WorldWideScience

Sample records for channelrhodopsin-2 gene regulated

  1. Transgenic approach to express the channelrhodopsin 2 gene in arginine vasopressin neurons of rats.

    Science.gov (United States)

    Ishii, Masahiro; Hashimoto, Hirofumi; Ohkubo, Jun-Ichi; Ohbuchi, Toyoaki; Saito, Takeshi; Maruyama, Takashi; Yoshimura, Mitsuhiro; Yamamoto, Yukiyo; Kusuhara, Koichi; Ueta, Yoichi

    2016-09-01

    Optogenetics provides a powerful tool to regulate neuronal activity by light-sensitive ion channels such as channelrhodopsin 2 (ChR2). Arginine vasopressin (AVP; also known as the anti-diuretic hormone) is a multifunctional hormone which is synthesized in the magnocellular neurosecretory cells (MNCs) of the hypothalamus. Here, we have generated a transgenic rat that expresses an AVP-ChR2-enhanced green fluorescent protein (eGFP) fusion gene in the MNCs of the hypothalamus. The eGFP fluorescence that indicates the expression of ChR2-eGFP was observed in the supraoptic nucleus (SON) and in the magnocellular division of the paraventricular nucleus (PVN) that is known to contain AVP-secreting neurons. The eGFP fluorescence intensities in those nuclei and posterior pituitary were markedly increased after chronic salt loading (2% NaCl in drinking water for 5days). ChR2-eGFP was localized mainly in the membrane of AVP-positive MNCs. Whole-cell patch-clamp recordings were performed from single MNCs isolated from the SON of the transgenic rats, and blue light evoked repetitive action potentials. Our work provides for the first time an optogenetic approach to selectively activate AVP neurons in the rat. PMID:27493075

  2. Scanless two-photon excitation of channelrhodopsin-2

    DEFF Research Database (Denmark)

    Papagiakoumou, E.; Anselmi, F.; Bègue, A.; de Sars, V.; Glückstad, Jesper; Isacoff, E.; Emiliani, V.

    2010-01-01

    developed a method that combines generalized phase contrast with temporal focusing (TF-GPC) to shape two-photon excitation for this purpose. The illumination patterns are generated automatically from fluorescence images of neurons and shaped to cover the cell body or dendrites, or distributed groups of...... cells. The TF-GPC two-photon excitation patterns generated large photocurrents in Channelrhodopsin-2–expressing cultured cells and neurons and in mouse acute cortical slices. The amplitudes of the photocurrents can be precisely modulated by controlling the size and shape of the excitation volume and...

  3. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    Science.gov (United States)

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  4. THEORETICAL PRINCIPLES UNDERLYING OPTICAL STIMULATION OF MYELINATED AXONS EXPRESSING CHANNELRHODOPSIN-2

    OpenAIRE

    ARLOW, R. L.; FOUTZ, T. J.; MCINTYRE, C. C.

    2013-01-01

    Numerous clinical conditions can be treated by neuromodulation of the peripheral nervous system (PNS). Typical electrical PNS therapies activate large diameter axons at lower electrical stimulus thresholds than small diameter axons. However, recent animal experiments with peripheral optogenetic neural stimulation (PONS) of myelinated axons expressing channelrhodopsin-2 (ChR2) have shown that this technique activates small diameter axons at lower irradiances than large diameter axons. We hypot...

  5. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Ji

    Full Text Available In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2 transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.

  6. Light-evoked Somatosensory Perception of Transgenic Rats That Express Channelrhodopsin-2 in Dorsal Root Ganglion Cells

    OpenAIRE

    Zhi-Gang Ji; Shin Ito; Tatsuya Honjoh; Hiroyuki Ohta; Toru Ishizuka; Yugo Fukazawa; Hiromu Yawo

    2012-01-01

    In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG) neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2) transgene is driven by the Thy-1.2 promot...

  7. Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2.

    Directory of Open Access Journals (Sweden)

    Ryan Richards

    Full Text Available Channelrhodopsin-2 (ChR2 is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.

  8. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Schultz, Bernd-Joachim; Resler, Tom; Schlesinger, Ramona; Bamann, Christian; Bamberg, Ernst; Heberle, Joachim

    2015-02-11

    Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2. PMID:25584873

  9. Regulation of gene expression

    International Nuclear Information System (INIS)

    In order to define in molecular terms the mechanisms controlling expression of specific genes in mammalian cells, how gene expression is activated, how tissue-specific expression is effected, how expression is modulated by hormones and other specific effectors, and how genetic control mechanisms are altered in the dysfunction of gene expression in cells transformed to malignancy were studied. Much of this work has focused on expression of the rat liver enzyme tyrosine aminotransferase

  10. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  11. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  12. Mathematical Models of Gene Regulation

    Science.gov (United States)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  13. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  14. Transcriptional regulation of tenascin genes.

    Science.gov (United States)

    Chiovaro, Francesca; Chiquet-Ehrismann, Ruth; Chiquet, Matthias

    2015-01-01

    Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an "oncofetal" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease. PMID:25793574

  15. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  16. Regulation of the genes involved in nitrification.

    Energy Technology Data Exchange (ETDEWEB)

    Arp, D.J.; Sayavedra-Soto, L.A.

    2003-08-14

    OAK-B135 This project focuses on the characterization of the regulation of the genes involved in nitrification in the bacterium Nitrosomonas europaea. The key genes in the nitrification pathway, amo and hao, are present in multiple copies in the genome. The promoters for these genes were identified and characterized. It was shown that there were some differences in the transcriptional regulation of the copies of these genes.

  17. Virulence gene regulation inside and outside.

    OpenAIRE

    DiRita, V J; Engleberg, N C; Heath, A; Miller, A.,; Crawford, J A; Yu, R.

    2000-01-01

    Much knowledge about microbial gene regulation and virulence is derived from genetic and biochemical studies done outside of hosts. The aim of this review is to correlate observations made in vitro and in vivo with two different bacterial pathogens in which the nature of regulated gene expression leading to virulence is quite different. The first is Vibrio cholerae, in which the concerted action of a complicated regulatory cascade involving several transcription activators leads ultimately to...

  18. MicroRNA: Mechanism of Gene Regulation

    Science.gov (United States)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through activation of a specific cellular pathway. The small RNA classified as miR are short sequences of 18-26 nucleotide long, encoded by nuclear genes with distinctive...

  19. GREAT: GENE REGULATION EVALUATION TOOL

    OpenAIRE

    Machado, Cátia Maria, 1981-

    2009-01-01

    Tese de mestrado. Tecnologias de Informação aplicadas às Ciências Biológicas e Médicas. Universidade de Lisboa, Faculdade de Ciências, 2009 A correcta compreensão de como funcionam os sistemas biológicos depende do estudo dos mecanismos que regulam a expressão genética. Estes mecanismos controlam em que momento e durante quanto tempo é utilizada a informação codificada num gene, e podem actuar em diversas etapas do processo de expressão genética. No presente trabalho, a etapa em análise é ...

  20. Nuclear Receptor Genes - Regulation and Evolution

    OpenAIRE

    Sharma, Yogita

    2016-01-01

    Nuclear receptors are transcription factors that typically bind ligands in order to regulate the expression level of their target genes. Members of this family work with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. Nuclear receptors are promising drug targets and have therefore attracted immense attention in recent decades in the field of pharmacology. Irregular expression of nuclear recept...

  1. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  2. Transposable element origins of epigenetic gene regulation.

    Science.gov (United States)

    Lisch, Damon; Bennetzen, Jeffrey L

    2011-04-01

    Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation. PMID:21444239

  3. Virulence gene regulation inside and outside.

    Science.gov (United States)

    DiRita, V J; Engleberg, N C; Heath, A; Miller, A; Crawford, J A; Yu, R

    2000-05-29

    Much knowledge about microbial gene regulation and virulence is derived from genetic and biochemical studies done outside of hosts. The aim of this review is to correlate observations made in vitro and in vivo with two different bacterial pathogens in which the nature of regulated gene expression leading to virulence is quite different. The first is Vibrio cholerae, in which the concerted action of a complicated regulatory cascade involving several transcription activators leads ultimately to expression of cholera toxin and the toxin-coregulated pilus. The regulatory cascade is active in vivo and is also required for maintenance of V. cholerae in the intestinal tract during experimental infection. Nevertheless, specific signals predicted to be generated in vivo, such as bile and a temperature of 37 degrees C, have a severe down-modulating effect on activation of toxin and pilus expression. Another unusual aspect of gene regulation in this system is the role played by inner membrane proteins that activate transcription. Although the topology of these proteins suggests an appealing model for signal transduction leading to virulence gene expression, experimental evidence suggests that such a model may be simplistic. In Streptococcus pyogenes, capsule production is critical for virulence in an animal model of necrotizing skin infection. Yet capsule is apparently produced to high levels only from mutation in a two-component regulatory system, CsrR and CsrS. Thus it seems that in V. cholerae a complex regulatory pathway has evolved to control virulence by induction of gene expression in vivo, whereas in S. pyogenes at least one mode of pathogenicity is potentiated by the absence of regulation. PMID:10874738

  4. Linker histones in hormonal gene regulation.

    Science.gov (United States)

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms. PMID:26518266

  5. Sp1 regulates human huntingtin gene expression.

    Science.gov (United States)

    Wang, Ruitao; Luo, Yawen; Ly, Philip T T; Cai, Fang; Zhou, Weihui; Zou, Haiyan; Song, Weihong

    2012-06-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder resulting from the expansion of a polyglutamine tract in the huntingtin protein. The expansion of cytosine-adenine-guanine repeats results in neuronal loss in the striatum and cortex. Mutant huntingtin (HTT) may cause toxicity via a range of different mechanisms. Recent studies indicate that impairment of wild-type HTT function may also contribute to HD pathogenesis. However, the mechanisms regulating HTT expression have not been well defined. In this study, we cloned 1,795 bp of the 5' flanking region of the human huntingtin gene (htt) and identified a 106-bp fragment containing the transcription start site as the minimal region necessary for promoter activity. Sequence analysis reveals several putative regulatory elements including Sp1, NF-κB, HIF, CREB, NRSF, P53, YY1, AP1, and STAT in the huntingtin promoter. We found functional Sp1 response elements in the huntingtin promoter region. The expression of Sp1 enhanced huntingtin gene transcription and the inhibition of Sp1-mediated transcriptional activation reduced huntingtin gene expression. These results suggest that Sp1 plays an important role in the regulation of the human huntingtin gene expression at the mRNA and protein levels. Our study suggests that the dysregulation of Sp1-mediated huntingtin transcription, combining with mutant huntingtin's detrimental effect on other Sp1-mediated downstream gene function, may contribute to the pathogenesis of HD. PMID:22399227

  6. Promoter architectures and developmental gene regulation.

    Science.gov (United States)

    Haberle, Vanja; Lenhard, Boris

    2016-09-01

    Core promoters are minimal regions sufficient to direct accurate initiation of transcription and are crucial for regulation of gene expression. They are highly diverse in terms of associated core promoter motifs, underlying sequence composition and patterns of transcription initiation. Distinctive features of promoters are also seen at the chromatin level, including nucleosome positioning patterns and presence of specific histone modifications. Recent advances in identifying and characterizing promoters using next-generation sequencing-based technologies have provided the basis for their classification into functional groups and have shed light on their modes of regulation, with important implications for transcriptional regulation in development. This review discusses the methodology and the results of genome-wide studies that provided insight into the diversity of RNA polymerase II promoter architectures in vertebrates and other Metazoa, and the association of these architectures with distinct modes of regulation in embryonic development and differentiation. PMID:26783721

  7. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  8. Gene regulation in parthenocarpic tomato fruit

    OpenAIRE

    Martinelli, Federico; Uratsu, Sandra L.; Reagan, Russell L.; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M.; Gasser, Charles S.; Abhaya M. Dandekar

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time re...

  9. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  10. Gene regulation in parthenocarpic tomato fruit.

    Science.gov (United States)

    Martinelli, Federico; Uratsu, Sandra L; Reagan, Russell L; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M; Gasser, Charles S; Dandekar, Abhaya M

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P auxin in particular), and metabolism of sugars and lipids. Up-regulation of lipid transfer proteins and differential expression of several indole-3-acetic acid (IAA)- and ethylene-associated genes were observed in transgenic parthenocarpic fruits. Despite differences in several fatty acids, amino acids, and other metabolites, the fundamental metabolic profile remains unchanged. This work showed that parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable. PMID:19700496

  11. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  12. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  13. Genes regulated by androgen in the rat ventral prostate

    OpenAIRE

    Wang, Zhou; Tufts, Rachel; Haleem, Riffat; Cai, Xiaoyan

    1997-01-01

    Genes that are regulated by androgen in the prostate were studied in the rat. Four of the less than 10 genes that are down-regulated by androgen in the ventral prostate of a 7-day castrated rat were identified; their mRNAs decayed with identical kinetics. Twenty-five of the estimated 56 genes that are up-regulated by androgen in the castrated prostate have been isolated. The up-regulated genes fall into two kinetic types. Early genes are significantly up-regulated by 6.5 hr whereas the delaye...

  14. Regulation of gene expression by hypoxia.

    Science.gov (United States)

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  15. The transcriptional regulation of regucalcin gene expression.

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  16. In vivo endothelial gene regulation in diabetes

    Directory of Open Access Journals (Sweden)

    Shohet Ralph V

    2008-04-01

    Full Text Available Abstract Background An authentic survey of the transcript-level response of the diabetic endothelium in vivo is key to understanding diabetic cardiovascular complications such as accelerated atherosclerosis and endothelial dysfunction. Methods We used streptozotocin to induce a model of type I diabetes in transgenic mice that express green fluorescent protein under the control of an endothelial-specific promoter (Tie2-GFP allowing rapid isolation of aortic endothelium. Three weeks after treatment, endothelial cells were isolated from animals with blood glucose > 350 mg/dl. Aortae from the root to the renal bifurcation were rapidly processed by mincing and proteolytic digestion followed by fluorescent activated cell sorting to yield endothelial cell populations of >95% purity. RNA was isolated from >50,000 endothelial cells and subjected to oligo dT amplification prior to transcriptional analysis on microarrays displaying long oligonucleotides representing 32,000 murine transcripts. Five regulated transcripts were selected for analysis by real-time PCR. Results Within replicate microarray experiments, 19 transcripts were apparently dysregulated by at least 70% within diabetic mice. Up-regulation of glycam1, slc36a2, ces3, adipsin and adiponectin was confirmed by real-time PCR. Conclusion By comprehensively examining cellular gene responses in vivo in a whole animal model of type I diabetes, we have identified novel regulation of key endothelial transcripts that likely contribute to the metabolic and pro-inflammatory responses that accompany diabetes.

  17. Pluralistic and stochastic gene regulation: examples, models and consistent theory.

    Science.gov (United States)

    Salas, Elisa N; Shu, Jiang; Cserhati, Matyas F; Weeks, Donald P; Ladunga, Istvan

    2016-06-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution. PMID:26823500

  18. Regulated genes in mesenchymal stem cells and gastriccancer

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe; Kazuhiko Aoyagi; Hiroshi Yokozaki; Hiroki Sasaki

    2015-01-01

    AIM To investigate the genes regulated in mesenchymalstem cells (MSCs) and diffuse-type gastric cancer (GC),gene expression was analyzed.METHODS: Gene expression of MSCs and diffuse-typeGC cells were analyzed by microarray. Genes relatedto stem cells, cancer and the epithelial-mesenchymaltransition (EMT) were extracted from human genelists using Gene Ontology and reference information.Gene panels were generated, and messenger RNAgene expression in MSCs and diffuse-type GC cells wasanalyzed. Cluster analysis was performed using the NCSSsoftware.RESULTS: The gene expression of regulator of G-proteinsignaling 1 (RGS1) was up-regulated in diffuse-type GCcells compared with MSCs. A panel of stem-cell relatedgenes and genes involved in cancer or the EMT wereexamined. Stem-cell related genes, such as growtharrest-specific 6, musashi RNA-binding protein 2 andhairy and enhancer of split 1 (Drosophila), NOTCHfamily genes and Notch ligands, such as delta-like 1(Drosophila) and Jagged 2, were regulated.CONCLUSION: Expression of RGS1 is up-regulated,and genes related to stem cells and NOTCH signalingare altered in diffuse-type GC compared with MSCs.

  19. Discover Gene Specific Local Co-Regulations from Time-Course Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    2008-01-01

    Full Text Available Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene, identify the condition subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets. The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA. A sliding window is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position, enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and effectiveness of our technique in discovering gene specific co-regulations.

  20. Identification of Sinorhizobium meliloti Genes Regulated during Symbiosis

    Science.gov (United States)

    Cabanes, Didier; Boistard, Pierre; Batut, Jacques

    2000-01-01

    RNA fingerprinting by arbitrarily primed PCR was used to isolate Sinorhizobium meliloti genes regulated during the symbiotic interaction with alfalfa (Medicago sativa). Sixteen partial cDNAs were isolated whose corresponding genes were differentially expressed between symbiotic and free-living conditions. Thirteen sequences corresponded to genes up-regulated during symbiosis, whereas three were instead repressed during establishment of the symbiotic interaction. Seven cDNAs corresponded to known or predicted nif and fix genes. Four presented high sequence similarity with genes not yet identified in S. meliloti, including genes encoding a component of the pyruvate dehydrogenase complex, a cell surface protein component, a copper transporter, and an argininosuccinate lyase. Finally, five cDNAs did not exhibit any similarity with sequences present in databases. A detailed expression analysis of the nine non-nif-fix genes provided evidence for an unexpected variety of regulatory patterns, most of which have not been described so far. PMID:10850975

  1. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  2. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  3. Bistable switching asymptotics for the self regulating gene

    International Nuclear Information System (INIS)

    A simple stochastic model of a self regulating gene that displays bistable switching is analyzed. While on, a gene transcribes mRNA at a constant rate. Transcription factors can bind to the DNA and affect the gene’s transcription rate. Before an mRNA is degraded, it synthesizes protein, which in turn regulates gene activity by influencing the activity of transcription factors. Protein is slowly removed from the system through degradation. Depending on how the protein regulates gene activity, the protein concentration can exhibit noise induced bistable switching. An asymptotic approximation of the mean switching rate is derived that includes the pre exponential factor, which improves upon a previously reported logarithmically accurate approximation. With the improved accuracy, a uniformly accurate approximation of the stationary probability density, describing the gene, mRNA copy number, and protein concentration is also obtained. (paper)

  4. Regulation of toxin gene expression in Clostridium perfringens.

    Science.gov (United States)

    Ohtani, Kaori; Shimizu, Tohru

    2015-05-01

    The Gram-positive, anaerobic, spore-forming, rod-shaped Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens causes clostridial myonecrosis (or gas gangrene), enteritis and enterotoxemia in humans and livestock by producing numerous extracellular toxins and enzymes. The toxin gene expression is regulated by a two-component regulatory system and regulatory RNA VirR/VirS-VR-RNA cascade. The VirR/VirS system was originally found in a type A strain, but a recent report showed that it is also important for the toxin gene regulation in other types of strains. Two types of cell-cell signaling, i.e., agr-system and AI-2 signaling, are also important for the regulation of toxin genes. Several regulatory systems independent from the VirR/VirS system, including virX, the orphan histidine kinase ReeS and orphan response regulator RevR, are also involved in the regulation of toxin genes. In addition, the expression of toxin genes is upregulated after contact with Caco-2 cells. C. perfringens has a complex regulatory network for toxin gene expression and thus the coordination of toxin gene expression is important for the process of infection. PMID:25303832

  5. Regulation of gene expression in the intestinal epithelium.

    Science.gov (United States)

    Richmond, Camilla A; Breault, David T

    2010-01-01

    Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/β-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation. PMID:21075346

  6. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug effic...

  7. Embryonic temperature and the genes regulating myogenesis in teleosts

    OpenAIRE

    Macqueen, Daniel J.

    2008-01-01

    In this study, full coding sequences of Atlantic salmon (Salmo salar L.) muscle genes were cloned, including myogenic regulatory factors (MRFs) (myod1c, myog, mrf4, myf5), inhibitors of Myostatin (fst, decorin), markers of myogenic progenitor cell (MPC) proliferation (sox8) and fusion (calpastatin), a marker of slow muscle fibre differentiation (smlc1) and a novel eukaryotic gene involved in regulating growth (cee). Several of these genes were then characterised using a range of experimental ...

  8. Relating periodicity of nucleosome organization and gene regulation

    OpenAIRE

    Wan, Jun; Lin, Jimmy; Zack, Donald J.; Qian, Jiang

    2009-01-01

    Motivation: The relationship between nucleosome positioning and gene regulation is fundamental yet complex. Previous studies on genomic nucleosome positions have revealed a correlation between nucleosome occupancy on promoters and gene expression levels. Many of these studies focused on individual nucleosomes, especially those proximal to transcription start sites. To study the collective effect of multiple nucleosomes on the gene expression, we developed a mathematical approach based on auto...

  9. Regulated system for heterologous gene expression in Penicillium chrysogenum.

    OpenAIRE

    Graessle, S.; de Haas, H.; Friedlin, E; Kürnsteiner, H; Stöffler, G; Redl, B

    1997-01-01

    A system for regulated heterologous gene expression in the filamentous fungus Penicillium chrysogenum was established. This is the first heterologous expression system to be developed for this organism. Expression of a recombinant fungal xylanase gene (xylp) and the cDNA for the human tear lipocalin (LCNI) was achieved by placing the encoding sequences under the control of the repressible acid phosphatase gene (phoA) promoter of P. chrysogenum. Secreted recombinant proteins were detected in t...

  10. TBR1 regulates autism risk genes in the developing neocortex.

    Science.gov (United States)

    Notwell, James H; Heavner, Whitney E; Darbandi, Siavash Fazel; Katzman, Sol; McKenna, William L; Ortiz-Londono, Christian F; Tastad, David; Eckler, Matthew J; Rubenstein, John L R; McConnell, Susan K; Chen, Bin; Bejerano, Gill

    2016-08-01

    Exome sequencing studies have identified multiple genes harboring de novo loss-of-function (LoF) variants in individuals with autism spectrum disorders (ASD), including TBR1, a master regulator of cortical development. We performed ChIP-seq for TBR1 during mouse cortical neurogenesis and show that TBR1-bound regions are enriched adjacent to ASD genes. ASD genes were also enriched among genes that are differentially expressed in Tbr1 knockouts, which together with the ChIP-seq data, suggests direct transcriptional regulation. Of the nine ASD genes examined, seven were misexpressed in the cortices of Tbr1 knockout mice, including six with increased expression in the deep cortical layers. ASD genes with adjacent cortical TBR1 ChIP-seq peaks also showed unusually low levels of LoF mutations in a reference human population and among Icelanders. We then leveraged TBR1 binding to identify an appealing subset of candidate ASD genes. Our findings highlight a TBR1-regulated network of ASD genes in the developing neocortex that are relatively intolerant to LoF mutations, indicating that these genes may play critical roles in normal cortical development. PMID:27325115

  11. Epigenetic Regulation of Cancer-Associated Genes in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kwon

    2011-01-01

    Full Text Available The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes.

  12. Plant defense genes are regulated by ethylene

    International Nuclear Information System (INIS)

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase [4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12], enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes

  13. Plant defense genes are regulated by ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  14. Cost benefit theory and optimal design of gene regulation functions

    Science.gov (United States)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  15. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  16. Intrinsic limits to gene regulation by global crosstalk.

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C; Barton, Nicholas H; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)-DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF-DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  17. Sperm is epigenetically programmed to regulate gene transcription in embryos.

    Science.gov (United States)

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M; Zegerman, Philip; Bradshaw, Charles R; Peters, Antoine H F M; Gurdon, John B; Jullien, Jerome

    2016-08-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  18. Regulation of Gene Expression in Protozoa Parasites

    OpenAIRE

    Consuelo Gomez; Esther Ramirez, M.; Mercedes Calixto-Galvez; Olivia Medel; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or dru...

  19. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  20. Regulation of tryptophan genes in Rhizobium leguminosarum.

    OpenAIRE

    Holmgren, E; I. P. Crawford

    1982-01-01

    Twelve tryptophan auxotrophs of Rhizobium leguminosarum were characterized biochemically. They were grown in complex and minimal media with several carbon sources, in both limiting and excess tryptophan. Missing enzyme activities allowed assignment of all mutant to the trpE, trpD, trpB, or trpA gene, confirming earlier results with the same mutants (Johnston et al., Mol. Gen. Genet. 165:323-330, 1978). In regulatory experiments, only the first enzyme of the pathway, anthranilate synthase, res...

  1. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  2. Pancreatic regeneration: basic research and gene regulation.

    Science.gov (United States)

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development. PMID:26148809

  3. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome. PMID:21215797

  4. Epigenetics, cellular memory and gene regulation.

    Science.gov (United States)

    Henikoff, Steven; Greally, John M

    2016-07-25

    The field described as 'epigenetics' has captured the imagination of scientists and the lay public. Advances in our understanding of chromatin and gene regulatory mechanisms have had impact on drug development, fueling excitement in the lay public about the prospects of applying this knowledge to address health issues. However, when describing these scientific advances as 'epigenetic', we encounter the problem that this term means different things to different people, starting within the scientific community and amplified in the popular press. To help researchers understand some of the misconceptions in the field and to communicate the science accurately to each other and the lay audience, here we review the basis for many of the assumptions made about what are currently referred to as epigenetic processes. PMID:27458904

  5. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Nirmala Yabaluri; Murali D Bashyam

    2010-09-01

    Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

  6. Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression.

    OpenAIRE

    Evans, R M; Birnberg, N C; Rosenfeld, M G

    1982-01-01

    In order to define the molecular mechanisms by which glucocorticoids and thyroid hormone act to regulate growth hormone gene expression, the sites at which they exert their effects on growth hormone biosynthesis were examined in vivo and in a pituitary cell line. Glucocorticoids were shown to rapidly increase accumulation of growth hormone mRNA and nuclear RNA precursors. Glucocorticoids and thyroid hormone were shown to rapidly and independently increase growth hormone gene transcription. Th...

  7. G9a, a multipotent regulator of gene expression

    OpenAIRE

    Shankar, Shilpa Rani; Bahirvani, Avinash G.; Rao, Vinay Kumar; Bharathy, Narendra; Ow, Jin Rong; Taneja, Reshma

    2013-01-01

    Lysine methylation of histone and non-histone substrates by the methyltransferase G9a is mostly associated with transcriptional repression. Recent studies, however, have highlighted its role as an activator of gene expression through mechanisms that are independent of its methyltransferase activity. Here we review the growing repertoire of molecular mechanisms and substrates through which G9a regulates gene expression. We also discuss emerging evidence for its wide-ranging functions in develo...

  8. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    Science.gov (United States)

    Roy, Sourav; Saha, Tusar T; Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S

    2015-08-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  9. Molecular nutrition: Interaction of nutrients, gene regulations and performances.

    Science.gov (United States)

    Sato, Kan

    2016-07-01

    Nutrition deals with ingestion of foods, digestion, absorption, transport of nutrients, intermediary metabolism, underlying anabolism and catabolism, and excretion of unabsorbed nutrients and metabolites. In addition, nutrition interacts with gene expressions, which are involved in the regulation of animal performances. Our laboratory is concerned with the improvement of animal productions, such as milks, meats and eggs, with molecular nutritional aspects. The present review shows overviews on the nutritional regulation of metabolism, physiological functions and gene expressions to improve animal production in chickens and dairy cows. PMID:27110862

  10. Positive and negative regulators of the metallothionein gene (review).

    Science.gov (United States)

    Takahashi, Shinichiro

    2015-07-01

    Metallothioneins (MTs) are metal-binding proteins involved in diverse processes, including metal homeostasis and detoxification, the oxidative stress response and cell proliferation. Aberrant expression and silencing of these genes are important in a number of diseases. Several positive regulators of MT genes, including metal-responsive element-binding transcription factor (MTF)-1 and upstream stimulatory factor (USF)-1, have been identified and mechanisms of induction have been well described. However, the negative regulators of MT genes remain to be elucidated. Previous studies from the group of the present review have revealed that the hematopoietic master transcription factor, PU.1, directly represses the expression levels of MT genes through its epigenetic activities, and upregulation of MT results in the potent inhibition of myeloid differentiation. The present review focuses on PU.1 and several other negative regulators of this gene, including PZ120, DNA methyltransferase 3a with Mbd3 and Brg1 complex, CCAAT enhancer binding protein α and Ku protein, and describes the suppression of the MT genes through these transcription factors. PMID:25760317

  11. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    Science.gov (United States)

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis. PMID:26626937

  12. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  13. Nitrogen regulates chitinase gene expression in a marine bacterium

    DEFF Research Database (Denmark)

    Delpin, Marina; Goodman, A.E.

    2009-01-01

    Ammonium concentration and nitrogen source regulate promoter activity and use for the transcription of chiA, the major chitinase gene of Pseudoalteromonas sp. S91 and S91CX, an S91 transposon lacZ fusion mutant. The activity of chiA was quantified by beta-galactosidase assay of S91CX cultures con...

  14. Peptide nucleic acid (PNA) binding-mediated gene regulation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.

  15. Non-Equilibrium Thermodynamics of Gene Expression and Transcriptional Regulation

    Science.gov (United States)

    Lemus, Enrique Hernández

    2009-12-01

    In recent times whole-genome gene expression analysis has turned out to be a highly important tool to study the coordinated function of a very large number of genes within their corresponding cellular environment, especially in relation to phenotypic diversity and disease. A wide variety of methods of quantitative analysis has been developed to cope with high throughput data sets generated by gene expression profiling experiments. Due to the complexity associated with transcriptomics, especially in the case of gene regulation phenomena, most of these methods are of a probabilistic or statistical nature. Even if these methods have reached a central status in the development of an integrative, systematic understanding of the associated biological processes, they very rarely constitute a concrete guide to the actual physicochemical mechanisms behind biological function, and the role of these methods is more on a hypotheses generating line. An important improvement could lie in the development of a thermodynamic theory for gene expression and transcriptional regulation that will build the foundations for a proper integration of the vast amount of molecular biophysical data and could lead, in the future, to a systemic view of genetic transcription and regulation.

  16. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  17. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  18. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar Gummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance”, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  19. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  20. Identification of Master Regulator Genes in Human Periodontitis.

    Science.gov (United States)

    Sawle, A D; Kebschull, M; Demmer, R T; Papapanou, P N

    2016-08-01

    Analytic approaches confined to fold-change comparisons of gene expression patterns between states of health and disease are unable to distinguish between primary causal disease drivers and secondary noncausal events. Genome-wide reverse engineering approaches can facilitate the identification of candidate genes that may distinguish between causal and associative interactions and may account for the emergence or maintenance of pathologic phenotypes. In this work, we used the algorithm for the reconstruction of accurate cellular networks (ARACNE) to analyze a large gene expression profile data set (313 gingival tissue samples from a cross-sectional study of 120 periodontitis patients) obtained from clinically healthy (n = 70) or periodontitis-affected (n = 243) gingival sites. The generated transcriptional regulatory network of the gingival interactome was subsequently interrogated with the master regulator inference algorithm (MARINA) and gene expression signature data from healthy and periodontitis-affected gingiva. Our analyses identified 41 consensus master regulator genes (MRs), the regulons of which comprised between 25 and 833 genes. Regulons of 7 MRs (HCLS1, ZNF823, XBP1, ZNF750, RORA, TFAP2C, and ZNF57) included >500 genes each. Gene set enrichment analysis indicated differential expression of these regulons in gingival health versus disease with a type 1 error between 2% and 0.5% and with >80% of the regulon genes in the leading edge. Ingenuity pathway analysis showed significant enrichment of 36 regulons for several pathways, while 6 regulons (those of MRs HCLS1, IKZF3, ETS1, NHLH2, POU2F2, and VAV1) were enriched for >10 pathways. Pathways related to immune system signaling and development were the ones most frequently enriched across all regulons. The unbiased analysis of genome-wide regulatory networks can enhance our understanding of the pathobiology of human periodontitis and, after appropriate validation, ultimately identify target molecules of

  1. Non-equilibrium dynamics of stochastic gene regulation.

    Science.gov (United States)

    Ghosh, Anandamohan

    2015-01-01

    The process of gene regulation is comprised of intrinsically random events resulting in large cell-to-cell variability in mRNA and protein numbers. With gene expression being the central dogma of molecular biology, it is essential to understand the origin and role of these fluctuations. An intriguing observation is that the number of mRNA present in a cell are not only random and small but also that they are produced in bursts. The gene switches between an active and an inactive state, and the active gene transcribes mRNA in bursts. Transcriptional noise being bursty, so are the number of proteins and the subsequent gene expression levels. It is natural to ask the question: what is the reason for the bursty mRNA dynamics? And can the bursty dynamics be shown to be entropically favorable by studying the reaction kinetics underlying the gene regulation mechanism? The dynamics being an out-of-equilibrium process, the fluctuation theorem for entropy production in the reversible reaction channel is discussed. We compute the entropy production rate for varying degrees of burstiness. We find that the reaction parameters that maximize the burstiness simultaneously maximize the entropy production rate. PMID:25288134

  2. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing

    Science.gov (United States)

    Guo, Wei; Schafer, Sebastian; Greaser, Marion L.; Radke, Michael H.; Liss, Martin; Govindarajan, Thirupugal; Maatz, Henrike; Schulz, Herbert; Li, Shijun; Parrish, Amanda M.; Dauksaite, Vita; Vakeel, Padmanabhan; Klaassen, Sabine; Gerull, Brenda; Thierfelder, Ludwig; Regitz-Zagrosek, Vera; Hacker, Timothy A.; Saupe, Kurt W.; Dec, G. William; Ellinor, Patrick T.; MacRae, Calum A.; Spallek, Bastian; Fischer, Robert; Perrot, Andreas; Özcelik, Cemil; Saar, Kathrin; Hubner, Norbert; Gotthardt, Michael

    2013-01-01

    Alternative splicing plays a major role in the adaptation of cardiac function exemplified by the isoform switch of titin, which adjusts ventricular filling. We previously identified a rat strain deficient in titin splicing. Using genetic mapping, we found a loss-of-function mutation in RBM20 as the underlying cause for the pathological titin isoform expression. Mutations in human RBM20 have previously been shown to cause dilated cardiomyopathy. We showed that the phenotype of Rbm20 deficient rats resembles the human pathology. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20 dependent regulation of alternative splicing. Additionally to titin we identified a set of 30 genes with conserved regulation between human and rat. This network is enriched for genes previously linked to cardiomyopathy, ion-homeostasis, and sarcomere biology. Our studies emphasize the importance of posttranscriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure. PMID:22466703

  3. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  4. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Artificial transcription factor-mediated regulation of gene expression.

    Science.gov (United States)

    van Tol, Niels; van der Zaal, Bert J

    2014-08-01

    The transcriptional regulation of endogenous genes with artificial transcription factors (TFs) can offer new tools for plant biotechnology. Three systems are available for mediating site-specific DNA recognition of artificial TFs: those based on zinc fingers, TALEs, and on the CRISPR/Cas9 technology. Artificial TFs require an effector domain that controls the frequency of transcription initiation at endogenous target genes. These effector domains can be transcriptional activators or repressors, but can also have enzymatic activities involved in chromatin remodeling or epigenetic regulation. Artificial TFs are able to regulate gene expression in trans, thus allowing them to evoke dominant mutant phenotypes. Large scale changes in transcriptional activity are induced when the DNA binding domain is deliberately designed to have lower binding specificity. This technique, known as genome interrogation, is a powerful tool for generating novel mutant phenotypes. Genome interrogation has clear mechanistic and practical advantages over activation tagging, which is the technique most closely resembling it. Most notably, genome interrogation can lead to the discovery of mutant phenotypes that are unlikely to be found when using more conventional single gene-based approaches. PMID:25017160

  7. Differential gene regulation by the SRC family of coactivators

    Institute of Scientific and Technical Information of China (English)

    HuaZhang; XiaYi; Xiaojingsun; NaYin; BinShi; HuijianWu; DanWang; GeWu; YongfengShang

    2005-01-01

    SRCs (steroid receptor coactivatorsl are required for nuclear receptor-mediated transcription and are also implicated in the transcription initiation by other transcription factors, such as STATs and NFKB. Despite phenotypic manifestations in gene knockout mice for SRC-1, GRIP1, and AIB1 of the SRC (Steroid Receptor Coactivator) family indicating their differential roles in animal physiology, there is no clear evidence, at the molecular level, to support a functional specificity for these proteins. We demonstrated in this report that two species of SRC coactivators, either as AIBI:GRIP1 or as AIBI:SRC-1 are recruited, possibly through heterodimerization, on the promoter of genes that contain a classical hormone responsive element (HRE). In contrast, on non-HRE-containing gene promoters, on which steroid receptors bind indirectly, either GRIP1 orSRC-1 is recruited as a monomer, depending on the cellular abundance of the protein. Typically, non-HRE-containing genes are early genes activated by steroid receptors, whereas HRE-containing genes are activated later. Our results also showed that SRC proteins contribute to the temporal regulation of gene transcription. In addition, our experiments revealed a positive correlation between AIB1/c-myc overexpression in ER+ breast carcinoma samples, suggesting a possible mechanism for AIB1/n breast cancer carcinogenesis.

  8. Complex structure and regulation of the ABP/SHBG gene.

    Science.gov (United States)

    Joseph, D R; Sullivan, P M; Wang, Y M; Millhorn, D E; Bayliss, D M

    1991-01-01

    Extracellular androgen-binding proteins (ABPs) are thought to modulate the regulatory functions of androgens and the trans-acting nuclear androgen receptor. Testicular ABP and plasma sex hormone-binding globulin (SHBG), which is produced in the liver, are encoded by the same gene. We report here that the ABP/SHBG gene is also expressed in fetal rat liver and adult brain. Immunoreactive ABP was localized in the brain and fetal liver and mRNAs were identified in both tissues by northern blot hybridization. Analysis of brain and fetal liver cDNA clones revealed alternatively processed RNAs with sequence characteristics suggesting the encoded proteins could act as competitors of ABP/SHBG binding to cell surface receptors. One cDNA represented a fused transcript of the ABP/SHBG gene and the histidine decarboxylase gene that was apparently formed by a trans-splicing process. Gene sequencing experiments indicate that tissue-specific ABP/SHBG gene promoter-enhancer elements are utilized in testis, brain and fetal liver. These data demonstrate that the structure, RNA transcript processing and likely regulation of the ABP/SHBG gene are very complex. PMID:1958575

  9. Gene Regulation System of Vasopressin and Corticotoropin-Releasing Hormone

    Directory of Open Access Journals (Sweden)

    Masanori Yoshida

    2008-01-01

    Full Text Available The neurohypophyseal hormones, arginine vasopressin and corticotropin-releasing hormone (CRH, play a crucial role in the physiological and behavioral response to various kinds of stresses. Both neuropeptides activate the hypophysialpituitary-adrenal (HPA axis, which is a central mediator of the stress response in the body. Conversely, they receive the negative regulation by glucocorticoid, which is an end product of the HPA axis. Vasopressin and CRH are closely linked to immune response; they also interact with pro-inflammatory cytokines. Moreover, as for vasopressin, it has another important role, which is the regulation of water balance through its potent antidiuretic effect. Hence, it is conceivable that vasopressin and CRH mediate the homeostatic responses for survival and protect organisms from the external world. A tight and elaborate regulation system of the vasopressin and CRH gene is required for the rapid and flexible response to the alteration of the surrounding environments. Several important regulatory elements have been identified in the proximal promoter region in the vasopressin and CRH gene. Many transcription factors and intracellular signaling cascades are involved in the complicated gene regulation system. This review focuses on the current status of the basic research of vasopressin and CRH. In addition to the numerous known facts about their divergent physiological roles, the recent topics of promoter analyses will be discussed.

  10. Doublesex: a conserved downstream gene controlled by diverse upstream regulators

    Indian Academy of Sciences (India)

    J. N. Shukla; J. Nagaraju

    2010-09-01

    Sex determination, an integral precursor to sexual reproduction, is required to generate morphologically distinct sexes. The molecular components of sex-determination pathways regulating sexual differentiation have been identified and characterized in different organisms. The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of their sex-determination cascade. The dsx homologues are regulated by a series of upstream regulators that show amazing diversity in different insect species. These results support the Wilkin’s hypothesis that evolution of the sex-determination cascade has taken place in reverse order, the bottom most gene being most conserved and the upstream genes having been recruited at different times during evolution. The pre-mRNA of dsx is sex-specifically spliced to encode male or female-specific transcription factors that play an important role in the regulation of sexually dimorphic characters in different insect species. The generalization that dsx is required for somatic sexual differentiation culminated with its functional analysis through transgenesis and knockdown experiments in diverse species of insects. This brief review will focus on the similarities and variations of dsx homologues that have been investigated in insects to date.

  11. Computational identification of transcriptionally co-regulated genes, validation with the four ANT isoform genes

    Directory of Open Access Journals (Sweden)

    Dupont Pierre-Yves

    2012-09-01

    Full Text Available Abstract Background The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. Results From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. Conclusions Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks.

  12. Regulation of the cytochrome P450 2A genes

    International Nuclear Information System (INIS)

    Cytochrome P450 monooxygenases of the CYP2A subfamily play important roles in xenobiotic disposition in the liver and in metabolic activation in extrahepatic tissues. Many of the CYP2A transcripts and enzymes are inducible by xenobiotic compounds, and the expression of at least some of the CYP2A genes is influenced by physiological status, such as circadian rhythm, and pathological conditions, such as inflammation, microbial infection, and tumorigenesis. Variability in the expression of the CYP2A genes, which differs by species, animal strain, gender, and organ, may alter the risks of chemical toxicity for numerous compounds that are CYP2A substrates. The mechanistic bases of these variabilities are generally not well understood. However, recent studies have yielded interesting findings in several areas, such as the role of nuclear factor 1 in the tissue-selective expression of CYP2A genes in the olfactory mucosa (OM); the roles of constitutive androstane receptor, pregnane X receptor (PXR), and possibly, peroxisome proliferator-activated receptors in transcriptional regulation of the Cyp2a5 gene; and the involvement of heterogeneous nuclear ribonucleoprotein A1 in pyrazole-induced stabilization of CYP2A5 mRNA. The aims of this minireview are to summarize current knowledge of the regulation of the CYP2A genes in rodents and humans, and to stimulate further mechanistic studies that will ultimately improve our ability to determine, and to understand, these variabilities in humans

  13. Androgenic regulation of novel genes in the epididymis

    Institute of Scientific and Technical Information of China (English)

    Bernard Robaire; Shayesta Seenundun; Mahsa Hamzeh; Sophie-Anne Lamour

    2007-01-01

    The epididymis is critically dependent on the presence of the testis. Although several hormones, such as retinoids and progestins, and factors secreted directly into the epididymal lumen, such as androgen binding protein and fibroblast growth factor, might play regulatory roles in epididymal function, testosterone (T) and its metabolites,dihydrotestosterone (DHT) and estradiol (E2), are accepted as the primary regulators of epididymal structure and functions, with the former playing the greater role. To ascertain the molecular action of androgens on the epididymis,three complementary approaches were pursued to monitor changes in gene expression in response to different hormonal milieux. The first was to establish changes in gene expression along the epididymis as androgenic support is withdrawn. The second was to determine the sequence of responses that occur in an androgen deprived tissue upon re-administration of the two metabolites of T, DHT and E2. The third was to study the effects of androgen withdrawal and re-administration on gene expression in immortalized murine caput epididymidal principal cells. Specific responses were observed under each of these conditions, with an expected major difference in the panoply of genes expressed upon hormone withdrawal and re-administration; however, some key common features were the common roles of genes in insulin like growth factor/epidermal growth factor and the relatively minor and specific effects of E2 as compared to DHT. Together, these results provide novel insights into the mechanisms of androgen regulation in epididymal principal cells.

  14. Differential regulation of NAB corepressor genes in Schwann cells

    Directory of Open Access Journals (Sweden)

    Sachdev Shrikesh

    2007-12-01

    Full Text Available Abstract Background Myelination of peripheral nerves by Schwann cells requires not only the Egr2/Krox-20 transactivator, but also the NGFI-A/Egr-binding (NAB corepressors, which modulate activity of Egr2. Previous work has shown that axon-dependent expression of Egr2 is mediated by neuregulin stimulation, and NAB corepressors are co-regulated with Egr2 expression in peripheral nerve development. NAB corepressors have also been implicated in macrophage development, cardiac hypertrophy, prostate carcinogenesis, and feedback regulation involved in hindbrain development. Results To test the mechanism of NAB regulation in Schwann cells, transfection assays revealed that both Nab1 and Nab2 promoters are activated by Egr2 expression. Furthermore, direct binding of Egr2 at these promoters was demonstrated in vivo by chromatin immunoprecipitation analysis of myelinating sciatic nerve, and binding of Egr2 to the Nab2 promoter was stimulated by neuregulin in primary Schwann cells. Although Egr2 expression activates the Nab2 promoter more highly than Nab1, we surprisingly found that only Nab1 – but not Nab2 – expression levels were reduced in sciatic nerve from Egr2 null mice. Analysis of the Nab2 promoter showed that it is also activated by ETS proteins (Ets2 and Etv1/ER81 and is bound by Ets2 in vivo. Conclusion Overall, these results indicate that induction of Nab2 expression in Schwann cells involves not only Egr2, but also ETS proteins that are activated by neuregulin stimulation. Although Nab1 and Nab2 play partially redundant roles, regulation of Nab2 expression by ETS factors explains several observations regarding regulation of NAB genes. Finally, these data suggest that NAB proteins are not only feedback inhibitors of Egr2, but rather that co-induction of Egr2 and NAB genes is involved in forming an Egr2/NAB complex that is crucial for regulation of gene expression.

  15. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  16. Unsupervised Meta-Analysis on Diverse Gene Expression Datasets Allows Insight into Gene Function and Regulation

    Directory of Open Access Journals (Sweden)

    Julia C. Engelmann

    2008-01-01

    Full Text Available Over the past years, microarray databases have increased rapidly in size. While they offer a wealth of data, it remains challenging to integrate data arising from different studies. Here we propose an unsupervised approach of a large-scale meta-analysis on Arabidopsis thaliana whole genome expression datasets to gain additional insights into the function and regulation of genes. Applying kernel principal component analysis and hierarchical clustering, we found three major groups of experimental contrasts sharing a common biological trait. Genes associated to two of these clusters are known to play an important role in indole-3-acetic acid (IAA mediated plant growth and development or pathogen defense. Novel functions could be assigned to genes including a cluster of serine/threonine kinases that carry two uncharacterized domains (DUF26 in their receptor part implicated in host defense. With the approach shown here, hidden interrelations between genes regulated under different conditions can be unraveled.

  17. Obtain osteoarthritis related molecular signature genes through regulation network.

    Science.gov (United States)

    Li, Yawei; Wang, Bing; Lv, Guohua; Xiong, Guangzhong; Liu, Wei Dong; Li, Lei

    2012-01-01

    Osteoarthritis (OA), also known as degenerative joint disease or osteoarthrosis, is the most common form of arthritis. OA occurs when cartilage in the joints wears down over time. We used the GSE1919 series to identify potential genes that correlated to OA. The aim of our study was to obtain a molecular signature of OA through the regulation network based on differentially expressed genes. From the result of regulation network construction in OA, a number of transcription factors (TFs) and pathways closely related to OA were linked by our method. Peroxisome proliferator-activated receptor γ also arises as hub nodes in our transcriptome network and certain TFs containing CEBPD, EGR2 and ETS2 were shown to be related to OA by a previous study. PMID:21946934

  18. Micro-RNA: A New Kind of Gene Regulators

    Institute of Scientific and Technical Information of China (English)

    WU Dan; HU Lan

    2006-01-01

    A group of small RNA molecules, distinct from but related to siRNAs (small interference RNAs) have been identified in a variety of organisms. These small RNAs, called microRNAs (miRNAs), are endogenously encoded approximately 20-24 nt long single-stranded RNAs. They are generally expressed in a highly tissue- or developmental-stage-specific fashion and are post-transcriptional regulator of gene expression in animals and plants. This article summarizes the character, mechanism and analysis method about miRNAs. The current view that miRNAs represent a newly discovered, hidden layer of gene regulation has resulted in high interest among researchers in the discovery of miRNAs, their targets, expression mechanism of action and analysis methods.

  19. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  20. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    Science.gov (United States)

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  1. Looking for arthritis regulating genes on mouse chromosome 6 & 14

    OpenAIRE

    Popovic, Marjan

    2008-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints with a complex aetiology affected by largely unknown genetic and environmental factors. Because ~60% of susceptibility to RA is genetically inherited, one way to progress towards understanding of the disease is to identify the disease regulating genes. Collagen-induced arthritis (CIA) is the most commonly used model of RA in mice. After immunisation by a subcutaneous injection of collagen emulsified ...

  2. Regulation of cry Gene Expression in Bacillus thuringiensis

    OpenAIRE

    Chao Deng; Qi Peng; Fuping Song; Didier Lereclus

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcr...

  3. Adrenergic regulation of clock gene expression in mouse liver

    OpenAIRE

    Terazono, Hideyuki; Mutoh, Tatsushi; Yamaguchi, Shun; Kobayashi, Masaki; Akiyama, Masashi; Udo, Rhyuta; Ohdo, Shigehiro; Okamura, Hitoshi; Shibata, Shigenobu

    2003-01-01

    A main oscillator in the suprachiasmatic nucleus (SCN) conveys circadian information to the peripheral clock systems for the regulation of fundamental physiological functions. Although polysynaptic autonomic neural pathways between the SCN and the liver were observed in rats, whether activation of the sympathetic nervous system entrains clock gene expression in the liver has yet to be understood. To assess sympathetic innervation from the SCN to liver tissue, we investigated whether inj...

  4. Regulation of clock-controlled genes in mammals.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    Full Text Available The complexity of tissue- and day time-specific regulation of thousands of clock-controlled genes (CCGs suggests that many regulatory mechanisms contribute to the transcriptional output of the circadian clock. We aim to predict these mechanisms using a large scale promoter analysis of CCGs.Our study is based on a meta-analysis of DNA-array data from rodent tissues. We searched in the promoter regions of 2065 CCGs for highly overrepresented transcription factor binding sites. In order to compensate the relatively high GC-content of CCG promoters, a novel background model to avoid a bias towards GC-rich motifs was employed. We found that many of the transcription factors with overrepresented binding sites in CCG promoters exhibit themselves circadian rhythms. Among the predicted factors are known regulators such as CLOCKratioBMAL1, DBP, HLF, E4BP4, CREB, RORalpha and the recently described regulators HSF1, STAT3, SP1 and HNF-4alpha. As additional promising candidates of circadian transcriptional regulators PAX-4, C/EBP, EVI-1, IRF, E2F, AP-1, HIF-1 and NF-Y were identified. Moreover, GC-rich motifs (SP1, EGR, ZF5, AP-2, WT1, NRF-1 and AT-rich motifs (MEF-2, HMGIY, HNF-1, OCT-1 are significantly overrepresented in promoter regions of CCGs. Putative tissue-specific binding sites such as HNF-3 for liver, NKX2.5 for heart or Myogenin for skeletal muscle were found. The regulation of the erythropoietin (Epo gene was analysed, which exhibits many binding sites for circadian regulators. We provide experimental evidence for its circadian regulated expression in the adult murine kidney. Basing on a comprehensive literature search we integrate our predictions into a regulatory network of core clock and clock-controlled genes. Our large scale analysis of the CCG promoters reveals the complexity and extensiveness of the circadian regulation in mammals. Results of this study point to connections of the circadian clock to other functional systems including

  5. Defining human insulin-like growth factor I gene regulation.

    Science.gov (United States)

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  6. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.

    Science.gov (United States)

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-08-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR. PMID:27266404

  7. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  8. Alternative RNA Structure-Coupled Gene Regulations in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Feng-Chi Chen

    2014-12-01

    Full Text Available Alternative RNA structures (ARSs, or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.

  9. Differential regulation drives plasticity in sex determination gene networks

    Directory of Open Access Journals (Sweden)

    Seymour Robert M

    2010-12-01

    Full Text Available Abstract Background Sex determination networks evolve rapidly and have been studied intensely across many species, particularly in insects, thus presenting good models to study the evolutionary plasticity of gene networks. Results We study the evolution of an unlinked gene capable of regulating an existing diploid sex determination system. Differential gene expression determines phenotypic sex and fitness, dramatically reducing the number of assumptions of previous models. It allows us to make a quantitative evaluation of the full range of evolutionary outcomes of the system and an assessment of the likely contribution of sexual conflict to change in sex determination systems. Our results show under what conditions network mutations causing differential regulation can lead to the reshaping of sex determination networks. Conclusion The analysis demonstrates the complex relationship between mutation and outcome: the same mutation can produce many different evolved populations, while the same evolved population can be produced by many different mutations. Existing network structure alters the constraints and frequency of evolutionary changes, which include the recruitment of new regulators, changes in heterogamety, protected polymorphisms, and transitions to a new locus that controls sex determination.

  10. Regulation of Rubisco gene expression in C4 plants.

    Science.gov (United States)

    Berry, James O; Mure, Christopher M; Yerramsetty, Pradeep

    2016-06-01

    Ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) incorporates inorganic carbon into an organic form, making this chloroplastic enzyme one of the most essential factors for all life on earth. Despite its central role in photosynthesis, research into regulation of the chloroplast rbcL and nuclear RbcS genes that encode this enzyme has lagged behind other plant gene systems. A major characteristic of kranz-type C4 plants is the accumulation of Rubisco only within chloroplasts of internalized bundle sheath cells that surround the leaf vascular centers. In plants that utilize the less common single cell C4 system, Rubisco accumulates only within one type of dimorphic chloroplasts localized to a specific region of leaf chlorenchyma cells. Understanding regulatory processes that restrict Rubisco gene expression to only one cell type or chloroplast type is a major focus of C4 research. Regulatory steps may include transcriptional, post-transcriptional, and post-translational processes. PMID:27026038

  11. An optimized, chemically regulated gene expression system for Chlamydomonas.

    Directory of Open Access Journals (Sweden)

    Paola Ferrante

    Full Text Available BACKGROUND: Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. METHODOLOGY: Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 microM TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 microM. Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient "wave" in luciferase activity, which can be repeated in subsequent growth cycles. CONCLUSIONS: We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled "waves" in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.

  12. MTA3 regulates CGB5 and Snail genes in trophoblast

    International Nuclear Information System (INIS)

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  13. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  14. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    Directory of Open Access Journals (Sweden)

    M. Ananda Chitra

    2015-07-01

    Full Text Available Background: Staphylococcus pseudintermedius (SP is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objective of this study was to detect and sequence analyzing the AgrA, B, and D of SP isolated from canine skin infections. Materials and Methods: In this study, we have isolated and identified SP from canine pyoderma and otitis cases by polymerase chain reaction (PCR and confirmed by PCR-restriction fragment length polymorphism. Primers for SP agrA and agrBD genes were designed using online primer designing software and BLAST searched for its specificity. Amplification of the agr genes was carried out for 53 isolates of SP by PCR and sequencing of agrA, B, and D were carried out for five isolates and analyzed using DNAstar and Mega5.2 software. Results: A total of 53 (59% SP isolates were obtained from 90 samples. 15 isolates (28% were confirmed to be methicillinresistant SP (MRSP with the detection of the mecA gene. Accessory gene regulator A, B, and D genes were detected in all the SP isolates. Complete nucleotide sequences of the above three genes for five isolates were submitted to GenBank, and their accession numbers are from KJ133557 to KJ133571. AgrA amino acid sequence analysis showed that it is mainly made of alpha-helices and is hydrophilic in nature. AgrB is a transmembrane protein, and AgrD encodes the precursor of the autoinducing peptide (AIP. Sequencing of the agrD gene revealed that the 5 canine SP strains tested could be divided into three Agr specificity groups (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF based on the putative AIP produced by each strain

  15. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  16. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  17. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara;

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression.......Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N...

  18. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M system, controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates. Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.

  19. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Science.gov (United States)

    Srikhanta, Yogitha N; Gorrell, Rebecca J; Steen, Jason A; Gawthorne, Jayde A; Kwok, Terry; Grimmond, Sean M; Robins-Browne, Roy M; Jennings, Michael P

    2011-01-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis. PMID:22162751

  20. Regulation of the ansB gene of Salmonella enterica.

    Science.gov (United States)

    Jennings, M P; Scott, S P; Beacham, I R

    1993-07-01

    The expression of L-asparaginase II (encoded by ansB) in Salmonella enterica was found to be positively regulated by the cAMP receptor protein (CRP) and anaerobiosis. The anaerobic regulation of the S. enterica ansB gene is not mediated by the anaerobic transcriptional activator FNR. This is unlike the situation of the ansB gene of Escherichia coli, which is dependent on both CRP and FNR. To investigate this fundamental difference in the regulation of L-asparaginase II expression in S. enterica, the ansB gene was cloned and the nucleotide sequence of the promoter region determined. Sequence analysis and transcript mapping of the 5' promoter region revealed a single transcriptional start point (tsp) and two regulatory sites with substantial homology with those found in E. coli. One site, centred -90.5 bp from the tsp, is homologous to a hybrid CRP/FNR ('CF') site which is the site of CRP regulation in the E. coli promoter. The other site, centred 40.5 bp upstream of the tsp, is homologous to the FNR binding site of the E. coli promoter. Significantly, however, a single base-pair difference exists in this site, at a position of the related CRP and FNR DNA-binding site consensus sequences known to be involved in CRP versus FNR specificity. Site-directed mutagenesis indicates that this single difference, relative to the homologous E. coli site, results in a CRP binding site and the observed FNR-independent ansB expression in S. enterica.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8412661

  1. The regulation of human immunodeficiency virus type-1 gene expression.

    Science.gov (United States)

    Kingsman, S M; Kingsman, A J

    1996-09-15

    Despite 15 years of intensive research we still do not have an effective treatment for AIDS, the disease caused by human immunodeficiency virus (HIV). Recent research is, however, revealing some of the secrets of the replication cycle of this complex retrovirus, and this may lead to the development of novel antiviral compounds. In particular the virus uses strategies for gene expression that seem to be unique in the eukaryotic world. These involve the use of virally encoded regulatory proteins that mediate their effects through interactions with specific viral target sequences present in the messenger RNA rather than in the proviral DNA. If there are no cellular counterparts of these RNA-dependent gene-regulation pathways then they offer excellent targets for the development of antiviral compounds. The viral promoter is also subject to complex regulation by combinations of cellular factors that may be functional in different cell types and at different cell states. Selective interference of specific cellular factors may also provide a route to inhibiting viral replication without disrupting normal cellular functions. The aim of this review is to discuss the regulation of HIV-1 gene expression and, as far as it is possible, to relate the observations to viral pathogenesis. Some areas of research into the regulation of HIV-1 replication have generated controversy and rather than rehearsing this controversy we have imposed our own bias on the field. To redress the balance and to give a broader view of HIV-1 replication and pathogenesis we refer you to a number of excellent reviews [Cullen, B. R. (1992) Microbiol. Rev. 56, 375-394; Levy, J. A. (1993) Microbiol. Rev. 57, 183-394; Antoni, B. A., Stein, S. & Rabson, A. B. (1994) Adv. Virus Res. 43, 53-145; Rosen, C. A. & Fenyoe, E. M. (1995) AIDS (Phila.) 9, S1-S3]. PMID:8856047

  2. Structural Mechanisms of Peptide Recognition and Allosteric Modulation of Gene Regulation by the RRNPP Family of Quorum-Sensing Regulators.

    Science.gov (United States)

    Do, Hackwon; Kumaraswami, Muthiah

    2016-07-17

    The members of RRNPP family of bacterial regulators sense population density-specific secreted oligopeptides and modulate the expression of genes involved in cellular processes, such as sporulation, competence, virulence, biofilm formation, conjugative plasmid transfer and antibiotic resistance. Signaling by RRNPP regulators include several steps: generation and secretion of the signaling oligopeptides, re-internalization of the signaling molecules into the cytoplasm, signal sensing by the cytosolic RRNPP regulators, signal-specific allosteric structural changes in the regulators, and interaction of the regulators with their respective regulatory target and gene regulation. The recently determined structures of the RRNPP regulators provide insight into the mechanistic aspects for several steps in this signaling circuit. In this review, we discuss the structural principles underlying peptide specificity, regulatory target recognition, and ligand-induced allostery in RRNPP regulators and its impact on gene regulation. Despite the conserved tertiary structure of these regulators, structural analyses revealed unexpected diversity in the mechanism of activation and molecular strategies that couple the peptide-induced allostery to gene regulation. Although these structural studies provide a sophisticated understanding of gene regulation by RRNPP regulators, much needs to be learned regarding the target DNA binding by yet-to-be characterized RNPP regulators and the several aspects of signaling by Rgg regulators. PMID:27283781

  3. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all road...s lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  4. Synthetic RNAs for gene regulation: design principles and computational tools

    Directory of Open Access Journals (Sweden)

    Alessandro Laganà

    2014-12-01

    Full Text Available The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies, but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis and the evaluation of RNAi agents such as small-interfering RNA (siRNA, short-hairpin RNA (shRNA, artificial microRNA (a-miR and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats, was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  5. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools.

    Science.gov (United States)

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches. PMID:25566532

  6. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    OpenAIRE

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Hebebrand, Johannes; Scherag, André; Hinney, Anke

    2013-01-01

    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide assoc...

  7. Enhancement of radiotherapy by hyperthermia-regulated gene therapy

    International Nuclear Information System (INIS)

    Purpose: Interleukin 12 (IL-12) has shown strong antitumoral effects in numerous pre-clinical studies and appears to act synergistically with radiation in murine tumors. The major impediment to its clinical use has been its systemic toxicity. While using intratumorally injected viral gene therapy vectors encoding IL-12 reduces systemic side effects substantially, elevated systemic transgene levels are still observed because adenovirus can reach the circulation. Further restricting IL-12 expression in the tumor is therefore desirable in a combined radiation and adenovirus mediated cancer gene therapy regimen. Methods and Materials: Hyperthermia-regulated gene therapy was tested in a nonimmunogenic B16.F10 melanoma line that is syngeneic with C57BL/6 mice. For hyperthermic gene therapy, an adenoviral vector coding for IL-12 under the control of the promoter of the human heat shock protein 70B (hsp70B) was used. One week after transplantation (at a 5-7 mm diameter), tumors were irradiated with 3 x 11 Gy (mo-we-fri). Adenovirus was injected at 3 x 108 pfu/tumor 24 h before the last radiation fraction or 3 days afterwards. Hyperthermia was performed 24 h later at 42.5 deg. C. Growth delay to reaching 3 times initial tumor volume was chosen as the biologic endpoint. IL-12 levels in tumor and serum were determined by using the enzyme-linked immunosorbant assay (ELISA). Results: Adenovirus mediated intratumoral expression of IL-12 under the control of a heat inducible promoter in combination with hyperthermia is almost as effective as that under the control of a constitutive cytomegaly virus (CMV) promoter while systemic transgene levels are substantially reduced with the heat inducible promoter. The response to radiotherapy is improved considerably when combined with heat inducible gene therapy without apparent systemic toxicity. When used as a single dose, applying IL-12 gene therapy after completion of radiotherapy appears to be beneficial. Conclusions: Hyperthermia-regulated

  8. Identification of genes regulated by UV/salicylic acid.

    Energy Technology Data Exchange (ETDEWEB)

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  9. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta;

    2015-01-01

    Neuronal genotoxic insults from oxidative stress constitute a putative molecular link between stress and depression on the one hand, and cognitive dysfunction and dementia risk on the other. Oxidative modifications to DNA are repaired by specific enzymes; a process that plays a critical role...... for maintaining genomic integrity. The aim of the present study was to characterize the pattern of cerebral DNA repair enzyme regulation after stress through the quantification of a targeted range of gene products involved in different types of DNA repair. 72 male Sprague-Dawley rats were subjected to either...... restraint stress (6h/day) or daily handling (controls), and sacrificed after 1, 7 or 21 stress sessions. The mRNA expression of seven genes (Ogg1, Ape1, Ung1, Neil1, Xrcc1, Ercc1, Nudt1) involved in the repair of oxidatively damaged DNA was determined by quantitative real time polymerase chain reaction...

  10. Up-regulation of SNCA gene expression: implications to synucleinopathies.

    Science.gov (United States)

    Tagliafierro, L; Chiba-Falek, O

    2016-07-01

    Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate-common and specific-SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming

  11. Genes, enzymes and regulation of arginine biosynthesis in plants.

    Science.gov (United States)

    Slocum, Robert D

    2005-08-01

    Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate. PMID:16122935

  12. Dynamic model of gene regulation for the lac operon

    International Nuclear Information System (INIS)

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  13. Dynamic model of gene regulation for the lac operon

    Science.gov (United States)

    Angelova, Maia; Ben-Halim, Asma

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  14. Dynamic model of gene regulation for the lac operon

    OpenAIRE

    Angelova, Maia; Ben-Halim, Asma

    2011-01-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with dela...

  15. The diabetes susceptibility gene Clec16a regulates mitophagy

    OpenAIRE

    Soleimanpour, Scott A.; Gupta, Aditi; Bakay, Marina; Ferrari, Alana M.; Groff, David N.; Fadista, João; Spruce, Lynn A; Kushner, Jake A.; Groop, Leif; Seeholzer, Steven H.; Kaufman, Brett A; Hakonarson, Hakon; Stoffers, Doris A.

    2014-01-01

    Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP...

  16. Epigenetic Regulation of Virulence Gene Expression in Parasitic Protozoa.

    Science.gov (United States)

    Duraisingh, Manoj T; Horn, David

    2016-05-11

    Protozoan parasites colonize numerous metazoan hosts and insect vectors through their life cycles, with the need to respond quickly and reversibly while encountering diverse and often hostile ecological niches. To succeed, parasites must also persist within individuals until transmission between hosts is achieved. Several parasitic protozoa cause a huge burden of disease in humans and livestock, and here we focus on the parasites that cause malaria and African trypanosomiasis. Efforts to understand how these pathogens adapt to survive in varied host environments, cause disease, and transmit between hosts have revealed a wealth of epigenetic phenomena. Epigenetic switching mechanisms appear to be ideally suited for the regulation of clonal antigenic variation underlying successful parasitism. We review the molecular players and complex mechanistic layers that mediate the epigenetic regulation of virulence gene expression. Understanding epigenetic processes will aid the development of antiparasitic therapeutics. PMID:27173931

  17. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish

    OpenAIRE

    Achermann Marc; Shen Meng-Chieh; Placinta Mike; Karlstrom Rolf O

    2009-01-01

    Abstract Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissu...

  18. Gene array identification of Ipf1/Pdx1-/- regulated genes in pancreatic progenitor cells

    Directory of Open Access Journals (Sweden)

    Rydén Patrik

    2007-11-01

    Full Text Available Abstract Background The homeodomain transcription factor IPF1/PDX1 exerts a dual role in the pancreas; Ipf1/Pdx1 global null mutants fail to develop a pancreas whereas conditional inactivation of Ipf1/Pdx1 in β-cells leads to impaired β-cell function and diabetes. Although several putative target genes have been linked to the β-cell function of Ipf1/Pdx1, relatively little is known with respect to genes regulated by IPF1/PDX1 in early pancreatic progenitor cells. Results Microarray analyses identified a total of 111 genes that were differentially expressed in e10.5 pancreatic buds of Ipf1/Pdx1-/- embryos. The expression of one of these, Spondin 1, which encodes an extracellular matrix protein, has not previously been described in the pancreas. Quantitative real-time RT-PCR analyses and immunohistochemical analyses also revealed that the expression of FgfR2IIIb, that encodes the receptor for FGF10, was down-regulated in Ipf1/Pdx1-/- pancreatic progenitor cells. Conclusion This microarray analysis has identified a number of candidate genes that are differentially expressed in Ipf1/Pdx1-/- pancreatic buds. Several of the differentially expressed genes were known to be important for pancreatic progenitor cell proliferation and differentiation whereas others have not previously been associated with pancreatic development.

  19. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling.

    Directory of Open Access Journals (Sweden)

    Deborah C Mash

    Full Text Available The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine "rush". Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05. RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4. The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction.

  20. Identification of microRNA-regulated gene networks by expression analysis of target genes

    OpenAIRE

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-01-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assig...

  1. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation

    Science.gov (United States)

    Xu, Chengqi; Zhang, Hongfu; Lu, Qiulun; Chang, Le; Wang, Fan; Wang, Pengxia; Zhang, Rongfeng; Hu, Zhenkun; Song, Qixue; Yang, Xiaowei; Li, Cong; Li, Sisi; Zhao, Yuanyuan; Yang, Qin; Yin, Dan; Wang, Xiaojing; Si, Wenxia; Li, Xiuchun; Xiong, Xin; Wang, Dan; Huang, Yuan; Luo, Chunyan; Li, Jia; Wang, Jingjing; Chen, Jing; Wang, Longfei; Wang, Li; Han, Meng; Ye, Jian; Chen, Feifei; Liu, Jingqiu; Liu, Ying; Wu, Gang; Yang, Bo; Cheng, Xiang; Liao, Yuhua; Wu, Yanxia; Ke, Tie; Chen, Qiuyun; Tu, Xin; Elston, Robert; Rao, Shaoqi; Yang, Yanzong; Xia, Yunlong; Wang, Qing K.

    2015-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution) in ZFHX3, rs2200733 (C/T substitution) near PITX2c, and rs3807989 (A/G substitution) in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43), P=8.00×10-24). The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI) analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4) or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4). The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02). Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  2. Manipulating Immune Tolerance with micro-RNA Regulated Gene Therapy

    Directory of Open Access Journals (Sweden)

    KevinScottGoudy

    2011-11-01

    Full Text Available The successful use of in vivo gene therapy depends upon controlling the immune response to the therapeutic transgene to allow stable, long-term transgene expression. Over the last decade several vector-based and pharmacological approaches to control the immune-mediated clearance of transgene expressing cells after viral delivery have been explored. One important outcome from these studies is the concept that expression of transgene in tolerance-promoting organs, such as the liver and tolerogenic antigen presenting cells, can help safeguard transgene expressing cells from immune-mediated clearance. With this in mind, gene therapists are specifically targeting these avenues by manipulating their vectors in three main areas: i incorporating tissue/cell specific promoters, ii viral-capsid engineering to alter tropism and avoid pre-existing immunity, and iii including micro-RNA (miR targets into expression cassettes. The combination of these three layers of vector regulation greatly enhances the targeting of “tolerogenic cells” and limits the off-target expression of the transgene, which can lead to the induction of transgene-specific pathogenic effector T cells. In this review, we discuss the application of using miR transgene regulation to generate tolerogenic responses and speculate on possible mechanisms used by the liver to induce the transgene specific regulatory T cells.

  3. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors

    OpenAIRE

    Peart, Melissa J.; Smyth, Gordon K; Van Laar, Ryan K.; Bowtell, David D; Richon, Victoria M.; Marks, Paul A.; Holloway, Andrew J; Johnstone, Ricky W.

    2005-01-01

    Histone deacetylase inhibitors (HDACis) inhibit tumor cell growth and survival, possibly through their ability to regulate the expression of specific proliferative and/or apoptotic genes. However, the HDACi-regulated genes necessary and/or sufficient for their biological effects remain undefined. We demonstrate that the HDACis suberoylanilide hydroxamic acid (SAHA) and depsipeptide regulate a highly overlapping gene set with at least 22% of genes showing altered expression over a 16-h culture...

  4. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.

    Science.gov (United States)

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D; Dupuy, Bruno; Fralick, Joe A

    2009-12-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  5. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    OpenAIRE

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  6. Unsupervised meta-analysis on diverse gene expression datasets allows insight into gene function and regulation

    OpenAIRE

    Engelmann, Julia C; Roland Schwarz; Steffen Blenk; Torben Friedrich; Seibel, Philipp N.; Thomas Dandekar; Tobias Müller

    2008-01-01

    Over the past years, microarray databases have increased rapidly in size. While they offer a wealth of data, it remains challenging to integrate data arising from different studies. Here we propose an unsupervised approach of a large-scale meta-analysis on Arabidopsis thaliana whole genome expression datasets to gain additional insights into the function and regulation of genes. Applying kernel principal component analysis and hierarchical clustering, we found three major groups of experiment...

  7. The systemin precursor gene regulates both defensive and developmental genes in Solanum tuberosum

    OpenAIRE

    Narváez-Vásquez, Javier; Ryan, Clarence A.

    2002-01-01

    Transformation of Solanum tuberosum, cv. Desiree, with the tomato prosystemin gene, regulated by the 35S cauliflower mosaic virus promoter, resulted in constitutive increase in defensive proteins in potato leaves, similar to its effects in tomato plants, but also resulted in a dramatic increase in storage protein levels in potato tubers. Tubers from selected transformed lines contained 4- to 5-fold increases in proteinase inhibitor I and II proteins, >50% more soluble and dry weight protein, ...

  8. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.

    Science.gov (United States)

    Lamb, Rebecca S; Hill, Theresa A; Tan, Queenie K-G; Irish, Vivian F

    2002-05-01

    The Arabidopsis APETALA3 (AP3) floral homeotic gene is required for specifying petal and stamen identities, and is expressed in a spatially limited domain of cells in the floral meristem that will give rise to these organs. Here we show that the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are required for the activation of AP3. The LFY transcription factor binds to a sequence, with dyad symmetry, that lies within a region of the AP3 promoter required for early expression of AP3. Mutation of this region abolishes LFY binding in vitro and in yeast one hybrid assays, but has no obvious effect on AP3 expression in planta. Experiments using a steroid-inducible form of LFY show that, in contrast to its direct transcriptional activation of other floral homeotic genes, LFY acts in both a direct and an indirect manner to regulate AP3 expression. This LFY-induced expression of AP3 depends in part on the function of the APETALA1 (AP1) floral homeotic gene, since mutations in AP1 reduce LFY-dependent induction of AP3 expression. LFY therefore appears to act through several pathways, one of which is dependent on AP1 activity, to regulate AP3 expression. PMID:11959818

  9. Identification of microRNA-regulated gene networks by expression analysis of target genes.

    Science.gov (United States)

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-06-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs. PMID:22345618

  10. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-06-01

    Full Text Available Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT, is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development.

  11. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  12. Whole gene family expression and drought stress regulation of aquaporins.

    Science.gov (United States)

    Alexandersson, Erik; Fraysse, Laure; Sjövall-Larsen, Sara; Gustavsson, Sofia; Fellert, Maria; Karlsson, Maria; Johanson, Urban; Kjellbom, Per

    2005-10-01

    Since many aquaporins (AQPs) act as water channels, they are thought to play an important role in plant water relations. It is therefore of interest to study the expression patterns of AQP isoforms in order to further elucidate their involvement in plant water transport. We have monitored the expression patterns of all 35 Arabidopsis AQPs in leaves, roots and flowers by cDNA microarrays, specially designed for AQPs, and by quantitative real-time reverse transcriptase PCR (Q-RT-PCR). This showed that many AQPs are pre-dominantly expressed in either root or flower organs, whereas no AQP isoform seem to be leaf specific. Looking at the AQP subfamilies, most plasma membrane intrinsic proteins (PIPs) and some tonoplast intrinsic proteins (TIPs) have a high level of expression, while NOD26-like proteins (NIPs) are present at a much lower level. In addition, we show that PIP transcripts are generally down-regulated upon gradual drought stress in leaves, with the exception of AtPIP1;4 and AtPIP2;5, which are up-regulated. AtPIP2;6 and AtSIP1;1 are constitutively expressed and not significantly affected by the drought stress. The transcriptional down-regulation of PIP genes upon drought stress could also be observed on the protein level. PMID:16235111

  13. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox.

    Science.gov (United States)

    Melby, A E; Clements, W K; Kimelman, D

    1999-07-15

    Patterning in the vertebrate embryo is controlled by an interplay between signals from the dorsal organizer and the ventrally expressed BMPs. Here we examine the function of Vox, a homeodomain-containing gene that is activated by the ventralizing signal BMP-4. Inhibition of BMP signaling using a dominant negative BMP receptor (DeltaBMPR) leads to the ectopic activation of dorsal genes in the ventral marginal zone, and this activation is prevented by co-injection of Vox. chordin is the most strongly activated of those genes that are up-regulated by DeltaBMPR and is the gene most strongly inhibited by Vox expression. We demonstrate that Vox acts as a transcriptional repressor, showing that the activity of native Vox is mimicked by a Vox-repressor fusion (VoxEnR) and that a Vox-activator fusion (VoxG4A) acts as an antimorph, causing the formation of a partial secondary axis when expressed on the ventral side of the embryo. Although Vox can ectopically activate BMP-4 expression in whole embryos, we see no activation of BMP-4 by VoxG4A, demonstrating that this activation is indirect. Using a hormone-inducible version of VoxG4A, we find that a critical time window for Vox function is during the late blastula period. Using this construct, we demonstrate that only a subset of dorsal genes is directly repressed by Vox, revealing that there are different modes of regulation for organizer genes. Since the major direct target for Vox repression is chordin, we propose that Vox acts in establishing a BMP-4 morphogen gradient by restricting the expression domain of chordin. PMID:10395789

  14. Gene expression dosage regulation in an allopolyploid fish.

    Directory of Open Access Journals (Sweden)

    I Matos

    Full Text Available How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional ''diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64% of transcripts in juveniles' samples and 44% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression. Yet, respectively 29% and 15% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5. Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock

  15. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG... DEVICES Immunological Test Systems § 866.5900 Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a...

  16. Phosphorylation Events in the Multiple Gene Regulator of Group A Streptococcus Significantly Influence Global Gene Expression and Virulence

    OpenAIRE

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J.; Musser, James M.; Kumaraswami, Muthiah

    2015-01-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga a...

  17. Dynamical Processes in Ageing, Gene Regulation and Communication

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss

    project we constructed a mathematical model and showed that if DNA damage is primarily caused by geno-toxic agents, it would be advantageous for cells to have a fragile DNA repair mechanism. The second part of my Ph.D. thesis covers gene regulation. In the first project we show how RNA polymerase can be...... unstable activation and stable repression is a requirement for the motif to produce oscillations. The last part of this thesis studies the emergence of communication networks. In this study we constructed a simple e-mail game. E-mails from two session with 16 players, who had never met before, showed how...... players develop favourite communication partners. We observed how this dynamic caused a communication network to form. By quantifying the information flow in this network, we were able to shown how that the network functions as an anti-exploration mechanism against "information leeches"....

  18. Cloning and analysis of genes regulating plant cell growth

    International Nuclear Information System (INIS)

    The aims of this work are to identify, clone and analyze genes involved in the regulation of plant cell growth. To do this, we have induced tumors on Arabidopsis thaliana by exposing seed or germinating seedlings to ionizing radiation. The tumors which developed on the plants derived from these seed were excised and established in culture. Unlike normal tissue explants, the tumors are able to grow on hormone-free medium suggesting changes in growth control (either hormonal or other) induced by the radiation exposure. This progress report describes work aimed at characterizing these tumors at the physiological and cellular levels and at determining the molecular basis of the changes leading to the tumorous phenotype

  19. Regulation of gene expression by hypoxia: a molecular approach.

    Science.gov (United States)

    Beitner-Johnson, D; Shull, G E; Dedman, J R; Millhorn, D E

    1997-11-01

    Oxygen is a strict requirement for cell function. The cellular mechanisms by which organisms detect and respond to changes in oxygen tension remain a major unanswered question in pulmonary physiology. Part of the difficulty in addressing this question is due to the limited scope of experiments that can be performed in vivo. In the past few years, several laboratories have begun to make progress in this area, using a variety of cell culture model systems and sophisticated genetic manipulations. Here, we review the current state of knowledge of regulation of gene expression by hypoxia, and describe novel experimental approaches that promise to broaden our understanding of how cells and whole organisms respond to alterations in O2 tension. PMID:9407603

  20. FAT10, a gene up-regulated in various cancers, is cell-cycle regulated

    OpenAIRE

    Zhang Dongwei; Lim Chuan-Bian; Lee Caroline GL

    2006-01-01

    Abstract Background FAT10 is a member of the ubiquitin-like-modifier family of proteins. Over-expression of the FAT10 gene was observed in the tumors of several epithelial cancers. High FAT10 expression was found to lead to increased chromosome instability via the reduction in the kinetochore localization of MAD2 during the prometaphase stage of the cell-cycle. FAT10 expression was also previously reported to be regulated by cytokines and p53. Results Here, we report that FAT10 expression is ...

  1. Heme regulates the expression in Saccharomyces cerevisiae of chimaeric genes containing 5'-flanking soybean leghemoglobin sequences

    DEFF Research Database (Denmark)

    Jensen, E O; Marcker, K A; Villadsen, IS

    1986-01-01

    The TM1 yeast mutant was transformed with a 2 micron-derived plasmid (YEp24) which carries a chimaeric gene containing the Escherichia coli chloramphenicol acetyl transferase (CAT) gene fused to the 5'- and 3'-flanking regions of the soybean leghemoglobin (Lb) c3 gene. Expression of the chimaeric...... CAT gene is controlled specifically by heme at a post-transcriptional level, most likely by regulating the efficiencies of translation. Expression of another chimaeric gene consisting of the neomycin phosphotransferase (NPTII) gene fused to only the 5'-flanking region of the Lbc3 gene is regulated by...

  2. Coenzyme Recognition and Gene Regulation by a Flavin Mononucleotide Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Serganov, A.; Huang, L; Patel, D

    2009-01-01

    The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg{sup 2+}-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.

  3. Ingested plant miRNAs regulate gene expression in animals

    Institute of Scientific and Technical Information of China (English)

    Hervé Vaucheret; Yves Chupeau

    2012-01-01

    The incidence of genetic material or epigenetic information transferred from one organism to another is an important biological question.A recent study demonstrated that plant small RNAs acquired orally through food intake directly influence gene expression in animals after migration through the plasma and delivery to specific organs.Non-protein coding RNAs,and in particular small RNAs,were recently revealed as master chief regulators of gene expression in all organisms.Endogenous small RNAs come in different flavors,depending on their mode of biogenesis.Most microRNAs (miRNA)and short interferring RNAs (siRNA)derive from long double-stranded RNA (dsRNA) precursors that are processed into small RNA duplexes,20 to 25-nt long,by RNaselll enzymes called Dicer [1].One strand of small RNA duplexes is loaded onto an Argonaute protein that executes silencing by cleaving or repressing the translation of homologous mRNA [2].In certain species,RNA cleavage is followed by DNA methylation and/or histone modification,leading to heritable epigenetic modification [3].

  4. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    OpenAIRE

    Ao Li; David Tuck

    2009-01-01

    Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and g...

  5. Regulation of gene expression in vertebrate skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, Jaime J., E-mail: jaime.carvajal@icr.ac.uk; Rigby, Peter W.J., E-mail: peter.rigby@icr.ac.uk

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  6. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  7. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  8. Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In searching for differentially expressed genes in human uterine leiomyomas (ULs), suppression sub-tractive hybridization was used to construct an UL up-regulated library, which turned out to represent 88genes. After two rounds of screening by reverse Northern analysis, twenty genes were proved to be up-regulated, including seventeen known genes and three genes with unknown function. All these genes werefirstly associated with UL. Three genes with notable difference were selected for Northern confirmationOur results proved the authenticity of the twenty genes. One gene named Phospholipase A2 (PLA2) showedup-regulation in 4/6 of the patients and investigation of tissue distribution indicated that it had obviousexpression in prostate, testis, liver, heart and skeletal muscle.

  9. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Georg, Birgitte; Fahrenkrug, Jan

    2009-01-01

    Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene...

  10. The adjacent positioning of co-regulated gene pairs is widely conserved across eukaryotes

    Directory of Open Access Journals (Sweden)

    Arnone James T

    2012-10-01

    Full Text Available Abstract Background Coordinated cell growth and development requires that cells regulate the expression of large sets of genes in an appropriate manner, and one of the most complex and metabolically demanding pathways that cells must manage is that of ribosome biogenesis. Ribosome biosynthesis depends upon the activity of hundreds of gene products, and it is subject to extensive regulation in response to changing cellular conditions. We previously described an unusual property of the genes that are involved in ribosome biogenesis in yeast; a significant fraction of the genes exist on the chromosomes as immediately adjacent gene pairs. The incidence of gene pairing can be as high as 24% in some species, and the gene pairs are found in all of the possible tandem, divergent, and convergent orientations. Results We investigated co-regulated gene sets in S. cerevisiae beyond those related to ribosome biogenesis, and found that a number of these regulons, including those involved in DNA metabolism, heat shock, and the response to cellular stressors were also significantly enriched for adjacent gene pairs. We found that as a whole, adjacent gene pairs were more tightly co-regulated than unpaired genes, and that the specific gene pairing relationships that were most widely conserved across divergent fungal lineages were correlated with those genes that exhibited the highest levels of transcription. Finally, we investigated the gene positions of ribosome related genes across a widely divergent set of eukaryotes, and found a significant level of adjacent gene pairing well beyond yeast species. Conclusion While it has long been understood that there are connections between genomic organization and transcriptional regulation, this study reveals that the strategy of organizing genes from related, co-regulated pathways into pairs of immediately adjacent genes is widespread, evolutionarily conserved, and functionally significant.

  11. Regulation of Metformin Response by Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Daniela Buac

    2013-12-01

    Full Text Available Adenosine monophosphate-activated protein kinase (AMPK, a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115, a novel Really Interesting New Gene (RING finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors. Herein, we report that BCA2 is an endogenous inhibitor of AMPK activation in breast cancer cells and that BCA2 inhibition increases the efficacy of metformin. BCA2 overexpression inhibited both basal and inducible Thr172 phosphorylation/activation of AMPKα1, while BCA2-specific small interfering RNA (siRNA enhanced phosphorylated AMPKα1 (pAMPKα1. The AMPK-suppressive function of BCA2 requires its E3 ligase-specific RING domain, suggesting that BCA2 targets some protein controlling (dephosphorylation of AMPKα1 for degradation. Activation of AMPK by metformin triggered a growth inhibitory signal but also increased BCA2 protein levels, which correlated with AKT activation and could be curbed by an AMPK inhibitor, suggesting a potential feedback mechanism from pAMPKα1 to pAkt to BCA2. Finally, BCA2 siRNA, or inhibition of its upstream stabilizing kinase AKT, increased the growth inhibitory effect of metformin in multiple breast cancer cell lines, supporting the conclusion that BCA2 weakens metformin's efficacy. Our data suggest that metformin in combination with a BCA2 inhibitor may be a more effective breast cancer treatment strategy than metformin alone.

  12. tRNAs as regulators in gene expression

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Transfer RNAs(tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein,thus functioning as "adaptor" molecules.In recent years,however,various studies have shown that tRNAs have additional functions beyond participating in protein synthesis.When suffering from certain nutritional stresses,tRNAs change the level of aminoacylation to became uncharged,and these uncharged tRNAs act as effector molecules to regulate global gene expression,so that the stressed organism copes with the adverse environmental stresses.In budding yeast and certain mammalian cells,the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs.On the other hand,this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation.Quite recently,various publications have shown that tRNAs are not stable molecules in an absolute sense.Under certain physiological or environmental stresses,they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm.These cleavages are not a meaningless random degradation phenomenon.Instead,a novel class of signal molecules such as tRNA halves or sitRNAs may be produced,which are closely correlated with the modulation of global gene expression.Investigation of the regulatory functions of tRNAs is a frontier,which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information.

  13. Gravity regulated genes in Arabidopsis thaliana (GENARA experiment)

    Science.gov (United States)

    Boucheron-Dubuisson, Elodie; Carnero-D&íaz, Eugénie; Medina, Francisco Javier; Gasset, Gilbert; Pereda-Loth, Veronica; Graziana, Annick; Mazars, Christian; Le Disquet, Isabelle; Eche, Brigitte; Grat, Sabine; Gauquelin-Koch, Guillemette

    2012-07-01

    In higher plants, post-embryonic development is possible through the expression of a set of genes constituting the morphogenetic program that contribute to the production of tissues and organs during the whole plant life cycle. Plant development is mainly controlled by internal factors such as phytohormones, as well as by environmental factors, among which gravity plays a key role (gravi-morphogenetic program). The GENARA space experiment has been designed with the goal of contributing to a better understanding of this gravi-morphogenetic program through the identification and characterization of some gravity regulated proteins (GR proteins) by using quantitative proteomic methods, and through the study of the impact of plant hormones on the expression of this program. Among plant hormones, auxin is the major regulator of organogenesis. In fact, it affects numerous plant developmental processes, e.g. cell division and elongation, autumnal loss of leaves, and the formation of buds, roots, flowers and fruits. Furthermore, it also plays a key role in the mechanisms of different tropisms (including gravitropism) that modulate fundamental features of plant growth. The expression of significant genes involved in auxin transport and in auxin signal perception in root cells is being studied in space-grown seedlings and compared with the corresponding ground controls. This experiment was scheduled to be performed in The European Modular Cultivation System (EMCS), a new facility for plant cultivation and Plant Molecular Biology studies, at ISS. However only one aspect of this experiment was flown and concerns the qualitative and quantitative changes in membrane proteins supposed to be mainly associated with cell signaling and has been called GENARA A. The second part dealing with the function of auxin in the gravi-morphogenetic program and the alterations induced by microgravity will be studied through mutants affected on biosynthesis, transport or perception of auxin in a

  14. Multi-scale modeling of gene regulation of morphogenesis

    NARCIS (Netherlands)

    J.A. Kaandorp; D. Botman; C. Tamulonis; R Dries

    2012-01-01

    In this paper we demonstrate a spatio-temporal gene regulatory network for early gastrulation in the sea anemone Nematostella vectensis. We measure gene expression during early gastrulation using a gene expression quantification tool. We measure gene expression during early gastrulation when the emb

  15. RNA recognition by Roquin in posttranscriptional gene regulation.

    Science.gov (United States)

    Schlundt, Andreas; Niessing, Dierk; Heissmeyer, Vigo; Sattler, Michael

    2016-07-01

    Posttranscriptional regulation of gene expression plays a central role in the initiation of innate and adaptive immune responses. This is exemplified by the protein Roquin, which has attracted great interest during the past decade owing to its ability to prevent autoimmunity. Roquin controls T-cell activation and T helper cell differentiation by limiting the induced expression of costimulatory receptors on the surface of T cells. It does so by recognizing cis regulatory RNA-hairpin elements in the 3' UTR of target transcripts via its ROQ domain-a novel RNA-binding fold-and triggering their degradation through recruitment of factors that mediate deadenylation and decapping. Recent structural studies have revealed molecular details of the recognition of RNA hairpin structures by the ROQ domain. Surprisingly, it was found that Roquin mainly relies on shape-specific recognition of the RNA. This observation implies that a much broader range of RNA motifs could interact with the protein, but it also complicates systematic searches for novel mRNA targets of Roquin. Thus, large-scale approaches, such as crosslinking and immunoprecipitation or systematic evolution of ligands by exponential enrichment experiments coupled with next-generation sequencing, will be required to identify the complete spectrum of its target RNAs. Together with structural analyses of their binding modes, this will enable us to unravel the intricate complexity of 3' UTR regulation by Roquin and other trans-acting factors. Here, we review our current understanding of Roquin-RNA interactions and their role for Roquin function. WIREs RNA 2016, 7:455-469. doi: 10.1002/wrna.1333 For further resources related to this article, please visit the WIREs website. PMID:26844532

  16. Transcriptional regulation of bone sialoprotein gene expression by Osx.

    Science.gov (United States)

    Yang, Ya; Huang, Yehong; Zhang, Li; Zhang, Chi

    2016-08-01

    Osteoporosis is the most common metabolic bone disease characterized by decreased bone mass, decreased bone strength, and increased risk of fracture. It is due to unbalance between bone formation and bone resorption. Bone formation is a complex process which involves the differentiation of mesenchymal stem cells to osteoblasts. Osteoblasts produce a characteristic extracellular collagenous matrix that subsequently becomes mineralized. Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation. Bone sialoprotein (Bsp) is a member of the SIBLING gene family. Expression of Bsp correlates with the differentiation of osteoblasts and the onset of mineralization. Our preliminary data showed that Bsp was abolished in Osx-null mice; however, the detailed mechanism of Osx regulation on Bsp is not fully understood. In this study, regulation of Bsp expression by Osx was further characterized. It was shown that overexpression of Osx led to Bsp upregulation. Inhibition of Osx by small interfering RNA resulted in Bsp downregulation in osteoblast. Transfection assay demonstrated that Osx was able to activate Bsp promoter reporter in a dose-dependent manner. To define minimal region of Bsp promoter activated by Osx, a series of deletion mutants of Bsp promoter were generated, and the minimal region was narrowed down to the proximal 100 bp. Point-mutagenesis studies showed that one GC-rich site was required for Bsp promoter activation by Osx. ChIP assays demonstrated that endogenous Osx associated with native Bsp promoter in primary osteoblasts. Our observations provide evidence that Osx targets Bsp expression directly. PMID:27261434

  17. Structure of the alpha-inhibin gene and its regulation in the ruminant gonad: inverse relationship to oxytocin gene expression.

    Science.gov (United States)

    Ungefroren, H; Wathes, D C; Walther, N; Ivell, R

    1994-02-01

    The genes for the alpha subunit of inhibin and for the nonapeptide hormone oxytocin are both expressed in the granulosa cells of the ruminant follicle as well as in the Sertoli cells of the ruminant testis. Northern hybridization of mRNA from both ovary and testis indicate that in both gonads the expression of the two genes is inversely regulated. In the luteinizing granulosa cells, in vitro as in vivo, the alpha-inhibin gene is down-regulated when the oxytocin gene is up-regulated. In the Sertoli cells of the bull and sheep testis, the situation is similar, with the alpha-inhibin gene being up-regulated in the prepubertal gonad and down-regulated concomitantly with an up-regulation of the oxytocin gene in early puberty. The gene for the bovine alpha-inhibin subunit was cloned and characterized. Assessment of transcriptional initiation by primer extension and ribonuclease protection assays showed that several different sites were used in both granulosa cells and testis. Transient transfection of primary bovine granulosa cells with alpha-inhibin/luciferase gene constructs indicated that a major promoter element resided in the region -178 to -245 respective to the methionine start codon of translation, a region that contains a cAMP response element. The ability of forskolin to up-regulate the transcription of transfected gene constructs also depended on the integrity of this region. In contrast, transfection of TM4 cells led to transcriptional initiation from an unusual site in the alpha-inhibin gene and to a lack of forskolin regulation. Comparison of the alpha-inhibin and oxytocin genes indicates that although both can be up-regulated by FSH or by forskolin within the same cells, different mechanisms of signal transduction are involved to explain the temporal differences in expression. Together the results indicate that a differentiation step occurring in Sertoli cells at early puberty and in granulosa cells at luteinization involves comparable regulation of genes

  18. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system

    Directory of Open Access Journals (Sweden)

    Peixin Zhu

    2009-12-01

    Full Text Available The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.

  19. Regulation of Helicobacter pylori adherence by gene conversion

    OpenAIRE

    Talarico, Sarah; Whitefield, Shawn E.; Fero, Jutta; Haas, Rainer; Salama, Nina R.

    2012-01-01

    Genetic diversification of Helicobacter pylori adhesin genes may allow adaptation of adherence properties to facilitate persistence despite host defenses. The sabA gene encodes an adhesin that binds sialyl-Lewis antigens on inflamed gastric tissue. We found variability in the copy number and locus of the sabA gene and the closely related sabB and omp27 genes due to gene conversion among 51 North American pediatric H. pylori strains. We determined that sabB to sabA gene conversion is predomina...

  20. Identification of the key regulating genes of diminished ovarian reserve (DOR) by network and gene ontology analysis.

    Science.gov (United States)

    Pashaiasl, Maryam; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2016-09-01

    Diminished ovarian reserve (DOR) is one of the reasons for infertility that not only affects both older and young women. Ovarian reserve assessment can be used as a new prognostic tool for infertility treatment decision making. Here, up- and down-regulated gene expression profiles of granulosa cells were analysed to generate a putative interaction map of the involved genes. In addition, gene ontology (GO) analysis was used to get insight intol the biological processes and molecular functions of involved proteins in DOR. Eleven up-regulated genes and nine down-regulated genes were identified and assessed by constructing interaction networks based on their biological processes. PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and FSTL3 were the key nodes in the up-regulated networks, while the IGF2, AMH, GREM, and FOXC1 proteins were key in the down-regulated networks. MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the expression of SOCS2, while CSH1 and BMP2 positively regulated IGF1 and IGF2. Ossification, ovarian follicle development, vasculogenesis, sequence-specific DNA binding transcription factor activity, and golgi apparatus are the major differential groups between up-regulated and down-regulated genes in DOR. Meta-analysis of publicly available transcriptomic data highlighted the high coexpression of CTGF, connective tissue growth factor, with the other key regulators of DOR. CTGF is involved in organ senescence and focal adhesion pathway according to GO analysis. These findings provide a comprehensive system biology based insight into the aetiology of DOR through network and gene ontology analyses. PMID:27324248

  1. Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle.

    Science.gov (United States)

    Xi, Y M; Yang, Z; Wu, F; Han, Z Y; Wang, G L

    2015-09-11

    An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal's actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of jugular vein serum on hormonal regulation of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways. PMID:26231801

  2. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    Science.gov (United States)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  3. Autogenous regulation of splicing of the transcript of a yeast ribosomal protein gene.

    OpenAIRE

    Dabeva, M. D.; Post-Beittenmiller, M A; Warner, J R

    1986-01-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  4. Regulation by Blue Light of the fluffy Gene Encoding a Major Regulator of Conidiation in Neurospora crassa

    OpenAIRE

    Olmedo, María; Ruger-Herreros, Carmen; Corrochano, Luis M.

    2010-01-01

    The development of asexual spores, that is, the process of conidiation, in the fungus Neurospora crassa is increased by light. The fluffy (fl) gene, encoding a major regulator of conidiation, is activated by light. We describe here a detailed characterization of the regulation by blue light of fl in vegetative hyphae. This induction requires the white collar complex (WCC) while the FLD protein acts as a dark repressor of fl transcription. We show that the WCC directly regulates fl transcripti...

  5. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  6. LitMiner and WikiGene: identifying problem-related key players of gene regulation using publication abstracts

    OpenAIRE

    Maier, Holger; Döhr, Stefanie; Grote, Korbinian; O'Keeffe, Sean; Werner, Thomas; de Angelis, Martin Hrabé; Schneider, Ralf

    2005-01-01

    The LitMiner software is a literature data-mining tool that facilitates the identification of major gene regulation key players related to a user-defined field of interest in PubMed abstracts. The prediction of gene-regulatory relationships is based on co-occurrence analysis of key terms within the abstracts. LitMiner predicts relationships between key terms from the biomedical domain in four categories (genes, chemical compounds, diseases and tissues). Owing to the limitations (no direction,...

  7. NeuroD1: developmental expression and regulated genes in the rodent pineal gland

    DEFF Research Database (Denmark)

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F;

    2007-01-01

    development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p <0.05) and 16 that are up-regulated...... (>twofold, p <0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved...

  8. CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance.

    Science.gov (United States)

    Schulz, Yvonne; Wehner, Peter; Opitz, Lennart; Salinas-Riester, Gabriela; Bongers, Ernie M H F; van Ravenswaaij-Arts, Conny M A; Wincent, Josephine; Schoumans, Jacqueline; Kohlhase, Jürgen; Borchers, Annette; Pauli, Silke

    2014-08-01

    Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the

  9. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong;

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene ...

  10. Mapping of a gene that regulates hemolysin production in Vibrio cholerae.

    OpenAIRE

    von Mechow, S; Vaidya, A B; Bramucci, M G

    1985-01-01

    A gene that regulates the hemolysin structural gene (hly) was found to be tightly linked to the tox-1000 locus of Vibrio cholerae RJ1 and separated from hly by a large section of the V. cholerae genetic map. This hemolysin regulatory gene was designated hlyR.

  11. Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are up-regulated in hepatocellular carcinoma (HCC).

    Science.gov (United States)

    Xu, Weijin; Huang, Huixing; Yu, Long; Cao, Lihuan

    2015-04-01

    Hepatocellular carcinoma (HCC) is among the commonest kind of malignant tumors, which accounts for more than 500,000 cases of newly diagnosed cancer annually. Many microarray studies for identifying differentially expressed genes (DEGs) in HCC have been conducted, but results have varied across different studies. Here, we performed a meta-analysis of publicly available microarray Gene Expression Omnibus datasets, which covers five independent studies, containing 753 HCC samples and 638 non-tumor liver samples. We identified 192 DEGs that were consistently up-regulated in HCC vs. normal liver tissue. For the 192 up-regulated genes, we performed Kyoto Encyclopedia of Genes and Genomes pathway analysis. To our surprise, besides several cell growth-related pathways, spliceosome pathway was also up-regulated in HCC. For further exploring the relationship between spliceosome pathway and HCC, we investigated the expression data of spliceosome pathway genes in 15 independent studies in Nextbio database ( https://www.nextbio.com/b/nextbioCorp.nb ). It was found that many genes of spliceosome pathway such as HSPA1A, SNRPE, SF3B2, SF3B4 and TRA2A genes which we identified to be up-regulated in our meta-analysis were generally overexpressed in HCC. At last, using real-time PCR, we also found that BUD31, SF3B2, SF3B4, SNRPE, SPINK1, TPA2A and HSPA1A genes are significantly up-regulated in clinical HCC samples when compared to the corresponding non-tumorous liver tissues. Our study for the first time indicates that many genes of spliceosome pathway are up-regulated in HCC. This finding might put new insights for people's understanding about the relationship of spliceosome pathway and HCC. PMID:25731616

  12. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression

    OpenAIRE

    Fankhauser, Christian; Ulm, Roman

    2011-01-01

    Cryptochromes are a class of photosensory receptors that control important processes in animals and plants primarily by regulating gene expression. How photon absorption by cryptochromes leads to changes in gene expression has remained largely elusive. Three recent studies, including Lian and colleagues (pp. 1023–1028) and Liu and colleagues (pp. 1029–1034) in this issue of Genes & Development, demonstrate that the interaction of light-activated Arabidopsis cryptochromes with a class of regul...

  13. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    OpenAIRE

    Sipla Aggarwal; Vishnu Shukla; Kaushal Kumar Bhati; Mandeep Kaur; Shivani Sharma; Anuradha Singh; Shrikant Mantri; Ajay Kumar Pandey

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements...

  14. Bigenomic transcriptional regulation of all thirteen cytochrome c oxidase subunit genes by specificity protein 1

    OpenAIRE

    Dhar, Shilpa S.; Johar, Kaid; Wong-Riley, Margaret T. T.

    2013-01-01

    Cytochrome c oxidase (COX) is one of only four known bigenomic proteins, with three mitochondria-encoded subunits and 10 nucleus-encoded ones derived from nine different chromosomes. The mechanism of regulating this multi-subunit, bigenomic enzyme is not fully understood. We hypothesize that specificity protein 1 (Sp1) functionally regulates the 10 nucleus-encoded COX subunit genes directly and the three mitochondrial COX subunit genes indirectly by regulating mitochondrial transcription fact...

  15. Dissecting Human Gene Functions Regulating Islet Development With Targeted Gene Transduction.

    Science.gov (United States)

    Pauerstein, Philip T; Sugiyama, Takuya; Stanley, Susan E; McLean, Graeme W; Wang, Jing; Martín, Martín G; Kim, Seung K

    2015-08-01

    During pancreas development, endocrine precursors and their progeny differentiate, migrate, and cluster to form nascent islets. The transcription factor Neurogenin 3 (Neurog3) is required for islet development in mice, but its role in these dynamic morphogenetic steps has been inferred from fixed tissues. Moreover, little is known about the molecular genetic functions of NEUROG3 in human islet development. We developed methods for gene transduction by viral microinjection in the epithelium of cultured Neurog3-null mutant fetal pancreas, permitting genetic complementation in a developmentally relevant context. In addition, we developed methods for quantitative assessment of live-cell phenotypes in single developing islet cells. Delivery of wild-type NEUROG3 rescued islet differentiation, morphogenesis, and live cell deformation, whereas the patient-derived NEUROG3(R107S) allele partially restored indicators of islet development. NEUROG3(P39X), a previously unreported patient allele, failed to restore islet differentiation or morphogenesis and was indistinguishable from negative controls, suggesting that it is a null mutation. Our systems also permitted genetic suppression analysis and revealed that targets of NEUROG3, including NEUROD1 and RFX6, can partially restore islet development in Neurog3-null mutant mouse pancreata. Thus, advances described here permitted unprecedented assessment of gene functions in regulating crucial dynamic aspects of islet development in the fetal pancreas. PMID:25901096

  16. Regulation of cell-to-cell variability in divergent gene expression

    Science.gov (United States)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically `leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  17. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  18. Neuroimmune regulation of alcohol consumption: Behavioral validation of genes obtained from genomic studies

    OpenAIRE

    Blednov, Yuri A; Ponomarev, Igor; Geil, Chelsea; Bergeson, Susan; Koob, George F.; Harris, R. Adron

    2011-01-01

    Analysis of mouse brain gene expression, using strains that differ in alcohol consumption, provided a number of novel candidate genes that potentially regulate alcohol consumption. We selected six genes [beta-2-microglobulin (B2m), cathepsin S (Ctss), cathepsin F (Ctsf), interleukin 1 receptor antagonist (Il1rn), CD14 molecule (Cd14) and interleukin 6 (Il6)] for behavioral validation using null mutant mice. These genes are known to be important for immune responses but were not specifically l...

  19. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts

    OpenAIRE

    Dron, Michel; Clouse, Steven D.; Dixon, Richard A.; Lawton, Michael A; Lamb, Christopher J.

    1988-01-01

    To investigate the mechanisms underlying activation of plant defenses against microbial attack we have studied elicitor regulation of a chimeric gene comprising the 5′ flanking region of a defense gene encoding the phytoalexin biosynthetic enzyme chalcone synthase fused to a bacterial chloramphenicol acetyltransferase gene. Glutathione or fungal elicitor caused a rapid, marked but transient expression of the chimeric gene electroporated into soybean protoplasts. The response closely resembled...

  20. Gene regulation in response to protein disulphide isomerase deficiency

    DEFF Research Database (Denmark)

    Nørgaard, Per; Tachibana, Christine; Bruun, Anette W;

    2003-01-01

    We have examined the activities of promoters of a number of yeast genes encoding resident endoplasmic reticulum proteins, and found increased expression in a strain with severe protein disulphide isomerase deficiency. Serial deletion in the promoter of the MPD1 gene, which encodes a PDI1-homologu...... element. The sequence (GACACG) does not resemble the unfolded protein response element. It is present in the upstream regions of the MPD1, MPD2, KAR2, PDI1 and ERO1 genes....

  1. Regulated expression of foreign genes in vivo after germline transfer.

    OpenAIRE

    Passman, R S; Fishman, G I

    1994-01-01

    Tight transcriptional control of foreign genes introduced into the germline of transgenic mice would be of great experimental value in studies of gene function. To develop a system in which the spatial and temporal expression of candidate genes implicated in cardiac development or function could be tightly controlled in vivo, we have generated transgenic mice expressing a tetracycline-controlled transactivator (tTA) under the control of a rat alpha myosin heavy chain promoter (MHC alpha-tTA m...

  2. Environmental Exposures and Gene Regulation in Disease Etiology

    OpenAIRE

    Thea M. Edwards; Myers, John Peterson

    2007-01-01

    Objective Health or disease is shaped for all individuals by interactions between their genes and environment. Exactly how the environment changes gene expression and how this can lead to disease are being explored in a fruitful new approach to environmental health research, representative studies of which are reviewed here. Data sources We searched Web of Science and references of relevant publications to understand the diversity of gene regulatory mechanisms affected by environmental exposu...

  3. Regulation of Laccase and Cellulase Genes Transcription in Agaricus bisporus

    OpenAIRE

    Ohga, Shoji; Wood, David A.

    1998-01-01

    A time course for laccase and cellulase genes transcription of Agaricus bisporus compost culture are examined. The results of assays for laccase gene leel show that the expression of this gene increased in the compost until pinning stage of development. In the fruiting cultures the amount of leel declined rapidly over a 4-5 d period immediately. Cellulase gene celS expression contrasted sharply appeared with leel expression by remaining at a low level until after the pins were seen. The cel3...

  4. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics.

    Science.gov (United States)

    Saccone, Donovan; Asani, Furaha; Bornman, Liza

    2015-05-01

    The vitamin D receptor (VDR) plays a pivotal role as a mediator of 1α,25(OH)2D signalling. Besides its role in calcium homeostasis, ligand- bound VDR supports immunity and cell cycle control. While VDR regulates numerous genes across the genome, much remains to be learned about the regulation of the VDR gene itself. Hindered VDR expression and function have a broad impact, contributing to diverse diseases, including cancer, multiple sclerosis, type 1 diabetes and tuberculosis. A better understanding of the three main factors regulating the VDR, namely environment, genetics and epigenetics, may facilitate the development of improved strategies for treatment and prevention of diseases associated with impaired VDR function. This review aims to illuminate the complex interaction and contributions of the three levels of VDR gene regulation to endorse consideration of all three regulatory factors when studying gene regulation. PMID:25682935

  5. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  6. Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants

    Institute of Scientific and Technical Information of China (English)

    Jinghua Yang; Mingfang Zhang; Jingquan Yu

    2008-01-01

    In plant cells, there are three organelles: the nucleus, chloroplast, and mitochondria that store genetic information. The nucleus possesses the majority of genetic information and controls most aspects of organelles gene expression, growth, and development. In return,organdies also send signals back to regulate nuclear gene expression, a process defined as retrograde regulation. The best studies of organelles to nucleus retrograde regulation exist in plant chloroplast-to-nuclear regulation and yeast mitochondria-to-nuclear regulation. In this review, we summarize the recent understanding of mitochondrial retrograde regulation in higher plant, which involves multiple potential signaling pathway in relation to cytoplasmic male-sterility, biotic stress, and abiotie stress. With respect to mitochondrial retrograde regulation signal pathways involved in cytoplasmic male-sterility, we consider that nuclear transcriptional factor genes are the targeted genes regulated by mitoehondria to determine the abnormal reproductive development, and the MAPK signaling pathway may be involved in this regulation in Brassica juncea. When plants suffer biotic and abiotie stress, plant cells will initiate cell death or other events directed toward recovering from stress. During this process, we propose that mitochondria may determine how plant cell responds to a given stress through retrograde regulation. Meanwhile, several transducer molecules have also been discussed here. In particular, thePaepe research group reported that leaf mitochondrial modulated whole cell redox homeostasis, set antioxidant capacity, and determinedstress resistance through altered signaling and diurnal regulation, which is an indication of plant mitochondria with more active function than ever.

  7. Calcium control of gene regulation in rat hippocampal neuronal cultures.

    Science.gov (United States)

    Pinato, Giulietta; Pegoraro, Silvia; Iacono, Giovanni; Ruaro, Maria Elisabetta; Torre, Vincent

    2009-09-01

    Blockage of GABA-A receptors in hippocampal neuronal cultures triggers synchronous bursts of spikes initiating neuronal plasticity, partly mediated by changes of gene expression. By using specific pharmacological blockers, we have investigated which sources of Ca2+ entry primarily control changes of gene expression induced by 20 microM gabazine applied for 30 min (GabT). Intracellular Ca2+ transients were monitored with Ca2+ imaging while recording electrical activity with patch clamp microelectrodes. Concomitant transcription profiles were obtained using Affymetrix oligonucleotide microarrays and confirmed with quantitative RT-PCR. Blockage of NMDA receptors with 2-amino-5-phosphonovaleric acid (APV) did not reduce significantly somatic Ca2+ transients, which, on the contrary, were reduced by selective blockage of L, N, and P/Q types voltage gated calcium channels (VGCCs). Therefore, we investigated changes of gene expression in the presence of blockers of NMDA receptors and L, N, and P/Q VGCCs. Our results show that: (i) among genes upregulated by GabT, there are genes selectively dependent on NMDA activation, genes selectively dependent on L-type VGCCs and genes dependent on the activation of both channels; (ii) the majority of genes requires the concomitant activation of NMDA receptors and Ca2+ entry through VGCCs; (iii) blockage of N and P/Q VGCCs has an effect similar but not identical to blockage of L-type VGCCs. PMID:19441076

  8. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    . 1232-1244) demonstrated that phosphorylation of PGC-1α by the p70 ribosomal protein S6 kinase 1 (S6K1) specifically interfered with the interaction between PGC-1α and HNF4α in liver and blocked the coactivation of the gluconeogenic target genes. This demonstrates how independent fine-tuning of gene...

  9. Regulation of the human stress response gene GADD153 expression: role of ETS1 and FLI-1 gene products.

    Science.gov (United States)

    Seth, A; Giunta, S; Franceschil, C; Kola, I; Venanzoni, M C

    1999-09-01

    We have previously shown that ETS transcription factors, regulate cell growth and differentiation, and ETS1 and ETS2 are able to transcriptionally regulate wt p53 gene expression. In the present study we show that the ETS transcription factors also play a role in regulating expression of GADD153, a wt p53 inducible gene, which induces growth arrest and apoptosis in response to stress signals or DNA damage. We report the presence of a single EBS in the human GADD153 promoter, and that the GADD45 gene promoter lacks EBSs. The GADD153 promoter EBS shows a very high affinity for ETS1 and FLI-1 gene products. In addition, our data show that both ETS1 and FLI-1 strongly activate transcription of the GADD153 EBS linked to the CAT reporter gene. Our results also demonstrate how ETS1 and FLI-1 specifically regulate GADD153 expression. In addition, ectopic ETS2 protein expression resulted in only a weak induction of the same CAT reporter construct. The ETS1 and FLI-1 proteins provide a novel mechanism of activation for GADD153, allowing these two ETS genes to control its expression during cell growth and differentiation, rather than in response to oxidative stress. PMID:10510472

  10. Gene therapy: Regulations, ethics and its practicalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Xi Jin; Yi-Da Yang; You-Ming Li

    2008-01-01

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases.By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity,inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  11. A Mutation Affecting the Regulation of a Seca-Lacz Fusion Defines a New Sec Gene

    OpenAIRE

    Riggs, P. D.; Derman, A. I.; Beckwith, J

    1988-01-01

    It was shown previously that the secA gene of Escherichia coli is derepressed in cells that have a defect in protein export. Here it is demonstrated that the β-galactosidase produced by a secA-lacZ gene fusion strain is regulated in the same way. Studies on the fusion strain reveal that the promoter or a site involved in regulation of the secA gene is located considerably upstream from the structural gene. The properties of the fusion strain provide a new selection for mutants that are defect...

  12. PHYSIOLOGY AND GENETIC ASPECTS OF THE REGULATION OF EXPRESSION MILK PROTEIN GENES

    Directory of Open Access Journals (Sweden)

    Jozef Bulla

    2013-06-01

    Full Text Available For the genetic improvement of milk composition and milk yield, both the typing of different protein variants and knowledge about the regulation of expression of the different milk protein genes are important. Some of the processing properties of milk are dependent on the milk composition. Information about the DNA sequence and genes involved in the expression of the milk protein genes,therefore,is big importance for genetic improvement of these traits in animals breeding programmes.In recent years more data has become available concerning the regulation of expression of the milk protein genes and as might have been expected from the complex multihormonal control of these genes it appears to be rather complex. Although several mammary gland specific factors that play a role in expression of some of these genes have been identified,none of these factors has been shown to be involved in the expression of all or the majority of the milk protein genes.

  13. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system.

    Directory of Open Access Journals (Sweden)

    Sophie Javerzat

    Full Text Available BACKGROUND: Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM, a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5% with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21-66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001. Interfering with PARVB (encoding parvin, beta function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. CONCLUSIONS/SIGNIFICANCE: Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial

  14. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  15. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties.

    Directory of Open Access Journals (Sweden)

    Siriluck Ponsuksili

    Full Text Available Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with

  16. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties.

    Science.gov (United States)

    Ponsuksili, Siriluck; Siengdee, Puntita; Du, Yang; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2015-01-01

    Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with trait

  17. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  18. CIRCADIAN GENES AND REGULATION OF DIAPAUSE IN INSECT

    OpenAIRE

    Bajgar, Adam

    2013-01-01

    This thesis considers various roles of circadian clock genes in insect physiology. Application of molecular-biology methods in Pyrrhocoris apterus, non-model insect species, enable us to investigate involvement of circadian clock genes in photoperiod induced physiological responses. We discover involvement of neuroendocrine cells, and a role of Juvenile hormone (JH) signalization in transduction of photoperiodic signalization to peripheral tissues. We found new principles of JH signal diversi...

  19. Characterisation of Parkinson's disease-associated genes and their regulation.

    OpenAIRE

    Y.X. Yang

    2007-01-01

    Parkinson's disease is a highly prevalent neurodegenerative disorder. Several genes have been shown to be associated with familial Parkinson's disease and they usually lead to Parkinson's disease due to the presence of mutations that affect protein function. It has been suggested that variations in the expression of the wild type genes may also lead to Parkinson's disease. The causes of idiopathic Parkinson's disease remain unknown. Several factors may contribute to its onset, including: susc...

  20. Evolutionary dynamics of gene and isoform regulation in mammalian tissues*

    OpenAIRE

    Merkin, Jason; Russell, Caitlin; CHEN, PING; Burge, Christopher B.

    2012-01-01

    Most mammalian genes produce multiple distinct mRNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced cDNA from 9 tissues from 4 mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specifi...

  1. REGULATION OF RAT DOPAMINE β-HYDROXYLASE GENE TRANSCRIPTION BY EARLY GROWTH RESPONSE GENE 1 (EGR1)

    OpenAIRE

    Cheng, Shu-Yuan; Serova, Lidia I.; Glazkova, Dina; Sabban, Esther L.

    2007-01-01

    Egr1, a transcription factor rapidly induced by various stimuli including stress, can elevate transcription of genes for the catecholamine biosynthetic enzymes TH and PNMT. To examine if Egr1 also regulates dopamine β-hydroxylase (DBH) gene expression, PC12 cells were transfected with expression vector for full length or truncated inactive Egr1 and various DBH promoter-driven luciferase constructs. While Egr1 elevated TH promoter activity, DBH promoter activity was reduced. The reduction occu...

  2. FOXA1 positively regulates gene expression by changing gene methylation status in human breast cancer MCF-7 cells

    OpenAIRE

    ZHENG, LU; Qian, Bo; Tian, Duo; Tang, Tong; Wan, Shengyun; Wang, Lei; Zhu, Lixin; Geng, Xiaoping

    2015-01-01

    Objective: DNA methylation is an important epigenetic modification with tumor suppressor gene silencing in cancer. The mechanisms underlying DNA methylation patterns are still poorly understood. This study aims to evaluate the potential value of FOXA1 for controlling gene CpG island methylation in breast cancer. Methods: FOXA1 was down-regulated by transfection with siRNA and up-regulated by transfection with plasmid in MCF-7 cell lines. The DNA methylation and mRNA levels were examined by qM...

  3. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  4. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    Science.gov (United States)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    networks have been identified, including scale free distribution of the vertex degree, network motifs, and modularity, to name a few. These studies of network organization require the network to be as complete as possible, which given the limitations of experimental techniques is not currently the case. Therefore, experimental procedures for detecting biomolecular interactions should be complemented by computational approaches. The paper by Lees et al provides a review of computational methods, integrating multiple independent sources of data to infer physical and functional protein-protein interaction networks. One of the important aspects of protein interactions that should be accounted for in the prediction of protein interaction networks is that many proteins are composed of distinct domains. Protein domains may mediate protein interactions while proteins and their interaction networks may gain complexity through gene duplication and expansion of existing domain architectures via domain rearrangements. The latter mechanisms have been explored in detail in the paper by Cohen-Gihon et al. Protein-protein interactions are not the only component of the cell's interactome. Regulation of cell activity can be achieved at the level of transcription and involve a transcription factor—DNA binding which typically requires recognition of a specific DNA sequence motif. Chip-Chip and the more recent Chip-Seq technologies allow in vivo identification of DNA binding sites and, together with novel in vitro approaches, provide data necessary for deciphering the corresponding binding motifs. Such information, complemented by structures of protein-DNA complexes and knowledge of the differences in binding sites among homologs, opens the door to constructing predictive binding models. The paper by Persikov and Singh provides an example of such a model in the Cys2His2 zinc finger family. Recent studies have indicated that the presence of such binding motifs is, however, neither necessary

  5. GAA Trinucleotide Repeat Region Regulates M9/pMGA Gene Expression in Mycoplasma gallisepticum

    OpenAIRE

    Liu, Li; Dybvig, Kevin; Panangala, Victor S.; van Santen, Vicky L.; French, Christopher T.

    2000-01-01

    Mycoplasma gallisepticum, the cause of chronic respiratory infections in the avian host, possesses a family of M9/pMGA genes encoding an adhesin(s) associated with hemagglutination. Nucleotide sequences of M9/pMGA gene family members indicate extensive sequence similarity in the promoter regions of both the transcribed and silent genes. The mechanism that regulates M9/pMGA gene expression is unknown, but studies have revealed an apparent correlation between gene expression and the number of t...

  6. Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development

    OpenAIRE

    Suzuki, Yusuke; Yanagisawa, Makoto; Ariga, Toshio; Yu, Robert K.

    2011-01-01

    Gangliosides are sialic acid-containing glycosphingolipids abundant in the central nervous tissues. The quantity and expression pattern of gangliosides in brain change drastically during early development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. It is still unclear, however, how the transcriptional activation of glycosyltransferase genes is regulated during development. In this study, we investigated the epigenetic regulat...

  7. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    Science.gov (United States)

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  8. Studying Gene Expression: Database Searches and Promoter Fusions to Investigate Transcriptional Regulation in Bacteria

    Directory of Open Access Journals (Sweden)

    Betsy M. Martinez- Vaz

    2010-04-01

    Full Text Available A laboratory project was designed to illustrate how to search biological databases and utilize the information provided by these resources to investigate transcriptional regulation in Escherichia coli. The students searched several databases (NCBI Genomes, RegulonDB and EcoCyc to learn about gene function, regulation, and the organization of transcriptional units. A fluorometer and GFP promoter fusions were used to obtain fluorescence data and measure changes in transcriptional activity. The class designed and performed experiments to investigate the regulation of genes necessary for biosynthesis of amino acids and how expression is affected by environmental signals and transcriptional regulators. Assessment data showed that this activity enhanced students’ knowledge of databases, reporter genes and transcriptional regulation.

  9. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    Institute of Scientific and Technical Information of China (English)

    Guangxiao Yang; Setsuko Komatsu

    2004-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice.

  10. AI-2-dependent gene regulation in Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Sturdevant Daniel E

    2008-01-01

    Full Text Available Abstract Background Autoinducer 2 (AI-2, a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. Results To determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. Conclusion Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium.

  11. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  12. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Science.gov (United States)

    Notebaart, Richard A; Teusink, Bas; Siezen, Roland J; Papp, Balázs

    2008-01-01

    To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools. PMID:18225949

  13. The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Lumba Shelley

    2012-02-01

    Full Text Available Abstract Background The embryonic temporal regulator FUSCA3 (FUS3 plays major roles in the establishment of embryonic leaf identity and the regulation of developmental timing. Loss-of-function mutations of this B3 domain transcription factor result in replacement of cotyledons with leaves and precocious germination, whereas constitutive misexpression causes the conversion of leaves into cotyledon-like organs and delays vegetative and reproductive phase transitions. Results Herein we show that activation of FUS3 after germination dampens the expression of genes involved in the biosynthesis and response to the plant hormone ethylene, whereas a loss-of-function fus3 mutant shows many phenotypes consistent with increased ethylene signaling. This FUS3-dependent regulation of ethylene signaling also impinges on timing functions outside embryogenesis. Loss of FUS3 function results in accelerated vegetative phase change, and this is again partially dependent on functional ethylene signaling. This alteration in vegetative phase transition is dependent on both embryonic and vegetative FUS3 function, suggesting that this important transcriptional regulator controls both embryonic and vegetative developmental timing. Conclusion The results of this study indicate that the embryonic regulator FUS3 not only controls the embryonic-to-vegetative phase transition through hormonal (ABA/GA regulation but also functions postembryonically to delay vegetative phase transitions by negatively modulating ethylene-regulated gene expression.

  14. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  15. The vertebrate RCAN gene family: novel insights into evolution, structure and regulation.

    Directory of Open Access Journals (Sweden)

    Eva Serrano-Candelas

    Full Text Available Recently there has been much interest in the Regulators of Calcineurin (RCAN proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1. How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5' region of the genes, the existence of antisense transcripts (NAT associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.

  16. Honey Bee Aggression Supports a Link Between Gene Regulation and Behavioral Evolution

    Science.gov (United States)

    A prominent theory holds that animal phenotypes arise by evolutionary changes in the regulation of gene expression. Emerging from studies of animal development, evidence for this theory consists largely of differences in temporal or spatial patterns of gene expression that are related to morphologi...

  17. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    OpenAIRE

    Zhou Qing; Plath Kathrin; Fan Guoping; Mason Mike J; Horvath Steve

    2009-01-01

    Abstract Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we...

  18. The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    Science.gov (United States)

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua Quine Starch, At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates...

  19. Transcriptional regulation of cardiac genes balance pro- and anti-hypertrophic mechanisms in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Nina Gennebäck

    2012-06-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is characterized by unexplained left ventricular hypertrophy. HCM is often hereditary, but our knowledge of the mechanisms leading from mutation to phenotype is incomplete. The transcriptional expression patterns in the myocar - dium of HCM patients may contribute to understanding the mechanisms that drive and stabilize the hypertrophy. Cardiac myectomies/biopsies from 8 patients with hypertrophic obstructive cardiomyopathy (HOCM and 5 controls were studied with whole genome Illumina microarray gene expression (detecting 18 189 mRNA. When comparing HOCM myocardium to controls, there was significant transcriptional down-regulation of the MYH6, EGR1, APOB and FOS genes, and significant transcriptional up-regulation of the ACE2, JAK2, NPPA (ANP, APOA1 and HDAC5 genes. The transcriptional regulation revealed both pro- and anti-hypertrophic mechanisms. The pro-hypertrophic response was explained by the transcriptional down-regulation of MYH6, indicating that the switch to the fetal gene program is maintained, and the transcriptional up-regulation of JAK2 in the JAK-STAT pathway. The anti-hypertrophic response was seen as a transcriptional down-regulation of the immediate early genes (IEGs, FOS and EGR1, and a transcriptional up-regulation of ACE2 and HDAC5. This can be interpreted as a transcriptional endogenous protection system in the heart of the HOCM patients, neither growing nor suppressing the already hypertrophic myocardium.

  20. Cloning and regulation of Erwinia herbicola pigment genes.

    OpenAIRE

    Perry, K L; Simonitch, T A; Harrison-Lavoie, K J; Liu, S T

    1986-01-01

    The genes coding for yellow pigment production in Erwinia herbicola Eho10 (ATCC 39368) were cloned and localized to a 12.4-kilobase (kb) chromosomal fragment. A 2.3-kb AvaI deletion in the cloned fragment resulted in the production of a pink-yellow pigment, a possible precursor of the yellow pigment. Production of yellow pigment in both E. herbicola Eho10 and pigmented Escherichia coli clones was inhibited by glucose. When the pigment genes were transformed into a cya (adenylate cyclase) E. c...

  1. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  2. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.

  3. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  4. Zinc-regulated genes in Saccharomyces cerevisiae revealed by transposon tagging.

    OpenAIRE

    Yuan, D S

    2000-01-01

    The biochemistry of human nutritional zinc deficiency remains poorly defined. To characterize in genetic terms how cells respond to zinc deprivation, zinc-regulated genes (ZRG's) were identified in yeast. Gene expression was probed using random lacZ reporter gene fusions, integrated by transposon tagging into a diploid genome as previously described. About half of the genome was examined. Cells exhibiting differences in lacZ expression on low or moderate ( approximately 0. 1 vs. 10 microm) zi...

  5. Another player joins the complex field of sugar-regulated gene expression in plants

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Susan I.; Graham, Ian A.

    1999-04-01

    This article summarizes recent progress in understanding the molecular mechanisms by which soluble sugar levels affect plant development and gene expression. The article focuses on the role played by a newly identified protein, the PRL1 protein. The PRL1 protein has been found to interact with the SNF1 protein. Previously, SNF1 was shown to function in sugar-regulated gene expression in yeast. Mutations in the gene encoding PRL1 confer increased sensitivity to sugar and to several phytohormones.

  6. Transcriptional Regulation of the cpr Gene Cluster in ortho-Chlorophenol-Respiring Desulfitobacterium dehalogenans

    OpenAIRE

    Smidt, H.; Leest, de, H.T.J.I.; Oost, van der, J.; De Vos

    2000-01-01

    To characterize the expression and possible regulation of reductive dehalogenation in halorespiring bacteria, a 11.5-kb genomic fragment containing the o-chlorophenol reductive dehalogenase-encoding cprBA genes of the gram-positive bacterium Desulfitobacterium dehalogenans was subjected to detailed molecular characterization. Sequence analysis revealed the presence of eight designated genes with the order cprTKZEBACD and with the same polarity except for cprT. The deduced cprC and cprK gene p...

  7. Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression.

    OpenAIRE

    Hobert, O.; Jallal, B; Ullrich, A

    1996-01-01

    The proto-oncogene product Vav plays a critical role in hematopoietic signal transduction. By using the yeast two-hybrid system, we identified a novel human protein, ENX-1, which interacts specifically with Vav both in vitro and in vivo. ENX-1 represents the human homolog of the Drosophila Enhancer of zeste gene, a member of the Polycomb group of genes, which are transcriptional regulators of homeobox gene expression. Interaction with ENX-1 suggests that Vav functions as an upstream element i...

  8. Evidence for cross-pathway regulation of metabolic gene expression in plants.

    OpenAIRE

    Guyer, D; Patton, D; Ward, E

    1995-01-01

    In Arabidopsis thaliana, blocking histidine biosynthesis with a specific inhibitor of imidazoleglycerol-phosphate dehydratase caused increased expression of eight genes involved in the biosynthesis of aromatic amino acids, histidine, lysine, and purines. A decrease in expression of glutamine synthetase was also observed. Addition of histidine eliminated the gene-regulating effects of the inhibitor, demonstrating that the changes in gene expression resulted from histidine-pathway blockage. The...

  9. A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen

    OpenAIRE

    Yoon, Sung Ho; Turkarslan, Serdar; Reiss, David J.; Pan, Min; Burn, June A.; Costa, Kyle C.; Lie, Thomas J.; Slagel, Joseph; Moritz, Robert L.; Hackett, Murray; Leigh, John A.; Baliga, Nitin S.

    2013-01-01

    Methanogens catalyze the critical methane-producing step (called methanogenesis) in the anaerobic decomposition of organic matter. Here, we present the first predictive model of global gene regulation of methanogenesis in a hydrogenotrophic methanogen, Methanococcus maripaludis. We generated a comprehensive list of genes (protein-coding and noncoding) for M. maripaludis through integrated analysis of the transcriptome structure and a newly constructed Peptide Atlas. The environment and gene-r...

  10. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation.

    Directory of Open Access Journals (Sweden)

    Gaël Panis

    2010-10-01

    Full Text Available Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF. We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excessive recombination are discussed.

  11. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Directory of Open Access Journals (Sweden)

    Bhavnani Suresh K

    2010-11-01

    Full Text Available Abstract Background In a recent study, two-dimensional (2D network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method revealed that genes implicated in many diseases (non-specific genes tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.

  12. Regulation of Arabidopsis thaliana Em genes : role of AB15

    NARCIS (Netherlands)

    Carles, C.; Bies-Etheve, N.; Aspart, L.; Léon-Kloosterziel, K.M.; Koornneef, M.; Echeverria, M.; Delseny, M.

    2002-01-01

    In order to identify new factors involved in Em (a class I Late Embryogenesis Abundant protein) gene expression, Arabidopsis mutants with an altered expression of an Em promoter GUS fusion construct and a modified accumulation of Em transcripts and proteins were isolated. Germination tests on ABA sh

  13. Regulation of histone gene expression during the cell cycle.

    Science.gov (United States)

    Meshi, T; Taoka, K I; Iwabuchi, M

    2000-08-01

    The steady-state level of histone mRNAs fluctuates coordinately with chromosomal DNA synthesis during the cell cycle. Such an S phase-specific expression pattern results from transcriptional activation of histone genes coupled with the onset of replication and from transcriptional repression of the genes as well as specific destabilization of histone mRNAs around the end of the S phase. Proliferation-coupled and S phase-specific expression of histone genes is primarily achieved by the activities of the proximal promoter regions, where several conserved cis-acting elements have been identified. Among them, three kinds of Oct-containing composite elements (OCEs) play a pivotal role in S phase-specific transcriptional activation. Other ones, such as Nona, solo-Oct, and CCGTC motifs, appear to modulate the functions of OCEs to enhance or repress the transcriptional level, possibly depending on the state of the cells. Here, we review the growing evidence concerning the regulatory mechanisms by which plant histone genes are expressed S phase-specifically in proliferating cells. PMID:11089867

  14. 5. Regulation of Gene Expression.Handbook of Corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Pátek, Miroslav

    Boca Raton, FL: CRC Press, Taylor and Francis Group, 2005, s. 81-98. ISBN 0-8493-1821-1 R&D Projects: GA ČR GA525/04/0548 Institutional research plan: CEZ:AV0Z5020903 Keywords : gene expression * corynebacterium glutamicum Subject RIV: EE - Microbiology, Virology

  15. A strawberry KNOX gene regulates leaf, flower and meristem architecture.

    Directory of Open Access Journals (Sweden)

    Mithu Chatterjee

    Full Text Available The KNOTTED-LIKE HOMEODOMAIN (KNOX genes play a central role in maintenance of the shoot apical meristem. They also contribute to the morphology of simple and compound leaves. In this report we characterize the FaKNOX1 gene from strawberry (Fragaria spp. and demonstrate its function in trasgenic plants. The FaKNOX1 cDNA was isolated from a cultivated strawberry (F.×ananassa flower EST library. The sequence is most similar to Class I KNOX genes, and was mapped to linkage group VI of the diploid strawberry genome. Unlike most KNOX genes studied, steady-state transcript levels were highest in flowers and fruits. Transcripts were also detected in emerging leaf primordia and the apical dome. Transgenic strawberry plants suppressing or overexpressing FaKNOX1 exhibited conspicuous changes in plant form. The FaKNOX1 RNAi plants presented a dwarfed phenotype with deeply serrated leaflets and exaggerated petiolules. They also exhibited a high level of cellular disorganization of the shoot apical meristem and leaves. Overexpression of FaKNOX1 caused dwarfed stature with wrinkled leaves. These gain- and loss-of-function assays in strawberry functionally demonstrate the contributions of a KNOX domain protein in a rosaceous species.

  16. Early gene regulation of osteogenesis in embryonic stem cells

    KAUST Repository

    Kirkham, Glen R.

    2012-01-01

    The early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex, and the underlying regulatory associations can be difficult to map accurately. In this study, the expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFβ1. Candidate GRNs of early osteogenesis were constructed based on published experimental findings and simulation results of Boolean and ordinary differential equation models were compared with our experimental data in order to test the validity of these models. Three gene regulatory networks were found to be consistent with the data, one of these networks exhibited sustained oscillation, a behaviour which is consistent with the general view of embryonic stem cell plasticity. The work cycle presented in this paper illustrates how mathematical modelling can be used to elucidate from gene expression profiles GRNs that are consistent with experimental data. © 2012 The Royal Society of Chemistry.

  17. Jarid1b targets genes regulating development and is involved in neural differentiation

    DEFF Research Database (Denmark)

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina; Morey Ramonell, Lluis; Johansen, Jens V; Bak, Mads; Tommerup, Niels; Abarrategui Garcia, Iratxe; Helin, Kristian

    2011-01-01

    H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and d...

  18. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    International Nuclear Information System (INIS)

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  19. CodY of Streptococcus pneumoniae : Link between nutritional gene regulation and colonization

    NARCIS (Netherlands)

    Hendriksen, Wouter T.; Bootsma, Hester J.; Estevao, Silvia; Hoogenboezem, Theo; de Jong, Anne; de Groot, Ronald; Kuipers, Oscar P.; Hermans, Peter W. M.

    2008-01-01

    CodY is a nutritional regulator mainly involved in amino acid metabolism. It has been extensively studied in Bacillus subtilis and Lactococcus lactis. We investigated the role of CodY in gene regulation and virulence of the human pathogen Streptococcus pneumoniae. We constructed a codY mutant and ex

  20. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  1. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    Energy Technology Data Exchange (ETDEWEB)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  2. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    International Nuclear Information System (INIS)

    The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells

  3. Translational regulation of genes in salmonella typhimurium by vitamin B12

    OpenAIRE

    Ravnum, Solveig

    2000-01-01

    In this thesis I have studied the mechanism by which vitamin B12 regulates the expression of the cob operon and the btuB gene in Salmonella typhimurium. The cob operon encodes most of the 25 genes required for the de novo synthesis of vitamin B12, and the butB gene encodes the outer membrane protein needed for transport of exogenous vitamin B12 into the cell. Vitamin B12 is used as a cofactor in four enzymatic reactions in Salmonella typhimurium. The regulation by vitamin B12 of the cob opero...

  4. Role of mga in growth phase regulation of virulence genes of the group A streptococcus.

    OpenAIRE

    McIver, K S; J. R. Scott

    1997-01-01

    To determine whether growth phase affects the expression of mga and other virulence-associated genes in the group A streptococcus (GAS), total RNA was isolated from the serotype M6 GAS strain JRS4 at different phases of growth and transcript levels were quantitated by hybridization with radiolabeled DNA probes. Expression of mga (which encodes a multiple gene regulator) and the Mga-regulated genes emm (which encodes M protein) and scpA (which encodes a complement C5a peptidase) was found to b...

  5. Detection of oestrogenic chemicals by assaying the expression level of oestrogen regulated genes

    DEFF Research Database (Denmark)

    Jørgensen, M; Hummel, R; Bévort, M;

    1998-01-01

    the yeast E-screen, with methods that are based on mammalian cells or whole animals. An alternative is to assay gene expression directly by methods such as differential display, where the expression of both genes known to be regulated directly by the receptor and genes regulated by other pathways can...... pathways and its intrinsic transcriptional activity is highly influenced by phosphorylation and by its interaction with other proteins. This is clearly observed when the oestrogenicity of antioestrogens is tested since some compounds activate the receptor in yeast, but not in mammalian cells. However, when...

  6. An atlas of gene expression and gene co-regulation in the human retina.

    Science.gov (United States)

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  7. Role of Streptococcus pyogenes Two-Component Response Regulators in the Temporal Control of Mga and the Mga-Regulated Virulence Gene emm

    OpenAIRE

    Ribardo, Deborah A.; Lambert, Thomas J.; McIver, Kevin S.

    2004-01-01

    We examined the role of Streptococcus pyogenes two-component response regulators (SptR) in expression of Mga and the Mga-regulated gene emm. Both serotype M6 and serotype M1 mutants in 12 of the 13 identified sptR genes exhibited levels of emm transcripts and Mga protein comparable to those of the wild type during exponential and stationary phases of growth. Thus, temporal control of these virulence genes does not require Spt response regulators.

  8. Spatial Regulation of Gene Expression in Neurons During Synapse Formation and Synaptic Plasticity

    OpenAIRE

    Kim, Sangmok

    2013-01-01

    mRNA localization and regulated translation allow individual neurons to locally regulate the proteome of each of their many subcellular compartments. To investigate the spatial regulation of gene expression during synaptic plasticity, we used a translational reporter system to demonstrate synapse- and stimulus-specific translation during long-term facilitation of Aplysia sensory-motor synapse. These studies revealed a role for a retrograde signal from the postsynaptic motor neuron in regulati...

  9. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation. PMID:11526079

  10. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish

    Directory of Open Access Journals (Sweden)

    Achermann Marc

    2009-12-01

    Full Text Available Abstract Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. Results We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 μm targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. Conclusion This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.

  11. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  12. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    DEFF Research Database (Denmark)

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni;

    2009-01-01

    Glycerol is catabolized by a wide range of microorganisms including Aspergillus species. To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, Aspergillus oryzae and...... Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led to the...... identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...

  13. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  14. Noise-induced multistability in the regulation of cancer by genes and pseudogenes

    Science.gov (United States)

    Petrosyan, K. G.; Hu, Chin-Kun

    2016-07-01

    We extend a previously introduced model of stochastic gene regulation of cancer to a nonlinear case having both gene and pseudogene messenger RNAs (mRNAs) self-regulated. The model consists of stochastic Boolean genetic elements and possesses noise-induced multistability (multimodality). We obtain analytical expressions for probabilities for the case of constant but finite number of microRNA molecules which act as a noise source for the competing gene and pseudogene mRNAs. The probability distribution functions display both the global bistability regime as well as even-odd number oscillations for a certain range of model parameters. Statistical characteristics of the mRNA's level fluctuations are evaluated. The obtained results of the extended model advance our understanding of the process of stochastic gene and pseudogene expressions that is crucial in regulation of cancer.

  15. Ultrasensitive gene regulation by positive feedback loops in nucleosome modification.

    Science.gov (United States)

    Sneppen, Kim; Micheelsen, Mille A; Dodd, Ian B

    2008-01-01

    Eukaryotic transcription involves the synergistic interaction of many different proteins. However, the question remains how eukaryotic promoters achieve ultrasensitive or threshold responses to changes in the concentration or activity of a single transcription factor (TF). We show theoretically that by recruiting a histone-modifying enzyme, a TF binding non-cooperatively to a single site can change the balance between opposing positive feedback loops in histone modification to produce a large change in gene expression in response to a small change in concentration of the TF. This mechanism can also generate bistable promoter responses, allowing a gene to be on in some cells and off in others, despite the cells being in identical conditions. In addition, the system provides a simple means by which the activities of many TFs could be integrated at a promoter. PMID:18414483

  16. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Wu Chang-Yi

    2008-08-01

    Full Text Available Abstract Background The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. We previously used transcriptome profiling with DNA microarrays to identify 46 potential Zap1 target genes in the yeast genome. In this new study, we used complementary methods to identify additional Zap1 target genes. Results With alternative growth conditions for the microarray experiments and a more sensitive motif identification algorithm, we identified 31 new potential targets of Zap1 activation. Moreover, an analysis of the response of Zap1 target genes to a range of zinc concentrations and to zinc withdrawal over time demonstrated that these genes respond differently to zinc deficiency. Some genes are induced under mild zinc deficiency and act as a first line of defense against this stress. First-line defense genes serve to maintain zinc homeostasis by increasing zinc uptake, and by mobilizing and conserving intracellular zinc pools. Other genes respond only to severe zinc limitation and act as a second line of defense. These second-line defense genes allow cells to adapt to conditions of zinc deficiency and include genes involved in maintaining secretory pathway and cell wall function, and stress responses. Conclusion We have identified several new targets of Zap1-mediated regulation. Furthermore, our results indicate that through the differential regulation of its target genes, Zap1 prioritizes mechanisms of zinc homeostasis and adaptive responses to zinc deficiency.

  17. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    Science.gov (United States)

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  18. Regulation of inflammatory gene expression in PBMCs by immunostimulatory botanicals.

    Directory of Open Access Journals (Sweden)

    Karen L Denzler

    Full Text Available Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics, this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata and an immunosuppressive herb (Urtica dioica, the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses.

  19. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    Science.gov (United States)

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  20. Stable intronic sequence RNAs (sisRNAs): a new layer of gene regulation.

    Science.gov (United States)

    Osman, Ismail; Tay, Mandy Li-Ian; Pek, Jun Wei

    2016-09-01

    Upon splicing, introns are rapidly degraded. Hence, RNAs derived from introns are commonly deemed as junk sequences. However, the discoveries of intronic-derived small nucleolar RNAs (snoRNAs), small Cajal body associated RNAs (scaRNAs) and microRNAs (miRNAs) suggested otherwise. These non-coding RNAs are shown to play various roles in gene regulation. In this review, we highlight another class of intron-derived RNAs known as stable intronic sequence RNAs (sisRNAs). sisRNAs have been observed since the 1980 s; however, we are only beginning to understand their biological significance. Recent studies have shown or suggested that sisRNAs regulate their own host's gene expression, function as molecular sinks or sponges, and regulate protein translation. We propose that sisRNAs function as an additional layer of gene regulation in the cells. PMID:27147469

  1. Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription.

    Science.gov (United States)

    Delerive, Philippe; Galardi, Cristin M; Bisi, John E; Nicodeme, Edwige; Goodwin, Bryan

    2004-10-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) has been reported to play a role in bile acid biosynthesis and reverse cholesterol transport. In this study, we examined the role of LRH-1 in the regulation of the apolipoprotein AI (APOAI) gene. Using RNA interference and adenovirus-mediated overexpression, we show that LRH-1 directly regulates APOAI gene transcription. Transient transfection experiments and EMSAs revealed that LRH-1 directly regulates APOAI transcription by binding to an LRH-1 response element located in the proximal APOAI promoter region. Chromatin immunoprecipitation experiments revealed that LRH-1 binds to the human APO AI promoter in vivo. Finally, we show that the transcriptional repressor SHP (small heterodimer partner) suppressed APOAI gene expression by inhibiting LRH-1 transcriptional activity. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOAI transcription and underscore the role of this receptor in cholesterol homeostasis. PMID:15218078

  2. Differential timing of gene expression regulation between leptocephali of North Atlantic eels in the Sargasso Sea

    DEFF Research Database (Denmark)

    Bernatchez, Louis; Saint-Cyr, Jérôme; Maes, Gregory E.;

    2011-01-01

    alternative hypotheses of (1) differential timing of gene expression regulation during early development versus (2) species-specific differences in expression of particular genes. Our results provide much stronger support for the former hypothesis since no gene showed consistent significant differences in...... species differentiation. Overall, these results show that the basis of the early developmental divergence between the American and European eel is probably influenced by differences in the timing of gene expression regulation for genes involved in a large array of biological functions......The unique life-history characteristics of North Atlantic catadromous eels have long intrigued evolutionary biologists, especially with respect to mechanisms that could explain their persistence as two ecologically very similar but reproductively and geographically distinct species. Differential...

  3. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Directory of Open Access Journals (Sweden)

    Okada Yasukazu

    2010-04-01

    Full Text Available Abstract Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera. Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  4. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level.

    OpenAIRE

    Eisenstein, R S; Rosen, J. M.

    1988-01-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of beta-casein gene transcription but a 37-fold increase in beta-casein mRNA accumula...

  5. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  6. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  7. Uncertainty aversion in Australian regulation of agricultural gene technology

    OpenAIRE

    Gray, Emily M.; Ahmadi-Esfahani, Fredoun Z.

    2008-01-01

    There is potential for over-provision of environmental harms and under-provision of environmental benefits associated with GM crops. As a result, strong public regulation is needed to ensure that full social values are considered. However, one reason for opposition to GM crops is a lack of public trust in regulatory institutions and science, and the limited opportunities afforded to public-participation and nonscientific concerns. We aim to demonstrate the trade-off between social cost and ma...

  8. Potentiated gene regulation by methylphenidate plus fluoxetine treatment: Long-term gene blunting (Zif268, Homer1a) and behavioral correlates

    OpenAIRE

    Beverley, Joel A.; Piekarski, Cassandra; Van Waes, Vincent; Steiner, Heinz

    2014-01-01

    Use of psychostimulants such as methylphenidate (Ritalin) in medical treatments and as cognitive enhancers in the healthy is increasing. Methylphenidate produces some addiction-related gene regulation in animal models. Recent findings show that combining selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine with methylphenidate potentiates methylphenidate-induced gene regulation. We investigated the endurance of such abnormal gene regulation by assessing an establis...

  9. Appetite regulation in Schizothorax prenanti by three CART genes.

    Science.gov (United States)

    Yuan, Dengyue; Wei, Rongbin; Wang, Tao; Wu, Yuanbing; Lin, Fangjun; Chen, Hu; Liu, Ju; Gao, Yundi; Zhou, Chaowei; Chen, Defang; Li, Zhiqiong

    2015-12-01

    In recent years, cocaine- and amphetamine-regulated transcript (CART) has received much attention as mediators of appetite regulation in mammals. However, the involvement of CART in the feeding behavior of teleosts has not been well understood. In this study, three distinct CARTs were cloned from the Schizothorax prenanti (S. prenanti). Real-time quantitative PCR were applied to characterize the tissue distribution and appetite regulatory effects of CARTs in S. prenanti. The S. prenanti CART-1, CART-2 and CART-3 full-length cDNA sequences were 597 bp, 694 bp and 749 bp in length, encoding the peptides of 125, 120 and 104 amino acid residues, respectively. All the S. prenanti CARTs consisted of three exons and two introns. Tissue distribution analysis showed that the high mRNA levels of S. prenanti CART-1 were observed in the telencephalon and eye, followed by the hypothalamus, myelencephalon, and mesencephalon. The S. prenanti CART-2 mRNA was mainly found in the mesencephalon, hypothalamus, telencephalon and myelencephalon. The S. prenanti CART-3 mRNA was widely distributed among the tissues, with the high levels in the hypothalamus and foregut. In the periprandial experiment, all three CARTs mRNA expressions in the hypothalamus were highly elevated after a meal, suggesting that CARTs are postprandial satiety signals. In the fasting experiment, all three CARTs mRNA expressions decreased after fasting and increased after refeeding, suggesting that CARTs might be involved in regulation of appetite in the S. prenanti. PMID:26316039

  10. Role of Sam68 in Post-Transcriptional Gene Regulation

    Directory of Open Access Journals (Sweden)

    Flora Sánchez-Jiménez

    2013-11-01

    Full Text Available The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K homology (KH single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

  11. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.

    Science.gov (United States)

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-09-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors. PMID:26360497

  12. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  13. Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Chaorong Tang

    2013-09-01

    Full Text Available Increasing demand for natural rubber (NR calls for an increase in latex yield and also an extension of rubber plantations in marginal zones. Both harvesting and abiotic stresses lead to tapping panel dryness through the production of reactive oxygen species. Many microRNAs regulated during abiotic stress modulate growth and development. The objective of this paper was to study the regulation of microRNAs in response to different types of abiotic stress and hormone treatments in Hevea. Regulation of MIR genes differs depending on the tissue and abiotic stress applied. A negative co-regulation between HbMIR398b with its chloroplastic HbCuZnSOD target messenger is observed in response to salinity. The involvement of MIR gene regulation during latex harvesting and tapping panel dryness (TPD occurrence is further discussed.

  14. AthaMap web tools for the analysis and identification of co-regulated genes.

    Science.gov (United States)

    Galuschka, Claudia; Schindler, Martin; Bülow, Lorenz; Hehl, Reinhard

    2007-01-01

    The AthaMap database generates a map of cis-regulatory elements for the whole Arabidopsis thaliana genome. This database has been extended by new tools to identify common cis-regulatory elements in specific regions of user-provided gene sets. A resulting table displays all cis-regulatory elements annotated in AthaMap including positional information relative to the respective gene. Further tables show overviews with the number of individual transcription factor binding sites (TFBS) present and TFBS common to the whole set of genes. Over represented cis-elements are easily identified. These features were used to detect specific enrichment of drought-responsive elements in cold-induced genes. For identification of co-regulated genes, the output table of the colocalization function was extended to show the closest genes and their relative distances to the colocalizing TFBS. Gene sets determined by this function can be used for a co-regulation analysis in microarray gene expression databases such as Genevestigator or PathoPlant. Additional improvements of AthaMap include display of the gene structure in the sequence window and a significant data increase. AthaMap is freely available at http://www.athamap.de/. PMID:17148485

  15. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia

    Institute of Scientific and Technical Information of China (English)

    Bryon; Ellis; Leah; Kaercher; Courtney; Snavely

    2012-01-01

    AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.

  16. Negative Feedback Regulation of HIV-1 by Gene Editing Strategy.

    Science.gov (United States)

    Kaminski, Rafal; Chen, Yilan; Salkind, Julian; Bella, Ramona; Young, Won-Bin; Ferrante, Pasquale; Karn, Jonathan; Malcolm, Thomas; Hu, Wenhui; Khalili, Kamel

    2016-01-01

    The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells. PMID:27528385

  17. Negative Feedback Regulation of HIV-1 by Gene Editing Strategy

    Science.gov (United States)

    Kaminski, Rafal; Chen, Yilan; Salkind, Julian; Bella, Ramona; Young, Won-bin; Ferrante, Pasquale; Karn, Jonathan; Malcolm, Thomas; Hu, Wenhui; Khalili, Kamel

    2016-01-01

    The CRISPR/Cas9 gene editing method is comprised of the guide RNA (gRNA) to target a specific DNA sequence for cleavage and the Cas9 endonuclease for introducing breaks in the double-stranded DNA identified by the gRNA. Co-expression of both a multiplex of HIV-1-specific gRNAs and Cas9 in cells results in the modification and/or excision of the segment of viral DNA, leading to replication-defective virus. In this study, we have personalized the activity of CRISPR/Cas9 by placing the gene encoding Cas9 under the control of a minimal promoter of HIV-1 that is activated by the HIV-1 Tat protein. We demonstrate that functional activation of CRISPR/Cas9 by Tat during the course of viral infection excises the designated segment of the integrated viral DNA and consequently suppresses viral expression. This strategy was also used in a latently infected CD4+ T-cell model after treatment with a variety of HIV-1 stimulating agents including PMA and TSA. Controlled expression of Cas9 by Tat offers a new strategy for safe implementation of the Cas9 technology for ablation of HIV-1 at a very early stage of HIV-1 replication during the course of the acute phase of infection and the reactivation of silent proviral DNA in latently infected cells. PMID:27528385

  18. Inducible gene expression and environmentally regulated genes in lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1996-01-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transc

  19. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    Science.gov (United States)

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  20. Regulation of gene expression by FSP27 in white and brown adipose tissue

    Directory of Open Access Journals (Sweden)

    Xue Bofu

    2010-07-01

    Full Text Available Abstract Background Brown and white adipose tissues (BAT and WAT play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27, a member of the cell death-inducing DFF45-like effector (CIDE family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas FSP27 deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, FSP27-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of FSP27-deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis. Results BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of FSP27-deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of leptin/FSP27 double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the FSP27-deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-β signaling were down-regulated in the FSP27-deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBPα/β, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of FSP27-deficient mice. The expression levels of these regulatory

  1. Engineering a portable riboswitch-LacP hybrid device for two-way gene regulation.

    Science.gov (United States)

    Jin, Ye; Huang, Jian-Dong

    2011-10-01

    Riboswitches are RNA-based regulatory devices that mediate ligand-dependent control of gene expression. However, there has been limited success in rationally designing riboswitches. Moreover, most previous riboswitches are confined to a particular gene and only perform one-way regulation. Here, we used a library screening strategy for efficient creation of ON and OFF riboswitches of lacI on the chromosome of Escherichia coli. We then engineered a riboswitch-LacP hybrid device to achieve portable gene control in response to theophylline and IPTG. Moreover, this device regulated target expression in a 'two-way' manner: the default state of target expression was ON; the expression was switched off by adding theophylline and restored to the ON state by adding IPTG without changing growth medium. We showcased the portability and two-way regulation of this device by applying it to the small RNA CsrB and the RpoS protein. Finally, the use of the hybrid device uncovered an inhibitory role of RpoS in acetate assimilation, a function which is otherwise neglected using conventional genetic approaches. Overall, this work establishes a portable riboswitch-LacP device that achieves sequential OFF-and-ON gene regulation. The two-way control of gene expression has various potential scientific and biotechnological applications and helps reveal novel gene functions. PMID:21803790

  2. Identification of photoperiod-regulated gene in soybean and functional analysis in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    Sha Ai-Hua; Chen Yin-Hua; Shan Zhi-Hui; Zhang Xiao-Juan; Wu Xue-Jun; Qiu De-Zheng; Zhou Xin-An

    2014-04-01

    Soybean (Glycine max) is a short-day crop and the photoperiod is a crucial factor regulating its flowering time. To investigate the molecular mechanism controlling the flowering time by photoperiod in soybean, cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used to identify photoperiod-regulated genes in leaves of soybean growing under short-day length, neutral photoperiod and long-day length. A total of 36 transcript-derived fragments (TDFs) were identified to be regulated by photoperiod. Among them, 26 TDFs were homologues of genes with known function. These genes are involved in secondary metabolism, cellular metabolism, cell wall components metabolism, ion transport and hormone signalling. Silencing of the homologue genes in Nicotiana benthamiana for 14 TDFs was conducted by virus-induced gene silencing. The flowering time was delayed by silencing of the genes encoding rhodanese and 40S ribosomal protein S4 (RPS4). The results indicated that rhodanese and RPS4 probably play important roles in regulating flowering time.

  3. Orthologous transcription factors in bacteria have different functions and regulate different genes.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2007-09-01

    Full Text Available Transcription factors (TFs form large paralogous gene families and have complex evolutionary histories. Here, we ask whether putative orthologs of TFs, from bidirectional best BLAST hits (BBHs, are evolutionary orthologs with conserved functions. We show that BBHs of TFs from distantly related bacteria are usually not evolutionary orthologs. Furthermore, the false orthologs usually respond to different signals and regulate distinct pathways, while the few BBHs that are evolutionary orthologs do have conserved functions. To test the conservation of regulatory interactions, we analyze expression patterns. We find that regulatory relationships between TFs and their regulated genes are usually not conserved for BBHs in Escherichia coli K12 and Bacillus subtilis. Even in the much more closely related bacteria Vibrio cholerae and Shewanella oneidensis MR-1, predicting regulation from E. coli BBHs has high error rates. Using gene-regulon correlations, we identify genes whose expression pattern differs between E. coli and S. oneidensis. Using literature searches and sequence analysis, we show that these changes in expression patterns reflect changes in gene regulation, even for evolutionary orthologs. We conclude that the evolution of bacterial regulation should be analyzed with phylogenetic trees, rather than BBHs, and that bacterial regulatory networks evolve more rapidly than previously thought.

  4. dPORE-miRNA: Polymorphic regulation of microRNA genes

    KAUST Repository

    Schmeier, Sebastian

    2011-02-04

    Background: MicroRNAs (miRNAs) are short non-coding RNA molecules that act as post-transcriptional regulators and affect the regulation of protein-coding genes. Mostly transcribed by PolII, miRNA genes are regulated at the transcriptional level similarly to protein-coding genes. In this study we focus on human miRNAs. These miRNAs are involved in a variety of pathways and can affect many diseases. Our interest is on possible deregulation of the transcription initiation of the miRNA encoding genes, which is facilitated by variations in the genomic sequence of transcriptional control regions (promoters). Methodology: Our aim is to provide an online resource to facilitate the investigation of the potential effects of single nucleotide polymorphisms (SNPs) on miRNA gene regulation. We analyzed SNPs overlapped with predicted transcription factor binding sites (TFBSs) in promoters of miRNA genes. We also accounted for the creation of novel TFBSs due to polymorphisms not present in the reference genome. The resulting changes in the original TFBSs and potential creation of new TFBSs were incorporated into the Dragon Database of Polymorphic Regulation of miRNA genes (dPORE-miRNA). Conclusions: The dPORE-miRNA database enables researchers to explore potential effects of SNPs on the regulation of miRNAs. dPORE-miRNA can be interrogated with regards to: a/miRNAs (their targets, or involvement in diseases, or biological pathways), b/SNPs, or c/transcription factors. dPORE-miRNA can be accessed at http://cbrc.kaust.edu.sa/dpore and http://apps.sanbi.ac.za/dpore/. Its use is free for academic and non-profit users. © 2011 Schmeier et al.

  5. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  6. Coordinated Regulation of Gene Expression for Carotenoid Metabolism in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Tian-Hu Sun; Cheng-Qian Liu; Yuan-Yuan Hui; Wen-Kai Wu; Zhi-Gang Zhou; Shan Lu

    2010-01-01

    Carotenoids are important plant pigments for both light harvesting and photooxidation protection.Using the model system of the unicellular green alga Chlamydomonas reinhardtii,we characterized the regulation of gene expression for carotenoid metabolism by quantifying changes in the transcript abundance of dxs,dxr and ipi in the plastidic methylerythritol phosphate pathway and of ggps,psy,pds,lcyb and bchy,directly involved in carotenoid metabolism,under different photoperiod,light and metabolite treatments.The expression of these genes fluctuated with light/dark shifting.Light treatment also promoted the accumulation of transcripts of all these genes.Of the genes studied,dxs,ggps and lcyb displayed the typical circadian pattern by retaining a rhythmic fluctuation of transcript abundance under both constant light and constant dark entrainments.The expression of these genes could also be regulated by metabolic intermediates.For example,ggps was significantly suppressed by a geranylgeranyl pyrophosphate supplement and ipi was upregulated by isopentenyl pyrophosphate.Furthermore,CrOr,a C.reinhardtii homolog of the recently characterized Or gene that accounts for carotenoid accumulation,also showed co-expression with carotenoid biosynthetic genes such as pds and lcyb.Our data suggest a coordinated regulation on carotenoid metabolism in C.reinhardtii at the transcriptional level.

  7. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes.

    Science.gov (United States)

    Antunes, Ana; Dupuy, Bruno

    2010-01-01

    Toxin A (TcdA) and Toxin B (TcdB) are the major virulence factors that contribute to the pathogenesis of Clostridium difficile-associated diarrhoea (CDAD). These enterotoxins act by glucosylation of members of the Rho protein family of small GTP-binding proteins. This leads to the disorganization of the host cell actin cytoskeleton (cytopathic effect) and apoptosis (cytotoxic effect). Due to their glucosyltransferase activity, they are referred as "clostridial glucosylating toxins". The severe form of CDAD has been recently correlated to the levels of toxin production. This reinforces the idea that regulation of toxin production is an important part of the C. difficile infection. Genes encoding TcdA (tcdA) and TcdB (tcdB) are present in a pathogenicity locus (PaLoc) that also includes three accessory genes: tcdR, tcdE and tcdC. TcdR is an alternative RNA polymerase sigma factor that positively regulates toxin gene transcription as well as its own. TcdE has high homologies with bacteriophage holin proteins. TcdC negatively regulates toxin synthesis by interfering with the RNA polymerase formed with TcdR. Therefore, TcdR and TcdC constitute specific regulators of toxin gene transcription thereby tightly regulating toxin synthesis. In addition a variety of environmental signals, such as the presence of carbon sources or amino acids in the growth medium, and temperature also regulate toxin synthesis. PMID:20597005

  8. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Directory of Open Access Journals (Sweden)

    Tomoko M Tabuchi

    2011-05-01

    Full Text Available DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  9. Eos negatively regulates human γ-globin gene transcription during erythroid differentiation.

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Yu

    Full Text Available BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4, a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs. DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3 of the β-globin locus control region (LCR, the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation.

  10. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Qing

    2009-07-01

    Full Text Available Abstract Background Recent work has revealed that a core group of transcription factors (TFs regulates the key characteristics of embryonic stem (ES cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA, we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status, which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology.

  11. Regulation of. beta. -cell glucose transporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ling; Alam, Tausif; Johnson, J.H.; Unger, R.H. (Univ. of Texas Southwestern Medical Center, Dallas (USA) Department of Veterans Affairs Medical Center, Dallas, TX (USA)); Hughes, S.; Newgard, C.B. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

    1990-06-01

    It has been postulated that a glucose transporter of {beta} cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated {beta}-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the K{sub m} for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high K{sub m} glucose transporter in {beta} cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in {beta} cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis.

  12. Regulation of β-cell glucose transporter gene expression

    International Nuclear Information System (INIS)

    It has been postulated that a glucose transporter of β cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated β-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the Km for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high Km glucose transporter in β cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in β cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis

  13. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    Directory of Open Access Journals (Sweden)

    Yogita Sharma

    Full Text Available BACKGROUND: Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq and histone modification (ChIP-seq data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We

  14. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    Science.gov (United States)

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  15. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells

    Institute of Scientific and Technical Information of China (English)

    Qiao-Xia Zhang; Xiao-Yan Zhang; Zhen-Ming Zhang; Wei Lu; Ling Liu; Gang Li; Zhi-Ming Cai; Yao-Ting Gui; Chawnshang Chang

    2012-01-01

    Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility,yet detailed androgenlAR signals in Sertoli cells remain unclear.To identify AR target genes in Sertoli cells,we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice.Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones.To further nail down the difference within Sertoli cells,we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells.Interestingly,additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells.In the condition where maximal androgen response was demonstrated,we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone.Among these genes,603 androgen-/ AR-regulated genes,including 164 upregulated and 439 downregulated,were found in both S-AR-/y mice testis and TM4/AR cells.Using informatics analysis,the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis.Together,using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androgen/AR signals in Sertoli cells and their influences in spermatogenesis.

  16. Regulation of gene expression with thyroid hormone in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Yue-Feng Chen

    Full Text Available INTRODUCTION: The expression of hundreds of genes is altered in response to left ventricular (LV remodeling following large transmural myocardial infarction (MI. Thyroid hormone (TH improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown. METHODS: MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1 Sham MI, (2 MI, and (3 MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI. Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform. RESULTS: Signals were detected in 13,188 genes (out of 22,523, of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR <0.05. Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4. Most of the 55 genes altered by T4 treatment are in the category of molecular function under binding (24 and biological processes which includes immune system process (9, multi-organism process (5 and biological regulation (19 nonexclusively. CONCLUSIONS: These results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following MI in rats.

  17. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  18. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. PMID:27064123

  19. Synthesis of a new conjugated polymer for DNA alkylation and gene regulation.

    Science.gov (United States)

    Nie, Chenyao; Zhu, Chunlei; Feng, Liheng; Lv, Fengting; Liu, Libing; Wang, Shu

    2013-06-12

    A new polyfluorene derivative containing pendent alkylating chlorambucil (PFP-Cbl) was synthesized and characterized. Under direct incubation with DNA in vitro, PFP-Cbl could undergo an efficient DNA alkylating reaction and induce DNA cross-linking. In vitro transcription and translation experiment exhibited that the PFP-Cbl significantly down-regulated the gene expression of luciferase reporter plasmid. The down-regulation of gene expression was also verified through the transfection experiment of p-EGFP plasmid, which showed decreased green fluorescent protein (GFP) in cells. Meanwhile, the self-luminous property of PFP-Cbl could make it able to trace the internalized PFP-Cbl and plasmid complexes resulted from cross-linking in cells by fluorescent microscopy. Combining the features of alkylating function, multivalent binding sites, and fluorescent characteristics, PFP-Cbl provides a new insight in the area of gene regulation and extends the new applications of conjugated polymers (CPs). PMID:23548104

  20. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    Science.gov (United States)

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  1. A Hypoxia-Regulated Adeno-Associated Virus Vector for Cancer-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    2001-01-01

    Full Text Available The presence of hypoxic cells in human brain tumors is an important factor leading to resistance to radiation therapy. However, this physiological difference between normal tissues and tumors also provides the potential for designing cancer-specific gene therapy. We compared the increase of gene expression under anoxia (<0.01% oxygen produced by 3, 6, and 9 copies of hypoxia-responsive elements (HRE from the erythropoietin gene (Epo, which are activated through the transcriptional complex hypoxia-inducible factor 1 (HIF-1. Under anoxic conditions, nine copies of HIRE (9XHRE yielded 27- to 37-fold of increased gene expression in U-251 MG and U-87 MG human brain tumor cell lines. Under the less hypoxic conditions of 0.3% and 1% oxygen, gene activation by 9XHRE increased expression 11- to 18-fold in these cell lines. To generate a recombinant adeno-associated virus (rAAV in which the transgene can be regulated by hypoxia, we inserted the DNA fragment containing 9XHRE and the LacZ reporter gene into an AAV vector. Under anoxic conditions, this vector produced 79- to 110-fold increase in gene expression. We believe this hypoxia-regulated rAAV vector will provide a useful delivery vehicle for cancer-specific gene therapy.

  2. A Hypoxia-Regulated Adeno-Associated Virus Vector for Cancer-Specific Gene Therapy1

    Science.gov (United States)

    Ruan, Hangjun; Su, Hua; Hu, Lily; Lamborn, Kathleen R; Kan, YW; Deen, Dennis F

    2001-01-01

    Abstract The presence of hypoxic cells in human brain tumors is an important factor leading to resistance to radiation therapy. However, this physiological difference between normal tissues and tumors also provides the potential for designing cancer-specific gene therapy. We compared the increase of gene expression under anoxia (<0.01% oxygen) produced by 3, 6, and 9 copies of hypoxia-responsive elements (HRE) from the erythropoietin gene (Epo), which are activated through the transcriptional complex hypoxia-inducible factor 1 (HIF-1). Under anoxic conditions, nine copies of HRE (9XHRE) yielded 27- to 37-fold of increased gene expression in U-251 MG and U-87 MG human brain tumor cell lines. Under the less hypoxic conditions of 0.3% and 1% oxygen, gene activation by 9XHRE increased expression 11- to 18-fold in these cell lines. To generate a recombinant adeno-associated virus (rAAV) in which the transgene can be regulated by hypoxia, we inserted the DNA fragment containing 9XHRE and the LacZ reporter gene into an AAV vector. Under anoxic conditions, this vector produced 79- to 110-fold increase in gene expression. We believe this hypoxia-regulated rAAV vector will provide a useful delivery vehicle for cancer-specific gene therapy. PMID:11494119

  3. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chun-E Ren

    2015-03-01

    Full Text Available Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.

  4. Distal-less homeobox genes of insects and spiders: genomic organization, function, regulation and evolution.

    Science.gov (United States)

    Chen, Bin; Piel, William H; Monteiro, Antónia

    2016-06-01

    The Distal-less (Dll) genes are homeodomain transcription factors that are present in most Metazoa and in representatives of all investigated arthropod groups. In Drosophila, the best studied insect, Dll plays an essential role in forming the proximodistal axis of the legs, antennae and analia, and in specifying antennal identity. The initiation of Dll expression in clusters of cells in mid-lateral regions of the Drosophila embryo represents the earliest genetic marker of limbs. Dll genes are involved in the development of the peripheral nervous system and sensitive organs, and they also function as master regulators of black pigmentation in some insect lineages. Here we analyze the complete genomes of six insects, the nematode Caenorhabditis elegans and Homo sapiens, as well as multiple Dll sequences available in databases in order to examine the structure and protein features of these genes. We also review the function, expression, regulation and evolution of arthropod Dll genes with emphasis on insects and spiders. PMID:26898323

  5. Discovery and characterization of nutritionally regulated genes associated with muscle growth in Atlantic salmon.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2010-10-01

    A genomics approach was used to identify nutritionally regulated genes involved in growth of fast skeletal muscle in Atlantic salmon (Salmo salar L.). Forward and reverse subtractive cDNA libraries were prepared comparing fish with zero growth rates to fish growing rapidly. We produced 7,420 ESTs and assembled them into nonredundant clusters prior to annotation. Contigs representing 40 potentially unrecognized nutritionally responsive candidate genes were identified. Twenty-three of the subtractive library candidates were also differentially regulated by nutritional state in an independent fasting-refeeding experiment and their expression placed in the context of 26 genes with established roles in muscle growth regulation. The expression of these genes was also determined during the maturation of a primary myocyte culture, identifying 13 candidates from the subtractive cDNA libraries with putative roles in the myogenic program. During early stages of refeeding DNAJA4, HSPA1B, HSP90A, and CHAC1 expression increased, indicating activation of unfolded protein response pathways. Four genes were considered inhibitory to myogenesis based on their in vivo and in vitro expression profiles (CEBPD, ASB2, HSP30, novel transcript GE623928). Other genes showed increased expression with feeding and highest in vitro expression during the proliferative phase of the culture (FOXD1, DRG1) or as cells differentiated (SMYD1, RTN1, MID1IP1, HSP90A, novel transcript GE617747). The genes identified were associated with chromatin modification (SMYD1, RTN1), microtubule stabilization (MID1IP1), cell cycle regulation (FOXD1, CEBPD, DRG1), and negative regulation of signaling (ASB2) and may play a role in the stimulation of myogenesis during the transition from a catabolic to anabolic state in skeletal muscle. PMID:20663983

  6. In vitro selection of mutants: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Regulation of differentially expressed genes in plants may be involved in inducing tolerance to stress. Isogenic salt-sensitive and salt-tolerant alfalfa lines were investigated for molecular differences in their response to salt. The genes, which are differentially induced by salt in the salt-tolerant alfalfa cells and are also regulated by salt at the whole plant level, were cloned. Both transcriptional and post- transcriptional mechanisms influenced salt-induced product accumulation in the salt-tolerant alfalfa. The salt-tolerant plants doubled proline concentration rapidly in roots, while salt-sensitive plants showed a delayed response. To understand the regulatory system in the salt-tolerant alfalfa, two genes that are expressed in roots were studied. Alfin1 encodes a zinc-finger type putative DNA transcription factor conserved in alfalfa, rice and Arabidopsis, and MsPRP2 encodes a protein that serves as a cell wall- membrane linker in roots. Recombinant Alfin1 protein was selected, amplified, cloned and its consensus sequence was identified. The recombinant Alfin1 also bound specifically to fragments of the MsPRP2 promoter in vitro, containing the Alfin1 binding consensus sequence. The results show unambiguously binding specificity of Alfin1 DNA, supporting its role in gene regulation. Alfin1 function was tested in transformed alfalfa in vivo by over-expressing Alfin1 from 35S CaMV promoter. The transgenic plants appeared normal. However, plants harboring the anti-sense construct did not grow well in soil, indicating that Alfin1 expression was essential. Alfin1 over-expression in transgenic alfalfa led to enhanced levels of MsPRP2 transcript accumulation, demonstrating that Alfin1 functioned in vivo in gene regulation. Since MsPRP2 gene is also induced by salt, it is likely that Alfin1 is an important transcription factor for gene regulation in salt-tolerant alfalfa, and an excellent target for manipulation to improve salt tolerance. (author)

  7. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    Science.gov (United States)

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  8. URC Fuzzy Modeling and Simulation of Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Fitch, J P

    2001-05-01

    Recent technological advances in high-throughput data collection give biologists the ability to study increasingly complex systems. A new methodology is needed to develop and test biological models based on experimental observations and predict the effect of perturbations of the network (e.g. genetic engineering, pharmaceuticals, gene therapy). Diverse modeling approaches have been proposed, in two general categories: modeling a biological pathway as (a) a logical circuit or (b) a chemical reaction network. Boolean logic models can not represent necessary biological details. Chemical kinetics simulations require large numbers of parameters that are very difficult to accurately measure. Based on the way biologists have traditionally thought about systems, we propose that fuzzy logic is a natural language for modeling biology. The Union Rule Configuration (URC) avoids combinatorial explosion in the fuzzy rule base, allowing complex system models. We demonstrate the fuzzy modeling method on the commonly studied lac operon of E. coli. Our goal is to develop a modeling and simulation approach that can be understood and applied by biologists without the need for experts in other fields or ''black-box'' software.

  9. Molecular evolution of WDR62, a gene that regulates neocorticogenesis.

    Science.gov (United States)

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-09-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000-765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  10. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    Science.gov (United States)

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  11. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    OpenAIRE

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; M. Blumenberg

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated t...

  12. In Vivo Regulation of Human Skeletal Muscle Gene Expression by Thyroid Hormone

    OpenAIRE

    Clément, Karine; Viguerie, Nathalie; Diehn, Maximilian; Alizadeh, Ash; Barbe, Pierre; Thalamas, Claire; Storey, John D.; Brown, Patrick O; Barsh, Greg S.; Langin, Dominique

    2002-01-01

    Thyroid hormones are key regulators of metabolism that modulate transcription via nuclear receptors. Hyperthyroidism is associated with increased metabolic rate, protein breakdown, and weight loss. Although the molecular actions of thyroid hormones have been studied thoroughly, their pleiotropic effects are mediated by complex changes in expression of an unknown number of target genes. Here, we measured patterns of skeletal muscle gene expression in five healthy men treated for 14 days with 7...

  13. Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli.

    OpenAIRE

    Cotter, P A; Gunsalus, R P

    1989-01-01

    Escherichia coli can respire anaerobically using either trimethylamine-N-oxide (TMAO) or dimethyl sulfoxide (DMSO) as the terminal electron acceptor for oxidative phosphorylation. To determine whether the regulation of the dmsABC genes, which encode a membrane-associated TMAO/DMSO reductase, are transcriptionally controlled in response to the availability of alternate electron acceptors, we constructed an operon fusion between the dmsA gene, along with its associated regulatory region, and la...

  14. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    OpenAIRE

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approac...

  15. Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure

    OpenAIRE

    Falcon, Edgardo; Ozburn, Angela; Mukherjee, Shibani; Roybal, Kole; McClung, Colleen A.

    2013-01-01

    Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of...

  16. Regulation of dopaminergic transmission and cocaine reward by the Clock gene

    OpenAIRE

    McClung, Colleen A.; Sidiropoulou, Kyriaki; Vitaterna, Martha; Takahashi, Joseph S.; White, Francis J.; Cooper, Donald C.; Nestler, Eric J.

    2005-01-01

    Although there are clear interactions between circadian rhythms and drug addiction, mechanisms for such interactions remain unknown. Here we establish a role for the Clock gene in regulating the brain's reward circuit. Mice lacking a functional Clock gene display an increase in cocaine reward and in the excitability of dopamine neurons in the midbrain ventral tegmental area, a key brain reward region. These phenotypes are associated with increased expression and phosphorylation of tyrosine hy...

  17. Genetic variants in the cocaine- and amphetamine-regulated transcript gene (CARTPT) and cocaine dependence

    OpenAIRE

    Lohoff, Falk W.; Bloch, Paul J.; Weller, Andrew E.; Nall, Aleksandra H.; Doyle, Glenn A.; Buono, Russell J.; Ferraro, Thomas N.; Kampman, Kyle M.; Pettinati, Helen M.; Dackis, Charles A.; Oslin, David W.; O'Brien, Charles P.; BERRETTINI, WADE H.

    2008-01-01

    Dopaminergic brain systems have been implicated to play a major role in drug reward, thus making genes involved in these circuits plausible candidates for susceptibility to substance use disorders. The cocaine- and amphetamine-regulated transcript peptide (CARTPT) is involved in reward and feeding behavior and has functional characteristics of an endogenous psychostimulant. In this study we tested the hypothesis that variation in the CARTPT gene increases susceptibility to cocaine dependence ...

  18. Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth.

    Science.gov (United States)

    Kuluev, Bulat; Avalbaev, Azamat; Nurgaleeva, Elina; Knyazev, Alexey; Nikonorov, Yuriy; Chemeris, Alexey

    2015-09-15

    The Nicotiana tabacum AINTEGUMENTA-like gene (NtANTL), encoding one of AP2/ERF transcription factors, is a putative ortholog of the AtANT gene from Arabidopsis thaliana. In wild-type tobacco plants, the NtANTL gene was expressed in the actively dividing young flowers, shoot apices, and calluses, while the level of its mRNA increased considerably after treatment with exogenous 6-benzylaminopurine, indoleacetic acid and 24-epibrassinolide. We found a positive correlation among the expression levels of NtANTL, cyclin NtCYCD3;1 and cyclin-dependent kinase NtCDKB1-1 genes, suggesting possible molecular links between AINTEGUMENTA and cell cycle regulators in tobacco plants. However, no correlation was observed between NtANTL, NtCYCD3;1 and NtCDKB1-1 expression levels in response to NaCl and ABA. These observations indicate that the transcription factor NtANTL was not involved in the regulation of the cellular response to salinity nor did it affect the expression of NtCYCD3;1 and NtCDKB1-1 when tobacco plants were exposed to salt stress and ABA. In addition, we generated transgenic tobacco plants with both up-regulated and down-regulated expression of the NtANTL gene. Constitutive expression of the NtANTL gene contributed to an increase in the size of leaves and corolla of transgenic plants. Transgenic plants with reduced expression of the NtANTL gene had smaller leaves, flowers and stems, but showed a compensatory increase in the cell size of leaves and flowers. The results show the significance of the NtANTL gene for the control of organ growth by both cell division and expansion in tobacco plants. PMID:26479044

  19. Origins of anteroposterior patterning and Hox gene regulation during chordate evolution.

    OpenAIRE

    Schilling, T. F.; Knight, R D

    2001-01-01

    All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in verteb...

  20. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters.

    Science.gov (United States)

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-08-26

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and "delivering" remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  1. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene

    OpenAIRE

    Sosnay, Patrick R.; Siklosi, Karen R; Van Goor, Fredrick; Kaniecki, Kyle; Yu, Haihui; Sharma, Neeraj; Ramalho, Anabela S; Amaral, Margarida D.; Dorfman, Ruslan; Zielenski, Julian; Masica, David L.; Karchin, Rachel; Millen, Linda; Thomas, Philip J.; George P. Patrinos

    2013-01-01

    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation to clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 cystic fibrosis patients in registries and clinics in North America and Europe. Among these patients, 159 CFTR varia...

  2. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes.

    Directory of Open Access Journals (Sweden)

    Candy Kumps

    Full Text Available Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17~92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17~92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17~92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1 target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2 serve as a resource for identifying new molecular targets for treatment.

  3. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle

    OpenAIRE

    Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.

    2007-01-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidativ...

  4. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    Science.gov (United States)

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.

  5. Regulation of genes encoding enzymes involved in plant cell wall deconstruction in Trichoderma reesei

    OpenAIRE

    Ries, Laure Nicolas Annick

    2013-01-01

    This study describes the regulation of genes encoding plant cell wall-degrading enzymes in the presence of different carbon sources from the biotechnologically important fungus Trichoderma reesei. It was shown that different carbon sources influence fungal growth rate, biomass production and subsequent enzyme secretion. Several genes were identified and suggested to play a role in the development of conidia and in maintaining polarised growth. RNA-sequencing studies showed an increase in t...

  6. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  7. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  8. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin

    International Nuclear Information System (INIS)

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPARγ2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPARγ2

  9. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli.

    OpenAIRE

    Leonardo, M R; Cunningham, P.R.; Clark, D P

    1993-01-01

    The regulation of the adhE gene, which encodes the trifunctional fermentative acetaldehyde-alcohol dehydrogenase of Escherichia coli, was investigated by the construction of gene fusions and by two-dimensional protein gel electrophoresis. Both operon and protein fusions of adhE to lacZ were induced 10- to 20-fold by anaerobic conditions, and both fusions were repressed by nitrate, demonstrating that regulation is at the level of transcription. Nitrate repression of phi (adhE-lacZ) expression,...

  10. Mechanisms of post-transcriptional regulation of genes involved in FTDP-17

    OpenAIRE

    Fontana, Francesca

    2015-01-01

    MicroRNAs (miRNAs) are small non coding RNAs of 18-25 nt, capable of regulating mRNA translation and gene expression at post-transcriptional level. Alteration of miRNAs expression is often associated with human diseases, such as cancers and neurodegenerative pathologies. The main objective of this study is an analysis of the post-transcriptional regulation played by miRNAs of two important genes, MAPT and GRN, involved in Frontotemporal Dementia with Parkinsonism linked to chromosome 17 (FTDP...

  11. Light-dependent gene regulation by a coenzyme B12-based photoreceptor

    OpenAIRE

    Ortiz-Guerrero, Juan Manuel; Polanco, María Carmen; Murillo, Francisco J; Padmanabhan, S.; Elías-Arnanz, Montserrat

    2011-01-01

    Cobalamin (B12) typically functions as an enzyme cofactor but can also regulate gene expression via RNA-based riboswitches. B12-directed gene regulatory mechanisms via protein factors have, however, remained elusive. Recently, we reported down-regulation of a light-inducible promoter in the bacterium Myxococcus xanthus by two paralogous transcriptional repressors, of which one, CarH, but not the other, CarA, absolutely requires B12 for activity even though both have a canonical B12-binding mo...

  12. Regulation of a Novel Acidithiobacillus caldus Gene Cluster Involved in Metabolism of Reduced Inorganic Sulfur Compounds▿

    OpenAIRE

    Rzhepishevska, Olena I.; Valdés, Jorge; Marcinkeviciene, Liucija; Gallardo, Camelia Algora; Meskys, Rolandas; Bonnefoy, Violaine; Holmes, David S.; Dopson, Mark

    2007-01-01

    Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, rsrR, rsrS, tetH, and doxD, coding for a transposase, a two-component response regulator (RsrR and Rs...

  13. Regulation of Salmonella enterica Serovar Typhimurium Invasion Genes by csrA

    OpenAIRE

    Altier, Craig; Suyemoto, Mitsu; Lawhon, Sara D.

    2000-01-01

    Penetration of intestinal epithelial cells by Salmonella enterica serovar Typhimurium requires the expression of invasion genes, found in Salmonella pathogenicity island 1 (SPI1), that encode components of a type III secretion apparatus. These genes are controlled in a complex manner by regulators within SPI1, including HilA and InvF, and those outside SPI1, such as the two-component regulators PhoP/PhoQ and BarA/SirA. We report here that epithelial cell invasion requires the serovar Typhimur...

  14. Human ether-à-go-go gene potassium channels are regulated by EGFR tyrosine kinase

    OpenAIRE

    Li, GR; Wu, W.; Dong, MQ; Wu, XG; Sun, HY; Tse, HF; Lau, CP

    2011-01-01

    Human ether á-go-go gene potassium channels (hEAG1 or Kv10.1) are expressed in brain and various human cancers and play a role in neuronal excitement and tumor progression. However, the functional regulation of hEAG channels by signal transduction is not fully understood. The present study was therefore designed to investigate whether hEAG1 channels are regulated by protein tyrosine kinases (PTKs) in HEK 293 cells stably expressing hEAG1 gene using whole-cell patch voltage-clamp, immunoprecip...

  15. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    Science.gov (United States)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  16. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Kalle Magnusson

    Full Text Available In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  17. Network analysis of microRNAs, genes and their regulation in mantle cell lymphoma.

    Science.gov (United States)

    Deng, Si-Yu; Guo, Xiao-Xin; Wang, Ning; Wang, Kun-Hao; Wang, Shang

    2015-01-01

    The pathogenesis of mantle cell lymphoma, a special subtype of lymphoma that is invasive and indolent and has a median survival of 3 to 4 years, is still partially unexplained. Much research about genes and miRNAs has been conducted in recent years, but interactions and regulatory relations of genetic elements which may play a vital role in genesis of MCL have attracted only limited attention. The present study concentrated on regulatory relations about genes and miRNAs contributing to MCL pathogenesis. Numerous experimentally validated raw data were organized into three topology networks, comprising differentially expressed, associated and global examples. Comparison of similarities and dissimilarities of the three regulating networks, paired with the analysis of the interactions between pairs of elements in every network, revealed that the differentially expressed network illuminated the carcinogenicity mechanism of MCL and the related network further described the regulatory relations involved, including prevention, diagnosis, development and therapy. Three kinds of regulatory relations for host genes including miRNAs, miRNAs targeting genes and genes regulating miRNAs were concluded macroscopically. Regulation of the differentially expressed miRNAs was also analyzed, in terms of abnormal gene expression affecting the MCL pathogenesis. Special regulatory relations were uncovered. For example, auto-regulatory loops were found in the three topology networks, key pathways of the nodes being highlighted. The present study focused on a novel point of view revealing important influencing factors for MCL pathogenesis. PMID:25684471

  18. Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance.

    Science.gov (United States)

    Adamiec, Małgorzata; Drath, Maria; Jackowski, Grzegorz

    2008-01-01

    DNA microarray technology was applied to gain insight into the role of the redox state of PQ pool as a retrograde factor mediating differential expression of Arabidopsis nuclear genes during the acclimation to changing irradiance. DNA microarray chips containing probes corresponding to 24,000 Arabidopsis nuclear genes were screened with cRNA samples prepared from leaves of plants exposed for 5 h to low irradiance (control) vs. medium, high and excessive irradiances (MI, HI and EI, respectively). Six hundred and sixty three genes were differentially expressed as a result of an exposure to at least one elevated irradiance. Among 663 differentially expressed genes a total of 50 were reverted by DCMU--24 ones modulated at medium irradiance, 32 ones modulated at high irradiance and a single one modulated at excessive irradiance. We postulate that their expression is regulated by redox state of plastoquinone (PQ) pool. Thus the PQ-mediated redox regulation of expression of Arabidopsis nuclear genes is probably limited to the irradiance window representing non-stressing conditions. We found that the promoter regions of the PQ-regulated genes contained conserved elements, suggesting transcriptional control by a shared set of trans-acting factors which participate in signal transduction from the redox state of the PQ pool. PMID:18231654

  19. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  20. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene

    Indian Academy of Sciences (India)

    Jyoti K Jaiswal; Vidyanand Nanjundiah

    2003-12-01

    In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.

  1. Modelling transcriptional interference and DNA looping in gene regulation.

    Science.gov (United States)

    Dodd, Ian B; Shearwin, Keith E; Sneppen, Kim

    2007-06-22

    We describe a hybrid statistical mechanical and dynamical approach for modelling the formation of closed, open and elongating complexes of RNA polymerase, the interactions of these polymerases to produce transcriptional interference, and the regulation of these processes by a DNA-binding and DNA-looping regulatory protein. As a model system, we have used bacteriophage 186, for which genetic, biochemical and structural studies have suggested that the CI repressor binds as a 14-mer to form alternative DNA-looped complexes, and activates lysogenic transcription indirectly by relieving transcriptional interference caused by the convergent lytic promoter. The modelling showed that the original mechanisms proposed to explain this relief of transcriptional interference are not consistent with the available in vivo reporter data. However, a good fit to the reporter data was given by a revised model that incorporates a novel predicted regulatory mechanism: that RNA polymerase bound at the lysogenic promoter protects itself from transcriptional interference by recruiting CI to the lytic promoter. This mechanism and various estimates of in vivo biochemical parameters for the 186 CI system should be testable. Our results demonstrate the power of mathematical modelling for the extraction of detailed biochemical information from in vivo data. PMID:17498740

  2. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed. PMID:24531239

  3. Dexamethasone-mediated transcriptional regulation of rat carboxylesterase 2 gene.

    Science.gov (United States)

    Hori, Takeshi; Jin, Liangjing; Fujii, Ayako; Furihata, Tomomi; Nagahara, Yuko; Chiba, Kan; Hosokawa, Masakiyo

    2012-07-01

    Rat carboxylesterase 2 (rCES2), which was previously identified as a methylprednisolone 21-hemisuccinate hydrolase, is highly inducible by dexamethasone in the liver. In the present study, we investigated the molecular mechanisms by which this induction occurs. Injection of dexamethasone (1 mg/kg weight) into rats resulted in increases in the expression of rCES2 mRNA in a time-dependent manner with a peak at 12 h after injection. In primary rat hepatocytes, the expression level of rCES2 mRNA was increased by treatment with 100 nM dexamethasone, and the increase was completely blocked in the presence of 10 µM mifepristone (RU-486), a potent inhibitor of glucocorticoid receptor (GR), or 10 µg/mL cycloheximide, a translation inhibitor. Luciferase assays revealed that 100 nM dexamethasone increased rCES2 promoter activities, although the effect of dexamethasone on the promoter activity was smaller than that on rCES2 mRNA expression. The increased activities were completely inhibited by treatment of the hepatocytes with 10 µM RU-486. Based on these results, it is concluded that dexamethasone enhances transcription of the rCES2 gene via GR in the rat liver and that the dexamethasone-mediated induction of rCES2 mRNA may be dependent on de novo protein synthesis. Our results provide clues to understanding what compounds induce rCES2. PMID:22235919

  4. Regulation of Metalloprotease Gene Expression in Vibrio vulnificus by a Vibrio harveyi LuxR Homologue

    Science.gov (United States)

    Shao, Chung-Ping; Hor, Lien-I

    2001-01-01

    Expression of the Vibrio vulnificus metalloprotease gene, vvp, was turned up rapidly when bacterial growth reached the late log phase. A similar pattern of expression has been found in the metalloprotease gene of Vibrio cholerae, and this has been shown to be regulated by a Vibrio harveyi LuxR-like transcriptional activator. To find out whether a LuxR homologue exists in V. vulnificus, a gene library of this organism was screened by colony hybridization using a probe derived from a sequence that is conserved in various luxR-like genes of vibrios. A gene containing a 618-bp open reading frame was identified and found to be identical to the smcR gene of V. vulnificus reported previously. An isogenic SmcR-deficient (RD) mutant was further constructed by an in vivo allelic exchange technique. This mutant exhibited an extremely low level of vvp transcription compared with that of the parent strain. On the other hand, the cytolysin gene, vvhA, was expressed at a higher level in the RD mutant than in the parent strain during the log phase of growth. These data suggested that SmcR might not only be a positive regulator of the protease gene but might also be involved in negative regulation of the cytolysin gene. Virulence of the RD mutant in either normal or iron-overloaded mice challenged by intraperitoneal injection was comparable to that of the parent strain, indicating that SmcR is not required for V. vulnificus virulence in mice. PMID:11157950

  5. Epigenetic regulations of immediate early genes expression involved in memory formation by the amyloid precursor protein of Alzheimer disease

    OpenAIRE

    Hendrickx, Aurélie; Pierrot, Nathalie; Tasiaux, Bernadette; Schakman, Olivier; Kienlen-Campard, Pascal; De Smet, Charles; Octave, Jean-Noël

    2014-01-01

    We previously demonstrated that APP epigenetically regulates Egr1 expression both in cultured neurons and in vivo. Since Egr1 is an immediate early gene involved in memory formation, we wondered whether other early genes involved in memory were regulated by APP and we studied molecular mechanisms involved. By comparing prefrontal (PF) cortex from wild type (APP+/+) and APP knockout mice (APP-/-), we observed that APP down regulates expression of four immediate early genes, Egr1, c-Fos, Bdnf a...

  6. Epigenetic Regulations of Immediate Early Genes Expression Involved in Memory Formation by the Amyloid Precursor Protein of Alzheimer Disease

    OpenAIRE

    Hendrickx, Aurélie; Pierrot, Nathalie; Tasiaux, Bernadette; Schakman, Olivier; Kienlen-Campard, Pascal; De Smet, Charles; Octave, Jean-Noël

    2014-01-01

    We previously demonstrated that APP epigenetically regulates Egr1 expression both in cultured neurons and in vivo. Since Egr1 is an immediate early gene involved in memory formation, we wondered whether other early genes involved in memory were regulated by APP and we studied molecular mechanisms involved. By comparing prefrontal (PF) cortex from wild type (APP+/+) and APP knockout mice (APP−/−), we observed that APP down regulates expression of four immediate early genes, Egr1, c-Fos, Bdnf a...

  7. Computational Characterization of Modes of Transcriptional Regulation of Nuclear Receptor Genes

    OpenAIRE

    Sharma, Yogita; Chilamakuri, Chandra Sekhar Reddy; Bakke, Marit; Lenhard, Boris

    2014-01-01

    Background: Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding o...

  8. Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators

    OpenAIRE

    Madak-Erdogan, Zeynep; Charn, Tze-Howe; Jiang, Yan; Liu, Edison T; Katzenellenbogen, John A.; Benita S Katzenellenbogen

    2013-01-01

    The closely related transcription factors (TFs), estrogen receptors ERα and ERβ, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing breast cancer cells with ERα, ERβ, or both receptors as a model system to define the basis for differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules. Cistrome a...

  9. North American ginseng influences adipocyte–macrophage crosstalk regulation of inflammatory gene expression

    OpenAIRE

    Garbett, Jaime; Wilson, Sarah A.F.; Ralston, Jessica C.; Anna A. De Boer; Lui, Ed M.K.; Wright, David C.; Mutch, David M.

    2015-01-01

    Background Adipocyte–macrophage communication plays a critical role regulating white adipose tissue (WAT) inflammatory gene expression. Because WAT inflammation contributes to the development of metabolic diseases, there is significant interest in understanding how exogenous compounds regulate the adipocyte–macrophage crosstalk. An aqueous (AQ) extract of North American (NA) ginseng (Panax quinquefolius) was previously shown to have strong inflammo-regulatory properties in adipocytes. This st...

  10. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    OpenAIRE

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2008-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  11. Domains Required for Transcriptional Activation Show Conservation in the Mga Family of Virulence Gene Regulators

    OpenAIRE

    Vahling, Cheryl M.; McIver, Kevin S.

    2006-01-01

    Mga, or the multigene regulator of the group A streptococcus (GAS) (Streptococcus pyogenes), is a transcriptional regulator of virulence genes important for colonization and immune evasion. All serotypes of the GAS possess one of two divergent mga alleles (mga-1 or mga-2), and orthologues of Mga have also been identified in other pathogenic streptococci. To date, the only functional motifs established within Mga are two amino-terminal DNA-binding domains (HTH-3 and HTH-4). To uncover novel do...

  12. Molecular biology of rotaviruses. VIII. Quantitative analysis of regulation of gene expression during virus replication.

    OpenAIRE

    Johnson, M A; McCrae, M A

    1989-01-01

    A sensitive and quantitative solution hybridization assay recently developed in this laboratory has been applied to the study of the regulation of viral gene expression in rotavirus-infected cells. Measurement of the cumulative level of viral plus-strand (mRNA) synthesis at hourly intervals throughout the growth cycle has provided evidence for both quantitative and qualitative regulation of transcription. Qualitative control was found only when cycloheximide was used to block protein synthesi...

  13. Adaptive variation regulates the expression of the human SGK1 gene in response to stress.

    OpenAIRE

    Francesca Luca; Sonal Kashyap; Catherine Southard; Min Zou; David Witonsky; Anna Di Rienzo; Conzen, Suzanne D.

    2009-01-01

    The Serum and Glucocorticoid-regulated Kinase1 (SGK1) gene is a target of the glucocorticoid receptor (GR) and is central to the stress response in many human tissues. Because environmental stress varies across habitats, we hypothesized that natural selection shaped the geographic distribution of genetic variants regulating the level of SGK1 expression following GR activation. By combining population genetics and molecular biology methods, we identified a variant (rs9493857) with marked allel...

  14. Identification of Cell Cycle-regulated Genes in Fission YeastD⃞

    OpenAIRE

    Peng, Xu; Karuturi, R Krishna Murthy; Miller, Lance D.; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T.; Balasubramanian, Mohan K.; Liu, Jianhua

    2005-01-01

    Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we id...

  15. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry.

    Science.gov (United States)

    De Franceschi, P; Stegmeir, T; Cabrera, A; van der Knaap, E; Rosyara, U R; Sebolt, A M; Dondini, L; Dirlewanger, E; Quero-Garcia, J; Campoy, J A; Iezzoni, A F

    2013-01-01

    Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis. PMID:23976873

  16. Regulation, overexpression, and target gene identification of Potato Homeobox 15 (POTH15) - a class-I KNOX gene in potato.

    Science.gov (United States)

    Mahajan, Ameya S; Kondhare, Kirtikumar R; Rajabhoj, Mohit P; Kumar, Amit; Ghate, Tejashree; Ravindran, Nevedha; Habib, Farhat; Siddappa, Sundaresha; Banerjee, Anjan K

    2016-07-01

    Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato. PMID:27217546

  17. Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori

    OpenAIRE

    Kimoto, Mai; Tsubota, Takuya; Uchino, Keiro; Sezutsu, Hideki; Takiya, Shigeharu

    2014-01-01

    Hox genes are well-known master regulators in developmental morphogenesis along the anteroposterior axis of animals. However, the molecular mechanisms by which Hox proteins regulate their target genes and determine cell fates are not fully understood. The silk gland of Bombyx mori is a tubular tissue divided into several subparts along the anteroposterior axis, and the silk genes are expressed with specific patterns. The sericin-1 gene (ser1) is expressed in the middle silk gland (MSG) with s...

  18. Transcriptional profiling of UlaR-regulated genes in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Sulman Shafeeq

    2015-06-01

    Full Text Available The transcriptional regulator UlaR belongs to the family of PRD-containing transcriptional regulators, which are mostly involved in the regulation of carbohydrate metabolism. The role of the transcriptional regulator UlaR in Streptococcus pneumoniae has recently been described [1]. Here, we report detailed genome-wide transcriptional profiling of UlaR-regulated genes in S. pneumoniae D39 and its ∆ulaR derivative, either in the presence of 10 mM ascorbic acid in M17 medium using microarray analysis. 10 mM concentration of ascorbic acid was supplemented to the M17 medium because our lacZ-fusion studies indicated that UlaR acts as a transcriptional activator of its targets in the presence of ascorbic acid and the expression of the ula operon was maximal at a 10 mM ascorbic acid concentration [1]. All transcriptional profiling data of UlaR-regulated genes was deposited to Gene Expression Omnibus (GEO database under accession number GSE61649.

  19. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    Science.gov (United States)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  20. CURLY LEAF Regulates Gene Sets Coordinating Seed Size and Lipid Biosynthesis1[OPEN

    Science.gov (United States)

    Wang, Huan; Ye, Jian; Wu, Hui-Wen; Sun, Hai-Xi; Chua, Nam-Hai

    2016-01-01

    CURLY LEAF (CLF), a histone methyltransferase of Polycomb Repressive Complex 2 (PRC2) for trimethylation of histone H3 Lys 27 (H3K27me3), has been thought as a negative regulator controlling mainly postgermination growth in Arabidopsis (Arabidopsis thaliana). Approximately 14% to 29% of genic regions are decorated by H3K27me3 in the Arabidopsis genome; however, transcriptional repression activities of PRC2 on a majority of these regions remain unclear. Here, by analysis of transcriptome profiles, we found that approximately 11.6% genes in the Arabidopsis genome were repressed by CLF in various organs. Unexpectedly, approximately 54% of these genes were preferentially repressed in siliques. Further analyses of 118 transcriptome datasets uncovered a group of genes that was preferentially expressed and repressed by CLF in embryos at the mature-green stage. This observation suggests that CLF mediates a large-scale H3K27me3 programming/reprogramming event during embryonic development. Plants of clf-28 produced bigger and heavier seeds with higher oil content, larger oil bodies, and altered long-chain fatty acid composition compared with wild type. Around 46% of CLF-repressed genes were associated with H3K27me3 marks; moreover, we verified histone modification and transcriptional repression by CLF on regulatory genes. Our results suggest that CLF silences specific gene expression modules. Genes operating within a module have various molecular functions, but they cooperate to regulate a similar physiological function during embryo development. PMID:26945048

  1. Prospecting for Genes involved in transcriptional regulation of plant defenses, a bioinformatics approach

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background In order to comprehend the mechanisms of induced plant defense, knowledge of the biosynthesis and signaling pathways mediated by salicylic acid (SA, jasmonic acid (JA and ethylene (ET is essential. Potentially, many transcription factors could be involved in the regulation of these pathways, although finding them is a difficult endeavor. Here we report the use of publicly available Arabidopsis microarray datasets to generate gene co-expression networks. Results Using 372 publicly available microarray data sets, a network was constructed in which Arabidopsis genes for known components of SA, JA and ET pathways together with the genes of over 1400 transcription factors were assayed for co-expression. After determining the Pearson Correlation Coefficient cutoff to obtain the most probable biologically relevant co-expressed genes, the resulting network confirmed the presence of many genes previously reported in literature to be relevant for stress responses and connections that fit current models of stress gene regulation, indicating the potential of our approach. In addition, the derived network suggested new candidate genes and associations that are potentially interesting for future research to further unravel their involvement in responses to stress. Conclusions In this study large sets of stress related microarrays were used to reveal co-expression networks of transcription factors and signaling pathway components. These networks will benefit further characterization of the signal transduction pathways involved in plant defense.

  2. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  3. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J; Araújo, Welington Luiz

    2013-12-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  4. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  5. Proteus mirabilis urease: operon fusion and linker insertion analysis of ure gene organization, regulation, and function.

    Science.gov (United States)

    Island, M D; Mobley, H L

    1995-10-01

    Urease is an inducible virulence factor of uropathogenic Proteus mirabilis. Although eight contiguous genes necessary for urease activity have been cloned and sequenced, the transcriptional organization and regulation of specific genes within the Proteus gene cluster has not been investigated in detail. The first gene, ureR, is located 400 bp upstream and is oriented in the direction opposite the other seven genes, ureDABCEFG. The structural subunits of urease are encoded by ureABC. Previously, UreR was shown to contain a putative helix-turn-helix DNA-binding motif 30 residues upstream of a consensus sequence which is a signature for the AraC family of positive regulators; this polypeptide is homologous to other DNA-binding regulatory proteins. Nested deletions of ureR linked to either ureD-lacZ or ureA-lacZ operon fusions demonstrated that an intact ureR is required for urea-induced synthesis of LacZ from either ureA or ureD and identified a urea-regulated promoter in the ureR-ureD intergenic region. However, lacZ operon fusions to fragments encompassing putative promoter regions upstream of ureA and ureF demonstrated that no urea-regulated promoters occur upstream of these open reading frames; regions upstream of ureR, ureE, and ureG were not tested. These data suggest that UreR acts as a positive regulator in the presence of urea, activating transcription of urease structural and accessory genes via sequences upstream of ureD. To address the role of the nonstructural regulatory and accessory genes, we constructed deletion, cassette, and linker insertion mutations throughout the ure gene cluster and determined the effect of these mutations on production and regulation of urease activity in Escherichia coli. Mutations were obtained, with locations determine by DNA sequencing, in all genes except ureA and ureE. In each case, the mutation resulted in a urease-negative phenotype. PMID:7559355

  6. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  7. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Sun, Wei-Wen; Bruno, Kenneth S.; Oakley, Berl R.; Keller, Nancy P.; Wang, Clay C.

    2015-07-13

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes or non-ribosomal peptide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. More interestingly, further experiments revealed that the aspulvinone E produced by two different genes accumulates in different fungal compartments. And this spatial control of aspulvinone E production is likely to be regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is inserted in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. The study also identified one trans-prenyltransferase AbpB which is capable of prenylating two different substrates aspulvinones and butyrolactones. In total, our study shows the first example in which the locally distribution of the same natural product could lead to its incorporation into different SM pathways.

  8. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael; Aplin, Mark; Gammeltoft, Steen; Sheikh, Søren P; Hansen, Jakob L

    2011-01-01

    potentiated β2-adrenergic receptor-stimulated gene expression. These novel findings indicate that the Gαq protein-independent signalling mainly modifies the transcriptional response governed by other signalling pathways, while direct induction of gene expression by the AT(1)R is dependent on classical Gαq......-independent signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis of...... Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly...

  9. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    Science.gov (United States)

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  10. From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome.

    Directory of Open Access Journals (Sweden)

    Danielle G Lemay

    Full Text Available Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an

  11. Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line

    International Nuclear Information System (INIS)

    Transforming growth factor beta (TGF-β) plays an essential role in a wide array of cellular processes. The most well studied TGF-β response in normal epithelial cells is growth inhibition. In some cell types, TGF-β induces an epithelial to mesenchymal transition (EMT). NMuMG is a nontransformed mouse mammary gland epithelial cell line that exhibits both a growth inhibitory response and an EMT response to TGF-β, rendering NMuMG cells a good model system for studying these TGF-β effects. A National Institutes of Aging mouse 15,000 cDNA microarray was used to profile the gene expression of NMuMG cells treated with TGF-β1 for 1, 6, or 24 hours. Data analyses were performed using GenePixPro and GeneSpring software. Selected microarray results were verified by northern analyses. Of the 15,000 genes examined by microarray, 939 were upregulated or downregulated by TGF-β. This represents approximately 10% of the genes examined, minus redundancy. Seven genes previously not known to be regulated by TGF-β at the transcriptional level (Akt and RhoB) or not at all (IQGAP1, mCalpain, actinin α3, Ikki, PP2A-PR53), were identified and their regulation by TGF-β verified by northern blotting. Cell cycle pathway examination demonstrated downregulation of cyclin D2, c-myc, Id2, p107, E2F5, cyclin A, cyclin B, and cyclin H. Examination of cell adhesion-related genes revealed upregulation of c-Jun, α-actinin, actin, myosin light chain, p120cas catenin (Catns), α-integrin, integrin β5, fibronectin, IQGAP1, and mCalpain. Using a cDNA microarray to examine TGF-β-regulated gene expression in NMuMG cells, we have shown regulation of multiple genes that play important roles in cell cycle control and EMT. In addition, we have identified several novel TGF-β-regulated genes that may mediate previously unknown TGF-β functions

  12. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    The genomes of plants are marked by reoccurring events of whole-genome duplication. These events are major contributors to speciation and provide the genetic material for organisms to evolve ever greater complexity. Duplicated genes, referred to as paralogs, may be retained because they acquired ...

  13. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND DESIGN

  14. DIFFERENTIAL REGULATION OF M-CSF AND IL-6 GENE-EXPRESSION IN MONOCYTIC CELLS

    NARCIS (Netherlands)

    DEWIT, H; ESSELINK, MT; HALIE, MR; VELLENGA, E

    1994-01-01

    Using the human monocytic cell line Mono Mac 6 we studied the involvement of Ca2+, protein kinase A (PKA), and protein kinase C (PKC) dependent pathways in the regulation of M-CSF and IL-6 gene expression The results demonstrate that on activation with the calcium ionophore A23187 both M-CSF and IL-

  15. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo.

    NARCIS (Netherlands)

    G.T. Ma (Grace); M.E. Roth (Matthew); J.C. Groskopf (John); F.G. Grosveld (Frank); J.D. Engel (Douglas); D.I.H. Linzer (Daniel); F.Y. Tsai (Fong-Ying); S.H. Orkin (Stuart)

    1997-01-01

    textabstractWe previously demonstrated that the zinc finger transcription factors GATA-2 and GATA-3 are expressed in trophoblast giant cells and that they regulate transcription from the mouse placental lactogen I gene promoter in a transfected trophoblast cell line. We present evidence here that bo

  16. Integrative analyses shed new light on human ribosomal protein gene regulation.

    Science.gov (United States)

    Li, Xin; Zheng, Yiyu; Hu, Haiyan; Li, Xiaoman

    2016-01-01

    Ribosomal protein genes (RPGs) are important house-keeping genes that are well-known for their coordinated expression. Previous studies on RPGs are largely limited to their promoter regions. Recent high-throughput studies provide an unprecedented opportunity to study how human RPGs are transcriptionally modulated and how such transcriptional regulation may contribute to the coordinate gene expression in various tissues and cell types. By analyzing the DNase I hypersensitive sites under 349 experimental conditions, we predicted 217 RPG regulatory regions in the human genome. More than 86.6% of these computationally predicted regulatory regions were partially corroborated by independent experimental measurements. Motif analyses on these predicted regulatory regions identified 31 DNA motifs, including 57.1% of experimentally validated motifs in literature that regulate RPGs. Interestingly, we observed that the majority of the predicted motifs were shared by the predicted distal and proximal regulatory regions of the same RPGs, a likely general mechanism for enhancer-promoter interactions. We also found that RPGs may be differently regulated in different cells, indicating that condition-specific RPG regulatory regions still need to be discovered and investigated. Our study advances the understanding of how RPGs are coordinately modulated, which sheds light to the general principles of gene transcriptional regulation in mammals. PMID:27346035

  17. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Kozmik, Zbyněk

    2015-01-01

    Roč. 24, Dec (2015), s. 159-166. ISSN 1874-7787 R&D Projects: GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Transgenic animal * Vertebrates * Chordates * Gene regulation * Evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.792, year: 2014

  18. Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos

    NARCIS (Netherlands)

    Young, Teddy; Rowland, Jennifer Elizabeth; van de Ven, Cesca; Bialecka, Monika; Novoa, Ana; Carapuco, Marta; van Nes, Johan; de Graaff, Wim; Duluc, Isabelle; Freund, Jean-Noel; Beck, Felix; Mallo, Moises; Deschamps, Jacqueline

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenoty

  19. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos.

    NARCIS (Netherlands)

    Young, T.; Rowland, J.E.; van de Ven, C.; Bialecka, M.; Novoa, A.; Carapuco, M.; van Nes, J.; de Graaff, W.G.A.J.; Duluc, I.; Freund, J.N.; Beck, F.; Mallo, M.; Deschamps, J.

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenoty

  20. Differential expression of genes regulated in response to drought stress in diploid cotton (Gossypium arboreum) (abstract)

    International Nuclear Information System (INIS)

    Negative effects on the Water status of plants is one of the most common and deleterious stresses experienced by wild and cultivated plants throughout the World. Our project is designed to identify, clone and characterize gene sequences regulated in response to Water stress (e.g., drought). We used the differential-display reverse transcriptase polymerase chain reaction (DD-RT- PCA) methodology to accomplish our Objectives. Structural and functional characterization of environmental stress-induced genes has contributed to a better understanding of how plants respond and adapt to different abiotic stresses. Differential display was used to compare overall difference in gene expression between draught stressed and unstressed (control) plants of diploid Cotton (Gossypium arboreum). DDRT-PCR product from stressed and unstressed samples resolved side by side on 6% PAGE to compare qualitative and quantitative difference in mRNA expression. A total of 81 primer combinations were tested. DDRT -PCR enabled us to identify differentially expressed transcripts between water stressed and non-stressed cotton seedlings. PAGE revealed a total of 347 DNA transcripts in stressed samples (New Transcripts) while 110 down regulated and 209 up regulated DNA transcripts were also recorded. Similarly. 22 DNA transcripts were identified based on the comparative study of PAGE and Agarose gel electrophoresis. These sequences showed various degree homology With draught tolerant genes in the gene bank. (author)

  1. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  2. Reproductive Regulation of Gene Expression in the Hypothalamic Supraoptic and Paraventricular Nuclei.

    Science.gov (United States)

    Augustine, R A; Bouwer, G T; Seymour, A J; Grattan, D R; Brown, C H

    2016-04-01

    Oxytocin secretion is required for successful reproduction. Oxytocin is synthesised by magnocellular neurones of the hypothalamic supraoptic and paraventricular nuclei and the physiological demand for oxytocin synthesis and secretion is increased for birth and lactation. Therefore, we used a polymerase chain reaction (PCR) array screen to determine whether genes that might be important for synthesis and/or secretion of oxytocin are up- or down-regulated in the supraoptic and paraventricular nuclei of late-pregnant and lactating rats, compared to virgin rats. We then validated the genes that were most highly regulated using real time-quantitative PCR. Among the most highly regulated genes were those that encode for suppressors of cytokine signalling, which are intracellular inhibitors of prolactin signalling. Prolactin receptor activation changes gene expression via phosphorylation of signal transducer and activator of transcription 5 (STAT5). Using double-label immunohistochemistry, we found that phosphorylated STAT5 was expressed in almost all oxytocin neurones of late-pregnant and lactating rats but was almost absent from oxytocin neurones of virgin rats. We conclude that increased prolactin activation of oxytocin neurones might contribute to the changes in gene expression by oxytocin neurones required for normal birth and lactation. PMID:26670189

  3. Brain slice invasion model reveals genes differentially regulated in glioma invasion

    International Nuclear Information System (INIS)

    Invasion of tumor cells into adjacent brain areas is one of the major problems in treatment of glioma patients. To identify genes that might contribute to invasion, fluorescent F98 glioma cells were allowed to invade an organotypic brain slice. Gene expression analysis revealed 5 up-regulated and 14 down-regulated genes in invasive glioma cells as compared to non-invasive glioma cells. Two gene products, ferritin and cyclin B1, were verified in human gliomas by immunohistochemistry. Ferritin exhibited high mRNA levels in migratory F98 cells and also showed higher protein expression in the infiltrating edge of human gliomas. Cyclin B1 with high mRNA expression levels in stationary F98 cells showed marked protein expression in the central portions of gliomas. These findings are compatible with the concept of tumor cells either proliferating or migrating. Our study is the first to apply brain slice cultures for the identification of differentially regulated genes in glioma invasion

  4. Regulation of tyrosine hydroxylase gene expression during hypoxia: role of Ca2+ and PKC.

    Science.gov (United States)

    Raymond, R; Millhorn, D

    1997-02-01

    Gene expression for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated by reductions in oxygen tension (hypoxia). Hypoxia-induced regulation of the TH gene is due to the binding of specific transcription factors to specific sites on the 5' flanking region of the gene. The purpose of this study was to identify the second messenger system(s) responsible for regulation of the TH gene during hypoxia. Fura-2 fluorescence imaging of rat pheochromocytoma (PC12) cells, an O2-sensitive cell line, revealed that there is an increase in cytosolic calcium (Ca2+) associated with exposure to hypoxia. Based on the evidence that the transcription factors that bind to the TH promoter during hypoxia can also be induced by elevations in cytosolic Ca2+, the role of Ca2+ in the hypoxic regulation of the TH gene was explored. To assay the effect of hypoxia on TH gene expression, Northern blot analyses of total RNA were performed on PC12 cells exposed to hypoxia in the presence or absence of specific inhibitors. The addition of the L-type calcium channel blockers nifedipine or verapamil caused partial inhibition of the hypoxia-induced increase in TH mRNA. The increase in cytosolic Ca2+ during hypoxia was also only partially inhibited by addition of nifedipine. Importantly, chelation of extracellular Ca2+ completely inhibited the increase in TH mRNA by hypoxia. Pretreatment of PC12 cells with BAPTA/AM, an intracellular Ca2+ chelator, inhibited the hypoxic induction of TH gene expression in a dose-dependent manner. Addition of chelerythrine chloride (CHL), a protein kinase C inhibitor, to the media before exposure to hypoxia also resulted in an inhibition of TH induction by hypoxia. These results suggest that hypoxia regulates TH gene expression by a mechanism that is dependent on influx of calcium from the extracellular stores, partially but not exclusively through the L-type calcium channels. These results further suggest that a member of the

  5. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available BACKGROUND: RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought. CONCLUSIONS/SIGNIFICANCE: RDR1 is regulated by a much broader range of phytohormones than previously thought

  6. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Dunwoodie, Sally L. [Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010 (Australia); St. Vincent' s Clinical School and the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033 (Australia); Ku, Bon Jeong, E-mail: bonjeong@cnu.ac.kr [Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jeong, Jae-Wook, E-mail: JaeWook.Jeong@hc.msu.edu [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Department of Women' s Health, Spectrum Health System, Grand Rapids, MI (United States)

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.

  7. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  8. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    International Nuclear Information System (INIS)

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6f/f and PGRcre/+Mig-6f/f (Mig-6d/d) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6d/d uterus treated with vehicle as compared with Mig-6f/f mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6d/d mice showed a significant increase in the number of proliferative cells compared to Mig-6f/f mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGRcre/+Cited2f/f; Cited2d/d). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene

  9. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Madhav, Sheshu M; Kirti, P B

    2016-01-01

    Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2-3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice

  10. Analysis of intron sequence features associated with transcriptional regulation in human genes.

    Directory of Open Access Journals (Sweden)

    Huimin Li

    Full Text Available Although some preliminary work has revealed the potential transcriptional regulatory function of the introns in eukaryotes, additional evidences are needed to support this conjecture. In this study, we perform systemic analyses of the sequence characteristics of human introns. The results show that the first introns are generally longer and C, G and their dinucleotide compositions are over-represented relative to other introns, which are consistent with the previous findings. In addition, some new phenomena concerned with transcriptional regulation are found: i the first introns are enriched in CpG islands; and ii the percentages of the first introns containing TATA, CAAT and GC boxes are relatively higher than other position introns. The similar features of introns are observed in tissue-specific genes. The results further support that the first introns of human genes are likely to be involved in transcriptional regulation, and give an insight into the transcriptional regulatory regions of genes.

  11. BACH1, the master regulator gene: A novel candidate target for cancer therapy.

    Science.gov (United States)

    Davudian, Sadaf; Mansoori, Behzad; Shajari, Neda; Mohammadi, Ali; Baradaran, Behzad

    2016-08-15

    BACH1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) is a transcriptional factor and a member of cap 'n' collar (CNC) and basic region leucine zipper factor family. In contrast to other bZIP family members, BACH1 appeared as a comparatively specific transcription factor. It acts as transcription regulator and is recognized as a recently hypoxia regulator and functions as an inducible repressor for the HO-1 gene in many human cell types in response to stress oxidative. In regard to studies lately, although, BACH1 has been related to the regulation of oxidative stress and heme oxidation, it has never been linked to invasion and metastasis. Recent studies have showed that BACH1 is involved in bone metastasis of breast cancer by up-regulating vital metastatic genes like CXCR4 and MMP1. This newly discovered aspect of BACH1 gene provides new insight into cancer progression study and stands on its master regulator role in metastasis process, raising the possibility of considering it as a potential target for cancer therapy. PMID:27108804

  12. A simple framework to describe the regulation of gene expression in prokaryotes.

    Science.gov (United States)

    Alves, Filipa; Dilão, Rui

    2005-05-01

    Based on the bimolecular mass action law and the derived mass conservation laws, we propose a mathematical framework in order to describe the regulation of gene expression in prokaryotes. It is shown that the derived models have all the qualitative properties of the activation and inhibition regulatory mechanisms observed in experiments. The basic construction considers genes as templates for protein production, where regulation processes result from activators or repressors connecting to DNA binding sites. All the parameters in the models have a straightforward biological meaning. After describing the general properties of the basic mechanisms of positive and negative gene regulation, we apply this framework to the self-regulation of the trp operon and to the genetic switch involved in the regulation of the lac operon. One of the consequences of this approach is the existence of conserved quantities depending on the initial conditions that tune bifurcations of fixed points. This leads naturally to a simple explanation of threshold effects as observed in some experiments. PMID:15948632

  13. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  14. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    Science.gov (United States)

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. PMID:27457990

  15. Expression of PIN Genes in Rice (Oryza sativa L.):Tissue Specificity and Regulation by Hormones

    Institute of Scientific and Technical Information of China (English)

    Ji-Rong Wang; Han Hu; Gao-Hang Wang; Jing Li; Jie-Yu Chen; Ping Wu

    2009-01-01

    Twelve genes of the PIN family in rice were analyzed for gene and protein structures and an evolutionary relationship with reported AtPINs in Arabidopsis.Four members of PIN1 (designated as OsPIN1a-d),one gene paired with AtPIN2 (OsPIN2),three members of PIN5 (OsPIN5a-c),one gene paired with AtPIN8 (OsPIN8),and three monocot-specific PiNs (OsPINg,OsPIN10a,and b) were identified from the phylogenetic analysis.Tissue-specific expression patterns of nine PIN genes among them were investigated using RT-PCR and GUS reporter.The wide variations in the expression domain in different tissues of the PIN genes were observed.In general,PIN genes are up-regulated by exogenous auxin,while different responses of different PIN genes to other hormones were found.

  16. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  17. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    International Nuclear Information System (INIS)

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death

  18. PECA: a novel statistical tool for deconvoluting time-dependent gene expression regulation.

    Science.gov (United States)

    Teo, Guoshou; Vogel, Christine; Ghosh, Debashis; Kim, Sinae; Choi, Hyungwon

    2014-01-01

    Protein expression varies as a result of intricate regulation of synthesis and degradation of messenger RNAs (mRNA) and proteins. Studies of dynamic regulation typically rely on time-course data sets of mRNA and protein expression, yet there are no statistical methods that integrate these multiomics data and deconvolute individual regulatory processes of gene expression control underlying the observed concentration changes. To address this challenge, we developed Protein Expression Control Analysis (PECA), a method to quantitatively dissect protein expression variation into the contributions of mRNA synthesis/degradation and protein synthesis/degradation, termed RNA-level and protein-level regulation respectively. PECA computes the rate ratios of synthesis versus degradation as the statistical summary of expression control during a given time interval at each molecular level and computes the probability that the rate ratio changed between adjacent time intervals, indicating regulation change at the time point. Along with the associated false-discovery rates, PECA gives the complete description of dynamic expression control, that is, which proteins were up- or down-regulated at each molecular level and each time point. Using PECA, we analyzed two yeast data sets monitoring the cellular response to hyperosmotic and oxidative stress. The rate ratio profiles reported by PECA highlighted a large magnitude of RNA-level up-regulation of stress response genes in the early response and concordant protein-level regulation with time delay. However, the contributions of RNA- and protein-level regulation and their temporal patterns were different between the two data sets. We also observed several cases where protein-level regulation counterbalanced transcriptomic changes in the early stress response to maintain the stability of protein concentrations, suggesting that proteostasis is a proteome-wide phenomenon mediated by post-transcriptional regulation. PMID:24229407

  19. Cytokinin Regulation of Gene Expression in the AHP Gene Family in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Hradilová, Jana; Malbeck, Jiří; Brzobohatý, Břetislav

    2007-01-01

    Roč. 26, č. 3 (2007), s. 229-244. ISSN 0721-7595 R&D Projects: GA MŠk LN00A081; GA MŠk 1M06030; GA MŠk(CZ) LC06034; GA AV ČR(CZ) IAA600380507; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040702 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : gene expression * AHP gene family * cytokinin signal transduction Subject RIV: EF - Botanics Impact factor: 2.220, year: 2007

  20. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Tsai, Chung-Jui [Michigan Technological University; Harding, Scott A [Michigan Technological University; Lindroth, richard L [University of Wisconsin, Madison; Yuan, Yinan [Michigan Technological University

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  1. Relationships between cell cycle regulator gene copy numbers and protein expression levels in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ayako Chino

    Full Text Available We previously determined the copy number limits of overexpression for cell division cycle (cdc regulatory genes in the fission yeast Schizosaccharomyces pombe using the "genetic tug-of-war" (gTOW method. In this study, we measured the levels of tandem affinity purification (TAP-tagged target proteins when their copy numbers are increased in gTOW. Twenty analyzed genes showed roughly linear correlations between increased protein levels and gene copy numbers, which suggested a general lack of compensation for gene dosage in S. pombe. Cdc16 and Sid2 protein levels but not their mRNA levels were much lower than that expected by their copy numbers, which suggested the existence of a post-transcriptional down regulation of these genes. The cyclin Cig1 protein level and its mRNA level were much higher than that expected by its copy numbers, which suggested a positive feedback mechanism for its expression. A higher Cdc10 protein level and its mRNA level, probably due to cloning its gene into a plasmid, indicated that Cdc10 regulation was more robust than that previously predicted.

  2. Relationships between cell cycle regulator gene copy numbers and protein expression levels in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chino, Ayako; Makanae, Koji; Moriya, Hisao

    2013-01-01

    We previously determined the copy number limits of overexpression for cell division cycle (cdc) regulatory genes in the fission yeast Schizosaccharomyces pombe using the "genetic tug-of-war" (gTOW) method. In this study, we measured the levels of tandem affinity purification (TAP)-tagged target proteins when their copy numbers are increased in gTOW. Twenty analyzed genes showed roughly linear correlations between increased protein levels and gene copy numbers, which suggested a general lack of compensation for gene dosage in S. pombe. Cdc16 and Sid2 protein levels but not their mRNA levels were much lower than that expected by their copy numbers, which suggested the existence of a post-transcriptional down regulation of these genes. The cyclin Cig1 protein level and its mRNA level were much higher than that expected by its copy numbers, which suggested a positive feedback mechanism for its expression. A higher Cdc10 protein level and its mRNA level, probably due to cloning its gene into a plasmid, indicated that Cdc10 regulation was more robust than that previously predicted. PMID:24019917

  3. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes.

    Science.gov (United States)

    Gauthier, Sebastien A; Hewes, Randall S

    2006-05-01

    The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting. PMID:16651547

  4. Egr-1 regulates the transcription of the BRCA1 gene by etoposide

    Directory of Open Access Journals (Sweden)

    Soon Young Shin

    2013-02-01

    Full Text Available The breast cancer susceptibility gene BRCA1 encodes anuclear protein, which functions as a tumor suppressor and isinvolved in gene transcription and DNA repair processes.Many families with inherited breast and ovarian cancers havemutations in the BRCA1 gene. However, only a few studieshave reported on the mechanism underlying the regulation ofBRCA1 expression in humans. In this study, we investigatedthe transcriptional regulation of BRCA1 in HeLa cells treatedwith etoposide. We found that three Egr-1-binding sequences(EBSs were located at −1031, −1005, and −385 within theenhancer region of the BRCA1 gene. Forced expression ofEgr-1 stimulated the BRCA1 promoter activity. EMSA datashowed that Egr-1 bound directly to the EBS within the BRCA1gene. Knockdown of Egr-1 through the expression of a smallhairpin RNA (shRNA attenuated etoposide-induced BRCA1promoter activity. We conclude that Egr-1 targets the BRCA1gene in HeLa cells exposed to etoposide. [BMB Reports 2013;46(2: 92-96

  5. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation.

    Science.gov (United States)

    Zhu, Zijue; Li, Chong; Yang, Shi; Tian, Ruhui; Wang, Junlong; Yuan, Qingqing; Dong, Hui; He, Zuping; Wang, Shengyue; Li, Zheng

    2016-01-01

    Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted. PMID:26753906

  6. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L.

    Science.gov (United States)

    Minglin, Lang; Yuxiu, Zhang; Tuanyao, Chai

    2005-12-19

    In this paper, the fluorescent mRNA differential display (DD) technique was applied to analyze transcriptional regulation in response to Cd treatment in a heavy-metal accumulator, Brassica juncea. 154 DD bands were identified, of which fragments corresponding to 15 and 13 cDNAs were successfully cloned from leaves and roots, respectively. Many of the genes were confirmed to have a 2-5 fold increase in expression in both roots and leaves after 48 h Cd exposure (approximately 22.4 ppm). However, several isolated genes, e.g., DD2, DD21, DD22, showed a reversed mRNA expression pattern. Sequencing revealed those Cd-induced up-regulated genes displayed mRNAs corresponding to 19 different genes, 18 of which had a clear identity to Arabidopsis thaliana sequences and a putative function was assigned to 15 of them, including the auxin-responsive GH3, ARF-like small GTPases/ARFs, ARD/ARD', APS reductase, Nop, catalase, zinc finger (C3HC4-type RING finger), diacylglycerol kinase, and haloacid dehalogenase-like hydrolase families. Three cDNAs corresponded to predicted membrane proteins (KOG3491) or a ribosome-associated membrane protein RAMP4. One other clone, DD26, did not show significant identities to any translated sequence in the GenBank database, suggesting it may either encode unidentified proteins, or correspond to un-translated, non-conserved regions of mRNA molecules. These Cd-responsive up-regulated genes are mostly also regulated by abiotic or biotic stresses, e.g., dehydration, chilling, high salt, auxin, heat and infection, in other plants. The present study leads to an increased understanding of genes and/or the biochemical pathways involved in heavy-metal resistance and accumulation in plants. PMID:16226851

  7. Potential Genes for Regulation of Milk Protein Synthesis in Dairy Goat Mammary Gland

    Institute of Scientific and Technical Information of China (English)

    Chen Dan; Zhang Na; Nan Xue-mei; Li Qing-zhang; Gao Xue-jun

    2016-01-01

    The lactating mammary gland is a prodigious protein-producing factory, but the milk protein synthesis mechanisms are not well understood. The major objective of this paper was to elucidate which genes and pathways were involved in the regulation of milk protein synthesis in the dairy goat mammary gland. Total 36 primiparous Guanzhong dairy goats were allotted in 12 groups according to their mammary development stages: days 90 and 150 of virgin, days 30, 90, and 150 of pregnancy, days 1, 10, 35, and 60 of lactation and days 3, 7, and 21 of involution (three animals per group). Mammary tissue RNA was isolated for quantitative real-time RT-PCR of four casein genes alpha-s1 casein (CSN1S1), alpha-s2 casein (CSN1S2), beta-casein (CSN2) and casein kappa (CSN3), four whey protein genes lactoglobulin (LGB), lactalbumin (LALBA), lactofarrin (LTF), and Whey acidic protein (WAP) and the genes which were potentially to regulate dairy goat milk protein synthesis at the level of transcription or translation [prolactin receptor (PRLR), AKT1, signal transducers and activators of transcription 5 (STAT5), E74-Like Factor 5 (ELF5), eukaryotic translation initiation factor 4E binding protein 1 (EIF4E-BP1), S6kinase (S6K) and caveolin 1]. The results showed that all genes were up-regulated in lactation period. The expressions of PRLR, AKT1, STAT5, ELF5, and S6K were similar to mRNA expressions of milk proteins. Our results indicated that milk protein synthesis in dairy goat mammary gland was possibly regulated by these genes.

  8. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    Science.gov (United States)

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  9. Characterization and regulation of the bovine stearoyl-CoA desaturase gene promoter

    International Nuclear Information System (INIS)

    The bovine stearoyl-CoA desaturase (Scd) gene plays an important role in the bovine mammary gland where substrates such as stearic and vaccenic acids are converted to oleic acid and conjugated linoleic acid (CLA), respectively. Up to 90% of the CLA in bovine milk is formed due to the action of this enzyme in the mammary gland. The areas of the bovine promoter of importance in regulating this key enzyme were examined and an area of 36 bp in length was identified as having a critical role in transcriptional activation and is designated the Scd transcriptional enhancer element (STE). Electrophoretic mobility shift assay detected three binding complexes on this area in Mac-T cell nuclear extracts. Treatment of cells with CLA caused a significant reduction in transcriptional activity, with this effect being mediated through the STE region. The bovine Scd gene promoter was up-regulated by insulin and down-regulated by oleic acid

  10. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  11. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    International Nuclear Information System (INIS)

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1α, NRF-1α and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  12. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels

    Science.gov (United States)

    Steinacher, Arno; Bates, Declan G.; Akman, Ozgur E.; Soyer, Orkun S.

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  13. The human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.D.; Lu, Y.J.; Yuan, B.Z.; Castranova, V.; Shi, X.L.; Stauffer, J.L.; Demers, L.M.; Chen, F. [NIOSH, Morgantown, WV (US). Health Effects Laboratory Division

    2005-07-21

    Environmental or occupational exposure to mineral dusts, mainly silica and asbestos, is associated with an increased incidence of lung inflammation, fibrosis, and/or cancer. To better understand the molecular events associated with these pulmonary diseases, we attempted to identify genes that are regulated by mineral dusts. Using a differential display reverse transcription polymerase chain reaction technique and mRNAs of alveolar macrophages from both normal individuals and coal miners, we identified a novel mineral dust-induced gene named mdig, which had not been fully characterized. The expression of mdig mRNA was detected in alveolar macrophages from coal miners but not from normal subjects. The inducible expression of mdig could be observed in A549 cells exposed to silica particles in a time-dependent manner. The full-length mdig mRNA was expressed in human lung cancer tissues but was barely detectable in the adjacent normal tissues. In addition, a number of lung cancer cell lines constitutively express mdig. Alternative spliced transcripts of mdig were detected in some lung cancer cell lines. Silencing mdig mRNA expression in A549 lung cancer cells by siRNA-mediated RNA interference inhibits cell proliferation and sensitizes the cells to silica-induced cytotoxicity. These results suggest that the mdig gene may be involved in the regulation of cell growth and possibly the development of cancer.

  14. THE EXPRESSION OF CONNEXIN GENES IN NASOPHARYNGEAL CARCINOMA CELLS AND THE EFFECT OF RETINOIC ACID ON THE REGULATION OF THOSE GENES

    Institute of Scientific and Technical Information of China (English)

    JIANG Ning; BIN Liang-hua; TANG Xiang-na; ZHOU Ming; ZENG Zhao-yang; Li Gui-yuan

    1999-01-01

    Objective: To detect which members in the connexin gene family are expressed in nasopharyngeal carcinoma (NPC) cell line HNE1, and the mechanism by which those genes are specifically switched on and off during retinoic acid (RA) induction. Methods: Establishing the cell growth curves of NPC cells. Observing the effect of RA on connexin genes by Northern hybridization. Results: Two genes Cx46 and Cx37, belonging to the connexin gene family, were expressed in HNE, The down-regulation of Cx46 and Cx37, up-regulation of RARa and growth inhibition was observed in HNE1, after exposure to RA. The gene expression and cell growth in HNE1 cells was restored after removal of RA. Conclusion: Two members of the connexin gene family: Cx37 and Cx46 were expressed in HNE1 cells, RA can inhibit the expression of those two genes mediated by RARa, and the effects of RA on HNE1 are reversible.

  15. Identification and characterization of the minimal androgen-regulated kidney-specific kidney androgen-regulated protein gene promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The kidney androgen-regulated protein (Kap) gene is tissue specific and regulated by androgen in mouse kidney proximal tubule cells (PTCs). In the present study, we aimed to identify the minimal PTC-specific androgen-regulated Kap promoter and analyze its androgen response elements (AREs).Adeletion series of the Kap1542 promoter/luciferase constructs were assayed in opossum kidney (OK) PTCs in the presence or absence of 15 nM dihydrotestosterone (DHT). Kap 1542 and Kap637 had low activity and no androgen induction; Kap224 had a basal activity that was 4- to 5-fold higher than that of Kap 1542, but was only sfightly induced by DHT. Kap 147 had a basal activity that was 2- to 3-fold higher than that of Kap 1542 and was induced by DHT 4- to 6-fold. Kap77 abol-ished basal promoter activity but was still induced by DHT. Results showed that, in vitro, Kap147 was a minimal androgen-regulated promoter. Transient transfection in different cells demonstrated that Kap147 specifically initi-ated reporter gene expression in PTCs. Sequence analysis revealed two potential AREs located at positions -124 and -39 of Kap147. Mutational assays showed that only the ARE at -124 was involved in androgen response in OK cells. Electrophoretic mobility shift assay also verified -124 ARE bound specifically to androgen receptor. In conclusion, we defined the minimal Kap 147 promoter that may be a good model for the study of kidney PTC-specific expression and molecular mechanisms that lead to an androgen-specific responsiveness in vivo.

  16. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  17. Epigenetic regulation of developmental expression of Cyp2d genes in mouse liver

    Directory of Open Access Journals (Sweden)

    Ye Li

    2012-04-01

    Full Text Available CYP2D6 expression in liver is age-dependent. Because epigenetic mechanisms, such as DNA methylation and histone modifications, modulate age-related gene expression during development, and are highly conserved among species, the current study examined the epigenetic regulation of age-related expression of the Cyp2d genes in mouse liver. DNA methylation (DNAme, histone 3 lysine 4 dimethylation (H3K4me2, and histone 3 lysine 27 trimethylation (H3K27me3 was established by ChIP-on-chip tiling microarrays from mouse livers at prenatal, neonatal, and adult stages. Levels of DNAme, H3K4me2, and H3K27me3 were analyzed in a genomic region containing the Cyp2d clustering genes and their surrounding genes. Gradually increased expression levels of the Cyp2d9, Cyp2d10, Cyp2d22, and Cyp2d26 genes from prenatal, through neonatal, to adult are associated with gradually increased levels of H3K4me2 in the nucleosomes associated with these genes. Gene expression patterns during liver development in several Cyp2d surrounding genes, such as Srebf2, Sept3, Ndufa6, Tcf2, Nfam1, and Cyb5r3, could be also explained by changes of DNA methylation, H3K4me2, or H3K27me3 in those genes. In conclusion, the current study demonstrates that the changes of DNA methylation and histone modifications are associated with age-related expression patterns of the Cyp2d genes and their surrounding genes in liver cells during development.

  18. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    Directory of Open Access Journals (Sweden)

    Teresa Thiel

    2014-12-01

    Full Text Available The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.

  19. Up-regulation of tumor necrosis factor superfamily genes in early phases of photoreceptor degeneration.

    Directory of Open Access Journals (Sweden)

    Sem Genini

    Full Text Available We used quantitative real-time PCR to examine the expression of 112 genes related to retinal function and/or belonging to known pro-apoptotic, cell survival, and autophagy pathways during photoreceptor degeneration in three early-onset canine models of human photoreceptor degeneration, rod cone dysplasia 1 (rcd1, X-linked progressive retinal atrophy 2 (xlpra2, and early retinal degeneration (erd, caused respectively, by mutations in PDE6B, RPGRORF15, and STK38L. Notably, we found that expression and timing of differentially expressed (DE genes correlated with the cell death kinetics. Gene expression profiles of rcd1 and xlpra2 were similar; however rcd1 was more severe as demonstrated by the results of the TUNEL and ONL thickness analyses, a greater number of genes that were DE, and the identification of altered expression that occurred at earlier time points. Both diseases differed from erd, where a smaller number of genes were DE. Our studies did not highlight the potential involvement of mitochondrial or autophagy pathways, but all three diseases were accompanied by the down-regulation of photoreceptor genes, and up-regulation of several genes that belong to the TNF superfamily, the extrinsic apoptotic pathway, and pro-survival pathways. These proteins were expressed by different retinal cells, including horizontal, amacrine, ON bipolar, and Müller cells, and suggest an interplay between the dying photoreceptors and inner retinal cells. Western blot and immunohistochemistry results supported the transcriptional regulation for selected proteins. This study highlights a potential role for signaling through the extrinsic apoptotic pathway in early cell death events and suggests that retinal cells other than photoreceptors might play a primary or bystander role in the degenerative process.

  20. Global regulation of gene expression by the MafR protein of Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Sofía eRuiz-Cruz

    2016-01-01

    Full Text Available Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR of E. faecalis strain V583 encodes a protein (MafR, 482 residues that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293. In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence.

  1. Evolution of gene regulation of pluripotency - the case for wiki tracks at genome browsers

    Directory of Open Access Journals (Sweden)

    Struckmann Stephan

    2010-12-01

    Full Text Available Abstract Background Experimentally validated data on gene regulation are hard to obtain. In particular, information about transcription factor binding sites in regulatory regions are scattered around in the literature. This impedes their systematic in-context analysis, e.g. the inference of their conservation in evolutionary history. Results We demonstrate the power of integrative bioinformatics by including curated transcription factor binding site information into the UCSC genome browser, using wiki and custom tracks, which enable easy publication of annotation data. Data integration allows to investigate the evolution of gene regulation of the pluripotency-associated genes Oct4, Sox2 and Nanog. For the first time, experimentally validated transcription factor binding sites in the regulatory regions of all three genes were assembled together based on manual curation of data from 39 publications. Using the UCSC genome browser, these data were then visualized in the context of multi-species conservation based on genomic alignment. We confirm previous hypotheses regarding the evolutionary age of specific regulatory patterns, establishing their "deep homology". We also confirm some other principles of Carroll's "Genetic theory of Morphological Evolution", such as "mosaic pleiotropy", exemplified by the dual role of Sox2 reflected in its regulatory region. Conclusions We were able to elucidate some aspects of the evolution of gene regulation for three genes associated with pluripotency. Based on the expected return on investment for the community, we encourage other scientists to contribute experimental data on gene regulation (original work as well as data collected for reviews to the UCSC system, to enable studies of the evolution of gene regulation on a large scale, and to report their findings. Reviewers This article was reviewed by Dr. Gustavo Glusman and Dr. Juan Caballero, Institute for Systems Biology, Seattle, USA (nominated by Dr. Doron

  2. Involvement of transcriptional enhancers in the regulation of developmental expression of yellow gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Upstream regulatory region and flanking DNA of yellow gene wereisolated and cloned from a Drosophila genomic library. A vector containing yellow gene and regulatory elements was constructed using the recombinant DNA technique. Then this vector was integrated into Drosophila genome by genetic transformation. Using both FLP/FRT and Cre/LoxP site-specific recombination systems, two new yellow alleles were created at the same position in the genome of transgenic flies. Results from genetic and molecular analysis indicated that transcriptional enhancers regulate the developmental expression of the transgene. Furthermore, interactions between new-created yellow alleles were observed. Such interactions can influence markedly the expression of yellow gene during development. This effect may also be a form of enhancer-mediated gene expression.

  3. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  4. Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development

    Indian Academy of Sciences (India)

    Scott F Gilbert

    2005-02-01

    The environment can play a significant role in the production of phenotypes. However, the developmental mechanisms by which the environmental agents effect normal development are just becoming known. At least three paths have been found through which the environment can modify gene activity. The first is the neuroendocrine route. Here, the nervous system monitors the environment and transfers signals to the endocrine system. The endocrine hormones can then alter gene expression. The second route involves environmental factors that change the methylation pattern of genes, thereby altering their transcriptional capabilities. The third route involves the direct induction of gene expression in the host by microbial symbionts. The normal regulation of phenotype production by the environment should be considered a normal component of development and developmental biology.

  5. [Progress in expression regulation of bacterial lipase genes--A review].

    Science.gov (United States)

    Zha, Daiming; Yan, Yunjun

    2015-11-01

    Microbial lipases are major sources of commercial ones, which have been extensively used in a wide variety of industrial fields, such as foods, beverages, lipids, detergents, feeds, textiles, leathers, advanced materials, fine chemicals, medicines, cosmetics, papermaking, pollution treatment, and bioenergy. Compared with fungal lipases, bacterial lipases have more types of reactions and exhibit higher activity and better stability in aqueous or organic phases. Amongst bacterial lipases, the most excellent ones are those originating from the genus Pseudomonas. So far, the conventional strategies, such as traditional breeding, optimization of medium and fermentation conditions, cannot fundamentally solve the problem of low production of bacterial lipases. Construction of genetically engineered strains to efficiently overexpress their own lipases is an effective solution. But it must base on clarifying molecular regulation mechanism of lipase gene expression and further finding out key regulators. In this article, we reviewed the progress in expression regulation of bacterial lipase genes from the aspects of direct regulators, quorum sensing system, Gac/Rsm signal transduction system, regulators controlling the Gac/Rsm system, and other regulators. To provide a useful reference for the construction of genetically engineered strains, we also discussed a research prospect in this field based on our ongoing research. PMID:26915218

  6. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens

    Directory of Open Access Journals (Sweden)

    André Gaelle

    2010-09-01

    Full Text Available Abstract Background Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail. Results We first performed a tentative reconstruction of sulfur metabolism in C. perfringens and correlated these data with the growth of strain 13 in the presence of various sulfur sources. Surprisingly, C. perfringens can convert cysteine to methionine by an atypical still uncharacterized pathway. We further compared the expression profiles of strain 13 after growth in the presence of cystine or homocysteine that corresponds to conditions of cysteine depletion. Among the 177 genes differentially expressed, we found genes involved in sulfur metabolism and controlled by premature termination of transcription via a cysteine specific T-box system (cysK-cysE, cysP1 and cysP2 or an S-box riboswitch (metK and metT. We also showed that the ubiG operon was submitted to a triple regulation by cysteine availability via a T-box system, by the VirR/VirS system via the VR-RNA and by the VirX regulatory RNA. In addition, we found that expression of pfoA (theta-toxin, nagL (one of the five genes encoding hyaluronidases and genes involved in the maintenance of cell redox status was differentially expressed in response to cysteine availability. Finally, we showed that the expression of genes involved in [Fe-S] clusters biogenesis and of the ldh gene encoding the lactate dehydrogenase was induced during cysteine limitation. Conclusion Several key functions for the

  7. Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia.

    Science.gov (United States)

    Millhorn, D E; Raymond, R; Conforti, L; Zhu, W; Beitner-Johnson, D; Filisko, T; Genter, M B; Kobayashi, S; Peng, M

    1997-02-01

    Carotid body type I cells and the O2 sensitive pheochromocytoma (PC12) cells release dopamine during hypoxia. Reduced O2 tension causes inhibition of an outward rectifying the O2-sensitive potassium (K) channel in the O2-sensitive pheochromocytoma (PC12) cell line, which leads to membrane depolarization and increased intracellular free Ca2+. We found that removal of Ca2+ from the extracellular milieu, inhibition of voltage-dependent Ca2+ channels, and chelation of intracellular Ca2+ prevents full activation of the TH gene expression during hypoxia. These findings suggest that membrane depolarization and regulation of intracellular free Ca2+ are critical signal transduction events that regulate expression of the TH gene in PC12 cells during hypoxia. Gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by reduced O2 tension in both type I cells and PC12 cells. The increase in TH gene expression in PC12 cells during hypoxia is due to increases in both the rate of transcription and mRNA stability. Analysis of reporter-gene constructs revealed that increased transcription of the TH gene during hypoxia is regulated by a region of the proximal promoter that extends from -284 to -150 bases, relative to the transcription start site. This region of the gene contains a number of cis-acting regulatory elements including AP1, AP2 and hypoxia-inducible factor (HIF-1). Competition assays revealed that hypoxia-induced binding occurs at both the AP1 and HIF-1 sites. Results from super-shift and shift Western assays showed that a heterodimer consisting of c-Fos and JunB binds to the AP1 site during hypoxia. Mutagenesis experiments revealed that the AP1 site is required for increased transcription of the TH gene during hypoxia. We also found that the genes that encode the c-Fos and JunB transcription factor proteins are regulated by reduced O2 tension. PMID:9027733

  8. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  9. Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7.

    Science.gov (United States)

    Xu, J; Nogawa, M; Okada, H; Morikawa, Y

    2000-09-01

    The characteristics of regulation of the gene encoding the third xylanase (Xyn III) of a filamentous fungus, Trichoderma reesei PC-3-7, were studied by Northern blot analysis. A partial DNA sequence (185 bp) of the xyn3 gene was obtained by PCR amplification of genomic DNA of T. reesei PC-3-7 and sequenced. This xyn3 gene fragment was used as a probe for Southern and Northern blot analysis. The expression of the xyn3 gene was regulated at the transcriptional level. The xyn3 mRNA was expressed in mycelia of T. reesei PC-3-7 induced by Avicel, L-sorbose and sophorose, but not by xylose, xylooligosaccharides and birchwood xylan. Furthermore, it was observed that xyn3 was synchronously expressed with egll but not with xyn1 and xyn2 by L-sorbose, indicating that the xyn3 gene may be coordinately expressed with cellulase genes. By Southern blot analysis, the xyn3 gene was confirmed to exist as a single copy in both strains of T. reesei PC-3-7 and QM9414. However, no xyn3 mRNA appeared in the mycelia induced by any kind of inducers in T. reesei QM9414 even when total RNA was used in large excess, suggesting that the xyn3 gene in T. reesei QM9414 is in the dormant state and cannot be expressed. Therefore, T. reesei PC-3-7 may be a very useful strain for elucidating the induction mechanism of xylanase biosynthesis by cellulosic and xylanosic substrates, and also the regulatory correlation between cellulase and xylanase induction. PMID:11030574

  10. Wild-type p53 and p73 negatively regulate expression of proliferation related genes.

    Science.gov (United States)

    Scian, M J; Carchman, E H; Mohanraj, L; Stagliano, K E R; Anderson, M A E; Deb, D; Crane, B M; Kiyono, T; Windle, B; Deb, S P; Deb, S

    2008-04-17

    When normal cells come under stress, the wild-type (WT) p53 level increases resulting in the regulation of gene expression responsible for growth arrest or apoptosis. Here we show that elevated levels of WT p53 or its homologue, p73, inhibit expression of a number of cell cycle regulatory and growth promoting genes. Our analysis also identified a group of genes whose expression is differentially regulated by WT p53 and p73. We have infected p53-null H1299 human lung carcinoma cells with recombinant adenoviruses expressing WT p53, p73 or beta-galactosidase, and have undertaken microarray hybridization analyses to identify genes whose expression profile is altered by p53 or p73. Quantitative real-time PCR verified the repression of E2F-5, centromere protein A and E, minichromosome maintenance proteins (MCM)-2, -3, -5, -6 and -7 and human CDC25B after p53 expression. 5-Fluorouracil treatment of colon carcinoma HCT116 cells expressing WT p53 results in a reduction of the cyclin B2 protein level suggesting that DNA damage may indeed cause repression of these genes. Transient transcriptional assays verified that WT p53 repressed promoters of a number of these genes. Interestingly, a gain-of-function p53 mutant instead upregulated a number of these promoters in transient transfection. Using promoter deletion mutants of MCM-7 we have found that WT p53-mediated repression needs a minimal promoter that contains a single E2F site and surrounding sequences. However, a single E2F site cannot be significantly repressed by WT p53. Many of the genes identified are also repressed by p21. Thus, our work shows that WT p53 and p73 repress a number of growth-related genes and that in many instances this repression may be through the induction of p21. PMID:17982488

  11. Construction of a regulable gene therapy vector targeting for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shao-Ying Lu; Yan-Fang Sui; Zeng-Shan Li; Cheng-En Pan; Jing Ye; Wen-Yong Wang

    2003-01-01

    AIM: To construct a gene modified hepatocellular carcinoma (HCC) specific EGFP expression vector regulated by abbreviated cis-acting element of AFP gene.METHODS: The minimal essential DNA segments of AFP gene enhancer and promoter were synthesized through PCR from Genome DNA of HepG2 cells. Gene fragments were then cloned into the multiple cloning site of non-promoter EGFP vector pEGFP-t. Recombinant plasmid was transferred into positive or negative AFP cell lines by means of lipofectamine. The expression of EGFP was tested by fluorescence microscope and flow cytometry. The effect of all-trans retinoic acid (ATRA) on the expression of EGFP was tested in different concentrations.RESULTS: By the methods of restriction digestion and sequence analyses we confirmed that the length, position and orientation of inserted genes of cis-acting element of AFP were all correct. The transcription of EGFP was under the control of AFP cis-acting element. The expressing EGFP can only been detected in AFP producing hepatoma cells.The expression rate of EGFP in G418 screened cell line was 34.9±4.1%. 48 h after adding 1×10-7M retinoic acid, EGFP expression rate was 14.7±3.5%. The activity of AFP gene promoter was significantly suppressed by addition of 1×10-7M retinoic acid (P<0.05, P=0.003, t=6.488).CONCLUSION: This recombinant expression vector can be used as a gene therapy vector for HCC. The expression of tumor killing gene will be confined within the site of tumor and the activity of which can be regulated by retinoic acid.

  12. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells.

    Science.gov (United States)

    Marouni, Mehran J; Sela, Shlomo

    2003-10-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency than the wild type (wt). Several genes, including hasA (hyaluronic acid synthesis), speB (streptococcal pyrogenic exotoxin B), and csrR (capsule synthesis regulator), a part of a two-component regulatory system, are known to affect the internalization of strain SP268 (J. Jadoun, O. Eyal, and S. Sela, Infect. Immun. 70:462-469, 2002). Therefore, the expression of these genes in the mutant and in the wt was examined. LuxS mutation significantly reduced the mRNA level of speB and increased the mRNA level of emm3. No substantial effect was observed on transcription of hasA and csrR. Yet less hyaluronic acid capsule was expressed in the mutant. Further analysis revealed that luxS is under the regulation of the two-component global regulator CsrR. Our results indicate that LuxS activity in strain SP268 plays an important role in the expression of virulence factors associated with epithelial cell internalization. PMID:14500483

  13. Regulative Effect of Traditional Chinese Medicine on Gene-expression Related to Precancerous Lesion of Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-shi; SI Jian-min

    2005-01-01

    The gene-expression changes related with precancerous lesion of gastric cancer (PLGC) are surveyed. Not only the regulative effect of traditional Chinese medicine (TCM) on oncogene, antioncogene and anti-apoptosis gene that are related with PLGC is analyzed, but also current research state is presented. It's showed that TCM has effects of therapy and inversion on PLGC. These effects are related with the inhibition to related oncogene expression, the regulation and activation to the deletion of antioncogene, the inhibition to the high-expression of mutant gene-protein about antioncogene, and the regulative function to anti-apoptosis gene.

  14. Developmental Toxicity of Diclofenac and Elucidation of Gene Regulation in zebrafish (Danio rerio)

    Science.gov (United States)

    Chen, Jia-Bin; Gao, Hong-Wen; Zhang, Ya-Lei; Zhang, Yong; Zhou, Xue-Fei; Li, Chun-Qi; Gao, Hai-Ping

    2014-05-01

    Environmental pollution by emerging contaminants, e.g. pharmaceuticals, has become a matter of widespread concern in recent years. We investigated the membrane transport of diclofenac and its toxic effects on gene expression and the development of zebrafish embryos. The association of diclofenac with the embryos conformed to the general partition model at low concentration, the partition coefficient being 0.0033 ml per embryo. At high concentration, the interaction fitted the Freundlich model. Most of the diclofenac remained in the extracellular aqueous solution with less than 5% interacting with the embryo, about half of which was adsorbed on the membranes while the rest entered the cytoplasm. Concentrations of diclofenac over 10.13 μM were lethal to all the embryos, while 3.78 μM diclofenac was teratogenic. The development abnormalities at 4 day post treatment (dpt) include shorter body length, smaller eye, pericardial and body edema, lack of liver, intestine and circulation, muscle degeneration, and abnormal pigmentation. The portion of the diclofenac transferred into the embryo altered the expression of certain genes, e.g. down-regulation of Wnt3a and Gata4 and up-regulation of Wnt8a. The alteration of expression of such genes or the regulation of downstream genes could cause defects in the cardiovascular and nervous systems.

  15. Transcriptional regulation of the VEGF gene in dependence of individual genomic variations.

    Science.gov (United States)

    Metzger, Carmen S; Koutsimpelas, Dimitrios; Brieger, Juergen

    2015-12-01

    Overexpression of the vascular endothelial growth factor (VEGF) gene has been associated with advanced stage and poor survival in several cancers. The majority of disease-associated VEGF-single nucleotide polymorphisms (SNPs) locate within regulatory regions. Therefore, an influence of SNPs located in the promoter/5'-untranslated region (5'UTR) on transcription factor binding (TFB) and gene expression seems feasible. We reviewed the literature investigating a potential connection of VEGF-SNPs and transcriptional regulation of the VEGF gene. In addition, we employed transcription factor databases to search for VEGF-SNPs which have already been associated with diseases. The objective of this review is to gain an overview about an association of VEGF-SNPs and the transcription factor dependent regulation of the VEGF gene. A decreasing binding specificity of the transcription factor MZF1 in presence of the VEGF-SNP +405 C-allele has been reported. TF databases indicated a potential HIF binding site for the -2578 C-allele representing an important potential inducer of VEGF expression. Additionally, linkage disequilibrium of the -2578 A-allele and an 18 bp insertion increases the number of potential TFB sites. For the VEGF promoter SNP -1154 A/G an interaction with the HRE under participation of the SNP +405 C/G was supposed. The comprehension of the association of specific SNPs and TFB could be an essential part in our understanding of individual differences of VEGF regulation and course of diseases. PMID:26209503

  16. Reversible Histone Acetylation Involved in Transcriptional Regulation of WT1 Gene

    Institute of Scientific and Technical Information of China (English)

    Yangguang SHAO; Jun LU; Cao CHENG; Liguo CUI; Guoping ZHANG; Baiqu HUANG

    2007-01-01

    To validate the involvement of reversible histone acetylation in the transcriptional regulation of human Wilms' tumor 1 gene (WT1), we analyzed the roles of histone deacetylases (HDACs) and histone acetyltransferase in this epigenetic process. Of the six HDACs (HDAC1-6) examined, HDAC4 and HDAC5 were found to have significant repressing effects on the activity of the WT1 reporter gene, as revealed by luciferase reporter assays and quantitative real-time reverse transcription-polymerase chain reaction assays.Luciferase reporter assays showed that the histone acetyltransferase p300 was able to counteract the HDAC4/HDAC5-mediated repression and that p300/CBP synergized with transcription factors Sp1, c-Myb, and Ets-1 in activation of the WT1 reporter. Chromatin immunoprecipitation experiments showed that p300 promotes the acetylation level of histone H3 at the WT1 intronic enhancer. Based on these data, we proposed a hypothetical model for the involvement of reversible histone acetylation in transcriptional regulation of the WT1 gene. This study provides further insight into the mechanisms of transcriptional regulation of the WT1 gene and WT1-associated diseases treatment.

  17. Mining the 30UTR of Autism-implicated Genes for SNPs Perturbing MicroRNA Regulation

    Institute of Scientific and Technical Information of China (English)

    Varadharajan Vaishnavi; Mayakannan Manikandan; Arasambattu Kannan Munirajan

    2014-01-01

    Autism spectrum disorder (ASD) refers to a group of childhood neurodevelopmental dis-orders with polygenic etiology. The expression of many genes implicated in ASD is tightly regulated by various factors including microRNAs (miRNAs), a class of noncoding RNAs 22 nucleotides in length that function to suppress translation by pairing with‘miRNA recognition elements’ (MREs) present in the 30untranslated region (30UTR) of target mRNAs. This emphasizes the role played by miRNAs in regulating neurogenesis, brain development and differentiation and hence any perturba-tions in this regulatory mechanism might affect these processes as well. Recently, single nucleotide polymorphisms (SNPs) present within 30UTRs of mRNAs have been shown to modulate existing MREs or even create new MREs. Therefore, we hypothesized that SNPs perturbing miRNA-medi-ated gene regulation might lead to aberrant expression of autism-implicated genes, thus resulting in disease predisposition or pathogenesis in at least a subpopulation of ASD individuals. We developed a systematic computational pipeline that integrates data from well-established databases. By following a stringent selection criterion, we identified 9 MRE-modulating SNPs and another 12 MRE-creating SNPs in the 30UTR of autism-implicated genes. These high-confidence candidate SNPs may play roles in ASD and hence would be valuable for further functional validation.

  18. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration.

    Science.gov (United States)

    Simpkins, Jessica A; Rickel, Kirby E; Madeo, Marianna; Ahlers, Bethany A; Carlisle, Gabriel B; Nelson, Heidi J; Cardillo, Andrew L; Weber, Emily A; Vitiello, Peter F; Pearce, David A; Vitiello, Seasson P

    2016-01-01

    Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  19. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    Science.gov (United States)

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-01

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016. PMID:27087581

  20. The p53 gene expression and its developmental regulation in schistosomes

    Directory of Open Access Journals (Sweden)

    Manami Tanaka

    1992-01-01

    Full Text Available We have studied the gene expression, especially of the oncoproteins, and its regulation in schistosomes. Schistosomes have a complex life cycle with defined dimorphic lifestyle. The parasite are so far unique in biology in expressing oncogene products in their adult stage. In order to characterize the expression and developmental regulation, a lambda gt 11 cDNA library and lambda EMBL4 genomic DNA library of each growth stage of Schistosoma mansoni and S. japonicum was constructed, and was screened with various monoclonal antibodies against ongogene products. One positive plaque reacted to anti-p53 antibody (Ab-2, Oncogene Science, Inc. was further analyzed. This fusion protein was about 120 KDa in molecular weights, and expressed as 1.4 Kb RNA in the adult stage. P53 gene is well-known as the negative regulator of the cell cicle, and the mutations in the gene are turning out to be the most common genetic alterations in human cancers. The comparison of the gene structure among species and stages were being conducted. Chromosome structures, C-band formation, and the results of in situ hybridization using the phage probe would be discussed.

  1. Detection of genes regulated by Lmx1b during limb dorsalization.

    Science.gov (United States)

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. PMID:22417325

  2. The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene.

    OpenAIRE

    Fraser, J A; Davis, M A; Hynes, M J

    2001-01-01

    The ability to utilize formamide as a sole nitrogen source has been found in numerous fungi. We have cloned the fmdS gene encoding a formamidase from Aspergillus nidulans and found that it belongs to a highly conserved family of proteins separate from the major amidase families. The expression of fmdS is primarily regulated via AreA-mediated nitrogen metabolite repression and does not require the addition of exogenous inducer. Consistent with this, deletion analysis of the 5' region of fmdS h...

  3. Nuclear gene-regulated expression of chloroplast genes for coupling factor one in maize

    International Nuclear Information System (INIS)

    In order to gain a better understanding of the interaction between the chloroplast and nuclear genomes in controlling the expression of plastid genes and the biosynthesis of chloroplast proteins, maize (Zea mays) nuclear gene mutant hcf*-38, in which α and β subunits of coupling factor one (CF1) are almost completely missing was studied. The mutant possesses all the other subunits of CF1 but several peptides of photosystem II are present in reduced amounts. A competitive hybridization experiment showed the presence of the same plastid mRNA species in mutant and wild-type plants except for slightly lower levels of some transcripts in the mutant. Northern hybridization and dot blot hybridization experiments showed the features of transcripts for α and β subunits of CF1 in the mutant to be similar to those in the wild-type maize although their levels are somewhat lower in the mutant. In vivo and in organello protein labeling experiments with L-[35S]Met have shown that α and β subunits of CF1 are synthesized, assembled into CF1, and probably associated with thylakoid membranes in mutant plants. It is concluded that they are subsequently degraded

  4. Age-related regulation of genes: slow homeostatic changes and age-dimension technology

    Science.gov (United States)

    Kurachi, Kotoku; Zhang, Kezhong; Huo, Jeffrey; Ameri, Afshin; Kuwahara, Mitsuhiro; Fontaine, Jean-Marc; Yamamoto, Kei; Kurachi, Sumiko

    2002-11-01

    Through systematic studies of pro- and anti-blood coagulation factors, we have determined molecular mechanisms involving two genetic elements, age-related stability element (ASE), GAGGAAG and age-related increase element (AIE), a unique stretch of dinucleotide repeats (AIE). ASE and AIE are essential for age-related patterns of stable and increased gene expression patterns, respectively. Such age-related gene regulatory mechanisms are also critical for explaining homeostasis in various physiological reactions as well as slow homeostatic changes in them. The age-related increase expression of the human factor IX (hFIX) gene requires the presence of both ASE and AIE, which apparently function additively. The anti-coagulant factor protein C (hPC) gene uses an ASE (CAGGAG) to produce age-related stable expression. Both ASE sequences (G/CAGAAG) share consensus sequence of the transcriptional factor PEA-3 element. No other similar sequences, including another PEA-3 consensus sequence, GAGGATG, function in conferring age-related gene regulation. The age-regulatory mechanisms involving ASE and AIE apparently function universally with different genes and across different animal species. These findings have led us to develop a new field of research and applications, which we named “age-dimension technology (ADT)”. ADT has exciting potential for modifying age-related expression of genes as well as associated physiological processes, and developing novel, more effective prophylaxis or treatments for age-related diseases.

  5. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms

    Science.gov (United States)

    Mabb, Angela M.; Simon, Jeremy M.; King, Ian F.; Lee, Hyeong-Min; An, Lin-Kun; Philpot, Benjamin D.; Zylka, Mark J.

    2016-01-01

    Topoisomerase 1 (TOP1) inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc’s) that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb) genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc’s, and a TOP1 mutation (T718A) that stabilizes TOP1cc’s. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression. PMID:27231886

  6. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Angela M Mabb

    Full Text Available Topoisomerase 1 (TOP1 inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.

  7. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects

    Indian Academy of Sciences (India)

    Suresh Kumar Kumar; Gajula Gopinath; Nagraj Sambrani; Kallare P Arunkumar

    2016-06-01

    Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices.

  8. Sp1 and KLF15 regulate basal transcription of the human LRP5 gene

    Directory of Open Access Journals (Sweden)

    Zou Yongxin

    2010-02-01

    Full Text Available Abstract Background LRP5, a member of the low density lipoprotein receptor superfamily, regulates diverse developmental processes in embryogenesis and maintains physiological homeostasis in adult organisms. However, how the expression of human LRP5 gene is regulated remains unclear. Results In order to characterize the transcriptional regulation of human LRP5 gene, we cloned the 5' flanking region and evaluated its transcriptional activity in a luciferase reporter system. We demonstrated that both KLF15 and Sp1 binding sites between -72 bp and -53 bp contribute to the transcriptional activation of human LRP5 promoter. Chromatin immunoprecipitation assay demonstrated that the ubiquitous transcription factors KLF15 and Sp1 bind to this region. Using Drosophila SL2 cells, we showed that KLF15 and Sp1 trans-activated the LRP5 promoter in a manner dependent on the presence of Sp1-binding and KLF15-binding motifs. Conclusions Both KLF15 and Sp1 binding sites contribute to the basal activity of human LRP5 promoter. This study provides the first insight into the mechanisms by which transcription of human LRP5 gene is regulated.

  9. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.

    LENUS (Irish Health Repository)

    Martin, Ronny

    2011-04-01

    The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.

  10. Identification of genes regulating TRAIL-induced apoptosis in rheumatoid arthritis fibroblasts-like synoviocytes.

    Science.gov (United States)

    Audo, R; Hegglin, A; Severac, D; Dantec, C; Combe, B; Hahne, M; Morel, J

    2015-10-01

    We previously described that sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis varied in rheumatoid arthritis fibroblasts-like synoviocytes (RAFLS) from one patient to another and was correlated with disease severity. Therefore, we screened for genes differentially expressed in RAFLS sensitive and resistant to TRAIL-induced apoptosis. The sensitivity of RAFLS was defined based on the percentage of TRAIL-induced apoptosis: 0-10% for resistant cells and >25% for sensitive RAFLS. We performed transcriptomic comparison between RAFLS-S (n=6) and RAFLS-R (n=6) and then examined the implication of identified candidates in the regulation of apoptosis using small interference RNA (siRNA). Microarray analysis revealed 10 functional genes differentially expressed according to TRAIL sensitivity. These factors are implicated in different functions, such as the respiratory chain (ND3), the transport of lipids (OSBP2, PLTP), the regulation of signaling linked to extracellular factors (SULF2, GALNT1, SIAE) or the regulation of gene expression (TET2 and LARP6). We confirmed differential expression for GALNT1 and LARP6 by quantitative reverse transcriptase-PCR. Using siRNA extinction, we demonstrated the implication of GALNT1, SULF2 and LARP6 in the control of TRAIL-induced responses. These results are of particular interest as GALNT1 and LARP6 have been implicated in the regulation of cell death and may represent interesting targets to induce apoptosis of RAFLS. PMID:26247836

  11. p73 Is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network

    Directory of Open Access Journals (Sweden)

    Clayton B. Marshall

    2016-03-01

    Full Text Available We report that p73 is expressed in multiciliated cells (MCCs, is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus; hippocampal dysgenesis; sterility; and chronic inflammation/infection of lung, middle ear, and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells and suggest that p73 marks these cells for MCC differentiation. In summary, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation, and, like p63, has an essential role in development of tissues.

  12. p73 Is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network.

    Science.gov (United States)

    Marshall, Clayton B; Mays, Deborah J; Beeler, J Scott; Rosenbluth, Jennifer M; Boyd, Kelli L; Santos Guasch, Gabriela L; Shaver, Timothy M; Tang, Lucy J; Liu, Qi; Shyr, Yu; Venters, Bryan J; Magnuson, Mark A; Pietenpol, Jennifer A

    2016-03-15

    We report that p73 is expressed in multiciliated cells (MCCs), is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus; hippocampal dysgenesis; sterility; and chronic inflammation/infection of lung, middle ear, and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells and suggest that p73 marks these cells for MCC differentiation. In summary, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation, and, like p63, has an essential role in development of tissues. PMID:26947080

  13. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  14. The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Jonas Ungerbäck

    Full Text Available BACKGROUND: Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC. In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. PRINCIPAL FINDINGS: In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the Apc(Min/+ mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. CONCLUSIONS: In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer.

  15. Concordant and discordant regulation of target genes by miR-31 and its isoforms.

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Chan

    Full Text Available It has been shown that imprecise cleavage of a primary or precursor RNA by Drosha or Dicer, respectively, may yield a group of microRNA (miRNA variants designated as "isomiR". Variations in the relative abundance of isoforms for a given miRNA among different species and different cell types beg the question whether these isomiRs might regulate target genes differentially. We compared the capacity of three miR-31 isoforms (miR-31-H, miR-31-P, and miR-31-M, which differ only slightly in their 5'- and/or 3'-end sequences, to regulate several known targets and a predicted target, Dicer. Notably, we found isomiR-31s displayed concordant and discordant regulation of 6 known target genes. Furthermore, we validated a predicted target gene, Dicer, to be a novel target of miR-31 but only miR-31-P could directly repress Dicer expression in both MCF-7 breast cancer cells and A549 lung cancer cells, resulting in their enhanced sensitivity to cisplatin, a known attribute of Dicer knockdown. This was further supported by reporter assay using full length 3'-untranslated region (UTR of Dicer. Our findings not only revealed Dicer to be a direct target of miR-31, but also demonstrated that isomiRs displayed similar and disparate regulation of target genes in cell-based systems. Coupled with the variations in the distribution of isomiRs among different cells or conditions, our findings support the possibility of fine-tuning gene expression by miRNAs.

  16. FSH and bFGF regulate the expression of genes involved in Sertoli cell energetic metabolism.

    Science.gov (United States)

    Regueira, Mariana; Riera, María Fernanda; Galardo, María Noel; Camberos, María Del Carmen; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2015-10-01

    The purpose of this study was to investigate if FSH and bFGF regulate fatty acid (FA) metabolism and mitochondrial biogenesis in Sertoli cells (SC). SC cultures obtained from 20-day-old rats were incubated with 100ng/ml FSH or 30ng/ml bFGF for 6, 12, 24 and 48h. The expression of genes involved in transport and metabolism of FA such as: fatty acid transporter CD36 (FAT/CD36), carnitine-palmitoyltransferase 1 (CPT1), long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD, MCAD), and of genes involved in mitochondrial biogenesis such as: nuclear respiratory factors 1 and 2 (NRF1, NRF2) and transcription factor A (Tfam), was analyzed. FSH stimulated FAT/CD36, CPT1, MCAD, NRF1, NRF2 and Tfam mRNA levels while bFGF only stimulated CPT1 expression. A possible participation of PPARβ/δ activation in the regulation of gene expression and lactate production was then evaluated. SC cultures were incubated with FSH or bFGF in the presence of the PPARβ/δ antagonist GSK3787 (GSK; 20μM). bFGF stimulation of CPT1 expression and lactate production were inhibited by GSK. On the other hand, FSH effects were not inhibited by GSK indicating that FSH regulates the expression of genes involved in FA transport and metabolism and in mitochondrial biogenesis, independently of PPARβ/δ activation. FA oxidation and mitochondrial biogenesis as well as lactate production are essential for the energetic metabolism of the seminiferous tubule. The fact that these processes are regulated by hormones in a different way reflects the multifarious regulation of molecular mechanisms involved in Sertoli cell function. PMID:26315388

  17. Single-taxon field measurements of bacterial gene regulation controlling DMSP fate.

    Science.gov (United States)

    Varaljay, Vanessa A; Robidart, Julie; Preston, Christina M; Gifford, Scott M; Durham, Bryndan P; Burns, Andrew S; Ryan, John P; Marin, Roman; Kiene, Ronald P; Zehr, Jonathan P; Scholin, Christopher A; Moran, Mary Ann

    2015-07-01

    The 'bacterial switch' is a proposed regulatory point in the global sulfur cycle that routes dimethylsulfoniopropionate (DMSP) to two fundamentally different fates in seawater through genes encoding either the cleavage or demethylation pathway, and affects the flux of volatile sulfur from ocean surface waters to the atmosphere. Yet which ecological or physiological factors might control the bacterial switch remains a topic of considerable debate. Here we report the first field observations of dynamic changes in expression of DMSP pathway genes by a single marine bacterial species in its natural environment. Detection of taxon-specific gene expression in Roseobacter species HTCC2255 during a month-long deployment of an autonomous ocean sensor in Monterey Bay, CA captured in situ regulation of the first gene in each DMSP pathway (dddP and dmdA) that corresponded with shifts in the taxonomy of the phytoplankton community. Expression of the demethylation pathway was relatively greater during a high-DMSP-producing dinoflagellate bloom, and expression of the cleavage pathway was greater in the presence of a mixed diatom and dinoflagellate community [corrected].These field data fit the prevailing hypothesis for bacterial DMSP gene regulation based on bacterial sulfur demand, but also suggest a modification involving oxidative stress response, evidenced as upregulation of catalase via katG, when DMSP is demethylated. PMID:25700338

  18. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS.

    Directory of Open Access Journals (Sweden)

    Rosa C Baños

    2009-06-01

    Full Text Available Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

  19. Different promoter affinities account for specificity in MYC-dependent gene regulation

    Science.gov (United States)

    Lorenzin, Francesca; Benary, Uwe; Baluapuri, Apoorva; Walz, Susanne; Jung, Lisa Anna; von Eyss, Björn; Kisker, Caroline; Wolf, Jana; Eilers, Martin; Wolf, Elmar

    2016-01-01

    Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells. DOI: http://dx.doi.org/10.7554/eLife.15161.001 PMID:27460974

  20. Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal

    Science.gov (United States)

    Dilanji, Gabriel; Langebrake, Jessica; Deleenheer, Patrick; Hagen, Stephen J.

    2012-02-01

    Bacteria in colonies coordinate gene regulation through the exchange of diffusible signal molecules known as autoinducers (AI). This ``quorum signaling'' often occurs in physically heterogeneous and spatially extended environments such as biofilms. Under these conditions the space and time scales for diffusion of the signal limit the range and timing of effective gene regulation. We expect that spatial and temporal patterns of gene expression will reflect physical environmental constraints as well as nonlinear transcriptional activation and feedback within the gene regulatory system. We have combined experiments and modeling to investigate how these spatiotemporal patterns develop. We embed engineered plasmid/GFP quorum sensor strains or wild type strains in a long narrow agar lane, and then introduce AI signal at one terminus of the lane. Diffusion of the AI initiates reporter expression along the length of the lane, extending to macroscopic distances of mm-cm. Resulting patterns are captured quantitatively by a mathematical model that incorporates logistic growth of the population, diffusion of AI, and nonlinear transcriptional activation. Our results show that a diffusing quorum signal can coordinate gene expression over distances of order 1cm on time scales of order 10 hrs.

  1. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation.

    Science.gov (United States)

    Bell, Charles C; Amaral, Paulo P; Kalsbeek, Anton; Magor, Graham W; Gillinder, Kevin R; Tangermann, Pierre; di Lisio, Lorena; Cheetham, Seth W; Gruhl, Franziska; Frith, Jessica; Tallack, Michael R; Ru, Ke-Lin; Crawford, Joanna; Mattick, John S; Dinger, Marcel E; Perkins, Andrew C

    2016-01-01

    Thousands of sense-antisense mRNA-lncRNA gene pairs occur in the mammalian genome. While there is usually little doubt about the function of the coding transcript, the function of the lncRNA partner is mostly untested. Here we examine the function of the homeotic Evx1-Evx1as gene locus. Expression is tightly co-regulated in posterior mesoderm of mouse embryos and in embryoid bodies. Expression of both genes is enhanced by BMP4 and WNT3A, and reduced by Activin. We generated a suite of deletions in the locus by CRISPR-Cas9 editing. We show EVX1 is a critical downstream effector of BMP4 and WNT3A with respect to patterning of posterior mesoderm. The lncRNA, Evx1as arises from alternative promoters and is difficult to fully abrogate by gene editing or siRNA approaches. Nevertheless, we were able to generate a large 2.6 kb deletion encompassing the shared promoter with Evx1 and multiple additional exons of Evx1as. This led to an identical dorsal-ventral patterning defect to that generated by micro-deletion in the DNA-binding domain of EVX1. Thus, Evx1as has no function independent of EVX1, and is therefore unlikely to act in trans. We predict many antisense lncRNAs have no specific trans function, possibly only regulating the linked coding genes in cis. PMID:27226347

  2. The Truncated Gene cfaD′ Positively Regulates CFA/Ⅰ Expression of Enterotoxigenic Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    齐小保; 徐建国

    2004-01-01

    The gene cluster cfaABCED′ of enterotoxigenic Escherichia coli, encoding the fimbriae which is called colonization factor antigen Ⅰ (CFA/Ⅰ), located on a plasmid. It is positively regulated by cfaR, a member of the AraC family, and the cfaD′ gene region, which is located downstream of cfaE and is homologous to cfaR, had been described as a truncated cryptic gene. In the present study we observed that the CFA/Ⅰ fimbriae subunit, cfaB, was expressed in lower amount by the cfoABCED′ clone pNTP513 in host E. coli HB101. The expression of CFA/Ⅰ diminished by deletion of cfaD′ gene region from pNTP513, and was restored by acquisition of cfaD′ in trans. Furthermore, CFA/Ⅰ expression by cfaD′ deletion mutant, the cfaABCE clone, was remarkably increased by the presence of CFA/Ⅰ in trans in a topoisomerase A deficient strain of E. coli DM800. These data suggest that cfaD′ region is a functional region of gene, that regulates the CFA/Ⅰ expression with cfaR by unknown mechanism.

  3. Regulation of gene expression and secretory functions in oxygen-sensing pheochromocytoma cells.

    Science.gov (United States)

    Conforti, L; Kobayashi, S; Beitner-Johnson, D; Conrad, P W; Freeman, T; Millhorn, D E

    1999-04-01

    The cellular response to hypoxia is complex. Specialized oxygen chemosensitive cells that are excitable respond to reduced O2 by membrane depolarization, altered gene expression, and neurotransmitter secretion. We have used the O2-sensitive pheochromocytoma (PC12) cell line to investigate the cellular response to hypoxia. Here, we present evidence that membrane depolarization and increased intracellular free Ca2+ are major regulatory events in these cells. Membrane depolarization is mediated by the inhibition of a slow-inactivating voltage-dependent potassium (K) channel. Evidence from molecular biology and patch-clamp studies indicate that the O2-sensitive K channel is a member of the Kv1 family. We also reviewed findings on the regulation of gene expression in PC12 cells during hypoxia. An increase in intracellular free Ca2+ is required for hypoxia-induced transcription of a number of genes including tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamine neurotransmitters, and several of the immediate early genes. We also reviewed the role of dopamine (DA) and adenosine (ADO) receptors in regulation of membrane depolarization and gene expression. PMID:10385038

  4. Arrow plot: a new graphical tool for selecting up and down regulated genes and genes differentially expressed on sample subgroups

    Directory of Open Access Journals (Sweden)

    Silva-Fortes Carina

    2012-06-01

    Full Text Available Abstract Background A common task in analyzing microarray data is to determine which genes are differentially expressed across two (or more kind of tissue samples or samples submitted under experimental conditions. Several statistical methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic background that are often unknown to the experimenter. For instance, in experiments which involve molecular classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical tool which not only identifies genes with up and down regulations, but also genes with differential expression in different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures of distance between samples, namely the overlapping coefficient (OVL between two densities and the area under the receiver operating characteristic (ROC curve. The methodology proposed here was implemented in the open-source R software. Results This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our results with the ones obtained using some of the standard methods for detecting differentially expressed genes, namely Welch t-statistic, fold change (FC, rank products (RP, average difference (AD, weighted average difference (WAD, moderated t-statistic (modT, intensity-based moderated t-statistic (ibmT, significance analysis of microarrays (samT and area under the ROC curve (AUC. On both datasets all differentially expressed genes with bimodal or multimodal

  5. NR4A Gene Expression Is Dynamically Regulated in the Ventral Tegmental Area Dopamine Neurons and Is Related to Expression of Dopamine Neurotransmission Genes

    OpenAIRE

    Eells, Jeffrey B.; Wilcots, Josiah; Sisk, Scott; Guo-Ross, Shirley X.

    2011-01-01

    The NR4A transcription factors NR4A1, NR4A2, and NR4A3 (also known as Nur77, Nurr1, and Nor1, respectively) share similar DNA-binding properties and have been implicated in regulation of dopamine neurotransmission genes. Our current hypothesis is that NR4A gene expression is regulated by dopamine neuron activity and that induction of NR4A genes will increase expression of dopamine neurotransmission genes. Eticlopride and γ-butyrolactone (GBL) were used in wild-type (+/+) and Nurr1-null hetero...

  6. Meta-Analysis Reveals that Genes Regulated by the Y Chromosome in Drosophila melanogaster Are Preferentially Localized to Repressive Chromatin

    OpenAIRE

    Sackton, Timothy; Hartl, Daniel L.

    2013-01-01

    The Drosophila Y chromosome is a degenerated, heterochromatic chromosome with few functional genes. Despite this, natural variation on the Y chromosome in D. melanogaster has substantial trans-acting effects on the regulation of X-linked and autosomal genes. It is not clear, however, whether these genes simply represent a random subset of the genome or whether specific functional properties are associated with susceptibility to regulation by Y-linked variation. Here, we present a meta-analysi...

  7. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    and enhanced expressions of ethanol-tolerance genes associated with heat shock proteins, trehalose-glycolysis-pentose phosphate pathways and PDR gene family are accountable for the tolerant yeast to withstand the ethanol stress, maintain active metabolisms, and complete ethanol fermentation under the ethanol stress. Transcription factor Msn4p appeared to be a key regulator of gene interactions for ethanol-tolerance in the tolerant yeast Y-50316.

  8. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT...... key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  9. Coordinated regulation of mitochondrial topoisomerase IB with mitochondrial nuclear encoded genes and MYC

    OpenAIRE

    Zoppoli, Gabriele; Douarre, Céline; Dalla Rosa, Ilaria; Liu, Hongfang; Reinhold, William; Pommier, Yves

    2011-01-01

    Mitochondrial DNA (mtDNA) is entirely dependent on nuclear genes for its transcription and replication. One of these genes is TOP1MT, which encodes the mitochondrial DNA topoisomerase IB, involved in mtDNA relaxation. To elucidate TOP1MT regulation, we performed genome-wide profiling across the 60-cell line panel (the NCI-60) of the National Cancer Institute Developmental Therapeutics Program. We show that TOP1MT mRNA expression varies widely across these cell lines with the highest levels in...

  10. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    OpenAIRE

    Yang Jiao; Jingying Zhang; Lunjie Lu; Jiaying Xu; Liqiang Qin

    2016-01-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Us...

  11. Regulation of plasmid virulence gene expression in Salmonella dublin involves an unusual operon structure.

    OpenAIRE

    Krause, M.; Fang, F C; Guiney, D G

    1992-01-01

    The 80-kb plasmid pSDL2 of Salmonella dublin Lane is essential for lethal systemic infection in experimental mice. A cluster of five plasmid genes, designated spvR, spvA, spvB, spvC, and spvD, is sufficient to express the plasmid-related virulent phenotype. The spvR gene product has recently been identified as a positive regulator of spvB expression in the stationary phase of bacterial growth (F. C. Fang, M. Krause, C. Roudier, J. Fierer, and D. G. Guiney, J. Bacteriol. 173:6783-6789, 1991). ...

  12. Post-transcriptional gene regulation in the biology and virulence of Candida albicans.

    Science.gov (United States)

    Verma-Gaur, Jiyoti; Traven, Ana

    2016-06-01

    In the human fungal pathogen Candida albicans, remodelling of gene expression drives host adaptation and virulence. Recent studies revealed that in addition to transcription, post-transcriptional mRNA control plays important roles in virulence-related pathways. Hyphal morphogenesis, biofilm formation, stress responses, antifungal drug susceptibility and virulence in animal models require post-transcriptional regulators. This includes RNA binding proteins that control mRNA localization, decay and translation, as well as the cytoplasmic mRNA decay pathway. Comprehensive understanding of how modulation of gene expression networks drives C. albicans virulence will necessitate integration of our knowledge on transcriptional and post-transcriptional mRNA control. PMID:26999710

  13. Identification of 2 novel genes developmentally regulated in the mouse aorta-gonad-mesonephros region

    OpenAIRE

    Orelio, C.; Dzierzak, Elaine

    2003-01-01

    textabstractThe first adult-repopulating hematopoietic stem cells (HSCs) emerge in the mouse aorta-gonad-mesonephros (AGM) region at embryonic day 10.5 prior to their appearance in the yolk sac and fetal liver. Although several genes are implicated in the regulation of HSCs, there are gaps in our understanding of the processes taking place in the AGM at the time of HSC emergence. To identify genes involved in AGM HSC emergence, we performed differential display reverse transcriptase-polymeras...

  14. Cell Type Dependent Regulation of Multidrug Resistance-1 Gene Expression by AML1-ETO

    OpenAIRE

    Hines, Robert; Boyapati, Anita; Zhang, Dong-Er

    2007-01-01

    The AML1-ETO fusion protein is generated from the 8;21 chromosome translocation that is commonly identified in acute myeloid leukemia. AML1-ETO is a DNA binding transcription factor and has been demonstrated to play a critical role in promoting leukemogenesis. Therefore, it is important to define the molecular mechanism of AML1-ETO in the regulation of gene expression. Here, we report that the effect of AML1-ETO on the promoter of multidrug resistance-1 (MDR1) gene, a known AML1-ETO target, i...

  15. Systematic insertion mutagenesis of GntR family transcriptional regulator genes in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    GntR-type transcriptional regulators regulate the most diverse biological processes in bacteria. Although GntR-type transcriptional regulators consist of the second largest family of transcriptional regulators in Sinorhizobium meliloti, little is known about their functions. In this study, we investigated 54 putative genes encoding GntR family of transcriptional regulators in S. meliloti Rm1021. Secondary structure analysis of the C-terminal domain of these putative transcriptional regulators indicated that thirty-seven were members of the FadR subfamily, ten of the HutC subfamily and five of the MocR subfamily. The remaining two did not fall into any specific subfamily category, and may form two new subfamilies. The 54 gntR genes were mutagenized by plasmid insertion mutagenesis to investigate their roles. We found that, of the 54 mutants, only the gtrA1 and gtrB1 mutants had slower growth rates and cell maximal yields on both rich medium and minimal medium, and lower cell motility on swarming plate than wild type Rm1021. All mutants, with the exception of gtrA1 and gtrB1, can establish effective symbioses with alfalfa. Plants inoculated with gtrA1 and gtrB1 mutants grew shorter than those inoculated with wild type, and formed relatively smaller, round and light pink nodules, which were mainly located on lateral roots. And there was an abnormal increase in the number of nodules induced by both mutants. These results suggested that the gtrA1 and gtrB1 mutants were symbiotically deficient. Our work presents a global overview of GntR-like transcriptional regulators involved in symbiosis in S.meliloti, and provides new insight into the functions of GntR-like transcriptional regulators.

  16. Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa.

    Science.gov (United States)

    Olmedo, María; Ruger-Herreros, Carmen; Corrochano, Luis M

    2010-03-01

    The development of asexual spores, that is, the process of conidiation, in the fungus Neurospora crassa is increased by light. The fluffy (fl) gene, encoding a major regulator of conidiation, is activated by light. We describe here a detailed characterization of the regulation by blue light of fl in vegetative hyphae. This induction requires the white collar complex (WCC) while the FLD protein acts as a dark repressor of fl transcription. We show that the WCC directly regulates fl transcription in response to blue light after transiently binding the promoter. We propose that fl is repressed by FLD in vegetative mycelia and that the repression is lost after light exposure and WCC activation. The increase in fl mRNA in vegetative mycelia after light exposure, and the corresponding increase in the amount of the regulatory FL protein, should promote the activation of the conidiation pathway. The activation by light of fl provides a simple mechanism for the activation of conidiation by blue light in Neurospora that may be at work in other fungi. PMID:20026679

  17. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    Science.gov (United States)

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  18. Tandem machine learning for the identification of genes regulated by transcription factors

    Directory of Open Access Journals (Sweden)

    Schuetz Erin G

    2005-08-01

    Full Text Available Abstract Background The identification of promoter regions that are regulated by a given transcription factor has traditionally relied upon the identification and distributions of binding sites recognized by the factor. In this study, we have developed a tandem machine learning approach for the identification of regulatory target genes based on these parameters and on the corresponding binding site information contents that measure the affinities of the factor for these cognate elements. Results This method has been validated using models of DNA binding sites recognized by the xenobiotic-sensitive nuclear receptor, PXR/RXRα, for target genes within the human genome. An information theory-based weight matrix was first derived and refined from known PXR/RXRα binding sites. The promoter region of candidate genes was scanned with the weight matrix. A novel information density-based clustering algorithm was then used to identify clusters of information rich sites. Finally, transformed data representing metrics of location, strength and clustering of binding sites were used for classification of promoter regions using an ensemble approach involving neural networks, decision trees and Naïve Bayesian classification. The method was evaluated on a set of 24 known target genes and 288 genes known not to be regulated by PXR/RXRα. We report an average accuracy (proportion of correctly classified promoter regions of 71%, sensitivity of 73%, and specificity of 70%, based on multiple cross-validation and the leave-one-out strategy. The performance on a test set of 13 genes showed that 10 were correctly classified. Conclusion We have developed a machine learning approach for the successful detection of gene targets for transcription factors with high accuracy. The method has been validated for the transcription factor PXR/RXRα and has the potential to be extended to other transcription factors.

  19. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes.

    Science.gov (United States)

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B; Boeke, Jef D

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive ana