Probing the cosmographic parameters to distinguish between dark energy and modified gravity models
Wang, F Y; Qi, Shi; 10.1051/0004-6361/200911998
2009-01-01
In this paper we investigate the deceleration, jerk and snap parameters to distinguish between the dark energy and modified gravity models by using high redshift gamma-ray bursts (GRBs) and supernovae (SNe). We first derive the expressions of deceleration, jerk and snap parameters in dark energy and modified gravity models. In order to constrain the cosmographic parameters, we calibrate the GRB luminosity relations without assuming any cosmological models using SNe Ia. Then we constrain the models (including dark energy and modified gravity models) parameters using type Ia supernovae and gamma-ray bursts. Finally we calculate the cosmographic parameters. GRBs can extend the redshift - distance relation up to high redshifts, because they can be detected to high redshifts.We find that the statefinder pair (r,s) could not be used to distinguish between some dark energy and modified gravity models, but these models could be differentiated by the snap parameter. Using the model-independent constraints on cosmograp...
Mapping suspected buried channels using gravity: Examples from southwest Michigan
Energy Technology Data Exchange (ETDEWEB)
Keighley, K.E.; Atekwana, E.A.; Sauck, W.A. (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology)
1994-04-01
This study documents the successful application of the gravity method in mapping suspected buried bedrock valleys at three sites in southwest Michigan. The first site is located in Benton Harbor, Berrien County. Gravity surveys were conducted along the Jean Klock Park as part of an ongoing coastal research study of the Lake Michigan shoreline. Previous Ground Penetrating Radar (GPR) studies at this site had suggested the presence of a buried valley. The results of the gravity survey confirmed the existence of a buried valley approximately 30--40 m deep and at least 2,000 m wide, which is in good agreement with information from drill cores suggesting a possible ancient river system. A detailed gravity survey was conducted at the second site located in Schoolcraft Township, Kalamazoo County, where the heavy use of pesticides has resulted in the contamination of the upper aquifers. Preliminary results suggest the presence of a broad shallow valley at least 25 m deep. Gravity surveys at the third site located southeast of the Kavco Landfill, Barry County also suggests the presence of a buried valley oriented NE-SW, confirming the interpretations of an earlier electrical resistivity study. It is possible that this channel controls groundwater flow and facilitates the transport of contaminants from the landfill to the surrounding areas.
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars
DEFF Research Database (Denmark)
Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel;
2011-01-01
. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high...
Vector-averaged gravity does not alter acetylcholine receptor single channel properties
Reitstetter, R.; Gruener, R.
1994-01-01
To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.
Directory of Open Access Journals (Sweden)
A. M. Abd-Alla
2014-01-01
Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.
Particle-driven gravity currents in non-rectangular cross section channels
International Nuclear Information System (INIS)
We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρi, propagating along a channel into an ambient fluid of the density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = zα and f(z) = (H − z)α, where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model
Front conditions for gravity currents in channels of general cross-section: some general conclusions
Ungarish, Marius
2015-11-01
We consider the propagation of a high-Reynolds-number gravity current in a horizontal channel with general cross-section of width f (z) , 0 Froude-number condition Fr = U /(g' h) 1 / 2 ; U is the speed of propagation of the current and g' = (ρc /ρa - 1) g . We present compact insightful expressions of Fr and energy dissipation as a functions of φ (= area fraction occupied by the current in the cross-section), and show that a degree of freedom is present. We demonstrate that the extension of the closure suggested by Benjamin for the rectangular cross-section, namely that the bottom is a perfect stagnation line, produces Fr solutions which are optimal with respect to several useful criteria. However, the energy conserving closure yields problematic Fr results, as manifest in particular by invalidity for deep currents (small h / H). Connection with realistic time-dependent gravity currents is discussed.
NUMERICAL SIMULATION OF DROP MIGRATION IN CHANNEL FLOW UNDER ZERO-GRAVITY
Institute of Scientific and Technical Information of China (English)
LIU Tao; LU Xiyun
2004-01-01
The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finitedifference method coupled with the front-tracking technique. The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity. To validate the present calculation, some typical results are compared with available computational and theoretical data, which confirms that the present approach is reliable in predicting the drop migration.With respect to the drop migration in the channel flow at finite Reynolds numbers, the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions.The effects of some typical parameters, e.g., the Reynolds number, the Weber number, the viscosity ratio and the density ratio of the drop fluid to the suspending medium, and the drop size, on the migration of drops are discussed and analyzed.
Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel
Zheng, Y.; Fujioka, H.; Grotberg, J. B.
2007-08-01
Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. Studies have shown that the effectiveness of these treatments may depend on how liquids distribute in the lung. Better understanding of the fundamental fluid mechanics of liquid plug transport will facilitate treatment strategies. In this paper, we develop a numerical model of steady plug propagation driven by gravity and pressure in a two-dimensional liquid-lined channel oriented at an angle α with respect to gravity. We investigate the effects of gravity through the Bond number, Bo, and α; the plug propagation speed through the capillary number, Ca, or the Reynolds number, Re; the plug length LP, and the surfactant concentration C0. Without gravity, i.e., Bo =0, the plug is symmetric, and there are two regimes for the flow: two wall layers and two trapped vortices in the core. There is no flow interaction between the upper and lower half plug domains. When Bo ≠0 and α ≠0, π, fluid is found to flow from the upper precursor film, through the core and into the lower trailing film. Then the number of vortices can be zero, one, or two, depending on the flow parameters. The vortices have stagnation points on the interface when C0=0, however when the surfactant is present (C0>0), the vortices detach from the interface and create saddle points inside the core. The front meniscus develops a capillary surface wave extending into the precursor film. This is where the film is thinnest and thus the wall shear stress is highest, as high as ˜100dyn /cm2 in adult airways, which indicates a significant risk of pulmonary airway epithelial cell damage. Adding surfactant can decrease the peak magnitude of the shear stress, thus reducing the risk of cell damage. The prebifurcation asymmetry of the plug is quantified by the volume ratio, Vr, defined as the ratio of the liquid above to that below the center line of the channel. Vr is found to increase
The influence of gravity on the steady propagation of a semi-infinite bubble into a flexible channel
Hazel, Andrew L.; Heil, Matthias
2008-09-01
Motivated by discrepancies between recent bench-top experiments [A. Juel and A. Heap, J. Fluid Mech. 572, 287 (2007)] and numerical simulations [A. L. Hazel and M. Heil, ASME J. Biomech. Eng. 128, 573 (2006)] we employ computational methods to examine the effects of transverse gravity on the steady propagation of a semi-infinite, inviscid air finger into a two-dimensional elastic channel filled with a Newtonian fluid. The special case of propagation in a rigid channel is also discussed in Appendix B. The coupled free-surface, fluid-structure-interaction problem is solved numerically using the object-oriented multiphysics finite-element library OOMPH-LIB. In the absence of gravity the relationship between the applied pressure and the propagation speed of the finger is nonmonotonic, with a turning point at small values of the propagation speed. We demonstrate that the turning point disappears when a modest gravitational force is applied and conjecture that it is this effect of gravity rather than any instability of the zero-gravity solution, as postulated in previous studies, that explains why the turning point has never been observed in experiments. At large propagation speeds, the presence of transverse gravity is shown to increase the pressure required to drive the air finger at a given speed, which is consistent with the observed discrepancies between previous zero-gravity simulations and the experimental results. Finally, we briefly discuss the possible implications of our results for the physiological problem of pulmonary airway reopening.
Cheah, May J; Kevrekidis, Ioannis G; Benziger, Jay B
2013-08-01
Water emerging from ∼100 μm pores into millimeter-size gas flow channels forms drops that grow and become slugs which span the flow channel. Flowing gas causes the slugs to detach and move down the channel. The effect of channel geometry, surface wettability, and gravity on the formation and motion of water slugs has been analyzed using high-speed video images of the drops and differential pressure-time traces. Drops grow and appear, assuming a sequence of shapes that minimize the total interfacial energy of the gas-liquid and liquid-solid interfaces. The drops are initially spherical caps centered on the pore (the liquid contacts one wall). Above a certain size, the drops move to the corner, forming "corner drops" (the liquid contacts two walls). Corner drops grow across the channel, evolving into partial liquid bridges (drops confined by three walls), and finally the drops span the channel cross-section forming slugs (contacting all four walls). Smaller slugs are formed in channels with hydrophobic walls than in channels with hydrophilic walls. Smaller slugs are formed in channels with curved walls than in square or rectangular channels. Slugs move when the differential gas pressure overcomes the force to move the advancing and receding gas-liquid-solid contact lines of the slugs. Residual water left behind in corners by moving slugs reduces the barriers for drops to form slugs, causing the steady-state slug volumes to be smaller than those seen at start-up in dry channels.
Dense, gravity-driven granular-liquid flows down steep channels
Armanini, A.; Larcher, M.; Nucci, E.
2011-12-01
Debris flows are complex natural phenomena, characterized by a mixture of poorly sorted sediments and water driven by gravity. Depending on the size distribution, on the volume concentration of sediments and on the geometry and topography of the channel, flow conditions may be very different, ranging from very fast flows, dominated by granular collisions and by the turbulence on the liquid phase, to very slow and dense flows, dominated by the frictional contacts among the grains. To investigate the basic physics of debris flows, it is very useful to analyze the flow of a mixture of identical spherical particles saturated by water and driven by gravity down a steep channel in steady flow condition (Armanini et al. 2005). The flow presents three regions: an external one, near to the free surface, dominated by nearly instantaneous contacts among the particles (collisional regime), an internal region dominated by prolonged contacts among the particles (frictional regime) and a static bed in which the particles are immobile. The detailed vertical structure of this kind of flows was obtained by means of experiments carried out by Armanini et al. (2005) and Larcher et al. (2007). Armanini et al. (2009) analysed the stratification of rheological mechanisms inside the flow, focusing on the coexistence of frictional and collisional regimes, on the stress transmission inside the flow and on particles kinematics. In particular, it was observed that debris flows may show locally a typical intermittence of the flow regime, switching alternatively from frictional to collisional. While the rheology of the collisional layers is well described by the dense gas analogy (kinetic theory), a persuasive theoretical description of the frictional regime does not yet exist. A Coulombian scheme is often assumed, but this hypothesis is rather limitative because it requires a constant concentration or a distribution of particles concentration known a priori. An interesting scheme of this kind
Longo, S.; Ungarish, M.; Di Federico, V.; Chiapponi, L.; Addona, F.
2016-04-01
We investigate high-Reynolds number gravity currents (GC) in a horizontal channel of circular cross-section. We focus on GC sustained by constant or time varying inflow (volume of injected fluid ∝ tα, with α = 1 and α > 1). The novelty of our work is in the type of the gravity currents: produced by influx/outflux boundary conditions, and propagation in circular (or semi-circular) channel. The objective is to elucidate the main propagation features and correlate them to the governing dimensionless parameters; to this end, we use experimental observations guided by shallow-water (SW) theoretical models. The system is of Boussinesq type with the denser fluid (salt water) injected into the ambient fluid (tap water) at one end section of a circular tube of 19 cm diameter and 605 cm long. The ambient fluid fills the channel of radius r* up to a given height H* = βr* (0 open to the atmosphere. This fluid is displaced by the intruding current and outflows either at the same or at the opposite end-side of the channel. The two different configurations (with return and no-return flow) allow to analyze the impact of the motion of the ambient fluid on the front speed of the intruding current. For Q larger than some threshold value, the current is expected theoretically to undergo a choking process which limits the speed/thickness of propagation. Two series of experiments were conducted with constant and time varying inflow. The choking effect was observed, qualitatively, in both series. The theory correctly predicts the qualitative behavior, but systematically overestimates the front speed of the current (consistent with previously-published data concerning rectangular and non-rectangular cross-sections), with larger discrepancies for the no-return flow case. These discrepancies are mainly due to: (i) the variations of the free-surface of the ambient fluid with respect to its nominal value (the theoretical model assumes a fixed free-slip top of the ambient fluid), and (ii
Corella, Juan Pablo; Loizeau, Jean Luc; Hilbe, Michael; le Dantec, Nicolas; Sastre, Vincent; Girardclos, Stéphanie
2014-05-01
Deep-water marine channels are highly dynamic environments due to the erosive power of sediment-laden currents that are continuously reshaping the morphology of these major sediment conduits. Proximal levees are prone to scarp failures generating gravity flows that can be transported thousands of kilometres from the original landslide. Nevertheless, the evolution of these underflows is still poorly understood because of the spatial scale of the processes and their difficult monitoring. For this reason, the smaller size, well-known boundary conditions and detailed bathymetric data makes Lake Geneva's sub-aquatic canyon in the Rhone delta an excellent analogue to understand these types of sedimentary processes that usually occur in deep-water channels in the marine realm. A multidisciplinary research strategy including innovative coring via MIR submersibles, in-situ geotechnical tests, geophysical and sedimentological analyses, as well as acquisition of different multibeam bathymetric data sets, were applied to understand the triggering processes, transport mechanisms and deposit features of gravity flows throughout the Rhone delta active canyon. The difference between two bathymetric surveys in 1986 and 2000 revealed an inversion in the topography of the distal active canyon, as a former distal canyon was transformed into a mound-like structure. A 12 m-thick layer was deposited in the canyon and modified the sediment transfer conduit. Sediment cores from this deposit were retrieved in-situ in 2002 and 2011 via the "F.-A. Forel" and Russian MIR submersibles, respectively. These cores contained a homogeneous, sandy material. Its sediment texture, grain-size, high density and shear strength, and low water content suggests that it corresponds to a debris-flow deposit that possibly took place after the initiation of a mass movement due to a scarp failure in proximal areas of the canyon. In addition, in-situ geotechnical tests on the modern canyon floor have shown a soft
Lectures on Loop Quantum Gravity
Thiemann, T.
2003-01-01
Quantum General Relativity (QGR), sometimes called Loop Quantum Gravity, has matured over the past fifteen years to a mathematically rigorous candidate quantum field theory of the gravitational field. The features that distinguish it from other quantum gravity theories are 1) background independence and 2) minimality of structures. Background independence means that this is a non-perturbative approach in which one does not perturb around a given, distinguished, classical background metric, ra...
Directory of Open Access Journals (Sweden)
Claudia de Rham
2014-08-01
Full Text Available We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP, cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.
A distinguishing gravitational property for gravitational equation in higher dimensions
International Nuclear Information System (INIS)
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)
A distinguishing gravitational property for gravitational equation in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Dadhich, Naresh [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune (India)
2016-03-15
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)
Hesse, Reinhard; Fong, Christopher
2014-03-01
Umbrella structure is a newly recognized sedimentary structure associated with large platy clasts in resedimented boulder-bearing pebble conglomerate with a sandy matrix. It consists of a sand rim that lacks pebbles on parts or the entire underside of platy boulders, whereas on the upper side, pebbles are in direct contact with the boulders. The depositing processes were high- to hyper-concentrated sediment gravity flows in a submarine channel or canyon on the Cambrian continental slope of North America bordering the Iapetus Ocean. The structure occurs predominantly where clasts dip moderately in the down-current direction. Based on the association of the structure with slightly forward dipping slabs, it is proposed that these down-current dipping slabs may have been in the process of counter-clockwise rotation that was aborted and may have generated a pressure shadow on the underside enabling the inrush of fluid and the infiltration of sand into the anomalous low-pressure zone. The structure has implications for particle support mechanisms in high- to hyper-concentrated sedimentary gravity flows, in that it redirects attention to the much debated mechanism of dispersive pressure and alternatives. It provides an observable sediment structure that supports dispersive pressure which so far depended on experimental evidence and theoretical arguments alone. Vrolijk and Southard's (1997) concept of a `laminar sheared layer' is here for the first time interpreted as having an upward-moving `free-surface' layer effect during deposition from hyper-concentrated flows. Channel-wall stoping involves unlithified turbiditic spillover sand in the levee sediment of the canyon wall that was washed out by the upper diluted parts of the high-concentration flows coming down the channel and leaving a niche in the wall that was filled with coarser channel-axis facies by the same flow (or later flows) when its aggradation reached the level of the niche. The contact between turbidite and
Distinguishing Radiculopathies from Mononeuropathies
Robblee, Jennifer; Katzberg, Hans
2016-01-01
Identifying “where is the lesion” is particularly important in the approach to the patient with focal dysfunction where a peripheral localization is suspected. This article outlines a methodical approach to the neuromuscular patient in distinguishing focal neuropathies versus radiculopathies, both of which are common presentations to the neurology clinic. This approach begins with evaluation of the sensory examination to determine whether there are irritative or negative sensory signs in a peripheral nerve or dermatomal distribution. This is followed by evaluation of deep tendon reflexes to evaluate if differential hyporeflexia can assist in the two localizations. Finally, identification of weak muscle groups unique to a nerve or myotomal pattern in the proximal and distal extremities can most reliably assist in a precise localization. The article concludes with an application of the described method to the common scenario of distinguishing radial neuropathy versus C7 radiculopathy in the setting of a wrist drop and provides additional examples for self-evaluation and reference. PMID:27468275
Directory of Open Access Journals (Sweden)
Horridge A
2015-03-01
Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, Australia Abstract: Behind each facet of the compound eye, bees have photoreceptors for ultraviolet, green, and blue wavelengths that are excited by sunlight reflected from the surrounding panorama. In experiments that excluded ultraviolet, bees learned to distinguish between black, gray, white, and various colors. To distinguish two targets of differing color, bees detected, learned, and later recognized the strongest preferred inputs, irrespective of which target displayed them. First preference was the position and measure of blue reflected from white or colored areas. They also learned the positions and a measure of the green receptor modulation at vertical edges that displayed the strongest green contrast. Modulation is the receptor response to contrast and was summed over the length of a contrasting vertical edge. This also gave them a measure of angular width between outer vertical edges. Third preference was position and a measure of blue modulation. When they returned for more reward, bees recognized the familiar coincidence of these inputs at that place. They cared nothing for colors, layout of patterns, or direction of contrast, even at black/white edges. The mechanism is a new kind of color vision in which a large-field tonic blue input must coincide in time with small-field phasic modulations caused by scanning vertical edges displaying green or blue contrast. This is the kind of system to expect in medium-lowly vision, as found in insects; the next steps are fresh looks at old observations and quantitative models. Keywords: vision, honey bee, visual processing, optimum system, picture sorting
Sneddon, Andrew
2013-01-01
Gravity is a cross-disciplinary research project in Fine Art at Sheffield Institute of the Arts (SIA) in partnership with Sheffield Galleries and Museums. Gravity is led by Penny McCarthy, Dr Becky Shaw and Andrew Sneddon. Gravity begins with a series of lectures designed to examine the wider context of practice and discourse. Gravity examines the contemporary condition of the art object or artefact, and the relations between maker, medium, site of production and systems of dissemination. ...
Claudia de Rham
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Liouville gravity from Einstein gravity
Grumiller, D.; Jackiw, R.
2007-01-01
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newton's constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - passes several consistency tests: geometric properties, interactions with matter and the Bekenstein-Hawking entropy are as expected from Einstein gravity.
What is the Entropy in Entropic Gravity?
Carroll, Sean M.; Remmen, Grant N.
2016-01-01
We investigate theories in which gravity arises as a consequence of entropy. We distinguish between two approaches to this idea: holographic gravity, in which Einstein’s equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein’s equation emerges as a local equation of state from constraints on the area of a dynamical light sheet in a fixed spacetime background. Examining ho...
Einstein Gravity from Conformal Gravity
Maldacena, Juan
2011-01-01
We show that that four dimensional conformal gravity plus a simple Neumann boundary condition can be used to get the semiclassical (or tree level) wavefunction of the universe of four dimensional asymptotically de-Sitter or Euclidean anti-de Sitter spacetimes. This simple Neumann boundary condition selects the Einstein solution out of the more numerous solutions of conformal gravity. It thus removes the ghosts of conformal gravity from this computation. In the case of a five dimensional pure ...
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
International Nuclear Information System (INIS)
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges
Acceleration from Modified Gravity: Lessons from Worked Examples
Hu, Wayne
2009-01-01
I examine how two specific examples of modified gravity explanations of cosmic acceleration help us understand some general problems confronting cosmological tests of gravity: how do we distinguish modified gravity from dark energy if they can be made formally equivalent? how do we parameterize deviations according to physical principles with sufficient generality, yet focus cosmological tests into areas that complement our existing knowledge of gravity? how do we treat the dynamics of modifi...
Cosmological acceleration. Dark energy or modified gravity?
International Nuclear Information System (INIS)
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Ensemble Equivalence for Distinguishable Particles
Directory of Open Access Journals (Sweden)
Antonio Fernández-Peralta
2016-07-01
Full Text Available Statistics of distinguishable particles has become relevant in systems of colloidal particles and in the context of applications of statistical mechanics to complex networks. In this paper, we present evidence that a commonly used expression for the partition function of a system of distinguishable particles leads to huge fluctuations of the number of particles in the grand canonical ensemble and, consequently, to nonequivalence of statistical ensembles. We will show that the alternative definition of the partition function including, naturally, Boltzmann’s correct counting factor for distinguishable particles solves the problem and restores ensemble equivalence. Finally, we also show that this choice for the partition function does not produce any inconsistency for a system of distinguishable localized particles, where the monoparticular partition function is not extensive.
International Nuclear Information System (INIS)
A theoretical and numerical model to predict film condensation heat transfer in mini, micro and ultra micro-channels of different internal shapes is presented in this thesis. The model is based on a finite volume formulation of the Navier-Stokes and energy equations and it includes the contributions of the unsteady terms, surface tension, axial shear stresses, gravitational forces and wall thermal conduction. Notably, interphase mass transfer and near-to-wall effects (disjoining pressure) are also included. This model has been validated versus various benchmark cases and versus published experimental results from three different laboratories, predicting micro-channel heat transfer data with an average error of 20 % or better. The conjugate heat transfer problem arising from the coupling between the thin film fluid dynamics, the heat transfer in the condensing fluid and the heat conduction in the channel wall has been studied and analyzed. The work has focused on the effects of three external wall boundary conditions: a uniform wall temperature, a non uniform wall heat flux and single-phase convective cooling. The thermal axial and peripheral conduction occurring in the wall of the channel can affect the behavior of the condensate film, not only because it redistributes the heat, but also because the annular laminar film condensation process is dependent on the local saturation to wall temperature difference. When moving from mini to micro and ultra-micro channels, the results shows that the axial conduction effects can become very important in the prediction of the wall temperature profile and they can not be ignored. Under these conditions, the overall performances of the heat exchanger become dependent not only on the fluid properties and the operative conditions but also on the geometry and wall material. Results obtained for steady state conditions are presented for circular, elliptical and flattened shape cross sections for R-134a and ammonia, for hydraulic
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Reichhardt, Tony
1994-03-01
Mariner 10 traveled to Mercury by using Venus' gravity to bend its course in toward the sun, a correction that would otherwise required vast amounts of rocket fuel. For the first time, an interplanetary spacecraft changed course not with rocket fuel but by using a planet's gravitational field. That maneuver stands, along with the development of the rocket engine, as one of the keys that opened the solar system for exploration. The Pioneer, Voyager, and Galileo missions all used gravity assist, and in fact would not have been possible otherwise. Gravity assist is the most efficient form of space propulsion known. Various aspects of the developmental history of the gravity assist technique and the dispute over who should receive credit for inventing the technique are discussed.
What is the entropy in entropic gravity?
Carroll, Sean M.; Remmen, Grant N.
2016-06-01
We investigate theories in which gravity arises as a consequence of entropy. We distinguish between two approaches to this idea: holographic gravity, in which Einstein's equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein's equation emerges as a local equation of state from constraints on the area of a dynamical light sheet in a fixed spacetime background. Examining holographic gravity, we argue that its underlying assumptions can be justified in part using recent results on the form of the modular energy in quantum field theory. For thermodynamic gravity, on the other hand, we find that it is difficult to formulate a self-consistent definition of the entropy, which represents an obstacle for this approach. This investigation points the way forward in understanding the connections between gravity and entanglement.
What is the Entropy in Entropic Gravity?
Carroll, Sean M
2016-01-01
We investigate theories in which gravity arises as an entropic force. We distinguish between two approaches to this idea: holographic gravity, in which Einstein's equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein's equation emerges as a local equation of state from constraints on the area of a dynamical lightsheet in a fixed spacetime background. Examining holographic gravity, we argue that its underlying assumptions can be justified in part using recent results on the form of the modular energy in quantum field theory. For thermodynamic gravity, on the other hand, we find that it is difficult to formulate a self-consistent definition of the entropy, which represents an obstacle for this approach. This investigation points the way forward in understanding the connections between gravity and entanglement.
Celada, Mariano; Montesinos, Merced
2016-01-01
$BF$ gravity comprises all the formulations of gravity that are based on deformations of $BF$ theory. Such deformations consist of either constraints or potential terms added to the topological $BF$ action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The $BF$ formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the $BF$ formulations of $D$-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.
Celada, Mariano; González, Diego; Montesinos, Merced
2016-11-01
BF gravity comprises all the formulations of gravity that are based on deformations of BF theory. Such deformations consist of either constraints or potential terms added to the topological BF action that turn some of the gauge degrees of freedom into physical ones, particularly giving rise to general relativity. The BF formulations have provided new and deep insights into many classical and quantum aspects of the gravitational field, setting the foundations for the approach to quantum gravity known as spinfoam models. In this review, we present a self-contained and unified treatment of the BF formulations of D-dimensional general relativity and other related models, focusing on the classical aspects of them and including some new results.
Distinguishing between Formation Channels for Binary Black Holes with LISA
Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.
2016-10-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.
Distinguishing Between Formation Channels for Binary Black Holes with LISA
Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A
2016-01-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...
Distinguishing drought and water scarcity
Loon, van A.
2013-01-01
Water resources can become strained by both natural factors such as drought and human factors such as unsustainable use. Water resource managers can develop practices to reduce overuse of water resources, but they cannot prevent droughts, so distinguishing the causes of water stress can be useful. H
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
Stochastic gravity: beyond semiclassical gravity
Energy Technology Data Exchange (ETDEWEB)
Verdaguer, E [Departament de Fisica Fonamental and CER en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)
2007-05-15
The back-reaction of a classical gravitational field interacting with quantum matter fields is described by the semiclassical Einstein equation, which has the expectation value of the quantum matter fields stress tensor as a source. The semiclassical theory may be obtained from the quantum field theory of gravity interacting with N matter fields in the large N limit. This theory breaks down when the fields quantum fluctuations are important. Stochastic gravity goes beyond the semiclassical limit and allows for a systematic and self-consistent description of the metric fluctuations induced by these quantum fluctuations. The correlation functions of the metric fluctuations obtained in stochastic gravity reproduce the correlation functions in the quantum theory to leading order in an 1/N expansion. Two main applications of stochastic gravity are discussed. The first, in cosmology, to obtain the spectrum of primordial metric perturbations induced by the inflaton fluctuations, even beyond the linear approximation. The second, in black hole physics, to study the fluctuations of the horizon of an evaporating black hole.
Clifton, T; Barrow, John D.
2006-01-01
We consider the possibility of energy being exchanged between the scalar and matter fields in scalar-tensor theories of gravity. Such an exchange provides a new mechanism which can drive variations in the gravitational 'constant' G. We find exact solutions for the evolution of spatially flat Friedman-Roberston-Walker cosmologies in this scenario and discuss their behaviour at both early and late times.
International Nuclear Information System (INIS)
We consider the possibility of energy being exchanged between the scalar and matter fields in scalar-tensor theories of gravity. Such an exchange provides a new mechanism which can drive variations in the gravitational 'constant' G. We find exact solutions for the evolution of spatially flat Friedmann-Robertson-Walker cosmologies in this scenario and discuss their behavior at both early and late times. We also consider the physical consequences and observational constraints on these models
Dark Energy, Dark Matter and Gravity
Bertolami, Orfeu
2006-01-01
We discuss the motivation for high accuracy relativistic gravitational experiments in the Solar System and complementary cosmological tests. We focus our attention on the issue of distinguishing a generic scalar-theory of gravity as the underlying physical theory from the usual general relativistic picture, where one expects the presence of fundamental scalar fields associated, for instance, to inflation, dark matter and dark energy.
Cosmological acceleration. Dark energy or modified gravity?
Energy Technology Data Exchange (ETDEWEB)
Bludman, S.
2006-05-15
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Distinguishing ichthyoses by protein profiling.
Directory of Open Access Journals (Sweden)
Robert H Rice
Full Text Available To explore the usefulness of protein profiling for characterization of ichthyoses, we here determined the profile of human epidermal stratum corneum by shotgun proteomics. Samples were analyzed after collection on tape circles from six anatomic sites (forearm, palm, lower leg, forehead, abdomen, upper back, demonstrating site-specific differences in profiles. Additional samples were collected from the forearms of subjects with ichthyosis vulgaris (filaggrin (FLG deficiency, recessive X-linked ichthyosis (steroid sulfatase (STS deficiency and autosomal recessive congenital ichthyosis type lamellar ichthyosis (transglutaminase 1 (TGM1 deficiency. The ichthyosis protein expression patterns were readily distinguishable from each other and from phenotypically normal epidermis. In general, the degree of departure from normal was lower from ichthyosis vulgaris than from lamellar ichthyosis, parallel to the severity of the phenotype. Analysis of samples from families with ichthyosis vulgaris and concomitant modifying gene mutations (STS deficiency, GJB2 deficiency permitted correlation of alterations in protein profile with more complex genetic constellations.
Distinguishing ichthyoses by protein profiling.
Rice, Robert H; Bradshaw, Katie M; Durbin-Johnson, Blythe P; Rocke, David M; Eigenheer, Richard A; Phinney, Brett S; Schmuth, Matthias; Gruber, Robert
2013-01-01
To explore the usefulness of protein profiling for characterization of ichthyoses, we here determined the profile of human epidermal stratum corneum by shotgun proteomics. Samples were analyzed after collection on tape circles from six anatomic sites (forearm, palm, lower leg, forehead, abdomen, upper back), demonstrating site-specific differences in profiles. Additional samples were collected from the forearms of subjects with ichthyosis vulgaris (filaggrin (FLG) deficiency), recessive X-linked ichthyosis (steroid sulfatase (STS) deficiency) and autosomal recessive congenital ichthyosis type lamellar ichthyosis (transglutaminase 1 (TGM1) deficiency). The ichthyosis protein expression patterns were readily distinguishable from each other and from phenotypically normal epidermis. In general, the degree of departure from normal was lower from ichthyosis vulgaris than from lamellar ichthyosis, parallel to the severity of the phenotype. Analysis of samples from families with ichthyosis vulgaris and concomitant modifying gene mutations (STS deficiency, GJB2 deficiency) permitted correlation of alterations in protein profile with more complex genetic constellations.
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
Deterministically distinguishing a remote Bell state
Institute of Scientific and Technical Information of China (English)
Zhao Zhi-Guo; Peng Wei-Min; Tan Yong-Gang
2011-01-01
It has been proven that, with a single copy provided, the four Bell states cannot be distinguished by local operations and classical communications (LOCC). Traditionally, a Bell basis projective measurement is needed to distinguish the four Bell states, which is usually carried out with a local interference between two particles. This paper presents an interesting protocol that allows two remote parties to distinguish four Bell states deterministically. We prove that our protocol of distinguishing remote Bell states is beyond LOCC.
Distinguishing cell type using epigenotype
Wytock, Thomas; Motter, Adilson E.
Recently, researchers have proposed that unique cell types are attractors of their epigenetic dynamics including gene expression and chromatin conformation patterns. Traditionally, cell types have been classified by their function, morphology, cytochemistry, and other macroscopically observable properties. Because these properties are the result of many proteins working together, it should be possible to predict cell types from gene expression or chromatin conformation profiles. In this talk, I present a maximum entropy approach to identify and distinguish cell type attractors on the basis of correlations within these profiles. I will demonstrate the flexibility of this method through its separate application to gene expression and chromatin conformation datasets. I show that our method out-performs other machine-learning techniques and uncorrelated benchmarks. We adapt our method to predict growth rate from gene expression in E. coli and S. cerevisiae and compare our predictions with those from metabolic models. In addition, our method identifies a nearly convex region of state-space associated with each cell type attractor basin. Estimates of the growth rate and attractor basin make it possible to rationally control gene regulatory networks independent of a model. This research was supported by NSF-GRFP, NSF-GK12, GAANN, and Northwestern's NIH-NIGMS Molecular Biophysics Training Grant.
Gravity and Mirror Gravity in Plebanski Formulation
Bennett, D. L.; Laperashvili, L. V.; Nielsen, H. B.; Tureanu, A.
2012-01-01
We present several theories of four-dimensional gravity in the Plebanski formulation, in which the tetrads and the connections are the independent dynamical variables. We consider the relation between different versions of gravitational theories: Einstenian, dual, 'mirror' gravities and gravity with torsion. According to Plebanski's assumption, our world, in which we live, is described by the self-dual left-handed gravity. We propose that if the Mirror World exists in Nature, then the 'mirror...
Distinguishability of complete and unextendible product bases
De Rinaldis, S
2003-01-01
It is not always possible to distinguish multipartite orthogonal states if only local operation and classical communication (LOCC) are allowed. We prove that we cannot distinguish the states of an unextendible product bases (UPB) by LOCC even when infinite resources (infinite-dimensional ancillas, infinite number of operations). Moreover we give a method to check the LOCC distinguishability of a complete product bases.
Magueijo, J; Magueijo, Joao; Smolin, Lee
2004-01-01
Non-linear special relativity (or doubly special relativity) is a simple framework for encoding properties of flat quantum space-time. In this paper we show how this formalism may be generalized to incorporate curvature (leading to what might be called ``doubly general relativity''). We first propose a dual to non-linear realizations of relativity in momentum space, and show that for such a dual the space-time invariant is an energy-dependent metric. This leads to an energy-dependent connection and curvature, and a simple modification to Einstein's equations. We then examine solutions to these equations. We find the counterpart to the cosmological metric, and show how cosmologies based upon our theory of gravity may solve the ``horizon problem''. We discuss the Schwarzchild solution, examining the conditions for which the horizon is energy dependent. We finally find the weak field limit.
Lombard, John
2016-01-01
We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a positive-definite cosmological constant as a regulator for non-degenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in develop...
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
The meaning of quantum gravity
International Nuclear Information System (INIS)
The authors of this book take the Bohr-Rosenfeld analysis of quantum electrodynamics as their starting point and develop arguments in support of Einstein's own thesis that, due to the validity of the strong principle of equivalence, the General Theory cannot be rigorously quantized. They show that the concept of gravitons is an approximate formalization only, which has its use in the harmonization of the gravitational equations with the matter field, but which does not predict any effect that may be used to distinguish quantum from classical gravity. Furthermore, it is argued that, when using Planck units, it is senseless to attempt quantization of the General Theory. 154 refs.; 4 figs
Lineal gravity from planar gravity
Achúcarro, A
1993-01-01
We show how to obtain the two-dimensional black hole action by dimensional reduction of the three-dimensional Einstein action with a non-zero cosmological constant. Starting from the Chern-Simons formulation of 2+1 gravity, we obtain the 1+1 dimensional gauge formulation given by Verlinde. Remarkably, the proposed reduction shares the relevant features of the formulation of Cangemi and Jackiw, without the need for a central charge in the algebra. We show how the Lagrange multipliersin these formulations appear naturally as the remnants of the three dimensional connection associated to symmetries that have been lostin the dimensional reduction. The proposed dimensional reduction involves a shift in the three dimensional connection whose effect is to make the length of the extra dimension infinite.
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations
Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; Trodden, Mark
2014-01-01
The existence of a ghost free theory of massive gravity begs for an interpre-tation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham-Gabadadze-Tol...
Is nonrelativistic gravity possible?
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Eins...
Linker, Patrick
2016-01-01
A couple of quantum gravity theories were proposed to make theoretical predictions about the behavior of gravity. The most recent approach to quantum gravity, called E-theory, is proposed mathematical, but there is not formulated much about what dynamics of gravity this theory proposes. This research paper treats the main results of the application of E-theory to General relativity involving conservation laws and scattering of particles in presence of gravity. Also the low-energy limit of thi...
Gravity wave transmission diagram
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Unseeded Large Scale PIV measurements accounting for capillary-gravity waves phase speed
Benetazzo,; Gamba,; M.,; Barbariol,; F,
2016-01-01
Large Scale Particle Image Velocimetry (LSPIV) is widely recognized as a reliable method to measure water surface velocity field in open channels and rivers. LSPIV technique is based on a camera view that frames the water surface in a sequence, and image-processing methods to compute water surface displacements between consecutive frames. Using LSPIV, high flow velocities, as for example flood conditions, were accurately measured, whereas determinations of low flow velocities is more challenging, especially in absence of floating seeding transported by the flow velocity. In fact, in unseeded conditions, typical surface features dynamics must be taken into account: besides surface structures convected by the current, capillary-gravity waves travel in all directions, with their own dynamics. Discrimination between all these phenomena is here discussed, providing a new method to distinguish and to correct unseeded LSPIV measurements associated with wavy structures, accounting for their phase speed magnitude and ...
Distinguishing between R2-inflation and Higgs-inflation
International Nuclear Information System (INIS)
We present three features which can be used to distinguish the R2-inflation Higgs-inflation from with ongoing, upcoming and planned experiments, assuming no new physics (apart form sterile neutrinos) up to inflationary scale. (i) Slightly different tilt of the scalar perturbation spectrum ns and ratio r of scalar-to-tensor perturbation amplitudes. (ii) Gravity waves produced within R2-model by collapsing, merging and evaporating scalaron clumps formed in the post-inflationary Universe. (iii) Different ranges of the possible Standard Model Higgs boson masses, where the electroweak vacuum remains stable while the Universe evolves after inflation. Specifically, in the R2-model Higgs boson can be as light as 116 GeV. These effects mainly rely on the lower reheating temperature in the R2-inflation.
Probing loop quantum gravity with evaporating black holes.
Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J
2011-12-16
This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. PMID:22243065
The GRAVITY spectrometers: optical qualification
Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas
2014-07-01
GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present
Conformal classes of Brans-Dicke gravity
Quirós, I
1999-01-01
A classification of Brans-Dicke theories of gravitation, based on the behaviour of the dimensionless gravitational coupling constant, is given. It is noted that the discussion takes place in the current literature, about which of the two distinguished conformal frames in which scalar-tensor theories of gravity can be formulated: the Jordan frame and the Einstein frame, is the physical one, may, in most cases, be meaningless for both frames may belong to the same conformal class. It is also noted that the Jordan frame formulation of Brans-Dicke gravity with ordinary matter nonminimally coupled is scale-invariant, unlike the situation with the Jordan frame formulation of Brans-Dicke gravity with matter minimally coupled (the original formulation of Brans-Dicke theory), where the presence of nonzero mass ordinary matter breaks the scale-invariance of the theory.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Cadiz, California Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data...
Classical Weyl Transverse Gravity
Oda, Ichiro
2016-01-01
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Northern Oklahoma Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...
National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...
National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...
Testing Gravity using Void Profiles
Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu
2016-10-01
We investigate void properties in f(R) models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki f(R) modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the same f(R) voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the f(R) model parameter amplitudes fR0=10-5 and 10-4 may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8 σ for a volume of 1 (Gpc/h)3. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish fR0=10-6 from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in f(R) models are unique features that can be combined to break the degeneracy between fR0 and σ8.
AMELINO-CAMELIA, Giovanni
2003-01-01
Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"
Ambjorn, Jan
1994-01-01
I discuss recent progress in our understanding of two barriers in quantum gravity: $c > 1$ in the case of 2d quantum gravity and $D > 2$ in the case of Euclidean Einstein-Hilbert gravity formulated in space-time dimensions $D >2$.
Distinguishing Schroedinger cats in a lossy environment
International Nuclear Information System (INIS)
Optical Schroedinger cat states-that is, even and odd coherent states-are considered as possible candidates for forming a computational basis for a coherent state qubit. The distinguishability of the two originally orthogonal states after experiencing loss is quantified in terms of quantum relative entropy. This is a physically instructive quantity related to probabilities of faults in identifying the state. This distinguishability is important for classical communication and for the problem of reading out the result of a quantum computation by a lossy device. It is shown that the distinguishability can significantly increase if the environment is prepared in an appropriately chosen squeezed state
Sutured Floer homology distinguishes between Seifert surfaces
Altman, Irida
2010-01-01
In this note we exhibit the first example of a knot in the three-sphere with a pair of minimal genus Seifert surfaces that can be distinguished using the sutured Floer homology of their complementary manifolds together with the Spin^c-grading. This answers a question of Juh\\'asz. More precisely, we show that the Euler characteristic of the sutured Floer homology of the complementary manifolds distinguishes between the two surfaces, and we exhibit an infinite family of knots with pairs of Seifert surfaces that can be distinguished in such a way.
How bees distinguish patterns by green and blue modulation
Directory of Open Access Journals (Sweden)
Horridge A
2015-10-01
Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, Australia Abstract: In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left–right polarity and mirror images could be discriminated by retinotopic green
Weak lensing: Dark Matter, Dark Energy and Dark Gravity
Heavens, Alan
2009-01-01
In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.
Einstein's theory of gravity and the problem of missing mass.
Ferreira, Pedro G; Starkman, Glenn D
2009-11-01
The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter. PMID:19892973
Einstein's theory of gravity and the problem of missing mass.
Ferreira, Pedro G; Starkman, Glenn D
2009-11-01
The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter.
Stanislas Dehaene: Award for Distinguished Scientific Contributions.
2015-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Stanislas Dehaene, who received this award for "outstanding empirical and theoretical contributions to not just one but three fields that are central to the enterprises of psychology and cognitive neuroscience." Dehaene's award citation, biography, and a selected bibliography are presented here. PMID:26618941
Gravity/Fluid Correspondence For Massive Gravity
Pan, Wen-Jian
2016-01-01
In this paper, we investigate the gravity/fluid correspondence in the framework of massive gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a time-like hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and non-relativistic limit. Furthermore, in our models, we have concisely computed the ratio of dynamical viscosity to entropy density, and shown that it still satisfies KSS bound.
Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations
Goon, Garrett; Joyce, Austin; Trodden, Mark
2014-01-01
The existence of a ghost free theory of massive gravity begs for an interpretation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham--Gabadadze--Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be...
Tribology Experiment in Zero Gravity
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
Holographic mutual information and distinguishability of Wilson loop and defect operators
Hartnoll, Sean A
2014-01-01
The mutual information of disconnected regions in large $N$ gauge theories with holographic gravity duals can undergo phase transitions. These occur when connected and disconnected bulk Ryu-Takayanagi surfaces exchange dominance. That is, the bulk `soap bubble' snaps as the boundary regions are drawn apart. We give a gauge-theoretic characterization of this transition: States with and without a certain defect operator insertion -- the defect separates the entangled spatial regions -- are shown to be perfectly distinguishable if and only if the Ryu-Takayanagi surface is connected. Meanwhile, states with and without a certain Wilson loop insertion -- the Wilson loop nontrivially threads the spatial regions -- are perfectly distinguishable if and only if the Ryu-Takayanagi surface is disconnected. The quantum relative entropy of two perfectly distinguishable states is infinite. The results are obtained by relating the soap bubble transition to Hawking-Page (deconfinement) transitions in the Renyi entropies, wher...
Mceliece, R. J.
1980-01-01
A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.
Children distinguish between positive pride and hubris.
Nelson, Nicole L; Russell, James A
2015-11-01
Adults distinguish expressions of hubris from those of positive pride. To determine whether children (N = 183; 78-198 months old) make a similar distinction, we asked them to attribute emotion labels and a variety of social characteristics to dynamic expressions intended to convey hubris and positive pride. Like adults, children attributed different emotion labels to the expressions, and this tendency increased with age. Girls were more likely to distinguish between the expressions than boys were. Children also associated more positive social characteristics with the expression of positive pride and more negative characteristics with the expression of hubris.
Michael Tomasello: Award for Distinguished Scientific Contributions.
2015-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Michael Tomasello, who received this award for "outstanding empirical and theoretical contributions to understanding what makes the human mind unique. Michael Tomasello's pioneering research on the origins of social cognition has led to revolutionary insights in both developmental psychology and primate cognition." Tomasello's award citation, biography, and a selected bibliography are presented here. PMID:26618943
Bergshoeff, Eric A; Hohm, Olaf; Merbis, Wout; Townsend, Paul K
2013-01-01
We present a generally-covariant and parity-invariant "zwei-dreibein" action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how zwei-dreibein gravity unifies previous "3D massive gravity" models, and extends them, in the context of the AdS/CFT correspondence, to allow for a positive central charge consistent with bulk unitarity.
Aspects of multimetric gravity
International Nuclear Information System (INIS)
We present a class of gravity theories containing N ≥ 2 metric tensors and a corresponding number of standard model copies. In the Newtonian limit gravity is attractive within each standard model copy, but different standard model copies mutually repel each other. We discuss several aspects of these multimetric gravity theories, including cosmology, structure formation, the post-Newtonian limit and gravitational waves. The most interesting feature we find is an accelerating expansion of the universe that naturally becomes small at late times.
Pirkola, Patrik
2016-01-01
The surface gravity on Mars is smaller than the surface gravity on Earth, resulting in longer falling times. This effect can be simulated on Earth by taking advantage of air resistance and buoyancy, which cause low density objects to fall slowly enough to approximate objects falling on the surface of Mars. We describe a computer simulation based on an experiment that approximates Martian gravity, and verify our numerical results by performing the experiment.
Anderson, James E.; Yoto V. Yotov
2012-01-01
This paper provides striking confirmation of the restrictions of the structural gravity model of trade. Structural forces predicted by theory explain 95% of the variation of the fixed effects used to control for them in the recent gravity literature, fixed effects that in principle could reflect other forces. This validation opens avenues to inferring unobserved sectoral activity and multilateral resistance variables by equating fixed effects with structural gravity counterparts. Our findings...
Anderson, James E.
2010-01-01
The gravity model in economics was until relatively recently an intellectual orphan, unconnected to the rich family of economic theory. This review is a tale of the orphan's reunion with its heritage and the benefits that have flowed from it. Gravity has long been one of the most successful empirical models in economics. Incorporating the theoretical foundations of gravity into recent practice has led to a richer and more accurate estimation and interpretation of the spatial relations describ...
Rovelli Carlo
1997-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (...
Trugenberger, Carlo A
2016-01-01
In a recently developed approach, geometry is modelled as an emergent property of random networks. Here I show that one of these models I proposed is exactly quantum gravity defined in terms of the combinatorial Ricci curvature recently derived by Ollivier. Geometry in the weak (classical) gravity regime arises in a phase transition driven by the condensation of short graph cycles. The strong (quantum) gravity regime corresponds to "small world" random graphs with logarithmic distance scaling.
Gravity Independent Compressor Project
National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
Testing Gravity using Void Profiles
Cai, Yan-Chuan; Li, Baojiu
2014-01-01
We investigate void properties in $f(R)$ models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki $f(R)$ modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the same $f(R)$ voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the $f(R)$ model parameter amplitudes $|f_{R0}|=10^{-5}$ and $10^{-4}$ may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8$\\sigma$ for a volume of 1~(Gpc/$h$)$^3$. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason...
Can Values Be Distinguished from Prejudices?
Wilhoyte, Robert L.; Sikula, John P.
1977-01-01
Using case studies, the authors demonstrate the difficulty of distinguishing an act influenced by a person's prejudice from an act influenced by a person's values. Social studies teachers are urged to deal with controversial topics to help students clarify their feelings about issues such as abortion, drug use, religion, and politics. (AV)
Distinguishing Z' models with polarised top pairs
Basso, L.; Mimasu, K.; Moretti, S.
2012-01-01
We study the sensitivity of top pair production at the Large Hadron Collider (LHC) to the nature of an underlying Z' boson, including full tree level standard model background effects and interferences. We demonstrate that exploiting combinations of asymmetry observables will enable one to distinguish between a selection of `benchmark' Z' models while assuming realistic final state reconstruction efficiencies and error estimates.
Children Distinguish between Positive Pride and Hubris
Nelson, Nicole L.; Russell, James A.
2015-01-01
Adults distinguish expressions of hubris from those of positive pride. To determine whether children (N = 183; 78-198 months old) make a similar distinction, we asked them to attribute emotion labels and a variety of social characteristics to dynamic expressions intended to convey hubris and positive pride. Like adults, children attributed…
10 CFR 1002.22 - Use of distinguishing flag.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of distinguishing flag. 1002.22 Section 1002.22 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG Distinguishing Flag § 1002.22 Use of distinguishing flag. (a) DOE distinguishing flags may be used only: (1) In the offices of...
Krasnov, Kirill
2016-01-01
Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.
Heiss, Jonny
2000-01-01
Assuming the existence of a Multidirectional Homogeneous and Constant Shower of Elementary Particles (MHCSEP) traveling at light speed in space, several basic laws of physics are derived mainly by geometrical considerations. When placing two bodies in space, obstruction of the MHCSEP creates an attractive force among them that coincides, for two bodies, with Newton's law of gravity, generating a mechanical explanation for gravity.
Consistency of orthodox gravity
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)
1997-01-01
A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.
No consistent bimetric gravity?
Deser, S.; Sandora, M.; Waldron, A
2013-01-01
We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, we show that consistency of BMG relies on it having a PM extension; we then argue that it cannot.
No consistent bimetric gravity?
Deser, S; Waldron, A
2013-01-01
We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, ultimate consistency of both BMG and the putative PM BMG theory relies crucially on this gauge symmetry. We argue, however, that it does not exist.
Kan, Nahomi; Maki, Takuya; Shiraishi, Kiyoshi
2016-10-01
We propose a model of gravity in which a General Relativity metric tensor and an effective metric generated from a single scalar formulated in geometric scalar gravity are mixed. We show that the model yields the exact Schwarzschild solution, along with accelerating behavior of scale factors in cosmological solutions.
Topological Aspects of Quantum Gravity
Weis, Morten
1998-01-01
This thesis discusses the topological aspects of quantum gravity, focusing on the connection between 2D quantum gravity and 2D topological gravity. The mathematical background for the discussion is presented in the first two chapters. The possible gauge formulations of 2D topological gravity as a BF or a Super BF theory are presented and compared against 2D quantum gravity in the dynamical triangulation scheme. A new identification between topological gravity in the Super BF formulation and t...
Constraining Gravity with LISA Detections of Binaries
Canizares, Priscilla; Sopuerta, Carlos F
2012-01-01
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is descr...
Palsingh, S. (Inventor)
1975-01-01
An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.
Gravity theories, Transverse Doppler and Gravitational Redshifts in Galaxy Clusters
Zhao, Hongsheng; Li, Baojiu
2012-01-01
There is growing interest in testing alternative gravity theories using the subtle Gravitational Redshifts in clusters of galaxies. However, current models all neglect a Transverse Doppler redshift of similar magnitude, and some models are not self-consistent. An equilibrium model would fix the Gravitational and Transverse Doppler velocity shifts to be about 6\\sigma^2/c and 3\\sigma^2/2c in order to fit the observed velocity dispersion \\sigma self-consistently. This result is from the Virial Theorem for a spherical isotropic cluster, and is insensitive to the theory of gravity. In any case, a gravitational redshift signal cannot directly distinguish between the Einsteinian and f(R) gravity theories, because the mass of the cluster dark halo must be treated as an unknown fitting parameter, whose value must vary according to the theory adopted, otherwise the system would be in equilibrium in one gravity theory and out of equilibrium in another.
Distinguishing Provenance Equivalence of Earth Science Data
Tilmes, Curt; Yesha, Ye; Halem, M.
2010-01-01
Reproducibility of scientific research relies on accurate and precise citation of data and the provenance of that data. Earth science data are often the result of applying complex data transformation and analysis workflows to vast quantities of data. Provenance information of data processing is used for a variety of purposes, including understanding the process and auditing as well as reproducibility. Certain provenance information is essential for producing scientifically equivalent data. Capturing and representing that provenance information and assigning identifiers suitable for precisely distinguishing data granules and datasets is needed for accurate comparisons. This paper discusses scientific equivalence and essential provenance for scientific reproducibility. We use the example of an operational earth science data processing system to illustrate the application of the technique of cascading digital signatures or hash chains to precisely identify sets of granules and as provenance equivalence identifiers to distinguish data made in an an equivalent manner.
Repetitive sequence environment distinguishes housekeeping genes
Eller, C. Daniel; Regelson, Moira; Merriman, Barry; Nelson, Stan,; Horvath, Steve; Marahrens, York
2006-01-01
Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear E...
Gamma Oscillations Distinguish True From False Memories
Sederberg, Per B.; Schulze-Bonhage, Andreas; Madsen, Joseph R.; Bromfield, Edward B.; Litt, Brian; Brandt, Armin; Kahana, Michael J.
2007-01-01
To test whether distinct patterns of electrophysiological activity prior to a response can distinguish true from false memories, we analyzed intracranial electroencephalographic recordings while 52 patients undergoing treatment for epilepsy performed a verbal free-recall task. These analyses revealed that the same pattern of gamma-band (28–100 Hz) oscillatory activity that predicts successful memory formation at item encoding—increased gamma power in the hippocampus, prefrontal cortex, and le...
Distinguishing the communicative functions of gestures
DEFF Research Database (Denmark)
Jokinen, Kristiina; Navarretta, Costanza; Paggio, Patrizia
2008-01-01
This paper deals with the results of a machine learning experiment conducted on annotated gesture data from two case studies (Danish and Estonian). The data concern mainly facial displays, that are annotated with attributes relating to shape and dynamics, as well as communicative function....... The results of the experiments show that the granularity of the attributes used seems appropriate for the task of distinguishing the desired communicative functions. This is a promising result in view of a future automation of the annotation task....
Can Holographic Entanglement Entropy Distinguish Relaxation Timescales?
Rahimi, M; Lezgi, M
2016-01-01
We use gauge-gravity duality to compute entanglement entropy in a non-conformal background with an energy scale $\\Lambda$. At zero temperature, we observe that entanglement entropy decreases by raising $\\Lambda$. However, at finite temperature, we realize that both $\\frac{\\Lambda}{T}$ and entanglement entropy rise together. Comparing entanglement entropy of the non-conformal theory, $S_{A(N)}$, and of its conformal theory at the $UV$ limit, $ S_{A(C)}$, rereals that $S_{A(N)}$ can be larger or smaller than $S_{A(C)}$, depending on the value of $\\frac{\\Lambda}{T}$
Gravity effects on endogenous movements
Johnsson, Anders; Antonsen, Frank
Gravity effects on endogenous movements A. Johnsson * and F. Antonsen *+ * Department of Physics, Norwegian University of Science and Technology,NO-7491, Trond-heim, Norway, E-mail: anders.johnsson@ntnu.no + Present address: Statoil Research Center Trondheim, NO-7005, Trondheim, Norway Circumnutations in stems/shoots exist in many plants and often consists of more or less regular helical movements around the plumb line under Earth conditions. Recent results on circumnu-tations of Arabidopsis in space (Johnsson et al. 2009) showed that minute amplitude oscilla-tions exist in weightlessness, but that centripetal acceleration (mimicking the gravity) amplified and/or created large amplitude oscillations. Fundamental mechanisms underlying these results will be discussed by modeling the plant tissue as a cylinder of cells coupled together. As a starting point we have modeled (Antonsen 1998) standing waves on a ring of biological cells, as first discussed in a classical paper (Turing 1952). If the coupled cells can change their water content, an `extension' wave could move around the ring. We have studied several, stacked rings of cells coupled into a cylinder that together represent a cylindrical plant tissue. Waves of extensions travelling around the cylinder could then represent the observable circumnutations. The coupling between cells can be due to cell-to-cell diffusion, or to transport via channels, and the coupling can be modeled to vary in both longitudinal and transversal direction of the cylinder. The results from ISS experiments indicate that this cylindrical model of coupled cells should be able to 1) show self-sustained oscillations without the impact of gravity (being en-dogenous) and 2) show how an environmental factor like gravity can amplify or generate the oscillatory movements. Gravity has been introduced in the model by a negative, time-delayed feed-back transport across the cylinder. This represents the physiological reactions to acceler
Familial identification: population structure and relationship distinguishability.
Directory of Open Access Journals (Sweden)
Rori V Rohlfs
2012-02-01
Full Text Available With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.
Familial Identification: Population Structure and Relationship Distinguishability
Rohlfs, Rori V.; Fullerton, Stephanie Malia; Weir, Bruce S.
2012-01-01
With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States. PMID:22346758
Setare, M R
2009-01-01
In this paper we study cosmological application of holographic dark energy density in the modified gravity framework. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in spatially flat universe. Our calculation show, taking $\\Omega_{\\Lambda}=0.73$ for the present time, it is possible to have $w_{\\rm \\Lambda}$ crossing -1. This implies that one can generate phantom-like equation of state from a holographic dark energy model in flat universe in the modified gravity cosmology framework. Also we develop a reconstruction scheme for the modified gravity with $f(R)$ action.
International Nuclear Information System (INIS)
We investigate O'Raifeartaigh-type models for F-term supersymmetry breaking in gauge mediation scenarios in the presence of gravity. It is pointed out that the vacuum structure of those models is such that in metastable vacua gravity mediation contribution to scalar masses is always suppressed to the level below 1 percent, almost sufficient for avoiding FCNC problem. Close to that limit, gravitino mass can be in the range 10-100 GeV, opening several interesting possibilities for gauge mediation models, including Giudice-Masiero mechanism for μ and Bμ generation. Gravity sector can include stabilized moduli.
Phenomenological Quantum Gravity
Hossenfelder, Sabine
2009-01-01
If the history of science has taught us anything, it's that persistence and creativity makes the once impossible possible. It has long been thought experimental tests of quantum gravity are impossible. But during the last decade, several different approaches have been proposed that allow us to test, if not the fundamental theory of quantum gravity itself, so at least characteristic features this theory can have. For the first time we can probe experimentally domains in which quantum physics and gravity cohabit, in spite of our failure so far to make a convincing marriage of them on a theoretical level.
Massive gravity as a limit of bimetric gravity
Martin-Moruno, Prado; Baccetti, Valentina; Visser, Matt
2013-01-01
Massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure can lead to an interesting interplay between the "background" and "foreground" metrics in a cosmological context. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit. Thus, solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statem...
BRST symmetry of Unimodular Gravity
Upadhyay, S.; Oksanen, M.; Bufalo, R.
2015-01-01
We derive the BRST symmetry for two versions of unimodular gravity, namely, fully diffeomorphism-invariant unimodular gravity and unimodular gravity with fixed metric determinant. The BRST symmetry is generalized further to the finite field-dependent BRST, in order to establish the connection between different gauges in each of the two versions of unimodular gravity.
Toroidal solutions in Horava Gravity
Ghodsi, Ahmad
2009-01-01
Recently a new four-dimensional non relativistic renormalizable theory of gravity was proposed by Horava. This gravity reduces to Einstein gravity at large distances. In this paper by using the new action for gravity we present different toroidal solutions to the equations of motion. Our solutions describe the near horizon geometry with slow rotating parameter.
10 CFR 1002.21 - Description of distinguishing flag.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Description of distinguishing flag. 1002.21 Section 1002.21 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) OFFICIAL SEAL AND DISTINGUISHING FLAG Distinguishing Flag § 1002.21 Description of distinguishing flag. (a) The base or field of the flag shall...
Garland, G D; Wilson, J T
2013-01-01
The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp
Characteristics that distinguish types of epithermal deposits
Hayba, D.O.; Foley, N.K.; Heald-Wetlaufer, P.
1984-01-01
Three distinctive groupings of epithermal deposits were recognized from a literature study of fifteen well-described precious- and base-metal epithermal districts, supplemented by L. J. Buchanan's 1981 compilation of data from 47 less completely documented deposits. The three groups are distinguished primarily by the type of alteration and the sulfur fugacity indicated by the vein mineral assemblage. Additional discriminating criteria include composition of the host rock, timing of ore deposition relative to emplacement of the host, and relative abundances of gold, silver, and base metals.
From state distinguishability to effective bulk locality
Lashkari, Nima
2014-01-01
We provide quantitative evidence that the emergence of an effective notion of spacetime locality in black hole physics is due to restricting to the subset of observables that are unable to resolve black hole microstates from the maxi- mally entangled state. We identify the subset of observables in the full quantum theory that can distinguish microstates, and argue that any measurement of such observables involves either long times or large energies, both signaling the breaking down of effective field theory where locality is manifest. We discuss some of the implications of our results for black hole complementarity and the existence of black hole interiors.
Distinguished figures in mechanism and machine science
2014-01-01
This book is composed of chapters that focus specifically on technological developments by distinguished figures in the history of MMS (Mechanism and Machine Science). Biographies of well-known scientists are also included to describe their efforts and experiences, and surveys of their work and achievements, and a modern interpretation of their legacy are presented. After the first two volumes, the papers in this third volume again cover a wide range within the field of the History of Mechanical Engineering with specific focus on MMS and will be of interest and motivation to the work (historical or not) of many.
Distinguishing Word Senses in Untagged Text
Pedersen, T; Pedersen, Ted; Bruce, Rebecca
1997-01-01
This paper describes an experimental comparison of three unsupervised learning algorithms that distinguish the sense of an ambiguous word in untagged text. The methods described in this paper, McQuitty's similarity analysis, Ward's minimum-variance method, and the EM algorithm, assign each instance of an ambiguous word to a known sense definition based solely on the values of automatically identifiable features in text. These methods and feature sets are found to be more successful in disambiguating nouns rather than adjectives or verbs. Overall, the most accurate of these procedures is McQuitty's similarity analysis in combination with a high dimensional feature set.
Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.
2012-01-01
We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.
Zinoviev, Yury M
2012-01-01
The equations of the relativistic causal Newton gravity law for the planets of the solar system are studied in the approximation when the Sun rests at the coordinates origin and the planets do not iteract between each other.
Bhattacharya, Swastik
2015-01-01
General theory of relativity (or Lovelock extensions) is a dynamical theory; given an initial configuration on a space-like hypersurface, it makes a definite prediction of the final configuration. Recent developments suggest that gravity may be described in terms of macroscopic parameters. It finds a concrete manifestation in the fluid-gravity correspondence. Most of the efforts till date has been to relate equilibrium configurations in gravity with fluid variables. In order for the emergent paradigm to be truly successful, it has to provide a statistical mechanical derivation of how a given initial static configuration evolves into another. In this essay, we show that the energy transport equation governed by the fluctuations of the horizon-fluid is similar to Raychaudhuri equation and, hence gravity is truly emergent.
Hertog, Thomas; Hollands, Stefan
2005-12-01
We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...
National Oceanic and Atmospheric Administration, Department of Commerce — In 1985, Dr. William F. Haxby of the Lamont-Doherty Geological Observatory of Columbia University prepared this data base of free-air gravity anomalies, based on...
Bakker MR; Smit, J.
1993-01-01
We look at gravitational attraction in simplicial gravity using the dynamical triangulation method. On the dynamical triangulation configurations we measure quenched propagators of a free massive scalar field. The masses measured from these propagators show that gravitational attraction is present.
Oda, Ichiro
2016-01-01
We propose a topological model of induced gravity (pregeometry) where both Newton's coupling constant and the cosmological constant appear as integration constants in solving field equations. The matter sector of a scalar field is also considered, and by solving field equations it is shown that various types of cosmological solutions in the FRW universe can be obtained. A detailed analysis is given of the meaning of the BRST transformations, which make the induced gravity be a topological field theory, by means of the canonical quantization analysis, and the physical reason why such BRST transformations are needed in the present formalism is clarified. Finally, we propose a dynamical mechanism for fixing the Lagrange multiplier fields by following the Higgs mechanism. The present study clearly indicates that the induced gravity can be constructed at the classical level without recourse to quantum fluctuations of matter and suggests an interesting relationship between the induced gravity and the topological qu...
De Bakker, B V; Bakker, Bas de; Smit, Jan
1994-01-01
We look at gravitational attraction in simplicial gravity using the dynamical triangulation method. On the dynamical triangulation configurations we measure quenched propagators of a free massive scalar field. The masses measured from these propagators show that gravitational attraction is present.
Bhattacharya, Swastik; Shankaranarayanan, S.
2015-10-01
General theory of relativity (or Lovelock extensions) is a dynamical theory; given an initial configuration on a spacelike hypersurface, it makes a definite prediction of the final configuration. Recent developments suggest that gravity may be described in terms of macroscopic parameters. It finds a concrete manifestation in the fluid-gravity correspondence. Most of the efforts till date has been to relate equilibrium configurations in gravity with fluid variables. In order for the emergent paradigm to be truly successful, it has to provide a statistical mechanical derivation of how a given initial static configuration evolves into another. In this paper, we show that the energy transport equation governed by the fluctuations of the horizon-fluid is similar to Raychaudhuri equation and hence gravity is truly emergent.
Sjogren, William L.
1987-01-01
Work on three different efforts related to gravity data analysis is discussed. The reduction of raw Doppler data from the Apollo 15 subsatellite to produce acceleration profiles as a function of latitude, longitude and altitude; an investigation related to fitting long arcs of Pioneer Venus Orbiter tracking data; and a study of gravity/topography ratios which were found to have a linear trend with longitude are discussed.
Quantum massive conformal gravity
International Nuclear Information System (INIS)
We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)
Quantum massive conformal gravity
Faria, F. F.
2016-01-01
We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.
Quantum massive conformal gravity
Faria, F. F.
2016-04-01
We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.
Noncommutative Quantum Gravity
Faizal, Mir
2013-01-01
We discuss the BRST and anti-BRST symmetries for perturbative quantum gravity in noncommutative spacetime. In this noncommutative perturbative quantum gravity the sum of the classical Lagrangian density with a gauge fixing term and a ghost term is shown to be invariant the noncommutative BRST and the noncommutative anti-BRST transformations. We analyse the gauge fixing term and the ghost term in both linear as well as non-linear gauges. We also discuss the unitarity evolution of the theory an...
Quantum massive conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)
2016-04-15
We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)
Emergent Gravity from Noncommutative Spacetime
Yang, Hyun Seok
2006-01-01
We showed before that self-dual electromagnetism in noncommutative (NC) spacetime is equivalent to self-dual Einstein gravity. This result implies a striking picture about gravity: Gravity can emerge from electromagnetism in NC spacetime. Gravity is then a collective phenomenon emerging from gauge fields living in fuzzy spacetime. We elucidate in some detail why electromagnetism in NC spacetime should be a theory of gravity. In particular, we show that NC electromagnetism is realized through ...
Gravity Before Einstein and Schwinger Before Gravity
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
Techniques to Distinguish Apoptosis from Necroptosis.
Feoktistova, Maria; Wallberg, Fredrik; Tenev, Tencho; Geserick, Peter; Leverkus, Martin; Meier, Pascal
2016-04-01
The processes by which cells die are as tightly regulated as those that govern cell growth and proliferation. Recent studies of the molecular pathways that regulate and execute cell death have uncovered a plethora of signaling cascades that lead to distinct modes of cell death, including "apoptosis," "necrosis," "autophagic cell death," and "mitotic catastrophe." Cells can readily switch from one form of death to another; therefore, it is vital to have the ability to monitor the form of death that cells are undergoing. A number of techniques are available that allow the detection of cell death and when combined with either knockdown approaches or inhibitors of specific signaling pathways, such as caspase or RIP kinase pathways, they allow the rapid dissection of divergent cell death pathways. However, techniques that reveal the end point of cell death cannot reconstruct the sequence of events that have led to death; therefore, they need to be complemented with methods that can distinguish all forms of cell death. Apoptotic cells frequently undergo secondary necrosis under in vitro culture conditions; therefore, novel methods relying on high-throughput time-lapse fluorescence video microscopy are necessary to provide temporal resolution to cell death events. Further, visualizing the assembly of multiprotein signaling hubs that can execute apoptosis or necroptosis helps to explore the underlying processes. Here we introduce a suite of techniques that reliably distinguish necrosis from apoptosis and secondary necrosis, and that enable investigation of signaling platforms capable of instructing apoptosis or necroptosis. PMID:27037077
Directory of Open Access Journals (Sweden)
Maartens Roy
2004-01-01
Full Text Available The observable universe could be a 1+3-surface (the "brane" embedded in a 1+3+$d$-dimensional spacetime (the "bulk", with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the $d$ extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak ($sim$TeV level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. General relativity cannot describe gravity at high enough energies and must be replaced by a quantum gravity theory, picking up significant corrections as the fundamental energy scale is approached. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review discusses the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models.
Fabrication of gravity-driven microfluidic device
Yamada, H.; Yoshida, Y.; Terada, N.; Hagihara, S.; Komatsu, T.; Terasawa, A.
2008-12-01
We have studied the micro total analysis system as a blood test. A microfluidic device with a three-pronged microchannel and artificial capillary vessels was fabricated. The microchannel is to transport blood, focus blood cells, and line them up. The vessels are to observe red blood cell deformation. An excimer laser was used to form grooves and so on. Numbers of thermosetting resin film and fluororesin were piled up on a cover glass. A laser fabricated part of the channel at the each film every lamination, and then a three-dimensional structure microchannel was fabricated. The channel sizes have widths of 50-150 μm and depths of 45 μm. Through holes used as artificial capillary vessels are made in the fluororesin having a minimum diameter of 5 μm and a length of 100 μm. As blood and a physiological saline are injected into the microchannel, the device stands upward facing the channel, and blood cells go into the vessels by the force of gravity and sheath flow of the saline. By gravity various groove patterns were made changing the width and length for measurement of blood focusing. Moreover, the red blood cell deformation was observed in the vessels with a microscope.
Experimental study of subaqueous, clay-rich, gravity flows
Marr, J.; Pratson, L.
2003-04-01
Recent laboratory experiments suggest a broad spectrum of flow and depositional behavior for compositionally varied subaqueous gravity flows. Dilute turbidity currents and cohesive debris flows are the end members of the spectrum. In this study we used geometrically scaled laboratory experiments to examine the flow dynamics and deposits associated with slurries of varying sediment composition. Slurries were composed of a mixture of tap water, kaolinite clay, 45 micron silt and 120 micron sand and were introduced into a 0.2m wide submerged channel. Slurry sediment concentrations ranged from 1-30% by volume. In all slurries, sediment was added in a ratio of 8:1:1 by volume of clay, silt, sand. A total volume of one cubic meter of slurry was used for each experiment and was introduced through a constant head tank allowing examination of sustained and steady gravity flow events lasting up to 5 minutes in duration. The dynamics of the flows (turbulence, hydroplaning, laminar shearing, etc.) were examined through the use of digital video cameras, dye injection tracking, high frequency sonar and visual observation. Vertical suspended sediment concentration and vertical grain size distributions were measured for each run from samples collected from siphon rakes. Deposit thicknesses and grain size distributions were measured from sediment samples taken from flow deposits. Rheological measurements and Atterberg limits of the slurries were made in an effort to link flow and depositional characteristics to bulk properties of the slurry mixture. The experiments show a clear linkage between the initial compositions of the slurries, their rheological properties, flow dynamics and deposits. Slurries with clay concentrations below 10% by volume appeared to be very turbulent. The silt and sand deposited during these events were transported along the bed as ripples. Flows between 10-20% sediment by volume appeared to be hybrid flows having both turbulent and non-turbulent elements
Distinguishing short and long Fermi GRBs
Tarnopolski, Mariusz
2015-01-01
Two classes of GRBs, short and long, have been determined without any doubts, and are usually ascribed to different progenitors, yet these classes overlap for a variety of descriptive parameters. A subsample of 46 long and 22 short $Fermi$ GRBs with estimated Hurst Exponents (HEs), complemented by minimum variability time-scales (MVTS) and durations ($T_{90}$) is used to perform a supervised Machine Learning (ML) and Monte Carlo (MC) simulation using a Support Vector Machine (SVM) algorithm. It is found that while $T_{90}$ itself performs very well in distinguishing short and long GRBs, the overall success ratio is higher when the training set is complemented by MVTS and HE. These results may allow to introduce a new (non-linear) parameter that might provide less ambiguous classification of GRBs.
Eosinophilic esophagitis-endoscopic distinguishing findings
Institute of Scientific and Technical Information of China (English)
Ana Célia Caetano; Raquel Gon(c)alves; Carla Rolanda
2012-01-01
Eosinophilic esophagitis (EE) is the most frequent condition found in a group of gastrointestinal disorders called eosinophilic gastrointestinal diseases.The hypothetical pathophysiological mechanism is related to a hypersensitivity reaction.Gastroesophageal reflux disease-like complaints not ameliorated by acid blockade or occasional symptoms of dysphagia or food impaction are likely presentations of EE.Due to its unclear pathogenesis and unspecific symptoms,it is difficult to diagnose EE without a strong suspicion.Although histological criteria are necessary to diagnosis EE,there are some characteristic endoscopic features.We present the case of a healthy 55-year-old woman with dysphagia and several episodes of esophageal food impaction over the last six months.This case report stresses the most distinguishing endoscopic findings-mucosa rings,white exudative plaques and linear furrows-that can help in the prompt recognition of this condition.
Ensemble Averaged Gravity Theory
Khosravi, Nima
2016-01-01
We put forward the idea that all the theoretically consistent models of gravity have a contribution to the observed gravity interaction. In this formulation each model comes with its own Euclidean path integral weight where general relativity (GR) automatically has the maximum weight in high-curvature regions. We employ this idea in the framework of Lovelock models and show that in four dimensions the result is a specific form of $f(R,G)$ model. This specific $f(R,G)$ satisfies the stability conditions and has self-accelerating solution. Our model is consistent with the local tests of gravity since its behavior is same as GR for high-curvature regimes. In low-curvature regime the gravity force is weaker than GR which can interpret as existence of a repulsive fifth force for very large scales. Interestingly there is an intermediate-curvature regime where the gravity force is stronger in our model than GR. The different behavior of our model in comparison with GR in both low- and intermediate-curvature regimes ...
Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN06 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for EN08 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...
Airborne Gravity: NGS' Gravity Data for TS01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for ES01 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition...
Airborne Gravity: NGS' Gravity Data for CN03 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2014 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for EN05 (2012)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Minnesota, Wisconsin, and Michigan collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for CS06 (2012 & 2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2012 & 2013 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for AN03 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN04 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Michigan and Lake Huron collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...
Airborne Gravity: NGS' Gravity Data for AS02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for CS03 (2009)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas and Louisiana collected in 2009 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN01 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for CS01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alabama and Florida collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for PN01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for California and Oregon collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
Jain, Bhuvnesh
2010-01-01
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from ~kpc (galaxy scales) to ~Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensi...
Directory of Open Access Journals (Sweden)
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Gravity and embryonic development
Young, R. S.
1976-01-01
The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.
Generalizing unimodular gravity
Saez-Gomez, Diego
2016-01-01
The so-called unimodular version of General Relativity is revisited, which assumes the trace-free part of the equations instead of the usual Einstein equations, what leads naturally to a cosmological constant that may compensate the large value of quantum fluctuations. Here we extend such formalism to some extensions of General Relativity that have drawn a lot of attention over the last years, as $f(R)$ gravity (or its equivalent scalar-tensor picture) and Gauss-Bonnet gravity. The corresponding unimodular version of such theories is constructed. From the classical point of view, the unimodular versions of such extensions are completely equivalent to their originals, but an effective cosmological constant arises naturally, what may provide a richer description of the universe evolution. Moreover, conformal transformations within unimodular gravities lead to some corrections that may affect their solutions. Here we analyze the case of Starobisnky inflation and compared with the original one.
Intrinsic Time Quantum Gravity
Yu, Hoi Lai
2016-01-01
Correct identification of the true gauge symmetry of General Relativity being 3d spatial diffeomorphism invariant(3dDI) (not the conventional infinite tensor product group with principle fibre bundle structure), together with intrinsic time extracted from clean decomposition of the canonical structure yields a self-consistent theory of quantum gravity. A new set of fundamental commutation relations is also presented. The basic variables are the eight components of the unimodular part of the spatial dreibein and eight SU(3) generators which correspond to Klauder's momentric variables that characterize a free theory of quantum gravity. The commutation relations are not canonical, but have well defined group theoretical meanings. All fundamental entities are dimensionless; and the quantum wave functionals are preferentially in the dreibein representation. The successful quantum theory of gravity involves only broad spectrum of knowledge and deep insights but no exotic idea.
Energy Technology Data Exchange (ETDEWEB)
Abele, Hartmut; Bittner, Thomas; Cronenberg, Gunther; Filter, Hanno; Jenke, Tobias; Lemmel, Hartmut; Thalhammer, Martin [Atominstitut TU Wien, Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, Grenoble (France)
2012-07-01
This talk is about a test of the Newtons Inverse Square Law of Gravity at micron distances by quantum interference with ultra-cold neutrons deep into the theoretically interesting regime. The method is based on a new resonance spectroscopy technique related to Rabi spectroscopy, but it has been adapted to gravitationally bound quantum systems. By coupling such a quantum system to mechanical vibrations, we observe resonant transitions, devoid of electromagnetic interaction. As Newtonian gravity and hypothetical Fifth Forces evolve with different phase information, the experiment has the potential to test the equivalence principle and Newtons gravity law at the micron scale. This experiment can therefore test speculations on large extra dimensions of sub-millimetre size of space-time or the origin of the cosmological constant in the universe, where effects are predicted in the interesting range of this experiment and might give a signal in an improved setup.
Terrestrial gravity data analysis for interim gravity model improvement
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
1/R gravity and Scalar-Tensor Gravity
Chiba, Takeshi
2003-01-01
We point out that extended gravity theories, the Lagrangian of which is an arbitrary function of scalar curvature $R$, are equivalent to a class of the scalar tensor theories of gravity. The corresponding gravity theory is $\\omega=0$ Brans-Dicke gravity with a potential for the Brans-Dicke scalar field, which is not compatible with solar system experiments if the field is very light: the case when such modifications are important recently.
On the no-gravity limit of gravity
Kowalski-Glikman, J.; Szczachor, M.
2012-01-01
We argue that Relative Locality may arise in the no gravity $G\\rightarrow0$ limit of gravity. In this limit gravity becomes a topological field theory of the BF type that, after coupling to particles, may effectively deform its dynamics. We briefly discuss another no gravity limit with a self dual ground state as well as the topological ultra strong $G\\rightarrow\\infty$ one.
From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity
Giesel, Kristina; Sahlmann, Hanno
2012-01-01
We present an introduction to the canonical quantization of gravity performed in loop quantum gravity, based on lectures held at the 3rd quantum geometry and quantum gravity school in Zakopane in 2011. A special feature of this introduction is the inclusion of new proposals for coupling matter to gravity that can be used to deparametrize the theory, thus making its dynamics more tractable. The classical and quantum aspects of these new proposals are explained alongside the standard quantizati...
A discriminating probe of gravity at cosmological scales
Zhang, Pengjie; Liguori, Michele; Bean, Rachel; Dodelson, Scott
2007-01-01
The standard cosmological model is based on general relativity and includes dark matter and dark energy. An important prediction of this model is a fixed relationship between the gravitational potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of gravity often make different predictions for this relationship. We propose a set of measurements which can test the lensing/matter relationship, thereby distinguishing between dark energy/matter models a...
De Aquino, Fran
2016-01-01
A new type of device for controlling gravity is here proposed. This is a quantum device because results from the behaviour of the matter and energy at subatomic length scale (10 m).-20 From the technical point of view this device is easy to build, and can be used to develop several devices for controlling gravity. Introduction Some years ago I wrote a paper [1] where a correlation between gravitational mass and inertial mass was obtained. In the paper I pointed out that the relationship betwe...
Deser, S; Ong, Y C; Waldron, A
2014-01-01
The method of characteristics is a key tool for studying consistency of equations of motion; it allows issues such as predictability, maximal propagation speed, superluminality, unitarity and acausality to be addressed without requiring explicit solutions. We review this method and its application to massive gravity theories to show the limitations of these models' physical viability: Among their problems are loss of unique evolution, superluminal signals, matter coupling inconsistencies and micro-acausality (propagation of signals around local closed timelike/causal curves). We extend previous no-go results to the entire three-parameter range of massive gravity theories. It is also argued that bimetric models suffer a similar fate.
Chiou, Dah-Wei
2015-12-01
This paper presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) — a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the paper, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.
Information geometry of Gaussian channels
International Nuclear Information System (INIS)
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).
Brans–Dicke gravity theory from topological gravity
International Nuclear Information System (INIS)
We consider a model that suggests a mechanism by which the four dimensional Brans–Dicke gravity theory may emerge from the topological gravity action. To achieve this goal, both the Lie algebra and the symmetric invariant tensor that define the topological gravity Lagrangian are constructed by means of the Lie algebra S-expansion procedure with an appropriate abelian semigroup S
SATELLITE GRAVITY SURVEYING TECHNOLOGY AND RESEARCH OF EARTH'S GRAVITY FIELD
Institute of Scientific and Technical Information of China (English)
Ning Jinsheng
2003-01-01
This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and method, which must be considered in the study of the Earth's gravity field based on satellite gravity data, are expounded.
Euler Chern Simons Gravity from Lovelock Born Infeld Gravity
Izaurieta, Fernando; Rodriguez, Eduardo; Salgado, Patricio
2004-01-01
In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.
Torsion Wave Solutions in Yang-Mielke Theory of Gravity
Pasic, Vedad
2015-01-01
The approach of metric-affine gravity initially distinguishes it from Einstein's general relativity. Using an independent affine connection produces a theory with 10+64 unknowns. We write down the Yang-Mills action for the affine connection and produce the Yang-Mills equation and the so called complementary Yang-Mills equation by independently varying with respect to the connection and the metric respectively. We call this theory the Yang-Mielke theory of gravity. We construct explicit spacetimes with pp-metric and purely axial torsion and show that they represent a solution of Yang-Mills theory. Finally we compare these spacetimes to existing solutions of metric-affine gravity and present future research possibilities.
Constraining Gravity with LISA Detections of Binaries
Canizares, P.; Gair, J. R.; Sopuerta, C. F.
2013-01-01
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.
Gravity separation for oil wastewater treatment
Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar
2010-01-01
In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.
Gravity Station Data for Spain
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Data for South America
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity...
Interior Alaska Gravity Station Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...
Four principles for quantum gravity
Smolin, Lee
2016-01-01
Four principles are proposed to underlie the quantum theory of gravity. We show that these suffice to recover the Einstein equations. We also suggest that MOND results from a modification of the classical equivalence principle, due to quantum gravity effects.
Gravity Station Data for Portugal
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Scalable Gravity Offload System Project
National Aeronautics and Space Administration — A scalable gravity offload device simulates reduced gravity for the testing of various surface system elements such as mobile robots, excavators, habitats, and...
How bees distinguish black from white
Directory of Open Access Journals (Sweden)
Horridge A
2014-10-01
Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, AustraliaAbstract: Bee eyes have photoreceptors for ultraviolet, green, and blue wavelengths that are excited by reflected white but not by black. With ultraviolet reflections excluded by the apparatus, bees can learn to distinguish between black, gray, and white, but theories of color vision are clearly of no help in explaining how they succeed. Human vision sidesteps the issue by constructing black and white in the brain. Bees have quite different and accessible mechanisms. As revealed by extensive tests of trained bees, bees learned two strong signals displayed on either target. The first input was the position and a measure of the green receptor modulation at the vertical edges of a black area, which included a measure of the angular width between the edges of black. They also learned the average position and total amount of blue reflected from white areas. These two inputs were sufficient to help decide which of two targets held the reward of sugar solution, but the bees cared nothing for the black or white as colors, or the direction of contrast at black/white edges. These findings provide a small step toward understanding, modeling, and implementing in silicon the anti-intuitive visual system of the honeybee, in feeding behavior. Keywords: vision, detectors, black/white, color, visual processing
Integral and Multidimensional Linear Distinguishers with Correlation Zero
DEFF Research Database (Denmark)
Bogdanov, Andrey; Leander, Gregor; Nyberg, Kaisa;
2012-01-01
Zero-correlation cryptanalysis uses linear approximations holding with probability exactly 1/2. In this paper, we reveal fundamental links of zero-correlation distinguishers to integral distinguishers and multidimensional linear distinguishers. We show that an integral implies zero-correlation li...
Diaz, Pablo; Walton, Mark
2016-01-01
With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.
Perturbative Quantization of Gravity Theories
Bern, Z.
2001-01-01
We discuss string theory relations between gravity and gauge theory tree amplitudes. Together with $D$-dimensional unitarity, these relations can be used to perturbatively quantize gravity theories, i.e. they contain the necessary information for calculating complete gravity $S$-matrices to any loop orders. This leads to a practical method for computing non-trivial gravity $S$-matrix elements by relating them to much simpler gauge theory ones. We also describe arguments that N=8 D=4 supergrav...
Introduction to Loop Quantum Gravity
Mercuri, Simone
2012-01-01
The questions I have been asked during the 5th International School on Field Theory and Gravitation, have compelled me to give an account of the premises that I consider important for a beginner's approach to Loop Quantum Gravity. After a description of some general arguments and an introduction to the canonical theory of gravity, I review the background independent approach to quantum gravity, giving only a brief survey of Loop Quantum Gravity.
Localized gravity on FRW branes
Singh, Parampreet; Dadhich, Naresh
2002-01-01
We study the system of Schwarzschild anti de Sitter (S-AdS) bulk and FRW brane for localization of gravity; i.e. zero mass gravitons having ground state on the brane, and thereby recovering the Einstein gravity with high energy correction. It has been known that gravity is not localized on AdS brane with AdS bulk. We prove the general result that gravity is not localized for dynamic branes whenever Lambda_4 0 and black h...
Loop quantum gravity and observations
Barrau, A
2014-01-01
Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.
Bueno, Pablo
2016-01-01
We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D-dimensional cubic theory of gravity which satisfies the following properties: 1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; 2) the relative coefficients of the different curvature invariants involved are the same in all dimensions; 3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones: Einstein gravity, Gauss-Bonnet and cubic-Lovelock. Of course, the last two theories fail to satisfy requirement 3 as they are, respectively, topological and trivial in four dimensions. We ...
International Nuclear Information System (INIS)
The theoretical basis for gravity-wave astronomy is described, along with the energy and momentum of gravitational fields. Other topics discussed include:- burst and periodic sources of gravitational waves, the cosmological stochastic background, and the detection of gravitational waves. (U.K.)
Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Ei
Banerjee, Rabin; Majhi, Bibhas Ranjan
2010-01-01
Starting from the definition of entropy used in statistical mechanics we show that it is proportional to the gravity action. For a stationary black hole this entropy is expressed as $S = E/ 2T$, where $T$ is the Hawking temperature and $E$ is shown to be the Komar energy. This relation is also compatible with the generalised Smarr formula for mass.
Artificial Gravity Research Plan
Gilbert, Charlene
2014-01-01
This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
International Nuclear Information System (INIS)
Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)
Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez
2012-01-01
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Noncommutative Symmetries and Gravity
Aschieri, P
2006-01-01
Spacetime geometry is twisted (deformed) into noncommutative spacetime geometry, where functions and tensors are now star-multiplied. Consistently, spacetime diffeomorhisms are twisted into noncommutative diffeomorphisms. Their deformed Lie algebra structure and that of infinitesimal Poincare' transformations is defined and explicitly constructed. This allows to construct a noncommutative theory of gravity.
From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity
Giesel, Kristina
2012-01-01
We present an introduction to the canonical quantization of gravity performed in loop quantum gravity, based on lectures held at the 3rd quantum geometry and quantum gravity school in Zakopane in 2011. A special feature of this introduction is the inclusion of new proposals for coupling matter to gravity that can be used to deparametrize the theory, thus making its dynamics more tractable. The classical and quantum aspects of these new proposals are explained alongside the standard quantization of vacuum general relativity in loop quantum gravity.
Even-dimensional topological gravity from Chern-Simons gravity
Merino, N.; Perez, Alfredo; Salgado, P.(Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile)
2009-01-01
It is shown that the topological action for gravity in 2n-dimensions can be obtained from the 2n+1-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a 2n+1-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field $\\phi^{a}$, which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associat...
LDRD 149045 final report distinguishing documents.
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Scott A.
2010-09-01
This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the Computational Topology CSRF project, and the some of the leveraged work is described here. We proposed a sentence mining technique that exploited both the distribution and the order of parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be able to discover 'call-to-action' framing documents hidden within a corpus of mostly expository documents, even if the documents were all on the same topic and used the same vocabulary. Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis that English follows a dynamical system and the POS are trajectories from one state to another. We analyzed the sequences of POS using support vector machines and the cycles of POS using computational homology. We discovered that the POS were a very weak signal and did not support our hypothesis well. Our original goal appeared to be unobtainable with our original approach. We turned our attention to study an aspect of a more traditional approach to distinguishing documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into mixture-model points. A distance function is used to cluster groups of points to discover relatedness between documents. We performed a geometric and algebraic analysis of the most popular distance functions and made some significant and surprising discoveries, described in a separate technical report.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2015-09-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Reggeon exchange from gauge/gravity duality
Giordano, M
2011-01-01
We perform the analysis of quark-antiquark Reggeon exchange in meson-meson scattering, in the framework of the gauge/gravity correspondence in a confining background. On the gauge theory side, Reggeon exchange is described as quark-antiquark exchange in the t channel between fast projectiles. The corresponding amplitude is represented in terms of Wilson loops running along the trajectories of the constituent quarks and antiquarks. The paths of the exchanged fermions are integrated over, while the "spectator" fermions are dealt with in an eikonal approximation. On the gravity side, we follow a previously proposed approach, and we evaluate the Wilson-loop expectation value by making use of gauge/gravity duality for a generic confining gauge theory. The amplitude is obtained in a saddle-point approximation through the determination near the confining horizon of a Euclidean "minimal surface with floating boundaries", i.e., by fixing the trajectories of the exchanged quark and antiquark by means of a minimisation ...
Squeezing more information out of time variable gravity data with a temporal decomposition approach
DEFF Research Database (Denmark)
Barletta, Valentina Roberta; Bordoni, A.; Aoudia, A.;
2012-01-01
A measure of the Earth's gravity contains contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished both in time and space. After more than 7years, the GRACE gravity data available now support more elaborate analysis on the time series. We propose...... to design a screening algorithm to identify regions where anomalous gravity variations deserve further investigations. It also allows to raise the amount of information one can obtain exclusively from gravity data, prior and preliminary to any subsequent specifically targeted study. This approach has been...... used to assess the possibility of finding evidence of meaningful geophysical signals different from hydrology over Africa in GRACE data. In this case we conclude that hydrological phenomena are dominant and so time variable gravity data in Africa can be directly used to calibrate hydrological models....
Holographic mutual information and distinguishability of Wilson loop and defect operators
Hartnoll, Sean A.; Mahajan, Raghu
2015-02-01
The mutual information of disconnected regions in large N gauge theories with holographic gravity duals can undergo phase transitions. These occur when connected and disconnected bulk Ryu-Takayanagi surfaces exchange dominance. That is, the bulk `soap bubble' snaps as the boundary regions are drawn apart. We give a gauge-theoretic characterization of this transition: States with and without a certain defect operator insertion — the defect separates the entangled spatial regions — are shown to be perfectly distinguishable if and only if the Ryu-Takayanagi surface is connected. Meanwhile, states with and without a certain Wilson loop insertion — the Wilson loop nontrivially threads the spatial regions — are perfectly distinguishable if and only if the Ryu-Takayanagi surface is disconnected. The quantum relative entropy of two perfectly distinguishable states is infinite. The results are obtained by relating the soap bubble transition to Hawking-Page (deconfinement) transitions in the Rényi entropies, where defect operators and Wilson loops are known to act as order parameters.
Industrial processes influenced by gravity
Ostrach, Simon
1988-01-01
In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.
Analog Systems for Gravity Duals
Hossenfelder, S.
2014-01-01
We show that analog gravity systems exist for charged, planar black holes in asymptotic Anti-de Sitter space. These black holes have been employed to describe, via the gauge-gravity duality, strongly coupled condensed matter systems on the boundary of AdS-space. The analog gravity system is a different condensed matter system that, in a suitable limit, describes the same bulk physics as the theory on the AdS boundary. This combination of the gauge-gravity duality and analog gravity therefore ...
Information geometry of Gaussian channels
Monras, Alex
2009-01-01
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated from distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under some restriction on the available resources. We prove that optimal states are always pure and bounded in the number of ancillary modes that are needed. This has experimental and computational advantages: It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric. Indeed, we construct a converging algorithm for computing the metric. We provide explicit formulae for computing the multiparametric quantum F...
Quantum gravity from noncommutative spacetime
International Nuclear Information System (INIS)
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Quantum gravity from noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)
2014-12-15
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...
Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.
Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities
Institute of Scientific and Technical Information of China (English)
GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang
2009-01-01
An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.
Akhavan, Amin; Nemati, Azadeh; Shirzad, Ahmad
2016-01-01
We show that the problem of ghosts in critical gravity and its higher dimensional extensions can be resolved by giving dynamics to the symmetric rank two auxiliary field existing in the action of these theories. These New Bi-Gravities, at linear level around the AdS vacuum, are free of Boulware-Deser ghost, kinetic ghost and tachyonic instability within the particular range of parameters. Moreover, we show that the energy and entropy of AdS-Schwarzschild black hole solutions of these new models are positive in the same range of parameters. This may be the sign that these new models are also free of ghost instabilities at the non-linear level.
Murad, P. A.
2003-01-01
Newtonian gravitation adequately predicts planet and satellite motion. Gravitational anomalies and the wish to travel at relativistic speeds, however, imply that gravity should be integrated within a unification framework that may include electricity and magnetism. Thus, new theories are needed that predict currently accepted phenomenon as well as anomalies to prepare the necessary groundwork for experimental validation needed for advanced technology propulsion schemes and far-term missions. A primary deficiency is that we are obviously limited within the confines of our own solar system and a different gravity model may be applicable elsewhere in the cosmos. The model proposed here follows previous ideas proposed by Murad, Dyatlov, and Jefimenko for a universal gravitation model with an intrinsic radial force term coupled with angular momentum. Including angular momentum may explain several spin symmetries seen in some anomalous gyroscopic experiments and throughout the universe regarding planets that orbit around the sun: moons that orbit larger planetary bodies: and the rotation about each planetary axis.
Gomberoff, Andres
2006-01-01
The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.
Gravity from Spacetime Thermodynamics
Padmanabhan, T
2002-01-01
The Einstein-Hilbert action (and thus the dynamics of gravity) can be obtained by combining the principle of equivalence, special relativity and quantum theory in the Rindler frame and postulating that the horizon area must be proportional to the entropy. This approach uses the local Rindler frame as a natural extension of the local inertial frame, and leads to the interpretation that the gravitational action represents the free energy of the spacetime geometry. As an aside, one obtains an insight into the peculiar structure of Einstein-Hilbert action and a natural explanation to the questions:(i) Why does the covariant action for gravity contain second derivatives of the metric tensor? (ii) Why is the gravitational coupling constant is positive ? Some geometrical features of gravitational action are clarified.
International Nuclear Information System (INIS)
Superstrings being consistent theories that include gravity have to produce classical gravity within limits provided by unambiguous quantum effects. Through the study of a hard scattering process - clearly provided by string theory - it is shown that infinite genus calculations give indeed rise to a classical limit, when 'large' distances are explored, as well as quantum effects. These are dominant at distances of the order of the string length (related to the Planck length) but may extend much beyond that region hinting indeed to gravitational instabilities. Below the string length even space-time loses meaning as a classical concept. A new position-momentum uncertainty relation is produced that assigns to the string length the meaning of a minimum observable distance. (orig.)
International Nuclear Information System (INIS)
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we
Christiansen, Nicolai; Meibohm, Jan; Pawlowski, Jan M; Reichert, Manuel
2015-01-01
We investigate the ultraviolet behaviour of quantum gravity within a functional renormalisation group approach. The present setup includes the full ghost and graviton propagators and, for the first time, the dynamical graviton three-point function. The latter gives access to the coupling of dynamical gravitons and makes the system minimally self-consistent. The resulting phase diagram confirms the asymptotic safety scenario in quantum gravity with a non-trivial UV fixed point. A well-defined Wilsonian block spinning requires locality of the flow in momentum space. This property is discussed in the context of functional renormalisation group flows. We show that momentum locality of graviton correlation functions is non-trivially linked to diffeomorphism invariance, and is realised in the present setup.
Christiansen, N.; Knorr, B.; Meibohm, J.; Pawlowski, J. M.; Reichert, M.
2015-12-01
We investigate the ultraviolet behavior of quantum gravity within a functional renormalization group approach. The present setup includes the full ghost and graviton propagators and, for the first time, the dynamical graviton three-point function. The latter gives access to the coupling of dynamical gravitons and makes the system minimally self-consistent. The resulting phase diagram confirms the asymptotic safety scenario in quantum gravity with a nontrivial UV fixed point. A well-defined Wilsonian block spinning requires locality of the flow in momentum space. This property is discussed in the context of functional renormalization group flows. We show that momentum locality of graviton correlation functions is nontrivially linked to diffeomorphism invariance, and is realized in the present setup.
Energy Technology Data Exchange (ETDEWEB)
Lamon, Raphael
2010-06-29
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem
International Nuclear Information System (INIS)
Quantum theory and general relativity will only be unified when theory meets experiment. Physics in the 20th century was built on two great revolutions: the general theory of relativity and quantum mechanics. These two theories have profoundly changed the way we think about space, time and the meaning of reality, and both have been verified to extraordinary precision. However, the two theories are also completely incompatible with one another. Three of the four known forces in nature - the electromagnetic, weak and strong interactions - are described by quantum field theories. These theories, which make up the highly successful Standard Model of particle physics, explain fundamental interactions in terms of the exchange of field particles between elementary matter particles. Gravity, on the other hand, does not fit into this framework. Einstein's elegant description of gravity is classical, and gravitational forces result from the curvature of the space-time continuum. But there is something deeply unsettling about this whole picture. Ever since Maxwell unified electricity and magnetism with a single set of equations, finding a general theory that can describe everything that we observe in the physical world has been one of the primary goals in theoretical physics. A unified description of the electromagnetic and weak interactions was achieved in the 1960s, but a true theory of quantum gravity would be a giant step towards this goal. Moreover, a theory of quantum gravity is needed to understand what happens in circumstances when both gravitational and quantum effects are large - such as in the very early universe. (U.K.)
Antimatter gravity with muonium
kaplan, Daniel M.; Fischbach, Ephraim; Kirch, Klaus; Mancini, Derrick C.; Phillips, James D.; Phillips, Thomas J.; Reasenberg, Robert D; Roberts, Thomas J.; Terry, Jeff
2016-01-01
The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Three avenues appear feasible for such a measurement: antihydrogen, positronium, and muonium. The muonium measurement requires a novel monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating inte...
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Intrinsic Time Quantum Gravity
Yu, Hoi Lai
2016-01-01
Correct identification of the true gauge symmetry of General Relativity being 3d spatial diffeomorphism invariant(3dDI) (not the conventional infinite tensor product group with principle fibre bundle structure), together with intrinsic time extracted from clean decomposition of the canonical structure yields a self-consistent theory of quantum gravity. A new set of fundamental commutation relations is also presented. The basic variables are the eight components of the unimodular part of the s...
Dereli, T.; Yetişmişoğlu, C.
2016-06-01
We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Covariant Loop Quantum Gravity
Rovelli, Carlo; Vidotto, Francesca
2014-11-01
Preface; Part I. Foundations: 1. Spacetime as a quantum object; 2. Physics without time; 3. Gravity; 4. Classical discretization; Part II. The 3D Theory: 5. 3D Euclidean theory; 6. Bubbles and cosmological constant; Part III. The Real World: 7. The real world: 4D Lorentzian theory; 8. Classical limit; 9. Matter; Part IV. Physical Applications: 10. Black holes; 11. Cosmology; 12. Scattering; 13. Final remarks; References; Index.
Alesci, Emanuele; Cianfrani, Francesco
2015-01-01
Quantum Reduced Loop Gravity provides a promising framework for a consistent characterization of the early Universe dynamics. Inspired by BKL conjecture, a flat Universe is described as a collection of Bianchi I homogeneous patches. The resulting quantum dynamics is described by the scalar constraint operator, whose matrix elements can be analytically computed. The effective semiclassical dynamics is discussed, and the differences with Loop Quantum Cosmology are emphasized.
Aastrup, Johannes; Grimstrup, Jesper M.
2009-01-01
We present a separable version of Loop Quantum Gravity (LQG) based on an inductive system of cubic lattices. We construct semi-classical states for which the LQG operators -- the flux, the area and the volume operators -- have the right classical limits. Also, we present the Hamilton and diffeomorphism constraints as operator constraints and show that they have the right classical limit. Finally, we speculate whether the continuum limit, which these semi-classical states probe, can be defined...
Institute of Scientific and Technical Information of China (English)
Alice Yang
2009-01-01
@@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.
Giribet, Gaston
2014-01-01
Minimal Massive Gravity (MMG) is an extension of three-dimensional Topologically Massive Gravity that, when formulated about Anti-de Sitter space, accomplishes to solve the tension between bulk and boundary unitarity that other models in three dimensions suffer from. We study this theory at the chiral point, i.e. at the point of the parameter space where one of the central charges of the dual conformal field theory vanishes. We investigate the non-linear regime of the theory, meaning that we study exact solutions to the MMG field equations that are not Einstein manifolds. We exhibit a large class of solutions of this type, which behave asymptotically in different manners. In particular, we find analytic solutions that represent two-parameter deformations of extremal Banados-Teitelboim-Zanelli (BTZ) black holes. These geometries behave asymptotically as solutions of the so-called Log Gravity, and, despite the weakened falling-off close to the boundary, they have finite mass and finite angular momentum, which w...
Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal
2016-05-01
In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.
Granular Superconductors and Gravity
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
Levin, J J
1995-01-01
The union of high-energy particle theories and gravitation often gives rise to an evolving strength of gravity. The standard picture of the earliest universe would certainly deserve revision if the Planck mass, which defines the strength of gravity, varied. A notable consequence is a gravity-driven, kinetic inflation. Unlike standard inflation, there is no potential nor cosmological constant. The unique elasticity in the kinetic energy of the Planck mass provides a negative pressure able to drive inflation. As the kinetic energy grows, the spacetime expands more quickly. The phenomenon of kinetic inflation has been uncovered in both string theory and Kaluza-Klein theories. The difficulty in exiting inflation in these cases is reviewed. General forms of the Planck field coupling are shown to avoid the severity of the graceful exit problem found in string and Kaluza-Klein theories. The completion of the model is foreshadowed with a suggestion for a heating mechanism to generate the hot soup of the big bang.
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Aniket [Indian Institute of Technology Delhi, New Delhi (India)
2012-07-01
Recently, Chiao predicted the quantum incompressibility of a falling Rydberg atom. A Hydrogen-like atom was considered in a very high n,l=m=n-1 state to calculate the effects of tidal gravitational forces on these states. The high values of quantum numbers ensure that gravitational effect is measurable on the *stretch* state. We consider a similar atom and derive the energy of a particular level under the influence of Newtonian gravity. A change in the frequency of observed transition is predicted for a freely falling Hydrogen atom. This change is calculated both in Newtonian gravity and in curved space. We see that the change in energy of the electron under gravity also depends on its principal quantum number. Thus there will be a shift in the frequency of the photon emitted by an electron making an ordinary transition from the state n=100, l=99, m=99 to the state n=99, l=98, m=98. Though this shift is quite less to be observed on Earth, it is measurable in satellites in a highly elliptical orbit about the earth, by spectroscopic methods. A similar result was derived by Chiao recently using a different argument. We conclude that the effect described by Chiao will be masked to a very large extent by the effect calculated above. Such perturbations might be important in emission spectra of white dwarfs and neutron stars.
Emergent gravity and ether-drift experiments
Consoli, M
2009-01-01
In principle, ether-drift experiments could distinguish phenomenologically emergent-gravity approaches, where an effective curvature emerges from hydrodynamic distortions of the same physical, flat-space vacuum, from the more conventional scenario where curvature is considered a fundamental property of space-time down to extremely small length scales and the speed of light represents a universal constant. From an experimental point of view, in this particular context, besides time modulations that might be induced by the Earth's rotation (and its orbital revolution), one should also consider the possibility of random fluctuations of the signal. These might reflect the stochastic nature of the underlying 'quantum ether' and be erroneously interpreted as mere instrumental noise. To test the present interpretation, we have extracted the mean amplitude of the signal from various experiments with different systematics, operating both at room temperature and in the cryogenic regime. They all give the same consisten...
Polar gravity fields from GOCE and airborne gravity
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan;
2011-01-01
Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...
Gravity Resonance Spectroscopy and Einstein-Cartan Gravity
Abele, Hartmut; Ivanov, Andrei; Jenke, Tobias; Pitschmann, Mario; Geltenbort, Peter
2015-01-01
The qBounce experiment offers a new way of looking at gravitation based on quantum interference. An ultracold neutron is reflected in well-defined quantum states in the gravity potential of the Earth by a mirror, which allows to apply the concept of gravity resonance spectroscopy (GRS). This experiment with neutrons gives access to all gravity parameters as the dependences on distance, mass, curvature, energy-momentum as well as on torsion. Here, we concentrate on torsion.
Gravity-Matter Entanglement in Regge Quantum Gravity
Paunković, Nikola; Vojinović, Marko
2016-01-01
We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about "matter in a point of space" is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional "effective interaction", which could possibly bring correc...
Smooth quantum gravity: Exotic smoothness and Quantum gravity
Asselmeyer-Maluga, Torsten
2016-01-01
Over the last two decades, many unexpected relations between exotic smoothness, e.g. exotic $\\mathbb{R}^{4}$, and quantum field theory were found. Some of these relations are rooted in a relation to superstring theory and quantum gravity. Therefore one would expect that exotic smoothness is directly related to the quantization of general relativity. In this article we will support this conjecture and develop a new approach to quantum gravity called \\emph{smooth quantum gravity} by using smoot...
Teleparallel Complex Gravity as Foundation for Noncommutative Gravity
Nishino, Hitoshi; Rajpoot, Subhash
2001-01-01
We present a teleparallel complex gravity as the foundation for the formulation of noncommutative gravity theory. The negative energy ghosts in the conventional formulation with U(1,3) local Lorentz connection no longer exists, since the local Lorentz invariance is broken down to U(1,3) global Lorentz symmetry. As desired, our teleparallel complex gravity theory also passes the key classical test of perihelion advance of Mercury. Based on this result, we present a lagrangian for the noncommut...
Criterion for distinguishability of arbitrary bipartite orthogonal states
Chen, P X; Chen, Ping-Xing; Li, Cheng-Zu
2002-01-01
In this paper we present a necessary and sufficient condition of distinguishability of bipartite quantum states. It is shown that the operators to reliably distinguish states need only rounds of projective measurements and classical comunication. We also present a necessary condition of distinguishability of bipartite quantum states which is simple and general. With this condition one can get many cases of indistinguishability. The conclusions may be useful in calculating the distillable entanglement and the bound of distillable entanglement.
Criterion for distinguishability of arbitrary bipartite orthogonal states
Chen, Ping-Xing; Li, Cheng-Zu
2002-01-01
In this paper we present a necessary and sufficient condition of distinguishability of bipartite quantum states. It is shown that the operators to reliably distinguish states need only rounds of projective measurements and classical comunication. We also present a necessary condition of distinguishability of bipartite quantum states which is simple and general. With this condition one can get many cases of indistinguishability. The conclusions may be useful in understanding the essence of non...
Vertex Distinguishing Equitable Total Chromatic Number of Join Graph
Institute of Scientific and Technical Information of China (English)
Zhi-wen Wang; Li-hong Yan; Zhong-fu Zhang
2007-01-01
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn∨Pn, Cn∨Cn, and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn∨Pn and Cn∨Cn.
Channel Power in Multi-Channel Environments
M.G. Dekimpe (Marnik); B. Skiera (Bernd)
2004-01-01
textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon
Limits from Weak Gravity Conjecture on Chaplygin-Gas-Type Models
Institute of Scientific and Technical Information of China (English)
WU Xing; ZHU Zong-Hong
2008-01-01
@@ The weak gravity conjecture is proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of the Chaplygin-gas-type models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland.
Geometric scalar theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Cascading Gravity is Ghost Free
de Rham, Claudia; Tolley, Andrew J
2010-01-01
We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681
Astrophysical aspects of Weyl gravity
Kazanas, Demosthenes
1991-01-01
This paper discusses the astrophysical implications and applications of Weyl gravity, which is the theory resulting from the unique action allowed under the principle of local scale invariance in Einstein gravity. These applications include galactic dynamics, the mass-radius relation, the cosmological constant, and the 'Modified Newtonian Dynamics' proposed by Milgrom (1983). The relation of Weyl gravity to other scale-invariant theories is addressed.
Schwarzschild Solution from WTDiff Gravity
Oda, Ichiro
2016-01-01
We study classical solutions in the Weyl-transverse (WTDiff) gravity. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is known to be equivalent to general relativity at least at the classical level. In particular, we find that in a general space-time dimension, the Schwarzschild metric is a classical solution in the WTDiff gravity when it is expressed in the Cartesian coordinate system.
Continuous Time Channels with Interference
Ivan, Ioana; Thaler, Justin; Yuen, Henry
2012-01-01
Khanna and Sudan studied a natural model of continuous time channels where signals are corrupted by the effects of both noise and delay, and showed that, surprisingly, in some cases both are not enough to prevent such channels from achieving unbounded capacity. Inspired by their work, we consider channels that model continuous time communication with adversarial delay errors. The sender is allowed to subdivide time into arbitrarily large number $M$ of micro-units in which binary symbols may be sent, but the symbols are subject to unpredictable delays and may interfere with each other. We model interference by having symbols that land in the same micro-unit of time be summed, and a $k$-interference channels allows receivers to distinguish sums up to the value $k$. We consider both a channel adversary that has a limit on the maximum number of steps it can delay each symbol, and a more powerful adversary that only has a bound on the average delay. We give precise characterizations of the threshold between finite...
Conformal Tensors via Lovelock Gravity
Kastor, David
2013-01-01
Constructs from conformal geometry are important in low dimensional gravity models, while in higher dimensions the higher curvature interactions of Lovelock gravity are similarly prominent. Considering conformal invariance in the context of Lovelock gravity leads to natural, higher-curvature generalizations of the Weyl, Schouten, Cotton and Bach tensors, with properties that straightforwardly extend those of their familiar counterparts. As a first application, we introduce a new set of conformally invariant gravity theories in D=4k dimensions, based on the squares of the higher curvature Weyl tensors.
An underlying theory for gravity
International Nuclear Information System (INIS)
A new direction to understand gravity has recently been explored by considering classical gravity to be a derived interaction from an underlying theory. This underlying theory would involve new degrees of freedom at a deeper level, and it would be structurally different from classical gravitation. It may conceivably be a quantum theory or a non-quantum theory. The relation between this underlying theory and Einstein's gravity is similar to the connection between statistical mechanics and thermodynamics. We discuss the apparent lack of evidence of any quantum nature of spacetime and the meaning of quantum gravity in this context
Directory of Open Access Journals (Sweden)
Shan Gao
2011-04-01
Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.
Symmetries of Quantum Nonsymmetric Gravity
Mebarki, N; Boudine, A; Benslama, A
1999-01-01
Symmetries of Quantum Nonsymmetric gravity are studied and the corresponding generators are constructed . The related equal time canonical (and non canonical) (anti) commutation relations are established.
Teleparallel equivalent of Lovelock gravity
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
Neogene sedimentary processes of submarine channels, West Off Ireland
Van Rooij, D; Van Landeghem, K.; Skonieczny, C.; J. Ingels; Zaragosi, S.; Huvenne, V.; Wheeler, A.; Haas, H.; Henriet, J.-P.
2009-01-01
The Gollum Channel System is the only major downslope sediment supplying system on the Irish Atlantic margin. A decade ago, its structure and development was still poorly understood, compared with its counterparts on the Celtic and Armorican margins. A variety of data, collected from 1999 to 2006, has shed a new light on the upper reaches of this system. These data allowed two different channel settings to be distinguished clearly. The main Gollum channel system is characterized by several de...
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity", linearized about its anti-de Sitter vacuum, are investigated. All "log mode" solutions, which we categorize as `spin 2' or `Proca', arise as limits of the massive spin 2 modes of the non-critical theory. The linearized Einstein tensor of a spin 2 log mode is itself a 'non-gauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.
Dando, O
1999-01-01
We examine the field equations of a self-gravitating texture in low-energy superstring gravity, allowing for an arbitrary coupling of the texture field to the dilaton. Both massive and massless dilatons are considered. For the massless dilaton, we find that non-singular spacetimes only exist for certain values of the coupling, dependent on the gravitational strength of the texture. For the massive dilaton, the texture induces a long-range dilaton cloud, but we expect the gravitational behaviour of the defect to be similar to that found in Einstein theory. We compare these results with those found for other global topological defects.
Renormalization of Horava Gravity
Barvinsky, Andrei O; Herrero-Valea, Mario; Sibiryakov, Sergey M; Steinwachs, Christian F
2016-01-01
We prove perturbative renormalizability of projectable Horava gravity. The key element of the argument is the choice of a gauge which ensures the correct anisotropic scaling of the propagators and their uniform falloff at large frequencies and momenta. This guarantees that the counterterms required to absorb the loop divergences are local and marginal or relevant with respect to the anisotropic scaling. Gauge invariance of the counterterms is achieved by making use of the background-covariant formalism. We also comment on the difficulties of this approach when addressing the renormalizability of the non-projectable model.
Alvarez, Enrique
2016-01-01
The on shell equivalence of first order and second order formalisms for the Einstein-Hilbert action does not hold for those actions quadratic in curvature. It would seem that by considering the connection and the metric as independent dynamical variables, there are no quartic propagators for any dynamical variable. This suggests that it is possible to get both renormalizability and unitarity along these lines. We have studied a particular instance of those theories, namely Weyl gravity. Although the ground state of this system is difficult to analyze, we have been able to study the physical effects of some external sources.
Experimental semiclassical gravity
Gan, C C; Scully, S
2015-01-01
We show that optomechanical systems can provide definitive tests of the many-body Schrodinger-Newton equation of gravitational quantum mechanics. This equation is motivated by semiclassical gravity, a widely used theory of interacting gravitational and quantum fields. The many-body equation implies an approximate Schrodinger-Newton equation for the center-of-mass dynamics of macroscopic objects. It predicts a distinctive double-peaked signature in the output optical quadrature spectral density of certain optomechanical systems. Since the many-body Schrodinger-Newton equation lacks free parameters, these will allow its experimental confirmation or refutation.
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Espinosa Aldama, Mariana
2015-04-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.
Institute of Scientific and Technical Information of China (English)
WU Ning
2006-01-01
It is well known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.
Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence
Energy Technology Data Exchange (ETDEWEB)
Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.
1998-10-14
Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.
Charles L. Brewer Award for Distinguished Teaching of Psychology.
2008-01-01
The American Psychological Foundation (APF) Charles L. Brewer Distinguished Teaching of Psychology Award recognizes an outstanding career contribution to the teaching of psychology. The 2008 recipient of the Distinguished Teaching Award is Scott Plous. A citation, biography, and selected bibliography for Scott Plous are provided in this article. (PsycINFO Database Record (c) 2008 APA, all rights reserved). PMID:18665671
Press Release: NPS Professor Awarded NASA Distinguished Service Medal
Naval Postgraduate School (U.S.)
2003-01-01
Press release taken from the wayback machine internet archive. Dr. Rudolph Panholzer, Professor, Naval Postgraduate School, and Chairman, Space Systems Group, has been awarded the NASA Distinguished Service Medal for many years of distinguished service to NASA and the Nation's space program. The medal is the highest honor that NASA confers on a non-governmental individual.
Distinguishing attack on five-round Feistel networks
DEFF Research Database (Denmark)
Knudsen, Lars Ramkilde; Raddum, H
2003-01-01
Recently it was shown (by J. Patarin) how to distinguish a general five-round Feistel network from a random permutation using O(2/sup 3n/2/) chosen plaintexts or O(2/sup 7n/4/) known plaintexts. The present authors report improvement of these results and a distinguisher is presented which uses ro...
John Glenn: Presented with NASA Distinguished Service Medal
1963-01-01
John Glenn tours with his family, meets JFK and is presented with the NASA distinguished Service Medal. From: The John Glenn Story: Summary of astronaut John Glenn's flying career, from naval aviation training to space flight. The Mercury project is featured as John Glenn flies the Friendship 7 spacecraft. President John F. Kennedy presents the NASA Distinguished service Medal to Astronaut John Glenn.
Airborne Gravity: NGS' Gravity Data for CS08 (2015)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Discrete Gravity Models and Loop Quantum Gravity: a Short Review
Simone Speziale; Ryan, James P.; Maïté Dupuis
2012-01-01
We review the relation between Loop Quantum Gravity on a fixed graph and discrete models of gravity. We compare Regge and twisted geometries, and discuss discrete actions based on twisted geometries and on the discretization of the Plebanski action. We discuss the role of discrete geometries in the spin foam formalism, with particular attention to the definition of the simplicity constraints.
New Insights into Quantum Gravity from Gauge/gravity Duality
Engelhardt, Netta
2016-01-01
Using gauge/gravity duality, we deduce several nontrivial consequences of quantum gravity from simple properties of the dual field theory. These include: (1) a version of cosmic censorship, (2) restrictions on evolution through black hole singularities, and (3) the exclusion of certain cosmological bounces. In the classical limit, the latter implies a new singularity theorem.
Airborne Gravity: NGS' Gravity Data for AN05 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN04 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AS01 (2008)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS05 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for ES02 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...
Discrete Gravity Models and Loop Quantum Gravity: a Short Review
Directory of Open Access Journals (Sweden)
Simone Speziale
2012-08-01
Full Text Available We review the relation between Loop Quantum Gravity on a fixed graph and discrete models of gravity. We compare Regge and twisted geometries, and discuss discrete actions based on twisted geometries and on the discretization of the Plebanski action. We discuss the role of discrete geometries in the spin foam formalism, with particular attention to the definition of the simplicity constraints.
Airborne Gravity: NGS' Gravity Data for AN06 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS04 (2009)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Contravariant Gravity on Poisson Manifolds and Einstein Gravity
Kaneko, Yukio; Watamura, Satoshi
2016-01-01
A relation between a gravity on Poisson manifolds proposed in arXiv:1508.05706 and the Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein-Hilbert-type action includes couplings between the metric and the Poisson tensor. The Weyl transformation is studied to reveal properties of those interactions. It is argued that the theory can have an equivalent description in terms of the Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold has another description by a real scalar field coupling to the metric in a specific manner.
Ashour, Amani; Ali, Ahmed Farag; Hammad, Fayçal
2016-01-01
In this work, we investigate the thermodynamics of black $p$-branes (BB) in the context of Gravity's Rainbow. We investigate this, first within the framework of rainbow functions that have been proposed by Amelino-Camelia, et el. in \\cite{amerev, AmelinoCamelia:1996pj}, then examine, for the sake of comparison, a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Rainbow Gravity imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black $p$-brane remnant. This interpretation is supported by the computation of the black $p$-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black $p$-brane thermodynamics is recovered.
Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio; Rigon, Riccardo
This review proceeds from Luna Leopold's and Ronald Shreve's lasting accomplishments dealing with the study of random-walk and topologically random channel networks. According to the random perspective, which has had a profound influence on the interpretation of natural landforms, nature's resiliency in producing recurrent networks and landforms was interpreted to be the consequence of chance. In fact, central to models of topologically random networks is the assumption of equal likelihood of any tree-like configuration. However, a general framework of analysis exists that argues that all possible network configurations draining a fixed area are not necessarily equally likely. Rather, a probability P(s) is assigned to a particular spanning tree configuration, say s, which can be generally assumed to obey a Boltzmann distribution: P(s) % e^-H(s)/T, where T is a parameter and H(s) is a global property of the network configuration s related to energetic characters, i.e. its Hamiltonian. One extreme case is the random topology model where all trees are equally likely, i.e. the limit case for T6 4 . The other extreme case is T 6 0, and this corresponds to network configurations that tend to minimize their total energy dissipation to improve their likelihood. Networks obtained in this manner are termed optimal channel networks (OCNs). Observational evidence suggests that the characters of real river networks are reproduced extremely well by OCNs. Scaling properties of energy and entropy of OCNs suggest that large network development is likely to effectively occur at zero temperature (i.e. minimizing its Hamiltonian). We suggest a corollary of dynamic accessibility of a network configuration and speculate towards a thermodynamics of critical self-organization. We thus conclude that both chance and necessity are equally important ingredients for the dynamic origin of channel networks---and perhaps of the geometry of nature.
The structure of local gravity theories
Dupre, Maurice J.
2014-01-01
We discuss the structure of local gravity theories as resulting from the idea that locally gravity must be physically characterized by tidal acceleration, and show how this relates to both Newtonian gravity and Einstein's general relativity.
The role of information in gravity
Spaans, M.
2009-01-01
It is argued that particle-specific information on energy-momentum adjusts the strength of gravity. This form of gravity has no free parameters, preserves Einstein gravity locally and predicts 6 times stronger accelerations on galaxy scales.
Quantum Gravity in Two Dimensions
DEFF Research Database (Denmark)
Ipsen, Asger Cronberg
The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...
Observable Effects of Quantum Gravity
Chang, Lay Nam; Sun, Chen; Takeuchi, Tatsu
2016-01-01
We discuss the generic phenomenology of quantum gravity and, in particular, argue that the observable effects of quantum gravity, associated with new, extended, non-local, non-particle-like quanta, and accompanied by a dynamical energy-momentum space, are not necessarily Planckian and that they could be observed at much lower and experimentally accessible energy scales.
Kan, Nahomi; Shiraishi, Kiyoshi
2016-01-01
We propose a model of gravity in which the mixing of a metric tensor of General Relativity and an effective metric generated from a single scalar as formulated in Geometric Scalar Gravity. We show that the model admits the exact Schwarzschild solution and accelerating behaviors of scale factors in cosmological solutions.
Bailey, Quentin G
2016-01-01
In this talk, the gravity sector of the effective field theory description of local Lorentz violation is discussed, including minimal and nonminimal curvature couplings. Also, recent experimental and observational analyses including solar-system ephemeris and short-range gravity tests are reviewed.
Fixed points of quantum gravity
Litim, D.F.(Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, UK)
2004-01-01
Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K.
2014-01-01
We present an alternative to topologically massive gravity (TMG) with the same 'minimal' bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new 'minimal massive gravity'
Fluid Dynamics and Entropic Gravity
Nagle, Ian
2016-01-01
A new entropic gravity inspired derivation of general relativity from thermodynamics is presented. This generalizes, within Einstein gravity, the "Thermodynamics of Spacetime" approach by T. Jacobson, which relies on the Raychaudhuri evolution equation. Here the rest of the first law of thermodynamics is incorporated by using the Damour-Navier-Stokes equation, known from the membrane paradigm for describing fluid dynamics on the horizon.
Human sperm cells swimming in micro-channels
Denissenko, Petr; Smith, David; Kirkman-Brown, Jackson
2012-01-01
The migratory abilities of motile human spermatozoa in vivo are essential for natural fertility, but it remains a mystery what properties distinguish the tens of cells which find an egg from the millions of cells ejaculated. To reach the site of fertilization, sperm must traverse narrow and convoluted channels, filled with viscous fluids. To elucidate individual and group behaviors that may occur in the complex three-dimensional female tract environment, we examine the behavior of migrating sperm in assorted micro-channel geometries. Cells rarely swim in the central part of the channel cross-section, instead traveling along the intersection of the channel walls (`channel corners'). When the channel turns sharply, cells leave the corner, continuing ahead until hitting the opposite wall of the channel, with a distribution of departure angles, the latter being modulated by fluid viscosity. If the channel bend is smooth, cells depart from the inner wall when the curvature radius is less than a threshold value clo...
Distinguishability of countable quantum states and von Neumann lattice
Kawakubo, Ryûitirô; Koike, Tatsuhiko
2016-07-01
The condition for distinguishability of a countably infinite number of pure states by a single measurement is given. Distinguishability is to be understood as the possibility of an unambiguous measurement. For a finite number of states, it is known that the necessary and sufficient condition of distinguishability is that the states are linearly independent. For an infinite number of states, several natural classes of distinguishability can be defined. We give a necessary and sufficient condition for a system of pure states to be distinguishable. It turns out that each level of distinguishability naturally corresponds to one of the generalizations of linear independence to families of infinite vectors. As an important example, we apply the general theory to von Neumann’s lattice, a subsystem of coherent states which corresponds to a lattice in the classical phase space. We prove that the condition for distinguishability is that the area of the fundamental region of the lattice is greater than the Planck constant, and also find subtle behavior on the threshold. These facts reveal the measurement theoretical meaning of the Planck constant and give a justification for the interpretation that it is the smallest unit of area in the phase space. The cases of uncountably many states and of mixed states are also discussed.
QCD analogy for quantum gravity
Holdom, Bob; Ren, Jing
2016-06-01
Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets the Planck mass. QCD has a gluon that does not appear in the physical spectrum. Quadratic gravity has a spin-2 ghost that we conjecture does not appear in the physical spectrum. We discuss how the QCD analogy leads to this conjecture and to the possible emergence of general relativity. Certain aspects of the QCD path integral and its measure are also similar for quadratic gravity. With the addition of the Einstein-Hilbert term, quadratic gravity has a dimensionful parameter that seems to control a quantum phase transition and the size of a mass gap in the strong phase.
Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas
1990-01-01
An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.
An application of GOCE satellite gravity to resolve mantle heterogeneity in Europe
DEFF Research Database (Denmark)
Herceg, Matija; Artemieva, Irina; Thybo, Hans
2015-01-01
The aim of this study is to obtain new information on the density structure of the European upper mantle by incorporating the state-of-the-art global gravity data derived from the GOCE satellite gravity mission and recently released seismic model for the crustal structure, EUNAseis. The residual...... mantle gravity anomalies are derived from the GOCE data, from which gravitational effects of the deep mantle and the crust are removed. Our model of mantle density structure has lateral resolution of ca. 100 km, which allows to distinguish small-scale mantle anomalies and to link them to regional......, examine the propagation of crustal model uncertainties into determinations of lithospheric mantle density. To understand better geodynamic causes of mantle density heterogeneity, we compare mantle residual gravity anomalies for the European upper mantle with upper mantle velocity structure constrained...
Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy
Huterer, D; Huterer, Dragan; Linder, Eric V.
2006-01-01
The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend the reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity t...
Cosmology in massive gravity with effective composite metric
Heisenberg, Lavinia
2016-01-01
This paper is dedicated to scrutinizing the cosmology in massive gravity. A matter field of the dark sector is coupled to an effective composite metric while a standard matter field couples to the dynamical metric in the usual way. For this purpose, we study the dynamical system of cosmological solutions by using phase analysis, which provides an overview of the class of cosmological solutions in this setup. This also permits us to study the critical points of the cosmological equations together with their stability. We show the presence of stable attractor de Sitter critical points relevant to the late-time cosmic acceleration. Furthermore, we study the tensor, vector and scalar perturbations in the presence of standard matter fields and obtain the conditions for the absence of ghost and gradient instabilities. Hence, massive gravity in the presence of the effective composite metric can accommodate interesting dark energy phenomenology, that can be observationally distinguished from the standard model accord...
Black hole spectroscopy from loop quantum gravity models
Barrau, Aurelien; Cao, Xiangyu; Noui, Karim; Perez, Alejandro
2015-12-01
Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of loop quantum gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter γ . Starting with black holes of initial horizon area A ˜102 in Planck units, we present the spectra for different values of γ . Each spectrum clearly decomposes into two distinct parts: a continuous background which corresponds to the semiclassical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that γ has an effect on both parts that we analyze in detail. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.
Kay, Bernard S
2015-01-01
We give an account of the matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this new approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. We also very briefly review some recent related work on the nature of equilibrium states involving quantum black holes and point out how it promises to resolve some puzzling issues in the current version of the string theory approach to black hole entropy.
International Nuclear Information System (INIS)
The author presents a series of lectures intended for students familiar with the methods used in many developments of general relativity, cosmology and supergravity. First, he deals with geometry before gravity; manifolds, tensors, spinors and their derivatives are defined. The rules of Cartan's exterior differential calculus are established. Basic formulas of Riemannian geometry are proved with the method of the moving frame (veilbein). Some aspects of the de Rham cohomology are lightly touched on; the physical meaning of the curvature tensor which leads to the Einstein equations is analyzed; Weyl's and Palitini's variational principle are introduced and compared; the extension of first integrals for field equations on curved space is discussed; and finally, a brief description of homogeneous cosmologies, in particular the anti-de Sitter space, is given
Testing Gravity on Accelerators
Kalaydzhyan, Tigran
2016-01-01
Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.
Semiclassical Supersymmetric Quantum Gravity
Kiefer, Claus; Lück, Tobias; Vargas Moniz, Paulo
2008-09-01
We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schrödinger equation, and quantum gravitational correction terms to this Schrödinger equation. In particular, our work has the following implications: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many fingered) local time parameter has to be present on Super Riem Σ (the space of all possible tetrad and gravitino fields), (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early universe.
Supersymmetrizing massive gravity
Malaeb, O.
2013-07-01
When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.
Is quantum gravity unpredictable
International Nuclear Information System (INIS)
An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)
Bahrami, M; McMillen, S; Paternostro, M; Ulbricht, H
2015-01-01
What gravitational field is generated by a massive quantum system in a spatial superposition? This is one of the most important questions in modern physics, and after decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fact that gravity is weak and requires large masses to be detectable. But for large masses, it becomes increasingly difficult to generate spatial quantum superpositions, which live sufficiently long to be detected. A delicate balance between opposite quantum and gravitational demands is needed. Here we show that this can be achieved in an optomechanics scenario. We propose an experimental setup, which allows to decide whether the gravitational field generated by a quantum system in a spatial superposition is the superposition of the two alternatives, or not. We estimate the magnitude of the effect and show that it offers good perspectives for observability. Performing the experiment will mark a breakth...
Cropp, Bethan; Turcati, Rodrigo
2015-01-01
In the analogue gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in a curved spacetime. This description is possible only when the fluid under consideration is barotropic, inviscid and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric which depends algebrically on the local speed of sound, density and the background flow velocity, the latter assumed to be vorticity free. In this work we provide an straightforward extension in order to go beyond the irrotational constraint. Using a charged --- relativistic and non-relativistic --- Bose--Einstein condensate as a physical system, we show that in the low momentum limit and performing the eikonal approximation we can derive a d'Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on a flow velocity in the presence of vorticity.
Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo
2016-06-01
In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose–Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.
Karasik, D; Karasik, David; Davidson, Aharon
2003-01-01
Geodetic brane gravity treats the universe as an extended object evolving geodetically within a higher dimensional flat background. In this paper we derive the quadratic Hamiltonian of the brane by introducing a new pair of canonical fields $\\lambda,P_{\\lambda}$. This causes second class constraints to enter the game, and calls for the use of Dirac Brackets. The algebra of first class constraints is calculated, and the BRST generator of the brane universe is of rank 1. The Einstein case, associated with $\\lambda$ being a vanishing (degenerate) eigenvalue, can be treated only as a limiting case. At the quantum level, the road is open for canonical quantization, or functional integral quantization. The main advantages of GBG are: It contains an intrinsic, geometrically originated 'dark matter' components. It contains an intrinsic solution to the 'problem of time' with the aid of the 'bulk' time coordinate. It enables calculation of meaningful probabilities within quantum cosmology without any additional scalar ...
Antimatter gravity with muonium
Kaplan, Daniel M; Kirch, Klaus; Mancini, Derrick; Phillips, James D; Phillips, Thomas J; Reasenberg, Robert D; Roberts, Thomas J; Terry, Jeff
2016-01-01
The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Three avenues appear feasible for such a measurement: antihydrogen, positronium, and muonium. The muonium measurement requires a novel monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of $\\bar{g}$ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the f...
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Stochastic quantization and gravity
International Nuclear Information System (INIS)
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
Jankiewicz, Marcin
2007-12-01
This thesis summarizes research projects that I have been involved in during my graduate studies at Vanderbilt University. My research spanned different areas of theoretical high energy physics with gravity as a common denominator. I explore both fundamental and phenomenological aspects of: (i) mathematical physics where I have studied relations between partition functions of certain class of conformal field theories and Fischer-Griess Monster group; (ii) cosmology, where I performed a numerical study of a horizon size modes of scalar field; (iii) a black hole physics project involving possible extensions of the non-hair theorem in a presence of exotic types of scalar field; and (iv) a study of phenomenological space-time foam models and their relation to Planck scale physics.
Gravity-matter entanglement in Regge quantum gravity
Paunković, Nikola; Vojinović, Marko
2016-03-01
We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle.
Gravity-Matter Entanglement in Regge Quantum Gravity
Paunković, Nikola
2016-01-01
We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about "matter in a point of space" is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional "effective interaction", which could possibly bring corrections to the weak equivalence principle.
AdS Chern-Simons Gravity induces Conformal Gravity
Aros, Rodrigo
2013-01-01
The leitmotif of this paper is the question of whether four- and higher even-dimensional Conformal Gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauged-fixed, tractor-like) five-dimensional AdS connection. The gauge-fixing and dimensional reduction program admits a readily generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
International Nuclear Information System (INIS)
It has been shown by Atkinson (1965) that there is a rigorously exact euclidean interpretation of the general relativity field equations if certain arbitrary definitions of mass (m) and the velocity of light (c) are invoked. With a preferred (euclidean) frame postulated ab initio, a particularly simple explanation in terms of classical physics may be found for very similar definitions of m and c. It is not unexpected that with this scheme, all the usual tests of general relativity (light deflexion, perihelion motion, gravitational redshift, and radar delay time) are immediately satisfied. The preferred frame is however identified with a real aether and this requires a return to the Lorentzian interpretation of the special relativistic transformations of space and time variables. It is shown that gravity may be attributed to the action of a temperature gradient in the aether and an explanation of its origin in terms of an ideal relativistic gas is proposed. The temperature gradients are thermodynamically stable and do not diffuse if the relativistic aether (γsub(A)) is effectively adiabatic and matter is fundamentally a species of aether with instantaneous motion at high γ (>γsub(A)) relative to the aethereal rest frame. To be consistent with such a picture, it is necessary to assume aether particles are capable of forming temporary associations (not recognized as matter) which take on some of the properties of crystalline solids and thereby become the means of transmitting electromagnetic radiation through space. A number of specific predictions arising from this theory of gravity are indicated and these may serve to discriminate it from general relativity. (Auth.)
International Nuclear Information System (INIS)
Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)
Organic Milk Quality in the Netherlands : Distinguishable from conventional milk?
Hospers-Brands, A.J.T.M.; Burgt, van der G.J.H.M.
2009-01-01
Recent studies have indicated possible positive interactions between organic animal production and, particularly, and various vitamins. As possible distinguishing quality parameters for organic milk, the differences between organic and conventional milk in Netherlands for fatty acid composition and
Office of Personnel Management associate director is Wachovia Distinguished Speaker
Ho, Sookhan
2005-01-01
Marta Brito Perez, associate director for human capital leadership and merit system accountability in the federal Office of Personnel Management (OPM), will give a lecture as the Wachovia Distinguished Speaker at Virginia Tech's Pamplin College of Business.
Black holes in three-dimensional dilaton gravity theories
Sá, P M; Lemos, J P S; Sa, Paulo M; Kleber, Antares; Lemos, Jose P S
1995-01-01
Three dimensional black holes in a generalized dilaton gravity action theory are analysed. The theory is specified by two fields, the dilaton and the graviton, and two parameters, the cosmological constant and the Brans-Dicke parameter. It contains seven different cases, of which one distinguishes as special cases, string theory, general relativity and a theory equivalent to four dimensional general relativity with one Killing vector. We study the causal structure and geodesic motion of null and timelike particles in the black hole geometries and find the ADM masses of the different solutions.
Properties of surface waves in granular media under gravity
International Nuclear Information System (INIS)
Acoustical waves propagating along the free surface of granular media under gravity are investigated in the framework of elasticity theory. The influence of stress on a surface wave is analyzed. The results have shown that two types of surface waves, namely sagittal and transverse modes exist depending on initial stress states, which may have some influence on the dispersion relations of surface waves, but the influence is not great. Considering that the present experimental accuracy is far from distinguishing this detail, the validity of elasticity theory on the surface waves propagating in granular media can still be maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Edna B. Foa: Award for Distinguished Scientific Contributions.
2015-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Edna B. Foa, who received this award for "her outstanding and innovative research on the nature, measurement, and treatment of anxiety." Foa's award citation, biography, and a selected bibliography are presented here.
Richard N. Aslin: Award for Distinguished Scientific Contributions.
2014-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2014 award winners is Richard N. Aslin, who received this award for "elegance of thought in providing new ways to think about the relationships among learning, development, and biology." Aslin's award citation, biography, and a selected bibliography are presented here. PMID:25486136
Edna B. Foa: Award for Distinguished Scientific Contributions.
2015-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Edna B. Foa, who received this award for "her outstanding and innovative research on the nature, measurement, and treatment of anxiety." Foa's award citation, biography, and a selected bibliography are presented here. PMID:26618942
G. Terence Wilson: Award for Distinguished Scientific Applications of Psychology.
2014-11-01
The APA Award for Distinguished Scientific Applications of Psychology is presented to a person who, in the opinion of the Committee on Scientific Awards, has made distinguished theoretical or empirical advances leading to the understanding or amelioration of important practical problems. The 2014 recipient is G. Terence Wilson, who received the award for "his outstanding contributions to the nature and theory of behavior therapy." Wilson's award citation, biography, and a selected bibliography are presented here. PMID:25486140
Carol A. Barnes: Award for Distinguished Scientific Contributions.
2014-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2014 award winners is Carol A. Barnes, who received this award for her "groundbreaking work on the neurobiological mechanisms underlying memory changes in normal aging." Barnes' award citation, biography, and a selected bibliography are presented here. PMID:25486138
John A. Bargh: Award for Distinguished Scientific Contributions.
2014-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2014 award winners is John A. Bargh, who received this award for his "groundbreaking work on the automaticity of social cognition, emotion, motivation, and behavior." Bargh's award citation, biography, and a selected bibliography are presented here. PMID:25486137
The reliability and distinguishability of ultrasound diagnosis of ovarian masses
Directory of Open Access Journals (Sweden)
Bagheban Alireza
2008-06-01
Full Text Available Background: For any radiologist, intra-observer agreement in observing and decision making in diagnosis of any disease is of great importance, and so is observing and reading ultrasound pictures of ovarian masses and distinguishing amongst their categories. Aims: In this study, the reliability and consistency of ultrasound diagnosis of ovarian tumors have been evaluated. Settings and Design: Two experienced and three less experienced radiologists assessed ultrasounds of 40 patients of Mirza Koochak Khan Hospital in Tehran, Iran, in 2005. Materials and Methods: In this prospective observational study, the ultrasounds were performed by an expert radiologist, with a single apparatus. These ultrasounds have been evaluated separately and independently in two periods (with a 1-week interval. Statistical Analysis Used: Weighted kappa was used to calculate intra-observer agreement (reliability, and two statistical models were applied to assess category distinguishability (consistency. SPSS version 10, SAS version 8, and EXCEL 2003 have been used to do an appropriate statistical analysis. Results: Mean of weighted kappa was 0.81, and mean of distinguishability was 0.995 for our experienced radiologists, due to their superior results. Because of weaker results obtained by the less experienced radiologists, mean of weighted kappa and mean of distinguishability were 0.65 and 0.967 respectively. Overall mean of distinguishability for benign and borderline categories was 0.969; and for malignant and borderline categories, it was 0.987. Conclusion: Although experienced radiologists functioned better than the less experienced radiologists, all of them showed appropriate distinguishability and intra-observer agreement in diagnosis and categorization of the ovarian masses. Distinguishing benign category from borderline was more difficult than distinguishing malignant category from borderline. In general, experienced radiologists showed better results compared to
Distinguishability and copiability of programs in general process theories
Chiribella, Giulio
2014-01-01
We propose a notion of state distinguishability that does not refer to probabilities, but rather to the ability of a set of states to serve as programs for a desired set of gates. Using this notion, we reconstruct the structural features of the task of state discrimination, such as the equivalence with cloning and the impossibility to extract information from two non-distinguishable pure states without causing a disturbance. All these features express intrinsic links among operational tasks, ...
Confined gravity flow sedimentary process and its impact on the lower continental slope,Niger Delta
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
There is active gravity flow sedimentation on the lower continental slope of Niger Delta. High-resolution 3-D seismic data enable a detailed study on the gravity flow deposition process and its impact. The lower continental slope of Niger Delta is characterized by a stepped complex topography, which resulted from gravity sliding and spreading during Miocene and Pliocene. Two types of accommodations are identified on the slope: ponded accommodation as isolated sub-basins and healed slope accommodation as connected tortuous corridors, where multi-scale submarine fans and submarine channels developed. Gravity flow deposition process is affected by the characteristics of gravity flows and the receiving basin. At the early stage, gravity flow deposition process was dominated by "fill and spill" pattern in the ponded accommodation, whereas it was confined to the healed slope accommodation during the late stage. On the lower continental slope of Niger Delta, complex slope topography controlled the distribution and evolution of the gravity flow, producing complicated gravity depositional patterns.
Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates
Directory of Open Access Journals (Sweden)
Francesco Lacquaniti
2014-01-01
Full Text Available Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Airborne Gravity: NGS' Gravity Data for ES03 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...
Airborne Gravity: NGS' Gravity Data for EN09 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set...
Airborne Gravity: NGS' Gravity Data for EN10 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...
Transplanckian inflation as gravity echoes
International Nuclear Information System (INIS)
In this work, we show that, in the presence of non-minimal coupling to gravity, it is possible to generate sizeable tensor modes in single-field models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with non-minimal couplings. We present three simple single-field models that prove that it is possible to accommodate a large tensor-to-scalar ratio without requiring transplanckian field values within the slow-roll regime
Riding Gravity Away from Doomsday
Sen, Ashoke
2015-01-01
The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.
Transplanckian inflation as gravity echoes
Directory of Open Access Journals (Sweden)
G. Barenboim
2015-09-01
Full Text Available In this work, we show that, in the presence of non-minimal coupling to gravity, it is possible to generate sizeable tensor modes in single-field models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with non-minimal couplings. We present three simple single-field models that prove that it is possible to accommodate a large tensor-to-scalar ratio without requiring transplanckian field values within the slow-roll regime.
Compact objects in Horndeski gravity
Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele
2016-04-01
Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.
Cosmology in Weyl Transverse Gravity
Oda, Ichiro
2016-01-01
We study the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology in the Weyl-transverse (WTDiff) gravity in a general space-time dimension. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is believed to be equivalent to general relativity at least at the classical level (perhaps, even in the quantum regime). It is explicitly shown by solving the equations of motion that the FLRW metric is a classical solution in the WTDiff gravity only when the spatial metric is flat, that is, the Euclidean space, and the lapse function is a nontrivial function of the scale factor.
Modified Gravity Explains Dark Matter?
Katsuragawa, Taishi
2016-01-01
We explore a new horizon of modified gravity from the viewpoint of the particle physics. As a concrete example, we take the $F(R)$ gravity to raise a question: can a scalar particle ("scalaron") derived from the $F(R)$ gravity be a dark matter candidate? We place the limit on the form of function $F(R)$ from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.
Transplanckian inflation as gravity echoes
Energy Technology Data Exchange (ETDEWEB)
Barenboim, G., E-mail: Gabriela.Barenboim@uv.es; Vives, O.
2015-09-02
In this work, we show that, in the presence of non-minimal coupling to gravity, it is possible to generate sizeable tensor modes in single-field models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with non-minimal couplings. We present three simple single-field models that prove that it is possible to accommodate a large tensor-to-scalar ratio without requiring transplanckian field values within the slow-roll regime.
Topological gravity with exchange algebra
Aoyama, S.
1993-01-01
A topological gravity is obtained by twisting the effective $(2,0)$ super\\-gravity. We show that this topological gravity has an infinite number of BRST invariant quantities with conformal weight $0$. They are a tower of OSp$(2,2)$ multiplets and satisfy the classical exchange algebra of OSp$(2,2)$. We argue that these BRST invariant quantities become physical operators in the quantum theory and their correlation functions are braided according to the quantum OSp$(2,2)$ group. These propertie...
Higher dimensional nonlinear massive gravity
Do, Tuan Q.
2016-05-01
Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.
Spin-gravity coupling and gravity-induced quantum phases
Papini, Giorgio
2007-01-01
External gravitational fields induce phase factors in the wave functions of particles. The phases are exact to first order in the background gravitational field, are manifestly covariant and gauge invariant and provide a useful tool for the study of spin-gravity coupling and of the optics of particles in gravitational or inertial fields. We discuss the role that spin-gravity coupling plays in particular problems.
Gravity Currents in a Vegetated Valley of Trapezoidal Shape
Directory of Open Access Journals (Sweden)
Evangelos Keramaris
2016-01-01
Full Text Available In this study lock-exchange experiments are performed in a tank of rectangular upper cross section and a lower vegetated valley of trapezoidal shape to study the effect of drag resistance, due to vegetation, on gravity currents. Many natural and man-made channels are approximately trapezoidal. For the simulation of the vegetation the bed is covered by flexible grass vegetation (height of vegetation, hv=2.0cm of different submergence ratio hν/H (hν=height of vegetation, H=water depth. The motion of the gravity current is monitored with a digital video of high definition, the front velocity is measured and the height of the front is captured. Twenty four experiments are performed, twelve inside the trapezoidal section (H/Htr=0.4, 0.6 or 0.8 and twelve over the trapezoidal section (H/Htr=1.2, 1.4 or 1.6. The initial Reynolds number, based on the height of the valley and the reduced gravity, is greater than 10000 for all cases indicating that the gravity currents are turbulent. Results are compared with those of similar experiments without vegetation (Keramaris and Prinos, 2010 and hence the effect of the vegetation drag resistance on the motion of the current is investigated. The main conclusion of this study is that the shape of the tank plays a significant role in the propagation of gravity currents. The presence of trapezoidal increases the velocity of gravity currents in comparison with triangular or orthogonal shape.
Violation of Angular Momentum Selection Rules in Quantum Gravity
Datta, A; Melé, Barbara; Datta, Anindya; Gabrielli, Emidio; Mele, Barbara
2004-01-01
A simple consequence of the angular momentum conservation in quantum field theories is that the interference of s-channel amplitudes exchanging particles with different spin $J$ vanishes after complete angular integration. We show that, while this rule holds in scattering processes mediated by a massive graviton in Quantum Gravity, a massless graviton s-channel exchange breaks orthogonality when considering its interference with a scalar-particle s-channel exchange, whenever all the external states are massive. To this regard, the Einstein massless graviton propagator behaves as if it was carrying a further scalar degree of freedom. This result reveals new aspects of the well-known van Dam - Veltman - Zakharov discontinuity.
Cutoff for extensions of massive gravity and bi-gravity
Matas, Andrew
2016-04-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.
Baby universes in 2d quantum gravity
Ambjorn, J.; S. Jain; G. Thorleifsson
1993-01-01
We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.
PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity
Capozziello, S.; Troisi, A.
2005-01-01
Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WUNing; ZHANGDa-Hua; RUANTu-Nan
2003-01-01
DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua; RUAN Tu-Nan
2003-01-01
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.
Scalable Gravity Offload System Project
National Aeronautics and Space Administration — The proposed innovation is a scalable gravity off-load system that enables controlled integrated testing of Surface System elements such as rovers, habitats, and...
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Gravity Data For Colombia 1997
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...
An introduction to quantum gravity
Esposito, Giampiero
2011-01-01
Quantum gravity was born as that branch of modern theoretical physics that tries to unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays it is providing new insight into the unification of all fundamental interactions, while giving rise to new developments in mathematics. The various competing theories, e.g. string theory and loop quantum gravity, have still to be checked against observations. We review the classical and quantum foundations necessary to study field-theory approaches to quantum gravity, the passage from old to new unification in quantum field theory, canonical quantum gravity, the use of functional integrals, the properties of gravitational instantons, the use of spectral zeta-functions in the quantum theory of the universe, Hawking radiation, some theoretical achievements and some key experimental issues.
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
Squids, brains and gravity waves
International Nuclear Information System (INIS)
Superconducting quantum interference devices are so sensitive to magnetic flux that they can map the tiny magnetic fields emanating from the human brain and detect the submicroscopic motions of gravity-wave detectors
Testing Gravity using Cosmic Voids
Falck, Bridget
2016-01-01
Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.
Testing Gravity Theories Using Stars
Sakstein, Jeremy; Vikram, Vinu
2014-01-01
Modified theories of gravity have received a renewed interest due to their ability to account for the cosmic acceleration. In order to satisfy the solar system tests of gravity, these theories need to include a screening mechanism that hides the modifications on small scales. One popular and well-studied theory is chameleon gravity. Our own galaxy is necessarily screened, but less dense dwarf galaxies may be unscreened and their constituent stars can exhibit novel features. In particular, unscreened stars are brighter, hotter and more ephemeral than screened stars in our own galaxy. They also pulsate with a shorter period. In this essay, we exploit these new features to constrain chameleon gravity to levels three orders of magnitude lower the previous measurements. These constraints are currently the strongest in the literature.
Neutron stars in Horndeski gravity
Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele
2016-06-01
Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.
Teleparallel Equivalent of Lovelock Gravity
Gonzalez, P A
2015-01-01
There is a growing interest in modified gravity theories based on torsion due to these theories prove to exhibit interesting cosmological implications. In this work, inspired by the teleparallel formulation of General Relativity we present its extension to Lovelock Gravity known as the most natural extension of general relativity in higher-dimensional spacetimes. First, we review Teleparallel Equivalent of General Relativity and Teleparallel Equivalent of Gauss-Bonnet Gravity, and then we construct Teleparallel Equivalent of Lovelock Gravity. In order to achieve this goal we use the vielbein and the connection, without imposing the Weitzenb\\"ock connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to be null.
Quantum Gravity on the Lattice
Hamber, Herbert W
2009-01-01
I review the lattice approach to quantum gravity, and how it relates to the non-trivial ultraviolet fixed point scenario of the continuum theory. After a brief introduction covering the general problem of ultraviolet divergences in gravity and other non-renormalizable theories, I cover the general methods and goals of the lattice approach. An underlying theme is an attempt at establishing connections between the continuum renormalization group results, which are mainly based on diagrammatic perturbation theory, and the recent lattice results, which should apply to the strong gravity regime and are inherently non-perturbative. A second theme in this review is the ever-present natural correspondence between infrared methods of strongly coupled non-abelian gauge theories on the one hand, and the low energy approach to quantum gravity based on the renormalization group and universality of critical behavior on the other. Towards the end of the review I discuss possible observational consequences of path integral q...
Positive Signs in Massive Gravity
Cheung, Clifford
2016-01-01
We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
Low Gravity Anchoring System Project
National Aeronautics and Space Administration — Future sampling missions to the Moon, Mars and Asteroids will likely involve drilling and in-situ analysis from mobile robotic platforms in low gravity. Past...
Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes
Kawashima, Yoshiyuki; Geleoc, Gwenaelle S. G.; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K.; Della Santina, Charles C.; Holt, Jeffrey R.; Griffith, Andrew J.
2011-01-01
Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in
Giannakis, Ioannis
1996-01-01
Two-dimensional gravity in the light-cone gauge was shown to exhibit an underlying sl(2,R) current algebra. It is the purpose of this note to offer a possible explanation about the origin of this important algebra. The essential point is that two-dimensional gravity is governed by a topological field theory. The gauge group is sl(2,R) and it is this enhanced gauge group that yields Polyakov's current algebra.
Matter in Loop Quantum Gravity
Date, Ghanashyam
2011-01-01
Loop quantum Gravity, a non-perturbative and manifestly background free, quantum theory of gravity implies that at the kinematical level the spatial geometry is discrete in a specific sense. The spirit of background independence also requires a non-standard quantum representation of matter. While loop quantization of standard model fields has been proposed, detail study of its implications is not yet available. This review aims to survey the various efforts and results.
Matter in Loop Quantum Gravity
Directory of Open Access Journals (Sweden)
Ghanashyam Date
2012-03-01
Full Text Available Loop quantum gravity, a non-perturbative and manifestly background free, quantum theory of gravity implies that at the kinematical level the spatial geometry is discrete in a specific sense. The spirit of background independence also requires a non-standard quantum representation of matter. While loop quantization of standard model fields has been proposed, detail study of its implications is not yet available. This review aims to survey the various efforts and results.
Lectures on Screened Modified Gravity
Brax, Philippe
2012-01-01
The acceleration of the expansion of the Universe has led to the construction of Dark Energy models where a light scalar field may have a range reaching up to cosmological scales. Screening mechanisms allow these models to evade the tight gravitational tests in the solar system and the laboratory. I will briefly review some of the salient features of screened modified gravity models of the chameleon, dilaton or symmetron types using $f(R)$ gravity as a template.
International Nuclear Information System (INIS)
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity
Connected Correlators in Quantum Gravity
Ambjorn, J.; Bialas, P.; Jurkiewicz, J.(Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. prof. Stanislawa Lojasiewicza 11, Krakow, PL 30-348, Poland)
1998-01-01
We discuss the concept of connected, reparameterization invariant matter correlators in quantum gravity. We analyze the effect of discretization in two solvable cases: branched polymers and two-dimensional simplicial gravity. In both cases the naively defined connected correlators for a fixed volume display an anomalous behavior, which could be interpreted as a long-range order. We suggest that this is in fact only a highly non-trivial finite-size effect and propose an improved definition of ...
Three Dimensional Canonical Quantum Gravity
Matschull, Hans-Juergen
1995-01-01
General aspects of vielbein representation, ADM formulation and canonical quantization of gravity are reviewed using pure gravity in three dimensions as a toy model. The classical part focusses on the role of observers in general relativity, which will later be identified with quantum observers. A precise definition of gauge symmetries and a classification of inequivalent solutions of Einstein's equations in dreibein formalism is given as well. In the quantum part the construction of the phys...
Gravity's Rainbow and Traversable Wormholes
Garattini, Remo
2015-01-01
In the context of Gravity's Rainbow, we compute the graviton one-loop contribution to a classical energy in a traversable wormhole background, by considering the equation of state $p_{r} = \\omega\\rho$. The investigation is evaluated by means of a variational approach with Gaussian trial wave functionals. However, instead of using a regularization/renormalization process, we use the distortion induced by Gravity's Rainbow to handle the divergences.
Minimal Length, Measurability and Gravity
Directory of Open Access Journals (Sweden)
Alexander Shalyt-Margolin
2016-03-01
Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.
Au, G
1995-01-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity - with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they seem mutually incompatible. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and addresses the problem of time in quantum gravity. It contains interviews with Abhay Ashtekar, Chris Isham, and Edward Witten.
Global flows in quantum gravity
Christiansen, N.; Knorr, B.; Pawlowski, J. M.; Rodigast, A.
2016-02-01
We study four-dimensional quantum gravity using nonperturbative renormalization group methods. We solve the corresponding equations for the fully momentum-dependent propagator, Newtons coupling and the cosmological constant. For the first time, we obtain a global phase diagram where the non-Gaussian ultraviolet fixed point of asymptotic safety is connected via smooth trajectories to a classical infrared fixed point. The theory is therefore ultraviolet complete and deforms smoothly into classical gravity as the infrared limit is approached.
Energy Technology Data Exchange (ETDEWEB)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.
Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K
2014-01-01
We present an alternative to Topologically Massive Gravity (TMG) with the same "minimal" bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new "minimal massive gravity" has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra.
Cylindrical solutions in mimetic gravity
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Astana (Kazakhstan); Raza, Muhammad [COMSATS Institute of Information Technology, Department of Mathematics, Sahiwal (Pakistan)
2016-06-15
This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant. (orig.)
Filariasis and serum specific gravity
Viroj Wiwanitkit
2009-01-01
"nFilariasis is a problematic tropical vector borne infection. Here, the author proposes an idea on a physical change, serum specific gravity, in serum of filariasis cases and further extrapolates for its clinical usefulness. According to this study, the finalized estimated serum specificity in filariasis is more than that of normal condition. The change of the specific gravity due to additional content or mass can be demonstrated and might be useful for diagnosis and following...
Brane cosmology in teleparallel gravity
Atazadeh, K
2014-01-01
We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.
Mannelli, L
2005-01-01
The main theme of this Thesis is the connection between Quantum Gravity and Cosmology. In the First Part (Chapters 1 to 5) I give an introduction to the Holographic Principle. The Second Part is a collection of my research work and it is articulated as follows. Chapter 7 is to an analysis of the renormalization properties of quantum field theories in de Sitter space. It is shown that only two of the maximally invariant vacuum states of free fields lead to consistent perturbation expansions. In Chapter 8 I first present a complete quantum mechanical description of a flat FRW universe with equation of state p = ρ. Then I show a detailed correspondence with an heuristic picture of such a universe as a dense black hole fluid. In the end it is explained how features of the geometry are derived from purely quantum input. Chapter 9 studies the problem of infrared renormalization of particle masses in de Sitter space. It is shown, in a toy model in which the graviton is replaced with a minimally coupled massl...
Directory of Open Access Journals (Sweden)
Bernard S. Kay
2015-12-01
Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.
Emergent Gravity And The Cosmological Constant Problem
Yang, Hyun Seok
2007-01-01
We address issues on the origin of gravity and the cosmological constant problem based on a recent understanding about the correspondence between noncommutative field theory and gravity. We suggest that the cosmological constant problem can be resolved in a natural way if gravity emerges from a gauge theory in noncommutative spacetime. Especially, we elucidate why the emergent gravity implies that vacuum energy does not gravitate but only fluctuations around the vacuum generate gravity. That ...
Massive Gravity in Extra Dimensions
Kakushadze, Zurab
2014-01-01
We discuss a Brane World scenario where we live on a 3-brane with massive gravity in infinite-volume bulk. The bulk graviton can be much heavier than the inverse Hubble size, as heavy the bulk Planck scale, whose lower bound is roughly the inverse of 0.1 mm. The 4D Einstein-Hilbert term on the brane shields the brane matter from both strong bulk gravity and large bulk graviton mass. Gravity on the brane does not become higher-dimensional at large distances. Instead, at distance scales above the bulk Planck length, gravity on the brane behaves as 4D gravity with small graviton mass roughly of order or below the inverse Hubble size. Unlike the massless case, with massive gravity in the bulk one can have: i) 4D tensor structure on a codimension-1 brane; and ii) no infrared tachyon for smoothed-out higher codimension branes. The effects of the brane dynamics on the bulk are exponentially suppressed away from the brane. One consequence is that there are no "self-accelerated" solutions. In codimension-2 cases there...
Gravity a very short introduction
Clifton, Timothy
2017-01-01
Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...
Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity
International Nuclear Information System (INIS)
We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)
Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat [Institute of Nuclear Physics, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); Atamurotov, Farruh [Institute of Nuclear Physics, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Dadhich, Naresh [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune (India); Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics, Faculty of Philosophy and Science, Opava (Czech Republic)
2015-08-15
We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)
String bit models of two-dimensional quantum gravity coupled with matter
Energy Technology Data Exchange (ETDEWEB)
Lee, C.-W.H. E-mail: h11lee@scimail.uwaterloo.ca; Mann, R.B. E-mail: mann@avatar.uwaterloo.ca
2003-12-22
We extend the formalism of Hamiltonian string bit models of quantum gravity type in two spacetime dimensions to include couplings to particles. We find that the single-particle closed and open universe models, respectively, behave like empty open and closed universes, and that a system of two distinguishable particles in a closed universe behaves like an empty closed universe. We then construct a metamodel that contains all such models, and find that its transition amplitude is exactly the same as the sl(2) gravity model.
String bit models of two-dimensional quantum gravity coupled with matter
Lee, C W H
2003-01-01
We extend the formalism of Hamiltonian string bit models of quantum gravity type in two spacetime dimensions to include couplings to particles. We find that the single-particle closed and open universe models respectively behave like empty open and closed universes, and that a system of two distinguishable particles in a closed universe behaves like an empty closed universe. We then construct a metamodel that contains all such models, and find that its transition amplitude is exactly the same as the sl(2) gravity model.
A free parametrized TOV: Modified Gravity from Newtonian to Relativistic Stars
Velten, Hermano; Wojnar, Aneta
2016-01-01
We test a free {\\it ad hoc} parametrization of the Tolman-Oppenheimer-Volkoff (TOV) equation. We do not have in mind any specific extended theory of gravity (ETG) but each new parameter introduced has a physical interpretation. Our aim is fully pedagogical rather than a proposal for a new ETG. Given a realistic neutron star equation of state we map the contributions of each new parameter into a shift in trajectories of the mass-radius diagram. This exercise allows us to make the correspondence between each TOV sector with possible modifications of gravity and clarifies how neutron star observations are helpful for distinguishing theories.
Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation
Ramachandran, N.; Leslie, F.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.
Entanglement as a resource to distinguish orthogonal product states.
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
Entanglement as a resource to distinguish orthogonal product states.
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-07-26
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.
Rangan, V. Kasturi; Nueno, Jose L
1999-01-01
Using transaction cost theory, considerable research in marketing has focused on the conditions under which firms would use direct or vertically integrated versus indirect or arms length channels of distribution. Data from the field, however, indicate that channel configurations are more varied and complex, with multiple channels and composite channels being just as common as direct and indirect channels. In an attempt to explain this variety, this paper revisits the influence on channel stru...
KPZ Formulas for Weyl-Invariant Induced Gravity and Topologically Massive Gravity
Amelino-Camelia, G.
1997-01-01
I discuss the applicability in Weyl-invariant induced gravity and topologically massive gravity of certain formulas originally derived by Knizhnik, Polyakov, and Zamolodchikov in the context of diffeomorphism-invariant induced gravity.
Simulating distinguish enriched uranium from depleted uranium by activation method
International Nuclear Information System (INIS)
Detecting uranium material is an important work in arms control Active detection is an efficient method for uranium material. The paper focuses on the feasibility that can distinguish the enriched uranium and the depleted uranium by MCNP program. It can distinguish the enriched uranium and the depleted uranium by the curve of relationship between fission rate of uranium material and thickness of moderator.Advantages of 252Cf and 14 MeV neutron sources are discussed in detecting uranium material through calculation. The results show that 252Cf neutron source is better than 14 MeV one. Delayed neutrons are more easily detected than delayed gamma ray at measurement aspect. (authors)
Notes on semiclassical gravity
Energy Technology Data Exchange (ETDEWEB)
Singh, T.P.; Padmanabhan, T. (Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India (IN))
1989-12-01
In this paper we investigate the different possible ways of defining the semiclassical limit of quantum general relativity. We discuss the conditions under which the expectation value of the energy-momentum tensor can act as the source for a semiclassical, {ital c}-number, gravitational field. The basic issues can be understood from the study of the semiclassical limit of a toy model, consisting of two interacting particles, which mimics the essential properties of quantum general relativity. We define and study the WK semiclassical approximation and the gaussian semiclassical approximation for this model. We develop rules for finding the back-reaction of the quantum mode {ital q} on the classical mode {ital Q}. We argue that the back-reaction can be found using the phase of the wave-function which describes the dynamics of {ital q}. We find that this back-reaction is obtainable from the expectation value of the hamiltonian if the dispersion in this phase can be neglected. These results on the back-reaction are generalised to the semiclassical limit of the Wheeler--De Witt equation. We conclude that the back-reaction in semiclassical gravity is {l angle}{ital T}{sub {ital i}{ital k}}{r angle} only when the dispersion in the phase of the matter wavefunctional can be neglected. This conclusion is highlighted with a minisuperspace example of a massless scalar field in a Robertson--Walker universe. We use the semiclassical theory to show that the minisuperspace approximation in quantum cosmology is valid only if the production of gravitons is negligible. {copyright} 1989 Academic Press, Inc.
Energy Technology Data Exchange (ETDEWEB)
Morand, Kevin, E-mail: Kevin.Morand@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France); Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)
2012-08-29
The linearized massive gravity in three dimensions, over any maximally symmetric background, is known to be presented in a self-dual form as a first order equation which encodes not only the massive Klein-Gordon type field equation but also the supplementary transverse-traceless conditions. We generalize this construction to higher dimensions. The appropriate dual description in d dimensions, additionally to a (non-symmetric) tensor field h{sub {mu}{nu}}, involves an extra rank-(d-1) field equivalently represented by the torsion rank-3 tensor. The symmetry condition for h{sub {mu}{nu}} arises on-shell as a consequence of the field equations. The action principle of the dual theory is formulated. The focus has been made on four dimensions. Solving one of the fields in terms of the other and putting back in the action one obtains two other equivalent formulations of the theory in which the action is quadratic in derivatives. In one of these representations the theory is formulated entirely in terms of a rank-2 non-symmetric tensor h{sub {mu}{nu}}. This quadratic theory is not identical to the Fierz-Pauli theory and contains the coupling between the symmetric and antisymmetric parts of h{sub {mu}{nu}}. Nevertheless, the only singularity in the propagator is the same as in the Fierz-Pauli theory so that only the massive spin-2 particle is propagating. In the other representation, the theory is formulated in terms of the torsion rank-3 tensor only. We analyze the conditions which follow from the field equations and show that they restrict to 5 degrees of freedom thus producing an alternative description to the massive spin-2 particle. A generalization to higher dimensions is suggested.
Plasma graviton production in TeV-scale gravity
Melkumova, E Yu
2010-01-01
We develop the theory of interaction of classical plasma with Kaluza-Klein (KK) gravitons in the ADD model of TeV-scale gravity. Plasma is described within the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with $n$ compact extra dimensions is introduced within the linearized theory. The KK gravitons emission rates are computed taking into account plasma collective effects through the two-point correlation functions of the fluctuations of the plasma energy-momentum tensor. Apart from known mechanisms (such as bremsstrahlung and gravi-Primakoff effect) we find essentially collective channels such as the coalescence of plasma waves into gravitons which may be manifest in turbulent plasmas. Our results indicate that commonly used rates of the KK gravitons production in stars and supernovae may be underestimated.
Plasma graviton production in TeV-scale gravity
Energy Technology Data Exchange (ETDEWEB)
Melkumova, E Yu, E-mail: elenamelk@srd.sinp.msu.ru [Department of Physics, Moscow State University, 119899, Moscow (Russian Federation)
2010-11-01
We develop the theory of interaction of classical plasma with Kaluza-Klein (KK) gravitons in the ADD model of TeV-scale gravity. Plasma is described within the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with n compact extra dimensions is introduced within the linearized theory. The KK gravitons emission rates are computed taking into account plasma collective effects through the two-point correlation functions of the fluctuations of the plasma energy-momentum tensor. Apart from known mechanisms (such as bremsstrahlung and gravi-Primakoff effect) we find essentially collective channels such as the coalescence of plasma waves into gravitons which may be manifest in turbulent plasmas. Our results indicate that commonly used rates of the KK gravitons production in stars and supernovae may be underestimated.
Plasma graviton production in TeV-scale gravity
International Nuclear Information System (INIS)
We develop the theory of interaction of classical plasma with Kaluza-Klein (KK) gravitons in the ADD model of TeV-scale gravity. Plasma is described within the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with n compact extra dimensions is introduced within the linearized theory. The KK gravitons emission rates are computed taking into account plasma collective effects through the two-point correlation functions of the fluctuations of the plasma energy-momentum tensor. Apart from known mechanisms (such as bremsstrahlung and gravi-Primakoff effect) we find essentially collective channels such as the coalescence of plasma waves into gravitons which may be manifest in turbulent plasmas. Our results indicate that commonly used rates of the KK gravitons production in stars and supernovae may be underestimated.
Distinguishing Between Bombsags and Dropstones on Mars with Implications for Gusev and Gale Craters
Button, N. E.; Husch, J.; Karunatillake, S.; Skok, J. R.
2013-12-01
atmospheric composition[9]. A convergence with the consensus would reinforce each of these models, all relying implicitly on the clast at Home Plate as a pyroclastic artifact in a phraetomagmatic setting of late Noachian Mars. This case study established the utility of our flow chart method to opportunistically identify clast environments that the Curiosity Rover may encounter at Gale Crater. Future work will involve either computational extrapolation for reduced gravity environments, or experimental assessment in a micro-gravity environment. These future analyses will strengthen our newly developed methodology as a tool to distinguish glacial and volcanic environments on Mars. This may prove useful particularly if Curiosity were to observe bed-disrupting clast configurations along its traverse, particularly in Gale Crater. References [1] Kargel J. & Furfaro R. LPSC 43, 2629 (2012) [2] Howard A. & Moore J. GRL 31, L01702 (2004) [3] Michalski J. & Niles P. Geology 40, 419-422 (2012) [4] Thomas G. & Connell. R. JSR 55, 243-249 (1985) [5] Head J. & Marchant D. Geology 31, 641 - 644 (2003) [6] Atkins C. et al. Geology 30, 659 - 662 (2002) [7] Lewis K. et al. JGR 113, E12 (2008) [8] Squyres S. et al. Science 316, 738-742 (2007) [9] Manga M. et al. GRL 39, L01202 (2012)
Distinguishing screening mechanisms with environment-dependent velocity statistics
Ivarsen, Magnus Fagernes; Llinares, Claudio; Mota, David F
2016-01-01
Alternative theories of gravity typically invoke an environment-dependent "screening mechanism" to allow phenomenologically interesting deviations from general relativity (GR) to manifest on larger scales, while reducing to GR on small scales. The observation of the transition from screened to unscreened behavior would be compelling evidence for beyond-GR physics. In this paper, we show that pairwise peculiar velocity statistics -- in particular the relative radial velocity dispersion, $\\sigma_\\parallel$ -- can be used to observe this transition when they are binned by some measure of halo environment. We establish this by measuring the radial velocity dispersion between pairs of halos in N-body simulations for 3 $f(R)$ gravity and 4 Symmetron models. We develop an estimator involving only line-of-sight velocities to show that this quantity is observable, and bin the results in halo mass, ambient density, and the "isolatedness" of halos. Ambient density is found to be the most relevant measure of environment;...
Partial gravity reaction experiment sysytem on graund using multi-Copter
Hasegawa, Katsuya; Maeda, Naoko
2016-07-01
In order to enable further space exploration into the space, Moon, Mars, and other planets, it is essential to understand the physiological response to low gravity environments. However, We made low gravity environment for studies using the satellite parabolic flight and drop tower. It is very expensive experiment that low gravity physiological response. Because, it requires rockets and airplanes and dedicated Tower, low gravity conditions test have not been conducted sufficiently due to the extraordinary high cost for conducting experiments. The study present is to develop the radio-controlled multicopter system that is used for the controlled falling flight vehicle (not free fall). During the controlled falling, the payload is exposed to a certain level of low gravity. 1) G profile: low gravity from 0 g to 1 g that will last approximately 5seconds, 50 kg. 2) Supply limited imaging techniques, high-speed or normal video and X ray images. 3) Wireless transmission of up to 64 channels of analog and digital signals. This vehicle is designed for experimentation on various model organisms, from cells to animals and plants. The multicopter flight system enables conducting experiments in low gravity conditions with less than 1% of the budget for spaceflight or parabolic flights. Experiment is possible to perform repeated many times in one day. We can expect reproducible results from many repeated trials at the lowest cost.
f(R) gravity constraints from gravity waves
Vainio, Jaakko
2016-01-01
The recent LIGO observation sparked interest in the field of gravity wave signals. Besides the gravity wave observation the LIGO collaboration used the inspiraling black hole pair to constrain the graviton mass. Unlike general relativity, $f(R)$ theories have a characteristic non-zero mass graviton. We apply the constraint on the graviton mass to viable $f(R)$ models to find the effects on model parameters. We find it possible to constrain the parameter space with the gravity wave based observations. We make a case study for the popular Hu-Sawicki model and find a parameter bracket. The result generalizes to other $f(R)$ theories and can be used to contain the parameter space.
Criticality in Einstein-Gauss-Bonnet Gravity: Gravity without Graviton
Fan, Zhong-Ying; Lu, Hong
2016-01-01
General Einstein-Gauss-Bonnet gravity with a cosmological constant allows two (A)dS spacetimes as its vacuum solutions. We find a critical point in the parameter space where the two (A)dS spacetimes coalesce into one and the linearized perturbations lack any bilinear kinetic terms. The vacuum perturbations hence loose their interpretation as linear graviton modes at the critical point. Nevertheless, the critical theory admits black hole solutions due to the nonlinear effect. We also consider Einstein gravity extended with general quadratic curvature invariants and obtain critical points where the theory has no bilinear kinetic terms for either the scalar trace mode or the transverse modes. Such critical phenomena are expected to occur frequently in general higher derivative gravities.
How can we distinguish transient pulsars from SETI beacons?
Benford, James
2010-01-01
How would observers differentiate Beacons from pulsars or other exotic sources, in light of likely Beacon observables? Bandwidth, pulse width and frequency may be distinguishing features. Such transients could be evidence of civilizations slightly higher than ourselves on the Kardashev scale.
Award for Distinguished Scientific Applications of Psychology: Nancy E. Adler
American Psychologist, 2009
2009-01-01
Nancy E. Adler, winner of the Award for Distinguished Scientific Applications of Psychology, is cited for her research on reproductive health examining adolescent decision making with regard to contraception, conscious and preconscious motivations for pregnancy, and perception of risk for sexually transmitted diseases, and for her groundbreaking…
Daniel L. Schacter: Award for Distinguished Scientific Contributions
American Psychologist, 2012
2012-01-01
Presents Daniel L. Schacter as one of the winners of the American Psychological Association's Award for Distinguished Scientific Contributions (2012). Daniel L. Schacter's major theoretical and empirical contributions include groundbreaking research on the psychological and neural foundations of implicit and explicit memory, memory distortions and…
Michael J. Meaney: Award for Distinguished Scientific Contributions
American Psychologist, 2012
2012-01-01
Presents Michael J. Meaney as one of the winners of the American Psychological Association's Award for Distinguished Scientific Contributions (2012). Michael J. Meaney has taken the phenomenon of "handling" of newborn rats and opened a new area of investigation that has given new meaning to epigenetics via his work demonstrating transgenerational…
Marcia K. Johnson: 2006 award for distinguished scientific contributions.
2006-11-01
Presents the citation to Marcia K. Johnson, who received the Award for Distinguished Scientific Contributions "for raising and illuminating fundamental questions about the cognitive and neural processes that constitute the subjective experience of mental life." A brief profile and a selected bibliography, as well as Johnson's award address, entitled Memory and Reality, accompany the citation. ((c) 2006 APA, all rights reserved). PMID:17115807
John P. Campbell: award for distinguished scientific applications of psychology.
2006-11-01
Presents the citation for John P. Campbell who received Award for Distinguished Scientific Applications of Psychology "for his many different contributions to the field of industrial and organizational (I/O) psychology." A brief profile and a selected bibliography accompany the citation. ((c) 2006 APA, all rights reserved). PMID:17115812
Martin E. P. Seligman: 2006 award for distinguished scientific contributions.
2006-11-01
Presents the citation for Martin E. P. Seligman, who received the Award for Distinguished Scientific Contributions "for a career spent charging creatively ahead of his field and then pulling his colleagues along." A brief profile and a selected bibliography, as well as the award address, Positive Psychotherapy, accompany the citation. ((c) 2006 APA, all rights reserved). PMID:17115809
WANG Feiyue honored as distinguished scientist by ACM
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
@@ Prof. WANG Feiyue, a renowned scholar in intelligent control from the CAS Institute of Automation, has been selected by the New York-based Association for Computing Machinery (ACM) as a distinguished scientist for his contributions to both the practical and theoretical aspects of computing and information technology. Altogether, 13 scientists received the honor across the world in 2007.
Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups
Roik, N. V.; Belyakova, L. A.
2013-12-01
Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.
Elliptic cylinder geometry for distinguishability analysis in impedance tomography.
Saka, Birsen; Yilmaz, Atila
2004-01-01
Electrical impedance tomography (EIT) is a technique that computes the cross-sectional impedance distribution within the body by using current and voltage measurements made on the body surface. It has been reported that the image reconstruction is distorted considerably when the boundary shape is considered to be more elliptical than circular as a more realistic shape for the measurement boundary. This paper describes an alternative framework for determining the distinguishability region with a finite measurement precision for different conductivity distributions in a body modeled by elliptic cylinder geometry. The distinguishable regions are compared in terms of modeling error for predefined inhomogeneities with elliptical and circular approaches for a noncircular measurement boundary at the body surface. Since most objects investigated by EIT are noncircular in shape, the analytical solution for the forward problem for the elliptical cross section approach is shown to be useful in order to reach a better assessment of the distinguishability region defined in a noncircular boundary. This paper is concentrated on centered elliptic inhomogeneity in the elliptical boundary and an analytic solution for this type of forward problem. The distinguishability performance of elliptical cross section with cosine injected current patterns is examined for different parameters of elliptical geometry. PMID:14723501
Distinguished representations of $GL(n,\\mathbb{C})$
Kemarsky, Alexander
2012-01-01
Let $V$ be a $GL_n(\\mathbb{R})$-distinguished, irreducible, admissible representation of $GL_n(\\mathbb{C})$. We prove that any continuous linear functional on $V$, which is invariant under the action of the real mirabolic subgroup, is automatically $GL_n(\\mathbb{R})$-invariant.
Edward F. Diener: Award for Distinguished Scientific Contributions
American Psychologist, 2012
2012-01-01
Presents Edward F. Diener as one of the winners of the American Psychological Association's Award for Distinguished Scientific Contributions (2012). Edward F. Diener has been a leader in every aspect of well-being research. He provided an influential conception of well-being as consisting of cognitive and emotional elements. A citation, biography,…
Distinguishing between Poor/Dysfunctional Parenting and Child Emotional Maltreatment
Wolfe, David A.; McIsaac, Caroline
2011-01-01
Objective: This paper was intended to distinguish between poor parenting and child emotional maltreatment (CEM), to inform child welfare and public health policymakers of the need for differentiated responses. Methods: Scientific literature was integrated with current practice and assumptions relating to poor/dysfunctional parenting and child…
Award for Distinguished Scientific Contributions: Susan E. Carey
American Psychologist, 2009
2009-01-01
Susan E. Carey, winner of the 2009 Award for Distinguished Scientific Contributions, is cited for groundbreaking studies of the nature of concepts and conceptual change. Her research deepens understanding of the development of concepts, and of the belief systems in which they are embedded, over human childhood, over the history of science, and…
29 CFR 779.328 - Retail and wholesale distinguished.
2010-07-01
... which is recognized in an industry as the subject of a retail sale. Quantities which are materially in... industry is such that a discount from the normal retail price is not regarded in the industry as... 29 Labor 3 2010-07-01 2010-07-01 false Retail and wholesale distinguished. 779.328 Section...
Gravity, light and plant form.
Hangarter, R P
1997-06-01
Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.
Quantum gravity as Escher's dragon
International Nuclear Information System (INIS)
The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives
Empirical Foundations of Relativistic Gravity
Ni, W T
2005-01-01
In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...
Energy Technology Data Exchange (ETDEWEB)
Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn [Department of Physics and Center for Field Theory and Particle Physics, Fudan University, 200433 Shanghai (China); Tsujikawa, Shinji, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2013-11-25
We present a general covariant action for massive gravity merging together a class of “non-polynomial” and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (Phys. Rev. D 88 (2013) 044033). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass m is much smaller the today's Hubble parameter H{sub 0}, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant Λ, the dominance of the non-local mass term leads to a kind of “degravitation” for Λ at the late cosmological epoch.
Escapes in Hamiltonian systems with multiple exit channels: Part II
Zotos, Euaggelos E.
2015-01-01
We explore the escape dynamics in open Hamiltonian systems with multiple channels of escape continuing the work initiated in Part I. A thorough numerical investigation is conducted distinguishing between trapped (ordered and chaotic) and escaping orbits. The determination of the location of the basins of escape towards the different escape channels and their correlations with the corresponding escape periods of the orbits is undoubtedly an issue of paramount importance. We consider four diffe...
The fourth-generation Calcium channel blocker: Cilnidipine
Chandra, K. Sarat; Ramesh, G.
2013-01-01
Several classes of antihypertensive agents have been in clinical use, including diuretics, α-blockers, β-blockers, angiotensin converting enzyme (ACE) inhibitors, angiotensin II type 1 receptor blockers (ARB), and organic calcium channel blockers (CCBs). All these drugs are being currently used in the treatment of Hypertension & various disease conditions of the heart either alone or in combination. Cilnidipine is a new antihypertensive drug distinguished from other L-type Ca2+ channel blocke...
Dilaton gravity, Poisson sigma models and loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Bojowald, Martin; Reyes, Juan D, E-mail: bojowald@gravity.psu.ed, E-mail: jdr234@psu.ed [Institute for Gravitation and the Cosmos, Pennsylvania State University, 104 Davey Lab, University Park, PA 16802 (United States)
2009-02-07
Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.
International Nuclear Information System (INIS)
A new relativistic formulation of MOND is advanced, involving two metrics as independent degrees of freedom: the MOND metric gμν, to which alone matter couples, and an auxiliary metric g-circumflexμν. The main idea hinges on the fact that we can form tensors from the difference of the Levi-Civita connections of the two metrics, Cβγα=Γβγα-Γ-circumflexβγα, and these act like gravitational accelerations. In the context of MOND, we can form dimensionless 'acceleration' scalars and functions thereof (containing only first derivatives) from contractions of a0-1Cβγα. I look at a subclass of bimetric MOND theories governed by the action I=-(16πG)-1∫[βg1/2R+αg-circumflex1/2R-circumflex-2(gg-circumflex)1/4f(κ)a02 M(Υ-tilde/a02)]d4x+IM(gμν,ψi)+I-circumflexM(g-circumflexμν,χi), with Υ-tilde as a scalar quadratic in the Cβγα, κ=(g/g-circumflex)1/4, IM as the matter action, and allow for the existence of twin matter that couples to g-circumflexμν alone. Thus, gravity is modified not by modifying the elasticity of the space-time in which matter lives, but by the interaction between that space-time and the auxiliary one. In particular, I concentrate on the interesting and simple choice Υ-tilde∝gμν(CμλγCνγλ-CμνγCλγλ). This theory introduces only one new constant, a0; it tends simply to general relativity (GR) in the limit a0→0 and to a phenomenologically valid MOND theory in the nonrelativistic limit. The theory naturally gives MOND and 'dark energy' effects from the same term in the action, both controlled by the MOND constant a0. In regards to gravitational lensing by nonrelativistic systems-a holy grail for relativistic MOND theories-the theory predicts that the same potential that controls massive-particle motion also dictates lensing in the same way as in GR: Lensing and massive-particle probing of galactic fields will require the same 'halo' of dark matter to explain the departure of the present theory from GR. This
Directory of Open Access Journals (Sweden)
J. Hinderer
2008-06-01
Full Text Available This research is intended to describe new strategies in the processing and analysis of continuous gravity records collected in active volcanic areas and to assess how permanent gravity stations can improve the geophysical monitoring of a volcano. The experience of 15 years in continuous gravity monitoring on Mt. Vesuvius is discussed. Several geodynamic phenomena can produce temporal gravity changes. An eruption, for instance, is associated with the ascent of magma producing changes in the density distribution at depth, and leading to ground deformation and gravity changes The amplitude of such gravity variations is often quite small, in the order of 10-102 nms-2, so their detection requires high quality data and a rigorous procedure to isolate from the records those weak gravity signals coming from different sources. Ideally we need gravity signals free of all effects which are not of volcanic origin. Therefore solid Earth tide, ocean and atmospheric loading, instrumental drift or any kind of disturbances other than due to the volcano dynamics have to be removed. The state of the art on the modelling of the solid Earth tide is reviewed. The atmospheric dynamics is one of the main sources precluding the detection of small gravity signals. The most advanced methods to reduce the atmospheric effects on gravity are presented. As the variations of the calibration factors can prevent the repeatability of high-precision measurements, new approaches to model the instrumental response of mechanical gravimeters are proposed too. Moreover, a strategy for an accurate modelling of the instrumental drift and to distinguish it from longterm gravity changes is suggested.
Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE
International Nuclear Information System (INIS)
Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 μA). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 μm isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)
Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE
Energy Technology Data Exchange (ETDEWEB)
Anderson, N.G. [University of Otago, Department of Radiology, Christchurch (New Zealand); Butler, A.P. [University of Otago, Department of Radiology, Christchurch (New Zealand); University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Scott, N.J.A. [University of Otago, Department of Medicine, Christchurch (New Zealand); Cook, N.J. [Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Butzer, J.S. [Karlsruhe Institute of Technology, Physics Department, Karlsruhe (Germany); Schleich, N. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand); Christchurch Hospital, Medical Physics and Bioengineering, Christchurch (New Zealand); Firsching, M. [Friedrich Alexander University, Physics Department, Erlangen (Germany); Grasset, R.; Ruiter, N. de [University of Canterbury, Hitlab NZ, Christchurch (New Zealand); Campbell, M. [European Organisation for Nuclear Research, Physics Section, Geneva (Switzerland); Butler, P.H. [University of Canterbury, Physics and Astronomy, Christchurch (New Zealand)
2010-09-15
Spectral CT differs from dual-energy CT by using a conventional X-ray tube and a photon-counting detector. We wished to produce 3D spectroscopic images of mice that distinguished calcium, iodine and barium. We developed a desktop spectral CT, dubbed MARS, based around the Medipix2 photon-counting energy-discriminating detector. The single conventional X-ray tube operated at constant voltage (75 kVp) and constant current (150 {mu}A). We anaesthetised with ketamine six black mice (C57BL/6). We introduced iodinated contrast material and barium sulphate into the vascular system, alimentary tract and respiratory tract as we euthanised them. The mice were preserved in resin and imaged at four detector energy levels from 12 keV to 42 keV to include the K-edges of iodine (33.0 keV) and barium (37.4 keV). Principal component analysis was applied to reconstructed images to identify components with independent energy response, then displayed in 2D and 3D. Iodinated and barium contrast material was spectrally distinct from soft tissue and bone in all six mice. Calcium, iodine and barium were displayed as separate channels on 3D colour images at <55 {mu}m isotropic voxels. Spectral CT distinguishes contrast agents with K-edges only 4 keV apart. Multi-contrast imaging and molecular CT are potential future applications. (orig.)
The Breakdown of Classical Gravity?
Hernandez, X; Allen, C
2011-01-01
Assuming Newton's gravity and GR to be valid at all scales, leads to the dark matter hypothesis as a forced requirement demanded by the observed dynamics and measured baryonic content at galactic and extra galactic scales. Alternatively, one can propose a contrasting scenario where gravity exhibits a change of regime at acceleration scales $a
Warping the Weak Gravity Conjecture
Directory of Open Access Journals (Sweden)
Karta Kooner
2016-08-01
Full Text Available The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
Warping the Weak Gravity Conjecture
Kooner, Karta; Parameswaran, Susha; Zavala, Ivonne
2016-08-01
The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
Intermediate inflation from rainbow gravity
Barrow, John D
2013-01-01
It is possible to dualize theories based on deformed dispersion relations and Einstein gravity so as to map them into theories with trivial dispersion relations and rainbow gravity. This often leads to "dual inflation" without the usual breaking of the strong energy condition. We identify the dispersion relations in the original frame which map into "intermediate" inflationary models. These turn out to be particularly simple: power-laws modulated by powers of a logarithm. The fluctuations predicted by these scenarios are near, but not exactly scale-invariant, with a red running spectral index. These dispersion relations deserve further study within the context of quantum gravity and the phenomenon of dimensional reduction in the ultraviolet.
The Philosophy behind Quantum Gravity
Directory of Open Access Journals (Sweden)
Henrik ZINKERNAGEL
2010-01-01
Full Text Available This paper investigates some of the philosophical and conceptual issues raised by the search for a quantum theory of gravity. It is critically discussed whether such a theory is necessary in the first place, and how much would be accomplished if it is eventually constructed. I argue that the motivations behind, and expectations to, a theory of quantum gravity are entangled with central themes in the philosophy of science, in particular unification, reductionism, and the interpretation of quantum mechanics. I further argue that there are —contrary to claims made on behalf of string theory— no good reasons to think that a quantum theory of gravity, if constructed, will provide a theory of everything, that is, a fundamental theory from which all physics in principle can be derived.
Anisotropic singularities and modified gravity
Herfray, Yannick; Shtanov, Yuri
2015-01-01
In four space-time dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarisations of the graviton. General Relativity with an arbitrary cosmological constant is the only parity-invariant member of this family. Modifications of General Relativity can be arranged so as to become important in regions with large Weyl curvature. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new parametrisation of this family of theories that, apart from the fundamental connection field, uses certain set of auxiliary fields. We show how the Kasner singularity of General Relativity is resolved in a particular modified gravity theory of this type. There arises a new asymptotically De Sitter region "behind" the would-be singularity, the complete solution thus being of a bounce type. Although the effective metric based on this solution still contains singularities an...
A Possible Mechanism of Gravity
Lev, F M
2003-01-01
We consider systems of two free particles in de Sitter invariant quantum theory and calculate the mean value of the mass operator for such systems. It is shown that, in addition to the well known relativistic contribution (and de Sitter antigravity which is small when the de Sitter radius is large), there also exists a contribution caused by the fact that certain decomposition coefficients have different phases. Such a contribution is negative and proportional to the particle masses in the nonrelativistic approximation. In particular, for a class of two-body wave functions the mean value is described by standard Newtonian gravity and post Newtonian corrections in General Relativity. This poses the problem whether gravity can be explained without using the notion of interaction at all. We discuss a hypothesis that gravity is a manifestation of Galois fields in quantum physics.
Lorentz violation of quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Moffat, J W, E-mail: john.moffat@utoronto.c [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9 (Canada); Department of Physics, University of Waterloo, Waterloo, Ontario N2Y 2L5 (Canada)
2010-07-07
A quantum gravity theory which becomes renormalizable at short distances due to a spontaneous symmetry breaking of Lorentz invariance and diffeomorphism invariance is studied. A breaking of Lorentz invariance with the breaking patterns SO(3, 1) {yields} O(3) and SO(3, 1) {yields} O(2), describing 3 + 1 and 2 + 1 quantum gravity, respectively, is proposed. A complex time-dependent Schroedinger equation (generalized Wheeler-DeWitt equation) for the wavefunction of the universe exists in the spontaneously broken symmetry phase at Planck energy and in the early universe, uniting quantum mechanics and general relativity. An explanation of the second law of thermodynamics and the spontaneous creation of matter in the early universe can be obtained in the symmetry broken phase of gravity.
Minimal parameterizations for modified gravity
Scott, Ali Narimani Douglas
2013-01-01
The increasing precision of cosmological data provides us with an opportunity to test general relativity (GR) on the largest accessible scales. Parameterizing modified gravity models facilitates the systematic testing of the predictions of GR, and gives a framework for detecting possible deviations from it. Several different parameterizations have already been suggested, some linked to classifications of theories, and others more empirically motivated. Here we describe a particular new approach which casts modifications to gravity through two free functions of time and scale, which are directly linked to the field equations, but also easy to confront with observational data. We compare our approach with other existing methods of parameterizing modied gravity, specifically the parameterized post-Friedmann approach and the older method using the parameter set $\\{\\mu,\\gamma\\}$. We explain the connection between our parameters and the physics that is most important for generating cosmic microwave background aniso...
Semiclassical gravity and mesoscopic physics
Hu, B L
1997-01-01
Developments in theoretical cosmology in the recent decades show a close connection with particle physics, quantum gravity and unified theories. Answers or hints to many fundamental questions in cosmology like the homogeneity and isotropy of the Universe, the sources of structure formation and entropy generation, and the initial state of the Universe can be traced back to the activities of quantum fields and the dynamics of spacetime from the Grand Unification time to the Planck time at 10^{-43} sec. A closer depiction of this primordial state of the Universe requires at least a semiclassical theory of gravity and the consideration of non-equilibrium statistical processes involving quantum fields. This critical state is intermediate between the well-known classical epoch successfully described by Einstein's Theory of General Relativity and the completely unknown realm of quantum gravity. Many issues special to this stage such as the transition from quantum to classical spacetime via decoherence, cross-over be...
Pätzold, Matthias
2011-01-01
Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta
Off-level corrections for gravity meters
Niebauer, T. M.; Blitz, Thomas; Constantino, Andy
2016-04-01
Gravity meters must be aligned with the local gravity at any location on the surface of the earth in order to measure the full amplitude of the gravity vector. The gravitational force on the sensitive component of the gravity meter decreases by the cosine of the angle between the measurement axis and the local gravity vector. Most gravity meters incorporate two horizontal orthogonal levels to orient the gravity meter for a maximum gravity reading. In order to calculate a gravity correction it is often necessary to estimate the overall angular deviation between the gravity meter and the local gravity vector using two measured horizontal tilt meters. Typically this is done assuming that the two horizontal angles are independent and that the product of the cosines of the horizontal tilts is equivalent to the cosine of the overall deviation. These approximations, however, break down at large angles. This paper derives analytic formulae to transform angles measured by two orthogonal tilt meters into the vertical deviation of the third orthogonal axis. The equations can be used to calibrate the tilt sensors attached to the gravity meter or provide a correction for a gravity meter used in an off-of-level condition.
Condensation during gravity driven ECC: Experiments with PACTEL
Energy Technology Data Exchange (ETDEWEB)
Munther, R.; Kalli, H. [Lappeenranta Univ. of Technology (Finland); Kouhia, J. [Technical Research Centre of Finland, Lappeenranta (Finland)
1995-09-01
This paper provides the results of the second series of gravity driven emergency core cooling (ECC) experiments with PACTEL (Parallel Channel Test Loop). The simulated accident was a small break loss-of-coolant accident (SBLOCA) with a break in a cold leg. The ECC flow was provided from a core makeup tank (CMT) located at a higher elevation than the main part of the primary system. The CMT was pressurized with pipings from the pressurizer and a cold leg. The tests indicated that steam condensation in the CMT can prevent ECC and lead to core uncovery.
Yamamoto, Kazuhiro; Bassett, Bruce A.; Nichol, Robert C.; Suto, Yasushi; Yahata, Kazuhiro
2006-01-01
We discuss how the baryon acoustic oscillation (BAO) signatures in the galaxy power spectrum can distinguish between modified gravity and the cosmological constant as the source of cosmic acceleration. To this end we consider a model characterized by a parameter n, which corresponds to the Dvali- Gabadadze-Porrati (DGP) model if n = 2 and reduces to the standard spatially flat cosmological constant concordance model for n equal to infinity. We find that the different expansion histories of th...
Altimeter and gravity data analysis
Rapp, Richard H.
1992-01-01
The studies carried out under this grant fell into two broad areas. The first area was the analysis of surface gravity data with the ultimate goal of providing normal equations that could be used in combination with normal equations from the analysis of satellite orbit perturbations to obtain an optimal estimate of the gravitational potential coefficients of the Earth. The second main research activity was the estimation of gravity anomalies in ocean areas from satellite altimeter data. Such anomalies could enable the improved calibration of potential coefficient models derived solely from the analysis of orbital perturbation information. The studies in these two areas are discussed.
Structural issues in quantum gravity
Isham, C J
1995-01-01
A discursive, non-technical, analysis is made of some of the basic issues that arise in almost any approach to quantum gravity, and of how these issues stand in relation to recent developments in the field. Specific topics include the applicability of the conceptual and mathematical structures of both classical general relativity and standard quantum theory. This discussion is preceded by a short history of the last twenty-five years of research in quantum gravity, and concludes with speculations on what a future theory might look like.
From Conformal to Einstein Gravity
Anastasiou, Giorgos
2016-01-01
We provide a simple derivation of the equivalence between Einstein and Conformal Gravity (CG) with Neumann boundary conditions given by Maldacena. As Einstein spacetimes are Bach flat, a generic solution to CG would contain both Einstein and non-Einstein part. Using this decomposition of the spacetime curvature in the Weyl tensor, makes manifest the equivalence between the two theories, both at the level of the action and the variation of it. As a consequence, we show that the on-shell action for Critical Gravity in four dimensions is given uniquely in terms of the Bach tensor.
Tian, David Wenjie
2016-01-01
According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}\\left[\\phi\\left(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G}\\right)-\\frac{\\omega_{\\text L}}{\\phi}\
Tunneling without barriers with gravity
Kanno, Sugumi; Sasaki, Misao; Soda, Jiro
2012-01-01
We consider the vacuum decay of the flat Minkowski space to an anti-de Sitter space. We find a one-parameter family of potentials that allow exact, analytical instanton solutions describing tunneling without barriers in the presence of gravity. In the absence of gravity such instantons were found and discussed by Lee and Weinberg more than a quarter of a century ago. The bounce action is also analytically computed. We discuss possible implications of these new instantons to cosmology in the c...
Probing Quantum Aspects of Gravity
Adunas, G Z; Ahluwalia, D V
2000-01-01
We emphasize that a specific aspect of quantum gravity is the absence of a super-selection rule that prevents a linear superposition of different gravitational charges. As an immediate consequence, we obtain a tiny, but observable, violation of the equivalence principle, provided, inertial and gravitational masses are not assumed to be operationally identical objects. In this framework, the cosmic gravitational environment affects local experiments. A range of terrestrial experiments, from neutron interferometry to neutrino oscillations, can serve as possible probes to study the emergent quantum aspects of gravity.
Nonlocal gravity: Conformally flat spacetimes
Bini, Donato
2016-01-01
The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.
Energy Technology Data Exchange (ETDEWEB)
Olson, Marvin
2016-01-12
A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.
Gravity Data for portions of Ohio
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1,037 records) were compiled by Doctor Stierman. This data base was received in June 1992. Principal gravity parameters include Free-Air...
Wisconsin Gravity Data for the Prentice Area
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (898 records) were compiled by Professor Ervin. This data base was received in January 1987. Principal gravity parameters include Free-Air...
Gravity Data for the Greater Portland Area
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1,522 records) were compiled by the Portland State University. This data base was received in August 1990. Principal gravity parameters...
Maine Offshore Free-air Anomaly Gravity
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (5,363 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Energy Technology Data Exchange (ETDEWEB)
Bejarano, Cecilia; Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)
Gravity Data for Indiana (300 records compiled)
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity data (300 records) were compiled by Purdue University. This data base was received in February 1993. Principal gravity parameters include Free-air...
Wisconsin Gravity Data for the Marshfield Area
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (8388 records) were compiled by Professor Ervin. This data base was received in April 1993. Principal gravity parameters include Free-Air...
On the Synchronization of Acoustic Gravity Waves
Lonngren, Karl E.; Bai, Er-Wei
Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.