaction with voltage-dependent sodium channels.

    Science.gov (United States)

    Ameri, A

    1997-02-01

    The effects of the Aconitum alkaloid 3-acetylaconitine on neuronal activity were investigated in the slice preparation and on cultivated neurons of rat hippocampus by extracellular and patch-clamp recordings, respectively. 3-Acetylaconitine (0.01-1 microM) diminished the orthodromic and antidromic population spike in a concentration-dependent manner. The inhibitory action of the drug was preceded by a transiently enhanced excitability. The latency of onset of the inhibition was accelerated by increased stimulation frequency, whereas recovery during washout of the alkaloid was accelerated by decreased stimulation frequency. Moreover, the inhibitory effect of 3-acetylaconitine was evaluated in two different models of epileptiform activity induced either by blockade of GABA receptors by bicuculline (10 microM) or by a nominal Mg(2+)-free bathing medium. In accordance with the activity-dependent mode of action, this compound abolished the synaptically evoked population spikes in the presence of bicuculline or nominal Mg(2+)-free bathing medium, respectively. Whole-cell patch-clamp recordings revealed an interaction of 3-acetylaconitine with the voltage-dependent sodium channel. At a concentration of 1 microM, 3-acetylaconitine did not affect the peak amplitude of the sodium current, but shifted the current-voltage relationship in the hyperpolarized direction such that sodium currents were already activated at the resting potential.

  13. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  14. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  15. Sulfonation of 17{beta}-estradiol and inhibition of sulfotransferase activity by polychlorobiphenylols and celecoxib in channel catfish, Ictalurus punctatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liquan [Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 (United States); James, Margaret O. [Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 (United States)]. E-mail: mojames@ufl.edu

    2007-03-10

    The sulfonation of 17{beta}-estradiol (E2) by human liver and recombinant sulfotransferases is influenced by environmental contaminants such as hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs), which are potent inhibitors, and the therapeutic drug, celecoxib, which affects positional sulfonation of E2. In some locations, the aquatic environment is contaminated by PCBs, OH-PCBs and widely used therapeutic drugs. The objectives of this study were to investigate the sulfonation kinetics of E2 in liver cytosol from channel catfish (Ictalurus punctatus); to examine the effect of OH-PCBs on E2 sulfonation; and to determine if celecoxib altered the position of E2 sulfonation, as it does with human liver cytosol. E2 was converted to both 3- and 17-sulfates by catfish liver cytosol. At E2 concentrations below 1{mu}M, formation of E2-3-sulfate (E2-3-S) predominated, but substrate inhibition was observed at higher concentrations. Rates of E2-3-S formation at different E2 concentrations were fit to a substrate inhibition model, with K{sup '}{sub m} and V{sup '}{sub max} values of 0.40+/-0.10{mu}M and 91.0+/-4.7pmol/min/mg protein, respectively and K{sub i} of 1.08+/-0.09{mu}M. The formation of E2-17-S fit Michaelis-Menten kinetics over the concentration range 25nM to 2.5{mu}M, with K{sub m} and V{sub max} values of 1.07+/-0.23{mu}M and 25.7+/-4.43pmol/min/mg protein, respectively. The efficiency (V{sub max}/K{sub m}) of formation of E2-3-S was 9.8-fold higher than that of E2-17-S. Several OH-PCBs inhibited E2 3-sulfonation, measured at an E2 concentration of 1nM. Of those tested, the most potent inhibitor was 4'-OH-CB79, with two chlorine atoms flanking the OH group (IC{sub 50}: 94nM). The inhibition of estrogen sulfonation by OH-PCBs may disrupt the endocrine system and thus contribute to the known toxic effects of these compounds. Celecoxib did not stimulate E2-17-S formation, as is the case with human liver cytosol, but did inhibit the

  16. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors.

    Science.gov (United States)

    Ferguson, Alexandra L; Stone, Trevor W

    2010-04-01

    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  17. EPSP synthase: binding studies using isothermal titration microcalorimetry and equilibrium dialysis and their implications for ligand recognition and kinetic mechanism.

    Science.gov (United States)

    Ream, J E; Yuen, H K; Frazier, R B; Sikorski, J A

    1992-06-23

    Isothermal titration calorimetry measurements are reported which give important new binding constant (Kd) information for various substrate and inhibitor complexes of Escherichia coli EPSP synthase (EPSPS). The validity of this technique was first verified by determining Kd's for the known binary complex with the substrate, shikimate 3-phosphate (S3P), as well as the herbicidal ternary complex with S3P and glyphosate (EPSPS.S3P.glyphosate). The observed Kd's agreed very well with those from previous independently determined kinetic and fluorescence binding measurements. Further applications unequivocally demonstrate for the first time a fairly tight interaction between phosphoenolpyruvate (PEP) and free enzyme (Kd = 390 microM) as well as a correspondingly weak affinity for glyphosate (Kd = 12 mM) alone with enzyme. The formation of the EPSPS.PEP binary complex was independently corroborated using equilibrium dialysis. These results strongly suggest that S3P synergizes glyphosate binding much more effectively than it does PEP binding. These observations add important new evidence to support the hypothesis that glyphosate acts as a transition-state analogue of PEP. However, the formation of a catalytically productive PEP binary complex is inconsistent with the previously reported compulsory binding order process required for catalysis and has led to new studies which completely revise the overall EPSPS kinetic mechanism. A previously postulated ternary complex between S3P and inorganic phosphate (EPSPS.S3P.Pi, Kd = 4 mM) was also detected for the first time. Quantitative binding enthalpies and entropies were also determined for each ligand complex from the microcalorimetry data. These values demonstrate a clear difference in thermodynamic parameters for recognition at the S3P site versus those observed for the PEP, Pi, and glyphosate sites.

  18. Inhibition of human two-pore domain K+ channel TREK1 by local anesthetic lidocaine: negative cooperativity and half-of-sites saturation kinetics.

    Science.gov (United States)

    Nayak, Tapan K; Harinath, S; Nama, S; Somasundaram, K; Sikdar, S K

    2009-10-01

    TWIK-related K+ channel TREK1, a background leak K+ channel, has been strongly implicated as the target of several general and local anesthetics. Here, using the whole-cell and single-channel patch-clamp technique, we investigated the effect of lidocaine, a local anesthetic, on the human (h)TREK1 channel heterologously expressed in human embryonic kidney 293 cells by an adenoviral-mediated expression system. Lidocaine, at clinical concentrations, produced reversible, concentration-dependent inhibition of hTREK1 current, with IC(50) value of 180 muM, by reducing the single-channel open probability and stabilizing the closed state. We have identified a strategically placed unique aromatic couplet (Tyr352 and Phe355) in the vicinity of the protein kinase A phosphorylation site, Ser348, in the C-terminal domain (CTD) of hTREK1, that is critical for the action of lidocaine. Furthermore, the phosphorylation state of Ser348 was found to have a regulatory role in lidocaine-mediated inhibition of hTREK1. It is interesting that we observed strong intersubunit negative cooperativity (Hill coefficient = 0.49) and half-of-sites saturation binding stoichiometry (half-reaction order) for the binding of lidocaine to hTREK1. Studies with the heterodimer of wild-type (wt)-hTREK1 and Delta119 C-terminal deletion mutant (hTREK1(wt)-Delta119) revealed that single CTD of hTREK1 was capable of mediating partial inhibition by lidocaine, but complete inhibition necessitates the cooperative interaction between both the CTDs upon binding of lidocaine. Based on our observations, we propose a model that explains the unique kinetics and provides a plausible paradigm for the inhibitory action of lidocaine on hTREK1.

  19. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but not by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.

  20. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo.

    Science.gov (United States)

    Jedlicka, Peter; Vnencak, Matej; Krueger, Dilja D; Jungenitz, Tassilo; Brose, Nils; Schwarzacher, Stephan W

    2015-01-01

    Neuroligins are transmembrane cell adhesion proteins with a key role in the regulation of excitatory and inhibitory synapses. Based on previous in vitro and ex vivo studies, neuroligin-1 (NL1) has been suggested to play a selective role in the function of glutamatergic synapses. However, the role of NL1 has not yet been investigated in the brain of live animals. We studied the effects of NL1-deficiency on synaptic transmission in the hippocampal dentate gyrus using field potential recordings evoked by perforant path stimulation in urethane-anesthetized NL1 knockout (KO) mice. We report that in NL1 KOs the activation of glutamatergic perforant path granule cell inputs resulted in reduced synaptic responses. In addition, NL1 KOs displayed impairment in long-term potentiation. Furthermore, field EPSP-population spike (E-S) coupling was greater in NL1 KO than WT mice and paired-pulse inhibition was reduced, indicating a compensatory rise of excitability in NL1 KO granule cells. Consistent with changes in excitatory transmission, NL1 KOs showed a significant reduction in hippocampal synaptosomal expression levels of the AMPA receptor subunit GluA2 and NMDA receptor subunits GluN1, GluN2A and GluN2B. Taken together, we provide first evidence that NL1 is essential for normal excitatory transmission and long-term synaptic plasticity in the hippocampus of intact animals. Our data provide insights into synaptic and circuit mechanisms of neuropsychiatric abnormalities such as learning deficits and autism.

  1. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.

    Science.gov (United States)

    Wheeler, D B; Randall, A; Tsien, R W

    1996-04-01

    It has been established that multiple types of Ca2+ channels participate in triggering neurotransmitter release at central synapses, but there is uncertainty about the nature of their combined actions. We investigated synaptic transmission at CA3-CA1 synapses of rat hippocampal slices and asked whether the dependence on omega-CTx-GVIA-sensitive N-type channels and omega-Aga-IVA-sensitive P/Q-type Ca2+ channels can be altered by physiological mechanisms. The reliance on multiple types of Ca2+ channels was not absolute but depended strongly on the amount of Ca2+ influx through individual channels, which was manipulated by prolonging the presynaptic action potential with the K+ channel blocker 4-aminopyridine (4-AP) and by varying the extracellular Ca2+ concentration ([Ca2+]o). We quantified the influence of spike broadening on Ca2+ influx through various Ca2+ channels by imposing mock action potentials on voltage-clamped cerebellar granule neurons. In field recordings of the EPSP in hippocampal slices, action potential prolongation increased the EPSP slope by 2-fold and decreased its reliance on either N-type or P/Q-type Ca2+ channels. The inhibition of synaptic transmission by N-type channel blockade was virtually eliminated in the presence of 4-AP, but it could be restored by lowering [Ca2+]o. These results rule out a scenario in which a significant fraction of presynaptic terminals rely solely on N-type channels to trigger transmission. The change in sensitivity to the neurotoxins with 4-AP could be explained in terms of a nonlinear relationship between Ca2+ entry and synaptic strength, which rises steeply at low [Ca2+]o, but approaches saturation at high [Ca2+]o. This relationship was evaluated experimentally by varying [CA2+]o in the absence and presence of 4-AP. One consequence of this relationship is that down-modulation of presynaptic Ca2+ channels by various modulators would increase the relative impact of spike broadening greatly.

  2. Inhibition by a novel anti-arrhythmic agent, NIP-142, of cloned human cardiac K+ channel Kv1.5 current.

    Science.gov (United States)

    Matsuda, T; Masumiya, H; Tanaka, N; Yamashita, T; Tsuruzoe, N; Tanaka, Y; Tanaka, H; Shigenoba, K

    2001-03-16

    NIP-142 was shown to prolong atrial effective refractory period and to terminate atrial fibrillation and flutter in in vivo canine models. To obtain information on its antiarrhythmic action, we examined the effect of NIP-142 on cloned human cardiac K+ channel Kv1.5 (hKv1.5) currents stably expressed in a human cell line using whole-cell voltage clamp methods. NIP-142 inhibited the hKv1.5 current in a concentration-dependent and voltage-independent manner. The inhibition was larger at the end of depolarizing pulse than at the outward current peak. The IC50 for inhibition of the steady-state phase was 4.75 microM. A cross-over phenomenon was observed when current traces in the absence and presence of NIP-142 were superimposed. Inhibition of hKv1.5 current by NIP-142 was frequency-independent; changing the depolarizing pulse frequencies (0.1, 0.2, 1 Hz) and little effect on the degree of inhibition. NIP-142 decreased the maximal peak amplitude of kHv1.5 current at the first command pulse after 3 min rest in the presence of the drug. These results suggest that NIP-142 has inhibitory effects on the hKv 1.5 current through interaction with both open and closed states of the channel, which may underlie its antiarrhythmic activity in the atria.

  3. Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Yasumasa, Natsuki; Mariana, Osako Kiomy; Kyutoku, Mariko; Koriyama, Hiroshi; Nakagami, Futoshi; Shimamura, Munehisa; Rakugi, Hiromi; Morishita, Ryuichi

    2012-01-01

    Both osteoporosis and high blood pressure are major diseases in aging populations. Recent studies demonstrated that some antihypertensive drugs reduced the risk of bone fracture in elderly patients. Although calcium channel blockers (CCB) are widely used as first-line antihypertensive agents, there is no evidence that they prevent osteoporosis. In this study, we investigated the effects of two types of CCB on bone metabolism: cilnidipine (L-/N-type CCB), which suppresses norepinephrine release from the sympathetic nerve, and amlodipine (L-type CCB). In ovariectomized female spontaneous hypertensive rats, administration of cilnidipine, but not amlodipine, resulted in a significant increase in the ratio of alkaline phosphatase to tartrate-resistant acid phosphatase (TRAP) and a decrease in the number of osteoclasts, as assessed by TRAP staining in the proximal tibia. Bone mineral density, moreover, was significantly higher in the cilnidipine group as compared with the amlodipine group and was associated with a significant decrease in a urinary collagen degradation product (deoxypyridinoline). The degree of prevention of osteoporosis by cilnidipine was similar to that of carvedilol (a β-blocker) because β-blockers reduce fracture risks though the inhibition of osteoclast activation. Interestingly, these effects cannot be attributed to the reduction of blood pressure because all three drugs significantly decreased blood pressure. In contrast, both cilnidipine and carvedilol, but not amlodipine, significantly decreased heart rate, indicating that both cilnidipine and carvedilol suppressed sympathetic nervous activity. Overall, our present data showed that cilnidipine (L-/N-type CCB) ameliorated osteoporosis in ovariectomized hypertensive rats. These pleiotropic effects of antihypertensive drugs such as cilnidipine and carvedilol might provide additional benefits in the treatment of hypertensive postmenopausal women.

  4. Isoflurane depresses hippocampal CA1 glutamate nerve terminals without inhibiting fiber volleys

    Directory of Open Access Journals (Sweden)

    MacIver M Bruce

    2006-01-01

    Full Text Available Abstract Background Anesthetic-induced CNS depression is thought to involve reduction of glutamate release from nerve terminals. Recent studies suggest that isoflurane reduces glutamate release by block of Na channels. To further investigate this question we examined the actions of isoflurane, TTX, extracellular Ca2+, CNQX and stimulus voltage (stim on glutamate-mediated transmission at hippocampal excitatory synapses. EPSPs were recorded from CA1 neurons in rat hippocampal brain slices in response to Schaffer-collateral fiber stimulation. Results Isoflurane (350 μM; 1 MAC reversibly depressed EPSP amplitudes by ~60% while facilitation increased ~20%. Consistent with previous studies, these results indicate a presynaptic site of action that involves reduced excitation-release coupling. EPSPs were depressed to comparable levels by TTX (60 nM or lowered stim, but facilitation was not changed, indicating a simple failure of axonal conduction. Similarly, partial antagonism of postsynaptic glutamate receptors with CNQX (10 μM depressed EPSP amplitudes with no change in facilitation. However, EPSP depression by low external Ca2+ (0.8 mM was accompanied by an increase in facilitation comparable to isoflurane. Isoflurane depression of EPSP amplitudes could also be partly reversed by high external Ca2+ (4 mM that also decreased facilitation. Isoflurane or low Ca2+ markedly reduced the slopes of fiber volley (FV-EPSP input-output curves, consistent with little or no effect on FVs. By contrast, TTX didn't alter the FV-EPSP curve slope, indicating that EPSP depression resulted from FV depression. FVs were remarkably resistant to isoflurane. Somatic spike currents were unaffected by 350 μM (1 MAC isoflurane as well. The EC50 for isoflurane depression of FVs was ~2.8 mM (12 vol. %; 8 MAC. Conclusion Isoflurane appears to depress CA1 synapses at presynaptic sites downstream from Na channels, as evident by the increased facilitation that accompanies EPSP

  5. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Zhi-ying LIN; Li-min CHEN; Jing ZHANG; Xiao-dong PAN; Yuan-gui ZHU; Qin-yong YE; Hua-pin HUANG; Xiao-chun CHEN

    2012-01-01

    Aim:To investigate the effect of ginsenoside Rb1 on voltage-gated calcium currents in cultured rat hippocampal neurons and the modulatory mechanism.Methods:Cultured hippocampal neurons were prepared from Sprague Dawley rat embryos.Whole-cell configuration of the patchclamp technique was used to record the voltage-gated calcium currents (VGCCs)from the hippocampal neurons,and the effect of Rb1 was examined.Results:Rb1 (2-100 μmol/L)inhibited VGCCs in a concentration-dependent manner,and the current was mostly recovered upon wash-out.The specific L-type Ca2+ channel inhibitor nifedipine (10 μmol/L)occluded Rb1-induced inhibition on VGCCs.Neither the selective N-type Ca2+ channel blocker ω-conotoxin-GVlA (1 μmoVL),nor the selective P/Q-type Ca2+ channel blocker ωo-agatoxin IVA (30 nmol/L)diminished Rb1-sensitive VGCCs.Rb1 induced a leftward shift of the steady-state inactivation curve of Ica to a negative potential without affecting its activation kinetics or reversal potential in the I-V curve.The inhibitory effect of Rb1 was neither abolished by the adenylyl cyclase activator forskolin (10 μmol/L),nor by the PKA inhibitor H-89 (10 μmol/L).Conclusion:Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels,without affecting the N-type or P/Q-type Ca2+ channels in hippocampal neurons,cAMP-PKA signaling pathway is not involved in this effect.

  6. Apamin Boosting of Synaptic Potentials in CaV2.3 R-Type Ca2+ Channel Null Mice.

    Science.gov (United States)

    Wang, Kang; Kelley, Melissa H; Wu, Wendy W; Adelman, John P; Maylie, James

    2015-01-01

    SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.

  7. Lys-[Leu8,des-Arg9]-bradykinin blocks lipopolysaccharide-induced SHR aorta hyperpolarization by inhibition of Ca(++)- and ATP-dependent K+ channels.

    Science.gov (United States)

    Farias, Nelson C; Feres, Teresa; Paiva, Antonio C M; Paiva, Therezinha B

    2004-09-13

    The mediators involved in the hyperpolarizing effects of lipopolysaccharide and of the bradykinin B1 receptor agonist des-Arg9-bradykinin on the rat aorta were investigated by comparing the responses of aortic rings of spontaneously hypertensive and normotensive Wistar rats. Endothelized rings from hypertensive rats were hyperpolarized by des-Arg9-bradykinin and lipopolysaccharide, whereas de-endothelized rings responded to lipopolysaccharide but not to des-Arg9-bradykinin. In endothelized preparations, the responses to des-Arg9-bradykinin were inhibited by Nomega-nitro-L-arginine and iberiotoxin. De-endothelized ring responses to lipopolysaccharide were inhibited by iberiotoxin, glibenclamide and B1 antagonist Lys-[Leu8,des-Arg9]-bradykinin. This antagonist also inhibited hyperpolarization by des-Arg9-bradykinin and by the á2-adrenoceptor agonist, brimonidine. Our results indicate that Ca(2+)-sensitive K+ channels are the final mediators of the responses to des-Arg9-bradykinin, whereas both Ca(2+)- and ATP-sensitive K+ channels mediate the responses to lipopolysaccharide. The inhibitory effects of Lys-[Leu8,des-Arg9]-bradykinin is due to a direct action on Ca(2+)- and ATP-sensitive potassium channels.

  8. The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphyloccocus epidermidis killing by human neutrophils.

    Science.gov (United States)

    Daou, Samira; El Chemaly, Antoun; Christofilopoulos, Panayiotis; Bernard, Louis; Hoffmeyer, Pierre; Demaurex, Nicolas

    2011-03-01

    Infection by Staphylococcus epidermidis is a devastating complication of metal-on-metal (MM) total hip arthroplasty (THA). Neutrophils are the first line of defense against infection, and these innate immune cells are potentially exposed to Co(2+) ions released in the peri-prosthetic tissue by the wear of MM THA. The toxicity of Co(2+) is still debated, but Co(2+) is a potential inhibitor of the Hv1 proton channel that sustains the production of superoxide by neutrophils. In this study, we show that the Co(2+) concentration in peri-prosthetic tissue from patients with MM THA averages 53 μM and that such high concentrations of Co(2+) alter the antibacterial activity of human neutrophils in vitro by inhibiting Hv1 proton channels. We show that submillimolar concentrations of Co(2+) inhibit proton currents, impair the extrusion of cytosolic acid, and decrease the production of superoxide in human neutrophils. As a result, Co(2+) reduces the ability of human neutrophils to kill two strains of Staphyloccocus epidermidis by up to 7-fold at the maximal concentration tested of 100 μM Co(2+). By inhibiting proton channels, the Co(2+) ions released by metal prostheses might therefore promote bacterial infections in patients with metal-on-metal total hip arthroplasty.

  9. Endomorphins inhibit high-threshold Ca2+ channel currents in rodent NG108-15 cells overexpressing mu-opioid receptors.

    Science.gov (United States)

    Higashida, H; Hoshi, N; Knijnik, R; Zadina, J E; Kastin, A J

    1998-02-15

    1. Extracellular application of the novel brain peptides endomorphin 1 (EM1) and endomorphin 2 (EM2) inhibited high-threshold Ca2+ channel currents in NGMO-251 cells, a daughter clone of NG108-15 mouse neuroblastoma x rat glioma hybrid cells, in which mu-opioid receptors are overexpressed. 2. In contrast, EM1 and EM2 did not induce this inhibition in the parental NG108-15 cells that predominantly express endogenous delta-receptors. 3. The IC50 for EM1 and EM2 was 7.7 and 23.1 nM, respectively. 4. EM-induced Ca2+ channel current inhibition was blocked by treatment or pretreatment of the cells with 100 microM N-methylmaleimide or 100 ng ml-1 pertussis toxin. 5. These results show that a decrease in conductance of Ca2+ channels results following interaction of EMs with cloned mu-receptors, which couple via Gi/Go-type G proteins, and that EMs fulfill one of the necessary synaptic conditions for them to be identified as neurotransmitters.

  10. Inhibition of SK4 Potassium Channels Suppresses Cell Proliferation, Migration and the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Panshi Zhang

    Full Text Available Treatments for triple-negative breast cancer (TNBC are limited; intermediate-conductance calcium-activated potassium (SK4 channels are closely involved in tumor progression, but little is known about these channels in TNBC. We aimed to investigate whether SK4 channels affect TNBC. First, by immunohistochemistry (IHC and western blotting (WB, increased SK4 protein expression in breast tumor tissues was detected relative to that in non-tumor breast tissues, but there was no apparent expression difference between various subtypes of breast cancer (p>0.05. Next, functional SK4 channels were detected in the TNBC cell line MDA-MB-231 using WB, real-time PCR, immunofluorescence and patch-clamp recording. By employing SK4 specific siRNAs and blockers, including TRAM-34 and clotrimazole, in combination with an MTT assay, a colony-formation assay, flow cytometry and a cell motility assay, we found that the suppression of SK4 channels significantly inhibited cell proliferation and migration and promoted apoptosis in MDA-MB-231 cells (p<0.05. Further investigation revealed that treatment with epidermal growth factor (EGF/basic fibroblast growth factor (bFGF caused MDA-MB-231 cells to undergo the epithelial-mesenchymal transition (EMT and to show increased SK4 mRNA expression. In addition, the down-regulation of SK4 expression inhibited the EMT markers Vimentin and Snail1. Collectively, our findings suggest that SK4 channels are expressed in TNBC and are involved in the proliferation, apoptosis, migration and EMT processes of TNBC cells.

  11. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias.

  12. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    OpenAIRE

    Ivanov, Vadim; Ivanova, Svetlana; KALINOVSKY, TATIANA; NIEDZWIECKI, ALEKSANDRA; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition...

  13. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  14. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  15. Berberine reduces cAMP-induced chloride secretion in T84 human colonic carcinoma cells through inhibition of basolateral KCNQ1 channels

    Directory of Open Access Journals (Sweden)

    Rodrigo eAlzamora

    2011-06-01

    Full Text Available Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl- secretion in distal colon. The aims of this study were to determine the molecular signalling mechanisms of action of berberine on Cl- secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80  8 M. In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl- conductance or basolateral Na+-K+-ATPase activity. Berberine stimulated p38 MAPK, PKC and PKA, but had no effect on p42/p44 MAPK and PKC. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl- secretion was partially blocked by HBDDE (65 %, an inhibitor of PKC and to a smaller extent by inhibition of p38 MAPK with SB202190 (15 %. Berberine treatment induced an increase in association between PKC and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl- secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKC-dependent pathway.

  16. Concerted action of target-site mutations and high EPSPS activity in glyphosate-resistant junglerice (Echinochloa colona) from California

    Science.gov (United States)

    Glyphosate is the most widely used non-selective herbicide and Echinochloa colona is an annual weed affecting field crops and orchards in California. A population carrying a glyphosate-resistance-endowing mutation in the EPSPS gene was found in the Northern Sacramento Valley. We used selfed lines ...

  17. In silico peptide prediction for antibody generation to recognize 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in genetically modified organisms.

    Science.gov (United States)

    Marani, Mariela M; Costa, Joana; Mafra, Isabel; Oliveira, Maria Beatriz P P; Camperi, Silvia A; Leite, José Roberto de Souza Almeida

    2015-03-01

    For the prospective immunorecognition of 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) as a biomarker protein expressed by transgenic soybean, an extensive in silico evaluation of the referred protein was performed. The main objective of this study was the selection of a set of peptides that could function as potential immunogens for the production of novel antibodies against CP4-EPSPS protein. For this purpose, the protein was in silico cleaved with trypsin/chymotrypsin and the resultant peptides were extensively analyzed for further selection of the best candidates for antibody production. The analysis enabled the successful proposal of four peptides with potential immunogenicity for their future use as screening biomarkers of genetically modified organisms. To our knowledge, this is the first attempt to select and define potential linear epitopes for the immunization of animals and, subsequently, to generate adequate antibodies for CP4-EPSPS recognition. The present work will be followed by the synthesis of the candidate peptides to be incubated in animals for antibody generation and potential applicability for the development of an immunosensor for CP4-EPSPS detection.

  18. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  19. A mechanism for the auto-inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP.

    Science.gov (United States)

    Akimoto, Madoka; Zhang, Zaiyong; Boulton, Stephen; Selvaratnam, Rajeevan; VanSchouwen, Bryan; Gloyd, Melanie; Accili, Eric A; Lange, Oliver F; Melacini, Giuseppe

    2014-08-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels control neuronal and cardiac electrical rhythmicity. There are four homologous isoforms (HCN1-4) sharing a common multidomain architecture that includes an N-terminal transmembrane tetrameric ion channel followed by a cytoplasmic "C-linker," which connects a more distal cAMP-binding domain (CBD) to the inner pore. Channel opening is primarily stimulated by transmembrane elements that sense membrane hyperpolarization, although cAMP reduces the voltage required for HCN activation by promoting tetramerization of the intracellular C-linker, which in turn relieves auto-inhibition of the inner pore gate. Although binding of cAMP has been proposed to relieve auto-inhibition by affecting the structure of the C-linker and CBD, the nature and extent of these cAMP-dependent changes remain limitedly explored. Here, we used NMR to probe the changes caused by the binding of cAMP and of cCMP, a partial agonist, to the apo-CBD of HCN4. Our data indicate that the CBD exists in a dynamic two-state equilibrium, whose position as gauged by NMR chemical shifts correlates with the V½ voltage measured through electrophysiology. In the absence of cAMP, the most populated CBD state leads to steric clashes with the activated or "tetrameric" C-linker, which becomes energetically unfavored. The steric clashes of the apo tetramer are eliminated either by cAMP binding, which selects for a CBD state devoid of steric clashes with the tetrameric C-linker and facilitates channel opening, or by a transition of apo-HCN to monomers or dimer of dimers, in which the C-linker becomes less structured, and channel opening is not facilitated.

  20. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels.

    Directory of Open Access Journals (Sweden)

    Rym ElFessi-Magouri

    Full Text Available Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V and 24 (D/N.Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK and small conductance (SK Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.

  1. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels.

    Science.gov (United States)

    ElFessi-Magouri, Rym; Peigneur, Steve; Othman, Houcemeddine; Srairi-Abid, Najet; ElAyeb, Mohamed; Tytgat, Jan; Kharrat, Riadh

    2015-01-01

    Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.

  2. Selective inhibition of the Kir2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR and pharmacological characterization of ML133

    Science.gov (United States)

    Wang, Hao-Ran; Wu, Meng; Yu, Haibo; Long, Shunyou; Stevens, Amy; Engers, Darren W.; Sackin, Henry; Daniels, J. Scott; Dawson, Eric S.; Hopkins, Corey R.; Lindsley, Craig W.; Li, Min; McManus, Owen B

    2011-01-01

    The Kir inward rectifying potassium channels have a broad tissue distribution and are implicated in a variety of functional roles. At least seven classes (Kir1 – Kir7) of structurally related inward rectifier potassium channels are known, and there are no selective small molecule tools to study their function. In an effort to develop selective Kir2.1 inhibitors, we performed a high-throughput screen (HTS) of more than 300,000 small molecules within the MLPCN for modulators of Kir2.1 function. Here we report one potent Kir2.1 inhibitor, ML133, which inhibits Kir2.1 with IC50 of 1.8 μM at pH 7.4 and 290 nM at pH 8.5, but exhibits little selectivity against other members of Kir2.x family channels. However, ML133 has no effect on Kir1.1 (IC50 > 300 μM), and displays weak activity for Kir4.1 (76 μM) and Kir7.1 (33 μM), making ML133 the most selective small molecule inhibitor of the Kir family reported to date. Due to the high homology within the Kir family, the channels share a common design of a pore region flanked by two transmembrane domains, identification of site(s) critical for isoform specificity would be an important basis for future development of more specific and potent Kir inhibitors. Using chimeric channels between Kir2.1 and Kir1.1 and site-directed mutagenesis, we have identified D172 and I176 within M2 segment of Kir2.1 as molecular determinants critical for the potency of ML133 mediated inhibition. Double mutation of the corresponding residues of Kir1.1 to those of Kir2.1 (N171D and C175I) transplants ML133 inhibition to Kir1.1. Together, the combination of a potent, Kir2 family selective inhibitor and identification of molecular determinants for the specificity provides both a tool and a model system to enable further mechanistic studies of modulation of Kir2 inward rectifier potassium channels. PMID:21615117

  3. Lutein inhibits the function of the transient receptor potential A1 ion channel in different in vitro and in vivo models.

    Science.gov (United States)

    Horváth, Györgyi; Szoke, Éva; Kemény, Ágnes; Bagoly, Teréz; Deli, József; Szente, Lajos; Pál, Szilárd; Sándor, Katalin; Szolcsányi, János; Helyes, Zsuzsanna

    2012-01-01

    Transient receptor potential (TRP) ion channels, such as TRP vanilloid 1 and ankyrin repeat domain 1 (TRPV1 and TRPA1), are expressed on primary sensory neurons. Lutein, a natural tetraterpene carotenoid, can be incorporated into membranes and might modulate TRP channels. Therefore, the effects of the water-soluble randomly methylated-β-cyclodextrin (RAMEB) complex of lutein were investigated on TRPV1 and TRPA1 activation. RAMEB-lutein (100 μM) significantly diminished Ca(2+) influx to cultured rat trigeminal neurons induced by TRPA1 activation with mustard oil, but not by TRPV1 stimulation with capsaicin, as determined with microfluorimetry. Calcitonin gene-related peptide release from afferents of isolated tracheae evoked by mustard oil, but not by capsaicin, was inhibited by RAMEB-lutein. Mustard oil-induced neurogenic mouse ear swelling was also significantly decreased by 100 μg/ml s.c. RAMEB-lutein pretreatment, while capsaicin-evoked edema was not altered. Myeloperoxidase activity indicating non-neurogenic granulocyte accumulation in the ear was not influenced by RAMEB-lutein in either case. It is concluded that lutein inhibits TRPA1, but not TRPV1 stimulation-induced responses on cell bodies and peripheral terminals of sensory neurons in vitro and in vivo. Based on these distinct actions and the carotenoid structure, the ability of lutein to modulate lipid rafts in the membrane around TRP channels can be suggested.

  4. Inhibition of Voltage-Gated Calcium Channels After Subchronic and Repeated Exposure of PC12 Cells to Different Classes of Insecticides.

    Science.gov (United States)

    Meijer, Marieke; Brandsema, Joske A R; Nieuwenhuis, Desirée; Wijnolts, Fiona M J; Dingemans, Milou M L; Westerink, Remco H S

    2015-10-01

    We previously demonstrated that acute inhibition of voltage-gated calcium channels (VGCCs) is a common mode of action for (sub)micromolar concentrations of chemicals, including insecticides. However, because human exposure to chemicals is usually chronic and repeated, we investigated if selected insecticides from different chemical classes (organochlorines, organophosphates, pyrethroids, carbamates, and neonicotinoids) also disturb calcium homeostasis after subchronic (24 h) exposure and after a subsequent (repeated) acute exposure. Effects on calcium homeostasis were investigated with single-cell fluorescence (Fura-2) imaging of PC12 cells. Cells were depolarized with high-K(+) saline to study effects of subchronic or repeated exposure on VGCC-mediated Ca(2+) influx. The results demonstrate that except for carbaryl and imidacloprid, all selected insecticides inhibited depolarization (K(+))-evoked Ca(2+) influx after subchronic exposure (IC50's: approximately 1-10 µM) in PC12 cells. These inhibitory effects were not or only slowly reversible. Moreover, repeated exposure augmented the inhibition of the K(+)-evoked increase in intracellular calcium concentration induced by subchronic exposure to cypermethrin, chlorpyrifos, chlorpyrifos-oxon, and endosulfan (IC50's: approximately 0.1-4 µM). In rat primary cortical cultures, acute and repeated chlorpyrifos exposure also augmented inhibition of VGCCs compared with subchronic exposure. In conclusion, compared with subchronic exposure, repeated exposure increases the potency of insecticides to inhibit VGCCs. However, the potency of insecticides to inhibit VGCCs upon repeated exposure was comparable with the inhibition previously observed following acute exposure, with the exception of chlorpyrifos. The data suggest that an acute exposure paradigm is sufficient for screening chemicals for effects on VGCCs and that PC12 cells are a sensitive model for detection of effects on VGCCs.

  5. The use of amlodipine, but not of P-glycoprotein inhibiting calcium channel blockers is associated with clopidogrel poor-response.

    Science.gov (United States)

    Harmsze, Ankie M; Robijns, Karen; van Werkum, Jochem W; Breet, Nicoline J; Hackeng, Christian M; Ten Berg, Jurrien M; Ruven, Hendrik J T; Klungel, Olaf H; de Boer, Anthonius; Deneer, Vera H M

    2010-05-01

    Clopidogrel is a prodrug that has to be converted in vivo to its active metabolite by cytochrome (CYP)P450 iso-enzymes. As calcium channel blockers (CCBs) are inhibitors of CYP3A4, concomitant use of these drugs might play a role in the wide inter-individual variability in the response to clopidogrel. However, some CCBs also have strong inhibitory effects on the drug transporter P-glycoprotein (Pgp), which mediates clopidogrel's intestinal absorption. It was the aim of this study to evaluate the effect of co-administration of Pgp-inhibiting and non-Pgp-inhibiting CCBs on on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective percutaneous coronary intervention (PCI). In a total of 623 consecutive patients undergoing elective PCI treated with clopidogrel and aspirin, platelet reactivity to 5 and 20 muM adenosine diphospate (ADP) and clopidogrel poor-response (defined as > 70% platelet aggregation to 20 muM ADP) were evaluated by light transmittance aggregometry. A total of 222 patients (35.6%) were on CCB treatment, of which 98 used Pgp-inhibiting CCBs (verapamil, nifedipine, diltiazem, barnidipine) and 124 patients used the non-Pgp-inhibiting CCB amlodipine. Adjusted mean ADP-induced on-clopidogrel platelet reactivity was significantly higher in both users of Pgp-inhibiting CCBs and amlodipine as compared to CCB non-users (all p<0.05). However, only the use of amlodipine was significantly associated with a 2.3-fold increased risk of clopidogrel poor-response. This study demonstrates that concomitant use of Pgp-inhibiting CCBs and amlodipine increases on-clopidogrel platelet reactivity. Only amlodipine was associated with clopidogrel poor-response. The drug-drug interaction between clopidogrel and amlodipine might be more clinically relevant as compared to P-glycoprotein-inhibiting CCBs.

  6. Rebaudioside A directly stimulates insulin secretion from pancreatic beta cells: a glucose-dependent action via inhibition of ATP-sensitive K-channels.

    Science.gov (United States)

    Abudula, R; Matchkov, V V; Jeppesen, P B; Nilsson, H; Aalkjaer, C; Hermansen, K

    2008-11-01

    Recently, we showed that rebaudioside A potently stimulates the insulin secretion from isolated mouse islets in a dose-, glucose- and Ca(2+)-dependent manner. Little is known about the mechanisms underlying the insulinotropic action of rebaudioside A. The aim of this study was to define the signalling system by which, rebaudioside A acts. Isolated mouse islets were used in the cAMP[(125)I] scintillation proximity assay to measure total cAMP level, and in a luminometric method to measure intracellular ATP and ADP concentrations. Conventional and permeabilized whole-cell configuration of the patch-clamp technique was used to verify the effect of rebaudioside A on ATP-sensitive K(+)-channels from dispersed single beta cells from isolated mouse islets. Insulin was measured by radioimmunoassay from insulinoma MIN6 cells. In the presence of 16.7 mM glucose, the addition of the maximally effective concentration of rebaudioside A (10(-9) M) increased the ATP/ADP ratio significantly, while it did not change the intracellular cAMP level. Rebaudioside A (10(-9) M) and stevioside (10(-6) M) reduced the ATP-sensitive potassium channel (K(ATP)) conductance in a glucose-dependent manner. Moreover, rebaudioside A stimulated the insulin secretion from MIN6 cells in a dose- and glucose-dependent manner. In conclusion, the insulinotropic effect of rebaudioside A is mediated via inhibition of ATP-sensitive K(+)-channels and requires the presence of high glucose. The inhibition of ATP-sensitive K(+)-channels is probably induced by changes in the ATP/ADP ratio. The results indicate that rebaudioside A may offer a distinct therapeutic advantage over sulphonylureas because of less risk of causing hypoglycaemia.

  7. Inhibition of human ether-a-go-go-related gene potassium channels by alpha 1-adrenoceptor antagonists prazosin, doxazosin, and terazosin.

    Science.gov (United States)

    Thomas, Dierk; Wimmer, Anna-Britt; Wu, Kezhong; Hammerling, Bettina C; Ficker, Eckhard K; Kuryshev, Yuri A; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A

    2004-05-01

    Human ether-a-go-go-related gene (HERG) potassium channels are expressed in multiple tissues including the heart and adenocarcinomas. In cardiomyocytes, HERG encodes the alpha-subunit underlying the rapid component of the delayed rectifier potassium current, I(Kr), and pharmacological reduction of HERG currents may cause acquired long QT syndrome. In addition, HERG currents have been shown to be involved in the regulation of cell proliferation and apoptosis. Selective alpha 1-adrenoceptor antagonists are commonly used in the treatment of hypertension and benign prostatic hyperplasia. Recently, doxazosin has been associated with an increased risk of heart failure. Moreover, quinazoline-derived alpha 1-inhibitors induce apoptosis in cardiomyocytes and prostate tumor cells independently of alpha1-adrenoceptor blockade. To assess the action of the effects of prazosin, doxazosin, and terazosin on HERG currents, we investigated their acute electrophysiological effects on cloned HERG potassium channels heterologously expressed in Xenopus oocytes and HEK 293 cells.Prazosin, doxazosin, and terazosin blocked HERG currents in Xenopus oocytes with IC(50) values of 10.1, 18.2, and 113.2 microM respectively, whereas the IC(50) values for HERG channel inhibition in human HEK 293 cells were 1.57 microM, 585.1 nM, and 17.7 microM. Detailed biophysical studies revealed that inhibition by the prototype alpha 1-blocker prazosin occurred in closed, open, and inactivated channels. Analysis of the voltage-dependence of block displayed a reduction of inhibition at positive membrane potentials. Frequency-dependence was not observed. Prazosin caused a negative shift in the voltage-dependence of both activation (-3.8 mV) and inactivation (-9.4 mV). The S6 mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) HERG current blockade, indicating that prazosin binds to a common drug receptor within the pore-S6 region. In conclusion, this study demonstrates that HERG

  8. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  9. Anti-metastatic Potential of Amide-linked Local Anesthetics: Inhibition of Lung Adenocarcinoma Cell Migration and Inflammatory Src Signaling Independent of Sodium Channel Blockade

    Science.gov (United States)

    Piegeler, Tobias; Votta-Velis, E. Gina; Liu, Guoquan; Place, Aaron T.; Schwartz, David E.; Beck-Schimmer, Beatrice; Minshall, Richard D.; Borgeat, Alain

    2012-01-01

    Background Retrospective analysis of patients undergoing cancer surgery suggests the use of regional anesthesia may reduce cancer recurrence and improve survival. Amide-linked local anesthetics have anti-inflammatory properties, although the mechanism of action in this regard is unclear. As inflammatory processes involving Src tyrosine protein kinase and intercellular adhesion molecule-1 are important in tumor growth and metastasis, we hypothesized that amide-linked local anesthetics may inhibit inflammatory Src-signaling involved in migration of adenocarcinoma cells. Methods NCI-H838 lung cancer cells were incubated with Tumor Necrosis Factor-α in absence/presence of ropivacaine, lidocaine, or chloroprocaine (1nM-100μM). Cell migration and total cell lysate Src-activation and Intercellular Adhesion Molecule-1 phosphorylation were assessed. The role of voltage-gated sodium-channels in the mechanism of local anesthetic effects was also evaluated. Results Ropivacaine treatment (100μM) of H838 cells for 20 minutes decreased basal Src activity by 62% (p=0.003), and both ropivacaine and lidocaine co-administered with Tumor Necrosis Factor-α statistically significantly decreased Src-activation and Intercellular Adhesion Molecule-1 phosphorylation, whereas chloroprocaine had no such effect. Migration of these cells at 4 hours was inhibited by 26% (p=0.005) in presence of 1μM ropivacaine and 21% by 1μM lidocaine (p=0.004). These effects of ropivacaine and lidocaine were independent of voltage-gated sodium-channel inhibition. Conclusions This study indicates that amide-, but not ester-linked local anesthetics may provide beneficial anti-metastatic effects. The observed inhibition of NCI-H838 cell migration by lidocaine and ropivacaine was associated with the inhibition of Tumor Necrosis Factor-α-induced Src-activation and Intercellular Adhesion Molecule-1 phosphorylation, providing the first evidence of a molecular mechanism which appears to be independent of their

  10. P/Q-type and T-type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells.

    Science.gov (United States)

    Gugger, Olivia S; Hartmann, Jana; Birnbaumer, Lutz; Kapfhammer, Josef P

    2012-01-01

    The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca(2+) into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q-type Ca(2+) channels, and T-type Ca(2+) channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q-type and T-type Ca(2+) channels, indicating that activation of these channels mediating Ca(2+) influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca(2+) -permeable TRPC3s in TRPC3-deficient mice or pharmacological blockade had no effect on mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca(2+) influx through glutamate receptor δ2 or R-type Ca(2+) channels or inhibition of release from intracellular stores did not influence mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T-type and P/Q-type Ca(2+) channels, but not TRPC3 or other Ca(2+) -permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells.

  11. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C

    Science.gov (United States)

    Oliván-Viguera, Aida; Lozano-Gerona, Javier; López de Frutos, Laura; Cebolla, Jorge J.; Irún, Pilar; Abarca-Lachen, Edgar; García-Malinis, Ana J.; García-Otín, Ángel Luis; Gilaberte, Yolanda; Giraldo, Pilar; Köhler, Ralf

    2017-01-01

    The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression. PMID:28197106

  12. Magnolol inhibits colonic motility through down-regulation of voltage-sensitive L-type Ca2+ channels of colonic smooth muscle cells in rats.

    Science.gov (United States)

    Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang

    2013-11-15

    This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity.

  13. Reconstruction of enzymatic activity from split genes encoding glyphosate-tolerant EPSPS protein of Psedomonas fluorescens G2 strain by intein mediated protein complementation

    Institute of Scientific and Technical Information of China (English)

    DUN Baoqing; ZHAO Zhonglin; LIANG Aimin; HOU Songna; XU Ming-Qun; LIN Min; LU Wei; ZHANG Wei; PING Shuzhen; WANG Xujing; CHEN Ming; XU Yuquan; JIN Dan; WANG Jin

    2006-01-01

    A mutagenesis library was constructed using GPS-LS system to insert a random 5 aa into the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoded by aroA gene. Active EPSPS proteins were identified by the ability to rescue growth of aroA-deleted mutant ER2799 on M9 minimal media.12 unique sites, which can tolerate a 5-aa insertion,were identified. In all of the 12 sites, only F295/T296site was found to split the G2-EPSPS properly by co-transformation of plasmids into E. coli ER2799.The G2-EPSPS gene was then divided into N-terminal and C-terminal from F295/T296 site which were fused to the N-terminal and C-terminal of Ssp. DnaE intein, respectively, creating two plasmids pMEPSN295IN and pKEPSc296Ic. Co-transformation of plasmids, pMEPSN295IN and pKEPSc296Ic, rescued growth of ER2799 in M9 minimal media, indicating that the intein splicing domains were bringing the EPSPS fragments together to generate activity. Reconsituted activity of splitted G2-EPSPS enzyme was 4.48 U/mg.

  14. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  15. A new way of using modelling to estimate the size of a motoneurone's EPSP.

    Science.gov (United States)

    Matthews, Peter B C

    2002-01-01

    Earlier modelling of a noisy motoneurone has been extended to provide a new measure of excitability. The distance-to-threshold estimate of an MN's AHP, derived from its interval histogram, is used to create a simplified daughter model to mimic the behaviour of its parent and determine a new measure of an MN's response to a stimulus. This Estimated Potential (EP) provides a linear measure of the size of the parent's underlying EPSP, irrespective of its firing rate, and thereby improves on the classic firing index from which it is derived. The EP is applicable with both random and spike-triggered stimulation. It is emphasized that in the presence of noise a tonically firing MN's average responsiveness at a given time during its AHP depends upon what may be termed the "survivor's mean trajectory", rather than upon the "distance to threshold" AHP found in the absence of noise; these differ because noise-induced spiking eliminates individual trajectories when they reach threshold.

  16. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Science.gov (United States)

    Sharmin Ani, Nushrat; Chakraborty, Sudip

    2016-01-01

    Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant's leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK) leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p < 0.01) inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p < 0.01) suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker) at 10 mg/kg significantly (p < 0.05) reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine. PMID:27812367

  17. Inhibition by 5-N-(4-chlorobenzyl)-2`,4`-dimethylbenzamil of Na{sup +}/Ca{sup 2+} exchange and L-type Ca{sup 2+} channels in isolated cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sharikabad, M.N.; Broers, O. [Ullevaal Univ. Hospital, Clinical Chemistry dept., Div. of Clinical Pharmacology and Toxicology, Olso (Norway); Cragoe, E.J. Jr.

    1997-02-01

    The inhibitory effect of the amiloride derivative 5-N-(4-chlorobenzyl)-2`,4`-dimethylbenzamil (CBDMB) on calcium (Ca{sup 2+}) uptake via sarcolemmal sodium-calcium (Na{sup +}/Ca{sup 2+}) exchange and L-type Ca{sup 2+} channels was investigated in isolated adult rat ventricular cardiomyocytes under depolarizing conditions in cells preincubated with 1 mM ouabain or 137 mM lithium (Li{sup +}), respectively. Fifteen or 120 min. preincubation with CBDMB inhibited Ca{sup 2+} uptake via Na{sup +}/Ca{sup 2+} exchange in Na{sup +}-loaded depolarized cells completely at 100 {mu}M with an IC{sub 50} of 21 {mu}M. After 120 min. preincubation, CBDMB inhibited Ca{sup 2+} uptake via L-type Ca{sup 2+} channels by 75.1{+-}8.1% (mean and S.E.M.) and IC{sub 50} of 4 {mu}M, whereas no significant inhibition was observed after 15 min. preincubation. (+)-Isradipine (10 {mu}3M) inhibited high potassium (K{sup +}) induced Ca{sup 2+} uptake via L-type Ca{sup 2+} channels by 35% after 15 min. and by 70% after 120 min. preincubation. Inhibition by CBDMB of specific (+)-[{sup 3}]isradipine binding to L-type Ca{sup 2+} channels showed similar concentration dependency as inhibition of Ca{sup 2+} uptake via L-type Ca{sup 2+} channels. In conclusio, CBDMB inhibits sarcolemmal Na{sup +}/Ca{sup 2+} exchange in rat ventricular cardiomyocytes rapidly. However, after longer preincubation periods, L-type Ca{sup 2+} channels are inhibited as well and with higher potency than Na{sup +}/Ca{sup 2+} exchange. (au) 17 refs.

  18. EPSPS 基因抗草甘膦棉花的遗传分析%Genetic Analysis of Transgenic Glyphosate-resistance Cotton with EPSPS Gene

    Institute of Scientific and Technical Information of China (English)

    燕树锋; 祝水金; 刘海芳; 卢彩霞; 铁双贵

    2015-01-01

    The purpose of this study was to analysis the genetic characters of transgenic glyphosate -resistance cotton with EPSPS gene,using the glyphosate-resistant cotton transformation events G 6-1-G6-26 as the materials, and their non-transgenic genetic background cultivar CCRI-49 as control .Field resistance test in T 1 plants showed that the 20 of 26 transformation events were consistent with the ratio of 3∶1 and the other transformation events were inconsistent with single-gene Mendelian inheritance according to χ2 test.Field resistance test in T 2 plants showed 152 homozygous resistance lines were obtained derived from 25 transformation events ,respectively .Fifty-seven lines derived from 15 transformation events were consistent with the ratio 3∶1 through the analysis of heterozygous resist-ance lines.Furthermore,every transformation event had lines which were inconsistent with the ratio of 3∶1,and 10 transformation events did not have lines which were consistent with the ratio of 3∶1 .These suggested the integration and genetic mode of exogenous gene transformed by the pollen tube pathway method were complex .%为分析转基因抗草甘膦棉花早代遗传情况,以花粉管通道法获得的26个转5-烯醇式丙酮酰莽草酸-3-磷酸合酶基因( EPSPS)抗草甘膦棉花转化事件为材料,以其背景亲本中棉所49为对照,喷施草甘膦后对转基因棉T1、T2分离比例进行考察。 T1田间抗性鉴定结果表明,经卡方检测20个转化事件T1分离符合3∶1的分离规律,即外源基因插入1个位点;6个转化事件不符合1对基因的分离规律,出现了偏分离。 T2田间抗性鉴定结果表明,通过花粉通管法共获得152个纯合株系,分别来源于25个转化事件;对T2不纯合株系继续进行分离比例的考察,发现来源于15个转化事件的57个株系符合3∶1的分离规律;此外卡方检测结果表明,每个转化事件都有不符合3∶1分

  19. Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions

    OpenAIRE

    Wang, Ze-Jun; Tabakoff, Boris; Levinson, Simon R.; Heinbockel, Thomas

    2015-01-01

    Aim: Methyl eugenol is a major active component extracted from the Chinese herb Asari Radix et Rhizoma, which has been used to treat toothache and other pain. Previous in vivo studies have shown that methyl eugenol has anesthetic and antinociceptive effects. The aim of this study was to determine the possible mechanism underlying its effect on nervous system disorders. Methods: The direct interaction of methyl eugenol with Na+ channels was explored and characterized using electrophysiological...

  20. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells.

    Science.gov (United States)

    Ohya, Susumu; Kanatsuka, Saki; Hatano, Noriyuki; Kito, Hiroaki; Matsui, Azusa; Fujimoto, Mayu; Matsuba, Sayo; Niwa, Satomi; Zhan, Peng; Suzuki, Takayoshi; Muraki, Katsuhiko

    2016-04-01

    The intermediate-conductance Ca(2+)-activated K(+) channel KC a3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail. The results of this study showed a significant decrease in KC a3.1 transcription by HDAC inhibition in the human breast cancer cell line YMB-1, which functionally expresses KCa3.1. A treatment with the clinically available, class I, II, and IV HDAC inhibitor, vorinostat significantly downregulated KC a3.1 transcription in a concentration-dependent manner, and the plasmalemmal expression of the KC a3.1 protein and its functional activity were correspondingly decreased. Pharmacological and siRNA-based HDAC inhibition both revealed the involvement of HDAC2 and HDAC3 in KC a3.1 transcription through the same mechanism. The downregulation of KC a3.1 in YMB-1 was not due to the upregulation of the repressor element-1 silencing transcription factor, REST and the insulin-like growth factor-binding protein 5, IGFBP5. The significant decrease in KC a3.1 transcription by HDAC inhibition was also observed in the KC a3.1-expressing human prostate cancer cell line, PC-3. These results suggest that vorinostat and the selective HDACis for HDAC2 and/or HDAC3 are effective drug candidates for KC a3.1-overexpressing cancers.

  1. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action.

    Science.gov (United States)

    Schwartz, A; Wu, W H; Tucker, E B; Assmann, S M

    1994-04-26

    Abscisic acid (ABA), a plant hormone whose production is stimulated by water stress, reduces the apertures of stomatal pores in the leaf surface, thereby lessening transpirational water loss. It has been thought that inhibition of stomatal opening and promotion of stomatal closure by ABA are initiated by the binding of extracellular ABA to a receptor located in the guard-cell plasma membrane. However, in the present research, we employ three distinct experimental approaches to demonstrate that ABA can act from within guard cells to regulate stomatal apertures. (i) The extent to which ABA inhibits stomatal opening and promotes stomatal closure in Commelina communis L. is proportional to the extent of ABA uptake, as assayed with [3H]ABA. (ii) Direct microinjection of ABA into the cytoplasm of Commelina guard cells precipitates stomatal closure. (iii) Application of ABA to the cytosol of Vicia faba L. guard-cell protoplasts via patch-clamp techniques inhibits inward K+ currents, an effect sufficient to inhibit stomatal opening. These results demonstrate an intracellular locus of phytohormone action and imply that the search for hormone receptor proteins should be extended to include intracellular compartments.

  2. Inhibition of the K+ channel K(Ca3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells.

    Directory of Open Access Journals (Sweden)

    Rong-Guo Fu

    Full Text Available OBJECTIVE: K(Ca3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of K(Ca3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. METHODS & MATERIALS: Rat mesangial cells were cultured together with TGF-β1 (2 ng/ml and TGF-β1 (2 ng/ml + TRAM-34 (16 nM separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of K(Ca3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of K(Ca3.1, α-smooth muscle actin (α-SMA and fibroblast-specific protein-1 (FSP-1 were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA and Student-Newman-Keuls-q test (SNK-q were used to do statistical analysis. Statistical significance was considered at P<0.05. RESULTS: Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of K(ca3.1, α-SMA and FSP-1 were elevated under the induction of TGF-β1 when compared to the control and decreased under the induction of TGF-β1+TRAM-34 when compared to the TGF-β1 induced (P<0.05 or P<0.01. CONCLUSION: Targeted disruption of K(Ca3.1 inhibits TGF-β1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.

  3. Quercetin Inhibits Pacemaker Potentials via Nitric Oxide/cGMP-Dependent Activation and TRPM7/ANO1 Channels in Cultured Interstitial Cells of Cajal from Mouse Small Intestine

    Directory of Open Access Journals (Sweden)

    Huijin Gim

    2015-04-01

    Full Text Available Background: Quercetin regulates gastrointestinal (GI motor activity but the molecular mechanism involved has not been determined. The authors investigated the effects of quercetin, a flavonoid present in various foods, on the pacemaker activities of interstitial cells of Cajal (ICCs in murine small intestine in vitro and on GI motility in vivo. Materials and Methods: Enzymatic digestion was used to dissociate ICCs from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials in cultured ICCs in the absence or presence of quercetin and to record membrane currents of transient receptor potential melastatin (TRPM 7 or transmembrane protein 16A (Tmem16A, anoctamin1 (ANO1 overexpressed in human embryonic kidney (HEK 293 cells. The in vivo effects of quercetin on GI motility were investigated by measuring the intestinal transit rates (ITRs of Evans blue in normal mice. Results: Quercetin (100-200 μM decreased the amplitudes and frequencies of pacemaker activity in a concentration-dependent manner in current clamp mode, but this action was blocked by naloxone (a pan-opioid receptor antagonist and by GDPβS (a GTP-binding protein inhibitor. However, potassium channels were not involved in these inhibitory effects of quercetin. To study the quercetin signaling pathway, we examined the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase, and of RP-8-CPT-cGMPS, an inhibitor of protein kinase G (PKG. These inhibitors blocked the inhibitory effects of quercetin on pacemaker activities. Also, L-NAME (100 μM, a non-selective NO synthase (NOS inhibitor, blocked the effects of quercetin on pacemaker activity and quercetin stimulated cGMP production. Furthermore, quercetin inhibited both Ca2+-activated Cl- channels (TMEM16A, ANO1 and TRPM7 channels. In vivo, quercetin (10-100 mg/kg, p.o. decreased ITRs in normal mice in a dose-dependent manner. Conclusions: Quercetin

  4. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action.

    OpenAIRE

    Schwartz, A; Wu, W. H.; Tucker, E B; Assmann, S M

    1994-01-01

    Abscisic acid (ABA), a plant hormone whose production is stimulated by water stress, reduces the apertures of stomatal pores in the leaf surface, thereby lessening transpirational water loss. It has been thought that inhibition of stomatal opening and promotion of stomatal closure by ABA are initiated by the binding of extracellular ABA to a receptor located in the guard-cell plasma membrane. However, in the present research, we employ three distinct experimental approaches to demonstrate tha...

  5. IgG anti-GalNAc-GD1a antibody inhibits the voltage-dependent calcium channel currents in PC12 pheochromocytoma cells.

    Science.gov (United States)

    Nakatani, Yoshihiko; Nagaoka, Takumi; Hotta, Sayako; Utsunomiya, Iku; Yoshino, Hiide; Miyatake, Tadashi; Hoshi, Keiko; Taguchi, Kyoji

    2007-03-01

    We investigated the effects of IgG anti-GalNAc-GD1a antibodies, produced by immunizing rabbits with GalNAc-GD1a, on the voltage-dependent calcium channel (VDCCs) currents in nerve growth factor (NGF)-differentiated PC12 pheochromocytoma cells. VDCCs currents in NGF-differentiated PC12 cells were recorded using the whole-cell patch-clamp technique. Immunized rabbit serum that had a high titer of anti-GalNAc-GD1a antibodies inhibited the VDCCs currents in the NGF-differentiated PC12 cells (36.0+/-9.6% reduction). The inhibitory effect of this serum was reversed to some degree within 3-4 min by washing with bath solution. Similarly, application of purified IgG from rabbit serum immunized with GalNAc-GD1a significantly inhibited the VDCCs currents in PC12 cells (30.6+/-2.5% reduction), and this inhibition was recovered by washing with bath solution. Furthermore, the inhibitory effect was also observed in the GalNAc-GD1a affinity column binding fraction (reduction of 31.1+/-9.85%), while the GalNAc-GD1a affinity column pass-through fraction attenuated the inhibitory effect on VDCCs currents. Normal rabbit serum and normal rabbit IgG did not affect the VDCCs currents in the PC12 cells. In an immunocytochemical study using fluorescence staining, the PC12 cells were stained using GalNAc-GD1a binding fraction. These results indicate that anti-GalNAc-GD1a antibodies inhibit the VDCCs currents in NGF-differentiated PC12 cells.

  6. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Directory of Open Access Journals (Sweden)

    Carly A Buckner

    Full Text Available Electromagnetic field (EMF exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+ channels. Blocking Ca(2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  7. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition.

    Science.gov (United States)

    Kelly, Mairead; Trudel, Stephanie; Brouillard, Franck; Bouillaud, Frederick; Colas, Julien; Nguyen-Khoa, Thao; Ollero, Mario; Edelman, Aleksander; Fritsch, Janine

    2010-04-01

    Two highly potent and selective cystic fibrosis (CF) transmembrane regulator (CFTR) inhibitors have been identified by high-throughput screening: the thiazolidinone CFTR(inh)-172 [3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]- 2-thioxo-4-thiazolidinone] and the glycine hydrazide GlyH-101 [N-(2-naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide]. Inhibition of the CFTR chloride channel by these compounds has been suggested to be of pharmacological interest in the treatment of secretory diarrheas and polycystic kidney disease. In addition, functional inhibition of CFTR by CFTR(inh)-172 has been proposed to be sufficient to mimic the CF inflammatory profile. In the present study, we investigated the effects of the two compounds on reactive oxygen species (ROS) production and mitochondrial membrane potential in several cell lines: the CFTR-deficient human lung epithelial IB3-1 (expressing the heterozygous F508del/W1282X mutation), the isogenic CFTR-corrected C38, and HeLa and A549 as non-CFTR-expressing controls. Both inhibitors were able to induce a rapid increase in ROS levels and depolarize mitochondria in the four cell types, suggesting that these effects are independent of CFTR inhibition. In HeLa cells, these events were associated with a decrease in the rate of oxygen consumption, with GlyH-101 demonstrating a higher potency than CFTR(inh)-172. The impact of CFTR inhibitors on inflammatory parameters was also tested in HeLa cells. CFTR(inh)-172, but not GlyH-101, induced nuclear translocation of nuclear factor-kappaB (NF-kappaB). CFTR(inh)-172 slightly decreased interleukin-8 secretion, whereas GlyH-101 induced a slight increase. These results support the conclusion that CFTR inhibitors may exert nonspecific effects regarding ROS production, mitochondrial failure, and activation of the NF-kappaB signaling pathway, independently of CFTR inhibition.

  8. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  9. Reciprocal inhibition of the AMPA and NMDA components of excitatory postsynaptic potentials in field CA1 of the rat hippocampus in vitro.

    Science.gov (United States)

    Bazhenov, A V; Kleshchevnikov, A M

    1999-01-01

    The mutual effects of components of excitatory postsynaptic potentials (EPSP) induced by activation of glutamate receptors sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were studied on living slices of rat hippocampus. Evoked responses were recorded in the radial layer (stratum radialis) in field CA1 after stimulation of collateral-commissural fibers. The contribution of the NMDA component to the total EPSP was altered by extracellular application of solutions containing different concentrations of magnesium. At low magnesium concentrations, when both components made significant contributions to EPSP, inhibition of one of the components by application of antagonists of the appropriate receptors led to increases in the area of the other component. Thus, the total magnitude of pharmacologically isolated components were significantly greater than the control response (for example, at 0.1 mM magnesium, the sum of the components was 340 +/- 120% of the control two-component EPSP (p EPSP inhibit each other. The mutual inhibition of components may be an important factor affecting the conductivity and plastic properties of central glutamatergic synaptic pathways.

  10. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  11. Poly(ethylene glycol-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells.

    Directory of Open Access Journals (Sweden)

    Rikuo Ochi

    Full Text Available Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol cholesteryl ether (PEG-cholesterol is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca(2+ channel currents (I(Ca,L recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of ICa,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD caused inhibition of I(Ca,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased I(Ca,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased I(Ca,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window I(Ca,L more strongly as compared with cholesterol (MβCD. Poly(ethylene glycol conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of I(Ca,L.

  12. Effect of helium-neon laser on fast excitatory postsynaptic potential (f-EPSP) of neurons in the isolated rat superior cervical ganglia

    Science.gov (United States)

    Hua, Mo; Ping, He; Ning, Mo

    2002-06-01

    Single electrical stimulation of the cervical sympathetic trunk elicits in the ganglion cells an excitatory postsynaptic potential (EPSP) or multiple EPSPs of varying latencies, among which a fast excitatory postsynaptic potential (f-EPSP) is the main type of ganglionic transmission in the sympathetic neurons. In previous work, we studied the effects of Helium-Neon laser with wavelength 632.8 nm on membrane conductance of neurons with stable f- EPSP in isolated rat superior cervical ganglia. The aim of this study is to further measure the effect of Helium-Neon Laser with wavelength 632.8 nm on fast excitatory postsynaptic potential of postganglionic neurons in the isolated rate superior cervical ganglia by means of intracellular recording techniques. The neurons with fast excitatory postsynaptic potential were irradiated by different power densities (1 and 5 mW/cm2), pulse frequency of 1 Hz laser. Irradiated by the 2 mW/cm2 laser, the amplitude of the f-EPSP could augment (PEPSP could descend and lasted for 3- 8 minutes later.

  13. Synaptic plasticity and the analysis of the field-EPSP as well as the population spike using separate recording electrodes in the dentate gyrus in freely moving rats.

    Science.gov (United States)

    Frey, Sabine; Frey, Julietta U

    2009-10-30

    Commonly, synaptic plasticity events such as long-term potentiation (LTP) are investigated by using a stimulation electrode and a single, monopolar field recording electrode in the dentate gyrus in intact, freely moving rats. The recording electrode is mostly positioned in the granular cell layer, or the hilar region of the dentate gyrus, i.e. far away from the place of generation of monosynaptic postsynaptic excitatory potentials (EPSP). Since LTP is a synaptic phenomenon and field recordings far away from the activated synapses do not guarantee a specific interpretation of the overlaid, mixture of complex potentials of several different electrical fields it is often difficult or even impossible to interpret the data obtained by such a single recording electrode. Therefore, at least a separate or two recording electrodes should be used to record the EPSP as well as the spike, respectively, ideally at their places of generation. Here, we describe a method by implanting a chronic bipolar recording electrode which fulfils the above requirements by recording the field-EPSP as well as the population spike at their places of generation and describe the time course of LTP measured using this "double-recording" electrode. We show that different tetanization protocols resulted in EPSP- or population spike-LTP but only if the potentials were recorded by electrodes positioned within adequate places of potential generation. Interestingly, the commonly used recording in the hilus of a distinct part of a potential, mistakenly analyzed as an "EPSP" did not reveal any LTP.

  14. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide.

    Science.gov (United States)

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-04-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop-weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop-weed hybrids produced 48-125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression.

  15. Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels.

    Science.gov (United States)

    Lee, Moonhee; Jantaratnotai, Nattinee; McGeer, Edith; McLarnon, James G; McGeer, Patrick L

    2011-01-19

    Mg(2+) is a known antagonist of some Ca(2+) ion channels. It may therefore be able to counteract the toxic consequences of excessive Ca(2+) entry into immune-type cells. Here we examined the effects of Mg(2+) on inflammation induced by Ca(2+) influx into microglia and THP-1 cells following activation of purinergic receptors. Using tissue culture, an inflammatory response was induced by treatment with either the P2X7 purinergic receptor agonist 2',3'-[benzoyl-4-benzoyl]-ATP (BzATP) or the P2Y2,4 receptor agonist uridine 5'-triphosphate (UTP). Both microglia and THP-1 cells expressed the mRNAs for these receptors. Treatment produced a rapid rise in intracellular Ca(2+) which was significantly reduced by Mg(2+) or the calcium chelator BAPTA-AM. Purinergic receptor stimulation activated the intracellular inflammatory pathway P38 MAP kinase and NFκB. This caused release of TNFα, IL-6, nitrite ions and other materials that are neurotoxic to SH-SY5Y cells. These effects were all ameliorated by Mg(2+). They were also partly ameliorated by the P2X7R antagonists, oxATP and KN-62, the P2YR antagonist MRS2179, and the store operated Ca(2+) channel blocker, SK96365. These results indicate that elevated Mg(2+) is a broad spectrum inhibitor of Ca(2+) entry into microglia or THP-1 cells. Mg(2+) administration may be a strategy for reducing the damaging consequences Ca(2+) induced neuroinflammation in degenerative neurological disorders such as Alzheimer disease and Parkinson disease.

  16. Transient Receptor Potential Channel and Interleukin-17A Involvement in LTTL Gel Inhibition of Bone Cancer Pain in a Rat Model.

    Science.gov (United States)

    Wang, Juyong; Zhang, Ruixin; Dong, Changsheng; Jiao, Lijing; Xu, Ling; Liu, Jiyong; Wang, Zhengtao; Lao, Lixing

    2015-07-01

    Cancer pain management is a challenge for which Chinese herbal medicine might be useful. To study the spinal mechanisms of the Chinese medicated gel Long-Teng-Tong-Luo (LTTL), a 7-herb compound, on bone cancer pain, a bone cancer pain model was made by inoculating the tibias of female rats with Walker 256 cells. LTTL gel or inert gel, 0.5 g/cm(2)/d, was applied to the skin of tumor-bearing tibias for 21 days beginning a day after the inoculation. Mechanical threshold and paw withdrawal latency to thermal stimulation was measured. Transient receptor potential (TRP) cation channels in lumbar dorsal root ganglia (DRG) were immunostained and counted, and lumbar spinal cord interleukin-17A (IL-17A) was measured with real-time polymerase chain reaction and enzyme-linked immunosorbent assay. TRP antagonists and interleukin (IL)-17A antibodies were intrathecally administered to determine their effects on bone cancer pain. The gel significantly (P gel inhibits cancer pain, and this might be accounted for by the decrease in expression of DRG TRP channels and spinal astrocyte IL-17A.

  17. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption.

    Science.gov (United States)

    Li, Li; Wang, Fei; Wei, Xing; Liang, Yi; Cui, Yuanting; Gao, Feng; Zhong, Jian; Pu, Yunfei; Zhao, Yu; Yan, Zhencheng; Arendshorst, William J; Nilius, Bernd; Chen, Jing; Liu, Daoyan; Zhu, Zhiming

    2014-08-01

    High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.

  18. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis.

    Science.gov (United States)

    Everaerts, Wouter; Zhen, Xiaoguang; Ghosh, Debapriya; Vriens, Joris; Gevaert, Thomas; Gilbert, James P; Hayward, Neil J; McNamara, Colleen R; Xue, Fenqin; Moran, Magdalene M; Strassmaier, Timothy; Uykal, Eda; Owsianik, Grzegorz; Vennekens, Rudi; De Ridder, Dirk; Nilius, Bernd; Fanger, Christopher M; Voets, Thomas

    2010-11-02

    Reduced functional bladder capacity and concomitant increased micturition frequency (pollakisuria) are common lower urinary tract symptoms associated with conditions such as cystitis, prostatic hyperplasia, neurological disease, and overactive bladder syndrome. These symptoms can profoundly affect the quality of life of afflicted individuals, but available pharmacological treatments are often unsatisfactory. Recent work has demonstrated that the cation channel TRPV4 is highly expressed in urothelial cells and plays a role in sensing the normal filling state of the bladder. In this article, we show that the development of cystitis-induced bladder dysfunction is strongly impaired in Trpv4(-/-) mice. Moreover, we describe HC-067047, a previously uncharacterized, potent, and selective TRPV4 antagonist that increases functional bladder capacity and reduces micturition frequency in WT mice and rats with cystitis. HC-067047 did not affect bladder function in Trpv4(-/-) mice, demonstrating that its in vivo effects are on target. These results indicate that TRPV4 antagonists may provide a promising means of treating bladder dysfunction.

  19. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.

    Science.gov (United States)

    Valenzuela, Fermín; García-Saisó, Sebastián; Lemini, Cristina; Ramírez-Solares, Rafael; Vidrio, Horacio; Mendoza-Fernández, Víctor

    2005-08-01

    Clinically metamizol (MZ) has been related to alteration on haemodynamic parameters and modifications on blood pressure in humans when administered intravenously. These effects have been observed at MZ therapeutic doses. Experimentally, MZ is able to induce relaxation on several types of vascular smooth muscles and modulates the contraction induced by phenylephrine. However, the mechanism underlying the MZ effects on vascular reactivity is not clear. Potassium channels (K) present on vascular smooth muscle cells closely regulate the vascular reactivity and membrane potential. There are four described types of K in vascular tissue: K voltage sensitive (K(V)), K calcium sensitive (K(Ca)2+), K ATP sensitive (K(ATP) and K inward rectification (K(IR), voltage sensitive). The aim of this work was to investigate MZ effects on angiotensin II (AT II) and noradrenaline (NA) induced contraction and to evaluate the K participation on MZ modulating effect on vascular smooth muscle contraction, using isometric and patch clamp techniques. MZ induces relaxation in a concentration dependent manner. Furthermore, MZ strongly inhibits in a concentration dependent fashion the contraction induced by AT II. However, MZ inhibition on NA induced contraction was moderated compared with that observed on AT II. MZ effects on AT II induced contraction was blocked by glybenclamide (a specific K(ATP) blocker, 3 microM, *p < 0.01). In patch clamp experiments, MZ (3 mM) induces an increase on potassium current (K+) mediated by K(ATP) in similar way as diazoxide (a specific K(ATP) opener, 3 microM). Our results suggest that MZ induces relaxation and inhibits contraction induced by AT II acting as a K(ATP) opener.

  20. Inhibition of cell proliferation by a selective inhibitor of the Ca{sup 2+}-activated Cl{sup -} channel, Ano1

    Energy Technology Data Exchange (ETDEWEB)

    Mazzone, Amelia; Eisenman, Seth T.; Strege, Peter R. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Yao, Zhen [Laboratory of Molecular Genetics, UCSF, San Francisco, CA (United States); Ordog, Tamas; Gibbons, Simon J. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Farrugia, Gianrico, E-mail: farrugia.gianrico@mayo.edu [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer T16A{sub inh}-A01 blocked Ano1 currents in HEK cells expressing Ano1. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation in ICC primary cultures and CFPAC-1 cell line. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation of ICC in intact smooth muscle strips. -- Abstract: Background: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca{sup 2+}-activated Cl{sup -} channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16A{sub inh}-A01 as a specific inhibitor of Ano1. Aim: To investigate the effect of the T16A{sub inh}-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. Methods: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16A{sub inh}-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. Results: T16A{sub inh}-A01 inhibited Ca{sup 2+}-activated Cl{sup -} currents by 60% at 10 {mu}M in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures

  1. Purification of EPSP Synthase from Bean Seedlings and Its Properties%菜豆幼苗EPSP合成酶的分离纯化和它的部分性质

    Institute of Scientific and Technical Information of China (English)

    向文胜; 陶波; 王相晶; 张文吉

    2000-01-01

    利用硫酸铵分级沉淀,Sephedex G-50凝胶柱层析,FPLC Mono-Q和磷酸纤维素离子层析法从菜豆幼苗中分离提纯了EPSP合成酶。该酶被纯化2 961.6倍,比活性达到6 219.4 nmol mg-1蛋白min-1。该酶分子量经SDS-PAGE检测为51 kD,等电点为pH 5.7,酶促反应最适pH 7.5,最适温度45℃。6.2μmol/L的除草剂草甘膦能抑制EPSP合成酶活性的50%。%EPSP synthase from bean seedlings was purified by sequential ammonium-sulphate precipitation, Sephadex G-50 (Fig.1) and FPLC Mono-Q chromatography (Fig.2) and substrate elution from cellulose phosphate column (Fig.3). The degree of purification was 2 961.6 fold. The specific activity was 6 219.4 nmol mg-1 protein min-1 (Table 1). The molecular weight was determined to be 51 kD by SDS-polyacrylamide gel eleetrophoresis (Fig. 4). The pH optimum (Fig.6), temperature optimum (Fig.7) and isoelectric point (Fig.5) of the purified EPSP synthase were 7.5, 45℃ and pH 5.5, respectively. Enzyme activity was inhibited approximately 50% by herbicide glyphosate 6.2 μmol/L (Fig.8).

  2. Postactivation depression of the Ia EPSP in motoneurons is reduced in both the G127X SOD1 model of amyotrophic lateral sclerosis and in aged mice

    DEFF Research Database (Denmark)

    Hedegaard, Anne; Lehnhoff, Janna; Moldovan, Mihai

    2015-01-01

    Post Activation Depression (PActD) of Ia afferent EPSPs in spinal motoneurons results in a long lasting depression of the stretch reflex. PActD is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult...... Sclerosis (ALS). Using the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both pre-symptomatic (16% depression) and symptomatic (17.3% depression) time points compared to aged-matched controls (22...

  3. Computational modeling of voltage-gated Ca channels inhibition: identification of different effects on uterine and cardiac action potentials

    Directory of Open Access Journals (Sweden)

    Wing Chiu eTong

    2014-10-01

    Full Text Available The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs. Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models – of uterine smooth muscle cells (USMC, cardiac sinoatrial node cells (SAN and ventricular cells – to investigate the relative effects of reducing two important voltage-gated Ca currents – the L-type (ICaL and T-type (ICaT Ca currents. Reduction of ICaL (10% alone, or ICaT (40% alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine

  4. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.

    Science.gov (United States)

    Woo, Joohan; Shin, Dong Hoon; Kim, Hyun Jong; Yoo, Hae Young; Zhang, Yin-Hua; Nam, Joo Hyun; Kim, Woo Kyung; Kim, Sung Joon

    2016-08-01

    TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (P2 suggests the existence of dual regulatory modes that depend on PI(4,5)P2 concentration.

  5. Inhibition of lysosomal degradation rescues pentamidine-mediated decreases of K(IR)2.1 ion channel expression but not that of K(v)11.1.

    Science.gov (United States)

    Nalos, Lukas; de Boer, Teun P; Houtman, Marien J C; Rook, Martin B; Vos, Marc A; van der Heyden, Marcel A G

    2011-02-10

    The antiprotozoal drug pentamidine inhibits two types of cardiac rectifier potassium currents, which can precipitate life-threatening arrhythmias. Here, we use pentamidine as a tool to investigate whether a single drug affects trafficking of two structurally different potassium channels by identical or different mechanisms, and whether the adverse drug effect can be suppressed in a channel specific fashion. Whole cell patch clamp, Western blot, real time PCR, and confocal laser scanning microscopy were used to determine potassium current density, ion channel protein levels, mRNA expression levels, and subcellular localization, respectively. We demonstrate that pentamidine inhibits delayed (I(Kr)) and inward (I(K1)) rectifier currents in cultured adult canine cardiomyocytes. In HEK293 cells, pentamidine inhibits functional K(v)11.1 channels, responsible for I(Kr), by interfering at the level of full glycosylation, yielding less mature form of K(v)11.1 at the plasma membrane. In contrast, total K(IR)2.1 expression levels, underlying I(K1), are strongly decreased, which cannot be explained from mRNA expression levels. No changes in molecular size of K(IR)2.1 protein were observed, excluding interference in overt glycosylation. Remaining K(IR)2.1 protein is mainly expressed at the plasma membrane. Inhibition of lysosomal protein degradation is able to partially rescue K(IR)2.1 levels, but not those of K(v)11.1. We conclude that 1) a single drug can interfere in cardiac potassium channel trafficking in a subtype specific mode and 2) adverse drug effects can be corrected in a channel specific manner.

  6. Inhibition of T-Type Voltage Sensitive Calcium Channel Reduces Load-Induced OA in Mice and Suppresses the Catabolic Effect of Bone Mechanical Stress on Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Padma P Srinivasan

    Full Text Available Voltage-sensitive calcium channels (VSCC regulate cellular calcium influx, one of the earliest responses to mechanical stimulation in osteoblasts. Here, we postulate that T-type VSCCs play an essential role in bone mechanical response to load and participate in events leading to the pathology of load-induced OA. Repetitive mechanical insult was used to induce OA in Cav3.2 T-VSCC null and wild-type control mouse knees. Osteoblasts (MC3T3-E1 and chondrocytes were treated with a selective T-VSCC inhibitor and subjected to fluid shear stress to determine how blocking of T-VSCCs alters the expression profile of each cell type upon mechanical stimulation. Conditioned-media (CM obtained from static and sheared MC3T3-E1 was used to assess the effect of osteoblast-derived factors on the chondrocyte phenotype. T-VSCC null knees exhibited significantly lower focal articular cartilage damage than age-matched controls. In vitro inhibition of T-VSCC significantly reduced the expression of both early and late mechanoresponsive genes in osteoblasts but had no effect on gene expression in chondrocytes. Furthermore, treatment of chondrocytes with CM obtained from sheared osteoblasts induced expression of markers of hypertrophy in chondrocytes and this was nearly abolished when osteoblasts were pre-treated with the T-VSCC-specific inhibitor. These results indicate that T-VSCC plays a role in signaling events associated with induction of OA and is essential to the release of osteoblast-derived factors that promote an early OA phenotype in chondrocytes. Further, these findings suggest that local inhibition of T-VSCC may serve as a therapy for blocking load-induced bone formation that results in cartilage degeneration.

  7. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites.

    Science.gov (United States)

    Stanić, Marina; Križak, Strahinja; Jovanović, Mirna; Pajić, Tanja; Ćirić, Ana; Žižić, Milan; Zakrzewska, Joanna; Cvetić Antić, Tijana; Todorović, Nataša; Živić, Miroslav

    2017-01-18

    Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 or 500 µM NFA, for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line, and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5% and 21±3% of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.

  8. Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B

    Directory of Open Access Journals (Sweden)

    Thomas Olivier P

    2011-01-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG neurons obtained from Wistar rats. Results Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase, and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ Conclusions To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.

  9. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.

    Science.gov (United States)

    Berecki, Géza; Motin, Leonid; Adams, David J

    2016-01-01

    Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human μ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba(2+) currents (IBa). Selective agonists of μ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via μ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein βγ (Gβγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5'-[β-thio]diphosphate trilithium salt and guanosine 5'-[γ-thio]triphosphate tetralithium salt. Coexpression of Gβγ-specific scavengers-namely, the carboxyl terminus of the G protein-coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin-attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gβγ subunits in a voltage-independent manner.

  10. Inhibition of cystathionine β-synthetase suppresses sodium channel activities of dorsal root ganglion neurons of rats with lumbar disc herniation

    Science.gov (United States)

    Yan, Jun; Hu, Shufen; Zou, Kang; Xu, Min; Wang, Qianliang; Miao, Xiuhua; Yu, Shan Ping; Xu, Guang-Yin

    2016-01-01

    The pathogenesis of pain in lumbar disc herniation (LDH) remains poorly understood. We have recently demonstrated that voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons were sensitized in a rat model of LDH. However, the detailed molecular mechanism for sensitization of VGSCs remains largely unknown. This study was designed to examine roles of the endogenous hydrogen sulfide synthesizing enzyme cystathionine β-synthetase (CBS) in sensitization of VGSCs in a previously validated rat model of LDH. Here we showed that inhibition of CBS activity by O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA) significantly attenuated pain hypersensitivity in LDH rats. Administration of AOAA also reduced neuronal hyperexcitability, suppressed the sodium current density, and right-shifted the V1/2 of the inactivation curve, of hindpaw innervating DRG neurons, which is retrogradely labeled by DiI. In vitro incubation of AOAA did not alter the excitability of acutely isolated DRG neurons. Furthermore, CBS was colocalized with NaV1.7 and NaV1.8 in hindpaw-innervating DRG neurons. Treatment of AOAA markedly suppressed expression of NaV1.7 and NaV1.8 in DRGs of LDH rats. These data suggest that targeting the CBS-H2S signaling at the DRG level might represent a novel therapeutic strategy for chronic pain relief in patients with LDH. PMID:27905525

  11. The EPSPS Pro106Ser substitution solely accounts for glyphosate resistance in a goosegrass (Eleusine indica) population from Tennessee, United States

    Institute of Scientific and Technical Information of China (English)

    Janel L Huffman; Chance W Riggins; Lawrence E Steckel; Patrick J Tranel

    2016-01-01

    Previous studies have documented the occurrence of glyphosate-resistant (GR) goosegrass (Eleusine indica (L.) Gaertn.) and, in at least some cases, resistance is due to an altered target site. Research was performed to determine if an altered target site was responsible for GR in a Tennessee, United States goosegrass population (TennGR). DNA sequencing revealed a mutation in TennGR plants conferring the Pro106Ser 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) substitution previously identiifed in other GR populations. F2 populations were derived from TennGR plants crossed with plants from a glyphosate-susceptible population (TennGS) and analyzed for their response to glyphosate and genotyped at the EPSPS locus. Plants from the F2 populations segregated 1:2:1 sensitive:intermediate:resistant in response to a selec-tive dose of glyphosate, and these responses co-segregated with the EPSPS genotypes (PP106, PS106, and SS106). To separately investigate the effect of the Pro106Ser substitution on GR, glyphosate dose-response curves and 50% effective dose (ED50) values were compared among the three genotypes and the two parental populations. The SS106 genotype was 3.4-fold resistant relative to the PP106 genotype, identical to the resistance level obtained when comparing the resistant and susceptible parental populations. We conclude that the mutation conferring a Pro106Ser EPSPS mutation is solely responsible for GR in the TennGR goosegrass population.

  12. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    Energy Technology Data Exchange (ETDEWEB)

    Ocana, Mireia Fernandez [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)], E-mail: Mireia.FernandezOcana@pfizer.com; Fraser, Paul D. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Patel, Raj K.P.; Halket, John M. [Specialist Bioanalytical Services Ltd., Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Bramley, Peter M. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)

    2009-02-16

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  13. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    Science.gov (United States)

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-02-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.

  14. Evidence for a common pharmacological interaction site on K(Ca)2 channels providing both selective activation and selective inhibition of the human K(Ca)2.1 subtype

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Hammami, Sofia; Eriksen, Birgitte L;

    2012-01-01

    ]pyrimidines, act either as activators or as inhibitors of the human K(Ca)2.1 channel. Whereas (-)-CM-TPMF activates K(Ca)2.1 with an EC(50) value of 24 nM, (-)-B-TPMF inhibits the channel with an IC(50) value of 31 nM. In contrast, their (+)-enantiomers are 40 to 100 times less active. Both (-)-CM-TPMF and (-)-B......-TPMF are subtype-selective, with 10- to 20-fold discrimination toward other K(Ca)2 channels and the K(Ca)3 channel. Coapplication experiments reveal competitive-like functional interactions between the effects of (-)-CM-TPMF and (-)-B-TPMF. Despite belonging to a different chemical class than GW542573X, the K(Ca)2......-TPMF is 10 times more potent on K(Ca)2.1 than NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime), an unselective but hitherto the most potent K(Ca)3/K(Ca)2 channel activator. (-)-B-TPMF is the first small-molecule inhibitor with significant selectivity among the K(Ca)2 channel subtypes. In contrast to peptide...

  15. Kindling induces transient fast inhibition in the dentate gyrus--CA3 projection.

    Science.gov (United States)

    Gutiérrez, R; Heinemann, U

    2001-04-01

    The granule cells of the dentate gyrus (DG) send a strong glutamatergic projection, the mossy fibre tract, toward the hippocampal CA3 field, where it excites pyramidal cells and neighbouring inhibitory interneurons. Despite their excitatory nature, granule cells contain small amounts of GAD (glutamate decarboxylase), the main synthetic enzyme for the inhibitory transmitter GABA. Chronic temporal lobe epilepsy results in transient upregulation of GAD and GABA in granule cells, giving rise to the speculation that following overexcitation, mossy fibres exert an inhibitory effect by release of GABA. We therefore stimulated the DG and recorded synaptic potentials from CA3 pyramidal cells in brain slices from kindled and control rats. In both preparations, DG stimulation caused excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) sequences. These potentials could be completely blocked by glutamate receptor antagonists in control rats, while in the kindled rats, a bicuculline-sensitive fast IPSP remained, with an onset latency similar to that of the control EPSP. Interestingly, this IPSP disappeared 1 month after the last seizure. When synaptic responses were evoked by high-frequency stimulation, EPSPs in normal rats readily summate to evoke action potentials. In slices from kindled rats, a summation of IPSPs overrides that of the EPSPs and reduces the probability of evoking action potentials. Our data show for the first time that kindling induces functionally relevant activity-dependent expression of fast inhibition onto pyramidal cells, coming from the DG, that can limit CA3 excitation in a frequency-dependent manner.

  16. EPSPS基因克隆及其表达载体的构建%Cloning of EPSPS gene and construction of its expression vector

    Institute of Scientific and Technical Information of China (English)

    谢鸿锴; 禤维言; 王磊; 冯斗

    2012-01-01

    [Objective]This research aimed to clone EPSPS gene of soybean and construct its expression vector in order to provide the theoretical basis and the technical reservation for the cultivation of glyphosate-resistant crop.[Method]The total genome of glyphosate-resistant soybean was used as templates.The EPSPS gene was amplified,and its plant expression vector,PCAMBIA1300-UBI-GFP-EPSPS,was constructed; afterwards,it was translated into Agrobacterium tumefaciens in order to carry out the crop's genetic transformation.[Result]The full-length of the amplified EPSPS gene was 1368 bp,which encoded 455 amino acids.The sequencing result showed the identical CDS sequence as the known one in GenBank (AF464188.1).The plant expression vector of EPSPS was constructed successfully and translated into Agrobacterium tumefaciens EHA105.[Conclusion]After its genetic transformation,this expression vector could be used for glyphosate-resistant trait improvements in sweet sorghum and other monocotyledon crops.%[目的]克隆大豆EPSPS基因并构建其表达载体,为培育抗草甘膦作物提供理论基础和技术储备.[方法]以抗草甘膦大豆总基因组为模板,扩增EPSPS基因,构建EPSPS基因的植物表达载体PCAMBIA1300-UBI-GFP-EPSPS,并导入农杆菌,使其能够进行作物的遗传转化.[结果]扩增获得EPSP基因全长1368 bp,共编码455个氨基酸.测序结果表明,其与GenBank(AF464188.1)中已知的CDS序列完全一致,成功构建了EPSPS值物表达载体,并将其导入农杆菌菌株EHA105中.[结论]构建的表达载体可用于甜高粱等单子叶作物抗草甘膦性状的遗传改良.

  17. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses

    DEFF Research Database (Denmark)

    Haugaard, Maria Mathilde; Hesselkilde, Eva Zander; Pehrson, Steen Michael

    2015-01-01

    BACKGROUND: Small-conductance calcium-activated potassium (SK) channels have been found to play an important role in atrial repolarization and atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to investigate the existence and functional role of SK channels in the equine heart...

  18. Postactivation depression of the Ia EPSP in motoneurons is reduced in both the G127X SOD1 model of amyotrophic lateral sclerosis and in aged mice.

    Science.gov (United States)

    Hedegaard, A; Lehnhoff, J; Moldovan, M; Grøndahl, L; Petersen, N C; Meehan, C F

    2015-08-01

    Postactivation depression (PActD) of Ia afferent excitatory postsynaptic potentials (EPSPs) in spinal motoneurons results in a long-lasting depression of the stretch reflex. This phenomenon (PActD) is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult mice, we demonstrate that PActD in adult (100-220 days old) C57BL/6J mice is both qualitatively and quantitatively similar to that which has been observed in larger animals with respect to both the magnitude (with ∼20% depression of EPSPs at 0.5 ms after a train of stimuli) and the time course (returning to almost normal amplitudes by 5 ms after the train). This validates the use of mouse models to study PActD. Changes in such excitatory inputs to spinal motoneurons may have important implications for hyperreflexia and/or glutamate-induced excitotoxicity in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). With the use of the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both presymptomatic (16% depression) and symptomatic (17.3% depression) time points compared with aged-matched controls (22.4% depression). The PActD reduction was not markedly altered by symptom onset. Comparing these PActD changes at the EPSP with the known effect of the depression on the monosynaptic reflex, we conclude that this is likely to have a much larger effect on the reflex itself (a 20-40% difference). Nevertheless, it should also be accounted that in aged (580 day old) C57BL/6J mice there was also a reduction in PActD although, aging is not usually associated with spasticity.

  19. Optical mapping reveals developmental dynamics of Mg2+-/APV-sensitive components of glossopharyngeal glutamatergic EPSPs in the embryonic chick NTS.

    Science.gov (United States)

    Sato, Katsushige; Momose-Sato, Yoko

    2004-10-01

    To examine whether there are any differences in functional organization between the glossopharyngeal nerve (N. IX)- and vagus nerve (N. X)-projecting areas in the nucleus of the tractus solitarius (NTS), we performed optical recording of neural responses evoked by N. IX stimulation in 5- to 9-day-old embryonic chick brain stem preparations and compared the results with those in our previous studies concerning the N. X-related NTS. First, we investigated DL-2-amino-5-phosphonovaleric acid (APV)/Mg2+ sensitivity of the glutamatergic excitatory postsynaptic potentials (EPSPs) in the N. IX-related NTS. In 7- to 9-day-old preparations, we found regional differences in the degree of both the APV-induced reduction and Mg2+-free-induced enhancement of the EPSPs. We constructed developmental maps of spatial patterns of the APV- and Mg2+-sensitive components and showed that functional expression of the N-methyl-D-aspartate (NMDA) receptor dynamically changed during development. Second, we studied initial expression of synaptic functions in the N. IX-related NTS. In 6-day-old preparations, although action potentials alone were usually detected in normal Ringer solution, small EPSPs were elicited in a Mg2+-free solution. This result suggests that the NMDA receptor-mediated synaptic function is latently generated in the N. IX-related NTS at the 6-day-old embryonic stage and that external Mg2+ regulates the onset of synaptic functions. Developmental patterns of APV/Mg2+ sensitivity and the stage of initial expression of the glossopharyngeal EPSP were similar to those of the N. X, suggesting that the developmental sequence of the synaptic function in the NTS is the same for the N. IX- and N. X-related NTS.

  20. Cloning of EPSPS gene and construction oil flax expression vector%EPSPS基因的克隆及油用亚麻表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    张瑜; 党占海; 张建平; 李闻娟; 宋军生; 陈芳; 张琼

    2015-01-01

    以抗草甘膦油菜基因组DNA为模板,PCR扩增抗草甘膦油菜的5-烯醇式丙酮酸莽草酸-3-磷酸合成酶(EPSPS)基因,构建植物表达载体 pBI121-EPSPS,并导入农杆菌进行检测。结果表明:扩增获得EPSPS基因全长1377 bp,共编码459个氨基酸。测序结果表明,其与美国Monsanto公司获得的专利(US5633435)中已知的CDS序列完全一致,表明成功构建了 EPSPS植物表达载体,并将其导入农杆菌菌株 LBA4404中。%EPSPS gene was amplified from transgenic herbicide glyphosate resistant oil flax.The se-quence was constructed into plant express vector pBI1 2 1-EPSPS,which was transferred into Agrobacterium tumefaciens.The results indicated that the full-length of the amplified EPSPS gene was 1 377 bp,which encoded 459 amino acids.The sequencing results showed the identical CDS sequence as the known one in Monsanto’s patent (US5633435).The plant expression vector of EPSPS was constructed successfully and transferred into A.tumefaciens LBA4404.

  1. Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats.

    Science.gov (United States)

    La Fuente, José M; Fernández, Argentina; Cuevas, Pedro; González-Corrochano, Rocío; Chen, Mao Xiang; Angulo, Javier

    2014-07-15

    We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity.

  2. Galanin-induced decreases in nucleus accumbens/striatum EPSPs and morphine conditioned place preference require both GalR1 and GalR2

    Science.gov (United States)

    Einstein, Emily B.; Asaka, Yukiko; Yeckel, Mark F.; Higley, Michael J.; Picciotto, Marina R.

    2013-01-01

    The neuropeptide galanin has been shown to alter the rewarding properties of morphine. To identify potential cellular mechanisms that might be involved in the ability of galanin to modulate opiate reward, we measured excitatory post-synaptic potentials (EPSPs) using both field and whole-cell recordings from striatal brain slices extracted from wild type mice and mice lacking specific galanin receptor (GalR) subtypes. We found that galanin decreases the amplitude of EPSPs in both the dorsal striatum and nucleus accumbens. We then performed recordings in slices from knockout mice lacking either the GalR1 or GalR2 gene and found that the ability of galanin to decrease EPSP amplitude was absent from both mouse lines, suggesting that both receptor subtypes are required for this effect. In order to determine whether behavioral responses to opiates were dependent on the same receptor subtypes, we tested GalR1 and GalR2 mice for morphine conditioned place preference (CPP). Morphine CPP was significantly attenuated in both GalR1 and GalR2 knockout mice. These data suggest that mesolimbic excitatory signaling is significantly modulated by galanin in a GalR1- and GalR2-dependent manner and that morphine CPP is dependent on the same receptor subtypes. PMID:23387435

  3. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct.

    Science.gov (United States)

    Grohmann, Lutz; Brünen-Nieweler, Claudia; Nemeth, Anne; Waiblinger, Hans-Ulrich

    2009-10-14

    Polymerase Chain Reaction (PCR)-based screening methods targeting genetic elements commonly used in genetically modified (GM) plants are important tools for the detection of GM materials in food, feed, and seed samples. To expand and harmonize the screening capability of enforcement laboratories, the German Federal Office of Consumer Protection and Food Safety conducted collaborative trials for interlaboratory validation of real-time PCR methods for detection of the phosphinothricin acetyltransferase (bar) gene from Streptomyces hygroscopicus and a construct containing the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens sp. strain CP4 (ctp2-cp4epsps), respectively. To assess the limit of detection, precision, and accuracy of the methods, laboratories had to analyze two sets of 18 coded genomic DNA samples of events LLRice62 and MS8 with the bar method and NK603 and GT73 with the ctp2-cp4epsps method at analyte levels of 0, 0.02, and 0.1% GM content, respectively. In addition, standard DNAs were provided to the laboratories to generate calibration curves for copy number quantification of the bar and ctp2-cp4epsps target sequences present in the test samples. The study design and the results obtained are discussed with respect to the difficult issue of developing general guidelines and concepts for the collaborative trial validation of qualitative PCR screening methods.

  4. Impaired fast-spiking, suppressed cortical inhibition and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins

    OpenAIRE

    Lau, David; Vega-Saenz de Miera, Eleazar; Contreras, Diego; Ozaita Mintegui, Andrés, 1969-; Harvey, Michael; Chow, Alan; Noebels, Jeffrey L; Paylor, Richard; Morgan, James I.; Leonard, Christopher S.; Rudy, Bernardo

    2000-01-01

    Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidenc...

  5. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.

    Science.gov (United States)

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-07-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.

  6. Modulation of synaptic potentials and cell excitability by dendritic KIR and KAS channels in nucleus accumbens medium spiny neurons: A computational study

    Indian Academy of Sciences (India)

    Jessy John; Rohit Manchanda

    2011-06-01

    The nucleus accumbens (NAc), a critical structure of the brain reward circuit, is implicated in normal goal-directed behaviour and learning as well as pathological conditions like schizophrenia and addiction. Its major cellular substrates, the medium spiny (MS) neurons, possess a wide variety of dendritic active conductances that may modulate the excitatory post synaptic potentials (EPSPs) and cell excitability. We examine this issue using a biophysically detailed 189-compartment stylized model of the NAc MS neuron, incorporating all the known active conductances. We find that, of all the active channels, inward rectifying K+ (KIR) channels play the primary role in modulating the resting membrane potential (RMP) and EPSPs in the down-state of the neuron. Reduction in the conductance of KIR channels evokes facilitatory effects on EPSPs accompanied by rises in local input resistance and membrane time constant. At depolarized membrane potentials closer to up-state levels, the slowly inactivating A-type potassium channel (KAs) conductance also plays a strong role in determining synaptic potential parameters and cell excitability. We discuss the implications of our results for the regulation of accumbal MS neuron biophysics and synaptic integration by intrinsic factors and extrinsic agents such as dopamine.

  7. Calcium Transients in Dendrites of Neocortical Neurons Evoked by Single Subthreshold Excitatory Postsynaptic Potentials via Low-Voltage-Activated Calcium Channels

    Science.gov (United States)

    Markram, Henry; Sakmann, Bert

    1994-05-01

    Simultaneous recordings of membrane voltage and concentration of intracellular Ca2+ ([Ca2+]_i) were made in apical dendrites of layer 5 pyramidal cells of rat neocortex after filling dendrites with the fluorescent Ca2+ indicator Calcium Green-1. Subthreshold excitatory postsynaptic potentials (EPSPs), mediated by the activation of glutamate receptor channels, caused a brief increase in dendritic [Ca2+]_i. This rise in dendritic [Ca2+]_i was mediated by the opening of low-voltage-activated Ca2+ channels in the dendritic membrane. The results provide direct evidence that dendrites do not function as passive cables even at low-frequency synaptic activity; rather, a single subthreshold EPSP changes the dendritic membrane conductance by opening Ca2+ channels and generating a [Ca2+]_i transient that may propagate towards the soma. The activation of these Ca2+ channels at a low-voltage threshold is likely to influence the way in which dendritic EPSPs contribute to the electrical activity of the neuron.

  8. TPEN, a Specific Zn(2+) Chelator, Inhibits Sodium Dithionite and Glucose Deprivation (SDGD)-Induced Neuronal Death by Modulating Apoptosis, Glutamate Signaling, and Voltage-Gated K(+) and Na(+) Channels.

    Science.gov (United States)

    Zhang, Feng; Ma, Xue-Ling; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Xie, Lai-Hua; Liu, Yan-Qiang

    2017-03-01

    Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn(2+)-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K(+) and Na(+) channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na(+) channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K(+) and Na(+) channels in neurons. Hence, Zn(2+) chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.

  9. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea?

    Science.gov (United States)

    Kiper, Aytug K; Rinné, Susanne; Rolfes, Caroline; Ramírez, David; Seebohm, Guiscard; Netter, Michael F; González, Wendy; Decher, Niels

    2015-05-01

    Atrial fibrillation and obstructive sleep apnea are responsible for significant morbidity and mortality in the industrialized world. There is a high medical need for novel drugs against both diseases, and here, Kv1.5 channels have emerged as promising drug targets. In humans, TASK-1 has an atrium-specific expression and TASK-1 is also abundantly expressed in the hypoglossal motor nucleus. We asked whether known Kv1.5 channel blockers, effective against atrial fibrillation and/or obstructive sleep apnea, modulate TASK-1 channels. Therefore, we tested Kv1.5 blockers with different chemical structures for their TASK-1 affinity, utilizing two-electrode voltage clamp (TEVC) recordings in Xenopus oocytes. Despite the low structural conservation of Kv1.5 and TASK-1 channels, we found all Kv1.5 blockers analyzed to be even more effective on TASK-1 than on Kv1.5. For instance, the half-maximal inhibitory concentration (IC50) values of AVE0118 and AVE1231 (A293) were 10- and 43-fold lower on TASK-1. Also for MSD-D, ICAGEN-4, S20951 (A1899), and S9947, the IC50 values were 1.4- to 70-fold lower than for Kv1.5. To describe this phenomenon on a molecular level, we used in silico models and identified unexpected structural similarities between the two drug binding sites. Kv1.5 blockers, like AVE0118 and AVE1231, which are promising drugs against atrial fibrillation or obstructive sleep apnea, are in fact potent TASK-1 blockers. Accordingly, block of TASK-1 channels by these compounds might contribute to the clinical effectiveness of these drugs. The higher affinity of these blockers for TASK-1 channels suggests that TASK-1 might be an unrecognized molecular target of Kv1.5 blockers effective in atrial fibrillation or obstructive sleep apnea.

  10. Mechanisms of depolarizing inhibition at the crayfish giant motor synapse. II. Quantitative reconstruction.

    Science.gov (United States)

    Edwards, D H

    1990-08-01

    1. The relative strengths of four mechanisms of depolarizing synaptic inhibition described in the previous paper were evaluated with an electrical model of the giant motor synapse (GMS) and postsynaptic region of the motor giant motoneuron (MoG). 2. The model consists of one compartment that represents the presynaptic region of the medial giant (MG) interneuron and three compartments that represent the postsynaptic region and proximal axon of the MoG. The presynaptic MG compartment is linked to a postsynaptic MoG compartment by a rectifying conductance that represents the GMS. Each compartment consists of parallel paths to ground for active and/or passive membrane currents. 3. Parameter values of the model were set so the MG compartment would replicate an MG impulse and the MoG compartments would replicate the current-clamp, voltage-clamp, and synaptic responses of a single MoG neuron described in the previous paper. The Hodgkin-Huxley equations described voltage-sensitive sodium and potassium currents. 4. Comparison of the MoG compartment currents that mediate an inhibited excitatory postsynaptic potential (EPSP) [triggered during a depolarizing inhibitory postsynaptic potential (d-IPSP)] with those of an uninhibited EPSP indicate that all four mechanisms have significant inhibitory effects. Reverse bias of the GMS by the d-IPSP reduced the GMS current by 65 nA (12%). The remaining inward current was further reduced by a 243-nA outward current through the inhibitory postsynaptic conductance. The d-IPSP inactivated sodium conductance so the inward sodium current evoked by the EPSP was reduced by 319 nA (-68%). The d-IPSP reduced the latency for potassium activation by the EPSP so that the outward potassium current coincided with the inward sodium current and reduced the net inward current by 100 nA. Together, these mechanisms reduced the EPSP amplitude by 69%. 5. The resting potential of MoG is normally 15 mV more positive than MG rest potential, but in some

  11. Hippocampal long-term potentiation is not accompanied by presynaptic spike broadening, unlike synaptic potentiation by K+ channel blockers.

    Science.gov (United States)

    Laerum, H; Storm, J F

    1994-02-21

    The expression of hippocampal long-term potentiation (LTP) is thought to be at least partly due to increased transmitter release. To test whether this increase is due to a broadening of the presynaptic action potential, we have compared the presynaptic fibre volley before and after LTP induction, or application of K+ channel blockers, in CA1 of rat hippocampal slices. Tetraethylammonium (TEA; 1 mM) induced a parallel increase in the fibre volley duration of the slope of the field EPSP, indicating that a presynaptic spike broadening underlying synaptic potentiation can be detected. In contrast, induction of LTP did not produce any measurable change in the fibre volley, although the average increase in the EPSP slope was larger than with TEA. These results indicate that LTP expression is not primarily due to a presynaptic spike broadening.

  12. Chemo-nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels

    DEFF Research Database (Denmark)

    Mitrovic, Martina; Shahbazian, Anaid; Bock, Elisabeth;

    2010-01-01

    Transient receptor potential ankyrin 1 (TRPA1) channels are expressed by primary afferent neurones and activated by irritant chemicals including allyl isothiocyanate (AITC). Here we investigated whether intracolonic AITC causes afferent input to the spinal cord and whether this response is modified...

  13. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins.

    Science.gov (United States)

    Lau, D; Vega-Saenz de Miera, E C; Contreras, D; Ozaita, A; Harvey, M; Chow, A; Noebels, J L; Paylor, R; Morgan, J I; Leonard, C S; Rudy, B

    2000-12-15

    Voltage-gated K(+) channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to -10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 -/- mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.

  14. Research on Expression of epsps Gene in Cotton Cell Line Y18 under Glyphosate Stress%棉花品系Y18在草甘膦胁迫下的epsps基因表达分析研究

    Institute of Scientific and Technical Information of China (English)

    刘东军; 张锐; 郭三堆; 孟志刚; 孙国清; 王成社; 张宏纪

    2008-01-01

    5-烯醇丙酮酰-莽草酸-3-磷酸合成酶(5-enolpyruvyl-shikimate-3-phosphate synthase, EPSPS)是植物或微生物体内合成芳香族氨基酸所必需的一个关键酶,但其受广谱性除草剂草甘膦的强烈抑制.通过对草甘膦胁迫下的棉花品系Y18进行研究发现:棉花品系Y18具有两个不同的5-烯醇丙酮酰-莽草酸-3-磷酸合成酶基因epsps1和epsps2,并且两个基因的编码区与其他植物的epsps基因具有较高的同源性,在草甘膦胁迫作用下,棉花的epsps1基因中表达较为稳定,epsps2基因表达量却提高了1.85~2.3倍,初步认为epsps基因的表达量提高是生物在受到胁迫作用时的一种应激反应.

  15. Cloning of 5-enolpyruvylshikimate-3-phosphate Synthase Genes EPSPS from the Upland Cotton and Its Expression in Different Cotton Tissues%陆地棉EPSPS 基因的克隆及其组织特异性表达分析

    Institute of Scientific and Technical Information of China (English)

    童旭宏; 吴玉香; 祝水金

    2009-01-01

    5-烯醇式丙酮莽草酸-3-磷酸合成酶(EPSPS)是莽草酸途径中的一个重要酶,它是非选择性除草剂草甘膦的靶标酶,在高等植物中定位于叶绿体质膜上.根据EST拼接的序列设计引物,从陆地棉品种珂字棉312中获得了全长为1834 bp的cDNA序列,其最大可读框为1565 bp,编码521个氨基酸.陆地棉EPSPS 基因与其它植物中同类酶在氨基酸水平上有广泛的同源性.通过与已知的其它高等植物叶绿体转运肽剪切位点比对,推断棉花EPSPS 基因含有74个氨基酸叶绿体运输肽和447个氨基酸组成的熟蛋白.该酶具有保守的PEP结合位点及催化位点的特征序列.半定量分析表明,该基因产物广泛存在于棉花根、茎和叶等各组织中,在叶片中表达量较高.进一步扩增棉花核基因组获得了3344 bp的DNA序列,它包含8个内含子和7个外显子.棉花EPSPS 基因的克隆为抗草甘膦棉花种质资源的创制提供了理论基础.%5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase is an enzyme of the shikimate pathway.It is the target enzyme of nonselective herbicide glyphosate.This enzyme is located in the chloroplasts of the higher plants.Primers were designed according to the assembled ESTs of Gossypium hirsutum , and a 1834 bp cDNA fragment of G.hirsutum cv.Coker 312 was obtained in this experiment.The frafment contains an ORF comprising of 1565 nucleotides which encodes 521 amino acid.A comparison of the deduced amino acid sequences of cotton and other higher plants genes reveals highly homology over the length of the entire mature protein.The site of transit peptides cleavage is deduced from a comparison to the known cleavage site in other plants.The enzyme, including 74 amino acid chloroplast transit peptides and 447 amino acid mature proteins, comprises conserved region of PEP binding sites and the characteristic sequence of catalytic activity sites.Semi-quantitative analysis of EPSP synthase expression showed that

  16. Statins and selective inhibition of Rho kinase protect small conductance calcium-activated potassium channel function (K(Ca2.3 in cerebral arteries.

    Directory of Open Access Journals (Sweden)

    Alister J McNeish

    Full Text Available BACKGROUND: In rat middle cerebral and mesenteric arteries the K(Ca2.3 component of endothelium-dependent hyperpolarization (EDH is lost following stimulation of thromboxane (TP receptors, an effect that may contribute to the endothelial dysfunction associated with cardiovascular disease. In cerebral arteries, K(Ca2.3 loss is associated with NO synthase inhibition, but is restored if TP receptors are blocked. The Rho/Rho kinase pathway is central for TP signalling and statins indirectly inhibit this pathway. The possibility that Rho kinase inhibition and statins sustain K(Ca2.3 hyperpolarization was investigated in rat middle cerebral arteries (MCA. METHODS: MCAs were mounted in a wire myograph. The PAR2 agonist, SLIGRL was used to stimulate EDH responses, assessed by simultaneous measurement of smooth muscle membrane potential and tension. TP expression was assessed with rt-PCR and immunofluorescence. RESULTS: Immunofluorescence detected TP in the endothelial cell layer of MCA. Vasoconstriction to the TP agonist, U46619 was reduced by Rho kinase inhibition. TP receptor stimulation lead to loss of K(Ca2.3 mediated hyperpolarization, an effect that was reversed by Rho kinase inhibitors or simvastatin. K(Ca2.3 activity was lost in L-NAME-treated arteries, but was restored by Rho kinase inhibition or statin treatment. The restorative effect of simvastatin was blocked after incubation with geranylgeranyl-pyrophosphate to circumvent loss of isoprenylation. CONCLUSIONS: Rho/Rho kinase signalling following TP stimulation and L-NAME regulates endothelial cell K(Ca2.3 function. The ability of statins to prevent isoprenylation and perhaps inhibit of Rho restores/protects the input of K(Ca2.3 to EDH in the MCA, and represents a beneficial pleiotropic effect of statin treatment.

  17. CyPPA, a positive modulator of small-conductance Ca(2+)-activated K(+) channels, inhibits phasic uterine contractions and delays preterm birth in mice.

    Science.gov (United States)

    Skarra, Dana V; Cornwell, Trudy; Solodushko, Viktoriya; Brown, Amber; Taylor, Mark S

    2011-11-01

    Organized uterine contractions, including those necessary for parturition, are dependent on calcium entry through voltage-gated calcium channels in myometrial smooth muscle cells. Recent evidence suggests that small-conductance Ca(2+)-activated potassium channels (K(Ca)2), specifically isoforms K(Ca)2.2 and 2.3, may control these contractions through negative feedback regulation of Ca(2+) entry. We tested whether selective pharmacologic activation of K(Ca)2.2/2.3 channels might depress uterine contractions, providing a new strategy for preterm labor intervention. Western blot analysis and immunofluorescence microscopy revealed expression of both K(Ca)2.2 and K(Ca)2.3 in the myometrium of nonpregnant (NP) and pregnant (gestation day 10 and 16; D10 and D16, respectively) mice. Spontaneous phasic contractions of isolated NP, D10, and D16 uterine strips were all suppressed by the K(Ca)2.2/2.3-selective activator CyPPA in a concentration-dependent manner. This effect was antagonized by the selective K(Ca)2 inhibitor apamin. Whereas CyPPA sensitivity was reduced in D10 and D16 versus NP strips (pIC(50) 5.33 ± 0.09, 4.64 ± 0.03, 4.72 ± 0.10, respectively), all contractions were abolished between 30 and 60 μM. Blunted contractions were associated with CyPPA depression of spontaneous Ca(2+) events in myometrial smooth muscle bundles. Augmentation of uterine contractions with oxytocin or prostaglandin F(2α) did not reduce CyPPA sensitivity or efficacy. Finally, in an RU486-induced preterm labor model, CyPPA significantly delayed time to delivery by 3.4 h and caused a 2.5-fold increase in pup retention. These data indicate that pharmacologic stimulation of myometrial K(Ca)2.2/2.3 channels effectively suppresses Ca(2+)-mediated uterine contractions and delays preterm birth in mice, supporting the potential utility of this approach in tocolytic therapies.

  18. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells

    OpenAIRE

    Yu LIU; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-01-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca2+ and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the durati...

  19. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B.

    Science.gov (United States)

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H; Prorok, Mary; Castellino, Francis J

    2009-08-01

    The conantokins are short, naturally occurring peptides that inhibit ion flow through N-methyl-d-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), shows high selectivity for antagonism of NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole-cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E(657)-I(814)) were replaced by the corresponding S2 region of NR2B (E(658)-I(815)), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M(739) of NR2B for the equivalent K(738) of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K(755) of NR2B for Y(754) of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes.

  20. Avaliação teórica do processo de inativação do herbicida glifosato e formação do 5-enolpiruvilchiquimato-3-fosfato (EPSP)

    OpenAIRE

    Caetano, Melissa Soares

    2014-01-01

    A alta frequência de contaminação do solo por herbicidas sugere a necessidade de herbicidas mais ativos e mais seletivos. Glifosato é o componente ativo de um dos herbicidas mais utilizados e quando aplicado diretamente no solo apresenta baixa atividade. Glifosato é também um potente inibidor da EPSP sintase, enzima chave na via do ácido chiquímico, a qual é encontrada apenas em plantas e alguns micro-organismos, então, EPSP sintase é tida como um alvo promissor para herbicidas. Apesar dos me...

  1. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival.

    Science.gov (United States)

    Kang, Sang Soo; Han, Kyung-Seok; Ku, Bo Mi; Lee, Yeon Kyung; Hong, Jinpyo; Shin, Hye Young; Almonte, Antoine G; Woo, Dong Ho; Brat, Daniel J; Hwang, Eun Mi; Yoo, Seung Hyun; Chung, Chun Kee; Park, Sung-Hye; Paek, Sun Ha; Roh, Eun Joo; Lee, Sung Joong; Park, Jae-Yong; Traynelis, Stephen F; Lee, C Justin

    2010-02-01

    Calcium signaling is important in many signaling processes in cancer cell proliferation and motility including in deadly glioblastomas of the brain that aggressively invade neighboring tissue. We hypothesized that disturbing Ca(2+) signaling pathways might decrease the invasive behavior of giloblastoma, extending survival. Evaluating a panel of small-molecule modulators of Ca(2+) signaling, we identified caffeine as an inhibitor of glioblastoma cell motility. Caffeine, which is known to activate ryanodine receptors, paradoxically inhibits Ca(2+) increase by inositol 1,4,5-trisphospate receptor subtype 3 (IP(3)R3), the expression of which is increased in glioblastoma cells. Consequently, by inhibiting IP(3)R3-mediated Ca(2+) release, caffeine inhibited migration of glioblastoma cells in various in vitro assays. Consistent with these effects, caffeine greatly increased mean survival in a mouse xenograft model of glioblastoma. These findings suggest IP(3)R3 as a novel therapeutic target and identify caffeine as a possible adjunct therapy to slow invasive growth of glioblastoma.

  2. Compositional equivalence of DAS-444Ø6-6 (AAD-12 + 2mEPSPS + PAT) herbicide-tolerant soybean and nontransgenic soybean.

    Science.gov (United States)

    Lepping, Miles D; Herman, Rod A; Potts, Brian L

    2013-11-20

    Soybeans from transgenic event DAS-444Ø6-6 are the first to express three proteins that provide tolerance to broad-spectrum herbicides. DAS-444Ø6-6 soybean expresses the aryloxyalkanoate dioxygenase-12 (AAD-12) enzyme from the soil bacterium Delftia acidovorans , which provides tolerance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D); the double-mutant 5-enolpyruvylshikimate-3-phosphate synthase (2mEPSPS) enzyme encoded by a modified version of the epsps gene from maize ( Zea mays ), which provides tolerance to the herbicide glyphosate; and the phosphinothricin acetyltransferase (PAT) enzyme from Streptomyces viridochromogenes , which provides tolerance to the herbicide glufosinate. The purpose of this study was to determine if the nutrient and antinutrient composition of forage and grain from DAS-444Ø6-6 soybean are similar to those of nontransgenic soybean. Forage was analyzed for proximates, fiber, and minerals; grain analyses further included vitamins, amino acid and fatty acid profiles, and antinutrients and bioactive components (lectin, phytic acid, raffinose, stachyose, trypsin inhibitor, and isoflavones). Results indicate that DAS-444Ø6-6 soybean is compositionally equivalent to nontransgenic soybean. Findings are consistent with similar studies for other input traits, as endogenous plant metabolic pathways that influence composition are expected to be less affected by transgenesis compared with traditional plant-breeding methods.

  3. 银杏EPSPS基因克隆及表达分析%Cloning and Expression Analysis of EPSP Synthase Gene from Ginkgo biloba L.

    Institute of Scientific and Technical Information of China (English)

    程华; 李琳玲; 王燕; 姜德志; 程水源

    2010-01-01

    利用RACE技术,克隆到银杏EPSPS合酶基因(GbEPSPS)的cDNA序列并对其进行生物信息学分析.结果表明:银杏GbEPSPS cDNA长1 403 bp(GenBank登录号GU084139),其包含一个1 035 bp的ORF框,编码344个氨基酸;预测该基因编码蛋白质分子量为36.87 kD,其等电点为5.75.系统进化树分析表明,银杏EPSPS蛋白质序列与其他物种的EPSPS同源性较高.半定量RT-PCR分析结果显示,EPSPS基因在银杏的叶和果实中表达量最高,其次为茎,根中表达水平最低.草甘膦处理能显著诱导银杏EPSPS基因表达量升高;紫外光对银杏EPSPS基因的表达具有诱导作用;ABA诱导GbEPSPS表达量先升后降;GbEPSPS转录水平受到42℃高温显著诱导.

  4. A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population.

    Science.gov (United States)

    Kaundun, Shiv S; Dale, Richard P; Zelaya, Ian A; Dinelli, Giovanni; Marotti, Ilaria; McIndoe, Eddie; Cairns, Andrew

    2011-04-13

    Glyphosate resistance evolution in weeds is a growing problem in world agriculture. Here, we have investigated the mechanism(s) of glyphosate resistance in a Lolium rigidum population (DAG1) from South Africa. Nucleotide sequencing revealed the existence of at least three EPSPS homologues in the L. rigidum genome and identified a novel proline 106 to leucine substitution (P106L) in 52% DAG1 individuals. This mutation conferred a 1.7-fold resistance increase to glyphosate at the whole plant level. Additionally, a 3.1-fold resistance increase, not linked to metabolism or translocation, was estimated between wild-type P106-DAG1 and P106-STDS sensitive plants. Point accepted mutation analysis suggested that other amino acid substitutions at EPSPS position 106 are likely to be found in nature besides the P106/S/A/T/L point mutations reported to date. This study highlights the importance of minor mechanisms acting additively to confer significant levels of resistance to commercial field rates of glyphosate in weed populations subjected to high selection pressure.

  5. Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes

    Institute of Scientific and Technical Information of China (English)

    Baoqing; Dun; Xujing; Wang; Wei; Lu; Ming; Chen; Wei; Zhang; Shuzhen; Ping; Zhixing; Wang; Baoming; Zhang; Min; Lin

    2014-01-01

    The widely used herbicide glyphosate targets 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS).Glyphosate acetyltransferase(GAT)effectively detoxifies glyphosate by N-acetylation.With the aim of identifying a new strategy for development of glyphosate-tolerant crops,the plant expression vector pG2-GAT harboring gat and G2-aroA(encoding EPSPS)has been transformed into tobacco(Nicotiana tabacum)to develop novel plants with higher tolerance to glyphosate.Results from Southern and Western blotting analyses indicated that the target genes were integrated into tobacco chromosomes and expressed effectively at the protein level.Glyphosate tolerance was compared among transgenic tobacco plants containing gat,G2-aroA,or both genes.Plants containing both gat and G2-aroA genes were the most glyphosate-tolerant.This study has shown that a combination of different strategies may result in higher tolerance in transgenic crops,providing a new approach for development of glyphosate-tolerant crops.

  6. Chloride channels in stroke

    Institute of Scientific and Technical Information of China (English)

    Ya-ping ZHANG; Hao ZHANG; Dayue Darrel DUAN

    2013-01-01

    Vascular remodeling of cerebral arterioles,including proliferation,migration,and apoptosis of vascular smooth muscle cells (VSMCs),is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain,ie,stroke.Accumulating evidence strongly supports an important role for chloride (Clˉ) channels in vascular remodeling and stroke.At least three Clˉ channel genes are expressed in VSMCs:1) the TMEM16A (or Ano1),which may encode the calcium-activated Clˉ channels (CACCs); 2) the CLC-3 Clˉ channel and Clˉ/H+ antiporter,which is closely related to the volume-regulated Clˉ channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR),which encodes the PKA-and PKC-activated Clˉ channels.Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization,vasoconstriction,and inhibition of VSMC proliferation.Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species,induces proliferation and inhibits apoptosis of VSMCs.Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension.In addition,Clˉ current mediated by gammaaminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death.This review focuses on the functional roles of Clˉ channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Clˉ channels as new targets for the prevention and treatment of stroke.

  7. Membrane potential-dependent modulation of recurrent inhibition in rat neocortex.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2011-03-01

    Full Text Available Dynamic balance of excitation and inhibition is crucial for network stability and cortical processing, but it is unclear how this balance is achieved at different membrane potentials (V(m of cortical neurons, as found during persistent activity or slow V(m oscillation. Here we report that a V(m-dependent modulation of recurrent inhibition between pyramidal cells (PCs contributes to the excitation-inhibition balance. Whole-cell recording from paired layer-5 PCs in rat somatosensory cortical slices revealed that both the slow and the fast disynaptic IPSPs, presumably mediated by low-threshold spiking and fast spiking interneurons, respectively, were modulated by changes in presynaptic V(m. Somatic depolarization (>5 mV of the presynaptic PC substantially increased the amplitude and shortened the onset latency of the slow disynaptic IPSPs in neighboring PCs, leading to a narrowed time window for EPSP integration. A similar increase in the amplitude of the fast disynaptic IPSPs in response to presynaptic depolarization was also observed. Further paired recording from PCs and interneurons revealed that PC depolarization increases EPSP amplitude and thus elevates interneuronal firing and inhibition of neighboring PCs, a reflection of the analog mode of excitatory synaptic transmission between PCs and interneurons. Together, these results revealed an immediate V(m-dependent modulation of cortical inhibition, a key strategy through which the cortex dynamically maintains the balance of excitation and inhibition at different states of cortical activity.

  8. Inhibition of Inactive States of Tetrodotoxin-Sensitive Sodium Channels Reduces Spontaneous Firing of C-Fiber Nociceptors and Produces Analgesia in Formalin and Complete Freund's Adjuvant Models of Pain.

    Directory of Open Access Journals (Sweden)

    David J Matson

    Full Text Available While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.7 inhibitor are required to produce analgesia. Here we characterize a series of aminotriazine inhibitors of Nav1.7 in vitro and in rodent models of pain and test the effects of the previously reported "compound 52" aminotriazine inhibitor on the spiking properties of nociceptors in vivo. Multiple aminotriazines, including some with low terminal brain to plasma concentration ratios, showed analgesic efficacy in the formalin model of pain. Effective concentrations were consistent with the in vitro potency as measured on partially-inactivated Nav1.7 but were far below concentrations required to inhibit non-inactivated Nav1.7. Compound 52 also reversed thermal hyperalgesia in the complete Freund's adjuvant (CFA model of pain. To study neuronal mechanisms, electrophysiological recordings were made in vivo from single nociceptive fibers from the rat tibial nerve one day after CFA injection. Compound 52 reduced the spontaneous firing of C-fiber nociceptors from approximately 0.7 Hz to 0.2 Hz and decreased the number of action potentials evoked by suprathreshold tactile and heat stimuli. It did not, however, appreciably alter the C-fiber thresholds for response to tactile or thermal stimuli. Surprisingly, compound 52 did not affect spontaneous activity or evoked responses of Aδ-fiber nociceptors. Results suggest that inhibition of inactivated states of TTX-S channels, mostly likely Nav1.7, in the peripheral nervous system produces analgesia by regulating the spontaneous discharge of C-fiber nociceptors.

  9. Acute and Chronic Toxicity, Cytochrome P450 Enzyme Inhibition, and hERG Channel Blockade Studies with a Polyherbal, Ayurvedic Formulation for Inflammation

    Directory of Open Access Journals (Sweden)

    Debendranath Dey

    2015-01-01

    Full Text Available Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005–1 mg/mL by MTT/formazan method, an acute single dose (2–10 g/kg bodyweight toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15–20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL on six major human cytochrome P450 enzymes and 3H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use.

  10. Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca2+, CaM and Depolarization of Plasma Membrane Potential

    Science.gov (United States)

    Zhang, Xian-Chen; Gao, Hong-Jian; Yang, Tian-Yuan; Wu, Hong-Hong; Wang, Yu-Mei; Zhang, Zheng-Zhu; Wan, Xiao-Chun

    2016-01-01

    Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca2+ efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca2+ chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca2+ fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca2+ chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca2+ and H+ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca2+-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants. PMID:26742036

  11. Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca²⁺, CaM and Depolarization of Plasma Membrane Potential.

    Science.gov (United States)

    Zhang, Xian-Chen; Gao, Hong-Jian; Yang, Tian-Yuan; Wu, Hong-Hong; Wang, Yu-Mei; Zhang, Zheng-Zhu; Wan, Xiao-Chun

    2016-01-05

    Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca(2+) efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca(2+) chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca(2+) fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca(2+) chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca(2+) and H⁺ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca(2+)-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants.

  12. 抗草甘膦基因mEPSPS转化油菜研究%Genetic transformation of rapeseed with the glyphosate-resistant gene mEPSPS

    Institute of Scientific and Technical Information of China (English)

    柳寒; 周永明

    2012-01-01

    Previously cloned mEPSPS gene [conferring glyphosate herbicide (Roundup) , resistance] was introduced into a Brassica napus line Jia 572 by Agrobacterium - mediated transformation method. Molecular analysis demonstrated that 4 independent transgenic plants were obtained, and the mEPSPS gene was inherited to the next generation. RT - PCR analysis indicated that the mEPSPS gene could be successfully transcribed in transgenic rapeseed plants although the expression levels varied among different lines. Herbicide resistance assay by Roundup spray showed that the transgenic plants survived under 100 - time diluted solution with commercial glyphosate -containing 41% herbicide (as 3 039mg/L glyphosate) , while the wild type died even under a 200 -time diluted solution.%mEPSPS基因是编码5-烯醇式丙酮酸莽草酸-3-磷酸合酶的抗草甘膦基因.本研究通过根癌农杆菌介导的遗传转化,将人工合成改造的草甘膦抗性基因mEPSPS导入甘蓝型油菜品系甲572,获得了4株转基因植株.分子检测证明,外源mEPSPS基因已整合到转基因油菜基因组中并能稳定遗传到下一代.各转基因植株中mEPSPS基因能正确表达,但不同转化株的基因表达量之间有差异.转mEPSPS油菜自交一代在稀释100倍的41%农达异丙胺盐制剂(含草甘膦3 039mg/L)喷洒条件下仍能正常生长,而不含转基因的对照植株在稀释200倍农达(含草甘膦1 519mg/L)之后全部死亡.

  13. Low-dose combination of Rho kinase and L-type Ca(2+) channel antagonists for selective inhibition of depolarization-induced sustained arterial contraction.

    Science.gov (United States)

    Porras-González, Cristina; González-Rodríguez, Patricia; Calderón-Sánchez, Eva; López-Barneo, José; Ureña, Juan

    2014-06-05

    L-type Ca(2+) channels (LTCCs) are involved in the maintenance of tonic arterial contractions and regulate the RhoA/Rho-associated kinase (ROCK) sensitization cascade. We have tested effects of individual and combined low concentrations of LTCCs and ROCK inhibitors to produce arterial relaxation without the adverse side effects of LTCCs antagonists. We have also studied whether this pharmacological strategy alters Ca(2+)-dependent electrical properties of isolated arterial and cardiac myocytes as well as cardiac contractility. Rat basilar, human carotid and coronary arterial rings were mounted on a small-vessel myograph to measure isometric tension and cardiac contractility was measured in Langendorff-perfused rat heart. Simultaneous cytosolic Ca(2+) concentration and arterial diameter were measured in intact pressurized arteries loaded with Fura-2. Patch-clamp techniques were used to measure electrical properties in isolated cardiac and arterial myocytes. Low concentrations of LTCCs and ROCK inhibitors reduced the tonic component of moderate depolarization-evoked contraction, leaving the phasic component practically unaltered. This selective vasorelaxant effect was more marked when the LTCCs and ROCK inhibitors were applied together. In the concentration range used (nM), Ca(2+) currents in arterial myocytes, cardiac action potentials and heart contractility were unaffected by this pharmacological approach. In conclusion, low doses of LTCCs and ROCK inhibitors could be used to selectively relax precontracted arteries in pathologic conditions such as hypertension, and cerebral or coronary spasms with minor side effects on physiological contractile properties of vascular and cardiac myocytes.

  14. Expression in E.coli and Preparation of CP4-EPSPS Protein%CP4-EPSPS蛋白在大肠杆菌中的表达与制备

    Institute of Scientific and Technical Information of China (English)

    刘树鹏; 李刚强; 王楠; 刘德虎

    2012-01-01

    The CP4-EPSPS gene was cloned into a bacterial expression vector and transformed into E. Coli strain Transtta. The expressed protein was detected by SDS-PAGE. The results showed that target protein accounted for about 40% of the total soluble protein. After the nickel affinity column purification for 2 times, the purity of the CP4-EPSPS recombinant protein can reach up to 99.9% , and its N terminal sequence analysis was consistent with the expected result. Using the purified CP4-EPSPS protein as standard substance, we successfully detected the hetero-protein level in 3 CP4-EPSPS transgenic tobacco lines through ELISA. The CP4-EPSPS expression level in the GMO plant was 0. 292μg/g, 0. 477μg/g and 0. 703μg/g, respectively. We conclude that the CP4-EPSPS expression and purification system can provide a steady source for tracing and inspecting the CP4-EPSPS transgenic plant.%构建了一个含有CP4-EPSPS外源基因的细菌表达载体并在大肠杆菌Transtta菌株中的高效表达,通过SDS-PAGE检测发现,目标蛋白完全以可溶性方式存在于细胞破碎上清液中,且约占到细菌可溶性蛋白的40%左右.收集该上清液并进而通过连续2次镍柱亲和层析,CP4-EPSPS重组蛋白纯度可达99.9%以上,对其进行N端序列分析,与预期的结果完全一致.以其作为标准品,通过ELISA,成功检测出三株CP4-EPSPS转基因烟草中目标蛋白含量分别为0.292 μg/g、0.477 μg/g和0.703 μg/g.该蛋白表达和纯化体系可为CP4-EPSPS转基因植物蛋白量值溯源传递的标准物质研制提供稳定物质基础.

  15. 水稻EPSP合酶cDNA克隆、序列分析及其拷贝数测定%Isolation of Rice EPSP Synthase cDNA and Its Sequence Analysis and Copy Number Determination

    Institute of Scientific and Technical Information of China (English)

    徐军望; 魏晓丽; 李旭刚; 陈蕾; 冯德江; 朱祯

    2002-01-01

    根据本室分离的水稻EPSP合酶基因的基因组序列设计一对引物,利用RT-PCR方法首次从水稻(Oryza sativa L. subsp. indica)叶片的RNA中扩增获得了水稻编码EPSP合酶的全长为1 585 bp的cDNA片段,它含有一个完整的开放读码框,编码511个氨基酸,包括444个氨基酸组成的成熟肽序列以及N端的67个氨基酸组成的叶绿体转运肽序列.成熟肽氨基酸序列对比表明,除真菌来源的EPSP合酶变异较大外,其他来源的EPSP合酶同源性较高,均在51%以上.而叶绿体转运肽氨基酸序列同源性较低.Southern杂交表明水稻EPSP合酶基因在水稻基因组中以单拷贝形式存在.RT-PCR分析表明,水稻EPSP合酶基因在根、未成熟种子和叶片中均有转录表达,在叶片中表达量最高.%In order to isolate the total cDNA of rice (Oryza sativa L.) epsps gene, RT-PCR was carried out with template of rice first-strand cDNA and primers designed according to rice EPSP synthase genomic sequence obtained in previous study. A 1 585-bp cDNA fragment was amplified and cloned. The 1 585-bp cDNA contains an open reading frame (ORF) comprising of 1 533 nucleotides (nt) which encodes a 511 residue polypepetides, including 67 amino acids chloroplast transit peptide and 444 amino acids EPSP synthase mature peptide. A comparison between the EPSP synthase of different sources indicates that the mature peptide shows more than 51% identity except for the fungi EPSP synthase and the transit peptide shows considerably less sequence conservation. The copy number of rice epsps gene is estimated to be one copy per haploid rice genome using southern blot. RT-PCR indicated that rice epsps gene is expressed in rice leaves, endosperms and roots and has the highest expression level in leaves.

  16. Tumor Necrosis Factor Alpha Inhibits L-Type Ca2+ Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-García

    2016-01-01

    Full Text Available Tumor necrosis factor alpha (TNF-α is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca2+ channel (L-VDCC current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S induced the same phenomenon. In tracheal myocytes from nonsensitized (NS and sensitized (S guinea pigs, an L-VDCC current (ICa was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF and a TNF-α receptor 1 (TNFR1 antagonist (WP9QY reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor nor actinomycin D (a transcription inhibitor showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.

  17. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway.

    Science.gov (United States)

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María; Montaño, Luis M

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.

  18. 公丁香提取物抑制CFTR氯离子通道的发现与研究%The extract of clove inhibits CFTR chloride channel

    Institute of Scientific and Technical Information of China (English)

    栾剑; 张耀方; 杨红

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride chan‐nel .In recent years ,the blockers of CFTR become the new hot spot in the treatment of secretory di‐arrhea .The aim of this research is using high‐throughput screening techniques screened blockers of CFTR chloride channel from traditional Chinese medicine .In this study ,after 40000 fractions of Chi‐nese herbal medicine have been screened ,clove extract was found .In cell‐based fluorescence assays and voltage clamp experiments ,the best active fraction‐E06 significantly blocks CFTR chloride chan‐nel .Therefore ,clove extract screened from traditional Chinese medicine blocks CFTR chloride chan‐nel and provides a theoretical basis for the in‐depth study of anti‐diarrheal drugs .%囊性纤维化跨膜电导调节因子(CFTR)是一种上皮细胞顶膜中表达的氯离子通道,是近年来治疗分泌型腹泻的新热点。利用高通量筛选技术,自中国传统中药中筛选能够抑制CFTR氯离子通道的中药组分。结果显示,自500种中草药的40000种中药组分中筛选到公丁香。经细胞荧光实验和电压膜片钳实验验证公丁香最佳活性孔———E06对CFTR具有明显的抑制作用,IC50=103 mg/L 。本研究结果为深入探讨公丁香的抗泻药物研发提供理论依据。

  19. 高粱EPSPS基因的克隆、修饰及在玉米中的功能验证%Cloning and Site-directed Modification of Sorghum bicolor EPSPS Gene and Its Functional Validation in Maize

    Institute of Scientific and Technical Information of China (English)

    赵海铭; 宋伟彬; 赖锦盛

    2013-01-01

    针对草甘膦结合位点,对高粱5-烯醇式丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因进行4种定点修饰,将修饰后的基因分别导入到玉米中。通过对转化体的抗性鉴定,确定将高粱EPSPS基因106位的脯氨酸变为丝氨酸(P106S)能够赋予转基因玉米草甘膦抗性。在喷施4倍的草甘膦时抗性事件CL38-1不产生药害。 Southern杂交结果表明,目标基因在该转化事件中稳定遗传,转化其余3种EPSPS基因的植株对草甘膦没有足够的抗性。%According to the potential binding site of glyphosate, Sorghum 5-enolpyruvylshikimate-3-phosphate synthase(SbEPSPS) and conducted four kinds of site-directed modification were cloned. These modified SbEPSPS were introduced in maize using transgenic approach. We found that the transgenic maize with one amino acid substi-tution: proline(P106) to serine(S) of EPSPS gained glyphosate resistance. One of transgenic events CL38-1 showed glyphosate resistant after sprayed with 4-fold glyphosate. Southern blot analysis of transformant showed that the trans-gene inherited stably. Plants transformed with other three types of modified SbEPSPS genes did not show enough glyphosate resistance.

  20. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene.

    Science.gov (United States)

    Zhao, Qi-chao; Liu, Ming-hong; Zhang, Xian-wen; Lin, Chao-yang; Zhang, Qing; Shen, Zhi-cheng

    2015-10-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.

  1. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1.

    Science.gov (United States)

    Zhang, Xiao-Yu; Zhang, Luo-Xian; Guo, Ya-Li; Zhao, Li-Min; Tang, Xue-Yi; Tian, Cui-Jie; Cheng, Dong-Jun; Chen, Xian-Liang; Ma, Li-Jun; Chen, Zhuo-Chang

    2016-07-01

    Airway smooth muscle cell (ASMC) was known to involve in the pathophysiology of asthma. Schisandrin B was reported to have anti-asthmatic effects in a murine asthma model. However, the molecular mechanism involving in the effect of Schisandrin B on ASMCs remains poorly understood. Sprague-Dawley rats were divided into three groups: rats as the control (Group 1), sensitized rats (Group 2), sensitized rats and intragastric-administrated Schisandrin B (Group 3). The expression of miR-135a and TRPC1 was detected in the rats from three groups. Platelet-derived growth factor (PDGF)-BB was used to induce the proliferation of isolated ASMCs, and the expression of miR-135a and TRPC1 was detected in PDGF-BB-treated ASMCs. Cell viability was examined in ASMCs transfected with miR-135a inhibitor or si-TRPC1. The expression of TRPC1 was examined in A10 cells pretreated with miR-135a inhibitor or miR-135a mimic. In this study, we found that Schisandrin B attenuated the inspiratory and expiratory resistances in sensitized rats. Schisandrin B upregulated the mRNA level of miR-135a and decreased the expression of TRPC1 in sensitized rats. In addition, Schisandrin B reversed the expression of miR-135a and TRPC1 in PDGF-BB-induced ASMCs. Si-TRPC1 abrogated the increasing proliferation of ASMCs induced by miR-135a inhibitor. We also found that miR-135a regulated the expression of TRPC1 in the A10 cells. These results demonstrate that Schisandrin B inhibits the proliferation of ASMCs via miR-135a suppressing the expression of TRPC1.

  2. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  3. Signal processing by T-type calcium channel interactions in the cerebellum

    Directory of Open Access Journals (Sweden)

    Jordan D.T. Engbers

    2013-11-01

    Full Text Available T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs. In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT and hyperpolarization-activated cation current (IH are activated during trains of IPSPs. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT, and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect effects on

  4. Signal processing by T-type calcium channel interactions in the cerebellum.

    Science.gov (United States)

    Engbers, Jordan D T; Anderson, Dustin; Zamponi, Gerald W; Turner, Ray W

    2013-11-27

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  5. Polysynaptic excitatory postsynaptic potentials that trigger spasms after spinal cord injury in rats are inhibited by 5-HT1B and 5-HT1F receptors.

    Science.gov (United States)

    Murray, Katherine C; Stephens, Marilee J; Rank, Michelle; D'Amico, Jessica; Gorassini, Monica A; Bennett, David J

    2011-08-01

    Sensory afferent transmission and associated spinal reflexes are normally inhibited by serotonin (5-HT) derived from the brain stem. Spinal cord injury (SCI) that eliminates this 5-HT innervation leads to a disinhibition of sensory transmission and a consequent emergence of unusually long polysynaptic excitatory postsynaptic potentials (EPSPs) in motoneurons. These EPSPs play a critical role in triggering long polysynaptic reflexes (LPRs) that initiate muscles spasms. In the present study we examined which 5-HT receptors modulate the EPSPs and whether these receptors adapt to a loss of 5-HT after chronic spinal transection in rats. The EPSPs and associated LPRs recorded in vitro in spinal cords from chronic spinal rats were consistently inhibited by 5-HT(1B) or 5-HT(1F) receptor agonists, including zolmitriptan (5-HT(1B/1D/1F)) and LY344864 (5-HT(1F)), with a sigmoidal dose-response relation, from which we computed the 50% inhibition (EC(50)) and potency (-log EC(50)). The potencies of 5-HT receptor agonists were highly correlated with their binding affinity to 5-HT(1B) and 5-HT(1F) receptors, and not to other 5-HT receptors. Zolmitriptan also inhibited the LPRs and general muscle spasms recorded in vivo in the awake chronic spinal rat. The 5-HT(1B) receptor antagonists SB216641 and GR127935 and the inverse agonist SB224289 reduced the inhibition of LPRs by 5-HT(1B) agonists (zolmitriptan). However, when applied alone, SB224289, SB216641, and GR127935 had no effect on the LPRs, indicating that 5-HT(1B) receptors do not adapt to chronic injury, remaining silent, without constitutive activity. The reduction in EPSPs with zolmitriptan unmasked a large glycine-mediated inhibitory postsynaptic current (IPSC) after SCI. This IPSC and associated chloride current reversed at -73 mV, slightly below the resting membrane potential. Zolmitriptan did not change motoneuron properties. Our results demonstrate that 5-HT(1B/1F) agonists, such as zolmitriptan, can restore inhibition

  6. Application of Nucleic Acid Strips in the Detection of Transgenic EPSPS Crops%核酸试纸条在检测转EPSPS基因作物中的应用

    Institute of Scientific and Technical Information of China (English)

    汪琳; 罗英; 周琦; 赖平安; 张向东; 柏亚铎

    2011-01-01

    Objective: To develop a rapid, simple and sensitive loop-mediated isothermal amplification method for the detection of transgen ic EPSPS crops. Methods: Two pairs of primers and a set of loop primer targeting the EPSPS gene were designed. The concentration of MgSO4, inner primer, loop primer, betaine, dNTP, and temperature were optimized. Using nucleic acid strips to detect the amplification products. Results: The amplification was carried out in a single tube at 64℃, and the amplification results were visualized according to the strips within 30 min. This test has a high specificity for transgenic EPSPS gene crops detection, and the minimum limit detected was 10 copies. Conclusion: The method described in this study was proved to be simple, sensitive, specific and rapid way for the detection of transgenic EPSPS crops. It has a potential application of both laboratorial and penside detection of transgenic EPSPS crops.%目的:建立快速、简便和特异的检测转EPSPS基因作物的方法.方法:针对转EPSPS基因作物外源基因cp4-EPSPS的8个区域,设计2对特异性引物和1对环引物,对反应体系中的MgSO4、内引物、环引物、甜菜碱、dNTP浓度和反应温度等条件分别进行优化,并用核酸试纸条对扩增产物进行检测,建立用于检测转EPSPS基因作物的环介导等温扩增方法(LAMP).结果:用建立的LAMP方法检测转EPSPS基因作物时,在64℃恒温反应30 min,即可根据试纸条显色直接观察结果;该方法具有高度特异性,可检测到10个拷贝的EPSPS DNA.结论:LAMP方法可快速、灵敏、特异、经济地检测转EPSPS基因作物,在基层和实验室都具有良好的应用前景.

  7. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea.

    Science.gov (United States)

    Yi, Eunyoung; Roux, Isabelle; Glowatzki, Elisabeth

    2010-05-01

    Synaptic transmission at the inner hair cell (IHC) afferent synapse, the first synapse in the auditory pathway, is specialized for rapid and reliable signaling. Here we investigated the properties of a hyperpolarization-activated current (I(h)), expressed in the afferent dendrite of auditory nerve fibers, and its role in shaping postsynaptic activity. We used whole cell patch-clamp recordings from afferent dendrites directly where they contact the IHC in excised postnatal rat cochlear turns. Excitatory postsynaptic potentials (EPSPs) of variable amplitude (1-35 mV) were found with 10-90% rise times of about 1 ms and time constants of decay of about 5 ms at room temperature. Current-voltage relations recorded in afferent dendrites revealed I(h). The pharmacological profile and reversal potential (-45 mV) indicated that I(h) is mediated by hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. The HCN channel subunits HCN1, HCN2, and HCN4 were found to be expressed in afferent dendrites using immunolabeling. Raising intracellular cAMP levels sped up the activation kinetics, increased the magnitude of I(h) and shifted the half activation voltage (V(half)) to more positive values (-104 +/- 3 to -91 +/- 2 mV). Blocking I(h) with 50 microM ZD7288 resulted in hyperpolarization of the resting membrane potential (approximately 4 mV) and slowing the decay of the EPSP by 47%, suggesting that I(h) is active at rest and shortens EPSPs, thereby potentially improving rapid and reliable signaling at this first synapse in the auditory pathway.

  8. TRP channels and psychiatric disorders.

    Science.gov (United States)

    Chahl, Loris A

    2011-01-01

    Depression and schizophrenia are major psychiatric disorders that cause much human suffering. Current treatments have major limitations and new drug targets are eagerly sought. Study of transient receptor potential (TRP) channels in these disorders is at an early stage and the potential of agents that activate or inhibit these channels remains speculative. The findings that TRPC6 channels promote dendritic growth and are selectively activated by hyperforin, the key constitutent of St John's wort, suggest that TRPC6 channels might prove to be a new target for antidepressant drug development. There is now considerable evidence that TRPV1 antagonists have anxiolytic activity but there is no direct evidence that they have antidepressant activity. There is also no direct evidence that TRP channels play a role in schizophrenia. However, the findings that TRPC channels are involved in neuronal development and fundamental synaptic mechanisms, and that TRPV1 channels play a role in central dopaminergic and cannabinoid mechanisms is suggestive of potential roles of these channels in schizophrenia. Investigation of TRP channels in psychiatric disorders holds the promise of yielding further understanding of the aetiology of psychiatric disorders and the development of new drug treatments.

  9. Mechanosensitive Channels

    Science.gov (United States)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  10. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  11. EPSP合成酶的特性及新抑制剂的研究进展%Development on Property of EPSP Synthase and Its New Inhibitors

    Institute of Scientific and Technical Information of China (English)

    向文胜; 张文吉; 王相晶; 覃兆海

    2000-01-01

    概述了EPSP合成酶的生理作用.高等植物前体EPSP合成酶进入叶绿体后,经剪切而成成熟EPSP合成酶并定位于叶绿体内质膜上;EPSP合成酶的三维结构上存在三个活性区域,改变活性区域的氨基酸残基可对草甘膦产生抗性,同时表明了酶与草甘膦的结合位点;不同生物的EPSP合成酶有高的同源性.EPSP合成酶催化底物反应机理为:PEP首先与酶形成过渡态,而后和S3P形成缩酮四面体,最后生成EPSP.草甘膦与EPSP合成酶、EPSP形成三元复合物而阻断了EPSP合成酶的催化作用;以EPSP和S3P.glyphosate为分子模型,设计合成的化合物对EPSP合成酶的活性有抑制作用.

  12. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method

    Science.gov (United States)

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan

    2016-01-01

    Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767–50543792 and Chr17: 7980527–7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean. PMID:27462336

  13. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker

    Science.gov (United States)

    Watrud, L.S.; Lee, E.H.; Fairbrother, A.; Burdick, C.; Reichman, J.R.; Bollman, M.; Storm, M.; King, G.; Van De Water, Peter K.

    2004-01-01

    Sampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use. Most of the gene flow occurred within 2 km in the direction of prevailing winds. The maximal gene flow distances observed were 21 km and 14 km in sentinel and resident plants, respectively, that were located in primarily nonagronomic habitats. The selectable marker used in these studies was the CP4 EPSPS gene derived from Agrobacterium spp. strain CP4 that encodes 5-enol-pyruvylshikimate-3-phosphate synthase and confers resistance to glyphosate herbicide. Evidence for gene flow to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident Agrostis plants was based on seedling progeny survival after spraying with glyphosate in greenhouse assays and positive TraitChek, PCR, and sequencing results. Additional studies are needed to determine whether introgression will occur and whether it will affect the ecological fitness of progeny or the structure of plant communities in which transgenic progeny may become established.

  14. Study on Transformation of 2mG2-epsps Gene into Immature Embryos of Maize Inbred-line 18-599R by Agtobactetium tumefaciens Mediated%农杆菌介导的2mG2-epsps 基因转化玉米自交系18-599R 幼胚的研究

    Institute of Scientific and Technical Information of China (English)

    贾艾敏; 张玲; 蒋琴; 胡冲; 刘坚

    2015-01-01

    [Objective]In this study,a new glyphosate-resistant gene 2mG2-epsps was transformed into immature embryos of maize inbred line 18-599R by Agrobacterium tumefaciens mediated to obtain transgenic plants with significant resistance to glyphosate.[Method]2mG2-epsps gene was introduced into 18-599R immature corn embryos by Agrobacterium mediated,transformation system was optimized by control the pretreatment conditions,bacterial concentration × immer-sion time and concentration of glyphosate filter setting process.The 2mG2-epsps gene had been expressed in transgenic plant by PCR,real time PCR and spraying glyphosate exogenous gene i-dentification.[Results]Heat shock treatment didn't improve the confrontational callus rate,and centrifugation reduced the rate of resistance callus.When the concentration of Agrobacterium in the inoculation medium was adjusted to OD600 =0.6,and the infection time was 10 min,the aver-age rate of resistance callus was up to 37.33%.The ideal concentration of Glyphosate was 2.0 mmol/L.Methods using PCR of 46 transgenic plants,5 positive transgenic individuals were ob-tained,with a positive frequency of 10.87%.Real-time PCR showed that the foreign gene was ex-pressed in roots,stems and leaves and inherited to next generation stably.And the T2 generation transgenic plants showed tolerance to glyphosate.[Conclusion]2mG2-epsps gene was successful-ly imported into 18-599R genome,and gained significant glyphosate resistance.%【目的】对农杆菌介导的抗草甘膦新基因2mG2-epsps 转化玉米18-599R 幼胚的体系进行优化,以获得具有明显草甘膦抗性的转基因植株。【方法】以玉米18-599R 幼胚为受体,采用农杆菌介导法,对转化时的预处理条件、菌液浓度×浸染时间、草甘膦筛选浓度设置处理,以优化转化体系;并用 PCR、实时荧光定量 PCR 和喷洒草甘膦鉴定外源基因在转基因植株中的表达情况。【结果】热激处理对抗性愈伤率没有明显

  15. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  16. The contrasting effects of dendrotoxins and other potassium channel blockers in the CA1 and dentate gyrus regions of rat hippocampal slices

    OpenAIRE

    Southan, A P; Owen, D G

    1997-01-01

    The effects of potassium channel blocking compounds on synaptic transmission in the CA1 and dentate gyrus regions of the rat hippocampus were examined by means of simultaneous field potential recording techniques in brain slices.4-Aminopyridine (4-AP) enhanced the excitatory postsynaptic potential (e.p.s.p.) and induced multiple population spike responses in both regions. EC50 values were 6.7 μM in the CA1 (n=5) and 161.7 μM (n=5) in the dentate gyrus.Tetraethylammonium (TEA) increased the am...

  17. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  18. Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse

    Directory of Open Access Journals (Sweden)

    Mauricio O. Nava-Mesa

    2013-07-01

    Full Text Available Last evidences suggest that, in Alzheimer's disease (AD early stage, Amyloid-β (Aβ peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of Aβ on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP followed by both early and late inhibitory potentials (IPSP was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. Aβ perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. Aβ action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK channels, mimicked all Aβ effects previously described. Thus, our findings suggest that Aβ altering GirK channels conductance in CA3 pyramidal neurons might have a key role in the septohippocampal activity dysfunction observed in AD.

  19. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations.

    Directory of Open Access Journals (Sweden)

    Mugui Wang

    Full Text Available Although several site-specific nucleases (SSNs, such as zinc-finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs, including different strand composition such as RNA/DNA (C1 or DNA/RNA (C2 but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP, we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19 as well as co-transformation of TELAN with either HRP (5/30 or C1 (2/25 or C2 (5/31. Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type.

  20. 抗草甘膦EPSPS基因的中国专利保护概况%Chinese patent protection profile of glyphosate-resistant EPSPS

    Institute of Scientific and Technical Information of China (English)

    赵鹏

    2014-01-01

    Glyphosate-resistant GM crops is the world's largest acreage of GM crops currently.Isolation,gene modification and plant transformation of Glyphosate-resistant EPSPS gene have become the hotspot,while the relevant patent protection achieved applications in agricultural production are also focus.This paper analyzes the domestic patent applications and protection,and found that there are still deficiencies in our quality of patent applications,industrial transformation,with European and American countries.Improving the R&D capabilities,enhancing the participation of companies and cultivating patent-related talents are needed to improve China's patent advantages.%抗草甘膦转基因作物是目前全球播种面积最大的转基因作物,抗草甘膦EPSPS基因的分离筛选、改造以及植物转化等已经成为当今研究热点,获得相关专利保护并实现在农业生产中的应用也是各国关注的重点。本文通过分析国内专利申请和保护的情况,发现我国在专利申请质量、产业转化等方面尚存在不足,与欧美发达国家尚有差距。我国需要提高研发能力,加强企业参与以及专利人才的培养,以提高我国的专利保护优势。

  1. 抗草甘膦EPSPS基因的专利保护分析%Analysis of Patent Protection of Glyphosate-tolerance EPSPS Gene

    Institute of Scientific and Technical Information of China (English)

    宋敏; 刘丽军; 苏颖异; 张锐

    2010-01-01

    抗草甘膦转基因作物是目前全球播种面积最大的转基因作物,抗草甘膦基因(EPSPS)的克隆、表达及其功能验证等也因此成为现代分子生物育种研究的重点,利用专利等知识产权保护措施将这些功能基因和转化技术转变成自己的独占产权是发达国家和生物技术公司普遍采取的发展策略.通过检索搜集全球范围内EPSPS基因的专利和转化品系信息,分析研究了EPSPS基因在全球的专利保护、核心技术专利分布与产业化运用状况.结果表明,近几年对EPSPS的专利申请量迅速增加,专利申请人主要集中在美国、法国、中国等国家,但是核心技术和产业化应用的绝大部分专利由孟山都、拜耳、先锋、先正达等跨国公司拥有,相关产业的发展主动权也由此被其掌控.

  2. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations.

    Science.gov (United States)

    Wang, Mugui; Liu, Yujun; Zhang, Cuicui; Liu, Jianping; Liu, Xin; Wang, Liangchao; Wang, Wenyi; Chen, Hao; Wei, Chuchu; Ye, Xiufen; Li, Xinyuan; Tu, Jumin

    2015-01-01

    Although several site-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT) in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs), including different strand composition such as RNA/DNA (C1) or DNA/RNA (C2) but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP), we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19) as well as co-transformation of TELAN with either HRP (5/30) or C1 (2/25) or C2 (5/31). Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type.

  3. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  4. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  5. 5-烯醇式丙酮酰-莽草酸-3-磷酸合成酶(EPSPS)基因AM79 aroA的活性位点分析%Analysis of The Active Sites in An 5-enolpyruvy-shikimate-3-phosphate Synthase (EPSPS) Gene of AM79 aroA

    Institute of Scientific and Technical Information of China (English)

    曹高燚; 陈荣荣; 杜锦; 陆伟; 刘允军

    2015-01-01

    AM79 aroA (WO/2009/059485)基因是从草甘膦高度污染的土壤中克隆的、具有我国自主知识产权的新型草甘膦抗性基因,具有重要应用价值.为进一步解析AM79 EPSPS蛋白的作用机制,本研究对此蛋白的活性位点进行了研究.进化树分析显示AM79 EPSPS属于Ⅰ型EPSPS.序列比对结果表明AM79 EPSPS中第107位的丙氨酸(Ala),第114位的苯丙氨酸(Phe),第355位的Ala和第356位的组氨酸(His)是特异的.采用重叠延伸PCR介导的核苷酸定点突变技术,对这些保守的氨基酸位点进行定点突变.将AM79 aroA及其突变基因转入大肠杆菌(Escherichia coli)aroA缺陷型菌株ER2799中,并进行草甘膦抗性鉴定.结果显示,Phe114、Ala355和His356等氨基酸的突变,使AM79 EPSPS蛋白的草甘膦抗性降低,表明这些氨基酸位点对于维持AM79 EPSPS高抗草甘膦的能力是必需的.同源建模结果表明,这些保守氨基酸位点的突变,使AM79 EPSPS蛋白的结构发生变化,这可能是导致突变蛋白草甘膦抗性能力降低的原因.两个Ⅰ型EPSPS(荧光假单杆菌(Pseudomonas fluorescens)G2 EPSPS和拟南芥(Arabidopsis thaliana) EPSPS)对应氨基酸突变后,其草甘膦抗性没有明显变化,表明AM79 EPSPS中几个特异的氨基酸位点的功能在Ⅰ型EPSPS中并不是保守的.本研究结果为解析AM79 EPSPS高抗草甘膦的作用机理及对AM79 EPSPS进行定向进化提供了理论依据.

  6. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  7. Cloning and Prokaryotic Expression of EPSP Synthase Gene CDNA of Allium macrostemon Bunge%薤白EPSP合成酶基因cDNA的克隆与原核表达分析

    Institute of Scientific and Technical Information of China (English)

    周晓卉; 黄丽华; 蒋向; 李育强; 张学文

    2009-01-01

    [目的]揭示棉田杂草薤白(Allium macrostemon Bunge)抗草甘膦的分子机理,开发利用其草甘膦抗性特性.[方法]运用RT-PCR结合RACE技术,分离克隆了薤白中草甘膦作用的靶酶EPSP合成酶(EPSPs)基因cDNA,并将其构建成原核表达载体在大肠杆菌中诱导表达和鉴定其抗性.[结果]薤白EPSP合成酶基因cDNA序列全长1821 bp,编码一段522个氨基酸的推导蛋白质.经BLAST及蛋白质结构预测,蛋白具有EPSPs的特征序列,并与已报道的EPSPs序列有高同源性,确认克隆的cDNA序列即是薤白EPSPs基因序列,命名为EPSPsA.将该cDNA与原核表达载体pRSET-A重组后,构建成重组表达质粒pRSET-A-EPSPsA,并转化至大肠杆菌BL21(DE3),用IPTG诱导了目标蛋白的高效表达.经SDS-PAGE电泳分析显示,该蛋白的分子量约为55 kD,与预期大小一致.通过草甘膦对表达细菌处理,表达菌对草甘膦的抗性显著提高.[结论]薤白EPSPs对草甘膦具有一定抗性.

  8. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  9. Interaction of hydrogen sulfide with ion channels.

    Science.gov (United States)

    Tang, Guanghua; Wu, Lingyun; Wang, Rui

    2010-07-01

    1. Hydrogen sulfide (H(2)S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H(2)S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H(2)S is the first identified endogenous gaseous opener of ATP-sensitive K(+) channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K(+) channels, H(2)S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic beta cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H(2)S inhibited L-type Ca(2+) channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca(2+) levels. H(2)S activated small and medium conductance K(Ca) channels but its effect on BK(Ca) channels has not been consistent. 4. H(2)S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca(2+) channels and TRPV(1) channels. The activation of TRPV(1) and TRPA(1) by H(2)S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl(-) secretion. 5. The activation of Cl(-) channel by H(2)S has been shown as a protective mechanism for neurons from oxytosis. H(2)S also potentiates N-methyl-d-aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H(2)S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated.

  10. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

    Science.gov (United States)

    Hoffman, D A; Johnston, D

    1998-05-15

    We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kinases would be of significant interest. We investigated the effects of activators of cAMP-dependent protein kinase (PKA) and the Ca2+-dependent phospholipid-sensitive protein kinase (PKC) on K+ channels in cell-attached patches from the distal dendrites of hippocampal CA1 pyramidal neurons. Inclusion of the membrane-permeant PKA activators 8-bromo-cAMP (8-br-cAMP) or forskolin in the dendritic patch pipette resulted in a depolarizing shift in the activation curve for the transient channels of approximately 15 mV. Activation of PKC by either of two phorbol esters also resulted in a 15 mV depolarizing shift of the activation curve. Neither PKA nor PKC activation affected the sustained or slowly inactivating component of the total outward current. This downregulation of transient K+ channels in the distal dendrites may be responsible for some of the frequently reported increases in cell excitability found after PKA and PKC activation. In support of this hypothesis, we found that activation of either PKA or PKC significantly increased the amplitude of back-propagating action potentials in distal dendrites.

  11. Voltage-gated potassium currents within the dorsal vagal nucleus: inhibition by BDS toxin.

    Science.gov (United States)

    Dallas, Mark L; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim

    2008-01-16

    Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.

  12. 利用宏基因组文库筛选草甘膦不敏感的5-烯醇式丙酮莽草酰-3-磷酸合酶(EPSPS)基因%Screening glyphosate insensitive 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene from metagenomics

    Institute of Scientific and Technical Information of China (English)

    陆伟; 梁爱敏; 孟秀萍; 顿宝庆; 金丹; 穆文超; 林敏

    2006-01-01

    为探索利用宏基因组文库筛选草甘膦不敏感的5-烯醇式丙酮莽草酰-3-磷酸合酶(EPSPS)基因,直接从土壤中提取细菌DNA,构建草甘膦污染土壤细菌宏基因组文库,并利用EPSP合酶缺失突变株ER2799筛选到4个能互补EPSP合酶功能的克隆,其中两个克隆的转化子能够在含5mmol/L草甘膦的MOPS培养基上生长.测序结果表明它们均含有完整的EPSP合酶编码基因,GT-1aroA核苷酸长度为1335bp,编码445个氨基酸,GT-4aroA核苷酸长度为1350bp,编码450个氨基酸.利用PCR方法将两个基因克隆到原核表达载体pET28a上后,可以使宿主细胞BL21(DE3)在含100mmol/L草甘膦的MOPS培养基中良好生长.上述结果表明,利用宏基因组文库筛选方法可以得到高抗草甘膦的EPSPS基因.

  13. Actions of Ethanol on Voltage-Sensitive Sodium Channels: Effects on Neurotoxin Binding

    Science.gov (United States)

    1987-01-01

    sodium inhibitory effect of ethanol on channel - mediated sodium influx channels ...Exprnmantal Trherpeutics Ped in I.SA. Actions of Ethanol on Voltage-Sensitive Sodium Channels : Effects on Neurotoxin Binding1 MICHAEL J. MULLIN 2 and... sodium channels . This indirect allosteric mechanism for inhibition of [H]BTX-B binding. effect orethanol was concentration-dependent and was

  14. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels.

    Science.gov (United States)

    Hwang, Eunson; Lee, Taek Hwan; Lee, Wook-Joo; Shim, Won-Sik; Yeo, Eui-Ju; Kim, Sanghee; Kim, Sun Yeou

    2016-01-01

    Piper amides have a characteristic, unsaturated amide group and exhibit diverse biological activities, including proliferation and differentiation of melanocytes, although the molecular mechanisms underlying its antimelanogenesis effect remain unknown. We screened a selected chemical library of newly synthesized Piper amide derivatives and identified (E)-3-(4-(tert-butyl)phenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (NED-180) as one of the most potent compounds in suppressing melanogenesis. In murine melan-a melanocytes, NED-180 downregulated the expression of melanogenic regulatory proteins including tyrosinase, Tyrp1, Dct, and MITF. PI3K/Akt-dependent phosphorylation of GSK3β by NED-180 decreases MITF phosphorylation and inhibits melanogenesis without any effects on cytotoxicity and proliferation. Furthermore, topical application of NED-180 significantly ameliorated UVB-induced skin hyperpigmentation in guinea pigs. Interestingly, data obtained using calcium imaging techniques suggested that NED-180 reduced the TPA-induced activation of TRPM1 (melastatin), which could explain the NED-180-induced inhibition of melanogenesis. All things taken together, NED-180 triggers activation of multiple pathways, such as PI3K and ERK, and inhibits TRPM1/TRPV1, leading to inhibition of melanogenesis.

  15. Cell volume-regulated cation channels.

    Science.gov (United States)

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  16. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  17. A Study on Detection of the CP4-EPSPs Protein with Quartz Crystal Microbalance Technology%石英晶体微天平对CP4-EPSPs草甘膦抗性蛋白检测研究

    Institute of Scientific and Technical Information of China (English)

    蔡淼; 岳喜庆; 黄新

    2014-01-01

    为建立5-烯醇式丙酮酸-3-磷酸合酶(CP4-EPSPs)蛋白的石英晶体微天平(QCM)传感检测方法,采用在金片表面修饰抗原所对应的单克隆抗体的方法,利用QCM技术,对CP4-EPSPs蛋白进行检测研究.结果表明:该方法灵敏度达到500ng·mL-1,特异性好,重复性高,检测转基因玉米含量检出限为0.1%.该方法不足之处在于检测仪器不方便携带,在未来研究中考虑研发便携式QCM检测装置.

  18. Mapping of glyphosate-resistant gene CP4-EPSPS in cotton%棉花草甘膦抗性基因CP4-EPSPS的初步定位

    Institute of Scientific and Technical Information of China (English)

    刘吉焘; 马晓杰; 狄佳春; 陈旭升

    2013-01-01

    以抗草甘膦陆地棉品系G-6和不抗草甘膦海岛棉品系海7124为试验材料,对分离世代进行检测,分析抗性基因的遗传规律;利用覆盖棉花26条染色体的234对核心引物,通过群体分离分析法进行差异性标记筛选,利用F2分离群体对抗性基因进行染色体定位.结果表明,抗草甘膦性状是受1对显性基因控制的质量性状.特异引物检测显示控制抗草甘膦性状的基因为人工合成基因CP4-EPSPS.利用筛选获得的(27)对多态性引物检测F2作图群体每个单株的基因型,发现分子标记NAU5417、NAU1339、BNL3992、BNL2448、NAU2140与目的基因CP4-EPSPS连锁.进一步筛选,共得到15个分子标记.参照现有的遗传图谱,推断目的基因CP4-EPSPS位于棉花第5染色体BNL2448与NAU2140之间,遗传距离分别为7.0 cM和16.2 cM.%G-6 (glyphosate-resistant cotton) and Hai 7124 (non-resistant sea island cotton) were used in this study.The hybrid F1 population was resistant to glyphosate.The ratio of resistant plants to non-resistant ones in F2 population was consistent with 3 ∶ 1,and the ratio in recessive backcross population BC2 was consistent with 1 ∶ 1,indicating that glyphosate-resistant trait was controlled by a pair of dominant genes.The glyphosate-resistant gene was detected to be an artificially synthesized one,CP4-EPSPS,using a pair of distinctive primers.By bulk segregation analysis,a total of 27 polymorphic primers were obtained from 234 pairs covering 26 pairs of chromosomes in cotton,among which 5 pairs of primers,NAU5417,NAU1339,BNL3992,BNL2448 and NAU2140 were found to be linked with target gene CP4-EPSPS.Further screening showed 15 pairs of primers linked to the gene.According to a known genetic map,CP4-EPSPS was located on BNL2448 and NAU2140 of the fifth chromosome,with genetic distances of 7.0 cM and 16.2 cM,respectively.

  19. Development of a Triple Gene Cry1Ac-Cry2Ab-EPSPS Construct and Its Expression in Nicotiana benthamiana for Insect Resistance and Herbicide Tolerance in Plants

    Science.gov (United States)

    Naqvi, Rubab Z.; Asif, Muhammad; Saeed, Muhammad; Asad, Shaheen; Khatoon, Asia; Amin, Imran; Mukhtar, Zahid; Bashir, Aftab; Mansoor, Shahid

    2017-01-01

    Insect pest complex, cotton leaf curl disease and weeds pose major threat to crop production worldwide, including Pakistan. To address these problems, in the present study a triple gene construct harboring Cry1Ac, Cry2Ab, and EPSPS cassettes has been developed for plant specifically in cotton transformation against lepidopteron insect-pests and weeds. Nicotiana benthamiana (tobacco) was used as a model system for characterization of this triple gene construct. The construct has been assembled in plant expression vector and transformed in N. benthamiana. In six transgenic tobacco lines the integration of Cry1Ac-Cry2Ab-EPSPS in tobacco genome was checked by PCR, while successful protein expression of all the three genes was confirmed through immunostrip assay. Efficacy of Cry1Ac and Cry2Ab was evaluated through insect bioassay using armyworm (Spodoptera littoralis). These transgenic tobacco plants showed significant insect mortality as compared to control plants during insect bioassay. Three out of six tested transgenic lines L3, L5, and L9 exhibited 100% mortality of armyworm, while three other lines L1, L10, and L7 showed 86, 80, and 40% mortality, respectively. This construct can readily be used with confidence to transform cotton and other crops for the development of insect resistant and herbicide tolerant transgenic plants. The transgenic crop plants developed using this triple gene construct will provide an excellent germplasm resource for the breeders to improve their efficiency in developing stable homozygous lines as all the three genes being in a single T-DNA border will inherit together. PMID:28174591

  20. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells.

    Science.gov (United States)

    Ohtsuki, Gen; Piochon, Claire; Adelman, John P; Hansel, Christian

    2012-07-12

    Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner.

  1. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene

    Institute of Scientific and Technical Information of China (English)

    Qi-chao ZHAO; Ming-hong LIU; Xian-wen ZHANG; Chao-yang LIN; Qing ZHANG; Zhi-cheng SHEN‡

    2015-01-01

    synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf rol er, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.

  2. Study on Detection Technology and Survival Competition Ability of Transgenic Cry1Ac + EPSPS Cotton: Based on Glyphosate Pressure and No Control on Target Pests%转抗虫抗草甘膦除草剂基因(Cry1Ac+EPSPS)棉的检测技术与生存竞争能力研究——基于草甘膦压力和对靶标害虫不防治环境下

    Institute of Scientific and Technical Information of China (English)

    李捷; 张兴华; 马艳; 杨兆光; 乔艳艳

    2013-01-01

    此研究为国家转抗虫抗草甘膦除草剂基因(Cry1Ac+ EPSPS)棉环境安全评价技术建立而设.在草甘膦压力和对靶标害虫不防治环境下的检测技术,以杂交抗虫棉赣棉杂1号和非转基因棉赣棉11号为2个对照,来检测评价转抗虫抗草甘膦除草剂基因(Cry1Ac+ EPSPS)棉的生存竞争能力.结果:转Cry1Ac+ EPSPS棉与两个对照相比不显示抗虫优势;株高增长无竞争力;覆盖度有不显著的弱竞争力;单株成铃、单铃籽棉重、单铃皮棉重、衣分率、脱落率、籽棉产量、皮棉产量与赣棉杂1号比呈现显著或板显著的负竞争优势,与赣棉11号比无竞争优势;果枝层数前期与两对照相比有极显著的负竞争优势,后期与赣棉杂1号比无竞争优势,与赣棉11号比有显著的负竞争优势.结论:转Cry1Ac+ EPSPS棉推广种植可行性较差.本项检测技术和评价方法有较好的适用性.

  3. Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition.

    Science.gov (United States)

    Zucca, Stefano; Griguoli, Marilena; Malézieux, Meryl; Grosjean, Noëlle; Carta, Mario; Mulle, Christophe

    2017-01-18

    Despite extensive studies in hippocampal slices and incentive from computational theories, the synaptic mechanisms underlying information transfer at mossy fiber (mf) connections between the dentate gyrus (DG) and CA3 neurons in vivo are still elusive. Here we used an optogenetic approach in mice to selectively target and control the activity of DG granule cells (GCs) while performing whole-cell and juxtacellular recordings of CA3 neurons in vivo In CA3 pyramidal cells (PCs), mf-CA3 synaptic responses consisted predominantly of an IPSP at low stimulation frequency (0.05 Hz). Upon increasing the frequency of stimulation, a biphasic response was observed consisting of a brief mf EPSP followed by an inhibitory response lasting on the order of 100 ms. Spike transfer at DG-CA3 interneurons recorded in the juxtacellular mode was efficient at low presynaptic stimulation frequency and appeared insensitive to an increased frequency of GC activity. Overall, this resulted in a robust and slow feedforward inhibition of spike transfer at mf-CA3 pyramidal cell synapses. Short-term plasticity of EPSPs with increasing frequency of presynaptic activity allowed inhibition to be overcome to reach spike discharge in CA3 PCs. Whereas the activation of GABAA receptors was responsible for the direct inhibition of light-evoked spike responses, the slow inhibition of spiking activity required the activation of GABAB receptors in CA3 PCs. The slow inhibitory response defined an optimum frequency of presynaptic activity for spike transfer at ∼10 Hz. Altogether these properties define the temporal rules for efficient information transfer at DG-CA3 synaptic connections in the intact circuit.

  4. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  5. Effects of inhibition of PD98059 on expression changes of rapid pacing induced atrial muscle cell ion channel%PD98059 抑制快速起搏诱导心房肌细胞离子通道表达变化的研究

    Institute of Scientific and Technical Information of China (English)

    程伟; 朱昀; 肖颖彬

    2012-01-01

    Objective To establish the rapid pacing model with the primarily cultured atrial muscle cell, and to study the effects of PD98059 (inhibitor of ERK1/2) on the expression of L - type calcium channel and potassium channel Kv4?3 in the early stage of rapid pacing. Methods Primarily cultured rats atrial muscle cells were used to establish rapid pacemaker cell model. These cells were randomly divided into three groups, i. e. control group, rapid pacing group, and PD98059 plus rapid pacing group. RT -polymerase chain reaction ( RT - PCR) and Western blot method were used to detect the changes of the expression of mRNA and protein in L - type calcium channel ale and potassium channel Kv4. 3 under different circumstances. Results After the rapid pacing for 24 h, compared with the expression of mRNA and protein in the control group, these in L - type calcium channel ale significantly decreased. Pretreatment with PD98059 before the pacing could significantly inhibit the decrease of the mRNA and protein expression in the rapid pacing - induced L - type calcium channel ale and potassium channel Kv4.3(P < 0. 01). But the expression levels were still lower than these of the control group (P <0. 05). Conclusion In the early stage of rapid pacing, the expression of mRNA and protein in L - type calcium channel otic and potassium channel Kv4. 3 decreases in different degrees, which indicates that the reconstruction of ion channel occurs. And the inhibitor PD98059 of ERK1/2 can significantly inhibit the decrease of the expression, which indicates that ERK1/2 takes part in the reconstruction of atrial muscle cell ion channel in the early stage of rapid pacing.%目的 利用原代培养的心房肌细胞建立快速起搏模型,研究ERK1/2的抑制剂PD98059对L-型钙通道及钾通道Kv4.3在快速起搏早期表达的影响.方法 采用原代培养大鼠心房肌细胞建立快速起搏细胞模型,随机分为对照组、起搏组及PD98059+起搏组,利用逆转录

  6. Ligustrazine inhibits high voltage-gated Ca2+ and TTX-resistant Na+ channels of primary sensory neuron and thermal nociception in the rat:a study on peripheral mechanism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective Ligustrazine, also named as tetramethylpyrazine, is a compound purified from Ligusticum chuanxiong hort and has ever been testified to be a calcium antagonist. The present investigation was to determine the antinociceptive effect of ligustrazine and, if any, the peripheral ionic mechanism involved. Methods Paw withdrawal Latency(PWL) to noxious heating was measured in vivo and whole-cell patch recording was performed on small dorsal root ganglion (DRG) neurons. Results Intraplantar injection of ligustrazine (0.5 mg in 25 μl) significantly prolonged the withdrawal latency of ipsilateral hindpaw to noxious heating in the rat. Ligustrazine not only reversibly inhibited high-voltage gated calcium current of dorsal root ganglion (DRG) neuron in dose-dependent manner with IC50 of 1.89 mmol/L, but also decreased tetrodotoxin (TTX) -resistant sodium current in relatively selective and dose-dependent manner with IC50 of2.49 mmol/L. Conclusion The results suggested that ligustrazine could elevate the threshold of thermal nociception through inhibiting the high-voltage gated calcium current and TTX-resistant sodium current of DRG neuron .in the rat.

  7. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  8. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  9. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  10. 氟西汀对hERG钾通道的阻断作用及佛波酯的抑制作用%Blocking effect of fluoxetine on hERG potassium channel activity and inhibition by phorbol-12-myristate-13-acetate

    Institute of Scientific and Technical Information of China (English)

    汪溪洁; 惠涛涛; 宋征; 马璟

    2014-01-01

    目的:探讨氟西汀对hERG( ether-a-go-go-related gene)钾通道的作用及蛋白激酶C( PKC)激动剂佛波酯( PMA )对氟西汀作用的影响。方法采用全细胞膜片钳技术记录氟西汀0.01,0.1,1和10μmol·L-1处理后稳定表达hERG钾通道的HEK293细胞( hERG-HEK293稳态细胞)上hERG钾通道电流(IKr)的变化,研究氟西汀对IKr作用的浓度依赖性和电压依赖性,并观察氟西汀1μmol·L-1处理后hERG钾通道激活、失活和复活动力学的变化。在此基础上,观察PMA 1μmol·L-1对氟西汀1μmol·L-1作用IKr后的影响。结果氟西汀0.01,0.1,1和10μmol·L-1对hERG-HEK293稳态细胞上IKr具有浓度依赖性和电压依赖性的抑制作用,半数抑制浓度( lC50)约为0.8μmol·L-1,Hill系数约为1.1。氟西汀1μmol·L-1可以减小IKr激活、失活和复活电流,并影响hERG钾通道的激活和复活过程。在氟西汀对IKr电流的抑制作用达到稳态后,PMA 1μmol·L-1可抑制氟西汀对hERG钾通道的阻断作用。结论氟西汀对hERG-HEK293稳态细胞上hERG钾通道具有明显的阻断作用,该作用可被PKC激动剂PMA抑制。%OBJECTlVE To investigate the action mechanism of antidepressant fluoxetine on hERG ( ether-a-go-go-related gene ) potassium channel, and the effect of protein kinase C ( PKC ) agonist phorbol-12-myristate-13-acetate ( PMA) on fluoxetine inhibition. METHODS The whole cell patch clamp technique was used to record the change in hERG potassium current ( IKr ) on HEK293 cells that stably expressed hERG potassium channel ( hERG-HEK293 steady-state cells) , which was treated with fluoxe-tine 0.01, 0.1, 1 and 10μmol·L-1 , to study the concentration-and voltage-dependence of the effects on IKr, and to observe the changes in activation, inactivation and recovery dynamics of hERG potassium channel treated with fluoxetine 1μmol·L-1 . On this basis, the effect of PMA of 1μmol·L-1 on inhibition of fluoxetine 1 μmol·L-1 was explored

  11. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  12. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  13. 铃蟾肽、P物质受体脱敏对迟慢兴奋性突触后电位的影响%The effect of seperate desensitization of substance P and bombesin receptor on ls-EPSP in neurons of guinea pig inferior mesenteric ganglion

    Institute of Scientific and Technical Information of China (English)

    柯道平; 孔德虎; 王刚; 祝延; 黄振信

    2003-01-01

    目的:探讨豚鼠肠系膜下神经节(IMG)细胞铃蟾肽(bombesin,Bom)、P物质(substance P,SP)受体间相互作用及对迟慢兴奋性突触后电位(ls-EPSP)的影响.方法:离体细胞内记录,并观察细胞的去极化、ls-EPSP的时程、幅度.结果:SP受体脱敏可使SP敏感细胞的ls-EPSP阻抑,但对Bom去极化无影响;Bom受体脱敏可使Bom敏感细胞的ls-EPSP阻抑,但对SP受体去极化无影响.结论:Bom、SP可通过各自的突触后膜受体形成ls-EPSP,无交互脱敏现象.

  14. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  15. Quantum Multiple Access Channel

    Institute of Scientific and Technical Information of China (English)

    侯广; 黄民信; 张永德

    2002-01-01

    We consider the transmission of classical information over a quantum channel by many senders, which is a generalization of the two-sender case. The channel capacity region is shown to be a convex hull bound by the yon Neumann entropy and the conditional yon Neumann entropies. The result allows a reasonable distribution of channel capacity over the senders.

  16. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  17. 储藏温度和时间对转基因大豆外源基因及蛋白的影响%Effects of the storage temperature and time on cp4-epsps gene and protein in genetically modified soybean

    Institute of Scientific and Technical Information of China (English)

    周兴虎; 祝常青; 吴洪洪; 沈文飚; 周光宏; 黄明

    2012-01-01

    In this study, the effect of different storage temperatures (4,25 ,37 ℃ ) and times( 10,30,50,70,90 d)on exogenous cp4-epsps gene and protein of genetically modified soybean was investigated by PCR and Western-blot methods. The results suggested that there were no obvious changes in nucleic acid during the storage periods. However, the degradation product (relative molecular mass 46.2×103)of EPSPS protein was detected at 25 ℃ and 37 ℃. The conclusion revealed that the storage temperature and time can promote the degradation of exogenous EPSPS protein, but exert no effect on integrity of the exogenous cp4-epsps gene during the storage period(90 days).%采用PCR和Western-blot方法,研究了储藏过程中不同温度(4、25和37 ℃)和不同时间(10、30、50、70和90 d)对转基因大豆外源cp4-epsps基因和EPSPS蛋白的影响.结果表明:在储藏过程中外源cp4-epsps基因没有发生明显变化;外源EPSPS蛋白发生轻微降解,降解产物相对分子质量约为46.2× 103,而且37℃降解条带较25℃明显,说明相对较高的温度(25和37℃)在储藏90d期间能够促进外源EPSPS蛋白的降解,而对基因完整性影响较小.

  18. Functional diversity and evolutionary dynamics of thermoTRP channels.

    Science.gov (United States)

    Saito, Shigeru; Tominaga, Makoto

    2015-03-01

    Animals have evolved sophisticated physiological systems for sensing ambient temperature since changes in environmental temperatures affect various biological processes. Thermosensitive transient receptor potential (thermoTRP) channels serve as thermal sensors in diverse animal species. They are multimodal receptors that are activated by temperature as well as other physical and chemical stimuli. Since thermoTRP channels are calcium permeable non-selective cation channels, their activation leads to an influx of calcium and sodium ions into the cell and triggers downstream signal transduction. ThermoTRP channels have been characterized in diverse animal species over the past several years, illuminating the diversification of thermoTRP channels in the course of evolution. The gene repertoires of thermoTRP channels differ among animal species. Additionally, in some cases, the temperature and chemical sensitivities among orthologous thermoTRP channels vary among species. The evolutionary flexibility of thermoTRP channels enabled them to contribute to unique physiological systems such as infrared sensation in snakes and bats and seasonal adaptation in silk moth. On the other hand, the functional differences of thermoTRP channels among species have been utilized for understanding the molecular basis for their activation (or inhibition) mechanisms, and amino acid residues (or domains) responsible for the respective channel properties have been identified in various thermoTRP channels. Here we summarize the current understanding of the functional diversity and evolutionary dynamics of thermoTRP channels.

  19. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders;

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  20. Cloning of Sorghum bicolor Chloroplast Transit Peptide (CTP) of 5-enolpyruvylshikimate-3-phosphate Synthase(EPSPS) and Its Functional Validation in Transgenic Maize(Zea mays)%高粱5-烯醇式丙酮酰莽草酸-3-磷酸合酶基因(EPSPS)叶绿体转运肽(CTP)的克隆及其在转基因玉米中的功能验证

    Institute of Scientific and Technical Information of China (English)

    赵海铭; 宋伟彬; 赖锦盛

    2013-01-01

    5-烯醇式丙酮酰莽草酸-3-磷酸合酶(EPSPS)催化莽草酸-3-磷酸(S3P)与磷酸烯醇式丙酮酸(PEP)合成5-烯醇式丙酮酰莽草酸-3-磷酸(EPSP),具有与草甘膦结合的活性位点,且结合后会抑制EPSPS的活性,在植物抗除草剂基因工程中具有重要的应用价值.为了培育抗草甘膦玉米(Zea mays),本研究通过对高粱(Sorghum bicolor)EPSPS基因的结构分析,克隆了该基因5'端的叶绿体转运肽(chloroplast transit peptide,CTP).将该转运肽与来源于农杆菌(Agrobacterium tumefaciens)菌株CP4 EPSPS基因整合,以Ubiquitin为启动子,35S polyA为终止子,构建表达载体,同时以不含有转运肽的CP4 EPSPS基因为对照,遗传转化玉米得到稳定转基因株系;用PCR、Southern blot、ELISA等方法检测转基因玉米CP4 EPSPS基因的表达量并对其进行草甘膦抗性检测,研究发现,不含转运肽的转化事件虽然CP4 EPSPS基因表达量与含有转运肽的基本一致但却不具有草甘膦抗性,而含有转运肽的转化事件则抗性明显.说明转运肽并不影响CP4 EPSPS基因的表达,但对转基因植株草甘膦抗性起着重要作用,说明本研究克隆的叶绿体转运肽能够正常行使其生物学功能.研究结果为利用EPSPS基因培育抗草甘膦作物提供了重要参考资料.

  1. Fast recruitment of recurrent inhibition in the cat visual cortex.

    Directory of Open Access Journals (Sweden)

    Ora Ohana

    Full Text Available Neurons of the same column in L4 of the cat visual cortex are likely to share the same sensory input from the same region of the visual field. Using visually-guided patch clamp recordings we investigated the biophysical properties of the synapses of neighboring layer 4 neurons. We recorded synaptic connections between all types of excitatory and inhibitory neurons in L4. The E-E, E-I, and I-E connections had moderate CVs and failure rates. However, E-I connections had larger amplitudes, faster rise-times, and shorter latencies. Identification of the sites of putative synaptic contacts together with compartmental simulations on 3D reconstructed cells, suggested that E-I synapses tended to be located on proximal dendritic branches, which would explain their larger EPSP amplitudes and faster kinetics. Excitatory and inhibitory synapses were located at the same distance on distal dendrites of excitatory neurons. We hypothesize that this co-localization and the fast recruitment of local inhibition provides an efficient means of modulating excitation in a precisely timed way.

  2. Requirement for chloride channel function during the hepatitis C virus life cycle

    OpenAIRE

    Igloi, Z; Mohl, BP; Lippiat, JD; Harris, M.; Mankouri, J

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation o...

  3. Protocol channels as a new design alternative of covert channels

    CERN Document Server

    Wendzel, Steffen

    2008-01-01

    Covert channel techniques are used by attackers to transfer hidden data. There are two main categories of covert channels: timing channels and storage channels. This paper introduces a third category called protocol channels. A protocol channel switches one of at least two protocols to send a bit combination to a destination while sent packets include no hidden information themselves.

  4. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  5. The Inhibitory Effect of Ginkgolide B on Fast-EPSP in the Celiac Ganglion Neurons of Guinea Pig%银杏内酯B对豚鼠腹腔神经节神经元Fast-EPSP的抑制效应

    Institute of Scientific and Technical Information of China (English)

    胡金兰; 孔淼; 许奇; 王烈成; 柯道平; 马嵘; 孔德虎

    2008-01-01

    应用细胞内记录技术,观察并分析了银杏内酯B(GB)对豚鼠(Cavia porcellus)离体腹腔神经节(CG)神经元快兴奋性突触后电位(fast-EPSP)的影响及可能机制.用4×10-6mol/L的GB灌流CG,fast-EPSP的幅值均明显降低,与对照组相比有显著性差异(n=12,P<0.05);用低Ca2+/高Mg2+ Krebs液灌流,fastEPSP被完全抑制(n=3);用高Ca2+ Krebs液灌流,fast-EPSP幅度则增大(n=12,P<0.05),而用4×10-6mol/L GB与高Ca2+ Krebs液联合灌流,fast-EPSP幅度则减小(n=12,P<0.05).结果提示,GB对CG神经元fast-EPSP的抑制效应可能与减少或抑制CG神经元的外Ca2+内流有关.

  6. Semi-quantitative analysis of EPSPs gene expression in tissues of Allium macrostemon Bunge%薤白EPSPs基因在不同组织表达的半定量分析

    Institute of Scientific and Technical Information of China (English)

    蒋向; 戴雄泽; 李育强; 黄丽华; 戴倩; 张学文

    2007-01-01

    5-烯醇式丙酮酸-3-磷酸合成酶(EPSPs)是植物芳香族氨基酸合成途径的重要酶,是优良除草剂草甘膦作用的靶酶.根据已克隆的抗草甘膦植物薤白EPSPs基因cDNA序列的3'端非保守区域设计引物,采用RT-PCR半定量技术,研究了该基因在薤白不同组织中的表达情况.利用18S rRNA为表达的内参基因,建立一个针对EPSPs特异、稳定的RT-PCR半定量检测体系.对EPSPs基因表达的检测表明,薤白幼叶中基因表达水平最高,总表达水平高低依次为:幼叶,根,茎,壮叶.相对18S rRNA表达量为:幼叶0.631,根0.246,茎0.218,壮叶0.120.

  7. K sup + channel openers activate brain sulfonylurea-sensitive K sup + channels and block neurosecretion

    Energy Technology Data Exchange (ETDEWEB)

    Schmid-Antomarchi, H.; Amoroso, S.; Fosset, M.; Lazdunski, M. (Centre National de la Recherche Scientifique, Valbonne (France))

    1990-05-01

    Vascular K{sup +} channel openers such as cromakalim, nicorandil, and pinacidil potently stimulate {sup 86}Rb{sup +} efflux from slices of substantia nigra. This {sup 86}Rb{sup +} efflux is blocked by antidiabetic sulfonylureas, which are known to be potent and specific blockers of ATP-regulated K{sup +} channels in pancreatic beta cells, cardiac cells, and smooth muscle cells. K{sub 0.5}, the half-maximal effect of the enantiomer ({minus})-cromakalim, is as low as 10 nM, whereas K{sub 0.5} for nicorandil is 100 nM. These two compounds appear to have a much higher affinity for nerve cells than for smooth muscle cells. Openers of sulfonylurea-sensitive K{sup +} channels lead to inhibition of {gamma}-aminobutyric acid release. There is an excellent relationship between potency to activate {sup 86}Rb{sup +} efflux and potency to inhibit neurotransmitter release.

  8. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  9. Quantum broadcast channels

    CERN Document Server

    Yard, J; Devetak, I; Yard, Jon; Hayden, Patrick; Devetak, Igor

    2006-01-01

    We analyze quantum broadcast channels, which are quantum channels with a single sender and many receivers. Focusing on channels with two receivers for simplicity, we generalize a number of results from the network Shannon theory literature which give the rates at which two senders can receive a common message, while a personalized one is sent to one of them. Our first collection of results applies to channels with a classical input and quantum outputs. The second class of theorems we prove concern sending a common classical message over a quantum broadcast channel, while sending quantum information to one of the receivers. The third group of results we obtain concern communication over an isometry, giving the rates at quantum information can be sent to one receiver, while common quantum information is sent to both, in the sense that tripartite GHZ entanglement is established. For each scenario, we provide an additivity proof for an appropriate class of channels, yielding single-letter characterizations of the...

  10. Potassium Channels Blockers from the Venom of Androctonus mauretanicus mauretanicus

    Directory of Open Access Journals (Sweden)

    Marie-France Martin-Eauclaire

    2012-01-01

    Full Text Available K+ channels selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitable and nonexcitable cells. Their activation allows the cell to repolarize after action potential firing and reduces excitability, whereas channel inhibition increases excitability. In eukaryotes, the pharmacology and pore topology of several structural classes of K+ channels have been well characterized in the past two decades. This information has come about through the extensive use of scorpion toxins. We have participated in the isolation and in the characterization of several structurally distinct families of scorpion toxin peptides exhibiting different K+ channel blocking functions. In particular, the venom from the Moroccan scorpion Androctonus mauretanicus mauretanicus provided several high-affinity blockers selective for diverse K+ channels  (SKCa,  Kv4.x, and  Kv1.x K+ channel families. In this paper, we summarize our work on these toxin/channel interactions.

  11. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K;

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions......, the KCNQ4 channel activity is modulated by protein kinases A and C, G protein activation, and a reduction in the intracellular Ca2+ concentration, but these signalling pathways are not responsible for the increased channel activity during cell swelling....

  12. Relative potencies of Type I and Type II pyrethroids for inhibition of spontaneous firing in neuronal networks.

    Science.gov (United States)

    Pyrethroids insecticides commonly used in pest control disrupt the normal function of voltage-sensitive sodium channels. We have previously demonstrated that permethrin (a Type I pyrethroid) and deltamethrin (a Type II pyrethroid) inhibit sodium channel-dependent spontaneous netw...

  13. Lack of conventional ATPase properties in CFTR chloride channel gating.

    Science.gov (United States)

    Schultz, B D; Bridges, R J; Frizzell, R A

    1996-05-01

    CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mM). Higher concentrations of vanadate (10 mM) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN-) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for

  14. Development and Testing of an In-Vitro Assay for Screening of Potential Therapeutic Agents Active against Na Channel Neurotoxins

    Science.gov (United States)

    1988-02-08

    effect to inhibit the binding of [3H]BTX-B is not mediated through an interaction at sodium ...compounds acting at the sodium channel 29 Figure 2. Sodium channel /ot-scorpion toxin sequence homology 30 Figure 3. Effects of nesacaine, benzimidazole...the channel , and alters the single channel conductance. In considering this broad spectrum of effects , one is led to invoke a model for sodium channel

  15. Quantum feedback channels

    CERN Document Server

    Bowen, G

    2002-01-01

    In classical information theory the capacity of a noisy communication channel cannot be increased by the use of feedback. In quantum information theory the no-cloning theorem means that noiseless copying and feedback of quantum information cannot be achieved. In this paper, quantum feedback is defined as the unlimited use of a noiseless quantum channel from receiver to sender. Given such quantum feedback, it is shown to provide no increase in the entanglement-assisted capacities of a noisy quantum channel, in direct analogy to the classical case. It is also shown that in various cases of non-assisted capacities, feedback can increase the capacity of many quantum channels.

  16. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  17. TRP channels in schistosomes

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2016-12-01

    Full Text Available Praziquantel (PZQ is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting.

  18. Purinergic regulation of CFTR and Ca2+ -activated Cl- channels and K+ channels in human pancreatic duct epithelium

    DEFF Research Database (Denmark)

    Wang, Jing; Haanes, Kristian A; Novak, Ivana

    2013-01-01

    dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have...... mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3...... receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct...

  19. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  20. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  1. Bidirectional effects of hydrogen sulfide via ATP-sensitive K(+) channels and transient receptor potential A1 channels in RIN14B cells.

    Science.gov (United States)

    Ujike, Ayako; Otsuguro, Ken-ichi; Miyamoto, Ryo; Yamaguchi, Soichiro; Ito, Shigeo

    2015-10-05

    Hydrogen sulfide (H2S) reportedly acts as a gasotransmitter because it mediates various cellular responses through several ion channels including ATP-sensitive K(+) (KATP) channels and transient receptor potential (TRP) A1 channels. H2S can activate both KATP and TRPA1 channels at a similar concentration range. In a single cell expressing both channels, however, it remains unknown what happens when both channels are simultaneously activated by H2S. In this study, we examined the effects of H2S on RIN14B cells that express both KATP and TRPA1 channels. RIN14B cells showed several intracellular Ca(2+) concentration ([Ca(2+)]i) responses to NaHS (300 µM), an H2S donor, i.e., inhibition of spontaneous Ca(2+) oscillations (37%), inhibition followed by [Ca(2+)]i increase (24%), and a rapid increase in [Ca(2+)]i (25%). KATP channel blockers, glibenclamide or tolbutamide, abolished any inhibitory effects of NaHS and enhanced NaHS-mediated [Ca(2+)]i increases, which were inhibited by extracellular Ca(2+) removal, HC030031 (a TRPA1 antagonist), and disulfide bond-reducing agents. NaHS induced 5-hydroxytryptamine (5-HT) release from RIN14B cells, which was also inhibited by TRPA1 antagonists. These results indicate that H2S has both inhibitory and excitatory effects by opening KATP and TRPA1 channels, respectively, in RIN14B cells, suggesting potential bidirectional modulation of secretory functions.

  2. Ion channel expression in the developing enteric nervous system.

    Directory of Open Access Journals (Sweden)

    Caroline S Hirst

    Full Text Available The enteric nervous system arises from neural crest-derived cells (ENCCs that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.

  3. Ion Channel Expression in the Developing Enteric Nervous System

    Science.gov (United States)

    Stamp, Lincon A.; Fegan, Emily; Dent, Stephan; Cooper, Edward C.; Lomax, Alan E.; Anderson, Colin R.; Bornstein, Joel C.; Young, Heather M.; McKeown, Sonja J.

    2015-01-01

    The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons. PMID:25798587

  4. Transgenic cry1Ab/vip3H+epsps Rice with Insect and Herbicide Resistance Acted No Adverse Impacts on the Population Growth of a Non-Target Herbivore, the White-Backed Planthopper, Under Laboratory and Field Conditions

    Institute of Scientific and Technical Information of China (English)

    LU Zeng-bin; HAN Nai-shun; TIAN Jun-ce; PENG Yu-fa; HU Cui; GUO Yu-yuan; SHEN Zhi-cheng; YE Gong-yin

    2014-01-01

    Numerous Bt rice lines expressing Cry protein derived from Bacillus thuringiensis Berliner (Bt) have been developed since 1989. However, the potential risks posed by Bt rice on non-target organisms still remain debate. The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the most economically important insect pests of rice in Asian countries and also one of the main non-target herbivores of transgenic rice. In the current study, impacts of transgenic cry1Ab/vip3H+epsps rice (G6H1) with both insect and herbicide resistance on WBPH were evaluated to ascertain whether this transgenic rice line had potential risks for this sap-sucking pest under laboratory and ifeld conditions. The laboratory results showed that no signiifcant difference in egg developmental duration, nymphal survival rate and female fecundity was found for WBPH between G6H1 and its non-transgenic isoline (XS110). However, the development duration of nymphs was signiifcantly shorter and female longevity signiifcantly longer when WBPH fed on G6H1 by comparison with those on its control. To verify the results found in laboratory, a 3-yr ifeld trial was conducted to monitor WBPH population using both the vacuum-suction machine and beat plate methods. Although the seasonal density of WBPH nymphs and total density of nymphs and adults were not signiifcantly affected by transgenic rice regardless of the sampling methods, the seasonal density of WBPH adults in transgenic rice plots was slightly lower than that in the control when using the vacuum-suction machine. Based on these results both from laboratory and ifeld, it is clear that our tested transgenic rice line will not lead higher population of WBPH. However, long-term ifeld experiments to monitor the population dynamics of WPBH at large scale need to be conducted to conifrm the present conclusions in future.

  5. Cloning and expression of EPSP synthase gene from Sclerotinia sclerotiorium in Escherichia coli%核盘菌EPSP合酶基因在大肠杆菌中的表达

    Institute of Scientific and Technical Information of China (English)

    于寒颖; 杨谦

    2006-01-01

    不含有内含子的核盘菌arom基因已经被扩增、测序.该基因编码五功能的AROM蛋白.为了大量获得核盘菌AROM蛋白的结构域之一5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS),将该菌arom基因编码脱氢奎尼酸合酶(DHQS)和EPSPS两结构域的DNA序列和只编码EPSPS结构域的DNA序列分别克隆入载体pGEX-4t-2和载体pET28b中,构建了4个表达载体pGEX-DE、pGEX-E、pET-DE和pET-E,并将其转入大肠杆菌DH5α、大肠杆菌BL21(DE3)或大肠杆菌JM109中表达.酶活测定和SDS-PAGE分析结果显示,上述编码序列在大肠杆菌细胞内获得了表达,含有表达载体pGEX-E、pET-DE和pET-E的大肠杆菌BL21(DE3)转化子具有EPSPS的催化活性,说明核盘菌arom基因的这些DNA片段可以被单独表达.核盘菌EPSPS异源表达系统的建立为该酶的抑制剂设计奠定了基础.

  6. Molecular Cloning and Characterizing of Epsps Cene3' end From Orychrophragmus violaceus%诸葛菜EPSPS基因3'端的克隆和序列分析

    Institute of Scientific and Technical Information of China (English)

    刘晓军; 邓运涛; 高辉; 苟晓松; 吴俊; 郭文鹏; 李旭锋

    2002-01-01

    @@ 烯醇式丙酮基莽草酸-3-磷酸合成酶(5-enolpyruvylshikimate-3-phosphate synthase,EPSPS),是植物及微生物莽草酸途径中的一个必需合成酶.其功能是催化shikimate-5-phosaphate与phosphoenolpyruvate产生5-enolpyruvylshikimate-3-phosphate和无机磷酸[1].草甘膦(glyphosate)是一种广谱的抗菌、除草剂成分,它竞争抑制EPSPS酶的活性[2].植物对高剂量草甘膦的耐性可能有3种机制,其一是表达过量的EPSPS酶[3,4],另一种方式是某些氨基酸突变产生有耐性的EPSPS酶,还有一种便是植物自身含有能够分解草甘膦的基因,但此种机制还未见报道.一些微生物可以分解并利用草甘膦[5].微生物中的同源基因为 aroA,对它研究得比较透彻.在高等植物中它的同源基因EPSPS基因仅在欧洲油菜(B.napus)、拟南芥(A.thaliana)、烟草(N.tabacum)、矮牵牛(P.hybrida)、玉米(Z.mays)、西红柿(L.esculentum)等中能被克隆[6,7].

  7. Optimization ofAgrobacterium tumefaciens-Mediated Immature Embryo Transformation System and Transformation of Glyphosate-Resistant Gene 2mG2-EPSPS in Maize (Zea maysL.)

    Institute of Scientific and Technical Information of China (English)

    YU Gui-rong; LIU Yan; DU Wen-ping; SONG Jun; LIN Min; XU Li-yuan; XIAO Fang-ming; LIU Yong-sheng

    2013-01-01

    Since maize is one of the most important cereal crops in the world, establishment of an efifcient genetic transformation system is critical for its improvement. In the current study, several elite corn lines were tested for suitability ofAgrobacterium tumefaciens-mediated transformation by using immature embryos as explants. Infection ability and efficiency of transformation ofA. tumefacienssp. strains EHA105 and LBA4404, different heat treatment times of immature embryos before infection, inlfuence of L-cysteine addition in co-cultivation medium after transformation, and how different ways of selection and cultivation inlfuence the efifciency of transformation were compared. Glyphosate-resistant gene2mG2-EPSPS was transformed into several typical maize genotypes including 78599, Zong 31 and BA, under the optimum conditions. Results showed that the hypervirulentAgrobacterium tumefacienssp. strain EHA105 was more infectious than LBA4404. Inclusion of L-cysteine (100 mg L-1) in co-cultivation medium, and heating of the immature embryos for 3 min prior to infection led to a signiifcant increase in the transformation efifciency. Growth in resting medium for 4-10 d and delaying selection was beneifcial to the survival of resistant calli. During induction of germination, adding a high concentration of 6-BA (5 mg L-1) and a low concentration of 2,4-D (0.2 mg L-1) to regeneration medium signiifcantly enhanced germination percentage. Using the optimized transformation procedure, more than 800 transgenic plants were obtained from 78599, Zong 31 and BA. By spraying herbicide glyphosate on leaves of transgenic lines, we identiifed 66 primary glyphosate-resistant plants. The transformation efifciency was 8.2%. PCR and Southern-blot analyses conifrmed the integration of the transgenes in the maize genome.

  8. Athermalized channeled spectropolarimeter enhancement.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  9. 电压门控钾离子通道对卵巢黄素化颗粒细胞增殖、分泌及凋亡的影响%Influence of 4-aminopyridine on human ovarian luteinized granulosa cell proliferation, production, and apoptosis through inhibiting voltage-gated K+ channel

    Institute of Scientific and Technical Information of China (English)

    赵志明; 崔娜; 徐素欣; 高福禄; 郝桂敏; 曹金凤

    2008-01-01

    Objective To study the influence of 4-aminopyridine(4-AP)on proliferation,production,and apoptosis through inhibiting voltage-gated K+channel(Kv)in ovarian luteinized granulosa cells.nethods Ovarian luteinized granulosa cells were recovered from 25 women with regular menses who underwent in vitro fertilization programme.The cultured granulosa cells were divided into 4 groups:blank group,4-AP treated group,human chorionic gonadotropin(hCG)-induced group and hCG+4-AP cotreated group.The final concentrations of hCG and 4-AP were 1250 U/L and 5 nmol/L respectively.The progesterone production WaS detected by the chemoluminescence method.The expression of Kv mRNA on human ovarian luteinized granulosa cell was detected by RT.PCR The influence on the early apoptosis of gTanulosa cells bv 4-AP was observed by flow eytometry.Cellular caSpage-3 activities were observed with colorimetric method and the inhibition of the cell proliferation was studied using methyl thiazolyl tetrazolium(MTT)method.Results(1)Kv mRNA wag expressed in granulosa cell.(2)The progesterone production64),(206±32),(1991±172)and(763±79)nmol/L,respectively after24 hours culture.Exposure of the(3)The flow cytometry analysis and the cellular caapase-3 A405 showed that 4-AP increased the percentage ofearly phase apoptosis(P0.05).(3)培养24 h后颗粒细胞的凋亡率及半胱氨酸天冬氨酸蛋白酶(caspase-3)活性,4-AP组分别为(40±5)%和0.049 ±0.009,均高于空白组[(17±4)%和0.029±0.008],hCG+4-AP组[(25±4)%和0.039±0.008]也均高于hCG组[(15 ±3)%和0.022 ±0.007],差异均有统计学意义(P<0.01).结论 4-AP能够抑制卵巢黄素化颗粒细胞和经hCG诱导的颗粒细胞的孕酮分泌,町能与其抑制增殖、促进凋亡有关.Kv在卵巢黄素化颗粒细胞分泌、增殖及凋亡过程中起重要的作用.

  10. Chloride channels of platelets%血小板氯通道

    Institute of Scientific and Technical Information of China (English)

    陈晓琳; 尹松梅

    2004-01-01

    Chloride channels distribute widely in the body, and participate in many physiological actions and regulatory processes. Based on their physiological roles and molecular structures, six kinds of chloride channels have been identified: (1) The chloride channels family; (2) Cystic fibrosis transmembrane conductance regulator; (3) Swelling-activated chloride channels; (4) Calcium-activated chloride channels; (5) The p64 (CLIC) gene family; (6) γ-aminobutyric acid and glycine receptors. The chloride channels do exist in platelets, and their appearances are dependent on the presence of intracellular calcium. Blocking agents of chloride channels inhibit the thrombin-activated platelet aggregation and the elevation of the intracellular calcium concentration in a dose-dependent manner. It is suggested that chloride channels play a role in the activation of platelets. In addition, chloride channels act on both the cell volume regulation and the intracellular pH regulation in platelets.

  11. Inhibition of Sodium Channels in Rat Dorsal Root Ganglion Neurons by Hainantoxin-IV, a Novel Spider Toxin%海南捕鸟蛛毒素-IV对大鼠背根神经节细胞钠通道的抑制影响

    Institute of Scientific and Technical Information of China (English)

    肖玉成; 梁宋平

    2003-01-01

    The effects of Hainantoxin-IV (HNTX-IV), a neurotoxic peptide isolated from the venom of the Chinese bird spider Seleconosmia hainana, on the adult rat dorsal root ganglion (DRG) neurons were investigated. Using the whole-cell patch-clamp technique HNTX-IV inhibited mammal neural TTX-sensitive (TTX-S) sodium currents evidently but the toxin failed to affect TTX-resistant (TTX-R) ones. The inhibition of HNTX-IV is dose-dependent with the IC50 value of 44.6 nmol/L. The toxin didn't affect the activation and inactivation kinetics of sodium currents, but it caused a 10.1 mV hyperpolarizing shift in the voltage midpoint of steady-state sodium channel inactivation on DRG neurons. The results indicated that HNTX-IV, a novel spider toxin, maybe alternate voltage-gated sodium channels through a mechanism distinct from other spider toxins such as δ-ACTXs, μ-agatoxins I-VI which targeted the receptor site 3 to slow the inactivation kinetics of sodium currents.%海南捕鸟蛛毒素-IV(HNTX-IV)是从中国捕鸟蛛Seleconosmia hainana粗毒中分离得到的一种肽类神经毒素, 在成年大鼠背根神经节(DRG)细胞上观察了该毒素对电压门控钠通道的影响. 在全细胞膜片钳条件下, HNTX-IV能明显抑制哺乳动物神经性河豚毒敏感型(TTX-S)钠电流, 但不影响河豚毒不敏感型(TTX-R)钠电流. HNTX-IV对DRG细胞TTX-S钠电流的抑制作用具有浓度依从性, 其有效半抑制浓度(IC50)为44.6 nmol/L. 该毒素不影响DRG钠电流的激活与失活时间特征, 但能导致钠通道的半数稳态失活电压向超极化方向漂移约10.1 mV. 结果表明HNTX-IV是一种新型的蜘蛛毒素, 其影响电压门控钠通道的机制可能有别于那些结合于通道位点3来延缓钠电流失活时间特征的蜘蛛毒素如δ-澳洲漏斗网蛛毒素、μ-美洲漏斗网蛛毒素I-VI等.

  12. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels.

    Science.gov (United States)

    Levitz, Joshua; Royal, Perrine; Comoglio, Yannick; Wdziekonski, Brigitte; Schaub, Sébastien; Clemens, Daniel M; Isacoff, Ehud Y; Sandoz, Guillaume

    2016-04-12

    Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels.

  13. Electrophysiology of lead intoxication: effects on voltage-sensitive ion channels.

    Science.gov (United States)

    Audesirk, G

    1993-01-01

    Neuronal function depends on the activity of a variety of voltage-sensitive, ion-specific membrane channels, including channels permeable chiefly to sodium, potassium, and calcium. The plasma membranes of many neurons contain several types of each class of channel. In general, heavy metal ions exert little effect on voltage-sensitive sodium or potassium channels, but inhibit ion flow through voltage-sensitive calcium channels (VSCC). The literature abounds with descriptions of different types of calcium channels in vertebrate neurons. These descriptions suggest that there are many physiologically and pharmacologically distinct calcium channels, some of them possibly cell-type specific. Among the heavy metals, Pb2+ is one of the most potent inhibitors of VSCC in both vertebrate and invertebrate neurons. Some heavy metals, including Ni2+ and Cd2+, are fairly selective against certain types of calcium channels. Limited evidence suggests that Pb2+ inhibits all calcium channel types within a given cell, with only minor differences in potency. However, there appear to be substantial differences among cell types in the concentration dependence of calcium channel inhibition by Pb2+. Therefore, to appreciate the range of effects of Pb2+ on calcium channels throughout the nervous system, it will be important to examine a large number of cell types. Pb2+ is highly permeable through at least some types of VSCC. Entry of Pb2+ into the neuronal cytoplasm through VSCC, followed by disturbance of intracellular functions, may be a major mechanism of Pb2+ neurotoxicity.

  14. Regulation of epileptiform discharges in rat neocortex by HCN channels.

    Science.gov (United States)

    Albertson, Asher J; Williams, Sidney B; Hablitz, John J

    2013-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated, nonspecific cation (HCN) channels have a well-characterized role in regulation of cellular excitability and network activity. The role of these channels in control of epileptiform discharges is less thoroughly understood. This is especially pertinent given the altered HCN channel expression in epilepsy. We hypothesized that inhibition of HCN channels would enhance bicuculline-induced epileptiform discharges. Whole cell recordings were obtained from layer (L)2/3 and L5 pyramidal neurons and L1 and L5 GABAergic interneurons. In the presence of bicuculline (10 μM), HCN channel inhibition with ZD 7288 (20 μM) significantly increased the magnitude (defined as area) of evoked epileptiform events in both L2/3 and L5 neurons. We recorded activity associated with epileptiform discharges in L1 and L5 interneurons to test the hypothesis that HCN channels regulate excitatory synaptic inputs differently in interneurons versus pyramidal neurons. HCN channel inhibition increased the magnitude of epileptiform events in both L1 and L5 interneurons. The increased magnitude of epileptiform events in both pyramidal cells and interneurons was due to an increase in network activity, since holding cells at depolarized potentials under voltage-clamp conditions to minimize HCN channel opening did not prevent enhancement in the presence of ZD 7288. In neurons recorded with ZD 7288-containing pipettes, bath application of the noninactivating inward cationic current (Ih) antagonist still produced increases in epileptiform responses. These results show that epileptiform discharges in disinhibited rat neocortex are modulated by HCN channels.

  15. Channel Access in Erlang

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  16. An Insight to Covert Channels

    OpenAIRE

    Salwan, Nitish; Singh, Sandeep; Arora, Suket; Singh, Amarpreet

    2013-01-01

    This paper presents an overview of different concepts regarding covert channels. It discusses the various classifications and the detailing of various fields used to manipulate for the covert channel execution.Different evaluation criterias are presented for measuring the strength of covert channels. The defenses and prevention schemes for this covert channel will also be discussed. This paper also discuss about an advanced timing channel i.e.Temperature Based Covert Channel.

  17. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered no sys...... no systematic overview exist of channel choice. We present a literature review of channel choice studies in government to citizen context identifying authors, countries, methods, concepts, units of analysis, and theories, and offer suggestionsfor future studies....

  18. Uncoupling charge movement from channel opening in voltage-gated potassium channels by ruthenium complexes.

    Science.gov (United States)

    Jara-Oseguera, Andrés; Ishida, Itzel G; Rangel-Yescas, Gisela E; Espinosa-Jalapa, Noel; Pérez-Guzmán, José A; Elías-Viñas, David; Le Lagadec, Ronan; Rosenbaum, Tamara; Islas, León D

    2011-05-06

    The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic β-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.

  19. The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes.

    Science.gov (United States)

    Audesirk, G; Audesirk, T

    1993-01-01

    The whole-cell version of patch clamping was used to compare the effects of acute in vitro exposure to inorganic lead (Pb2+) on voltage-sensitive calcium channels in cultured N1E-115 mouse neuroblastoma cells and E18 rat hippocampal neurons. Free Pb2+ concentrations in salines with a high lead-buffering capacity were measured with a calibrated Pb(2+)-selective electrode. Previously, we found that N1E-115 neurons contain low voltage activated, rapidly inactivating (T) channels and high voltage activated, slowly inactivating (L) channels. Pb2+ inhibits both channel subtypes in N1E-115 cells, with some selectivity against L-type channels (IC50 approximately 700 nM free Pb2+ for L-type channels, 1300 nM free Pb2+ for T-type channels; Audesirk and Audesirk, 1991). In addition to T-type and L-type channels, cultured E18 rat hippocampal neurons have been reported to contain high voltage-activated, rapidly inactivating (N) channels. In our experiments with 5 to 20 day old cultures, almost all neurons showed substantial L-type current, approximately half showed significant N-type current, and fewer than 5% showed significant T-type current. We found that Pb2+ is somewhat selective against L-type channels (IC50 approximately 30 nM free Pb2+ in 10 mM Ba2+ as the charge carrier, 55 nM in 50 mM Ba2+) compared to N-channels (IC50 approximately 80 nM free Pb2+ in 10 mM Ba2+, 200 nM in 50 mM Ba2+). These results suggest that the effects of Pb2+ on calcium channels of vertebrate neurons vary both among cell types and among channel subtypes.

  20. Cooperative gating between ion channels.

    Science.gov (United States)

    Choi, Kee-Hyun

    2014-01-01

    Cooperative gating between ion channels, i.e. the gating of one channel directly coupled to the gating of neighboring channels, has been observed in diverse channel types at the single-channel level. Positively coupled gating could enhance channel-mediated signaling while negative coupling may effectively reduce channel gating noise. Indeed, the physiological significance of cooperative channel gating in signal transduction has been recognized in several in vivo studies. Moreover, coupled gating of ion channels was reported to be associated with some human disease states. In this review, physiological roles for channel cooperativity and channel clustering observed in vitro and in vivo are introduced, and stimulation-induced channel clustering and direct channel cross linking are suggested as the physical mechanisms of channel assembly. Along with physical clustering, several molecular mechanisms proposed as the molecular basis for functional coupling of neighboring channels are covered: permeant ions as a channel coupling mediator, concerted channel activation through the membrane, and allosteric mechanisms. Also, single-channel analysis methods for cooperative gating such as the binomial analysis, the variance analysis, the conditional dwell time density analysis, and the maximum likelihood fitting analysis are reviewed and discussed.

  1. Optogenetics. Engineering of a light-gated potassium channel.

    Science.gov (United States)

    Cosentino, Cristian; Alberio, Laura; Gazzarrini, Sabrina; Aquila, Marco; Romano, Edoardo; Cermenati, Solei; Zuccolini, Paolo; Petersen, Jan; Beltrame, Monica; Van Etten, James L; Christie, John M; Thiel, Gerhard; Moroni, Anna

    2015-05-01

    The present palette of opsin-based optogenetic tools lacks a light-gated potassium (K(+)) channel desirable for silencing of excitable cells. Here, we describe the construction of a blue-light-induced K(+) channel 1 (BLINK1) engineered by fusing the plant LOV2-Jα photosensory module to the small viral K(+) channel Kcv. BLINK1 exhibits biophysical features of Kcv, including K(+) selectivity and high single-channel conductance but reversibly photoactivates in blue light. Opening of BLINK1 channels hyperpolarizes the cell to the K(+) equilibrium potential. Ectopic expression of BLINK1 reversibly inhibits the escape response in light-exposed zebrafish larvae. BLINK1 therefore provides a single-component optogenetic tool that can establish prolonged, physiological hyperpolarization of cells at low light intensities.

  2. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  3. Covert Channels within IRC

    Science.gov (United States)

    2011-03-24

    Communications ....................................... 2 1.3 Steganography and Covert Channels .......................................................... 3...Internet Relay Chat ..................................................................................... 7 2.2 Steganography ...13 2.2.2 Encrypted Steganographic Systems .............................................. 15 2.2.3 Text-Based Steganography

  4. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  5. Authentication over Noisy Channels

    CERN Document Server

    Lai, Lifeng; Poor, H Vincent

    2008-01-01

    In this work, message authentication over noisy channels is studied. The model developed in this paper is the authentication theory counterpart of Wyner's wiretap channel model. Two types of opponent attacks, namely impersonation attacks and substitution attacks, are investigated for both single message and multiple message authentication scenarios. For each scenario, information theoretic lower and upper bounds on the opponent's success probability are derived. Remarkably, in both scenarios, lower and upper bounds are shown to match, and hence the fundamental limit of message authentication over noisy channels is fully characterized. The opponent's success probability is further shown to be smaller than that derived in the classic authentication model in which the channel is assumed to be noiseless. These results rely on a proposed novel authentication scheme in which key information is used to provide simultaneous protection again both types of attacks.

  6. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    , and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...... by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling....

  7. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    - serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...... of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......, controlled cell death and cellular migration. Volume regulatory mechanisms has long been in focus for regulating cellular proliferation and my thesis work have been focusing on the role of Cl- channels in proliferation with specific emphasis on ICl, swell. Pharmacological blockage of the ubiquitously...

  8. Fracture channel waves

    Science.gov (United States)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  9. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  10. The role of CRAC channel in asthma.

    Science.gov (United States)

    Kaur, Manminder; Birrell, Mark A; Dekkak, Bilel; Reynolds, Sophie; Wong, Sissie; De Alba, Jorge; Raemdonck, Kristof; Hall, Simon; Simpson, Karen; Begg, Malcolm; Belvisi, Maria G; Singh, Dave

    2015-12-01

    Asthma is increasing globally and current treatments only manage a proportion of patients. There is an urgent need to develop new therapies. Lymphocytes are thought to play a central role in the pathophysiology of asthma through the production of inflammatory mediators. This is thought to be via the transcription factor NFAT which in turn can be activated through Ca(2+) release-activated Ca(2+) (CRAC) channels. The aim of this work was to investigate the role of CRAC in clinical and pre-clinical models of allergic asthma. Initial data demonstrated that the NFAT pathway is increased in stimulated lymphocytes from asthmatics. To confirm a role for the channel we showed that a selective inhibitor, Synta 66, blocked mediator production from lymphocytes. Synta 66 inhibited CD2/3/28 induced IL-2, IL-7, IL-13 & IFNΥ in a concentration-dependent manner in healthy and severe asthma donors, with over 60% inhibition observed for all cytokines. NFAT pathway was also increased in a pre-clinical asthma model. In this model we have demonstrated that CRAC played a central role in the airway inflammation and late asthmatic response (LAR). In conclusion, our data provides evidence that suggests targeting CRAC channels could be of therapeutic benefit for asthma sufferers.

  11. Targeting GIRK Channels for the Development of New Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Kenneth eWalsh

    2011-10-01

    Full Text Available G protein-coupled inward rectifier K+ (GIRK channels represent novel targets for the development of new therapeutic agents. GIRK channels are activated by a large number of G protein-coupled receptors (GPCRs and regulate the electrical activity of neurons, cardiac myocytes and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the patho-physiology of neuropathic pain, drug addiction, cardiac arrhythmias and other disorders. However, the pharmacology of these channels remains largely unexplored. In this paper we describe the development of a screening assay for identifying new modulators of neuronal and cardiac GIRK channels. Pituitary (AtT20 and cardiac (HL-1 cell lines expressing GIRK channels were cultured in 96-well plates, loaded with oxonol membrane potential-sensitive dyes and measured using a fluorescent imaging plate reader. Activation of the endogenous GPCRs in the cells caused a rapid, time-dependent decrease in the fluorescent signal; indicative of K+ efflux through the GIRK channels (GPCR stimulation versus control, Z’-factor = 0.5-0.7. As expected this signal was inhibited by addition of Ba2+ and the GIRK channel toxin tertiapin-Q. To test the utility of the assay for screening GIRK channel blockers, cells were incubated for 5 minutes with a compound library of Na+ and K+ channel modulators. Ion transporter inhibitors such as 5-(N,N-hexamethylene-amiloride and SCH-28080 were identified as blockers of the GIRK channel at sub-micromolar concentrations. Thus, the screening assay will be useful for expanding the limited pharmacology of the GIRK channel and in developing new agents for the treatment of GIRK channelopathies.

  12. 重组抗原CP4-EPSPS的表达及免疫学活性研究%The immunoactivity study of purified recombinant CP4-EPSPS protein

    Institute of Scientific and Technical Information of China (English)

    唐霓; Yu; Xiang; Helen; Ke; Zhihui; Yao; 敬凌霞; 黄爱龙; 郑建

    2006-01-01

    目的:表达并纯化重组CP4-EPSP合成酶(CP4-EPSPS),研究重组CP4-EPSPS的免疫学活性;为进一步制备单克隆抗体和开发检测CP4-EPSPS的快速诊断试剂奠定基础.方法:诱导表达含转基因大豆CP4-EPSPS的重组载体pET-EPSPS,经Ni-NTA琼脂糖树脂亲和层析纯化,以ELISA、胶体金试条、Western杂交鉴定其免疫活性.结果:重组CP4-EPSPS以包涵体表达为主,上清表达量极低,但胶体金试纸条检测发现上清中CP4-EPSPS抗原活性强;复性包涵体的抗原性与上清的抗原性明显不同.采用扩大培养量、缩小超声破碎重悬体积的方法,从上清中纯化CP4-EPSPS获得成功,ELISA检测此重组抗原免疫小鼠血清抗体滴度可达到1:625,000;Western杂交证实重组抗原免疫血清与CP4-EPSPS标准品有较好的免疫反应性.结论:包涵体的简单复性方法难以恢复其关键的抗原决定簇的免疫原性;运用胶体金试纸条检测重组CP4-EPSPS活性,灵敏度高,简单快捷,对CP4-EPSPS特异检测相关的关键性抗原决定簇的甄别有重要作用,可指导重组抗原的纯化和在免疫学研究、特别是在单克隆抗体开发中的应用.

  13. Cloning and Functional Analysis of an Alternative Splicing Sequence of Cotton EPSPS Gene%棉花EPSPS基因一个可变剪接体的克隆及功能分析

    Institute of Scientific and Technical Information of China (English)

    巩元勇; 倪万潮; 郭书巧; 束红梅; 帕尔哈提·买买提; 何林池

    2016-01-01

    可变剪接是生物体基因在转录过程中存在的普遍现象,该现象是导致蛋白质功能多样性的重要原因之一,但是在棉花中关于功能基因可变剪接事件的报到相对较少.本文在克隆棉花EPSPS(5-enolpyruvylshikimate 3-phosphate synthase)基因的过程中,发现了该基因的一条可变剪接序列.运用生物信息学的方法研究发现,该序列比正常的EPSPS基因的cDNA序列少152 bp,这造成了终止密码子在该序列的提前出现;正常的EPSPS基因内含子的剪切都遵循常见的“GT-AG”剪切规律,而该可变剪接序列最后一个内含子的剪切是按照“AT-AC”规则进行;该可变剪接序列预测的三维结构模型同正常的EPSPS基因的三维结构存在显著差异.将该可变剪接序列插入到原核表达载体pET32a,随后将构建好的原核表达重组载体转化入大肠杆菌菌株BL21(DE3)△aroA,通过在M9基本培养基中的生长研究发现该可变剪接序列不具备正常EPSPS基因所具有的功能.本研究结果丰富了棉花EPSPS基因转录本存在的形式,为深入研究棉花EPSPS基因的转录机制打下了基础.

  14. Ca2+ channels as integrators of G protein-mediated signaling in neurons.

    Science.gov (United States)

    Strock, Jesse; Diversé-Pierluissi, María A

    2004-11-01

    The observations from Dunlap and Fischbach that transmitter-mediated shortening of the duration of action potentials could be caused by a decrease in calcium conductance led to numerous studies of the mechanisms of modulation of voltage-dependent calcium channels. Calcium channels are well known targets for inhibition by receptor-G protein pathways, and multiple forms of inhibition have been described. Inhibition of Ca(2+) channels can be mediated by G protein betagamma-subunits or by kinases, such as protein kinase C and tyrosine kinases. In the last few years, it has been shown that integration of G protein signaling can take place at the level of the calcium channel by regulation of the interaction of the channel pore-forming subunit with different cellular proteins.

  15. Extract from Buthus martensii Karsch is associated with potassium channels on glioma cells

    Institute of Scientific and Technical Information of China (English)

    Mingxian Li; Hongmei Meng; Shao Wang; Min Huang; Li Cui; Weihong Lin

    2011-01-01

    Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,the extract from scorpion venom of Buthus martensii Karsch in China,can inhibit glioma growth,and whether this inhibition is correlated with ion channels of tumor cells.The present study treated rat C6 glioma cells with 0.8,1.2,and 1.6 μg/mL antigliomatin for 20 hours.Whole-cell patch clamp technique showed that antigliomatin delayed rectifier potassium channels of C6 glioma cells.Antigliomatin inhibited tumor growth,which could potentially involve potassium channels of tumor cells.

  16. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  17. The Position of the Fast-Inactivation Gate during Lidocaine Block of Voltage-gated Na+ Channels

    OpenAIRE

    Vedantham, Vasanth; Cannon, Stephen C.

    1999-01-01

    Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channel...

  18. BK channels reveal novel phosphate sensitivity in SNr neurons.

    Directory of Open Access Journals (Sweden)

    Juan Juan Ji

    Full Text Available Whether large conductance Ca(2+-activated potassium (BK channels are present in the substantia nigra pars reticulata (SNr is a matter of debate. Using the patch-clamp technique, we examined the functional expression of BK channels in neurons of the SNr and showed that the channels were activated or inhibited by internal high-energy phosphates (IHEPs at positive and negative membrane potentials, respectively. SNr neurons showed membrane potential hyperpolarization under glucose-deprivation conditions which was attenuated by paxilline, a specific BK channel blocker. In addition, Fluo-3 fluorescence recording detected an increase in the level of internal free calcium ([Ca(2+](i during ischemic hyperpolarization. These results confirm that BK channels are present in SNr neurons and indicate that their unique IHEP sensitivity is requisite in neuronal ischemic responses. Bearing in mind that the K(ATP channel blocker tolbutamide also attenuated the hyperpolarization, we suggest that BK channels may play a protective role in the basal ganglia by modulating the excitability of SNr neurons along with K(ATP channels under ischemic stresses.

  19. Effects of curcumin on ion channels and transporters

    Directory of Open Access Journals (Sweden)

    Xuemei eZhang

    2014-03-01

    Full Text Available Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione], a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric, has been shown to exhibit a wide range of pharmacological activities including anti-inflammatory, anti-cancer, anti-oxidant, anti-atherosclerotic, anti-microbial and wound healing effects. These activities of curcumin are based on its complex molecular structure and chemical features, as well as its ability to interact with multiple signaling molecules. The ability of curcumin to regulate ion channels and transporters was recognized a decade ago. The cystic fibrosis transmembrane conductance regulator (CFTR is a well-studied ion channel target of curcumin. During the process of studying its anti-cancer properties, curcumin was found to inhibit ATP-binding cassette (ABC family members including ABCA1, ABCB1, ABCC1 and ABCG2. Recent studies have revealed that many channels and transporters are modulated by curcumin, such as voltage-gated potassium (Kv channels, high-voltage-gated Ca2+ channels (HVGCC, volume-regulated anion channel (VRAC, Ca2+ release-activated Ca2+ channel (CRAC, aquaporin-4 (AQP-4, glucose transporters, etc. In this review, we aim to provide an overview of the interactions of curcumin with different types of ion channels and transporters and to help better understand and integrate the underlying molecular mechanisms of the multiple pharmacological activities of curcumin.

  20. TRP channels and pain.

    Science.gov (United States)

    Julius, David

    2013-01-01

    Nociception is the process whereby primary afferent nerve fibers of the somatosensory system detect noxious stimuli. Pungent irritants from pepper, mint, and mustard plants have served as powerful pharmacological tools for identifying molecules and mechanisms underlying this initial step of pain sensation. These natural products have revealed three members of the transient receptor potential (TRP) ion channel family--TRPV1, TRPM8, and TRPA1--as molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce acute or persistent pain. Analysis of TRP channel function and expression has validated the existence of nociceptors as a specialized group of somatosensory neurons devoted to the detection of noxious stimuli. These studies are also providing insight into the coding logic of nociception and how specification of nociceptor subtypes underlies behavioral discrimination of noxious thermal, chemical, and mechanical stimuli. Biophysical and pharmacological characterization of these channels has provided the intellectual and technical foundation for developing new classes of analgesic drugs.

  1. Dequantization Via Quantum Channels

    Science.gov (United States)

    Andersson, Andreas

    2016-10-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  2. Chaos in quantum channels

    CERN Document Server

    Hosur, Pavan; Roberts, Daniel A; Yoshida, Beni

    2015-01-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  3. EVA Physiology, Systems and Performance [EPSP] Project

    Science.gov (United States)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  4. BLIND CHANNEL ESTIMATION IN DELAY DIVERSITY FOR FREQUENCY SELECTIVE CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Zhao Zheng; Jia Ying; Yin Qinye

    2003-01-01

    Delay diversity is an effective transmit diversity technique to combat adverse ef-fects of fading. Thus far, previous work in delay diversity assumed that perfect estimates ofcurrent channel fading conditions are available at the receiver and training symbols are requiredto estimate the channel from the transmitter to the receiver. However, increasing the number ofthe antennas increases the required training interval and reduces the available time within whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for thefrequency selective channels. In this paper, with the subspace method and the delay character ofdelay diversity, a channel estimation method is proposed, which does not use training symbols. Itaddresses the transmit diversity for a frequency selective channel from a single carrier perspectivein the form of a simple equivalent fiat fading model. Monte Carlo simulations give the perfor-mance of channel estimation and the performance comparison of our channel-estimation-baseddetector with decision feedback equalization, which uses the perfect channel information.

  5. K(v)7 channels: function, pharmacology and channel modulators.

    Science.gov (United States)

    Dalby-Brown, William; Hansen, Henrik H; Korsgaard, Mads P G; Mirza, Naheed; Olesen, Søren-P

    2006-01-01

    K(v)7 channels are unique among K(+) channels, since four out of the five channel subtypes have well-documented roles in the development of human diseases. They have distinct physiological functions in the heart and in the nervous system, which can be ascribed to their voltage-gating properties. The K(v)7 channels also lend themselves to pharmacological modulation, and synthetic openers as well as blockers of the channels, regulating neuronal excitability, have existed even before the K(v)7 channels were identified by cloning. In the present review we give an account on the focused efforts to develop selective modulators, openers as well as blockers, of the K(v)7 channel subtypes, which have been undertaken during recent years, along with a discussion of the K(v)7 ion channel physiology and therapeutic indications for modulators of the neuronal K(v)7 channels.

  6. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  7. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    Science.gov (United States)

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels.

  8. Communicating Under Channel Uncertainty

    CERN Document Server

    Warsi, Naqueeb; Shah, Tapan

    2010-01-01

    For a single transmit and receive antenna system, a new constellation design is proposed to combat errors in the phase estimate of the channel coefficient. The proposed constellation is a combination of PSK and PAM constellations, where PSK is used to provide protection against phase errors, while PAM is used to increase the transmission rate using the knowledge of the magnitude of the channel coefficient. The performance of the proposed constellation is shown to be significantly better than the widely used QAM in terms of probability of error. The proposed strategy can also be extended to systems using multiple transmit and receive antennas.

  9. Differential effects of sulfonylurea derivatives on vascular ATP-sensitive potassium channels.

    NARCIS (Netherlands)

    Engbersen, R.H.G.; Masereeuw, R.; Gestel, M.A. van; Siero, H.L.M.; Moons, M.M.; Smits, P.; Russel, F.G.M.

    2012-01-01

    Sulfonylurea drugs exert their insulinotropic action by inhibiting ATP-sensitive potassium channels in the pancreas. However, these channels are also expressed in myocardial and vascular smooth muscle, implicating possible detrimental cardiovascular effects. Aim of the present study was to investiga

  10. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

    DEFF Research Database (Denmark)

    Liin, Sara I.; Silverå Ejneby, Malin; Barro-Soria, Rene;

    2015-01-01

    charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act...

  11. A role for BK channels in heart rate regulation in rodents.

    Directory of Open Access Journals (Sweden)

    Wendy L Imlach

    Full Text Available The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+ and Ca(2+ and outward K(+ currents. There are a number of K(+ channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK ion channels are not thought to be directly involved in heart function. Here we present evidence that heart rate can be significantly reduced by inhibiting the activity of BK channels. Agents that specifically inhibit BK channel activity, including paxilline and lolitrem B, slowed heart rate in conscious wild-type mice by 30% and 42%, respectively. Heart rate of BK channel knock-out mice (Kcnma1(-/- was not affected by these BK channel inhibitors, suggesting that the changes to heart rate were specifically mediated through BK channels. The possibility that these effects were mediated through BK channels peripheral to the heart was ruled out with experiments using isolated, perfused rat hearts, which showed a significant reduction in heart rate when treated with the BK channel inhibitors paxilline (1 microM, lolitrem B (1 microM, and iberiotoxin (0.23 microM, of 34%, 60%, and 42%, respectively. Furthermore, paxilline was shown to decrease heart rate in a dose-dependent manner. These results implicate BK channels located in the heart to be directly involved in the regulation of heart rate.

  12. 转HJC-1和G6-EPSPS基因抗虫耐草甘膦水稻表达蛋白在模拟胃肠环境中的稳定性研究%Stability of HJC-1gene and G6-EPSPS gene protein in simulated gastric and intestinal fluid

    Institute of Scientific and Technical Information of China (English)

    张力; 王静; 王晓军; 刘洪亮

    2012-01-01

    目的 研究HJC-1和G6-EPSPS基因表达的蛋白分别在模拟胃液和模拟肠液中的消化稳定性.方法 采用美国1995年药典提供的模拟胃液和模拟肠液配方,在体外建立模拟胃肠环境消化体系,测定HJC-1和G6-EPSPS基因表达的蛋白质在胃肠环境中的稳定性.蛋白质在模拟胃、肠液中的浓度分别为5.0和2.0 mg/ml.在蛋白质与模拟胃、肠液反应后的0、15、30 s,1、2、5、10、20、30和60 min准确取样,根据SDS-PAGE凝胶电泳结果,判断蛋白质在模拟胃、肠液环境中的稳定性.结果 HJC-1基因表达的蛋白质在模拟胃液和模拟肠液中均在15s内全部降解;G6-EPSPS基因表达的蛋白质在模拟胃液中30 s内全部降解,在模拟肠液中60 min内不能完全降解.结论 HJC-1基因表达的蛋白质在模拟人体胃肠环境中不稳定,易被降解.G6-EPSPS基因表达的蛋白质在模拟人体胃环境中不稳定,易被降解;在模拟人体肠环境中稳定,不易被降解.%Objective To study the stability of HJC-1 protein and G6-EPSPS protein to digestion in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Methods The test model of stability of different protein to digestion in SGF and SIF was established. The component of SGF and SIF was based on the United States Pharmacopeia, the stability of HJC-1 protein and G6-EPSPS protein were tested. The concentration of protein in SGF/SIF was 5.0 mg/ml and 2.0 mg/ml respectively. At intervals of 0s, 15s, 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, 30 min and 60 min, the samples were taken out. According to the results of SDS-PAGE, the stability of two proteins to digestion in SGF/SIF was observed. Results The experiment showed that the HJC-1 protein was digested within 15 s in SGF/SIF. The G6-EPSPS protein was digested within 30 s in SGF and was stable within 60 min in SIF. Conclusion HJC-1 protein and G6-EPSPS protein are instable in SGF, while, G6-EPSPS protein is stable in SIF.

  13. Interaction of heavy metals with membrane Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    PengSQ; HajelRK

    2002-01-01

    The objective of our study was to determine if specific types of high voltage-activated Ca2+ channels,typically found in neurons were affected differentially by MeHg,Hg2+ and Pb2+.Expression cDNA clones of α1C,α1B or α1E subunits coding for neuronal L-,N- and R- subtypes respectively,were combined with α2b δ and β3 Ca2+ channel subunits of human neuronal origin to transfect HEK293 cells.Current was measured using whole cell voltage clamp recording techniques.It the present studies,we conclude: (1)neurotoxic heavy metals such as MeHg,Hg2+ and Pb impair the function of voltage-gated Ca2+ channels at low μmolar to sub-μmolar concentrations-concentrations in the range of which are pathologically and environmentally relevant; (2)a particular metal,i.e.Pb2+,may inhibit function of phenotypically distince Ca2+ channels with variable potency; (3)different metals have differing “orders of potency” at inhibiting defined populations of Ca2+ channels; (4)for “susceptible populations” of patients with either underlying diseases or genetic alter ations of Ca2+ channel function,these metals may have heightened effectiveness.As such,for these populations,environmental toxic metals could produce a more dominant neurotoxicity.

  14. [Role of voltage-dependent ion channels in epileptogenesis].

    Science.gov (United States)

    Ricard-Mousnier, B; Couraud, F

    1993-10-01

    The aim of this review is to gather information in favour of the involvement of voltage-dependent ion channels in epileptogenesis. Although, up to now, no study has shown that epilepsy is accompanied by a modification in the activity to these channels, the recently acquired knowledge of their physiology allows to presume would favor their involvement in epileptogenesis. The results from electrophysiological studies are as follows: a persistent sodium current increases neuronal excitability whereas potassium currents have an inhibitory role. In particular, calcium-dependent potassium current are involved in the post-hyperpolarization phases which follows PDS. Calcium currents are also involved in the genesis of the "bursting pacemaker" activity displayed by the neurons presumed to be inducers of the epileptic activity. Biochemical data has shown that as a consequence of epileptic activity, sodium and calcium channels are down regulated. This down-regulation could be a way to reduces neuronal hyperexcitability. Pharmacological data demonstrate the drugs which activate calcium channels or which inhibit potassium channels have a convusilvant effect. On the contrary, agents which block calcium or sodium channels or which properties. Among the latter ones, some antiepileptic drugs can be found. In summary situations which lead to increase in calcium and sodium currents and/or to an inhibition in potassium currents are potentially epileptogenic.

  15. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels.

    Science.gov (United States)

    Fanger, C M; Rauer, H; Neben, A L; Miller, M J; Rauer, H; Wulff, H; Rosa, J C; Ganellin, C R; Chandy, K G; Cahalan, M D

    2001-04-13

    To maintain Ca(2+) entry during T lymphocyte activation, a balancing efflux of cations is necessary. Using three approaches, we demonstrate that this cation efflux is mediated by Ca(2+)-activated K(+) (K(Ca)) channels, hSKCa2 in the human leukemic T cell line Jurkat and hIKCa1 in mitogen-activated human T cells. First, several recently developed, selective and potent pharmacological inhibitors of K(Ca) channels but not K(V) channels reduce Ca(2+) entry in Jurkat and in mitogen-activated human T cells. Second, dominant-negative suppression of the native K(Ca) channel in Jurkat T cells by overexpression of a truncated fragment of the cloned hSKCa2 channel decreases Ca(2+) influx. Finally, introduction of the hIKCa1 channel into Jurkat T cells maintains rapid Ca(2+) entry despite pharmacological inhibition of the native small conductance K(Ca) channel. Thus, K(Ca) channels play a vital role in T cell Ca(2+) signaling.

  16. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration.

    Science.gov (United States)

    Cuddapah, Vishnu Anand; Sontheimer, Harald

    2011-09-01

    A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.

  17. Differential modulation of TWIK-related K(+) channel (TREK) and TWIK-related acid-sensitive K(+) channel 2 (TASK2) activity by pyrazole compounds.

    Science.gov (United States)

    Kim, Hyun Jong; Woo, Joohan; Nam, Yuran; Nam, Joo Hyun; Kim, Woo Kyung

    2016-11-15

    Pyrazole derivatives were originally suggested as selective blockers of the transient receptor potential cation 3 (TRPC3) and channel. In particular, pyr3 and 10 selectively inhibit TRPC3, whereas pyr2 (BTP2) and 6 inhibit ORAI1. However, their effects on background K(+) channel activity have not been elucidated. In this study, the effects of BTP2, pyr3, pyr6, and pyr10 were studied on cloned human TWIK-related K(+) channels (TREKs) and TWIK-related acid-sensitive K(+) channel 2 (TASK-2) channels, which modulate Ca(2+) signaling by controlling membrane potential, in HEK293T-overexpressing cells by using a whole-cell patch clamp technique. Pyr3 potently inhibited TREK-1 (ITREK1), TREK-2 (ITREK2), and TASK2 current (ITASK-2) with half-maximal inhibitory concentrations (IC50) of 0.89±0.27, 1.95±1.44, and 2.42±0.39µM, respectively. BTP2 slightly inhibited ITASK-2 (80.3±2.5% at 100μM). In contrast, pyr6 at 100µM potentiated ITREK1 and ITREK2 by approximately 2.6- and 3.6-fold compared to the control and inhibited ITASK2 (38.7±9.2%). Pyr10 showed a subtype-specific inhibition of ITREK1 but not ITREK2. It also inhibited ITASK2 (70.9±3.1% at 100μM). To the best of our knowledge, this study is the first to describe the differential modulation of TREKs and TASK2 channels by pyrazole derivatives, previously used as inhibitors of TRPC3 and ORAI1. Therefore, studies using these drugs should consider their modulation of other channels such as TREK and TASK-2.

  18. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  19. All channels open

    NARCIS (Netherlands)

    Frank Huysmans; Jos de Haan

    2010-01-01

    Original title: Alle kanalen staan open. The rapid changes taking place in the media landscape in the Netherlands - characterised by digitisation and convergence of media technologies - raise the question of how the Dutch are dealing with the many new opportunities that have opened up. All channels

  20. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  1. Ion Channels in Leukocytes

    Science.gov (United States)

    1991-07-01

    muscle k142), heart muscle (80), bo- are released. In recent years much has been learned vine pulmonar arter endothelial cells (251), and rat about the...channel analysbib of Lt. Potassium permeability in HeLa cancer BioL Chem. 265: 142416-141263, 1990. cells. evidence for a calcium-a’tivated potassium

  2. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  3. Intermittency and exotic channels

    CERN Document Server

    Bialas, A

    1994-01-01

    It is pointed out that accurate measurements of short-range two-particle correlations in like-charge K\\pi and in \\pi^ 0\\pi^ 0 channels should be very helpful in determining the origin of the \\lq\\lq intermittency\\rq\\rq\\ phenomenon observed recently for the like-charge pion pairs.

  4. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  5. G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins.

    Science.gov (United States)

    Mark, M D; Wittemann, S; Herlitze, S

    2000-10-01

    1. Fast synaptic transmission is triggered by the activation of presynaptic Ca2+ channels which can be inhibited by Gbetagamma subunits via G protein-coupled receptors (GPCR). Regulators of G protein signalling (RGS) proteins are GTPase-accelerating proteins (GAPs), which are responsible for >100-fold increases in the GTPase activity of G proteins and might be involved in the regulation of presynaptic Ca2+ channels. In this study we investigated the effects of RGS2 on G protein modulation of recombinant P/Q-type channels expressed in a human embryonic kidney (HEK293) cell line using whole-cell recordings. 2. RGS2 markedly accelerates transmitter-mediated inhibition and recovery from inhibition of Ba2+ currents (IBa) through P/Q-type channels heterologously expressed with the muscarinic acetylcholine receptor M2 (mAChR M2). 3. Both RGS2 and RGS4 modulate the prepulse facilitation properties of P/Q-type Ca2+ channels. G protein reinhibition is accelerated, while release from inhibition is slowed. These kinetics depend on the availability of G protein alpha and betagamma subunits which is altered by RGS proteins. 4. RGS proteins unmask the Ca2+ channel beta subunit modulation of Ca2+ channel G protein inhibition. In the presence of RGS2, P/Q-type channels containing the beta2a and beta3 subunits reveal significantly altered kinetics of G protein modulation and increased facilitation compared to Ca2+ channels coexpressed with the beta1b or beta4 subunit.

  6. H2S does not regulate proliferation via T-type Ca2+ channels.

    Science.gov (United States)

    Elies, Jacobo; Johnson, Emily; Boyle, John P; Scragg, Jason L; Peers, Chris

    2015-06-12

    T-type Ca(2+) channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca(2+) channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca(2+) channel Cav3.2 is selectively inhibited by hydrogen sulfide (H2S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H2S could account for the anti-proliferative effects of this gasotransmitter. H2S suppressed proliferation in HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H2S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H2S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca(2+) channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H2S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca(2+) channel isoform was the H2S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca(2+) channel-mediated proliferation by H2S is independent of the channels' sensitivity to H2S.

  7. HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal K ATP channels.

    Science.gov (United States)

    Zhang, Hai Xia; Akrouh, Alejandro; Kurata, Harley T; Remedi, Maria Sara; Lawton, Jennifer S; Nichols, Colin G

    2011-03-01

    Murine ventricular and atrial ATP-sensitive potassium (K(ATP)) channels contain different sulfonylurea receptors (ventricular K(ATP) channels are Kir6.2/SUR2A complexes, while atrial K(ATP) channels are Kir6.2/SUR1 complexes). HMR 1098, the sodium salt of HMR 1883 {1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea}, has been considered as a selective sarcolemmal (i.e. SUR2A-dependent) K(ATP) channel inhibitor. However, it is not clear whether HMR 1098 would preferentially inhibit ventricular K(ATP) channels over atrial K(ATP) channels. To test this, we used whole-cell patch clamp techniques on mouse atrial and ventricular myocytes as well as (86)Rb(+) efflux assays and excised inside-out patch clamp techniques on Kir6.2/SUR1 and Kir6.2/SUR2A channels heterologously expressed in COSm6 cells. In mouse atrial myocytes, both spontaneously activated and diazoxide-activated K(ATP) currents were effectively inhibited by 10 μM HMR 1098. By contrast, in ventricular myocytes, pinacidil-activated K(ATP) currents were inhibited by HMR 1098 at a high concentration (100 μM) but not at a low concentration (10 μM). Consistent with this finding, HMR 1098 inhibits (86)Rb(+) effluxes through Kir6.2/SUR1 more effectively than Kir6.2/SUR2A channels in COSm6 cells. In excised inside-out patches, HMR 1098 inhibited Kir6.2/SUR1 channels more effectively, particularly in the presence of MgADP and MgATP (mimicking physiological stimulation). Finally, dose-dependent enhancement of insulin secretion from pancreatic islets and decrease of blood glucose level confirm that HMR 1098 is an inhibitor of Kir6.2/SUR1-composed K(ATP) channels.

  8. A New Covert Channel over Cellular Voice Channel in Smartphones

    OpenAIRE

    Aloraini, Bushra; Johnson, Daryl; Stackpole, Bill; Mishra, Sumita

    2015-01-01

    Investigating network covert channels in smartphones has become increasingly important as smartphones have recently replaced the role of traditional computers. Smartphones are subject to traditional computer network covert channel techniques. Smartphones also introduce new sets of covert channel techniques as they add more capabilities and multiple network connections. This work presents a new network covert channel in smartphones. The research studies the ability to leak information from the...

  9. High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: Possible role in clevidipine-induced dyspnea relief in acute heart failure

    Directory of Open Access Journals (Sweden)

    Gerhard P. Dahl

    2016-08-01

    Research in Context: Clevidipine lowers blood pressure by inhibiting calcium channels in vascular smooth muscle. In patients with acute heart failure, clevidipine was shown to relieve breathing problems. This was only partially related to the blood pressure lowering actions of clevidipine and not conferred by another calcium channel inhibitor. We here found calcium channel variants in human lung that are more selectively inhibited by clevidipine, especially when associated with pannexin channels. This study gives a possible mechanism for clevidipine's relief of breathing problems and supports future clinical trials testing the role of clevidipine in the treatment of acute heart failure.

  10. Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction.

    Science.gov (United States)

    Dolga, Amalia M; Netter, Michael F; Perocchi, Fabiana; Doti, Nunzianna; Meissner, Lilja; Tobaben, Svenja; Grohm, Julia; Zischka, Hans; Plesnila, Nikolaus; Decher, Niels; Culmsee, Carsten

    2013-04-12

    Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.

  11. BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Jacobsen, Jens Christian Brings; Braunstein, Thomas Hartig

    2012-01-01

    and inhibition of BK(Ca) channel current in silico increased ¿ by 34% and 32%, respectively. Similarly, inhibition of K(V) channels in vitro (4-aminopyridine, 1 mM) or in silico increased ¿ by 41% and 21%, respectively. Immunofluorescence microscopy demonstrated expression of BK(Ca), Kv1.5, Kv2.1, but not Kv1...

  12. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  13. Effects of decreased inhibition on synaptic plasticity and dendritic morphology in the juvenile prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Xanthippi Konstantoudaki

    2014-03-01

    Full Text Available Excitation-inhibition balance is critical for maintaining proper functioning of the cerebral cortex, as evident from electrophysiological and modeling studies, and it is also important for animal behavior (Yizhar et al., 2011. In the cerebral cortex, excitation is provided by glutamate release from pyramidal neurons, while inhibition is provided by GABA release from several types of interneurons. Many neuropsychiatric disorders, such as epilepsy, anxiety, schizophrenia and autism exhibit an imbalance between the excitatory and inhibitory mechanisms of cortical circuits within key brain regions as prefrontal cortex or hippocampus, primarily through dysfunctions in the inhibitory system (Lewis, Volk, & Hashimoto, 2003; Marín, 2012 Given the significant role of GABAergic inhibition in shaping proper function of the cerebral cortex, we used a mouse model of developmentally decreased GABAergic inhibition in order to examine its effects in network properties, namely basal synaptic transmission, synaptic plasticity and dendritic morphology of pyramidal neurons. For our study, we used mice (postnatal day 20-30 in which the Rac1 protein was deleted from Nkx2.1-expressing neurons (Vidaki et al., 2012, (Rac1fl/flNkx2.1 +/cre referred as Rac1 KO mice, and heterozygous (Rac1+/flNkx2.1 +/cre or control (Rac1+/flNkx2.1 +/+ mice. The specific ablation of Rac1 protein from NKx2.1-expressing MGE-derived progenitors leads to a perturbation of their cell cycle exit resulting in decreased number of interneurons in the cortex(Vidaki et al, 2012. We prepared brain slices from the prefrontal cortex and recorded field excitatory postsynaptic potentials (fEPSPs from layer II neurons while stimulating axons in layer II. We find that the evoked fEPSPs are decreased in Rac1 KO mice compared to Rac1 heterozygous or control mice. This could suggest that the decreased GABAergic inhibition causes network alterations that result in reduced glutamatergic function. Furthermore

  14. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  15. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  16. ``Just Another Distribution Channel?''

    Science.gov (United States)

    Lemstra, Wolter; de Leeuw, Gerd-Jan; van de Kar, Els; Brand, Paul

    The telecommunications-centric business model of mobile operators is under attack due to technological convergence in the communication and content industries. This has resulted in a plethora of academic contributions on the design of new business models and service platform architectures. However, a discussion of the challenges that operators are facing in adopting these models is lacking. We assess these challenges by considering the mobile network as part of the value system of the content industry. We will argue that from the perspective of a content provider the mobile network is ‘just another’ distribution channel. Strategic options available for the mobile communication operators are to deliver an excellent distribution channel for content delivery or to move upwards in the value chain by becoming a content aggregator. To become a mobile content aggregator operators will have to develop or acquire complementary resources and capabilities. Whether this strategic option is sustainable remains open.

  17. DMT of weighted Parallel Channels: Application to Broadcast Channel

    CERN Document Server

    Mroueh, Lina; Othman, Ghaya Rekaya-Ben; Belfiore, Jean-Claude

    2008-01-01

    In a broadcast channel with random packet arrival and transmission queues, the stability of the system is achieved by maximizing a weighted sum rate capacity with suitable weights that depend on the queue size. The weighted sum rate capacity using Dirty Paper Coding (DPC) and Zero Forcing (ZF) is asymptotically equivalent to the weighted sum capacity over parallel single-channels. In this paper, we study the Diversity Multiplexing Tradeoff (DMT) of the fading broadcast channel under a fixed weighted sum rate capacity constraint. The DMT of both identical and different parallel weighted MISO channels is first derived. Finally, we deduce the DMT of a broadcast channel using DPC and ZF precoders.

  18. 琥珀酸对幼龄大鼠小脑谷氨酸能突触传递的抑制作用%Inhibition of succinic acid on cerebellar glutamatergic synaptic transmission in neonatal rats

    Institute of Scientific and Technical Information of China (English)

    何海燕; 陈静; 晋芙丽; 李凌; 杜永平; 张月萍

    2016-01-01

    目的:探讨琥珀酸( succinic acid,SA)对幼龄大鼠小脑谷氨酸能突触传递的影响。方法采用全细胞膜片钳记录法,在矢状位小脑脑片上记录浦肯野细胞( Purkinje cells,PCs)自发性微小兴奋性突触后电流( miniture excitatory postsynaptic current,mEPSC)和刺激平行纤维( parallel fibre,PF)诱发的PCs兴奋性突触后电位( excitatory postsynaptic potential,EPSP),比较琥珀酸处理前后mEPSC和PF-PC EPSP的变化。结果琥珀酸处理后,幼鼠小脑PCs的自发性mEPSCs幅值显著减小,由给药前的(24.85±2.78)pA减小至给药后的(13.14±0.84)pA,频率也由给药前的(5.04±1.07)Hz降至给药后的(2.77±0.79)Hz,差异均有统计学意义(P<0.01);琥珀酸显著抑制了PF-PC EPSPs的幅值,使其降低至用药前的(37.76±1.10)%(P<0.01),并使EPSP双脉冲(paired-pulse facilitation,PPF)增强的比率较用药前增加了(40.26±2.9)%(P<0.01),差异均有统计学意义。结论琥珀酸对幼龄大鼠小脑谷氨酸能突触传递有显著的抑制作用。%Objective To investigate the effects of succinic acid( SA) on the glutamatergic synaptic transmission in the neonatal rat cerebellum. Methods The whole-cell patch-clamp technique was carried out in Purkinje cells( PCs) of sagittal cerebellar slices to record the spontaneous miniture excitatory postsynaptic current(mEPSC) and the excitatory postsynaptic potential(EPSP) induced by parallel fiber( PF) stimulation. The changes of the mEPSC and the PF-PC EPSP upon SA were analyzed before and after SA perfusion. Results SA significantly reduced the amplitude[from(24.85 ±2.78)pA to(13.14 ±0.84)pA,P<0.01]and the frequency[from (5.04 ±1.07)Hz to (2.77 ±0.79)Hz,P<0.01] of the spontaneous mEPSCs. SA also significantly inhibited PF-PC EPSPs ampli-tude to (37. 76 ± 1. 10)% of the control(P<0. 01) and enhanced the EPSP paired-pulse facilitation(PPF) by(40. 26 ± 2. 9)%(P<0. 01). Conclusion SA may provide an inhibitory effect on cerebellar

  19. On partially entanglement breaking channels

    CERN Document Server

    Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej

    2005-01-01

    Using well known duality between quantum maps and states of composite systems we introduce the notion of Schmidt number of a quantum channel. It enables one to define classes of quantum channels which partially break quantum entanglement. These classes generalize the well known class of entanglement breaking channels.

  20. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling hal