WorldWideScience

Sample records for channelrhodopsin-2 gene regulated

  1. Kinetics of proton release and uptake by channelrhodopsin-2.

    Science.gov (United States)

    Nack, Melanie; Radu, Ionela; Schultz, Bernd-Joachim; Resler, Tom; Schlesinger, Ramona; Bondar, Ana-Nicoleta; del Val, Coral; Abbruzzetti, Stefania; Viappiani, Cristiano; Bamann, Christian; Bamberg, Ernst; Heberle, Joachim

    2012-05-07

    Electrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.3 protons per ChR2. Comparison to the photocycle kinetics revealed that proton release and uptake match rise and decay of the P(3)(520) intermediate. As the P(3)(520) state also represents the conductive state of cation channeling, the concurrence of proton pumping and channel gating implies an intimate mechanistic link of the two functional modes. Studies on the E123T and S245E mutants show that these residues are not critically involved in proton translocation.

  2. Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2.

    Science.gov (United States)

    Tanimoto, Saki; Sugiyama, Yuka; Takahashi, Tetsuo; Ishizuka, Toru; Yawo, Hiromu

    2013-01-01

    The light absorption of a channelrhodopsin-2 (ChR2) is followed by conformational changes to the molecule, which allows the channel structure to become permeable to cations. Previously, a single point mutation in ChR2, which replaces glutamate residue 97 with a nonpolar alanine (E97A), was found to attenuate the photocurrent, suggesting that the E97 residue is involved in ion flux regulation. Here, the significance of E97 and its counterpart ChR1 (E136) were extensively studied by mutagenesis, whereby we replaced these glutamates with aspartate (D), glutamine (Q) or arginine (R). We found that the charge at this position strongly influences ion permeation and that the photocurrents were attenuated in the order of ChR2>E97D≈E97Q>E97R. We observed similar results with our chimeric/synthetic/artificial construct, ChR-wide receiver (ChRWR), which contains the first to fifth transmembrane helices of ChR1. The E-to-Q or E-to-R mutations, but not the E-to-D mutation, strongly retarded the sensitivity to the Gd(3+)-dependent blocking of the ChR1 or ChR2 channels. Our results suggest that the glutamate residue at this position lies in the outer pore, where it interacts with a cation to facilitate dehydration, and that this residue is the primary binding target of Gd(3+).

  3. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    Science.gov (United States)

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  4. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.

    Science.gov (United States)

    Darrow, Keith N; Slama, Michaël C C; Kozin, Elliott D; Owoc, Maryanna; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M Christian; Lee, Daniel J

    2015-03-02

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway and whether it elicited an evoked response. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of the central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50dB SPL acoustic click. This broad pattern of activity was consistent with histological confirmation of green fluorescent protein (GFP) label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics may be necessary to convey information at rates typical of many auditory signals.

  5. Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants.

    Science.gov (United States)

    Grossman, Nir; Nikolic, Konstantin; Toumazou, Christofer; Degenaar, Patrick

    2011-06-01

    Channelrhodopsin-2 (ChR2) has become a widely used tool for stimulating neurons with light. Nevertheless, the underlying dynamics of the ChR2-evoked spikes are still not yet fully understood. Here, we develop a model that describes the response of ChR2-expressing neurons to light stimuli and use the model to explore the light-to-spike process. We show that an optimal stimulation yield is achieved when the optical energies are delivered in short pulses. The model allows us to theoretically examine the effects of using various types of ChR2 mutants. We show that while increasing the lifetime and shuttering speed of ChR2 have limited effect, reducing the threshold irradiance by increased conductance will eliminate adaptation and allow constant dynamic range. The model and the conclusion presented in this study can help to interpret experimental results, design illumination protocols, and seek improvement strategies in the nascent optogenetic field.

  6. Optogenetics in the Teaching Laboratory: Using Channelrhodopsin-2 to Study the Neural Basis of Behavior and Synaptic Physiology in "Drosophila"

    Science.gov (United States)

    Pulver, Stefan R.; Hornstein, Nicholas J.; Land, Bruce L.; Johnson, Bruce R.

    2011-01-01

    Here we incorporate recent advances in "Drosophila" neurogenetics and "optogenetics" into neuroscience laboratory exercises. We used the light-activated ion channel channelrhodopsin-2 (ChR2) and tissue-specific genetic expression techniques to study the neural basis of behavior in "Drosophila" larvae. We designed and implemented exercises using…

  7. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Ji

    Full Text Available In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2 transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.

  8. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Cornelia Schmitt

    Full Text Available Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2 enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.

  9. Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications.

    Science.gov (United States)

    Dawydow, Alexej; Gueta, Ronnie; Ljaschenko, Dmitrij; Ullrich, Sybille; Hermann, Moritz; Ehmann, Nadine; Gao, Shiqiang; Fiala, André; Langenhan, Tobias; Nagel, Georg; Kittel, Robert J

    2014-09-23

    Channelrhodopsin-2 (ChR2) has provided a breakthrough for the optogenetic control of neuronal activity. In adult Drosophila melanogaster, however, its applications are severely constrained. This limitation in a powerful model system has curtailed unfolding the full potential of ChR2 for behavioral neuroscience. Here, we describe the D156C mutant, termed ChR2-XXL (extra high expression and long open state), which displays increased expression, improved subcellular localization, elevated retinal affinity, an extended open-state lifetime, and photocurrent amplitudes greatly exceeding those of all heretofore published ChR variants. As a result, neuronal activity could be efficiently evoked with ambient light and even without retinal supplementation. We validated the benefits of the variant in intact flies by eliciting simple and complex behaviors. We demonstrate efficient and prolonged photostimulation of monosynaptic transmission at the neuromuscular junction and reliable activation of a gustatory reflex pathway. Innate male courtship was triggered in male and female flies, and olfactory memories were written through light-induced associative training.

  10. Regulated Gene Therapy.

    Science.gov (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  11. GABAergic and glycinergic inhibitory synaptic transmission in the ventral cochlear nucleus studied in VGAT channelrhodopsin-2 mice.

    Science.gov (United States)

    Xie, Ruili; Manis, Paul B

    2014-01-01

    Both glycine and GABA mediate inhibitory synaptic transmission in the ventral cochlear nucleus (VCN). In mice, the time course of glycinergic inhibition is slow in bushy cells and fast in multipolar (stellate) cells, and is proposed to contribute to the processing of temporal cues in both cell types. Much less is known about GABAergic synaptic transmission in this circuit. Electrical stimulation of the auditory nerve or the tuberculoventral pathway evokes little GABAergic synaptic current in brain slice preparations, and spontaneous GABAergic miniature synaptic currents occur infrequently. To investigate synaptic currents carried by GABA receptors in bushy and multipolar cells, we used transgenic mice in which channelrhodopsin-2 and EYFP is driven by the vesicular GABA transporter (VGAT-ChR2-EYFP) and is expressed in both GABAergic and glycinergic neurons. Light stimulation evoked action potentials in EYFP-expressing presynaptic cells, and evoked inhibitory postsynaptic potentials (IPSPs) in non-expressing bushy and planar multipolar cells. Less than 10% of the IPSP amplitude in bushy cells arose from GABAergic synapses, whereas 40% of the IPSP in multipolar neurons was GABAergic. In voltage clamp, glycinergic IPSCs were significantly slower in bushy neurons than in multipolar neurons, whereas there was little difference in the kinetics of the GABAergic IPSCs between two cell types. During prolonged stimulation, the ratio of steady state vs. peak IPSC amplitude was significantly lower for glycinergic IPSCs. Surprisingly, the reversal potentials of GABAergic IPSCs were negative to those of glycinergic IPSCs in both bushy and multipolar neurons. In the absence of receptor blockers, repetitive light stimulation was only able to effectively evoke IPSCs up to 20 Hz in both bushy and multipolar neurons. We conclude that local GABAergic release within the VCN can differentially influence bushy and multipolar cells.

  12. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  13. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  14. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  15. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  16. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  17. Identification of let-7-regulated oncofetal genes

    DEFF Research Database (Denmark)

    Boyerinas, Benjamin; Park, Sun-Mi; Shomron, Noam;

    2008-01-01

    -regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1...

  18. Regulation of gene expression by Goodwin's loop with many genes

    Science.gov (United States)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  19. Regulation of noise in gene expression.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-01-01

    The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.

  20. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  1. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  2. The TRANSFAC system on gene expression regulation.

    Science.gov (United States)

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  3. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  4. Linker histones in hormonal gene regulation.

    Science.gov (United States)

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  5. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  6. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  7. The population genetics of cooperative gene regulation

    Directory of Open Access Journals (Sweden)

    Stewart Alexander J

    2012-09-01

    Full Text Available Abstract Background Changes in gene regulatory networks drive the evolution of phenotypic diversity both within and between species. Rewiring of transcriptional networks is achieved either by changes to transcription factor binding sites or by changes to the physical interactions among transcription factor proteins. It has been suggested that the evolution of cooperative binding among factors can facilitate the adaptive rewiring of a regulatory network. Results We use a population-genetic model to explore when cooperative binding of transcription factors is favored by evolution, and what effects cooperativity then has on the adaptive re-writing of regulatory networks. We consider a pair of transcription factors that regulate multiple targets and overlap in the sets of target genes they regulate. We show that, under stabilising selection, cooperative binding between the transcription factors is favoured provided the amount of overlap between their target genes exceeds a threshold. The value of this threshold depends on several population-genetic factors: strength of selection on binding sites, cost of pleiotropy associated with protein-protein interactions, rates of mutation and population size. Once it is established, we find that cooperative binding of transcription factors significantly accelerates the adaptive rewiring of transcriptional networks under positive selection. We compare our qualitative predictions to systematic data on Saccharomyces cerevisiae transcription factors, their binding sites, and their protein-protein interactions. Conclusions Our study reveals a rich set of evolutionary dynamics driven by a tradeoff between the beneficial effects of cooperative binding at targets shared by a pair of factors, and the detrimental effects of cooperative binding for non-shared targets. We find that cooperative regulation will evolve when transcription factors share a sufficient proportion of their target genes. These findings help to

  8. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  9. Gene therapy on demand: site specific regulation of gene therapy.

    Science.gov (United States)

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  10. Redox regulation, gene expression and longevity.

    Science.gov (United States)

    Honda, Yoko; Tanaka, Masashi; Honda, Shuji

    2010-07-01

    Lifespan can be lengthened by genetic and environmental modifications. Study of these might provide valuable insights into the mechanism of aging. Low doses of radiation and short-term exposure to heat and high concentrations of oxygen prolong the lifespan of the nematode Caenorhabditis elegans. These might be caused by adaptive responses to harmful environmental conditions. Single-gene mutations have been found to extend lifespan in C. elegans, Drosophila and mice. So far, the best-characterized system is the C. elegans mutant in the daf-2, insulin/IGF-I receptor gene that is the component of the insulin/IGF-I signaling pathway. The mutant animals live twice as long as the wild type. The insulin/IGF-I signaling pathway regulates the activity of DAF-16, a FOXO transcription factor. However, the unified explanation for the function of DAF-16 transcription targets in the lifespan extension is not yet fully established. As both of the Mn superoxide dismutase (MnSOD) isoforms (sod-2 and sod-3) are found to be targets of DAF-16, we attempted to assess their functions in regulating lifespan and oxidative stress responsivity. We show that the double deletions of sod-2 and sod-3 genes induced oxidative-stress sensitivity but do not shorten lifespan in the daf-2 mutant background, indicating that oxidative stress is not necessarily a limiting factor for longevity. Furthermore, the deletion in the sod-3 gene lengthens lifespan in the daf-2 mutant. We conclude that the MnSOD systems in C. elegans fine-tune the insulin/IGF-I-signaling based regulation of longevity by acting not as anti-oxidants but as physiological-redox-signaling modulators.

  11. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  12. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed......To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  13. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  14. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  15. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  16. Polyamine analogues targeting epigenetic gene regulation.

    Science.gov (United States)

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  17. Intestinal signaling to GABAergic neurons regulates a rhythmic behavior in Caenorhabditis elegans

    Science.gov (United States)

    Mahoney, Timothy R.; Luo, Shuo; Round, Elaine K.; Brauner, Martin; Gottschalk, Alexander; Thomas, James H.; Nonet, Michael L.

    2008-01-01

    The Caenorhabditis elegans defecation motor program (DMP) is a highly coordinated rhythmic behavior that requires two GABAergic neurons that synapse onto the enteric muscles. One class of DMP mutants, called anterior body wall muscle contraction and expulsion defective (aex) mutants, exhibits similar defects to those caused by the loss of these two neurons. Here, we demonstrate that aex-2 encodes a G-protein–coupled receptor (GPCR) and aex-4 encodes an exocytic SNAP25 homologue. We found that aex-2 functions in the nervous system and activates a Gsα signaling pathway to regulate defecation. aex-4, on the other hand, functions in the intestinal epithelial cells. Furthermore, we show that aex-5, which encodes a pro-protein convertase, functions in the intestine to regulate the DMP and that its secretion from the intestine is impaired in aex-4 mutants. Activation of the Gsα GPCR pathway in GABAergic neurons can suppress the defecation defect of the intestinal mutants aex-4 and aex-5. Lastly, we demonstrate that activation of GABAergic neurons using the light-gated cation channel channelrhodopsin-2 is sufficient to suppress the behavioral defects of aex-2, aex-4, and aex-5. These results genetically place intestinal genes aex-4 and aex-5 upstream of GABAergic GPCR signaling. We propose a model whereby the intestinal genes aex-4 and aex-5 control the DMP by regulating the secretion of a signal, which activates the neuronal receptor aex-2. PMID:18852466

  18. Pluralistic and stochastic gene regulation: examples, models and consistent theory.

    Science.gov (United States)

    Salas, Elisa N; Shu, Jiang; Cserhati, Matyas F; Weeks, Donald P; Ladunga, Istvan

    2016-06-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution.

  19. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  20. Mechanisms of mammalian zinc-regulated gene expression.

    Science.gov (United States)

    Jackson, Kelly A; Valentine, Ruth A; Coneyworth, Lisa J; Mathers, John C; Ford, Dianne

    2008-12-01

    Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.

  1. Regulated genes in mesenchymal stem cells and gastriccancer

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe; Kazuhiko Aoyagi; Hiroshi Yokozaki; Hiroki Sasaki

    2015-01-01

    AIM To investigate the genes regulated in mesenchymalstem cells (MSCs) and diffuse-type gastric cancer (GC),gene expression was analyzed.METHODS: Gene expression of MSCs and diffuse-typeGC cells were analyzed by microarray. Genes relatedto stem cells, cancer and the epithelial-mesenchymaltransition (EMT) were extracted from human genelists using Gene Ontology and reference information.Gene panels were generated, and messenger RNAgene expression in MSCs and diffuse-type GC cells wasanalyzed. Cluster analysis was performed using the NCSSsoftware.RESULTS: The gene expression of regulator of G-proteinsignaling 1 (RGS1) was up-regulated in diffuse-type GCcells compared with MSCs. A panel of stem-cell relatedgenes and genes involved in cancer or the EMT wereexamined. Stem-cell related genes, such as growtharrest-specific 6, musashi RNA-binding protein 2 andhairy and enhancer of split 1 (Drosophila), NOTCHfamily genes and Notch ligands, such as delta-like 1(Drosophila) and Jagged 2, were regulated.CONCLUSION: Expression of RGS1 is up-regulated,and genes related to stem cells and NOTCH signalingare altered in diffuse-type GC compared with MSCs.

  2. Regulation of male fertility by X-linked genes.

    Science.gov (United States)

    Zheng, Ke; Yang, Fang; Wang, Peijing Jeremy

    2010-01-01

    Infertility is a worldwide reproductive health problem, affecting men and women about equally. Mouse genetic studies demonstrate that more than 200 genes specifically or predominantly regulate fertility. However, few genetic causes of infertility in humans have been identified. Here, we focus on the regulation of male fertility by X-linked, germ cell-specific genes. Previous genomic studies reveal that the mammalian X chromosome is enriched for genes expressed in early spermatogenesis. Recent genetic studies in mice show that X-linked, germ cell-specific genes, such as A-kinase anchor protein 4 (Akap4), nuclear RNA export factor 2 (Nxf2), TBP-associated factor 7l (Taf7l), and testis-expressed gene 11 (Tex11), indeed play important roles in the regulation of male fertility. Moreover, we find that the Taf7l Tex11 double-mutant males exhibit much more severe defects in meiosis than either single mutant, suggesting that these 2 X-linked genes regulate male meiosis synergistically. The X-linked, germ cell-specific genes are particularly attractive in the study of male infertility in humans. Because males are hemizygous for X-linked genes, loss-of-function mutations in the single-copy X-linked genes, unlike in autosomal genes, would not be masked by a normal allele. The genetic studies of X-linked, germ cell-specific genes in mice have laid a foundation for mutational analysis of their human orthologues in infertile men.

  3. Federal Regulation of Gene Therapy: Who Will Save our Germline?

    OpenAIRE

    2003-01-01

    This paper will attempt to address some of these more complex issues involving human gene therapy and the encompassing regulations. The first section will deal with the science of gene therapy and will briefly touch upon the scientific hurdles that remain for scientists in this field, as this is important to understanding many of the ethical issues. This section will be divided into a basic genetic overview, a description of somatic gene therapy, and a summary of germline gene therapy. The se...

  4. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  5. Prediction of epigenetically regulated genes in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lu Yontao

    2010-06-01

    Full Text Available Abstract Background Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP. The pipeline (i reduces the dimensionality of the methylation data, (ii associates the reduced methylation data with gene expression data, and (iii ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i methylation sites are grouped across the genome to identify regions of interest, and (ii methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Results Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between

  6. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  7. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  8. Tissue Specific and Hormonal Regulation of Gene Expression

    Science.gov (United States)

    1998-07-01

    cAMP responsive region located at -200 to -99 bp in CRH. 14. SUBJECT TERMS 15. NUMfER OF PAGES Breast Cancer gene regulation, transcription, placenta...known mediators of labor, and it may also the stress response. The peptide sequence and expression of potentiate the effect of oxytocin on uterine...regulation of other rodent trophoblast genes has 220 not yet been investigated. 2. Robinson BG, Arbiser JL, Emanuel RL, Majzoub JA 1989 Species- 3008

  9. De-regulation of common housekeeping genes in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Wurmbach Elisa

    2007-07-01

    Full Text Available Abstract Background Tumorigenesis is associated with changes in gene expression and involves many pathways. Dysregulated genes include "housekeeping" genes that are often used for normalization for quantitative real-time RT-PCR (qPCR, which may lead to unreliable results. This study assessed eight stages of hepatitis C virus (HCV induced hepatocellular carcinoma (HCC to search for appropriate genes for normalization. Results Gene expression profiles using microarrays revealed differential expression of most "housekeeping" genes during the course of HCV-HCC, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH and beta-actin (ACTB, genes frequently used for normalization. QPCR reactions confirmed the regulation of these genes. Using them for normalization had strong effects on the extent of differential expressed genes, leading to misinterpretation of the results. Conclusion As shown here in the case of HCV-induced HCC, the most constantly expressed gene is the arginine/serine-rich splicing factor 4 (SFRS4. The utilization of at least two genes for normalization is robust and advantageous, because they can compensate for slight differences of their expression when not co-regulated. The combination of ribosomal protein large 41 (RPL41 and SFRS4 used for normalization led to very similar results as SFRS4 alone and is a very good choice for reference in this disease as shown on four differentially expressed genes.

  10. Gene regulation by mRNA editing

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenas, J. [Univ. of Washington, Seattle, WA (United States)

    1997-02-01

    The commonly cited figure of 10{sup 5} genes in the human genome represents a tremendous underestimate of our capacity to generate distinct gene products with unique functions. Our cells possess an impressive collection of tools for altering the products of a single gene to create a variety of proteins. The different gene products may have related but distinct functions, allowing cells of different types or at different developmental stages to fine-tune their patterns of gene expression. These tools may act in the cytoplasm, as when proteins undergo post-translational modifications, or in the nucleus, in the processing of pre-mRNA. Two forms of intranuclear fine-tuning are well established and widely studied: alternative splicing of pre-mRNAs and alternative polyadenylation site selection. In recent years it has become clear that cells possess yet another tool to create RNA sequence diversity, mRNA editing. The term {open_quotes}editing{close_quotes} is applied to posttranscriptional modifications of a purine or pyrimidine, which alter an mRNA sequence as it is read, for example, by ribosomes. Covalent changes to the structure of nucleotide bases are well known to occur on tRNA and rRNA molecules, but such changes in mRNA sequence are novel in that they have the capacity to change specific protein sequences. 43 refs., 1 fig.

  11. Gene regulation: hacking the network on a sugar high.

    Science.gov (United States)

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  12. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug...

  13. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of activ

  14. IGF-Regulated Genes in Prostate Cancer

    Science.gov (United States)

    2006-02-01

    Burgess, A.W., and Ward, C.W. (2002) Cell 110(6), 763-773 53. Sambrook, J., Maniatis , T., and Fritsch, E.F. (1989) Molecular cloning : a laboratory...triplicate arrays that each contain >12,000 sequence-verified, non-redundant human cDNA clones . Data were analyzed by accepted means of normalization...this award. Review of the field-published in Genes, Chromosomes, and Cancer 36: 113-120 (2003) The IGFI Receptor Gene: A Molecular Target for

  15. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  16. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    OpenAIRE

    M. Ananda Chitra; Jayanthy, C.; Nagarajan, B.

    2015-01-01

    Background: Staphylococcus pseudintermedius (SP) is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr) locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objecti...

  17. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  18. Cost benefit theory and optimal design of gene regulation functions

    Science.gov (United States)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  19. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  20. Transcription dynamics of inducible genes modulated by negative regulations.

    Science.gov (United States)

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  1. Hypoxia-regulated target genes implicated in tumor metastasis

    Directory of Open Access Journals (Sweden)

    Tsai Ya-Ping

    2012-12-01

    Full Text Available Abstract Hypoxia is an important microenvironmental factor that induces cancer metastasis. Hypoxia/hypoxia-inducible factor-1α (HIF-1α regulates many important steps of the metastatic processes, especially epithelial-mesenchymal transition (EMT that is one of the crucial mechanisms to cause early stage of tumor metastasis. To have a better understanding of the mechanism of hypoxia-regulated metastasis, various hypoxia/HIF-1α-regulated target genes are categorized into different classes including transcription factors, histone modifiers, enzymes, receptors, kinases, small GTPases, transporters, adhesion molecules, surface molecules, membrane proteins, and microRNAs. Different roles of these target genes are described with regards to their relationship to hypoxia-induced metastasis. We hope that this review will provide a framework for further exploration of hypoxia/HIF-1α-regulated target genes and a comprehensive view of the metastatic picture induced by hypoxia.

  2. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching.

  3. The NSL complex regulates housekeeping genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kin Chung Lam

    Full Text Available MOF is the major histone H4 lysine 16-specific (H4K16 acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2 throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5% of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE. Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.

  4. Identification of Genes Regulated by Proteolysis

    Science.gov (United States)

    2005-07-01

    phase entry, M., Kanai, F., Zhou, B.B., Chung, J.H., and Rathbun, G.A. histone gene expression, and Cajal Body maintenance in hu- 2002. Determination...substrates of ubiquitin ligases. 6 Body Development of a library of F-box proteins We previously reported the identification of 33 human F-box proteins...FLAG anti- effect of the T62A mutation on cyclin E degradation through bodies , and immune complexes were immunoblotted with anti-Myc the Thr35 ° degron

  5. Pancreatic regeneration: basic research and gene regulation.

    Science.gov (United States)

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development.

  6. Identification of the NAC1-regulated genes in ovarian cancer.

    Science.gov (United States)

    Gao, Min; Wu, Ren-Chin; Herlinger, Alice L; Yap, Kailee; Kim, Jung-Won; Wang, Tian-Li; Shih, Ie-Ming

    2014-01-01

    Nucleus accumbens-associated protein 1 (NAC1), encoded by the NACC1 gene, is a transcription co-regulator that plays a multifaceted role in promoting tumorigenesis. However, the NAC1-regulated transcriptome has not been comprehensively defined. In this study, we compared the global gene expression profiles of NAC1-overexpressing SKOV3 ovarian cancer cells and NAC1-knockdown SKOV3 cells. We found that NAC1 knockdown was associated with up-regulation of apoptotic genes and down-regulation of genes involved in cell movement, proliferation, Notch signaling, and epithelial-mesenchymal transition. Among NAC1-regulated genes, FOXQ1 was further characterized because it is involved in cell motility and epithelial-mesenchymal transition. NAC1 knockdown decreased FOXQ1 expression and promoter activity. Similarly, inactivation of NAC1 by expression of a dominant-negative construct of NAC1 suppressed FOXQ1 expression. Ectopic expression of NAC1 in NACC1 null cells induced FOXQ1 expression. NAC1 knockdown resulted in decreased cell motility and invasion, whereas constitutive expression of FOXQ1 rescued motility in cells after NAC1 silencing. Moreover, in silico analysis revealed a significant co-up-regulation of NAC1 and FOXQ1 in ovarian carcinoma tissues. On the basis of transcription profiling, we report a group of NAC1-regulated genes that may participate in multiple cancer-related pathways. We further demonstrate that NAC1 is essential and sufficient for activation of FOXQ1 transcription and that the role of NAC1 in cell motility is mediated, at least in part, by FOXQ1.

  7. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  8. Quantitative characteristics of gene regulation by small RNA.

    Directory of Open Access Journals (Sweden)

    Erel Levine

    2007-09-01

    Full Text Available An increasing number of small RNAs (sRNAs have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone.

  9. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Nirmala Yabaluri; Murali D Bashyam

    2010-09-01

    Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.

  10. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    Science.gov (United States)

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  11. Information Integration and Energy Expenditure in Gene Regulation.

    Science.gov (United States)

    Estrada, Javier; Wong, Felix; DePace, Angela; Gunawardena, Jeremy

    2016-06-30

    The quantitative concepts used to reason about gene regulation largely derive from bacterial studies. We show that this bacterial paradigm cannot explain the sharp expression of a canonical developmental gene in response to a regulating transcription factor (TF). In the absence of energy expenditure, with regulatory DNA at thermodynamic equilibrium, information integration across multiple TF binding sites can generate the required sharpness, but with strong constraints on the resultant "higher-order cooperativities." Even with such integration, there is a "Hopfield barrier" to sharpness; for n TF binding sites, this barrier is represented by the Hill function with the Hill coefficient n. If, however, energy is expended to maintain regulatory DNA away from thermodynamic equilibrium, as in kinetic proofreading, this barrier can be breached and greater sharpness achieved. Our approach is grounded in fundamental physics, leads to testable experimental predictions, and suggests how a quantitative paradigm for eukaryotic gene regulation can be formulated.

  12. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  13. Differential regulation of genes by retrotransposons in rice promoters.

    Science.gov (United States)

    Dhadi, Surendar Reddy; Xu, Zijun; Shaik, Rafi; Driscoll, Kyle; Ramakrishna, Wusirika

    2015-04-01

    Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.

  14. An Epigenetic Perspective on Developmental Regulation of Seed Genes

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Joe Ogas

    2009-01-01

    The developmental program of seeds is promoted by master regulators that are expressed in a seed-specific manner.Ectopic expression studies reveal that expression of these master regulators and other transcriptional regulators is sufficient to promote seed-associated traits,including generation of somatic embryos.Recent work highlights the importance of chromatin-associated factors in restricting expression of seed-specific genes,in particular PcG proteins and ATP-dependent remodelers.This review summarizes what is known regarding factors that promote zygotic and/or somatic embryogenesis and the chromatin machinery that represses their expression.Characterization of the regulation of seedspecific genes reveals that plant chromatin-based repression systems exhibit broad conservation with and surprising differences from animal repression systems.

  15. Regulation of Insulin Gene Transcription by Multiple Histone Acetyltransferases

    OpenAIRE

    2012-01-01

    Glucose-stimulated insulin gene transcription is mainly regulated by a 340-bp promoter region upstream of the transcription start site by beta-cell-enriched transcription factors Pdx-1, MafA, and NeuroD1. Previous studies have shown that histone H4 hyperacetylation is important for acute up-regulation of insulin gene transcription. Until now, only the histone acetyltransferase (HAT) protein p300 has been shown to be involved in this histone H4 acetylation event. In this report we investigated...

  16. Every which way--nanos gene regulation in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way.

  17. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  18. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  19. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  20. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    Science.gov (United States)

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  1. Gene regulation by engineered CRISPR-Cas systems.

    Science.gov (United States)

    Fineran, Peter C; Dy, Ron L

    2014-04-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) arrays and their CRISPR associated (Cas) proteins constitute adaptive immune systems in bacteria and archaea that provide protection from bacteriophages, plasmids and other mobile genetic elements (MGEs). Recently, the ability to direct these systems to DNA in a sequence-specific manner has led to the emergence of new technologies for engineered gene regulation in bacteria and eukaryotes. These systems have the potential to enable facile high-throughput functional genomics studies aimed at identifying gene function and will be a crucial tool for synthetic biology. Here, we review the recent engineering of these systems for controlling gene expression.

  2. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

    Science.gov (United States)

    Matys, V; Kel-Margoulis, O V; Fricke, E; Liebich, I; Land, S; Barre-Dirrie, A; Reuter, I; Chekmenev, D; Krull, M; Hornischer, K; Voss, N; Stegmaier, P; Lewicki-Potapov, B; Saxel, H; Kel, A E; Wingender, E

    2006-01-01

    The TRANSFAC database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match and Patch provides increased functionality for TRANSFAC. The list of databases which are linked to the common GENE table of TRANSFAC and TRANSCompel has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD and TRANSPRO. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC 7.0 and TRANSCompel 7.0, are accessible under http://www.gene-regulation.com/pub/databases.html.

  3. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  4. Plant microRNAs: master regulator of gene expression mechanism.

    Science.gov (United States)

    Datta, Riddhi; Paul, Soumitra

    2015-11-01

    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.

  5. Nitrogen regulates chitinase gene expression in a marine bacterium

    DEFF Research Database (Denmark)

    Delpin, Marina; Goodman, A.E.

    2009-01-01

    Ammonium concentration and nitrogen source regulate promoter activity and use for the transcription of chiA, the major chitinase gene of Pseudoalteromonas sp. S91 and S91CX, an S91 transposon lacZ fusion mutant. The activity of chiA was quantified by beta-galactosidase assay of S91CX cultures con...

  6. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    Science.gov (United States)

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs.

  7. Peptide nucleic acid (PNA) binding-mediated gene regulation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.

  8. Deciphering c-MYC-regulated genes in two distinct tissues

    Directory of Open Access Journals (Sweden)

    Hunter Ewan

    2011-09-01

    Full Text Available Abstract Background The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively. Results Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells, as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins. Conclusions Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19Arf/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti

  9. ApoM: gene regulation and effects on HDL metabolism

    DEFF Research Database (Denmark)

    Nielsen, Lars B; Christoffersen, Christina; Ahnström, Josefin;

    2009-01-01

    The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid and gluc......The recently discovered apolipoprotein M (apoM) is a plasma protein of the lipocalin family associated with the lipoproteins (mainly high-density lipoproteins, or HDLs). Expression of the apoM gene in the liver is regulated by transcription factors that control key steps in hepatic lipid...... changes in HDLs, and overexpression of the apoM gene reduced atherosclerosis. In conclusion, it seems that apoM plays a part in lipoprotein metabolism; however, the biological impact of apoM in humans remains to be determined....

  10. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  11. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators.

    Science.gov (United States)

    Vicente, Cláudia M; Payero, Tamara D; Santos-Aberturas, Javier; Barreales, Eva G; de Pedro, Antonio; Aparicio, Jesús F

    2015-06-01

    PAS-LuxR regulators are highly conserved proteins devoted to the control of antifungal production by binding to operators located in given promoters of polyene biosynthetic genes. The canonical operator of PimM, archetype of this class of regulators, has been used here to search for putative targets of orthologous protein PteF in the genome of Streptomyces avermitilis, finding 97 putative operators outside the pentaene filipin gene cluster (pte). The processes putatively affected included genetic information processing; energy, carbohydrate, and lipid metabolism; DNA replication and repair; morphological differentiation; secondary metabolite biosynthesis; and transcriptional regulation, among others. Seventeen of these operators were selected, and their binding to PimM DNA-binding domain was assessed by electrophoretic mobility shift assays. Strikingly, the protein bound all predicted operators suggesting a direct control over targeted processes. As a proof of concept, we studied the biosynthesis of the ATP-synthase inhibitor oligomycin whose gene cluster included two operators. Regulator mutants showed a severe loss of oligomycin production, whereas gene complementation of the mutant restored phenotype, and gene duplication in the wild-type strain boosted oligomycin production. Comparative gene expression analyses in parental and mutant strains by reverse transcription-quantitative polymerase chain reaction of selected olm genes corroborated production results. These results demonstrate that PteF is able to cross-regulate the biosynthesis of two related secondary metabolites, filipin and oligomycin, but might be extended to all the processes indicated above. This study highlights the complexity of the network of interactions in which PAS-LuxR regulators are involved and opens new possibilities for the manipulation of metabolite production in Streptomycetes.

  12. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  13. Global regulation of nucleotide biosynthetic genes by c-Myc.

    Directory of Open Access Journals (Sweden)

    Yen-Chun Liu

    Full Text Available BACKGROUND: The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP coupled with pair-end ditag sequencing analysis (ChIP-PET revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2 on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis.

  14. Achieving HIV-1 Control through RNA-Directed Gene Regulation

    Directory of Open Access Journals (Sweden)

    Vera Klemm

    2016-12-01

    Full Text Available HIV-1 infection has been transformed by combined anti-retroviral therapy (ART, changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi, short interfering RNA (siRNA induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.

  15. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  16. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  17. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  18. Doublesex: a conserved downstream gene controlled by diverse upstream regulators

    Indian Academy of Sciences (India)

    J. N. Shukla; J. Nagaraju

    2010-09-01

    Sex determination, an integral precursor to sexual reproduction, is required to generate morphologically distinct sexes. The molecular components of sex-determination pathways regulating sexual differentiation have been identified and characterized in different organisms. The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of their sex-determination cascade. The dsx homologues are regulated by a series of upstream regulators that show amazing diversity in different insect species. These results support the Wilkin’s hypothesis that evolution of the sex-determination cascade has taken place in reverse order, the bottom most gene being most conserved and the upstream genes having been recruited at different times during evolution. The pre-mRNA of dsx is sex-specifically spliced to encode male or female-specific transcription factors that play an important role in the regulation of sexually dimorphic characters in different insect species. The generalization that dsx is required for somatic sexual differentiation culminated with its functional analysis through transgenesis and knockdown experiments in diverse species of insects. This brief review will focus on the similarities and variations of dsx homologues that have been investigated in insects to date.

  19. Gene Regulation System of Vasopressin and Corticotoropin-Releasing Hormone

    Directory of Open Access Journals (Sweden)

    Masanori Yoshida

    2008-01-01

    Full Text Available The neurohypophyseal hormones, arginine vasopressin and corticotropin-releasing hormone (CRH, play a crucial role in the physiological and behavioral response to various kinds of stresses. Both neuropeptides activate the hypophysialpituitary-adrenal (HPA axis, which is a central mediator of the stress response in the body. Conversely, they receive the negative regulation by glucocorticoid, which is an end product of the HPA axis. Vasopressin and CRH are closely linked to immune response; they also interact with pro-inflammatory cytokines. Moreover, as for vasopressin, it has another important role, which is the regulation of water balance through its potent antidiuretic effect. Hence, it is conceivable that vasopressin and CRH mediate the homeostatic responses for survival and protect organisms from the external world. A tight and elaborate regulation system of the vasopressin and CRH gene is required for the rapid and flexible response to the alteration of the surrounding environments. Several important regulatory elements have been identified in the proximal promoter region in the vasopressin and CRH gene. Many transcription factors and intracellular signaling cascades are involved in the complicated gene regulation system. This review focuses on the current status of the basic research of vasopressin and CRH. In addition to the numerous known facts about their divergent physiological roles, the recent topics of promoter analyses will be discussed.

  20. Brucella abortus: pathogenicity and gene regulation of virulence

    Directory of Open Access Journals (Sweden)

    Olga Rivas-Solano

    2015-06-01

    Full Text Available Brucella abortus is a zoonotic intracellular facultative pathogen belonging to the subdivision α2 of class Proteobacteria. It causes a worldwide distributed zoonotic disease called brucellosis. The main symptoms are abortion and sterility in cattle, as well as an undulant febrile condition in humans. In endemic regions like Central America, brucellosis has a high socioeconomic impact. A basic research project was recently conducted at the ITCR with the purpose of studying gene regulation of virulence, structure and immunogenicity in B. abortus. The present review was written as part of this project. B. abortus virulence seems to be determined by its ability to invade, survive and replicate inside professional and non-professional phagocytes. It reaches its intracellular replicative niche without the activation of host antimicrobial mechanisms of innate immunity. It also has gene regulation mechanisms for a rapid adaptation to an intracellular environment such as the two-component signal transduction system BvrR/BvrS and the quorum sensing regulator called Vjbr, as well as other transcription factors. All of them integrate a complex gene regulation network.

  1. Cadmium-regulated gene fusions in Pseudomonas fluorescens.

    Science.gov (United States)

    Rossbach, S; Kukuk, M L; Wilson, T L; Feng, S F; Pearson, M M; Fisher, M A

    2000-08-01

    To study the mechanisms soil bacteria use to cope with elevated concentrations of heavy metals in the environment, a mutagenesis with the lacZ-based reporter gene transposon Tn5B20 was performed. Random gene fusions in the genome of the common soil bacterium Pseudomonas fluorescens strain ATCC 13525 were used to create a bank of 5,000 P. fluorescens mutants. This mutant bank was screened for differential gene expression in the presence of the toxic metal cadmium. Fourteen mutants were identified that responded with increased or reduced gene expression to the presence of cadmium. The mutants were characterized with respect to their metal-dependent gene expression and their metal tolerance. Half the identified mutants reacted with differential gene expression specifically to the metal cadmium, whereas some of the other mutants also responded to elevated concentrations of copper and zinc ions. One of the mutants, strain C8, also showed increased gene expression in the presence of the solvent ethanol, but otherwise no overlap between cadmium-induced gene expression and general stress response was detected. Molecular analysis of the corresponding genetic loci was performed using arbitrary polymerase chain reaction (PCR), DNA sequencing and comparison of the deduced protein products with sequences deposited in genetic databases. Some of the genetic loci targeted by the transposon did not show any similarities to any known genes; thus, they may represent 'novel' loci. The hypothesis that genes that are differentially expressed in the presence of heavy metals play a role in metal tolerance was verified for one of the mutants. This mutant, strain C11, was hypersensitive to cadmium and zinc ions. In mutant C11, the transposon had inserted into a genetic region displaying similarity to genes encoding the sensor/regulator protein pairs of two-component systems that regulate gene expression in metal-resistant bacteria, including czcRS of Ralstonia eutropha, czrRS of Pseudomonas

  2. Differential gene regulation by the SRC family of coactivators

    Institute of Scientific and Technical Information of China (English)

    HuaZhang; XiaYi; Xiaojingsun; NaYin; BinShi; HuijianWu; DanWang; GeWu; YongfengShang

    2005-01-01

    SRCs (steroid receptor coactivatorsl are required for nuclear receptor-mediated transcription and are also implicated in the transcription initiation by other transcription factors, such as STATs and NFKB. Despite phenotypic manifestations in gene knockout mice for SRC-1, GRIP1, and AIB1 of the SRC (Steroid Receptor Coactivator) family indicating their differential roles in animal physiology, there is no clear evidence, at the molecular level, to support a functional specificity for these proteins. We demonstrated in this report that two species of SRC coactivators, either as AIBI:GRIP1 or as AIBI:SRC-1 are recruited, possibly through heterodimerization, on the promoter of genes that contain a classical hormone responsive element (HRE). In contrast, on non-HRE-containing gene promoters, on which steroid receptors bind indirectly, either GRIP1 orSRC-1 is recruited as a monomer, depending on the cellular abundance of the protein. Typically, non-HRE-containing genes are early genes activated by steroid receptors, whereas HRE-containing genes are activated later. Our results also showed that SRC proteins contribute to the temporal regulation of gene transcription. In addition, our experiments revealed a positive correlation between AIB1/c-myc overexpression in ER+ breast carcinoma samples, suggesting a possible mechanism for AIB1/n breast cancer carcinogenesis.

  3. The Regulation of Exosporium-Related Genes in Bacillus thuringiensis

    Science.gov (United States)

    Peng, Qi; Kao, Guiwei; Qu, Ning; Zhang, Jie; Li, Jie; Song, Fuping

    2016-01-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis (Bt) are spore-forming members of the Bacillus cereus group. Spores of B. cereus group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the B. cereus group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (bclA and bclB), basal layer proteins (bxpA, bxpB, cotB, and exsY ), and inosine hydrolase (iunH). Mutation of sigK decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of gerE decreased the transcriptional activities of bclB, bxpB, cotB, and iunH but increased the expression of bxpA, and GerE binds to the promoters of bclB, bxpB, cotB, bxpA, and iunH. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of bclB, bxpB, cotB, and iunH and decreasing that of bxpA. These findings provide insight into the exosporium assembly process at the transcriptional level. PMID:26805020

  4. Translational regulation of human p53 gene expression.

    OpenAIRE

    Fu, L.; Minden, M D; Benchimol, S

    1996-01-01

    In blast cells obtained from patients with acute myelogenous leukemia, p53 mRNA was present in all the samples examined while the expression of p53 protein was variable from patient to patient. Mutations in the p53 gene are infrequent in this disease and, hence, variable protein expression in the majority of the samples cannot be accounted for by mutation. In this study, we examined the regulation of p53 gene expression in human leukemic blasts and characterized the p53 transcripts in these c...

  5. Multiple Catalase Genes Are Differentially Regulated in Aspergillus nidulans

    OpenAIRE

    Kawasaki, Laura; Aguirre, Jesús

    2001-01-01

    Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalas...

  6. Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

    Science.gov (United States)

    Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo

    2009-11-01

    XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.

  7. Micro-RNA: A New Kind of Gene Regulators

    Institute of Scientific and Technical Information of China (English)

    WU Dan; HU Lan

    2006-01-01

    A group of small RNA molecules, distinct from but related to siRNAs (small interference RNAs) have been identified in a variety of organisms. These small RNAs, called microRNAs (miRNAs), are endogenously encoded approximately 20-24 nt long single-stranded RNAs. They are generally expressed in a highly tissue- or developmental-stage-specific fashion and are post-transcriptional regulator of gene expression in animals and plants. This article summarizes the character, mechanism and analysis method about miRNAs. The current view that miRNAs represent a newly discovered, hidden layer of gene regulation has resulted in high interest among researchers in the discovery of miRNAs, their targets, expression mechanism of action and analysis methods.

  8. Oxygen regulated gene expression in facultatively anaerobic bacteria.

    Science.gov (United States)

    Unden, G; Becker, S; Bongaerts, J; Schirawski, J; Six, S

    1994-01-01

    In facultatively anaerobic bacteria such as Escherichia coli, oxygen and other electron acceptors fundamentally influence catabolic and anabolic pathways. E. coli is able to grow aerobically by respiration and in the absence of O2 by anaerobic respiration with nitrate, nitrite, fumarate, dimethylsulfoxide and trimethylamine N-oxide as acceptors or by fermentation. The expression of the various catabolic pathways occurs according to a hierarchy with 3 or 4 levels. Aerobic respiration at the highest level is followed by nitrate respiration (level 2), anaerobic respiration with the other acceptors (level 3) and fermentation. In other bacteria, different regulatory cascades with other underlying principles can be observed. Regulation of anabolism in response to O2 availability is important, too. It is caused by different requirements of cofactors or coenzymes in aerobic and anaerobic metabolism and by the requirement for different O2-independent biosynthetic routes under anoxia. The regulation mainly occurs at the transcriptional level. In E. coli, 4 global regulatory systems are known to be essential for the aerobic/anaerobic switch and the described hierarchy. A two-component sensor/regulator system comprising ArcB (sensor) and ArcA (transcriptional regulator) is responsible for regulation of aerobic metabolism. The FNR protein is a transcriptional sensor-regulator protein which regulates anaerobic respiratory genes in response to O2 availability. The gene activator FhlA regulates fermentative formate and hydrogen metabolism with formate as the inductor. ArcA/B and FNR directly respond to O2, FhlA indirectly by decreased levels of formate in the presence of O2. Regulation of nitrate/nitrite catabolism is effected by two 2-component sensor/regulator systems NarX(Q)/NarL(P) in response to nitrate/nitrite. Co-operation of the different regulatory systems at the target promoters which are in part under dual (or manifold) transcriptional control causes the expression

  9. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  10. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression.

    Science.gov (United States)

    Whitton, Laura; Cosgrove, Donna; Clarkson, Christopher; Harold, Denise; Kendall, Kimberley; Richards, Alex; Mantripragada, Kiran; Owen, Michael J; O'Donovan, Michael C; Walters, James; Hartmann, Annette; Konte, Betina; Rujescu, Dan; Gill, Michael; Corvin, Aiden; Rea, Stephen; Donohoe, Gary; Morris, Derek W

    2016-12-01

    Epigenetic mechanisms are an important heritable and dynamic means of regulating various genomic functions, including gene expression, to orchestrate brain development, adult neurogenesis, and synaptic plasticity. These processes when perturbed are thought to contribute to schizophrenia pathophysiology. A core feature of schizophrenia is cognitive dysfunction. For genetic disorders where cognitive impairment is more severe such as intellectual disability, there are a disproportionally high number of genes involved in the epigenetic regulation of gene transcription. Evidence now supports some shared genetic aetiology between schizophrenia and intellectual disability. GWAS have identified 108 chromosomal regions associated with schizophrenia risk that span 350 genes. This study identified genes mapping to those loci that have epigenetic functions, and tested the risk alleles defining those loci for association with cognitive deficits. We developed a list of 350 genes with epigenetic functions and cross-referenced this with the GWAS loci. This identified eight candidate genes: BCL11B, CHD7, EP300, EPC2, GATAD2A, KDM3B, RERE, SATB2. Using a dataset of Irish psychosis cases and controls (n = 1235), the schizophrenia risk SNPs at these loci were tested for effects on IQ, working memory, episodic memory, and attention. Strongest associations were for rs6984242 with both measures of IQ (P = 0.001) and episodic memory (P = 0.007). We link rs6984242 to CHD7 via a long range eQTL. These associations were not replicated in independent samples. Our study highlights that a number of genes mapping to risk loci for schizophrenia may function as epigenetic regulators of gene expression but further studies are required to establish a role for these genes in cognition. © 2016 Wiley Periodicals, Inc.

  11. The evolution of combinatorial gene regulation in fungi.

    OpenAIRE

    Tuch, Brian B.; Galgoczy, David J.; Hernday, Aaron D.; Hao Li; Johnson, Alexander D.

    2008-01-01

    It is widely suspected that gene regulatory networks are highly plastic. The rapid turnover of transcription factor binding sites has been predicted on theoretical grounds and has been experimentally demonstrated in closely related species. We combined experimental approaches with comparative genomics to focus on the role of combinatorial control in the evolution of a large transcriptional circuit in the fungal lineage. Our study centers on Mcm1, a transcriptional regulator that, in combinati...

  12. Regulation of cry Gene Expression in Bacillus thuringiensis

    OpenAIRE

    Chao Deng; Qi Peng; Fuping Song; Didier Lereclus

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcr...

  13. Regulation of cry Gene Expression in Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Chao Deng

    2014-07-01

    Full Text Available Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.

  14. The role of master regulators in gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Enrique Hernández Lemus

    2015-05-01

    Full Text Available Gene regulatory networks present a wide variety of dynamical responses to intrinsic and extrinsic perturbations. Arguably, one of the most important of such coordinated responses is the one of amplification cascades, in which activation of a few key-responsive transcription factors (termed master regulators, MRs lead to a large series of transcriptional activation events. This is so since master regulators are transcription factors controlling the expression of other transcription factor molecules and so on. MRs hold a central position related to transcriptional dynamics and control of gene regulatory networks and are often involved in complex feedback and feedforward loops inducing non-trivial dynamics. Recent studies have pointed out to the myocyte enhancing factor 2C (MEF2C, also known as MADS box transcription enhancer factor 2, polypeptide C as being one of such master regulators involved in the pathogenesis of primary breast cancer. In this work, we perform an integrative genomic analysis of the transcriptional regulation activity of MEF2C and its target genes to evaluate to what extent are these molecules inducing collective responses leading to gene expression deregulation and carcinogenesis. We also analyzed a number of induced dynamic responses, in particular those associated with transcriptional bursts, and nonlinear cascading to evaluate the influence they may have in malignant phenotypes and cancer. Received: 20 Novembre 2014, Accepted: 24 June 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070011 Cite as: E Hernández-Lemus, K Baca-López, R Lemus, R García-Herrera, Papers in Physics 7, 070011 (2015

  15. [Insect antimicrobial peptides: structures, properties and gene regulation].

    Science.gov (United States)

    Wang, Yi-Peng; Lai, Ren

    2010-02-01

    Insect antimicrobial peptides (AMPs) are an important group of insect innate immunity effectors. Insect AMPs are cationic and contain less than 100 amino acid residues. According to structure, insect AMPs can be divided into a limited number of families. The diverse antimicrobial spectrum of insect AMPs may indicate different modes of action. Research on the model organism Drosophila indicate that insect AMPs gene regulation involves multiple signaling pathways and a large number of signaling molecules.

  16. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  17. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Viveka eVadyvaloo

    2014-03-01

    Full Text Available Abstract Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.

  18. Inducible gene expression and environmentally regulated genes in lactic acid bacteria.

    Science.gov (United States)

    Kok, J

    1996-10-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transcription was studied and found to be regulatable. Examples are the lactose operon, the operon for nisin production, and genes in the proteolytic pathway of Lactococcus lactis, as well as xylose metabolism in Lactobacillus pentosus. Some other operons were specifically targetted with the aim to compare their mode of regulation with known regulatory mechanisms in other well-studied bacteria. These studies, dealing with the biosynthesis of histidine, tryptophan, and of the branched chain amino acids in L. lactis, have given new insights in gene regulation and in the occurrence of auxotrophy in these bacteria. Also, nucleotide sequence analyses of a number of lactococcal bacteriophages was recently initiated to, among other things, specifically learn more about regulation of the phage life cycle. Yet another approach in the analysis of regulated genes is the 'random' selection of genetic elements that respond to environmental stimuli and the first of such sequences from lactic acid bacteria have been identified and characterized. The potential of these regulatory elements in fundamental research and practical (industrial) applications will be discussed.

  19. Globalisation reaches gene regulation: the case for vertebrate limb development.

    Science.gov (United States)

    Zuniga, Aimée

    2005-08-01

    Analysis of key regulators of vertebrate limb development has revealed that the cis-regulatory regions controlling their expression are often located several hundred kilobases upstream of the transcription units. These far up- or down-stream cis-regulatory regions tend to reside within rather large, functionally and structurally unrelated genes. Molecular analysis is beginning to reveal the complexity of these large genomic landscapes, which control the co-expression of clusters of diverse genes by this novel type of long-range and globally acting cis-regulatory region. An increasing number of spontaneous mutations in vertebrates, including humans, are being discovered inactivating or altering such global control regions. Thereby, the functions of a seemingly distant but essential gene are disrupted rather than the closest.

  20. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  1. An optimized, chemically regulated gene expression system for Chlamydomonas.

    Directory of Open Access Journals (Sweden)

    Paola Ferrante

    Full Text Available BACKGROUND: Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. METHODOLOGY: Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 microM TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 microM. Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient "wave" in luciferase activity, which can be repeated in subsequent growth cycles. CONCLUSIONS: We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled "waves" in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas.

  2. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  3. Effects of bidirectional regulation on noises in gene networks.

    Science.gov (United States)

    Zheng, Xiudeng; Tao, Yi

    2010-03-14

    To investigate the effects of bidirectional regulation on the noise in protein concentration, a theoretical and simple three-gene network model is considered. The basic idea behind this model is from Paulsson's proposition (J. Paulsson, Phys. Life Rev. 2005, 2, 157-175), where the synthesis and degradation of a mRNA species corresponding to a target protein are regulated directly and indirectly by a certain sigma-factor, and a random increase in the concentration of the sigma-factor should increase both the synthesis and degradation rates of the mRNA species (bidirectional regulation). Using the standard Omega-expansion technique (linear noise approximation) and Monte Carlo simulation, our main results show clearly that for the steady-state statistics the effects of the noise of the sigma-factor on the stochastic fluctuation of the target protein could partially cancel out.

  4. Mechanisms of microRNA-mediated gene regulation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNAs (miRNAs) are identified as a class of non-protein regulators and a new source for broad control of gene expression in eukaryotes. The past years have witnessed substantial progress in understanding miRNA functions and mechanisms, although a few controversies remain. Various hypotheses and models have been suggested for the mechanisms of miRNA repression, including translational inhibition at the level of initiation or elongation, rapid degradation of the nascent peptide, mRNA degradation, and mRNA sequestration into P bodies (processing bodies) and SGs (stress granules) for degradation or/and storage. Recently, some noncanonical miRNA regulation, such as miRNA activation and de-repression of miRNA inhibition, have been uncovered. This review discusses some recent advances about how miRNAs regulate their targets and various modes of miRNA function.

  5. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    Directory of Open Access Journals (Sweden)

    M. Ananda Chitra

    2015-07-01

    Full Text Available Background: Staphylococcus pseudintermedius (SP is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objective of this study was to detect and sequence analyzing the AgrA, B, and D of SP isolated from canine skin infections. Materials and Methods: In this study, we have isolated and identified SP from canine pyoderma and otitis cases by polymerase chain reaction (PCR and confirmed by PCR-restriction fragment length polymorphism. Primers for SP agrA and agrBD genes were designed using online primer designing software and BLAST searched for its specificity. Amplification of the agr genes was carried out for 53 isolates of SP by PCR and sequencing of agrA, B, and D were carried out for five isolates and analyzed using DNAstar and Mega5.2 software. Results: A total of 53 (59% SP isolates were obtained from 90 samples. 15 isolates (28% were confirmed to be methicillinresistant SP (MRSP with the detection of the mecA gene. Accessory gene regulator A, B, and D genes were detected in all the SP isolates. Complete nucleotide sequences of the above three genes for five isolates were submitted to GenBank, and their accession numbers are from KJ133557 to KJ133571. AgrA amino acid sequence analysis showed that it is mainly made of alpha-helices and is hydrophilic in nature. AgrB is a transmembrane protein, and AgrD encodes the precursor of the autoinducing peptide (AIP. Sequencing of the agrD gene revealed that the 5 canine SP strains tested could be divided into three Agr specificity groups (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF based on the putative AIP produced by each strain

  6. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    DEFF Research Database (Denmark)

    Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate...... genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune......-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures...

  7. Identification of differentially regulated genes in human patent ductus arteriosus.

    Science.gov (United States)

    Parikh, Pratik; Bai, Haiqing; Swartz, Michael F; Alfieris, George M; Dean, David A

    2016-07-27

    In order to identify differentially expressed genes that are specific to the ductus arteriosus, 18 candidate genes were evaluated in matched ductus arteriosus and aortic samples from infants with coarctation of the aorta. The cell specificity of the gene's promoters was assessed by performing transient transfection studies in primary cells derived from several patients. Segments of ductus arteriosus and aorta were isolated from infants requiring repair for coarctation of the aorta and used for mRNA quantitation and culturing of cells. Differences in expression were determined by quantitative PCR using the ΔΔCt method. Promoter regions of six of these genes were cloned into luciferase reporter plasmids for transient transfection studies in matched human ductus arteriosus and aorta cells. Transcription factor AP-2b and phospholipase A2 were significantly up-regulated in ductus arteriosus compared to aorta in whole tissues and cultured cells, respectively. In transient transfection experiments, Angiotensin II type 1 receptor and Prostaglandin E receptor 4 promoters consistently gave higher expression in matched ductus arteriosus versus aorta cells from multiple patients. Taken together, these results demonstrate that several genes are differentially expressed in ductus arteriosus and that their promoters may be used to drive ductus arteriosus-enriched transgene expression.

  8. Precise regulation of gene expression dynamics favors complex promoter architectures.

    Directory of Open Access Journals (Sweden)

    Dirk Müller

    2009-01-01

    Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.

  9. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics.

    Science.gov (United States)

    Curtin, James F; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R; Castro, Maria G

    2008-03-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.

  10. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M system, controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates. Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.

  11. Epigenetic mechanisms of gene expression regulation in neurological diseases.

    Science.gov (United States)

    Gos, Monika

    2013-01-01

    Neurological diseases are a heterogenous group of disorders that are related to alterations in nervous system function. The genetic background of neurological diseases is heterogenous and may include chromosomal aberrations, specific gene mutations and epigenetic defects. This review is aimed at presenting of selected diseases that are associated with different epigenetic alterations. The imprinting defects on chromosome 15 are the cause of Prader-Willi and Angelman syndromes that both are characterized by intellectual disability, developmental delay and specific behavioral phenotype. Besides the imprinting defect, these diseases can also be caused by deletion of chromosome 15 or uniparental disomy. Aberrant epigenetic regulation is also specific for Fragile X syndrome that is caused by expansion of CGG repeats in the FMR1 gene that leads to global methylation of the promoter region and repression of FMR1 transcription. A number of neurological diseases, mainly associated with intellectual impairment, may be caused by mutations in genes encoding proteins involved in epigenetic regulation. The number of such diseases is rapidly growing thanks to the implementation of genomic sequencing for the identification of their molecular causes. One of the best known diseases linked to defects in epigenetic modifiers is Rett syndrome caused by a mutation in the MECP2 gene or its variant - Rett-like syndrome caused by a mutation in CDKL5 or FOXG1 genes. As the epigenetic signature is potentially reversible, much attention is focused on possible therapies with drugs that influence DNA or histone modifications. This is especially important in the case of neurological disorders in which epigenetic changes are observed as the effect of the disease.

  12. Adrenal glucocorticoids regulate adipsin gene expression in genetically obese mice.

    Science.gov (United States)

    Spiegelman, B M; Lowell, B; Napolitano, A; Dubuc, P; Barton, D; Francke, U; Groves, D L; Cook, K S; Flier, J S

    1989-01-25

    Adipsin expression at the protein and mRNA levels is greatly reduced in several distinct syndromes of obesity in the mouse: genetic obesity due to the db/db and ob/ob genes, and a chemically induced model secondary to neonatal exposure to monosodium glutamate. We considered first the possibility that the adipsin gene might be identical to the db or ob locus and the lowered expression of this protein might result from a mutation in this gene. We show here that the adipsin structural gene is located on chromosome 10 and hence is physically distinct from any obesity genes so far identified in the mouse. A major role for the adrenal gland and adrenal glucocorticoids in the aberrant regulation of adipsin in these models of obesity is indicated by several experiments. Adrenalectomy of the ob/ob mouse raises the circulating levels of adipsin protein and the amount of this mRNA in epididymal fat pads (5-fold), although neither is increased to the levels seen in lean controls. Exogenous administration of corticosterone completely blocks the effects of adrenalectomy on adipsin, suggesting that the effect of this endocrine ablation is through reduction of adrenal glucocorticoids. Corticosterone administration also causes suppression in the levels of adipsin mRNA and protein in lean mice, although this decrease is never as severe as that seen in obese mice. The effect of exogenous corticosterone in lean mice occurs within 2 days and hence is not secondary to the obesity which these hormones eventually elicit. These results indicate that glucocorticoids can regulate adipsin expression in vivo and strongly suggest that the hyperglucocorticoid state seen in certain obese models plays a significant role in lowering adipsin mRNA and protein levels. Quantitative analysis of these experiments suggests that other as yet unknown neuroendocrine factors also function to suppress adipsin in obesity.

  13. Growth phase-dependent gene regulation in vivo in Sulfolobus solfataricus

    NARCIS (Netherlands)

    DeYoung, M.; Oost, van der J.

    2011-01-01

    Ribosomal genes are strongly regulated dependent on growth phase in all organisms, but this regulation is poorly understood in Archaea. Moreover, very little is known about growth phase-dependent gene regulation in Archaea. SSV1-based lacS reporter gene constructs containing the Sulfolobus 16S/23S r

  14. Gene Regulation, Modulation, and Their Applications in Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Mario Flores

    2013-01-01

    Full Text Available Common microarray and next-generation sequencing data analysis concentrate on tumor subtype classification, marker detection, and transcriptional regulation discovery during biological processes by exploring the correlated gene expression patterns and their shared functions. Genetic regulatory network (GRN based approaches have been employed in many large studies in order to scrutinize for dysregulation and potential treatment controls. In addition to gene regulation and network construction, the concept of the network modulator that has significant systemic impact has been proposed, and detection algorithms have been developed in past years. Here we provide a unified mathematic description of these methods, followed with a brief survey of these modulator identification algorithms. As an early attempt to extend the concept to new RNA regulation mechanism, competitive endogenous RNA (ceRNA, into a modulator framework, we provide two applications to illustrate the network construction, modulation effect, and the preliminary finding from these networks. Those methods we surveyed and developed are used to dissect the regulated network under different modulators. Not limit to these, the concept of “modulation” can adapt to various biological mechanisms to discover the novel gene regulation mechanisms.

  15. Synthetic RNAs for gene regulation: design principles and computational tools

    Directory of Open Access Journals (Sweden)

    Alessandro eLaganà

    2014-12-01

    Full Text Available The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies, but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis and the evaluation of RNAi agents such as small-interfering RNA (siRNA, short-hairpin RNA (shRNA, artificial microRNA (a-miR and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats, was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  16. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    Science.gov (United States)

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-05-25

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.

  17. Strategies to identify long noncoding RNAs involved in gene regulation

    Directory of Open Access Journals (Sweden)

    Lee Catherine

    2012-11-01

    Full Text Available Abstract Long noncoding RNAs (lncRNAs have been detected in nearly every cell type and found to be fundamentally involved in many biological processes. The characterization of lncRNAs has immense potential to advance our comprehensive understanding of cellular processes and gene regulation, along with implications for the treatment of human disease. The recent ENCODE (Encyclopedia of DNA Elements study reported 9,640 lncRNA loci in the human genome, which corresponds to around half the number of protein-coding genes. Because of this sheer number and their functional diversity, it is crucial to identify a pool of potentially relevant lncRNAs early on in a given study. In this review, we evaluate the methods for isolating lncRNAs by immunoprecipitation and review the advantages, disadvantages, and applications of three widely used approaches – microarray, tiling array, and RNA-seq – for identifying lncRNAs involved in gene regulation. We also look at ways in which data from publicly available databases such as ENCODE can support the study of lncRNAs.

  18. Regulation of virulence gene expression in pathogenic Listeria.

    Science.gov (United States)

    Brehm, K; Kreft, J; Ripio, M T; Vázquez-Boland, J A

    1996-06-01

    Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.

  19. Inflammation-related genes up-regulated in schizophrenia brains

    Directory of Open Access Journals (Sweden)

    Kreuger Johan

    2007-09-01

    Full Text Available Abstract Background Multiple studies have shown that brain gene expression is disturbed in subjects suffering from schizophrenia. However, disentangling disease effects from alterations caused by medication is a challenging task. The main goal of this study is to find transcriptional alterations in schizophrenia that are independent of neuroleptic treatment. Methods We compared the transcriptional profiles in brain autopsy samples from 55 control individuals with that from 55 schizophrenic subjects, subdivided according to the type of antipsychotic medication received. Results Using global and high-resolution mRNA quantification techniques, we show that genes involved in immune response (GO:0006955 are up regulated in all groups of patients, including those not treated at the time of death. In particular, IFITM2, IFITM3, SERPINA3, and GBP1 showed increased mRNA levels in schizophrenia (p-values from qPCR ≤ 0.01. These four genes were co-expressed in both schizophrenic subjects and controls. In-vitro experiments suggest that these genes are expressed in both oligodendrocyte and endothelial cells, where transcription is inducible by the inflammatory cytokines TNF-α, IFN-α and IFN-γ. Conclusion Although the modified genes are not classical indicators of chronic or acute inflammation, our results indicate alterations of inflammation-related pathways in schizophrenia. In addition, the observation in oligodendrocyte cells suggests that alterations in inflammatory-related genes may have consequences for myelination. Our findings encourage future research to explore whether anti-inflammatory agents can be used in combination with traditional antipsychotics for a more efficient treatment of schizophrenia.

  20. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis.

    Science.gov (United States)

    Rucci, Nadia; Capulli, Mattia; Piperni, Sara Gemini; Cappariello, Alfredo; Lau, Patrick; Frings-Meuthen, Petra; Heer, Martina; Teti, Anna

    2015-02-01

    Mechanical loading represents a crucial factor in the regulation of skeletal homeostasis. Its reduction causes loss of bone mass, eventually leading to osteoporosis. In a previous global transcriptome analysis performed in mouse calvarial osteoblasts subjected to simulated microgravity, the most upregulated gene compared to unit gravity condition was Lcn2, encoding the adipokine Lipocalin 2 (LCN2), whose function in bone metabolism is poorly known. To investigate the mechanoresponding properties of LCN2, we evaluated LCN2 levels in sera of healthy volunteers subjected to bed rest, and found a significant time-dependent increase of this adipokine compared to time 0. We then evaluated the in vivo LCN2 regulation in mice subjected to experimentally-induced mechanical unloading by (1) tail suspension, (2) muscle paralysis by botulin toxin A (Botox), or (3) genetically-induced muscular dystrophy (MDX mice), and observed that Lcn2 expression was upregulated in the long bones of all of them, whereas physical exercise counteracted this increase. Mechanistically, in primary osteoblasts transfected with LCN2-expression-vector (OBs-Lcn2) we observed that Runx2 and its downstream genes, Osterix and Alp, were transcriptionally downregulated, and alkaline phosphatase (ALP) activity was less prominent versus empty-vector transduced osteoblasts (OBs-empty). OBs-Lcn2 also exhibited an increase of the Rankl/Opg ratio and IL-6 mRNA, suggesting that LCN2 could link poor differentiation of osteoblasts to enhanced osteoclast stimulation. In fact, incubation of purified mouse bone marrow mononuclear cells with conditioned media from OBs-Lcn2 cultures, or their coculture with OBs-Lcn2, improved osteoclastogenesis compared to OBs-empty, whereas treatment with recombinant LCN2 had no effect. In conclusion, our data indicate that LCN2 is a novel osteoblast mechanoresponding gene and that its regulation could be central to the pathological response of the bone tissue to low mechanical forces.

  1. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    for maintaining genomic integrity. The aim of the present study was to characterize the pattern of cerebral DNA repair enzyme regulation after stress through the quantification of a targeted range of gene products involved in different types of DNA repair. 72 male Sprague-Dawley rats were subjected to either......Neuronal genotoxic insults from oxidative stress constitute a putative molecular link between stress and depression on the one hand, and cognitive dysfunction and dementia risk on the other. Oxidative modifications to DNA are repaired by specific enzymes; a process that plays a critical role...... restraint stress (6h/day) or daily handling (controls), and sacrificed after 1, 7 or 21 stress sessions. The mRNA expression of seven genes (Ogg1, Ape1, Ung1, Neil1, Xrcc1, Ercc1, Nudt1) involved in the repair of oxidatively damaged DNA was determined by quantitative real time polymerase chain reaction...

  2. Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle.

    Science.gov (United States)

    Scholes, Clarissa; DePace, Angela H; Sánchez, Álvaro

    2017-01-25

    Cells decide when, where, and to what level to express their genes by "computing" information from transcription factors (TFs) binding to regulatory DNA. How is the information contained in multiple TF-binding sites integrated to dictate the rate of transcription? The dominant conceptual and quantitative model is that TFs combinatorially recruit one another and RNA polymerase to the promoter by direct physical interactions. Here, we develop a quantitative framework to explore kinetic control, an alternative model in which combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Kinetic control can generate a wide range of analog and Boolean computations without requiring the input TFs to be simultaneously bound to regulatory DNA. We propose experiments that will illuminate the role of kinetic control in transcription and discuss implications for deciphering the cis-regulatory "code."

  3. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects.

    Science.gov (United States)

    Sánchez, J; Holmgren, J

    2008-05-01

    Many notions regarding the function, structure and regulation of cholera toxin expression have remained essentially unaltered in the last 15 years. At the same time, recent findings have generated additional perspectives. For example, the cholera toxin genes are now known to be carried by a non-lytic bacteriophage, a previously unsuspected condition. Understanding of how the expression of cholera toxin genes is controlled by the bacterium at the molecular level has advanced significantly and relationships with cell-density-associated (quorum-sensing) responses have recently been discovered. Regarding the cell intoxication process, the mode of entry and intracellular transport of cholera toxin are becoming clearer. In the immunological field, the strong oral immunogenicity of the non-toxic B subunit of cholera toxin (CTB) has been exploited in the development of a now widely licensed oral cholera vaccine. Additionally, CTB has been shown to induce tolerance against co-administered (linked) foreign antigens in some autoimmune and allergic diseases.

  4. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  5. Glycerophosphorylcholine regulates Haemophilus influenzae glpQ gene expression.

    Science.gov (United States)

    Alrousan, Enas; Fan, Xin

    2015-05-01

    An important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface of the host is the phosphorylcholine (ChoP) decoration of its lipopolysaccharides, which promotes adherence to the host cells. Haemophilus influenzae is able to use glycerophosphorylcholine (GPC) from host for ChoP synthesis. Utilization of GPC requires glpQ, which encodes a glycerophosphodiester phosphodiesterase enzyme. In this study, we investigate the transcriptional regulation of glpQ gene using real-time PCR and transcriptional fusion of H. influenzae glpQ promoter to the Escherichia coli lacZ reporter gene. The glpQ promoter activities were examined under environmental conditions including changes in temperature, oxygen, high salt and minimal growth medium. Our data showed that under room temperature and anaerobic conditions, the glpQ gene expression levels were significantly higher than under other growth conditions. In addition, the glpQ gene expression levels were upregulated in the presence of GPC. These results suggest that H. influenzae may upregulate glpQ expression in response to different environments it encounters during infection, from the airway surfaces (room temperature) to deep tissues (anaerobic). Upregulation of glpQ by GPC may allow efficient use of abundant GPC from mammalian cells by H. influenzae as a source of nutrient and for ChoP decoration of lipopolysaccharide that facilitates bacterial adhesion to host cells and growth during infection.

  6. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  7. Role of histone deacetylases in gene regulation at nuclear lamina.

    Directory of Open Access Journals (Sweden)

    Beatrice C Milon

    Full Text Available Theoretical models suggest that gene silencing at the nuclear periphery may involve "closing" of chromatin by transcriptional repressors, such as histone deacetylases (HDACs. Here we provide experimental evidence confirming these predictions. Histone acetylation, chromatin compactness, and gene repression in lamina-interacting multigenic chromatin domains were analyzed in Drosophila S2 cells in which B-type lamin, diverse HDACs, and lamina-associated proteins were downregulated by dsRNA. Lamin depletion resulted in decreased compactness of the repressed multigenic domain associated with its detachment from the lamina and enhanced histone acetylation. Our data reveal the major role for HDAC1 in mediating deacetylation, chromatin compaction, and gene silencing in the multigenic domain, and an auxiliary role for HDAC3 that is required for retention of the domain at the lamina. These findings demonstrate the manifold and central involvement of class I HDACs in regulation of lamina-associated genes, illuminating a mechanism by which these enzymes can orchestrate normal and pathological development.

  8. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Science.gov (United States)

    Kula, Anna; Marcello, Alessandro

    2012-01-01

    Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function. PMID:24832221

  9. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Alessandro Marcello

    2012-07-01

    Full Text Available Gene expression of the human immunodeficiency virus type 1 (HIV-1 is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE. These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.

  10. From biophysics to evolutionary genetics: statistical aspects of gene regulation

    Directory of Open Access Journals (Sweden)

    Lässig Michael

    2007-09-01

    Full Text Available Abstract This is an introductory review on how genes interact to produce biological functions. Transcriptional interactions involve the binding of proteins to regulatory DNA. Specific binding sites can be identified by genomic analysis, and these undergo a stochastic evolution process governed by selection, mutations, and genetic drift. We focus on the links between the biophysical function and the evolution of regulatory elements. In particular, we infer fitness landscapes of binding sites from genomic data, leading to a quantitative evolutionary picture of regulation.

  11. Dynamic model of gene regulation for the lac operon

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Maia; Ben-Halim, Asma, E-mail: maia.angelova@northumbria.ac.uk, E-mail: asma.benhalim@northumbria.ac.uk [Intelligent Modelling Lab, School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle upon Tyne NE2 1XE (United Kingdom)

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  12. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  13. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.

    Science.gov (United States)

    Bowman, J L; Sakai, H; Jack, T; Weigel, D; Mayer, U; Meyerowitz, E M

    1992-03-01

    We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.

  14. Shh regulates chick Ebf1 gene expression in somite development.

    Science.gov (United States)

    El-Magd, Mohammed Abu; Allen, Steve; McGonnell, Imelda; Mansour, Ali A; Otto, Anthony; Patel, Ketan

    2015-01-01

    The chick early B-cell factor 1 (cEbf1) is a member of EBF family of helix loop helix transcription factors. Recently, we have proved that cEbf1 expression in feather is regulated by Shh. It is therefore possible that the somitic expression of cEbf1 is controlled by Shh signals from the notochord. To assess this hypothesis, the expression profile of cEbf1 was first detailed in somites of chick embryos (from HH8 to HH28). cEbf1 expression was mainly localised in the medial sclerotome and later around the vertebral cartilage anlagen of body and pedicles. Tissue manipulations (notochord ablation) and Shh gain and loss of function experiments were then performed to analyse whether the notochord and/or Shh regulate cEbf1 expression. Results from these experiments confirmed our hypothesis that the medial somitic expression of cEbf1 is regulated by Shh from the notochord. In conclusion, cEbf1 gene is considered as a medial sclerotome marker, downstream to and regulated by the notochord derived Shh, which may be functionally involved in somitogenesis.

  15. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice.

    Science.gov (United States)

    Achour, Mayada; Le Gras, Stéphanie; Keime, Céline; Parmentier, Frédéric; Lejeune, François-Xavier; Boutillier, Anne-Laurence; Néri, Christian; Davidson, Irwin; Merienne, Karine

    2015-06-15

    Huntington's disease (HD) is a neurodegenerative disease associated with extensive down-regulation of genes controlling neuronal function, particularly in the striatum. Whether altered epigenetic regulation underlies transcriptional defects in HD is unclear. Integrating RNA-sequencing (RNA-seq) and chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq), we show that down-regulated genes in HD mouse striatum associate with selective decrease in H3K27ac, a mark of active enhancers, and RNA Polymerase II (RNAPII). In addition, we reveal that decreased genes in HD mouse striatum display a specific epigenetic signature, characterized by high levels and broad patterns of H3K27ac and RNAPII. Our results indicate that this signature is that of super-enhancers, a category of broad enhancers regulating genes defining tissue identity and function. Specifically, we reveal that striatal super-enhancers display extensive H3K27 acetylation within gene bodies, drive transcription characterized by low levels of paused RNAPII, regulate neuronal function genes and are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Together, our results provide evidence for preferential down-regulation of genes controlled by super-enhancers in HD striatum and indicate that enhancer topography is a major parameter determining the propensity of a gene to be deregulated in a neurodegenerative disease.

  16. [Ribozyme riboswitch based gene expression regulation systems for gene therapy applications: progress and challenges].

    Science.gov (United States)

    Feng, Jing-Xian; Wang, Jia-wen; Lin, Jun-sheng; Diao, Yong

    2014-11-01

    Robust and efficient control of therapeutic gene expression is needed for timing and dosing of gene therapy drugs in clinical applications. Ribozyme riboswitch provides a promising building block for ligand-controlled gene-regulatory system, based on its property that exhibits tunable gene regulation, design modularity, and target specificity. Ribozyme riboswitch can be used in various gene delivery vectors. In recent years, there have been breakthroughs in extending ribozyme riboswitch's application from gene-expression control to cellular function and fate control. High throughput screening platforms were established, that allow not only rapid optimization of ribozyme riboswitch in a microbial host, but also straightforward transfer of selected devices exhibiting desired activities to mammalian cell lines in a predictable manner. Mathematical models were employed successfully to explore the performance of ribozyme riboswitch quantitively and its rational design predictably. However, to progress toward gene therapy relevant applications, both precision rational design of regulatory circuits and the biocompatibility of regulatory ligand are still of crucial importance.

  17. Androgens regulate gene expression in avian skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Matthew J Fuxjager

    Full Text Available Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus, zebra finch (Taenopygia guttata, and ochre-bellied flycatcher (Mionectes oleagieus. Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T up-regulated expression of parvalbumin (PV and insulin-like growth factor I (IGF-I, two genes whose products enhance cellular Ca(2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.

  18. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Yufeng Huang

    2015-08-01

    Full Text Available Atrial fibrillation (AF is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution in ZFHX3, rs2200733 (C/T substitution near PITX2c, and rs3807989 (A/G substitution in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43, P=8.00×10-24. The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4 or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4. The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02. Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  19. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  20. Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division.

    Directory of Open Access Journals (Sweden)

    Joana M Ramis

    Full Text Available BACKGROUND: The mesoderm of the amphibian embryo is formed through an inductive interaction in which vegetal cells of the blastula-staged embryo act on overlying equatorial cells. Candidate mesoderm-inducing factors include members of the transforming growth factor type beta family such as Vg1, activin B, the nodal-related proteins and derrière. METHODOLOGY AND PRINCIPLE FINDINGS: Microarray analysis reveals different functions for activin B and the nodal-related proteins during early Xenopus development. Inhibition of nodal-related protein function causes the down-regulation of regionally expressed genes such as chordin, dickkopf and XSox17alpha/beta, while genes that are mis-regulated in the absence of activin B tend to be more widely expressed and, interestingly, include several that are involved in cell cycle regulation. Consistent with the latter observation, cells of the involuting dorsal axial mesoderm, which normally undergo cell cycle arrest, continue to proliferate when the function of activin B is inhibited. CONCLUSIONS/SIGNIFICANCE: These observations reveal distinct functions for these two classes of the TGF-beta family during early Xenopus development, and in doing so identify a new role for activin B during gastrulation.

  1. Gene expression dosage regulation in an allopolyploid fish.

    Directory of Open Access Journals (Sweden)

    I Matos

    Full Text Available How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional ''diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64% of transcripts in juveniles' samples and 44% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression. Yet, respectively 29% and 15% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5. Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock

  2. Mapping the genetic architecture of gene regulation in whole blood.

    Directory of Open Access Journals (Sweden)

    Katharina Schramm

    Full Text Available BACKGROUND: We aimed to assess whether whole blood expression quantitative trait loci (eQTLs with effects in cis and trans are robust and can be used to identify regulatory pathways affecting disease susceptibility. MATERIALS AND METHODS: We performed whole-genome eQTL analyses in 890 participants of the KORA F4 study and in two independent replication samples (SHIP-TREND, N = 976 and EGCUT, N = 842 using linear regression models and Bonferroni correction. RESULTS: In the KORA F4 study, 4,116 cis-eQTLs (defined as SNP-probe pairs where the SNP is located within a 500 kb window around the transcription unit and 94 trans-eQTLs reached genome-wide significance and overall 91% (92% of cis-, 84% of trans-eQTLs were confirmed in at least one of the two replication studies. Different study designs including distinct laboratory reagents (PAXgene™ vs. Tempus™ tubes did not affect reproducibility (separate overall replication overlap: 78% and 82%. Immune response pathways were enriched in cis- and trans-eQTLs and significant cis-eQTLs were partly coexistent in other tissues (cross-tissue similarity 40-70%. Furthermore, four chromosomal regions displayed simultaneous impact on multiple gene expression levels in trans, and 746 eQTL-SNPs have been previously reported to have clinical relevance. We demonstrated cross-associations between eQTL-SNPs, gene expression levels in trans, and clinical phenotypes as well as a link between eQTLs and human metabolic traits via modification of gene regulation in cis. CONCLUSIONS: Our data suggest that whole blood is a robust tissue for eQTL analysis and may be used both for biomarker studies and to enhance our understanding of molecular mechanisms underlying gene-disease associations.

  3. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    Science.gov (United States)

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.

  4. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG... DEVICES Immunological Test Systems § 866.5900 Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a...

  5. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review

    Science.gov (United States)

    Sousa, Sílvia A.; Feliciano, Joana R.; Pita, Tiago; Guerreiro, Soraia I.; Leitão, Jorge H.

    2017-01-01

    Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung. PMID:28106859

  6. Cardiovascular disease-related genes and regulation by diet.

    Science.gov (United States)

    Vanden Heuvel, John P

    2009-11-01

    Diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of cardiovascular disease (CVD). At least some of the beneficial effects of these dietary fatty acids are mediated by metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of n-3 PUFAs often differ from those of other fatty acids with very similar structures, such as linoleic acid and arachidonic acid (n-6 PUFAs) and their corresponding metabolites. This article reviews the evidence that specific receptors exist for fatty acids or their metabolites that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD. Four nuclear receptor subfamilies that respond to dietary and endogenous ligands and have implications for CVD are emphasized in this article: peroxisome proliferator-activated receptors, retinoid X receptors, liver X receptors, and the farnesoid X receptor.

  7. Coenzyme Recognition and Gene Regulation by a Flavin Mononucleotide Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Serganov, A.; Huang, L; Patel, D

    2009-01-01

    The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg{sup 2+}-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.

  8. [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].

    Science.gov (United States)

    Chu, Tingting; Xie, Hua; Xu, Yong; Ma, Rongcai

    2010-11-01

    FRUITFULL (FUL) is an MADS box gene that functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. In order to clarify the regulation of FUL expression the upstream regulatory region, -2148 bp - +96 bp and the first intron of the FUL gene were cloned, and vectors with a series of deletion of FUL promoter, and the ones fused with the first intron were constructed. Vectors harboring the fusion of cis-acting elements with the constitutive promoters of TUBULIN and ACTIN were also constructed. Beta-Glucuronidase activity assays of the transgenic Arabidopsis plants showed that two cis-elements were involved in the repression of FUL expression, with one of the two being probably the binding site of the transcriptional factor AP1. And the two CArG boxes played a important role in FUL initiation particularly. Furthermore, the first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.

  9. Ingested plant miRNAs regulate gene expression in animals

    Institute of Scientific and Technical Information of China (English)

    Hervé Vaucheret; Yves Chupeau

    2012-01-01

    The incidence of genetic material or epigenetic information transferred from one organism to another is an important biological question.A recent study demonstrated that plant small RNAs acquired orally through food intake directly influence gene expression in animals after migration through the plasma and delivery to specific organs.Non-protein coding RNAs,and in particular small RNAs,were recently revealed as master chief regulators of gene expression in all organisms.Endogenous small RNAs come in different flavors,depending on their mode of biogenesis.Most microRNAs (miRNA)and short interferring RNAs (siRNA)derive from long double-stranded RNA (dsRNA) precursors that are processed into small RNA duplexes,20 to 25-nt long,by RNaselll enzymes called Dicer [1].One strand of small RNA duplexes is loaded onto an Argonaute protein that executes silencing by cleaving or repressing the translation of homologous mRNA [2].In certain species,RNA cleavage is followed by DNA methylation and/or histone modification,leading to heritable epigenetic modification [3].

  10. Transcriptional Regulation of the p16 Tumor Suppressor Gene.

    Science.gov (United States)

    Kotake, Yojiro; Naemura, Madoka; Murasaki, Chihiro; Inoue, Yasutoshi; Okamoto, Haruna

    2015-08-01

    The p16 tumor suppressor gene encodes a specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 and is found altered in a wide range of human cancers. p16 plays a pivotal role in tumor suppressor networks through inducing cellular senescence that acts as a barrier to cellular transformation by oncogenic signals. p16 protein is relatively stable and its expression is primary regulated by transcriptional control. Polycomb group (PcG) proteins associate with the p16 locus in a long non-coding RNA, ANRIL-dependent manner, leading to repression of p16 transcription. YB1, a transcription factor, also represses the p16 transcription through direct association with its promoter region. Conversely, the transcription factors Ets1/2 and histone H3K4 methyltransferase MLL1 directly bind to the p16 locus and mediate p16 induction during replicative and premature senescence. In the present review, we discuss the molecular mechanisms by which these factors regulate p16 transcription.

  11. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing

    Energy Technology Data Exchange (ETDEWEB)

    Church, George M.; Esvelt, Kevin; Mali, Prashant

    2017-03-07

    Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.

  12. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  13. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    Directory of Open Access Journals (Sweden)

    Michelle N. Arbeitman

    2016-07-01

    Full Text Available Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.

  14. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  15. Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In searching for differentially expressed genes in human uterine leiomyomas (ULs), suppression sub-tractive hybridization was used to construct an UL up-regulated library, which turned out to represent 88genes. After two rounds of screening by reverse Northern analysis, twenty genes were proved to be up-regulated, including seventeen known genes and three genes with unknown function. All these genes werefirstly associated with UL. Three genes with notable difference were selected for Northern confirmationOur results proved the authenticity of the twenty genes. One gene named Phospholipase A2 (PLA2) showedup-regulation in 4/6 of the patients and investigation of tissue distribution indicated that it had obviousexpression in prostate, testis, liver, heart and skeletal muscle.

  16. From Gene Regulation to Gene Function: Regulatory Networks in Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Ivan Moszer

    2006-04-01

    Full Text Available Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis and gene regulation programmes, together with an extensive understanding of its biochemistry and physiology, makes this micro-organism a prime candidate in which to model regulatory networks in silico. In this paper we discuss combined molecular biological and bioinformatical approaches that are being developed to model this organism’s responses to changes in its environment.

  17. tRNAs as regulators in gene expression

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Transfer RNAs(tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein,thus functioning as "adaptor" molecules.In recent years,however,various studies have shown that tRNAs have additional functions beyond participating in protein synthesis.When suffering from certain nutritional stresses,tRNAs change the level of aminoacylation to became uncharged,and these uncharged tRNAs act as effector molecules to regulate global gene expression,so that the stressed organism copes with the adverse environmental stresses.In budding yeast and certain mammalian cells,the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs.On the other hand,this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation.Quite recently,various publications have shown that tRNAs are not stable molecules in an absolute sense.Under certain physiological or environmental stresses,they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm.These cleavages are not a meaningless random degradation phenomenon.Instead,a novel class of signal molecules such as tRNA halves or sitRNAs may be produced,which are closely correlated with the modulation of global gene expression.Investigation of the regulatory functions of tRNAs is a frontier,which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information.

  18. tRNAs as regulators in gene expression

    Institute of Scientific and Technical Information of China (English)

    LI Yan; ZHOU Hui

    2009-01-01

    Transfer RNAs (tRNAs) hold a central place In protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein, thus functioning as "adaptor" molecules. In recent years, however, various studies have shown that tRNAs have additional functions beyond par-ticipating in protein synthesis. When suffering from certain nutritional stresses, tRNAs change the level of aminoacylation to became uncharged, and these uncharged tRNAs act as effector molecules to regulate global gene expression, so that the stressed organism copes with the adverse environmental stresses. In budding yeast and certain mammalian cells, the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs. On the other hand, this retrograde action effectively re-duces the global protein synthesis level under conditions of nutritional starvation. Quite recently, various publications have shown that tRNAs are not stable molecules in an absolute sense. Under certain physiological or environmental stresses, they are specifically cleaved into fragments of differ-ent lengths in the anticodon loop or anticodon left arm. These cleavages are not a meaningless random degradation phenomenon. Instead, a novel class of signal molecules such as tRNA halves or sitRNAs may be produced, which are closely correlated with the modulation of global gene expression. Inves-tigation of the regulatory functions of tRNAs is a frontier, which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic informa-tion.

  19. Differential regulation of two period genes in the Xenopus eye.

    Science.gov (United States)

    Zhuang, M; Wang, Y; Steenhard, B M; Besharse, J C

    2000-10-20

    The recent identification and analysis of mammalian homologues of the well characterized Drosophila circadian clock gene, Period (Per), has led to the idea that key features of vertebrate circadian rhythmicity are conserved at the molecular level. The Xenopus laevis retina contains a circadian clock mechanism that can be studied in vitro. To study the rhythmic expression of Per in the Xenopus retina, we used a degenerate RT-PCR strategy to obtain cDNA clones covering the entire 1427 amino acid coding region of a Xenopus homologue of Per2 and a partial cDNA sequence for a Xenopus homologue of Per1. Northern blot analysis shows that xPer1 and xPer2 transcripts are expressed most abundantly in the eye and the brain. However, rhythmic expression of xPer2 transcripts in the retina and retinal pigment epithelium (RPE) is light dependent and occurs only under 12 h light/12 h dark (LD) conditions, not in constant dark (DD). In contrast, xPer1 mRNA accumulation is rhythmic under both LD and DD conditions. Light dependent regulation of xPer2 mRNA and circadian regulation of xPer1 mRNA in the Xenopus retina differs from that in Drosophila and mammals. Light dependence of xPer2 mRNA levels and the offset phase relationship of the xPer2 rhythm to that for xPer1 suggests a role for xPer2 in circadian entrainment.

  20. The Change-Over of Yin-yang and Gene Regulation in Kidney Deficiency Syndromes

    Institute of Scientific and Technical Information of China (English)

    DONG Fei-xia; HE Li-qun

    2009-01-01

    The present paper studies gene regulation in kidney deficiency syndromes from the simple Nephrotic Syndrome and with the principle of positive-negative regulation to control the change-over ofyin-yang, the modern molecular biological techniques can be used, such as gene chip, representational difference analysis (RDA) and gene sequence analysis, so as to investigate the inner relationship between the genes and kidney deficiency syndromes and prove the effect given by these genes on the pathophysiological status of change-over ofyin-yang in kidney deficiency syndromes.This philosophical approach and method can also be adopted for studies of the related genes in other TCM syndromes.

  1. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis.

    Science.gov (United States)

    Mellin, J R; McClure, Ryan; Lopez, Delia; Green, Olivia; Reinhard, Bjorn; Genco, Caroline

    2010-08-01

    In Neisseria meningitidis, iron-responsive gene regulation is mediated primarily by the ferric uptake regulator (Fur) protein. When complexed with iron, Fur represses gene expression by preventing transcription initiation. Fur can also indirectly activate gene expression via the repression of regulatory small RNAs (sRNA). One such Fur- and iron-regulated sRNA, NrrF, was previously identified in N. meningitidis and shown to repress expression of the sdhA and sdhC genes encoding subunits of the succinate dehydrogenase complex. In the majority of Gram-negative bacteria, sRNA-mediated regulation requires a cofactor RNA-binding protein (Hfq) for proper gene regulation and stabilization. In this study, we examined the role of Hfq in NrrF-mediated regulation of the succinate dehydrogenase genes in N. meningitidis and the effect of an hfq mutation on iron-responsive gene regulation more broadly. We first demonstrated that the stability of NrrF, as well as the regulation of sdhC and sdhA in vivo, was unaltered in the hfq mutant. Secondly, we established that iron-responsive gene regulation of the Fur-regulated sodB gene was dependent on Hfq. Finally, we demonstrated that in N. meningitidis, Hfq functions in a global manner to control expression of many ORFs and intergenic regions via iron-independent mechanisms. Collectively these studies demonstrate that in N. meningitidis, iron- and NrrF-mediated regulation of sdhC and sdhA can occur independently of Hfq, although Hfq functions more globally to control regulation of other N. meningitidis genes primarily by iron-independent mechanisms.

  2. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system

    Directory of Open Access Journals (Sweden)

    Peixin Zhu

    2009-12-01

    Full Text Available The conditional expression of transgenes at high levels in sparse and specific populations of neurons is important for high-resolution optogenetic analyses of neuronal circuits. We explored two complementary methods, viral gene delivery and the iTet-Off system, to express transgenes in the brain of zebrafish. High-level gene expression in neurons was achieved by Sindbis and Rabies viruses. The Tet system produced strong and specific gene expression that could be modulated conveniently by doxycycline. Moreover, transgenic lines showed expression in distinct, sparse and stable populations of neurons that appeared to be subsets of the neurons targeted by the promoter driving the Tet activator. The Tet system therefore provides the opportunity to generate libraries of diverse expression patterns similar to gene trap approaches or the thy-1 promoter in mice, but with the additional possibility to pre-select cell types of interest. In transgenic lines expressing channelrhodopsin-2, action potential firing could be precisely controlled by two-photon stimulation at low laser power, presumably because the expression levels of the Tet-controlled genes were high even in adults. In channelrhodopsin-2-expressing larvae, optical stimulation with a single blue LED evoked distinct swimming behaviors including backward swimming. These approaches provide new opportunities for the optogenetic dissection of neuronal circuit structure and function.

  3. Conserved gene regulation during acute inflammation between zebrafish and mammals

    Science.gov (United States)

    Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.

    2017-01-01

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230

  4. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    Science.gov (United States)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  5. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD

    Science.gov (United States)

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C.; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H.

    2016-01-01

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes. PMID:27886269

  6. Gene Network Analysis and Functional Studies of Senescence-associated Genes Reveal Novel Regulators of Arabidopsis Leaf Senescence

    Institute of Scientific and Technical Information of China (English)

    Zhonghai Li; Jinying Peng; Xing Wen; Hongwei Guo

    2012-01-01

    Plant leaf senescence has been recognized as the last phase of plant development,a highly ordered process regulated by genes known as senescence associated genes (SAGs).However,the function of most of SAGs in regulating leaf senescence as well as regulators of those functionally known SAGs are still unclear.We have previously developed a curated database of genes potentially associated with leaf senescence,the Leaf Senescence Database (LSD).In this study,we built gene networks to identify common regulators of leaf senescence in Arabidopsis thaliana using promoting or delaying senescence genes in LSD.Our results demonstrated that plant hormones cytokinin,auxin,nitric oxide as well as small molecules,such as Ca2+,delay leaf senescence.By contrast,ethylene,ABA,SA and JA as well as small molecules,such as oxygen,promote leaf senescence,altogether supporting the idea that phytohormones play a critical role in regulating leaf senescence.Functional analysis of candidate SAGs in LSD revealed that a WRKY transcription factor WRKY75 and a Cys2/His2-type transcription factor AZF2 are positive regulators of leaf senescence and loss-of-function of WRKY75 or AZF2 delayed leaf senescence.We also found that silencing of a protein phosphatase,AtMKP2,promoted early senescence.Collectively,LSD can serve as a comprehensive resource for systematic study of the molecular mechanism of leaf senescence as well as offer candidate genes for functional analyses.

  7. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene.

    Directory of Open Access Journals (Sweden)

    Hiroki Isomura

    Full Text Available BACKGROUND: Human cytomegalovirus (HCMV can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE: While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.

  8. Bacterial gene regulation in diauxic and non-diauxic growth.

    Science.gov (United States)

    Narang, Atul; Pilyugin, Sergei S

    2007-01-21

    When bacteria are grown in a batch culture containing a mixture of two growth-limiting substrates, they exhibit a rich spectrum of substrate consumption patterns including diauxic growth, simultaneous consumption, and bistable growth. In previous work, we showed that a minimal model accounting only for enzyme induction and dilution captures all the substrate consumption patterns [Narang, A., 1998a. The dynamical analogy between microbial growth on mixtures of substrates and population growth of competing species. Biotechnol. Bioeng. 59, 116-121, Narang, A., 2006. Comparitive analysis of some models of gene regulation in mixed-substrate microbial growth, J. Theor. Biol. 242, 489-501]. In this work, we construct the bifurcation diagram of the minimal model, which shows the substrate consumption pattern at any given set of parameter values. The bifurcation diagram explains several general properties of mixed-substrate growth. (1) In almost all the cases of diauxic growth, the "preferred" substrate is the one that, by itself, supports a higher specific growth rate. In the literature, this property is often attributed to the optimality of regulatory mechanisms. Here, we show that the minimal model, which accounts for induction and growth only, displays the property under fairly general conditions. This suggests that the higher growth rate of the preferred substrate is an intrinsic property of the induction and dilution kinetics. It can be explained mechanistically without appealing to optimality principles. (2) The model explains the phenotypes of various mutants containing lesions in the regions encoding for the operator, repressor, and peripheral enzymes. A particularly striking phenotype is the "reversal of the diauxie" in which the wild-type and mutant strains consume the very same two substrates in opposite order. This phenotype is difficult to explain in terms of molecular mechanisms, such as inducer exclusion or CAP activation, but it turns out to be a natural

  9. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  10. Distinct patterns in the regulation and evolution of human cancer genes.

    Science.gov (United States)

    Furney, Simon J; Madden, Stephen F; Kisiel, Tomasz A; Higgins, Desmond G; Lopez-Bigas, Nuria

    2008-01-01

    Understanding the mechanism of regulation of cancer genes and the constraints on their coding sequences is of fundamental importance in understanding the process of tumour development. Here we test the hypothesis that tumour suppressor genes and proto-oncogenes, due to their involvement in tumourigenesis, have distinct patterns of regulation and coding selective constraints compared to non-cancer genes. Indeed, we found significantly greater conservation in the promoter regions of proto-oncogenes, suggesting that these genes are more tightly regulated, i.e. they are more likely to contain a higher density of cis-regulatory elements. Furthermore, proto-oncogenes appear to be preferentially targeted by microRNAs and have longer 3' UTRs. In addition, proto-oncogene evolution appears to be highly constrained, compared to tumour suppressor genes and non-cancer genes. A number of these trends are confirmed in breast and colon cancer gene sets recently identified by mutational screening.

  11. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory l

  12. Modeling classic attenuation regulation of gene expression in bacteria.

    Science.gov (United States)

    Lyubetsky, Vassily A; Pirogov, Sergey A; Rubanov, Lev I; Seliverstov, Alexander V

    2007-02-01

    A model is proposed primarily for the classical RNA attenuation regulation of gene expression through premature transcription termination. The model is based on the concept of the RNA secondary structure macrostate within the regulatory region between the ribosome and RNA-polymerase, on hypothetical equation describing deceleration of RNA-polymerase by a macrostate and on views of transcription and translation initiation and elongation, under different values of the four basic model parameters which were varied. A special effort was made to select adequate model parameters. We first discuss kinetics of RNA folding and define the concept of the macrostate as a specific parentheses structure used to construct a conventional set of hairpins. The originally developed software that realizes the proposed model offers functionality to fully model RNA secondary folding kinetics. Its performance is compared to that of a public server described in Ref. 1. We then describe the delay in RNA-polymerase shifting to the next base or its premature termination caused by an RNA secondary structure or, herefrom, a macrostate. In this description, essential concepts are the basic and excited states of the polymerase first introduced in Ref. 2: the polymerase shifting to the next base can occur only in the basic state, and its detachment from DNA strand - only in excited state. As to the authors' knowledge, such a model incorporating the above-mentioned attenuation characteristics is not published elsewhere. The model was implemented in an application with command line interface for running in batch mode in Windows and Linux environments, as well as a public web server.(3) The model was tested with a conventional Monte Carlo procedure. In these simulations, the estimate of correlation between the premature transcription termination probability p and concentration c of charged amino acyl-tRNA was obtained as function p(c) for many regulatory regions in many bacterial genomes, as well as

  13. Transcriptional regulation of bone sialoprotein gene by interleukin-11.

    Science.gov (United States)

    Wang, Shuang; Sasaki, Yoko; Zhou, Liming; Matsumura, Hiroyoshi; Araki, Shouta; Mezawa, Masaru; Takai, Hideki; Chen, Zhen; Ogata, Yorimasa

    2011-05-01

    Interleukin-11 (IL-11) is a stromal cell-derived cytokine that belongs to the interleukin-6 family of cytokines. IL-11 has many biological activities and has roles in hematopoiesis, immune responses, the nervous system and bone metabolism. Bone sialoprotein (BSP) is a mineralized tissue-specific protein expressed in differentiated osteoblasts that appears to function in the initial mineralization of bone. IL-11 (20 ng/ml) increased BSP mRNA and protein levels at 12h in osteoblast-like ROS 17/2.8 cells. In a transient transfection assay, IL-11 (20 ng/ml) increased luciferase activity of the construct (-116 to +60) in ROS 17/2.8 cells and rat bone marrow stromal cells. Introduction of 2 bp mutations to the luciferase constructs showed that the effects of IL-11 were mediated by a cAMP response element (CRE), a fibroblast growth factor 2 response element (FRE) and a homeodomain protein-binding site (HOX). Luciferase activities induced by IL-11 were blocked by protein kinase A inhibitor, tyrosine kinase inhibitor and ERK1/2 inhibitor. Gel shift analyses showed that IL-11 (20 ng/ml) increased nuclear protein binding to CRE, FRE and HOX. CREB1, phospho-CREB1, c-Fos, c-Jun, JunD and Fra2 antibodies disrupted the formation of CRE-protein complexes. Dlx5, Msx2, Runx2 and Smad1 antibodies disrupted FRE- and HOX-protein complex formations. These studies demonstrate that IL-11 stimulates BSP transcription by targeting CRE, FRE and HOX sites in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, JunD, Fra2, Dlx5, Msx2, Runx2 and Smadl transcription factors appear to be key regulators of IL-11 effects on BSP transcription.

  14. A Novel Approach to Revealing Positive and Negative Co-Regulated Genes

    Institute of Scientific and Technical Information of China (English)

    Yu-Hai Zhao; Guo-Ren Wang; Ying Yin; Guang-Yu Xu

    2007-01-01

    As explored by biologists, there is a real and emerging need to identify co-regulated gene clusters, which includeboth positive and negative regulated gene clusters. However, the existing pattern-based and tendency-based clusteringapproaches are only designed for finding positive regulated gene clusters. In this paper, a new subspace clustering modelcalled g-Cluster is proposed for gene expression data. The proposed model has the following advantages: 1) find both positiveand negative co-regulated genes in a shot, 2) get away from the restriction of magnitude transformation relationship amongco-regulated genes, and 3) guarantee quality of clusters and significance of regulations using a novel similarity measurementgCode and a user-specified regulation threshold 5, respectively. No previous work measures up to the task which has been set.Moreover, MDL technique is introduced to avoid insignificant g-Clusters generated. A tree structure, namely GS-tree, is alsodesigned, and two algorithms combined with efficient pruning and optimization strategies to identify all qualified g-Clusters.Extensive experiments are conducted on real and synthetic datasets. The experimental results show that 1) the algorithmis able to find an amount of co-regulated gene clusters missed by previous models, which are potentially of high biologicalsignificance, and 2) the algorithms are effective and efficient, and outperform the existing approaches.

  15. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes.

    Directory of Open Access Journals (Sweden)

    Yun Ding

    Full Text Available Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator, exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes.

  16. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael;

    2011-01-01

    of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly...

  17. Comparative Analysis of Gene Regulation by the Transcription Factor PPARα between Mouse and Human

    Science.gov (United States)

    Rakhshandehroo, Maryam; Hooiveld, Guido; Müller, Michael; Kersten, Sander

    2009-01-01

    Background Studies in mice have shown that PPARα is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARα in human liver. Here we set out to compare the function of PPARα in mouse and human hepatocytes via analysis of target gene regulation. Methodology/Principal Findings Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARα agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARα expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362–672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARα in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARα targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARα in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPARα targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Conclusions/Significance Our results suggest that PPARα activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARα as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARα regulates a mostly divergent set of genes in mouse and human hepatocytes. PMID:19710929

  18. Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human.

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    Full Text Available BACKGROUND: Studies in mice have shown that PPARalpha is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARalpha in human liver. Here we set out to compare the function of PPARalpha in mouse and human hepatocytes via analysis of target gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARalpha agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARalpha expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362-672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARalpha in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARalpha targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARalpha in human (MBL2, ALAS1, CYP1A1, TSKU or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4. Furthermore, several putative novel PPARalpha targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. CONCLUSIONS/SIGNIFICANCE: Our results suggest that PPARalpha activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARalpha as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARalpha regulates a mostly divergent set of genes in mouse and

  19. Epigenetic characterization of the growth hormone gene identifies SmcHD1 as a regulator of autosomal gene clusters.

    Directory of Open Access Journals (Sweden)

    Shabnam Massah

    Full Text Available Regulatory elements for the mouse growth hormone (GH gene are located distally in a putative locus control region (LCR in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1. To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293 cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes.

  20. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  1. Regulation of cell-to-cell variability in divergent gene expression

    Science.gov (United States)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically `leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  2. Research progress of photoperiod regulated genes on flowering time in rice.

    Science.gov (United States)

    Deyan, Kong; Shoujun, Chen; Liguo, Zhou; Huan, Gao; Lijun, Luo; Zaochang, Liu

    2016-06-20

    Rice flowering regulation is an extremely complex process, which is controlled by genetic factors and external environment. Photoperiodic regulatory pathway is pivotal to control flowering in rice, in which florigen genes Hd3a and RTF1 are at the core and they are regulated by upstream Hd1-dependent, Ehd1-dependent, as well as both Hd1- and Ehd1-independent pathways. The three pathways bring a variety of light signal information together to Hd3a and RTF1 for further integration, and then transmit the signals in the form of florigen to the downstream flowering related genes. In this review, we summarize the research progress of photoperiod regulated genes on flowering time in rice, including the photoreceptors and circadian rhythm genes, the florigens, its upstream, downstream and interacting genes. We hope to provide a reference for in-depth study of rice flowering regulation.

  3. Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants

    Institute of Scientific and Technical Information of China (English)

    Jinghua Yang; Mingfang Zhang; Jingquan Yu

    2008-01-01

    In plant cells, there are three organelles: the nucleus, chloroplast, and mitochondria that store genetic information. The nucleus possesses the majority of genetic information and controls most aspects of organelles gene expression, growth, and development. In return,organdies also send signals back to regulate nuclear gene expression, a process defined as retrograde regulation. The best studies of organelles to nucleus retrograde regulation exist in plant chloroplast-to-nuclear regulation and yeast mitochondria-to-nuclear regulation. In this review, we summarize the recent understanding of mitochondrial retrograde regulation in higher plant, which involves multiple potential signaling pathway in relation to cytoplasmic male-sterility, biotic stress, and abiotie stress. With respect to mitochondrial retrograde regulation signal pathways involved in cytoplasmic male-sterility, we consider that nuclear transcriptional factor genes are the targeted genes regulated by mitoehondria to determine the abnormal reproductive development, and the MAPK signaling pathway may be involved in this regulation in Brassica juncea. When plants suffer biotic and abiotie stress, plant cells will initiate cell death or other events directed toward recovering from stress. During this process, we propose that mitochondria may determine how plant cell responds to a given stress through retrograde regulation. Meanwhile, several transducer molecules have also been discussed here. In particular, thePaepe research group reported that leaf mitochondrial modulated whole cell redox homeostasis, set antioxidant capacity, and determinedstress resistance through altered signaling and diurnal regulation, which is an indication of plant mitochondria with more active function than ever.

  4. Reciprocal Regulation of Pyoluteorin Production with Membrane Transporter Gene Expression in Pseudomonas fluorescens Pf-5

    OpenAIRE

    2005-01-01

    Pyoluteorin is a chlorinated polyketide antibiotic secreted by the rhizosphere bacterium Pseudomonas fluorescens Pf-5. Genes encoding enzymes and transcriptional regulators involved in pyoluteorin production are clustered in the genome of Pf-5. Sequence analysis of genes adjacent to the known pyoluteorin biosynthetic gene cluster revealed the presence of an ABC transporter system. We disrupted two putative ABC transporter genes by inserting transcriptional fusions to an ice nucleation reporte...

  5. Gene regulation in response to protein disulphide isomerase deficiency

    DEFF Research Database (Denmark)

    Nørgaard, Per; Tachibana, Christine; Bruun, Anette W

    2003-01-01

    We have examined the activities of promoters of a number of yeast genes encoding resident endoplasmic reticulum proteins, and found increased expression in a strain with severe protein disulphide isomerase deficiency. Serial deletion in the promoter of the MPD1 gene, which encodes a PDI1-homologu...... element. The sequence (GACACG) does not resemble the unfolded protein response element. It is present in the upstream regions of the MPD1, MPD2, KAR2, PDI1 and ERO1 genes....

  6. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  7. [Establishment of a novel biotin-inducible eukaryotic gene regulation system].

    Science.gov (United States)

    Ye, Lingling; Hong, Liu; Li, Shichong; Wang, Qiwei; Lan, Sanchun; Chen, Zhaolie

    2014-08-01

    To establish a gene regulation system compatible with biopharmaceutical industry and gene therapy, we constructed a fusion protein of biotin ligase from Bacillus subtilis (BS-BirA) and the trans-activation domain, and used its expression vector as the regulatory vector. Meanwhile, BS-BirA-specific operators were ligated upstream of attenuated CMV promoter to obtain the response vector. In this way, a novel eukaryotic gene regulation system responsive to biotin was established and named BS-Biotin-On system. BS-Biotin-On system was further investigated with the enhancing green fluorescent protein (EGFP) as the reporter gene. The results showed that our system was superior to the current similar regulation system in its higher induction ratio, and that the expression of interest gene could be tuned in a rapid and efficient manner by changing the biotin concentrations in the cultures, Our results show that the established system may provide a new alternative for the exogenous gene modulation.

  8. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.

    Science.gov (United States)

    Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs

    2015-06-01

    Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways.

  9. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 α (PGC-1α) activation coordinates induction of the hepatic fasting response through coactivation of numerous transcription factors and gene programs. In the June 15, 2011, issue of Genes & Development, Lustig and colleagues (pp...

  10. [Immunoglobulin genes in lymphoid cells and regulation of their transcription].

    Science.gov (United States)

    Stepchenko, A G; Urakov, D N; Luchina, N N; Deev, S M; Polianovskiĭ, O L

    1990-01-01

    The hybridoma genomes contain polyploid sets of immunoglobulin genes. We have shown, that the hybridoma PTF-02 genome contains three genes of heavy chains and two genes of light chains. The genes responsible for antibody synthesis were cloned and their structure were determined. Investigation of the kappa gene transcription and its fragments which contain regulatory sequences revealed a nuclear factor. The latter interacts with the octanucleotide localized at the promoter region of the kappa gene. The purified factor activates the transcription of the kappa gene in a heterologous cell-free system. Together with the tissue-specific factor there is also an universal factor interacting with the octanucleotide sequence. We have shown an additional factor in lymphoid cells interact with the protein which binds to the octanucleotide sequence. We have shown an additional factor in lymphoid cells interacting with the protein which binds to the octanucleotide sequence. As a result, there is a family of factors which interact with ATTTGCAT sequence. One major factor (m.w. 60 +/- 2 kDa) is an obligatory component for the initiation of immunoglobulin genes transcription.

  11. An alternative pathway for gene regulation by Myc

    DEFF Research Database (Denmark)

    Peukert, K; Staller, P; Schneider, A

    1997-01-01

    The c-Myc protein activates transcription as part of a heteromeric complex with Max. However, Myc-transformed cells are characterized by loss of expression of several genes, suggesting that Myc may also repress gene expression. Two-hybrid cloning identifies a novel POZ domain Zn finger protein (Miz...

  12. Gene therapy: Regulations, ethics and its practicalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Xi Jin; Yi-Da Yang; You-Ming Li

    2008-01-01

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases.By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity,inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  13. The ULT1 and ULT2 trxG genes play overlapping roles in Arabidopsis development and gene regulation.

    Science.gov (United States)

    Monfared, Mona M; Carles, Cristel C; Rossignol, Pascale; Pires, Helena R; Fletcher, Jennifer C

    2013-09-01

    The epigenetic regulation of gene expression is critical for ensuring the proper deployment and stability of defined genome transcription programs at specific developmental stages. The cellular memory of stable gene expression states during animal and plant development is mediated by the opposing activities of Polycomb group (PcG) factors and trithorax group (trxG) factors. Yet, despite their importance, only a few trxG factors have been characterized in plants and their roles in regulating plant development are poorly defined. In this work, we report that the closely related Arabidopsis trxG genes ULTRAPETALA1 (ULT1) and ULT2 have overlapping functions in regulating shoot and floral stem cell accumulation, with ULT1 playing a major role but ULT2 also making a minor contribution. The two genes also have a novel, redundant activity in establishing the apical–basal polarity axis of the gynoecium, indicating that they function in differentiating tissues. Like ULT1 proteins, ULT2 proteins have a dual nuclear and cytoplasmic localization, and the two proteins physically associate in planta. Finally, we demonstrate that ULT1 and ULT2 have very similar overexpression phenotypes and regulate a common set of key development target genes, including floral MADS-box genes and class I KNOX genes. Our results reveal that chromatin remodeling mediated by the ULT1 and ULT2 proteins is necessary to control the development of meristems and reproductive organs. They also suggest that, like their animal counterparts, plant trxG proteins may function in multi-protein complexes to up-regulate the expression of key stage- and tissue-specific developmental regulatory genes.

  14. PHYSIOLOGY AND GENETIC ASPECTS OF THE REGULATION OF EXPRESSION MILK PROTEIN GENES

    Directory of Open Access Journals (Sweden)

    Jozef Bulla

    2013-06-01

    Full Text Available For the genetic improvement of milk composition and milk yield, both the typing of different protein variants and knowledge about the regulation of expression of the different milk protein genes are important. Some of the processing properties of milk are dependent on the milk composition. Information about the DNA sequence and genes involved in the expression of the milk protein genes,therefore,is big importance for genetic improvement of these traits in animals breeding programmes.In recent years more data has become available concerning the regulation of expression of the milk protein genes and as might have been expected from the complex multihormonal control of these genes it appears to be rather complex. Although several mammary gland specific factors that play a role in expression of some of these genes have been identified,none of these factors has been shown to be involved in the expression of all or the majority of the milk protein genes.

  15. CovR-controlled global regulation of gene expression in Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Alexander Dmitriev

    Full Text Available CovR/S is a two-component signal transduction system (TCS that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI. Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus.

  16. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  17. The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Lloyd, Alan; Drews, Gary N

    2008-08-01

    The female gametophyte contains two synergid cells that play a role in many steps of the angiosperm reproductive process, including pollen tube guidance. At their micropylar poles, the synergid cells have a thickened and elaborated cell wall: the filiform apparatus that is thought to play a role in the secretion of the pollen tube attractant(s). MYB98 regulates an important subcircuit of the synergid gene regulatory network (GRN) that functions to activate the expression of genes required for pollen tube guidance and filiform apparatus formation. The MYB98 subcircuit comprises at least 83 downstream genes, including 48 genes within four gene families (CRP810, CRP3700, CRP3730 and CRP3740) that encode Cys-rich proteins. We show that the 11 CRP3700 genes, which include DD11 and DD18, are regulated by a common cis-element, GTAACNT, and that a multimer of this sequence confers MYB98-dependent synergid expression. The GTAACNT element contains the MYB98-binding site identified in vitro, suggesting that the 11 CRP3700 genes are direct targets of MYB98. We also show that five of the CRP810 genes, which include DD2, lack a functional GTAACNT element, suggesting that they are not directly regulated by MYB98. In addition, we show that the five CRP810 genes are regulated by the cis-element AACGT, and that a multimer of this sequence confers synergid expression. Together, these results suggest that the MYB98 branch of the synergid GRN is multi-tiered and, therefore, contains at least one additional downstream transcription factor.

  18. Necdin, a negative growth regulator, is a novel STAT3 target gene down-regulated in human cancer.

    Directory of Open Access Journals (Sweden)

    Rachel Haviland

    Full Text Available Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down-regulating

  19. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  20. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factorsin flower development

    NARCIS (Netherlands)

    Pajoro, A.; Madrigal, P.; Muiño, J.M.; Tomas Matus, J.; Jin, J.; Mecchia, M.A.; Debernardi, J.M.; Palatnik, J.F.; Balazadeh, S.; Arif, M.; Ó’Maoiléidigh, D.S.; Wellmer, F.; Krajewski, P.; Riechmann, J.L.; Angenent, G.C.

    2014-01-01

    Background: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanism

  1. X chromosome regulation of autosomal gene expression in bovine blastocysts

    OpenAIRE

    Itoh, Yuichiro; Arnold, Arthur P.

    2014-01-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions b...

  2. The Keratin 6 gene family. Charaterization and regulation; La familia de genes de la queratina 6. Caracterizacion y regulacion

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Espinel, J.M. [Universidad Complutense de Madrid. Dept. Biologia (Spain)

    1992-12-31

    Cytokeratins are a family of ca. 30 proteins that are expressed exclusively in epithelial cells, where they constitute the intermediate filaments cytoskeleton. Keratin 6 is expressed in some tissues (tongue, esophagus, foot sole epidermis, etc.), as well as in the suprabasal layers of epidermis under hyperproliferative stimuli, such as tpa, wound healing, etc. In addition, it is expressed in most cultured epidermal cells lines. We have found that there are three different genes coding for similar-but not identical-k6 polypeptides in the cow. We have used CAT assays, gel retardation and footprinting techniques to analyze the promoter of one of the genes in several cell lines and have found two elements implicated in the regulation of this gene. One of them is a AP1-like site and the other seems to be a retinoic-acid responsive element. Implications of these findings for the regulation of the K6 gene are discussed. (author).250 refs, 48 figs.

  3. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression

    OpenAIRE

    Gutu, Andrian; Nesbit, April D.; Alverson, Andrew J.; Palmer, Jeffrey D.; Kehoe, David M.

    2013-01-01

    The regulation of photosynthesis is important, yet poorly understood. Our work reveals a previously undescribed form of photosynthesis gene regulation in cyanobacteria that apparently also controls gene expression in plants, including commercially important crops. This finding may provide a unique approach to modifying the environmental responses and developmental programs of agriculturally important species. In addition, translation is a key biological process, and many of its important feat...

  4. NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis

    OpenAIRE

    2013-01-01

    Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90...

  5. Molecular Modification of a HSV-1 Protein and Its Associated Gene Transcriptional Regulation

    Institute of Scientific and Technical Information of China (English)

    Yan-chun CHE; Li JIANG; Qi-han LI

    2008-01-01

    The molecular modifications of Herpes Simplex Virus Type Ⅰ (HSV-1) proteins represented by acetylation and phosphorylation are essential to its biological functions.The cellular chromatin-remodeling/assembly is involved in HSV-1 associated gene transcriptional regulation in human cells harboring HSV-1 lytic or latent infections.Further investigation on these biological events would provide a better understanding of the mechanisms of HSV- 1 viral gene transcriptional regulation.

  6. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    Institute of Scientific and Technical Information of China (English)

    Guangxiao Yang; Setsuko Komatsu

    2004-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice.

  7. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  8. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    Full Text Available Abstract Background Microarray technology is a widely used approach for monitoring genome-wide gene expression. For Arabidopsis, there are over 1,800 microarray hybridizations representing many different experimental conditions on Affymetrix™ ATH1 gene chips alone. This huge amount of data offers a unique opportunity to infer the principles that govern the regulation of gene expression in plants. Results We used bioinformatics methods to analyze publicly available data obtained using the ATH1 chip from Affymetrix. A total of 1887 ATH1 hybridizations were normalized and filtered to eliminate low-quality hybridizations. We classified and compared control and treatment hybridizations and determined differential gene expression. The largest differences in gene expression were observed when comparing samples obtained from different organs. On average, ten-fold more genes were differentially expressed between organs as compared to any other experimental variable. We defined "gene responsiveness" as the number of comparisons in which a gene changed its expression significantly. We defined genes with the highest and lowest responsiveness levels as hypervariable and housekeeping genes, respectively. Remarkably, housekeeping genes were best distinguished from hypervariable genes by differences in methylation status in their transcribed regions. Moreover, methylation in the transcribed region was inversely correlated (R2 = 0.8 with gene responsiveness on a genome-wide scale. We provide an example of this negative relationship using genes encoding TCA cycle enzymes, by contrasting their regulatory responsiveness to nitrate and methylation status in their transcribed regions. Conclusion Our results indicate that the Arabidopsis transcriptome is largely established during development and is comparatively stable when faced with external perturbations. We suggest a novel functional role for DNA methylation in the transcribed region as a key determinant

  9. hLGDB: a database of human lysosomal genes and their regulation.

    Science.gov (United States)

    Brozzi, Alessandro; Urbanelli, Lorena; Germain, Pierre Luc; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/.

  10. Differential regulation of the period genes in striatal regions following cocaine exposure.

    Directory of Open Access Journals (Sweden)

    Edgardo Falcon

    Full Text Available Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc and Caudate Putamen (CP, regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per genes and Neuronal PAS Domain Protein 2 (Npas2 are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2.

  11. Retrograde regulation of nuclear gene expression in CW-CMS of rice.

    Science.gov (United States)

    Fujii, Sota; Komatsu, Setsuko; Toriyama, Kinya

    2007-02-01

    The CW-cytoplasmic male sterility (CMS) line has the cytoplasm of Oryza rufipogon Griff, and mature pollen is morphologically normal under an optical microscope but lacks the ability to germinate; restorer gene Rf17 has been identified as restoring this ability. The difference between nuclear gene expression in mature anthers was compared for the CW-CMS line, [cms-CW] rf17rf17, and a maintainer line with normal cytoplasm of Oryza sativa L., [normal] rf17rf17. Using a 22-k rice oligoarray we detected 58 genes that were up-regulated more than threefold in the CW-CMS line. Expression in other organs was further investigated for 20 genes using RT-PCR. Five genes, including genes for alternative oxidase, were found to be preferentially expressed in [cms-CW] rf17rf17 but not in [normal] rf17rf17 or [cms-CW] Rf17Rf17. Such [cms-CW] rf17rf17-specific gene expression was only observed in mature anthers but not in leaves, stems, or roots, indicating the presence of anther-specific mitochondrial retrograde regulation of nuclear gene expression, and that Rf17 has a role in restoring the ectopic gene expression. We also used a proteomic approach to discover the retrograde regulated proteins and identified six proteins that were accumulated differently. These results reveal organ-specific induced mitochondrial retrograde pathways affecting nuclear gene expression possibly related to CMS.

  12. Gene regulations in HBV-related liver cirrhosis closely correlate with disease severity.

    Science.gov (United States)

    Lee, Seram; Kim, Soyoun

    2007-09-30

    Liver cirrhosis (LC) is defined as comprising diffuse fibrosis and regenerating nodules of the liver. The biochemical and anatomical dysfunction in LC results from both reduced liver cell number and portal vascular derangement. Although several studies have investigated dysregulated genes in cirrhotic nodules, little is known about the genes implicated in the pathophysiologic change of LC or about their relationship with the degree of decompensation. Here, we applied cDNA microarray analysis using 38 HBsAg-positive LC specimens to identify the genes dysregulated in HBV-associated LC and to evaluate their relation to disease severity. Among 1063 known cancer- and apoptosis-related genes, we identified 104 genes that were significantly up- (44) or down- (60) regulated in LC. Interestingly, this subset of 104 genes was characteristically correlated with the degree of decompensation, called the Pugh-Child classification (20 Pugh-Child A, 10 Pugh-Child B, and 8 Pugh-Child C). Patient samples from Pugh-Child C exhibited a distinct pattern of gene expression relative to those of Pugh-Child A and B. Especially in Pugh-Child C, genes encoding hepatic proteins and metabolizing enzymes were significantly down-regulated, while genes encoding various molecules related to cell replication were up-regulated. Our results suggest that subsets of genes in liver cells correspond to the pathophysiologic change of LC according to disease severity and possibly to hepatocarcinogenesis.

  13. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora.

    Science.gov (United States)

    Wang, Dongping; Qi, Mingsheng; Calla, Bernarda; Korban, Schuyler S; Clough, Steven J; Cock, Peter J A; Sundin, George W; Toth, Ian; Zhao, Youfu

    2012-01-01

    The exopolysaccharide amylovoran is one of the major pathogenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also found that the hybrid sensor kinase RcsC differentially regulates amylovoran production in vitro and in vivo. To further understand how the Rcs system regulates E. amylovora virulence gene expression, we conducted genome-wide microarray analyses to determine the regulons of RcsB and RcsC in liquid medium and on immature pear fruit. Array analyses identified a total of 648 genes differentially regulated by RcsCB in vitro and in vivo. Consistent with our previous findings, RcsB acts as a positive regulator in both conditions, while RcsC positively controls expression of amylovoran biosynthetic genes in vivo but negatively controls expression in vitro. Besides amylovoran biosynthesis and regulatory genes, cell-wall and cell-envelope (membrane) as well as regulatory genes were identified as the major components of the RcsBC regulon, including many novel genes. We have also demonstrated that transcripts of rcsA, rcsC, and rcsD genes but not the rcsB gene were up-regulated when bacterial cells were grown in minimal medium or following infection of pear fruits compared with those grown in Luria Bertani medium. Furthermore, using the genome of E. amylovora ATCC 49946, a hidden Markov model predicted 60 genes with a candidate RcsB binding site in the intergenic region, 28 of which were identified in the microarray assay. Based on these findings as well as previous reported data, a working model has been proposed to illustrate how the Rcs phosphorelay system regulates virulence gene expression in E. amylovora.

  14. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  15. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes.

    Science.gov (United States)

    Rosario, Christopher J; Tan, Ming

    2012-06-01

    The obligate intracellular bacterium Chlamydia has an unusual developmental cycle in which there is conversion between two forms that are specialized for either intracellular replication or propagation of the infection to a new host cell. Expression of late chlamydial genes is upregulated during conversion from the replicating to the infectious form, but the mechanism for this temporal regulation is unknown. We found that EUO, which is expressed from an early gene, binds to two sites upstream of the late operon omcAB, but only the downstream site was necessary for transcriptional repression. Using gel shift and in vitro transcription assays we showed that EUO specifically bound and repressed promoters of Chlamydia trachomatis late genes, but not early or mid genes. These findings support a role for EUO as a temporal repressor that negatively regulates late chlamydial genes and prevents their premature expression. The basis of this specificity is the ability of EUO to selectively bind promoter regions of late genes, which would prevent their transcription by RNA polymerase. Thus, we propose that EUO is a master regulator that prevents the terminal differentiation of the replicating form of chlamydiae into the infectious form until sufficient rounds of replication have occurred.

  16. Early Growth Response gene 1 (Egr-1) regulates HSV-1 ICP4 and ICP22 gene expression

    Institute of Scientific and Technical Information of China (English)

    Gautam R Bedadala; Rajeswara C Pinnoji; Shao-Chung V Hsia

    2007-01-01

    The molecular mechanisms mediating herpes simplex virus type 1 (HSV-1) gene silencing during latent infection are not clear. Five copies of early growth response gene 1 (Egr-1) binding elements were identified in the intron of HSV-1 ICP22 (infected cell protein No. 22) gene, leading to the hypothesis that Egr-1 binds to the viral genome and regulates the viral gene expression. Transient co-transfection assays indicated that Egr-1 negatively regulated the transcription of both full-length and intron-removed ICP22 promoters. The same assays also revealed that Egr-1 repressed ICP4 (infected cell protein No. 4) promoter activity in a dose-dependent manner but showed less inhibition when the intron was removed.Histone deacetylation was not involved in this regulation since histone deacetylase inhibitor trichostatin A did not exhibit any effect on Egr-1-mediated repression. Chromatin immunoprecipitation assays showed that Egr-1 reduced the binding of Sp1 to the promoters and that the co-repressor Nab2 (NGFI-A/EGR1-binding protein) was recruited to the proximity of ICP4 in the presence of Egr-1. These results suggested that the multi functional transcription factor Egr-1 can repress HSV-1 immediate-early gene expression through the recruitment of co-repressor Nab2 and reduction of Sp1 occupancy,and thus may play a critical role in HSV-1 gene silencing during latency.

  17. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  18. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  19. Transcriptional regulation of cardiac genes balance pro- and anti-hypertrophic mechanisms in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Nina Gennebäck

    2012-06-01

    Full Text Available Hypertrophic cardiomyopathy (HCM is characterized by unexplained left ventricular hypertrophy. HCM is often hereditary, but our knowledge of the mechanisms leading from mutation to phenotype is incomplete. The transcriptional expression patterns in the myocar - dium of HCM patients may contribute to understanding the mechanisms that drive and stabilize the hypertrophy. Cardiac myectomies/biopsies from 8 patients with hypertrophic obstructive cardiomyopathy (HOCM and 5 controls were studied with whole genome Illumina microarray gene expression (detecting 18 189 mRNA. When comparing HOCM myocardium to controls, there was significant transcriptional down-regulation of the MYH6, EGR1, APOB and FOS genes, and significant transcriptional up-regulation of the ACE2, JAK2, NPPA (ANP, APOA1 and HDAC5 genes. The transcriptional regulation revealed both pro- and anti-hypertrophic mechanisms. The pro-hypertrophic response was explained by the transcriptional down-regulation of MYH6, indicating that the switch to the fetal gene program is maintained, and the transcriptional up-regulation of JAK2 in the JAK-STAT pathway. The anti-hypertrophic response was seen as a transcriptional down-regulation of the immediate early genes (IEGs, FOS and EGR1, and a transcriptional up-regulation of ACE2 and HDAC5. This can be interpreted as a transcriptional endogenous protection system in the heart of the HOCM patients, neither growing nor suppressing the already hypertrophic myocardium.

  20. Condensin-mediated chromosome organization and gene regulation

    Directory of Open Access Journals (Sweden)

    Alyssa Christine Lau

    2015-01-01

    Full Text Available In many organisms sexual fate is determined by a chromosome-based method which entails a difference in sex chromosome-linked gene dosage. Consequently, a gene regulatory mechanism called dosage compensation equalizes X-linked gene expression between the sexes. Dosage compensation initiates as cells transition from pluripotency to differentiation. In C. elegans, dosage compensation is achieved by the dosage compensation complex (DCC binding to both X chromosomes in hermaphrodites to downregulate gene expression by two fold. The DCC contains a subcomplex (condensin IDC similar to the evolutionarily conserved condensin complexes which play a fundamental role in chromosome dynamics during mitosis. Therefore, mechanisms related to mitotic chromosome condensation are hypothesized to mediate dosage compensation. Consistent with this hypothesis, monomethylation of histone H4 lysine 20 (H4K20 is increased, whereas acetylation of histone H4 lysine 16 (H4K16 is decreased, both on mitotic chromosomes and on interphase dosage compensated X chromosomes in worms. These observations suggest that interphase dosage compensated X chromosomes maintain some characteristics associated with condensed mitotic chromosome. This chromosome state is stably propagated from one cell generation to the next. In this review we will speculate on how the biochemical activities of condensin can achieve both mitotic chromosome compaction and gene repression.

  1. AI-2-dependent gene regulation in Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Sturdevant Daniel E

    2008-01-01

    Full Text Available Abstract Background Autoinducer 2 (AI-2, a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. Results To determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. Conclusion Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium.

  2. A single-molecule view of gene regulation in cancer

    Science.gov (United States)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  3. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, R.S.; Rosen, J.M.

    1988-08-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  4. Threshold-dominated regulation hides genetic variation in gene expression networks

    Directory of Open Access Journals (Sweden)

    Plahte Erik

    2007-12-01

    Full Text Available Abstract Background In dynamical models with feedback and sigmoidal response functions, some or all variables have thresholds around which they regulate themselves or other variables. A mathematical analysis has shown that when the dose-response functions approach binary or on/off responses, any variable with an equilibrium value close to one of its thresholds is very robust to parameter perturbations of a homeostatic state. We denote this threshold robustness. To check the empirical relevance of this phenomenon with response function steepnesses ranging from a near on/off response down to Michaelis-Menten conditions, we have performed a simulation study to investigate the degree of threshold robustness in models for a three-gene system with one downstream gene, using several logical input gates, but excluding models with positive feedback to avoid multistationarity. Varying parameter values representing functional genetic variation, we have analysed the coefficient of variation (CV of the gene product concentrations in the stable state for the regulating genes in absolute terms and compared to the CV for the unregulating downstream gene. The sigmoidal or binary dose-response functions in these models can be considered as phenomenological models of the aggregated effects on protein or mRNA expression rates of all cellular reactions involved in gene expression. Results For all the models, threshold robustness increases with increasing response steepness. The CVs of the regulating genes are significantly smaller than for the unregulating gene, in particular for steep responses. The effect becomes less prominent as steepnesses approach Michaelis-Menten conditions. If the parameter perturbation shifts the equilibrium value too far away from threshold, the gene product is no longer an effective regulator and robustness is lost. Threshold robustness arises when a variable is an active regulator around its threshold, and this function is maintained by

  5. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  6. Sugar- and nitrogen-dependent regulation of an Amanita muscaria phenylalanine ammonium lyase gene.

    Science.gov (United States)

    Nehls, U; Ecke, M; Hampp, R

    1999-03-01

    The cDNA of a key enzyme of secondary metabolism, phenylalanine ammonium lyase, was identified for an ectomycorrhizal fungus by differential screening of a mycorrhizal library. The gene was highly expressed in hyphae grown at low external monosaccharide concentrations, but its expression was 30-fold reduced at elevated concentrations. Gene repression was regulated by hexokinase.

  7. TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer.

    Science.gov (United States)

    Chapman, Christopher G; Mariani, Christopher J; Wu, Feng; Meckel, Katherine; Butun, Fatma; Chuang, Alice; Madzo, Jozef; Bissonette, Marc B; Kwon, John H; Godley, Lucy A

    2015-12-03

    The formation of differentiated cell types from pluripotent progenitors involves epigenetic regulation of gene expression. DNA hydroxymethylation results from the enzymatic oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) 5-mC dioxygenase enzymes. Previous work has mapped changes in 5-mC during differentiation of intestinal stem cells. However, whether or not 5-hmC regulates colonocyte differentiation is unknown. Here we show that 5-hmC regulates gene expression during colonocyte differentiation and controls gene expression in human colon cancers. Genome-wide profiling of 5-hmC during in vitro colonic differentiation demonstrated that 5-hmC is gained at highly expressed and induced genes and is associated with intestinal transcription factor binding sites, including those for HNF4A and CDX2. TET1 induction occurred during differentiation, and TET1 knockdown altered gene expression and inhibited barrier formation of colonocytes. We find that the 5-hmC distribution in primary human colonocytes parallels the distribution found in differentiated cells in vitro, and that gene-specific 5-hmC changes in human colon cancers are directly correlated with changes in gene expression. Our results support a model in which 5-hmC regulates differentiation of adult human intestine and 5-hmC alterations contribute to the disrupted gene expression in colon cancer.

  8. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.

    Directory of Open Access Journals (Sweden)

    Nadja Knoll

    Full Text Available There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1 16 nuclear regulators of mitochondrial genes, (2 91 genes for oxidative phosphorylation and (3 966 nuclear-encoded mitochondrial genes. Gene set enrichment analysis (GSEA showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents and a population-based GWAS sample (KORA F4, n = 1,743. A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th and 95(th percentile of the set of all gene-wise corrected p-values as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50 = 0.0103. This finding was not confirmed in the trios (p(GSEA,50 = 0.5991, but in KORA (p(GSEA,50 = 0.0398. The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50 = 0.1052, p(MAGENTA,75 = 0.0251. The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.

  9. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activatio...

  10. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    Energy Technology Data Exchange (ETDEWEB)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  11. Jarid1b targets genes regulating development and is involved in neural differentiation

    DEFF Research Database (Denmark)

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina

    2011-01-01

    H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and d...

  12. The importance of topoisomerases for chromatin regulated genes

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Pedersen, Jakob Madsen; Rødgaard, Morten Terpager;

    2013-01-01

    DNA topoisomerases are enzymes, which function to relieve torsional stress in the DNA helix by introducing transient breaks into the DNA molecule. By use of Saccharomyces cerevisiae and microarray technology we have previously shown that topoisomerases are required for the activation of chromatin...... topoisomerases for optimal activation, but in contrast to the PHO5 gene, topoisomerases are not required for chromatin remodeling of the GAL1/10 promoter region, indicating a different role of the enzymes. We are currently performing a detailed investigation of the GAL genes to elucidate the precise role...

  13. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  14. Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

    OpenAIRE

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene...

  15. Pheromones in a superorganism: from gene to social regulation.

    Science.gov (United States)

    Alaux, C; Maisonnasse, A; Le Conte, Y

    2010-01-01

    Analogous to the importance of hormones in controlling organism homoeostasis, pheromones play a major role in the regulation of group homoeostasis at the social level. In social insects, pheromones coordinate the association of "unitary" organisms into a coherent social unit or so called "superorganism." For many years, honey bees have been a convincing model for studying pheromone regulation of social life. In addition, with the recent sequencing of its genome, a global view of pheromone communication is starting to emerge, and it is now possible to decipher this complex chemical language from the molecular to the social level. We review here the different pheromones regulating the main biological functions of the superorganism and detail their respective action on the genome, physiology and behavior of nestmates. Finally, we suggest some future research that may improve our understanding of the remarkably rich syntax of pheromone communication at the social level.

  16. LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.

    Science.gov (United States)

    Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun

    2012-01-01

    Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene

  17. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Directory of Open Access Journals (Sweden)

    Bhavnani Suresh K

    2010-11-01

    Full Text Available Abstract Background In a recent study, two-dimensional (2D network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method revealed that genes implicated in many diseases (non-specific genes tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.

  18. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gang, E-mail: zhaog69@sjtu.edu.cn [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin (China); Chen, Jiawei, E-mail: jiaweichen2000@gmail.com [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Deng, Yanqiu [Pathophysiology Department, Tianjin Medical University, Tianjin (China); Gao, Feng [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Zhu, Jiwei [Basic Medical College, Harbin Medical University, Harbin (China); Feng, Zhenzhong; Lv, Xiuhong [Department of Pathology, The First People' s Hospital, Shanghai Jiaotong University, Shanghai (China); Zhao, Zheng [SAS Headquarters, S6013, 600 Research Drive, Cary, NC (United States)

    2011-04-29

    Highlights: {yields} NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. {yields} NDRG1 knockdown resulted in increased cell invasion activities. {yields} Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. {yields} Eleven common NDRG1-regulated genes might enhance cell invasive activity. {yields} Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  19. Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes.

    Directory of Open Access Journals (Sweden)

    Mary Q Yang

    2007-04-01

    Full Text Available A "bidirectional gene pair" comprises two adjacent genes whose transcription start sites are neighboring and directed away from each other. The intervening regulatory region is called a "bidirectional promoter." These promoters are often associated with genes that function in DNA repair, with the potential to participate in the development of cancer. No connection between these gene pairs and cancer has been previously investigated. Using the database of spliced-expressed sequence tags (ESTs, we identified the most complete collection of human transcripts under the control of bidirectional promoters. A rigorous screen of the spliced EST data identified new bidirectional promoters, many of which functioned as alternative promoters or regulated novel transcripts. Additionally, we show a highly significant enrichment of bidirectional promoters in genes implicated in somatic cancer, including a substantial number of genes implicated in breast and ovarian cancers. The repeated use of this promoter structure in the human genome suggests it could regulate co-expression patterns among groups of genes. Using microarray expression data from 79 human tissues, we verify regulatory networks among genes controlled by bidirectional promoters. Subsets of these promoters contain similar combinations of transcription factor binding sites, including evolutionarily conserved ETS factor binding sites in ERBB2, FANCD2, and BRCA2. Interpreting the regulation of genes involved in co-expression networks, especially those involved in cancer, will be an important step toward defining molecular events that may contribute to disease.

  20. Impact of physical activity and doping on epigenetic gene regulation.

    Science.gov (United States)

    Schwarzenbach, Heidi

    2011-10-01

    To achieve success in sports, many athletes consume doping substances, such as anabolic androgenic steroids and growth hormones, and ignore the negative influence of these drugs on their health. Apart from the unethical aspect of doping in sports, it is essential to consider the tremendous risk it represents to their physical condition. The abuse of pharmaceuticals which improve athletic performance may alter the expression of specific genes involved in muscle and bone metabolism by epigenetic mechanisms, such as DNA methylation and histone modifications. Moreover, excessive and relentless training to increase the muscle mass, may also have an influence on the health of the athletes. This stress releases neurotransmitters and growth factors, and may affect the expression of endogenous genes by DNA methylation, too. This paper focuses on the relationship between epigenetic mechanisms and sports, highlights the potential consequences of abuse of doping drugs on gene expression, and describes methods to molecularly detect epigenetic changes of gene markers reflecting the physiological or metabolic effects of doping agents.

  1. Coordinate gene regulation by fimbriae-induced signal transduction

    DEFF Research Database (Denmark)

    Schembri, Mark; Klemm, Per

    2001-01-01

    of Ag43 production. No effect was observed in an oxyR mutant. We conclude that fimbriae expression per se constitutes a signal transduction mechanism that affects a number of unrelated genes via the thiol-disulfide status of OxyR. Thus, phase variation in fimbrial expression is coordinated...

  2. Early gene regulation of osteogenesis in embryonic stem cells

    KAUST Repository

    Kirkham, Glen R.

    2012-01-01

    The early gene regulatory networks (GRNs) that mediate stem cell differentiation are complex, and the underlying regulatory associations can be difficult to map accurately. In this study, the expression profiles of the genes Dlx5, Msx2 and Runx2 in mouse embryonic stem cells were monitored over a 48 hour period after exposure to the growth factors BMP2 and TGFβ1. Candidate GRNs of early osteogenesis were constructed based on published experimental findings and simulation results of Boolean and ordinary differential equation models were compared with our experimental data in order to test the validity of these models. Three gene regulatory networks were found to be consistent with the data, one of these networks exhibited sustained oscillation, a behaviour which is consistent with the general view of embryonic stem cell plasticity. The work cycle presented in this paper illustrates how mathematical modelling can be used to elucidate from gene expression profiles GRNs that are consistent with experimental data. © 2012 The Royal Society of Chemistry.

  3. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  4. Human nutrigenomics of gene regulation by dietary fatty acids

    NARCIS (Netherlands)

    Afman, L.A.; Muller, M.R.

    2012-01-01

    Nutrigenomics employs high-throughput genomics technologies to unravel how nutrients modulate gene and protein expression and ultimately influence cellular and organism metabolism. The most often-applied genomics technique so far is transcriptomics, which allows quantifying genome-wide changes in ge

  5. Transcriptional and posttranscriptional regulation of the proliferating cell nuclear antigen gene.

    OpenAIRE

    1990-01-01

    The steady-state mRNA levels of the proliferating cell nuclear antigen (PCNA) gene are growth regulated. In a previous paper (L. Ottavio, C.-D. Chang, M. G. Rizzo, S. Travali, C. Casadevall, and R. Baserga, Mol. Cell. Biol. 10:303-309, 1990), we reported that introns (especially intron 4) participate in growth regulation of the PCNA gene. We have now investigated the role of the 5'-flanking sequence of the human PCNA gene stably transfected into BALB/c 3T3 cells. Promoters of different length...

  6. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  7. SUMOylation of the ING1b tumor suppressor regulates gene transcription

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Guérillon, Claire; Kim, Tae-Sun;

    2014-01-01

    The INhibitor of Growth (ING) proteins are encoded as multiple isoforms in five ING genes (ING1 -5) and act as type II tumor suppressors. They are growth inhibitory when overexpressed and are frequently mislocalized or downregulated in several forms of cancer. ING1 and ING2 are stoichiometric mem......1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription....

  8. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    Science.gov (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  9. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Mawatari Kazuaki

    2008-09-01

    Full Text Available Abstract Background The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH, which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant. Results The production of TDH in the hfq deletion mutant was much higher than in the parental strain. Quantification of tdh promoter activity and mRNA demonstrated that transcription of the tdh gene was up-regulated in the mutant strain. The hfq-complemented strain had a normal (parental amount of tdh expression. The transcriptional activity of tdhA was particularly increased in the mutant strain. These results indicate that Hfq is closely associated with the expression level of the tdh gene. Interestingly, other genes involved in the pathogenicity of V. parahaemolyticus, such as VP1680, vopC, and vopT, were also up-regulated in the mutant strain. Conclusion Hfq regulates the expression of virulence-associated factors such as TDH and may be involved in the pathogenicity of V. parahaemolyticus.

  10. Genotype-specific regulation of cold-responsive genes in cypress (Cupressus sempervirens L.).

    Science.gov (United States)

    Pedron, Luca; Baldi, Paolo; Hietala, Ari M; La Porta, Nicola

    2009-05-15

    Cold acclimation in plants involves a very complex molecular response, with the regulation of many different genes and metabolic pathways. In this work fifteen cypress (Cupressus sempervirens) genes putatively regulated during cold exposure were isolated and their expression was studied in five cypress genotypes, along 15 days of treatment at 3 degrees C. Treated samples of shoots were collected from four year old cypress seedlings and a subtractive hybridization approach (PCR-Select) was performed after mRNA extraction. Fifteen genes were selected according to sequence similarities after a GenBank search and their expression was studied using Real-time PCR. Among these genes, five (ELIP, aquaporin, dehydrin and two cold-induced proteins) and four (oleosin, chlorophyll a/b-binding protein, oxidoreductase and rubisco activase) resulted respectively up- and down-regulated by the treatment in all tested genotypes. Finally, three genes (metal-binding protein, nodulin-like protein and beta-amylase) showed remarkable different pattern among genotypes. A consistent relationship was found between the cold regulation of the genes studied and their putative function, suggesting the existence of different cold response pathways in cypress. The possible roles of the low temperature-regulated sequences and of the individual expression differences during cypress cold acclimation are proposed and discussed.

  11. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    Science.gov (United States)

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-08

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.

  12. Harnessing single cell sorting to identify cell division genes and regulators in bacteria.

    Directory of Open Access Journals (Sweden)

    Catherine Burke

    Full Text Available Cell division is an essential cellular process that requires an array of known and unknown proteins for its spatial and temporal regulation. Here we develop a novel, high-throughput screening method for the identification of bacterial cell division genes and regulators. The method combines the over-expression of a shotgun genomic expression library to perturb the cell division process with high-throughput flow cytometry sorting to screen many thousands of clones. Using this approach, we recovered clones with a filamentous morphology for the model bacterium, Escherichia coli. Genetic analysis revealed that our screen identified both known cell division genes, and genes that have not previously been identified to be involved in cell division. This novel screening strategy is applicable to a wide range of organisms, including pathogenic bacteria, where cell division genes and regulators are attractive drug targets for antibiotic development.

  13. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  14. p53 prevents neurodegeneration by regulating synaptic genes.

    Science.gov (United States)

    Merlo, Paola; Frost, Bess; Peng, Shouyong; Yang, Yawei J; Park, Peter J; Feany, Mel

    2014-12-16

    DNA damage has been implicated in neurodegenerative disorders, including Alzheimer's disease and other tauopathies, but the consequences of genotoxic stress to postmitotic neurons are poorly understood. Here we demonstrate that p53, a key mediator of the DNA damage response, plays a neuroprotective role in a Drosophila model of tauopathy. Further, through a whole-genome ChIP-chip analysis, we identify genes controlled by p53 in postmitotic neurons. We genetically validate a specific pathway, synaptic function, in p53-mediated neuroprotection. We then demonstrate that the control of synaptic genes by p53 is conserved in mammals. Collectively, our results implicate synaptic function as a central target in p53-dependent protection from neurodegeneration.

  15. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  16. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Science.gov (United States)

    Love, Harold D; Booton, S Erin; Boone, Braden E; Breyer, Joan P; Koyama, Tatsuki; Revelo, Monica P; Shappell, Scott B; Smith, Jeffrey R; Hayward, Simon W

    2009-12-21

    Benign prostatic hyperplasia (BPH) and prostate carcinoma (CaP) are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ) human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1) highly expressed in prostate, 2) had significant expression changes in response to androgens, and, 3) encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  17. Sucrose prevents up-regulation of senescence-associated genes in carnation petals.

    Science.gov (United States)

    Hoeberichts, Frank A; van Doorn, Wouter G; Vorst, Oscar; Hall, Robert D; van Wordragen, Monique F

    2007-01-01

    cDNA microarrays were used to characterize senescence-associated gene expression in petals of cut carnation (Dianthus caryophyllus) flowers, sampled from anthesis to the first senescence symptoms. The population of PCR fragments spotted on these microarrays was enriched for flower-specific and senescence-specific genes, using subtractive hybridization. About 90% of the transcripts showed a large increase in quantity, approximately 25% transiently, and about 65% throughout the 7 d experiment. Treatment with silver thiosulphate (STS), which blocks the ethylene receptor and prevented the normal senescence symptoms, prevented the up-regulation of almost all of these genes. Sucrose treatment also considerably delayed visible senescence. Its effect on gene expression was very similar to that of STS, suggesting that soluble sugars act as a repressor of ethylene signal transduction. Two fragments that encoded a carnation EIN3-like (EIL) protein were isolated, some of which are key transcription factors that control ethylene response genes. One of these (Dc-EIL3) was up-regulated during senescence. Its up-regulation was delayed by STS and prevented by sucrose. Sucrose, therefore, seems to repress ethylene signalling, in part, by preventing up-regulation of Dc-EIL3. Some other transcription factors displayed an early increase in transcript abundance: a MYB-like DNA binding protein, a MYC protein, a MADS-box factor, and a zinc finger protein. Genes suggesting a role in senescence of hormones other than ethylene encoded an Aux/IAA protein, which regulate transcription of auxin-induced genes, and a cytokinin oxidase/dehydrogenase, which degrades cytokinin. Taken together, the results suggest a master switch during senescence, controlling the co-ordinated up-regulation of numerous ethylene response genes. Dc-EIL3 might be (part of) this master switch.

  18. Multi-membership gene regulation in pathway based microarray analysis

    OpenAIRE

    2011-01-01

    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the inte...

  19. Dissecting cis regulation of gene expression in human metabolic tissues.

    Directory of Open Access Journals (Sweden)

    Radu Dobrin

    Full Text Available Complex diseases such as obesity and type II diabetes can result from a failure in multiple organ systems including the central nervous system and tissues involved in partitioning and disposal of nutrients. Studying the genetics of gene expression in tissues that are involved in the development of these diseases can provide insights into how these tissues interact within the context of disease. Expression quantitative trait locus (eQTL studies identify mRNA expression changes linked to proximal genetic signals (cis eQTLs that have been shown to affect disease. Given the high impact of recent eQTL studies, it is important to understand what role sample size and environment plays in identification of cis eQTLs. Here we show in a genotyped obese human population that the number of cis eQTLs obey precise scaling laws as a function of sample size in three profiled tissues, i.e. omental adipose, subcutaneous adipose and liver. Also, we show that genes (or transcripts with cis eQTL associations detected in a small population are detected at approximately 90% rate in the largest population available for our study, indicating that genes with strong cis acting regulatory elements can be identified with relatively high confidence in smaller populations. However, by increasing the sample size we allow for better detection of weaker and more distantly located cis-regulatory elements. Yet, we determined that the number of tissue specific cis eQTLs saturates in a modestly sized cohort while the number of cis eQTLs common to all tissues fails to reach a maximum value. Understanding the power laws that govern the number and specificity of eQTLs detected in different tissues, will allow a better utilization of genetics of gene expression to inform the molecular mechanism underlying complex disease traits.

  20. Insulin regulation of rat growth hormone gene transcription.

    OpenAIRE

    1986-01-01

    We have previously shown that insulin suppresses growth hormone (GH) messenger (m) RNA levels in rat pituitary cells. To further delineate the molecular mechanism of insulin action, the effect of insulin treatment on GH gene transcription rates was examined in GH3 pituitary cells grown in serum-free defined medium. A transcriptional run-off assay was performed when intact isolated nuclei were allowed to continue RNA synthesis in an in vitro reaction. Specific incorporation of [32P]GTP into RN...

  1. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  2. Post-transcriptional regulation of the chicken thymidine kinase gene.

    Science.gov (United States)

    Groudine, M; Casimir, C

    1984-02-10

    In attempting to understand the molecular basis of the control of chicken thymidine kinase (cTK) gene expression, we have examined the steady state cTK RNA content, and the patterns of DNA methylation, chromatin structure and endogenous nuclear runoff transcription of this gene in dividing and non-dividing cells. Our results reveal that the steady state level of cTK poly A+ RNA is correlated with the divisional activity of normal avian cells and tissues. However, no differences in the pattern of Hpa II site methylation or chromatin structure are found among cells containing high or undetectable levels of steady state cTK RNA. In addition, no differences in cTK transcription as assayed by nuclear runoff experiments are detectable in isolated nuclei derived from dividing or non-dividing cells containing high or low levels of steady state cTK RNA. These results suggest that the principal control of chicken thymidine kinase gene expression is post-transcriptional in nature.

  3. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Wu Chang-Yi

    2008-08-01

    Full Text Available Abstract Background The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. We previously used transcriptome profiling with DNA microarrays to identify 46 potential Zap1 target genes in the yeast genome. In this new study, we used complementary methods to identify additional Zap1 target genes. Results With alternative growth conditions for the microarray experiments and a more sensitive motif identification algorithm, we identified 31 new potential targets of Zap1 activation. Moreover, an analysis of the response of Zap1 target genes to a range of zinc concentrations and to zinc withdrawal over time demonstrated that these genes respond differently to zinc deficiency. Some genes are induced under mild zinc deficiency and act as a first line of defense against this stress. First-line defense genes serve to maintain zinc homeostasis by increasing zinc uptake, and by mobilizing and conserving intracellular zinc pools. Other genes respond only to severe zinc limitation and act as a second line of defense. These second-line defense genes allow cells to adapt to conditions of zinc deficiency and include genes involved in maintaining secretory pathway and cell wall function, and stress responses. Conclusion We have identified several new targets of Zap1-mediated regulation. Furthermore, our results indicate that through the differential regulation of its target genes, Zap1 prioritizes mechanisms of zinc homeostasis and adaptive responses to zinc deficiency.

  4. Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism

    Directory of Open Access Journals (Sweden)

    Dreyer Erwin

    2010-03-01

    Full Text Available Abstract Background Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. Results We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-β in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1β were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. Conclusions We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this

  5. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Directory of Open Access Journals (Sweden)

    Okada Yasukazu

    2010-04-01

    Full Text Available Abstract Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera. Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  6. Growth hormone regulation of rat liver gene expression assessed by SSH and microarray.

    Science.gov (United States)

    Gardmo, Cissi; Swerdlow, Harold; Mode, Agneta

    2002-04-25

    The sexually dimorphic secretion of growth hormone (GH) that prevails in the rat leads to a sex-differentiated expression of GH target genes, particularly in the liver. We have used subtractive suppressive hybridization (SSH) to search for new target genes induced by the female-characteristic, near continuous, pattern of GH secretion. Microarrays and dot-blot hybridizations were used in an attempt to confirm differential ratios of expression of obtained SSH clones. Out of 173 unique SSH clones, 41 could be verified as differentially expressed. Among these, we identified 17 known genes not previously recognized as differentially regulated by the sex-specific GH pattern. Additional SSH clones may also represent genes subjected to sex-specific GH regulation since only transcripts abundantly expressed could be verified. Optimized analyses, specific for each gene, are required to fully characterize the degree of differential expression.

  7. Gene regulation and chromatin organization: relevance of cohesin mutations to human disease.

    Science.gov (United States)

    Watrin, Erwan; Kaiser, Frank J; Wendt, Kerstin S

    2016-04-01

    Consistent with the diverse roles of the cohesin complex in chromosome biology, mutations in genes encoding cohesin and its regulators are found in different types of cancer and in developmental disorders such as Cornelia de Lange Syndrome. It is so far considered that the defects caused by these mutations result from altered function of cohesin in regulating gene expression during development. Chromatin conformation analyses have established the importance of cohesin for the architecture of developmental gene clusters and in vivo studies in mouse and zebrafish demonstrated how cohesin defects lead to gene misregulation and to malformations similar to the related human syndromes. Here we present our current knowledge on cohesin's involvement in gene expression, highlighting molecular and mechanistic consequences of pathogenic mutations in the Cornelia de Lange syndrome.

  8. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    DEFF Research Database (Denmark)

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni;

    2009-01-01

    to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...... Saccharomyces and distant Ascomycetes. Transcriptome data were further used to evaluate the high osmolarity glycerol pathway. All the components of this pathway present in yeast have orthologues in the three Aspergilli studied and its gene expression response suggested that this pathway functions as in S...... and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led...

  9. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  10. Appetite regulation in Schizothorax prenanti by three CART genes.

    Science.gov (United States)

    Yuan, Dengyue; Wei, Rongbin; Wang, Tao; Wu, Yuanbing; Lin, Fangjun; Chen, Hu; Liu, Ju; Gao, Yundi; Zhou, Chaowei; Chen, Defang; Li, Zhiqiong

    2015-12-01

    In recent years, cocaine- and amphetamine-regulated transcript (CART) has received much attention as mediators of appetite regulation in mammals. However, the involvement of CART in the feeding behavior of teleosts has not been well understood. In this study, three distinct CARTs were cloned from the Schizothorax prenanti (S. prenanti). Real-time quantitative PCR were applied to characterize the tissue distribution and appetite regulatory effects of CARTs in S. prenanti. The S. prenanti CART-1, CART-2 and CART-3 full-length cDNA sequences were 597 bp, 694 bp and 749 bp in length, encoding the peptides of 125, 120 and 104 amino acid residues, respectively. All the S. prenanti CARTs consisted of three exons and two introns. Tissue distribution analysis showed that the high mRNA levels of S. prenanti CART-1 were observed in the telencephalon and eye, followed by the hypothalamus, myelencephalon, and mesencephalon. The S. prenanti CART-2 mRNA was mainly found in the mesencephalon, hypothalamus, telencephalon and myelencephalon. The S. prenanti CART-3 mRNA was widely distributed among the tissues, with the high levels in the hypothalamus and foregut. In the periprandial experiment, all three CARTs mRNA expressions in the hypothalamus were highly elevated after a meal, suggesting that CARTs are postprandial satiety signals. In the fasting experiment, all three CARTs mRNA expressions decreased after fasting and increased after refeeding, suggesting that CARTs might be involved in regulation of appetite in the S. prenanti.

  11. Role of Sam68 in Post-Transcriptional Gene Regulation

    Directory of Open Access Journals (Sweden)

    Flora Sánchez-Jiménez

    2013-11-01

    Full Text Available The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K homology (KH single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

  12. Genome-wide studies highlight indirect links between human replication origins and gene regulation.

    Science.gov (United States)

    Cadoret, Jean-Charles; Meisch, Françoise; Hassan-Zadeh, Vahideh; Luyten, Isabelle; Guillet, Claire; Duret, Laurent; Quesneville, Hadi; Prioleau, Marie-Noëlle

    2008-10-14

    To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.

  13. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  14. RNA splicing regulates the temporal order of TNF-induced gene expression.

    Science.gov (United States)

    Hao, Shengli; Baltimore, David

    2013-07-16

    When cells are induced to express inflammatory genes by treatment with TNF, the mRNAs for the induced genes appear in three distinct waves, defining gene groups I, II, and III, or early, intermediate, and late genes. To examine the basis for these different kinetic classes, we have developed a PCR-based procedure to distinguish pre-mRNAs from mRNAs. It shows that the three groups initiate transcription virtually simultaneously but that delays in splicing characterize groups II and III. We also examined the elongation times, concluding that pre-mRNA synthesis is coordinate but splicing differences directly regulate the timing of mRNA production.

  15. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  16. Leaky Scanning and Reinitiation Regulate BACE1 Gene Expression

    OpenAIRE

    Zhou, Weihui; Song, Weihong

    2006-01-01

    β-Site β-amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is the β-secretase in vivo for processing APP to generate amyloid β protein (Aβ). Aβ deposition in the brain is the hallmark of Alzheimer's disease (AD) neuropathology. Inhibition of BACE1 activity has major pharmaceutical potential for AD treatment. The expression of the BACE1 gene is relatively low in vivo. The control of BACE1 expression has not been well defined. There are six upstream AUGs (uAUGs) in the 5′ leader sequenc...

  17. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    The genomes of plants are marked by reoccurring events of whole-genome duplication. These events are major contributors to speciation and provide the genetic material for organisms to evolve ever greater complexity. Duplicated genes, referred to as paralogs, may be retained because they acquired...... new functions, or their gene products are in a dosage balance. Regulatory DNA elements - some of which are conserved across species and hence called conserved non-coding sequences (CNSs) - that control expression of duplicated genes are thus under similar purifying selection. In the present study, I...... have performed in-depth analyses of paralogous genes in Arabidopsis thaliana, their expression profile, their sequence conservation, and their functions, in order to investigate the relationship between gene expression and retention of paralogous genes. Paralogs with lower expression than...

  18. Orthologous transcription factors in bacteria have different functions and regulate different genes.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2007-09-01

    Full Text Available Transcription factors (TFs form large paralogous gene families and have complex evolutionary histories. Here, we ask whether putative orthologs of TFs, from bidirectional best BLAST hits (BBHs, are evolutionary orthologs with conserved functions. We show that BBHs of TFs from distantly related bacteria are usually not evolutionary orthologs. Furthermore, the false orthologs usually respond to different signals and regulate distinct pathways, while the few BBHs that are evolutionary orthologs do have conserved functions. To test the conservation of regulatory interactions, we analyze expression patterns. We find that regulatory relationships between TFs and their regulated genes are usually not conserved for BBHs in Escherichia coli K12 and Bacillus subtilis. Even in the much more closely related bacteria Vibrio cholerae and Shewanella oneidensis MR-1, predicting regulation from E. coli BBHs has high error rates. Using gene-regulon correlations, we identify genes whose expression pattern differs between E. coli and S. oneidensis. Using literature searches and sequence analysis, we show that these changes in expression patterns reflect changes in gene regulation, even for evolutionary orthologs. We conclude that the evolution of bacterial regulation should be analyzed with phylogenetic trees, rather than BBHs, and that bacterial regulatory networks evolve more rapidly than previously thought.

  19. dPORE-miRNA: Polymorphic regulation of microRNA genes

    KAUST Repository

    Schmeier, Sebastian

    2011-02-04

    Background: MicroRNAs (miRNAs) are short non-coding RNA molecules that act as post-transcriptional regulators and affect the regulation of protein-coding genes. Mostly transcribed by PolII, miRNA genes are regulated at the transcriptional level similarly to protein-coding genes. In this study we focus on human miRNAs. These miRNAs are involved in a variety of pathways and can affect many diseases. Our interest is on possible deregulation of the transcription initiation of the miRNA encoding genes, which is facilitated by variations in the genomic sequence of transcriptional control regions (promoters). Methodology: Our aim is to provide an online resource to facilitate the investigation of the potential effects of single nucleotide polymorphisms (SNPs) on miRNA gene regulation. We analyzed SNPs overlapped with predicted transcription factor binding sites (TFBSs) in promoters of miRNA genes. We also accounted for the creation of novel TFBSs due to polymorphisms not present in the reference genome. The resulting changes in the original TFBSs and potential creation of new TFBSs were incorporated into the Dragon Database of Polymorphic Regulation of miRNA genes (dPORE-miRNA). Conclusions: The dPORE-miRNA database enables researchers to explore potential effects of SNPs on the regulation of miRNAs. dPORE-miRNA can be interrogated with regards to: a/miRNAs (their targets, or involvement in diseases, or biological pathways), b/SNPs, or c/transcription factors. dPORE-miRNA can be accessed at http://cbrc.kaust.edu.sa/dpore and http://apps.sanbi.ac.za/dpore/. Its use is free for academic and non-profit users. © 2011 Schmeier et al.

  20. Ets-1 regulates its target genes mainly by DNA methylation in human ovarian cancer.

    Science.gov (United States)

    Wan, S M; Peng, P; Guan, T

    2013-11-01

    Ovarian cancer is the second most common gynaecological cancer worldwide, and its molecular mechanism has not been completely understood. Ets-1 is a member of the Ets transcription family and can play important roles in the regulation of extracellular matrix remodelling, invasion, angiogenesis and drug resistance in several malignancies, including ovarian cancer. In the current study, we downloaded two datasets from Gene Expression Omnibus database and sought to explore the regulation mechanism of Ets-1 in ovarian cancer by computational analysis of gene expression profiles. Microarray analysis identified a total of 548 genes that were regulated by Ets-1 in ovarian cancer. Functional annotation of these genes revealed that Ets-1 may be involved in several biological processes, both physiological and pathological, such as system development, response to stimulus, vascular endothelial growth factor (VEGF) production, morphogenesis, cell proliferation, cell adhesion and signal transduction. Further, DNA methylation analysis of the DEGs found that 26.5% (145) of them were differentially methylated genes in ovarian cancer. Our results provide insight into the mechanism of Ets-1 regulating the transcription of its target genes in the complex and multistep process of ovarian cancer progression.

  1. Identification of photoperiod-regulated gene in soybean and functional analysis in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    Sha Ai-Hua; Chen Yin-Hua; Shan Zhi-Hui; Zhang Xiao-Juan; Wu Xue-Jun; Qiu De-Zheng; Zhou Xin-An

    2014-04-01

    Soybean (Glycine max) is a short-day crop and the photoperiod is a crucial factor regulating its flowering time. To investigate the molecular mechanism controlling the flowering time by photoperiod in soybean, cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used to identify photoperiod-regulated genes in leaves of soybean growing under short-day length, neutral photoperiod and long-day length. A total of 36 transcript-derived fragments (TDFs) were identified to be regulated by photoperiod. Among them, 26 TDFs were homologues of genes with known function. These genes are involved in secondary metabolism, cellular metabolism, cell wall components metabolism, ion transport and hormone signalling. Silencing of the homologue genes in Nicotiana benthamiana for 14 TDFs was conducted by virus-induced gene silencing. The flowering time was delayed by silencing of the genes encoding rhodanese and 40S ribosomal protein S4 (RPS4). The results indicated that rhodanese and RPS4 probably play important roles in regulating flowering time.

  2. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  3. Regulation of gene expression by FSP27 in white and brown adipose tissue

    Directory of Open Access Journals (Sweden)

    Xue Bofu

    2010-07-01

    Full Text Available Abstract Background Brown and white adipose tissues (BAT and WAT play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27, a member of the cell death-inducing DFF45-like effector (CIDE family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas FSP27 deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, FSP27-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of FSP27-deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis. Results BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of FSP27-deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of leptin/FSP27 double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the FSP27-deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-β signaling were down-regulated in the FSP27-deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBPα/β, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of FSP27-deficient mice. The expression levels of these regulatory

  4. Genes that regulate both development and longevity in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, P.L.; Albert, P.S.; Riddle, D.L. [Univ. of Missouri, Columbia, MO (United States)

    1995-04-01

    The nematode Caenorhabditis elegans responds to conditions of overcrowding and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determination of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan. 47 refs., 7 figs., 5 tabs.

  5. Photosynthetic Genes and Genes Associated with the C4 Trait in Maize Are Characterized by a Unique Class of Highly Regulated Histone Acetylation Peaks on Upstream Promoters.

    Science.gov (United States)

    Perduns, Renke; Horst-Niessen, Ina; Peterhansel, Christoph

    2015-08-01

    Histone modifications contribute to gene regulation in eukaryotes. We analyzed genome-wide histone H3 Lysine (Lys) 4 trimethylation and histone H3 Lys 9 acetylation (two modifications typically associated with active genes) in meristematic cells at the base and expanded cells in the blade of the maize (Zea mays) leaf. These data were compared with transcript levels of associated genes. For individual genes, regulations (fold changes) of histone modifications and transcript levels were much better correlated than absolute intensities. When focusing on regulated histone modification sites, we identified highly regulated secondary H3 Lys 9 acetylation peaks on upstream promoters (regulated secondary upstream peaks [R-SUPs]) on 10% of all genes. R-SUPs were more often found on genes that were up-regulated toward the blade than on down-regulated genes and specifically, photosynthetic genes. Among those genes, we identified six genes encoding enzymes of the C4 cycle and a significant enrichment of genes associated with the C4 trait derived from transcriptomic studies. On the DNA level, R-SUPs are frequently associated with ethylene-responsive elements. Based on these data, we suggest coevolution of epigenetic promoter elements during the establishment of C4 photosynthesis.

  6. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    Science.gov (United States)

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  7. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis

    Science.gov (United States)

    Song, Min-Ji; Kim, Mikyoung; Choi, Yeeun; Yi, Myung-hee; Kim, Juri; Park, Soon-Jung; Yong, Tai-Soon; Kim, Hyoung-Pyo

    2017-01-01

    Trichomonas vaginalis is an extracellular flagellated protozoan parasite that causes trichomoniasis, one of the most common non-viral sexually transmitted diseases. To survive and to maintain infection, T. vaginalis adapts to a hostile host environment by regulating gene expression. However, the mechanisms of transcriptional regulation are poorly understood for this parasite. Histone modification has a marked effect on chromatin structure and directs the recruitment of transcriptional machinery, thereby regulating essential cellular processes. In this study, we aimed to outline modes of chromatin-mediated gene regulation in T. vaginalis. Inhibition of histone deacetylase (HDAC) alters global transcriptional responses and induces hyperacetylation of histones and hypermethylation of H3K4. Analysis of the genome of T. vaginalis revealed that a number of enzymes regulate histone modification, suggesting that epigenetic mechanisms are important to controlling gene expression in this organism. Additionally, we describe the genome-wide localization of two histone H3 modifications (H3K4me3 and H3K27Ac), which we found to be positively associated with active gene expression in both steady and dynamic transcriptional states. These results provide the first direct evidence that histone modifications play an essential role in transcriptional regulation of T. vaginalis, and may help guide future epigenetic research into therapeutic intervention strategies against this parasite. PMID:28345651

  8. Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium.

    Science.gov (United States)

    Jeppe, Katherine J; Carew, Melissa E; Long, Sara M; Lee, Siu F; Pettigrove, Vincent; Hoffmann, Ary A

    2014-05-01

    Freshwater invertebrates are often exposed to metal contamination, and changes in gene expression patterns can help understand mechanisms underlying toxicity and act as pollutant-specific biomarkers. In this study the expressions of genes involved in cysteine metabolism are characterized in the midge Chironomus tepperi during exposures to sublethal concentrations of cadmium and copper. These metals altered gene expression of the cysteine metabolism differently. Both metals decreased S-adenosylhomocysteine hydrolase expression and did not change the expression of S-adenosylmethionine synthetase. Cadmium exposure likely increased cystathionine production by up-regulating cystathionine-β-synthase (CβS) expression, while maintaining control level cysteine production via cystathionine-γ-lyase (CγL) expression. Conversely, copper down-regulated CβS expression and up-regulated CγL expression, which in turn could diminish cystathionine to favor cysteine production. Both metals up-regulated glutathione related expression (γ-glutamylcysteine synthase and glutathione synthetase). Only cadmium up-regulated metallothionein expression and glutathione S-transferase d1 expression was up-regulated only by copper exposure. These different transcription responses of genes involved in cysteine metabolism in C. tepperi point to metal-specific detoxification pathways and suggest that the transsulfuration pathway could provide biomarkers for identifying specific metals.

  9. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia

    Institute of Scientific and Technical Information of China (English)

    Bryon; Ellis; Leah; Kaercher; Courtney; Snavely

    2012-01-01

    AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.

  10. Lateral Thinking: How Histone Modifications Regulate Gene Expression.

    Science.gov (United States)

    Lawrence, Moyra; Daujat, Sylvain; Schneider, Robert

    2016-01-01

    The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail. Overall, recent work has shown that histone core modifications can not only directly regulate transcription, but also influence processes such as DNA repair, replication, stemness, and changes in cell state. In this review, we focus on the most recent developments in our understanding of histone modifications, particularly those on the lateral surface of the nucleosome. This region is in direct contact with the DNA and is formed by the histone cores. We suggest that these lateral surface modifications represent a key insight into chromatin regulation in the cell. Therefore, lateral surface modifications form a key area of interest and a focal point of ongoing study in epigenetics.

  11. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  12. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  13. Microarray analysis of differentially expressed genes regulating lipid metabolism during melanoma progression.

    Science.gov (United States)

    Sumantran, Venil N; Mishra, Pratik; Sudhakar, N

    2015-04-01

    A new hallmark of cancer involves acquisition of a lipogenic phenotype which promotes tumorigenesis. Little is known about lipid metabolism in melanomas. Therefore, we used BRB (Biometrics Research Branch) class comparison tool with multivariate analysis to identify differentially expressed genes in human cutaneous melanomas, compared with benign nevi and normal skin derived from the microarray dataset (GDS1375). The methods were validated by identifying known melanoma biomarkers (CITED1, FGFR2, PTPRF, LICAM, SPP1 and PHACTR1) in our results. Eighteen genes regulating metabolism of fatty acids, lipid second messengers and gangliosides were 2-9 fold upregulated in melanomas of GDS-1375. Out of the 18 genes, 13 were confirmed by KEGG pathway analysis and 10 were also significantly upregulated in human melanoma cell lines of NCI-60 Cell Miner database. Results showed that melanomas upregulated PPARGC1A transcription factor and its target genes regulating synthesis of fatty acids (SCD) and complex lipids (FABP3 and ACSL3). Melanoma also upregulated genes which prevented lipotoxicity (CPT2 and ACOT7) and regulated lipid second messengers, such as phosphatidic acid (AGPAT-4, PLD3) and inositol triphosphate (ITPKB, ITPR3). Genes for synthesis of pro-tumorigenic GM3 and GD3 gangliosides (UGCG, HEXA, ST3GAL5 and ST8SIA1) were also upregulated in melanoma. Overall, the microarray analysis of GDS-1375 dataset indicated that melanomas can become lipogenic by upregulating genes, leading to increase in fatty acid metabolism, metabolism of specific lipid second messengers, and ganglioside synthesis.

  14. Coordinated Regulation of Gene Expression for Carotenoid Metabolism in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Tian-Hu Sun; Cheng-Qian Liu; Yuan-Yuan Hui; Wen-Kai Wu; Zhi-Gang Zhou; Shan Lu

    2010-01-01

    Carotenoids are important plant pigments for both light harvesting and photooxidation protection.Using the model system of the unicellular green alga Chlamydomonas reinhardtii,we characterized the regulation of gene expression for carotenoid metabolism by quantifying changes in the transcript abundance of dxs,dxr and ipi in the plastidic methylerythritol phosphate pathway and of ggps,psy,pds,lcyb and bchy,directly involved in carotenoid metabolism,under different photoperiod,light and metabolite treatments.The expression of these genes fluctuated with light/dark shifting.Light treatment also promoted the accumulation of transcripts of all these genes.Of the genes studied,dxs,ggps and lcyb displayed the typical circadian pattern by retaining a rhythmic fluctuation of transcript abundance under both constant light and constant dark entrainments.The expression of these genes could also be regulated by metabolic intermediates.For example,ggps was significantly suppressed by a geranylgeranyl pyrophosphate supplement and ipi was upregulated by isopentenyl pyrophosphate.Furthermore,CrOr,a C.reinhardtii homolog of the recently characterized Or gene that accounts for carotenoid accumulation,also showed co-expression with carotenoid biosynthetic genes such as pds and lcyb.Our data suggest a coordinated regulation on carotenoid metabolism in C.reinhardtii at the transcriptional level.

  15. Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani.

    Science.gov (United States)

    Raffestin, Stéphanie; Marvaud, Jean Christophe; Cerrato, Rosario; Dupuy, Bruno; Popoff, Michel R

    2004-04-01

    Botulinum and tetanus neurotoxins are structurally and functionally related 150 kDa proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin associates with non-toxic proteins to form complexes of various sizes. The botulinum neurotoxin and non-toxic protein genes are clustered in a DNA segment called the botulinum locus. This locus is probably located on a mobile or degenerate mobile element, which accounts for the various genomic localizations (chromosome, plasmid, phage) in different Clostridium botulinum types. The botulinum neurotoxin and non-toxic protein genes are organized in two polycistronic operons (ntnh-bont and ha operons) transcribed in opposite orientations. The gene that separates the two operons of the botulinum locus in C. botulinum A encodes a 21 kDa protein BotR/A, which is a positive regulator of the expression of the botulinum locus genes. Similarly, in Clostridium tetani, the gene located immediately upstream of the tetanus toxin gene, encodes a positive regulatory protein, TetR. BotR and TetR are possibly alternative sigma factors related to TxeR and UviA, which regulate C. difficile toxin and C. perfringens bacteriocin production, respectively. TxeR and UviA define a new sub-group of the sigma(70) family of RNA polymerase initiation factors. In addition, the C. botulinum genome contains predicted two-component system genes, some of which are possibly involved in regulation of toxinogenesis.

  16. Ciliary genes are down-regulated in bronchial tissue of primary ciliary dyskinesia patients.

    Directory of Open Access Journals (Sweden)

    Maciej Geremek

    Full Text Available Primary ciliary dyskinesia (PCD is a rare, genetically heterogeneous disease characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis and male infertility. The pulmonary phenotype in PCD is caused by the impaired motility of cilia in the respiratory epithelium, due to ultrastructural defects of these organelles. We hypothesized that defects of multi-protein ciliary complexes should be reflected by gene expression changes in the respiratory epithelium. We have previously found that large group of genes functionally related to cilia share highly correlated expression pattern in PCD bronchial tissue. Here we performed an explorative analysis of differential gene expression in the bronchial tissue from six PCD patients and nine non-PCD controls, using Illumina HumanRef-12 Whole Genome BeadChips. We observed 1323 genes with at least 2-fold difference in the mean expression level between the two groups (t-test p-value <0.05. Annotation analysis showed that the genes down-regulated in PCD biopsies (602 were significantly enriched for terms related to cilia, whereas the up-regulated genes (721 were significantly enriched for terms related to cell cycle and mitosis. We assembled a list of human genes predicted to encode ciliary proteins, components of outer dynein arms, inner dynein arms, radial spokes, and intraflagellar transport proteins. A significant down-regulation of the expression of genes from all the four groups was observed in PCD, compared to non-PCD biopsies. Our data suggest that a coordinated down-regulation of the ciliome genes plays an important role in the molecular pathomechanism of PCD.

  17. Eos negatively regulates human γ-globin gene transcription during erythroid differentiation.

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Yu

    Full Text Available BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4, a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs. DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3 of the β-globin locus control region (LCR, the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation.

  18. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex.

    Directory of Open Access Journals (Sweden)

    Tomoko M Tabuchi

    2011-05-01

    Full Text Available DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.

  19. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  20. Inducible gene expression and environmentally regulated genes in lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1996-01-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transc

  1. Regulation of intestinal lipid absorption by clock genes.

    Science.gov (United States)

    Hussain, M Mahmood

    2014-01-01

    Plasma levels of triacylglycerols and diacylglycerols, the lipoproteins that transport them, and proteins involved in their absorption from the intestinal lumen fluctuate in a circadian manner. These changes are likely controlled by clock genes expressed in the intestine that are probably synchronized by neuronal and humoral signals from the suprachiasmatic nuclei, which constitute a master clock entrained by light signals from the eyes and from the environment, e.g., food availability. Acute changes in circadian rhythms--e.g., due to nonsynchronous work schedules or a transcontinental flight--may trigger intestinal discomfort. Chronic disruptions in circadian control mechanisms may predispose the individual to irritable bowel syndrome, gastroesophageal reflux disease, and peptic ulcer disease. A more detailed understanding of the molecular mechanisms underlying temporal changes in intestinal activity might allow us to identify novel targets for developing therapeutic approaches to these disorders.

  2. Transcriptional regulation of bone sialoprotein gene by Porphyromonas gingivalis lipopolysaccharide.

    Science.gov (United States)

    Li, Xinyue; Kato, Naoko; Mezawa, Masaru; Li, Zhengyang; Wang, Zhitao; Yang, Li; Sasaki, Yoko; Kaneko, Takashi; Takai, Hideki; Yoshimura, Atsutoshi; Ogata, Yorimasa

    2010-07-01

    Lipopolysaccharide (LPS) is a major mediator of inflammatory response. Periodontopathic bacterium Porphyromonas gingivalis LPS has quite different character from Escherichia coli LPS. E. coli LPS is agonist for Toll-like receptor 4 (TLR4), whereas P. gingivalis LPS worked as antagonist for TLR4. Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. To investigate the effects of P. gingivalis LPS on BSP transcription, we used rat osteoblast-like ROS17/2.8 cells. BSP mRNA levels were decreased by 0.1 microg/ml and increased by 0.01 microg/ml P. gingivalis LPS at 12 h. Results of luciferase assays showed that 0.1 microg/ml decreased and 0.01 microg/ml P. gingivalis LPS increased BSP transcription in -116 to +60 BSP construct. The effects of P. gingivalis LPS were abrogated by double mutations in cAMP response element (CRE) and FGF2 response element (FRE). Tyrosine kinase inhibitor herbimycin A, ERK1/2 inhibitor and antioxidant N-acetylcystein inhibited effects of P. gingivalis LPS. Protein kinase A inhibitor and PI3-kinase/Akt inhibitor only abolished the effect of 0.01 microg/ml P. gingivalis LPS. Furthermore, 0.1 microg/ml LPS decreased the CRE- and FRE-protein complexes formation, whereas 0.01 microg/ml P. gingivalis LPS increased the nuclear protein binding to CRE and FRE. ChIP assays revealed increased binding of CREB1, JunD, Fra2, Runx2, Dlx5, and Smad1 to a chromatin fragment containing the CRE and FRE by 0.01 microg/ml P. gingivalis LPS. These studies therefore indicated that 0.1 microg/ml suppressed, and 0.01 microg/ml P. gingivalis LPS increased BSP gene transcription mediated through CRE and FRE elements in the rat BSP gene promoter.

  3. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    Science.gov (United States)

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth.

  4. Shoot Branching and Leaf Dissection in Tomato Are Regulated by Homologous Gene Modules[W

    Science.gov (United States)

    Busch, Bernhard L.; Schmitz, Gregor; Rossmann, Susanne; Piron, Florence; Ding, Jia; Bendahmane, Abdelhafid; Theres, Klaus

    2011-01-01

    Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems. PMID:22039213

  5. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  6. Regulation of hepatic gene expression by saturated fatty acids.

    Science.gov (United States)

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  7. Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation

    Directory of Open Access Journals (Sweden)

    José Pedro Faria

    2016-11-01

    Full Text Available Understanding gene function and regulation is essential for the interpretation prediction and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets Atomic Regulons ARs represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here we describe an approach for inferring ARs that leverages large-scale expression data sets gene context and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness CLR analysis finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms we computed ARs for Shewanella oneidensis Pseudomonas aeruginosa Thermus thermophilus and Staphylococcus aureus each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed

  8. Absence of canonical marks of active chromatin in developmentally regulated genes.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  9. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  10. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells

    Institute of Scientific and Technical Information of China (English)

    Qiao-Xia Zhang; Xiao-Yan Zhang; Zhen-Ming Zhang; Wei Lu; Ling Liu; Gang Li; Zhi-Ming Cai; Yao-Ting Gui; Chawnshang Chang

    2012-01-01

    Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility,yet detailed androgenlAR signals in Sertoli cells remain unclear.To identify AR target genes in Sertoli cells,we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice.Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones.To further nail down the difference within Sertoli cells,we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells.Interestingly,additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells.In the condition where maximal androgen response was demonstrated,we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone.Among these genes,603 androgen-/ AR-regulated genes,including 164 upregulated and 439 downregulated,were found in both S-AR-/y mice testis and TM4/AR cells.Using informatics analysis,the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis.Together,using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androgen/AR signals in Sertoli cells and their influences in spermatogenesis.

  11. Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner

    Directory of Open Access Journals (Sweden)

    Yoganathan Piriya

    2012-07-01

    Full Text Available Abstract Background Genome-wide association studies (GWAS have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity. Methods We examined the expression of 19 GWAS obesity genes in the brain and specifically the hypothalamus, adipose tissue and liver of mice by real-time quantitative PCR. To determine whether these genes are nutritionally regulated, as may be expected for genes affecting obesity, we compared tissues from fasting and non-fasting animals and tissues from mice consuming a high fat high sucrose diet in comparison to standard rodent chow. Results We found complex, tissue-dependent patterns of nutritional regulation of most of these genes. For example, Bat2 expression was increased ~10-fold in the brain of fed mice but was lower or unchanged in the hypothalamus and adipose tissue. Kctd15 expression was upregulated in the hypothalamus, brain and adipose tissue of fed mice and downregulated by high fat feeding in liver, adipose tissue and the hypothalamus but not the remainder of the brain. Sh2b1 expression in the brain and Faim2 expression in adipose tissue were specifically increased >20-fold in fed mice. Tmem18 expression in adipose tissue but not the brain was reduced 80% by high fat feeding. Few changes in the expression of these genes were observed in liver. Conclusions These data show nutritional regulation of nearly all these GWAS obesity genes, particularly in the brain and adipose tissue, and provide support for their role in the development of obesity. The complex patterns of nutritional and tissue-dependent regulation also highlight

  12. Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner

    Science.gov (United States)

    2012-01-01

    Background Genome-wide association studies (GWAS) have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity. Methods We examined the expression of 19 GWAS obesity genes in the brain and specifically the hypothalamus, adipose tissue and liver of mice by real-time quantitative PCR. To determine whether these genes are nutritionally regulated, as may be expected for genes affecting obesity, we compared tissues from fasting and non-fasting animals and tissues from mice consuming a high fat high sucrose diet in comparison to standard rodent chow. Results We found complex, tissue-dependent patterns of nutritional regulation of most of these genes. For example, Bat2 expression was increased ~10-fold in the brain of fed mice but was lower or unchanged in the hypothalamus and adipose tissue. Kctd15 expression was upregulated in the hypothalamus, brain and adipose tissue of fed mice and downregulated by high fat feeding in liver, adipose tissue and the hypothalamus but not the remainder of the brain. Sh2b1 expression in the brain and Faim2 expression in adipose tissue were specifically increased >20-fold in fed mice. Tmem18 expression in adipose tissue but not the brain was reduced 80% by high fat feeding. Few changes in the expression of these genes were observed in liver. Conclusions These data show nutritional regulation of nearly all these GWAS obesity genes, particularly in the brain and adipose tissue, and provide support for their role in the development of obesity. The complex patterns of nutritional and tissue-dependent regulation also highlight the difficulty that may be

  13. Daily rhythm and regulation of clock gene expression in the rat pineal gland.

    Science.gov (United States)

    Simonneaux, V; Poirel, V-J; Garidou, M-L; Nguyen, D; Diaz-Rodriguez, E; Pévet, P

    2004-01-05

    Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues. Because of the peculiar role of the pineal gland in the photoneuroendocrine axis regulating biological rhythms, we studied whether clock genes are expressed in the rat pineal gland and how their expression is regulated.Per1, Per3, Cry2 and Cry1 clock genes are expressed in the pineal gland and their transcription is increased during the night. Analysis of the regulation of these pineal clock genes indicates that they may be categorized into two groups. Expression of Per1 and Cry2 genes shows the following features: (1) the 24 h rhythm persists, although damped, in constant darkness; (2) the nocturnal increase is abolished following light exposure or injection with a beta-adrenergic antagonist; and (3) the expression during daytime is stimulated by an injection with a beta-adrenergic agonist. In contrast, Per3 and Cry1 day and night mRNA levels are not responsive to adrenergic ligands (as previously reported for Per2) and daily expression of Per3 and Cry1 appears strongly damped or abolished in constant darkness. These data show that the expression of Per1 and Cry2 in the rat pineal gland is regulated by the clock-driven changes in norepinephrine, in a similar manner to the melatonin rhythm-generating enzyme arylalkylamine N-acetyltransferase. The expression of Per3 and Cry1 displays a daily rhythm not regulated by norepinephrine, suggesting the involvement of another day/night regulated transmitter(s).

  14. An essential cell cycle regulation gene causes hybrid inviability in Drosophila.

    Science.gov (United States)

    Phadnis, Nitin; Baker, EmilyClare P; Cooper, Jacob C; Frizzell, Kimberly A; Hsieh, Emily; de la Cruz, Aida Flor A; Shendure, Jay; Kitzman, Jacob O; Malik, Harmit S

    2015-12-18

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

  15. Role of EctR as transcriptional regulator of ectoine biosynthesis genes in Methylophaga thalassica.

    Science.gov (United States)

    Mustakhimov, I I; Reshetnikov, A S; Fedorov, D N; Khmelenina, V N; Trotsenko, Y A

    2012-08-01

    In the halophilic aerobic methylotrophic bacterium Methylophaga thalassica, the genes encoding the enzymes for biosynthesis of the osmoprotectant ectoine were shown to be located in operon ectABC-ask. Transcription of the ect-operon was started from the two promoters homologous to the σ(70)-dependent promoter of Escherichia coli and regulated by protein EctR, whose encoding gene, ectR, is transcribed from three promoters. Genes homologous to ectR of methylotrophs were found in clusters of ectoine biosynthesis genes in some non-methylotrophic halophilic bacteria. EctR proteins of methylotrophic and heterotrophic halophiles belong to the MarR-family of transcriptional regulators but form a separate branch on the phylogenetic tree of the MarR proteins.

  16. Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

    Directory of Open Access Journals (Sweden)

    Jennifer Tsang

    2014-01-01

    Full Text Available Flagellar biogenesis in bacteria is a complex process in which the transcription of dozens of structural and regulatory genes is coordinated with the assembly of the flagellum. Although the overall process of flagellar biogenesis is conserved among bacteria, the mechanisms used to regulate flagellar gene expression vary greatly among different bacterial species. Many bacteria use the alternative sigma factor σ54 (also known as RpoN to transcribe specific sets of flagellar genes. These bacteria include members of the Epsilonproteobacteria (e.g., Helicobacter pylori and Campylobacter jejuni, Gammaproteobacteria (e.g., Vibrio and Pseudomonas species, and Alphaproteobacteria (e.g., Caulobacter crescentus. This review characterizes the flagellar transcriptional hierarchies in these bacteria and examines what is known about how flagellar gene regulation is linked with other processes including growth phase, quorum sensing, and host colonization.

  17. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    Science.gov (United States)

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  18. The histone variant macroH2A is an epigenetic regulator of key developmental genes

    DEFF Research Database (Denmark)

    Buschbeck, Marcus; Uribesalgo, Iris; Wibowo, Indra;

    2009-01-01

    variants at many genes encoding key regulators of development and cell fate decisions. On these genes, the presence of macroH2A1+2 is a repressive mark that overlaps locally and functionally with Polycomb repressive complex 2. We demonstrate that macroH2A1+2 contribute to the fine-tuning of temporal...... activation of HOXA cluster genes during neuronal differentiation. Furthermore, elimination of macroH2A2 function in zebrafish embryos produced severe but specific phenotypes. Taken together, our data demonstrate that macroH2A variants constitute an important epigenetic mark involved in the concerted...... regulation of gene expression programs during cellular differentiation and vertebrate development....

  19. A Hypoxia-Regulated Adeno-Associated Virus Vector for Cancer-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    2001-01-01

    Full Text Available The presence of hypoxic cells in human brain tumors is an important factor leading to resistance to radiation therapy. However, this physiological difference between normal tissues and tumors also provides the potential for designing cancer-specific gene therapy. We compared the increase of gene expression under anoxia (<0.01% oxygen produced by 3, 6, and 9 copies of hypoxia-responsive elements (HRE from the erythropoietin gene (Epo, which are activated through the transcriptional complex hypoxia-inducible factor 1 (HIF-1. Under anoxic conditions, nine copies of HIRE (9XHRE yielded 27- to 37-fold of increased gene expression in U-251 MG and U-87 MG human brain tumor cell lines. Under the less hypoxic conditions of 0.3% and 1% oxygen, gene activation by 9XHRE increased expression 11- to 18-fold in these cell lines. To generate a recombinant adeno-associated virus (rAAV in which the transgene can be regulated by hypoxia, we inserted the DNA fragment containing 9XHRE and the LacZ reporter gene into an AAV vector. Under anoxic conditions, this vector produced 79- to 110-fold increase in gene expression. We believe this hypoxia-regulated rAAV vector will provide a useful delivery vehicle for cancer-specific gene therapy.

  20. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells.

  1. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  2. Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Zhang, Zhen; Dahlsten, Elias; Korkeala, Hannu; Lindström, Miia

    2014-12-01

    Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.

  3. Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Robert Harvey

    Full Text Available The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG protein Pleiohomeotic (Pho, and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.

  4. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  5. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Rehrer, N J; Pilegaard, H

    2007-01-01

    AIM: Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. METHODS: Data were...... exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes....

  6. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes.

    Directory of Open Access Journals (Sweden)

    Candy Kumps

    Full Text Available Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17~92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17~92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17~92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1 target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2 serve as a resource for identifying new molecular targets for treatment.

  7. The prima donna of epigenetics: the regulation of gene expression by DNA methylation

    Directory of Open Access Journals (Sweden)

    K.F. Santos

    2005-10-01

    Full Text Available This review focuses on the mechanisms of DNA methylation, DNA methylation pattern formation and their involvement in gene regulation. Association of DNA methylation with imprinting, embryonic development and human diseases is discussed. Furthermore, besides considering changes in DNA methylation as mechanisms of disease, the role of epigenetics in general and DNA methylation in particular in transgenerational carcinogenesis, in memory formation and behavior establishment are brought about as mechanisms based on the cellular memory of gene expression patterns.

  8. Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast

    OpenAIRE

    Rienzo, Alessandro; Poveda-Huertes, Daniel; Aydin, Selcan; Buchler, Nicolas E.; Pascual-Ahuir, Amparo; Proft, Markus

    2015-01-01

    Cells respond to environmental stimuli by fine-tuned regulation of gene expression. Here we investigated the dose-dependent modulation of gene expression at high temporal resolution in response to nutrient and stress signals in yeast. The GAL1 activity in cell populations is modulated in a well-defined range of galactose concentrations, correlating with a dynamic change of histone remodeling and RNA polymerase II (RNAPII) association. This behavior is the result of a heterogeneous induction d...

  9. Insulin regulation of the glucagon gene is mediated by an insulin-responsive DNA element.

    OpenAIRE

    1991-01-01

    Diabetes mellitus is characterized by insulin deficiency and high plasma glucagon levels, which can be normalized by insulin replacement. It has previously been reported that glucagon gene expression is negatively regulated by insulin at the transcriptional level. By transfection studies, I have now localized a DNA control element that mediates insulin effects on glucagon gene transcription. This element also confers insulin responsiveness to a heterologous promoter. DNA-binding proteins that...

  10. URC Fuzzy Modeling and Simulation of Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Fitch, J P

    2001-05-01

    Recent technological advances in high-throughput data collection give biologists the ability to study increasingly complex systems. A new methodology is needed to develop and test biological models based on experimental observations and predict the effect of perturbations of the network (e.g. genetic engineering, pharmaceuticals, gene therapy). Diverse modeling approaches have been proposed, in two general categories: modeling a biological pathway as (a) a logical circuit or (b) a chemical reaction network. Boolean logic models can not represent necessary biological details. Chemical kinetics simulations require large numbers of parameters that are very difficult to accurately measure. Based on the way biologists have traditionally thought about systems, we propose that fuzzy logic is a natural language for modeling biology. The Union Rule Configuration (URC) avoids combinatorial explosion in the fuzzy rule base, allowing complex system models. We demonstrate the fuzzy modeling method on the commonly studied lac operon of E. coli. Our goal is to develop a modeling and simulation approach that can be understood and applied by biologists without the need for experts in other fields or ''black-box'' software.

  11. Molecular evolution of WDR62, a gene that regulates neocorticogenesis.

    Science.gov (United States)

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-09-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000-765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution.

  12. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection.

  13. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    Science.gov (United States)

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation.

  14. λ N gene expression regulated by translation termination in ribosome L24 mutant

    Institute of Scientific and Technical Information of China (English)

    LI; Muyang; (李沐阳); HU; Qirui; (胡其锐); XUAN; Jinsong; (宣劲松); DENG; Daiyong; (邓代永); WENG; Manli; (翁曼丽)

    2003-01-01

    Besides transcription regulation, gene expression is also regulated at translation level. Although translation regulation is mainly mediated by translation initiation, an abundance of evidence shows that the termination phase of translation is also important for gene expression. The expression of λN gene is down regulated at translation level in L24 mutant, however the precise mechanism still remains unknown. We report here that in an L24 mutant strain, the expression of lac-λN and GST-λN is decreased to 25% and 50% of that in wild type T83 strain respectively. Strikingly, the yield of GST-λN fusion protein in L24 mutant can be restored to the level as in T83 wild type strain by changing the two codons upstream λN stop codon. These findings imply that the stop codon and its context are involved in the translation regulation. The possible reason is that the translation termination complex containing L24 mutant ribosome may not dissociate properly in stop code region. This failure of disengagement from mRNA will slow down the process of following ribosomes, and consequently decrease the efficiency of λN gene expression.

  15. Identification of estradiol/ERα-regulated genes in the mouse pituitary.

    Science.gov (United States)

    Kim, Hyun Joon; Gieske, Mary C; Trudgen, Kourtney L; Hudgins-Spivey, Susan; Kim, Beob Gyun; Krust, Andree; Chambon, Pierre; Jeong, Jae-Wook; Blalock, Eric; Ko, CheMyong

    2011-09-01

    Estrogen acts to prime the pituitary prior to the GnRH-induced LH surge by undiscovered mechanisms. This study aimed to identify the key components that mediate estrogen action in priming the pituitary. RNA extracted from the pituitaries of metestrous (low estrogen) and proestrus (high estrogen) stage mice, as well as from ovariectomized wild-type and estrogen receptor α (ERα) knockout mice treated with 17β-estradiol (E(2)) or vehicle, was used for gene expression microarray. Microarray data were then aggregated, built into a functional electronic database, and used for further characterization of E(2)/ERα-regulated genes. These data were used to compile a list of genes representing diverse biological pathways that are regulated by E(2) via an ERα-mediated pathway in the pituitary. This approach substantiates ERα regulation of membrane potential regulators and intracellular vesicle transporters, among others, but not the basic components of secretory machinery. Subsequent characterization of six selected genes (Cacna1a, Cacna1g, Cited1, Abep1, Opn3, and Kcne2) confirmed not only ERα dependency for their pituitary expression but also the significance of their expression in regulating GnRH-induced LH secretion. In conclusion, findings from this study suggest that estrogen primes the pituitary via ERα by equipping pituitary cells with critical cellular components that potentiate LH release on subsequent GnRH stimulations.

  16. Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants.

    Science.gov (United States)

    Wang, Hsiao-Lin V; Chekanova, Julia A

    2016-05-01

    Eukaryotic genomes produce thousands of diverse small RNAs (smRNAs), which play vital roles in regulating gene expression in all conditions, including in survival of biotic and abiotic environmental stresses. SmRNA pathways intersect with most of the pathways regulating different steps in the life of a messenger RNA (mRNA), starting from transcription and ending at mRNA decay. SmRNAs function in both nuclear and cytoplasmic compartments; the regulation of mRNA stability and translation in the cytoplasm and the epigenetic regulation of gene expression in the nucleus are the main and best-known modes of smRNA action. However, recent evidence from animal systems indicates that smRNAs and RNA interference (RNAi) also participate in the regulation of alternative pre-mRNA splicing, one of the most crucial steps in the fast, efficient global reprogramming of gene expression required for survival under stress. Emerging evidence from bioinformatics studies indicates that a specific class of plant smRNAs, induced by various abiotic stresses, the sutr-siRNAs, has the potential to target regulatory regions within introns and thus may act in the regulation of splicing in response to stresses. This review summarizes the major types of plant smRNAs in the context of their mechanisms of action and also provides examples of their involvement in regulation of gene expression in response to environmental cues and developmental stresses. In addition, we describe current advances in our understanding of how smRNAs function in the regulation of pre-mRNA splicing. WIREs RNA 2016, 7:356-381. doi: 10.1002/wrna.1340 For further resources related to this article, please visit the WIREs website.

  17. Regulation of BDNF-mediated transcription of immediate early gene Arc by intracellular calcium and calmodulin

    OpenAIRE

    Zheng, Fei; Luo, Yongneng; Wang, Hongbing

    2009-01-01

    The induction of the immediate early gene Arc is strongly implicated in synaptic plasticity. Although the role of ERK was demonstrated, the regulation of Arc expression is largely unknown. In this study, we investigated the major signaling pathways underlying brain-derived neurotrophic factor (BDNF)-mediated Arc transcription in cultured cortical neurons. The BDNF-stimulated Arc transcription was solely regulated by the Ras-Raf-MAPK signaling through ERK, but not by phosphoinositide 3-kinase ...

  18. Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou

    2013-09-01

    Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis.

  19. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene

    Indian Academy of Sciences (India)

    Jyoti K Jaiswal; Vidyanand Nanjundiah

    2003-12-01

    In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.

  20. Genes that regulate morphogenesis and growth of the temporomandibular joint: a review.

    Science.gov (United States)

    Hinton, Robert J

    2014-07-01

    Compared with the joints of the limbs, our understanding of the genes that regulate development and growth in the temporomandibular joint (TMJ) is fairly limited. Because the morphogenesis of the secondary cartilage and other intra-articular structures in the TMJ occurs later and in a different manner than in the limbs, the genetic control of TMJ development might reasonably be assumed to differ from that in the limbs. However, studies of the specific genes regulating TMJ morphogenesis and growth have only begun to appear in the literature within the last decade. This review attempts to survey and interpret the existing knowledge on this topic and to suggest fruitful avenues of investigation for the future. Studies to date using knockout and over-expression of candidate genes suggest that a developmental hierarchy of joint structures exists, with condyle development primary. A hierarchy of gene expression also exists: Runx2 and Sox9 expression is critical for condylar cartilage formation. Several of the other genes discussed in this report may regulate TMJ morphogenesis by affecting Sox9 and Runx2 expression and control the ihh-PTHrP axis by means of these genes.

  1. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  2. Short Exogenous Peptides Regulate Expression of CLE, KNOX1, and GRF Family Genes in Nicotiana tabacum.

    Science.gov (United States)

    Fedoreyeva, L I; Dilovarova, T A; Ashapkin, V V; Martirosyan, Yu Ts; Khavinson, V Kh; Kharchenko, P N; Vanyushin, B F

    2017-04-01

    Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10(-7)-10(-9) M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.

  3. Msh homeobox genes regulate cadherin-mediated cell adhesion and cell-cell sorting.

    Science.gov (United States)

    Lincecum, J M; Fannon, A; Song, K; Wang, Y; Sassoon, D A

    1998-07-01

    Msx-1 and Msx-2 are two closely related homeobox genes expressed in cephalic neural crest tooth buds, the optic cup endocardial cushions, and the developing limb [Hill and Davidson, 1991; Monaghan et al., 1991; Robert et al., 1991]. These sites correspond to regions of active cell segregation and proliferation under the influence of epithelial-mesenchymal cell interactions [Brown et al., 1993; Davidson et al., 1991], suggesting that Msx-1 and Msx-2 regulate cell-cell interactions. We have investigated the potential relationship between expression of the Msh homeobox genes (Msx-1 and Msx-2) and cadherin-mediated cell adhesion and cell sorting. We report that cell lines stably expressing Msx-1 or Msx-2 differentially sort on the basis of Msh gene expression. We demonstrate in vitro that initial cell aggregation involves calcium-dependent adhesion molecules (cadherins) and that Msh genes regulate cadherin-mediated adhesion. These results support the hypothesis that Msh genes play a role in the regulation of cell-cell adhesion and provide a link between the genetic phenomena of homeobox gene expression and cellular events involved in morphogenesis, including cell sorting and proliferation.

  4. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development.

    Science.gov (United States)

    Liu, Xiao; Guo, Ling-Xia; Jin, Long-Fei; Liu, Yong-Zhong; Liu, Tao; Fan, Yu-Hua; Peng, Shu-Ang

    2016-10-01

    Growth-regulating factor (GRF) is an important protein in GA-mediated response, with key roles in plant growth and development. However, it is not known whether or how the GRF proteins in citrus to regulate organ size. In this study, nine citrus GRF genes (CsGRF1-9) were validated from the 'Anliu' sweet orange (AL, Citrus sinensis cv. Anliu) by PCR amplification. They all contain two conserved motifs (QLQ and WRC) and have 3-4 exons. The transcript levels of genes were detected by qRT-PCR. Transcript analysis showed that (1) CsGRF 1, 2, 5, 6, 7, and 9 expressed predominantly in young leaf, CsGRF 3 and 4 expressed predominantly in fruit immature juice sacs and CsGRF 8 expressed predominantly in root; (2) all citrus GRF genes had significantly higher expression in young leaves than mature leaf; (3) in juice sacs, the transcript levels of CsGRF1, 4, 5, 6, and 8 increased significantly while the transcript levels of CsGRF2, 3, 7, and 9 had no significant change from 80 DAF to 100 DAF. Besides, GA3 treatment did not affect the transcript levels of CsGRF5 and CsGRF6 but significantly increased the transcript levels of the other seven CsGRF genes in young leaves. These results suggested that all CsGRF genes involve in the leaf development, CsGRF1, 4, 5, 6, and 8 act developmentally whilst CsGRF2, 3, 7, and 9 play fundamental roles in fruit cell enlargement, which may be through GA pathway or GA-independent pathway.

  5. Transcriptional and Phenotypic Characterization of Novel Spx-Regulated Genes in Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Lívia C C Galvão

    Full Text Available In oral biofilms, two of the major environmental challenges encountered by the dental pathogen Streptococcus mutans are acid and oxidative stresses. Previously, we showed that the S. mutans transcriptional regulators SpxA1 and SpxA2 (formerly SpxA and SpxB, respectively are involved in stress survival by activating the expression of classic oxidative stress genes such as dpr, nox, sodA and tpx. We reasoned that some of the uncharacterized genes under SpxA1/A2 control are potentially involved in oxidative stress management. Therefore, the goal of this study was to use Spx-regulated genes as a tool to identify novel oxidative stress genes in S. mutans. Quantitative real-time PCR was used to evaluate the responses of ten Spx-regulated genes during H2O2 stress in the parent and Δspx strains. Transcription activation of the H2O2-induced genes (8 out of 10 was strongly dependent on SpxA1 and, to a lesser extent, SpxA2. In vitro transcription assays revealed that one or both Spx proteins directly regulate three of these genes. The gene encoding the FeoB ferrous permease was slightly repressed by H2O2 but constitutively induced in strains lacking SpxA1. Nine genes were selected for downstream mutational analysis but inactivation of smu127, encoding a subunit of the acetoin dehydrogenase was apparently lethal. In vitro and in vivo characterization of the viable mutants indicated that, in addition to the transcriptional activation of reducing and antioxidant pathways, Spx performs an important role in iron homeostasis by regulating the intracellular availability of free iron. In particular, inactivation of the genes encoding the Fe-S biogenesis SUF system and the previously characterized iron-binding protein Dpr resulted in impaired growth under different oxidative stress conditions, increased sensitivity to iron and lower infectivity in rats. These results serve as an entryway into the characterization of novel genes and pathways that allow S. mutans to

  6. Detailed analysis of Helicobacter pylori Fur-regulated promoters reveals a Fur box core sequence and novel Fur-regulated genes.

    Science.gov (United States)

    Pich, Oscar Q; Carpenter, Beth M; Gilbreath, Jeremy J; Merrell, D Scott

    2012-06-01

    In Helicobacter pylori, iron balance is controlled by the Ferric uptake regulator (Fur), an iron-sensing repressor protein that typically regulates expression of genes implicated in iron transport and storage. Herein, we carried out extensive analysis of Fur-regulated promoters and identified a 7-1-7 motif with dyad symmetry (5'-TAATAATnATTATTA-3'), which functions as the Fur box core sequence of H. pylori. Addition of this sequence to the promoter region of a typically non-Fur regulated gene was sufficient to impose Fur-dependent regulation in vivo. Moreover, mutation of this sequence within Fur-controlled promoters negated regulation. Analysis of the H. pylori chromosome for the occurrence of the Fur box established the existence of well-conserved Fur boxes in the promoters of numerous known Fur-regulated genes, and revealed novel putative Fur targets. Transcriptional analysis of the new candidate genes demonstrated Fur-dependent repression of HPG27_51, HPG27_52, HPG27_199, HPG27_445, HPG27_825 and HPG27_1063, as well as Fur-mediated activation of the cytotoxin associated gene A, cagA (HPG27_507). Furthermore, electrophoretic mobility shift assays confirmed specific binding of Fur to the promoters of each of these genes. Future experiments will determine whether loss of Fur regulation of any of these particular genes contributes to the defects in colonization exhibited by the H. pylori fur mutant.

  7. Expression and regulation of two novel anther-specific genes in Lilium longiflorum.

    Science.gov (United States)

    Tzeng, Jhih-Deng; Hsu, Ssu-Wei; Chung, Mei-Chu; Yeh, Fung-Ling; Yang, Chin-Ying; Liu, Ming-Che; Hsu, Yi-Feng; Wang, Co-Shine

    2009-03-01

    Two stage-specific genes have been isolated from a subtractive cDNA library constructed from developing anthers of lily (Lilium longiflorum). The proteins encoded by the two genes have a strong hydrophobic region at the N-terminus, indicating the presence of a signal peptide. The deduced LLA-67 is a new type of small cysteine-rich protein whose sequence exhibits four consecutive CX(3)CX(6-10) repeats that could form signal-receiving finger motifs, while the deduced LLA-115 protein shows significant similarities to a rice unknown protein, and putative cell wall proteins of Medicago truncatula and Arabidopsis. The transcripts of LLA-67 and LLA-115 were anther specific and differentially detected at the phase of microspore development. In situ hybridization with antisense riboprobes of the two genes in the anther showed strong signals localized to the tapetal layer of the anther wall. The LLA-67 mRNA was also detected in the microspore at the phase of microspore development but the LLA-115 mRNA was not. The LLA-115 gene can be exogenously induced by gibberellin (GA), whereas the LLA-67 gene cannot be induced. Studies with the GA biosynthesis inhibitor uniconazole and an inhibitor of ethylene activity, 2,5-norbornadien (NBD), revealed that the two genes were negatively regulated by ethylene and a cross-talk between GA and ethylene was involved in the regulation of the two genes occurring in young anthers. The treatment of NBD caused the tapetum to become densely cytoplasmic and highly polarized, whereas uniconazole arrested tapetal development to a status close to that of control. DNA blots of lily genomic DNA indicated that the two genes were encoded by a small gene family. The different actions of hormones on gene expression and the possible function of the gene products in young anthers are discussed.

  8. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    Science.gov (United States)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  9. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.

    Science.gov (United States)

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-03-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.

  10. Identification of plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Ploski, Jonathan E; Park, Kevin W; Ping, Junli; Monsey, Melissa S; Schafe, Glenn E

    2010-02-01

    Most recent studies aimed at defining the cellular and molecular mechanisms of Pavlovian fear conditioning have focused on protein kinase signaling pathways and the transcription factor cAMP-response element binding protein (CREB) that promote fear memory consolidation in the lateral nucleus of the amygdala (LA). Despite this progress, there still remains a paucity of information regarding the genes downstream of CREB that are required for long-term fear memory formation in the LA. We have adopted a strategy of using microarray technology to initially identify genes induced within the dentate gyrus following in vivo long-term potentiation (LTP) followed by analysis of whether these same genes are also regulated by fear conditioning within the LA. In the present study, we first identified 34 plasticity-associated genes that are induced within 30 min following LTP induction utilizing a combination of DNA microarray, qRT-PCR, and in situ hybridization. To determine whether these genes are also induced in the LA following Pavlovian fear conditioning, we next exposed rats to an auditory fear conditioning protocol or to control conditions that do not support fear learning followed by qRT-PCR on mRNA from microdissected LA samples. Finally, we asked whether identified genes induced by fear learning in the LA are downstream of the extracellular-regulated kinase/mitogen-activated protein kinase signaling cascade. Collectively, our findings reveal a comprehensive list of genes that represent the first wave of transcription following both LTP induction and fear conditioning that largely belong to a class of genes referred to as 'neuronal activity dependent genes' that are likely calcium, extracellular-regulated kinase/mitogen-activated protein kinase, and CREB-dependent.

  11. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis

    Directory of Open Access Journals (Sweden)

    González Mauricio

    2009-09-01

    Full Text Available Abstract Background Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. Results Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. Conclusion Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we

  12. The Schizophrenia-Associated BRD1 Gene Regulates Behavior, Neurotransmission, and Expression of Schizophrenia Risk Enriched Gene Sets in Mice

    DEFF Research Database (Denmark)

    Qvist, Per; Christensen, Jane Hvarregaard; Vardya, Irina;

    2016-01-01

    BACKGROUND: The schizophrenia-associated BRD1 gene encodes a transcriptional regulator whose comprehensive chromatin interactome is enriched with schizophrenia risk genes. However, the biology underlying the disease association of BRD1 remains speculative. METHODS: This study assessed......-inhibition imbalances involving loss of parvalbumin immunoreactive interneurons. RNA-sequencing analyses of cortical and striatal micropunches from Brd1(+/-) and wild-type mice revealed differential expression of genes enriched for schizophrenia risk, including several schizophrenia genome-wide association study risk...... the transcriptional drive of a schizophrenia-associated BRD1 risk variant in vitro. Accordingly, to examine the effects of reduced Brd1 expression, we generated a genetically modified Brd1(+/-) mouse and subjected it to behavioral, electrophysiological, molecular, and integrative genomic analyses with focus...

  13. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression.

    Science.gov (United States)

    Grund, Stefanie E; Fischer, Tamás; Cabal, Ghislain G; Antúnez, Oreto; Pérez-Ortín, José E; Hurt, Ed

    2008-09-08

    Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Delta cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice and exposes its N and C domains with putative DNA-binding motifs to the nucleoplasm. Genome-wide chromatin immunoprecipitation-on-chip analyses indicated that Src1 is highly enriched at telomeres and subtelomeric regions of the yeast chromosomes. Our data show that the inner nuclear membrane protein Src1 functions at the interface between subtelomeric gene expression and TREX-dependent messenger RNA export through the nuclear pore complexes.

  14. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis.

    Science.gov (United States)

    Tang, Guirong; Wang, Ying; Luo, Li

    2014-09-01

    Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.

  15. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry.

    Science.gov (United States)

    De Franceschi, P; Stegmeir, T; Cabrera, A; van der Knaap, E; Rosyara, U R; Sebolt, A M; Dondini, L; Dirlewanger, E; Quero-Garcia, J; Campoy, J A; Iezzoni, A F

    2013-01-01

    Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis.

  16. Salmonella SirA is a global regulator of genes mediating enteropathogenesis.

    Science.gov (United States)

    Ahmer, B M; van Reeuwijk, J; Watson, P R; Wallis, T S; Heffron, F

    1999-02-01

    SirA of Salmonella typhimurium is known to regulate the hilA and prgH genes within Salmonella pathogenicity island 1 (SPI1). To identify more members of the SirA regulon, we screened 10,000 random lacZY fusions (chromosomal MudJ insertions) for regulation by SirA and identified 10 positively regulated fusions. Three fusions were within the SPI1 genes hilA (an SPI1 transcriptional regulator), spaS (a component of the SPI1 type III export apparatus) and sipB (a substrate of the SPI1 export apparatus). Two fusions were within the sopB gene (also known as sigD). sopB is located within SPI5, but encodes a protein that is exported via the SPI1 export apparatus. In addition, five fusions were within genes of unknown function that are located in SPI4. As spaS and sipB were likely to be hilA dependent, we tested all of the fusions (except hilA) for hilA dependence. Surprisingly, we found that all of the fusions require hilA for expression and that plasmid-encoded SirA cannot bypass this requirement. Therefore, SirA regulates hilA, the product of which regulates genes within SPI1, SPI4 and SPI5. Both sirA and hilA mutants are dramatically attenuated in a bovine model of gastroenteritis, but have little or no effect in the mouse model of typhoid fever. This study establishes the SirA/HilA regulatory cascade as the primary regulon controlling enteropathogenic virulence functions in S. typhimurium. Because S. typhimurium causes gastroenteritis in both cattle and humans, we believe that this information may be directly applicable to the human disease.

  17. Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

    Science.gov (United States)

    Park, Eun-Hee; Kim, Myoung-Dong

    2015-01-01

    During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

  18. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  19. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  20. Evolutionarily diverged regulation of X-chromosomal genes as a primal event in mouse reproductive isolation.

    Science.gov (United States)

    Oka, Ayako; Takada, Toyoyuki; Fujisawa, Hironori; Shiroishi, Toshihiko

    2014-04-01

    Improper gene regulation is implicated in reproductive isolation, but its genetic and molecular bases are unknown. We previously reported that a mouse inter-subspecific X chromosome substitution strain shows reproductive isolation characterized by male-specific sterility due to disruption of meiotic entry in spermatogenesis. Here, we conducted comprehensive transcriptional profiling of the testicular cells of this strain by microarray. The results clearly revealed gross misregulation of gene expression in the substituted donor X chromosome. Such misregulation occurred prior to detectable spermatogenetic impairment, suggesting that it is a primal event in reproductive isolation. The misregulation of X-linked genes showed asymmetry; more genes were disproportionally downregulated rather than upregulated. Furthermore, this misregulation subsequently resulted in perturbation of global transcriptional regulation of autosomal genes, probably by cascading deleterious effects. Remarkably, this transcriptional misregulation was substantially restored by introduction of chromosome 1 from the same donor strain as the X chromosome. This finding implies that one of regulatory genes acting in trans for X-linked target genes is located on chromosome 1. This study collectively suggests that regulatory incompatibility is a major cause of reproductive isolation in the X chromosome substitution strain.

  1. Expression Analysis of Sound Vibration-Regulated Genes by Touch Treatment in Arabidopsis.

    Science.gov (United States)

    Ghosh, Ritesh; Gururani, Mayank A; Ponpandian, Lakshmi N; Mishra, Ratnesh C; Park, Soo-Chul; Jeong, Mi-Jeong; Bae, Hanhong

    2017-01-01

    Sound vibration (SV) is considered to be a mechanical stimulus which gives rise to various physiological and molecular changes in plants. Previously, we identified 17 SV-regulated genes (SRGs) which were up-regulated by SV treatments in Arabidopsis. Here, we analyzed the expression pattern of similar genes after an exposure of 500 Hertz at 80 decibels, for various time periods. Simultaneously, we confirmed the SV-mediated expression of these genes under lighted condition as many of them were reported to be dark-induced. For this, we designed an improved SV treatment chamber. Additionally, we checked the electrolyte leakage (EL), photosynthetic performance and expression of mechanosensitive (MS) ion channel genes after 5 days of SV treatment in the illuminated chamber. EL was higher, and the photosynthetic performance index was lower in the SV-treated plants compared to control. Seven out of the 13 MS ion channel genes were differentially expressed after the SV treatment. Simultaneously, we checked the touch-mediated expression pattern of 17 SRGs and 13 MS ion channel genes. The distinct expression pattern of 6 SRGs and 1 MS ion channel gene generate an idea that SV as a stimulus is different from touch. Developmental stage-specific expression profiling suggested that the majority of the SRGs were expressed spatiotemporally in different developmental stages of Arabidopsis, especially in imbibed seed, seedlings and leaves.

  2. ParaHox genes in pancreatic cell cultures: effects on the insulin promoter regulation

    Directory of Open Access Journals (Sweden)

    Anna Rosanas-Urgell, Jordi Garcia-Fernàndez, Gemma Marfany

    2008-01-01

    Full Text Available The gene encoding PDX1 (pancreatic duodenum homeobox 1, the main transcription factor regulating the glucose-dependent transactivation of the insulin promoter in pancreatic β-cells, clusters with two closely related homeobox genes (Gsh1 and Cdx2/3, all of them belonging to the ParaHox gene family. The ParaHox gene evolutionary history in the vertebrate lineage involved duplications of the cluster and subsequent loss of some members, so that eventually, the human and murine genomes contain only 6 ParaHox genes. The crucial role of PDX1 in pancreas development, beta-cell formation and insulin transcription regulation has long been established. There is some data on CDX2/3 function in α-cells, but remarkably, nothing is known on the role of the other ParaHox genes, which are also expressed in the endocrine pancreas. Homeobox transcription factors that belong to the same family show high conservation of the homeodomain and share similar target sites and oligomeric partners, and thus may act redundantly, synergistically or antagonistically on the same promoters. Therefore, we explored the effects of the Parahox proteins (GSH1, GSH2, CDX1, CDX2/3 and CDX4 on the regulation of the insulin promoter in transfected α- and β- cultured cell lines at different glucose concentrations and compared them to those of PDX1. Noticeably, several ParaHox transcription factors are able to transactivate or inhibit the insulin promoter, depending on the cell type and glucose concentration, thus suggesting their possible participation in the regulation of similar target genes, such as insulin, either by silencing or activating them, in the absence of PDX1.

  3. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica.

    Science.gov (United States)

    Ahamad, Jamaluddin; Ojha, Sandeep; Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha

    2015-06-01

    Ribosome synthesis involves all three RNA polymerases which are co-ordinately regulated to produce equimolar amounts of rRNAs and ribosomal proteins (RPs). Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in E. histolytica rDNA transcription continues but pre-rRNA processing slows down and unprocessed pre-rRNA accumulates during serum starvation. To investigate the regulation of RP genes under stress we measured transcription of six selected RP genes from the small- and large-ribosomal subunits (RPS6, RPS3, RPS19, RPL5, RPL26, RPL30) representing the early-, mid-, and late-stages of ribosomal assembly. Transcripts of these genes persisted in growth-stressed cells. Expression of luciferase reporter under the control of two RP genes (RPS19 and RPL30) was studied during serum starvation and upon serum replenishment. Although luciferase transcript levels remained unchanged during starvation, luciferase activity steadily declined to 7.8% and 15% of control cells, respectively. After serum replenishment the activity increased to normal levels, suggesting post-transcriptional regulation of these genes. Mutations in the sequence -2 to -9 upstream of AUG in the RPL30 gene resulted in the phenotype expected of post-transcriptional regulation. Transcription of luciferase reporter was unaffected in this mutant, and luciferase activity did not decline during serum starvation, showing that this sequence is required to repress translation of RPL30 mRNA, and mutations in this region relieve repression. Our data show that during serum starvation E. histolytica blocks ribosome biogenesis post-transcriptionally by inhibiting pre-rRNA processing on the one hand, and the translation of RP mRNAs on the other.

  4. Potential role for PAD2 in gene regulation in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Brian D Cherrington

    Full Text Available The peptidylarginine deiminase (PAD family of enzymes post-translationally convert positively charged arginine residues in substrate proteins to the neutral, non-standard residue citrulline. PAD family members 1, 2, 3, and 6 have previously been localized to the cell cytoplasm and, thus, their potential to regulate gene activity has not been described. We recently demonstrated that PAD2 is expressed in the canine mammary gland epithelium and that levels of histone citrullination in this tissue correlate with PAD2 expression. Given these observations, we decided to test whether PAD2 might localize to the nuclear compartment of the human mammary epithelium and regulate gene activity in these cells. Here we show, for the first time, that PAD2 is specifically expressed in human mammary gland epithelial cells and that a portion of PAD2 associates with chromatin in MCF-7 breast cancer cells. We investigated a potential nuclear function for PAD2 by microarray, qPCR, and chromatin immunoprecipitation analysis. Results show that the expression of a unique subset of genes is disregulated following depletion of PAD2 from MCF-7 cells. Further, ChIP analysis of two of the most highly up- and down-regulated genes (PTN and MAGEA12, respectively found that PAD2 binds directly to these gene promoters and that the likely mechanism by which PAD2 regulates expression of these genes is via citrullination of arginine residues 2-8-17 on histone H3 tails. Thus, our findings define a novel role for PAD2 in gene expression in human mammary epithelial cells.

  5. Multiple Enhancers Regulate Hoxd Genes and the Hotdog LncRNA during Cecum Budding

    Directory of Open Access Journals (Sweden)

    Saskia Delpretti

    2013-10-01

    Full Text Available Hox genes are required for the development of the intestinal cecum, a major organ of plant-eating species. We have analyzed the transcriptional regulation of Hoxd genes in cecal buds and show that they are controlled by a series of enhancers located in a gene desert flanking the HoxD cluster. The start site of two opposite long noncoding RNAs (lncRNAs, Hotdog and Twin of Hotdog, selectively contacts the expressed Hoxd genes in the framework of a topological domain, coinciding with robust transcription of these genes during cecum budding. Both lncRNAs are specifically transcribed in the cecum, albeit bearing no detectable function in trans. Hedgehogs have kept this regulatory potential despite the absence of the cecum, suggesting that these mechanisms are used in other developmental situations. In this context, we discuss the implementation of a common “budding toolkit” between the cecum and the limbs.

  6. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    Science.gov (United States)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  7. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  8. Developmental regulation of expression of schizophrenia susceptibility genes in the primate hippocampal formation.

    Science.gov (United States)

    Favre, G; Banta Lavenex, P; Lavenex, P

    2012-10-23

    The hippocampal formation is essential for normal memory function and is implicated in many neurodevelopmental, neurodegenerative and neuropsychiatric disorders. In particular, abnormalities in hippocampal structure and function have been identified in schizophrenic subjects. Schizophrenia has a strong polygenic component, but the role of numerous susceptibility genes in normal brain development and function has yet to be investigated. Here we described the expression of schizophrenia susceptibility genes in distinct regions of the monkey hippocampal formation during early postnatal development. We found that, as compared with other genes, schizophrenia susceptibility genes exhibit a differential regulation of expression in the dentate gyrus, CA3 and CA1, over the course of postnatal development. A number of these genes involved in synaptic transmission and dendritic morphology exhibit a developmental decrease of expression in CA3. Abnormal CA3 synaptic organization observed in schizophrenics might be related to some specific symptoms, such as loosening of association. Interestingly, changes in gene expression in CA3 might occur at a time possibly corresponding to the late appearance of the first clinical symptoms. We also found earlier changes in expression of schizophrenia susceptibility genes in CA1, which might be linked to prodromal psychotic symptoms. A number of schizophrenia susceptibility genes including APOE, BDNF, MTHFR and SLC6A4 are involved in other disorders, and thus likely contribute to nonspecific changes in hippocampal structure and function that must be combined with the dysregulation of other genes in order to lead to schizophrenia pathogenesis.

  9. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Sun, Wei-Wen; Bruno, Kenneth S.; Oakley, Berl R.; Keller, Nancy P.; Wang, Clay C.

    2015-07-13

    In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes or non-ribosomal peptide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. More interestingly, further experiments revealed that the aspulvinone E produced by two different genes accumulates in different fungal compartments. And this spatial control of aspulvinone E production is likely to be regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is inserted in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. The study also identified one trans-prenyltransferase AbpB which is capable of prenylating two different substrates aspulvinones and butyrolactones. In total, our study shows the first example in which the locally distribution of the same natural product could lead to its incorporation into different SM pathways.

  10. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti.

    Science.gov (United States)

    Krol, Elizaveta; Klaner, Christina; Gnau, Petra; Kaever, Volkhard; Essen, Lars-Oliver; Becker, Anke

    2016-10-01

    To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.

  11. Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation.

    Science.gov (United States)

    Klosterman, Steven J; Choi, Jane J; Hadwiger, Lee A

    2003-07-01

    SUMMARY HMG-I/Y proteins are characterized by the presence of AT-hook motifs, DNA binding domains that recognize AT-rich tracts of DNA. By facilitating protein:protein and protein:DNA interactions in the vicinity of these AT-rich binding sites, HMG-I/Y positively or negatively regulates gene expression. Several pea defence gene promoters have AT-rich tracts of DNA that are potential targets for modulation via HMG-I/Y. In this study, a comparison of the expression of a pea defence gene (DRR206) mRNA relative to the expression of HMG-I/Y mRNA was monitored by Northern analysis following the inoculation of a fungal pathogen, Fusarium solani or treatment with chitosan and a F. solani DNase (Fsph DNase). In pea pod endocarp tissue, HMG-I/Y expression was observed at high levels in untreated tissue and at lower levels 6 h following inoculation or wounding of the tissue. Western blots with an antipea HMG-I/Y polyclonal antibody also revealed that pea HMG-I/Y is expressed at decreased levels 6 h following inoculation or elicitor treatment. HMG-I/Y extracted from pea caused alterations in the gel migration of radio-labelled AT-rich sequences from the pea DRR206 promoter, suggesting that similar interactions could exist in vivo. Agroinfiltration was utilized to express the pea HMG-I/Y gene in tobacco containing a chimeric gene fusion of a promoter from the PR gene, DRR206, and the beta-glucuronidase (GUS) reporter gene. Transient expression of pea HMG-I/Y led to a decrease in GUS reporter gene activity in the heterologous tobacco system. These data implicate pea HMG-I/Y abundance in the down-regulation of DRR206 gene expression, and possibly HMG-I/Y depletion in the expression of defence genes in pea.

  12. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers.

    Directory of Open Access Journals (Sweden)

    Kun Yu

    Full Text Available Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270 compared to nonmalignant tissues (n = 71. Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP, which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.

  13. From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome.

    Science.gov (United States)

    Lemay, Danielle G; Pollard, Katherine S; Martin, William F; Freeman Zadrowski, Courtneay; Hernandez, Joseph; Korf, Ian; German, J Bruce; Rijnkels, Monique

    2013-01-01

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an organism's survival.

  14. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  15. QKI-7 regulates expression of interferon-related genes in human astrocyte glioma cells.

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    Full Text Available BACKGROUND: The human QKI gene, called quaking homolog, KH domain RNA binding (mouse, is a candidate gene for schizophrenia encoding an RNA-binding protein. This gene was shown to be essential for myelination in oligodendrocytes. QKI is also highly expressed in astrocytes, but its function in these cells is not known. METHODS/PRINCIPAL FINDINGS: We studied the effect of small interference RNA (siRNA-mediated QKI depletion on global gene expression in human astrocyte glioma cells. Microarray measurements were confirmed with real-time quantitative polymerase chain reaction (qPCR. The presence of QKI binding sites (QRE was assessed by a bioinformatic approach. Viability and cell morphology were also studied. The most significant alteration after QKI silencing was the decreased expression of genes involved in interferon (IFN induction (P = 6.3E-10, including IFIT1, IFIT2, MX1, MX2, G1P2, G1P3, GBP1 and IFIH1. All eight genes were down-regulated after silencing of the splice variant QKI-7, but were not affected by QKI-5 silencing. Interestingly, four of them were up-regulated after treatment with the antipsychotic agent haloperidol that also resulted in increased QKI-7 mRNA levels. CONCLUSIONS/SIGNIFICANCE: The coordinated expression of QKI-7 splice variant and IFN-related genes supports the idea that this particular splice variant has specific functions in astrocytes. Furthermore, a role of QKI-7 as a regulator of an inflammatory gene pathway in astrocytes is suggested. This hypothesis is well in line with growing experimental evidence on the role of inflammatory components in schizophrenia.

  16. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  17. Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa.

    Science.gov (United States)

    Ouyang, Shouqiang; Beecher, Consuelo N; Wang, Kang; Larive, Cynthia K; Borkovich, Katherine A

    2015-07-20

    The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5-20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa.

  18. Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Askew David S

    2005-01-01

    Full Text Available Abstract Background Although Aspergillus fumigatus is an important human fungal pathogen there are few expression systems available to study the contribution of specific genes to the growth and virulence of this opportunistic mould. Regulatable promoter systems based upon prokaryotic regulatory elements in the E. coli tetracycline-resistance operon have been successfully used to manipulate gene expression in several organisms, including mice, flies, plants, and yeast. However, the system has not yet been adapted for Aspergillus spp. Results Here we describe the construction of plasmid vectors that can be used to regulate gene expression in A. fumigatus using a simple co-transfection approach. Vectors were generated in which the tetracycline transactivator (tTA or the reverse tetracycline transactivator (rtTA2s-M2 are controlled by the A. nidulans gpdA promoter. Dominant selectable cassettes were introduced into each plasmid, allowing for selection following gene transfer into A. fumigatus by incorporating phleomycin or hygromycin into the medium. To model an essential gene under tetracycline regulation, the E. coli hygromycin resistance gene, hph, was placed under the control of seven copies of the TetR binding site (tetO7 in a plasmid vector and co-transfected into A. fumigatus protoplasts together with one of the two transactivator plasmids. Since the hph gene is essential to A. fumigatus in the presence of hygromycin, resistance to hygromycin was used as a marker of hph reporter gene expression. Transformants were identified in which the expression of tTA conferred hygromycin resistance by activating expression of the tetO7-hph reporter gene, and the addition of doxycycline to the medium suppressed hygromycin resistance in a dose-dependent manner. Similarly, transformants were identified in which expression of rtTA2s-M2 conferred hygromycin resistance only in the presence of doxycycline. The levels of doxycycline required to regulate

  19. The pseudokinase NIPI-4 is a novel regulator of antimicrobial peptide gene expression.

    Directory of Open Access Journals (Sweden)

    Sid Ahmed Labed

    Full Text Available Hosts have developed diverse mechanisms to counter the pathogens they face in their natural environment. Throughout the plant and animal kingdoms, the up-regulation of antimicrobial peptides is a common response to infection. In C. elegans, infection with the natural pathogen Drechmeria coniospora leads to rapid induction of antimicrobial peptide gene expression in the epidermis. Through a large genetic screen we have isolated many new mutants that are incapable of upregulating the antimicrobial peptide nlp-29 in response to infection (i.e. with a Nipi or 'no induction of peptide after infection' phenotype. More than half of the newly isolated Nipi mutants do not correspond to genes previously associated with the regulation of antimicrobial peptides. One of these, nipi-4, encodes a member of a nematode-specific kinase family. NIPI-4 is predicted to be catalytically inactive, thus to be a pseudokinase. It acts in the epidermis downstream of the PKC∂ TPA-1, as a positive regulator of nlp antimicrobial peptide gene expression after infection. It also controls the constitutive expression of antimicrobial peptide genes of the cnc family that are targets of TGFß regulation. Our results open the way for a more detailed understanding of how host defense pathways can be molded by environmental pathogens.

  20. Microarray and KOG analysis of Acanthamoeba healyi genes up-regulated by mouse-brain passage.

    Science.gov (United States)

    Moon, Eun-Kyung; Xuan, Ying-Hua; Kong, Hyun-Hee

    2014-08-01

    Long-term cultivation in a laboratory could reduce the virulence of Acanthamoeba. To identify virulence factors of Acanthamoeba, the authors compared the transcription profiles of long-term cultivated Acanthamoeba healyi (OLD) and three times mouse-brain passaged A. healyi (MBP) using microarray analysis and eukaryotic orthologous group (KOG) assignments. Microarray analysis revealed that 601 genes were up-regulated by mouse-brain passage. The results of real-time PCR of 8 randomly selected genes up-regulated in the MBP strain confirmed microarray analysis findings. KOG assignments showed relatively higher percentages of the MBP strain up-regulated genes in T article (signal transduction mechanism), O article (posttranslational modification, protein turnover, chaperones), C article (energy production and conversion), and J article (translation, ribosomal structure and biogenesis). In particular, the MBP strain showed higher expressions of cysteine protease and metalloprotease. A comparison of KOG assignments by microarray analysis and previous EST (expressed sequence tags) analysis showed similar populations of up-regulated genes. These results provide important information regarding the identification of virulence factors of pathogenic Acanthamoeba.

  1. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis.

    Science.gov (United States)

    Xie, Liqiong; Yang, Cangjing; Wang, Xuelu

    2011-08-01

    The phytohormones, brassinosteroids (BRs), play important roles in regulating cell elongation and cell size, and BR-related mutants in Arabidopsis display significant dwarf phenotypes. Cellulose is a biopolymer which has a major contribution to cell wall formation during cell expansion and elongation. However, whether BRs regulate cellulose synthesis, and if so, what the underlying mechanism of cell elongation induced by BRs is, is unknown. The content of cellulose and the expression levels of the cellulose synthase genes (CESAs) was measured in BR-related mutants and their wild-type counterpart. The chromatin immunoprecipitation (CHIP) experiments and genetic analysis were used to demonstrate that BRs regulate CESA genes. It was found here that the BR-deficient or BR-perceptional mutants contain less cellulose than the wild type. The expression of CESA genes, especially those related to primary cell wall synthesis, was reduced in det2-1 and bri1-301, and was only inducible by BRs in the BR-deficient mutant det2-1. CHIP experiments show that the BR-activated transcription factor BES1 can associate with upstream elements of most CESA genes particularly those related with the primary cell wall. Furthermore, over-expression of the BR receptor BRI1 in CESA1, 3, and 6 mutants can only partially rescue the dwarf phenotypes. Our findings provide potential insights into the mechanism that BRs regulate cellulose synthesis to accomplish the cell elongation process in plant development.

  2. Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos

    NARCIS (Netherlands)

    Young, Teddy; Rowland, Jennifer Elizabeth; van de Ven, Cesca; Bialecka, Monika; Novoa, Ana; Carapuco, Marta; van Nes, Johan; de Graaff, Wim; Duluc, Isabelle; Freund, Jean-Noel; Beck, Felix; Mallo, Moises; Deschamps, Jacqueline

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenoty

  3. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells

    DEFF Research Database (Denmark)

    Pasini, Diego; Cloos, Paul A C; Walfridsson, Julian

    2010-01-01

    The Polycomb group (PcG) proteins have an important role in controlling the expression of genes essential for development, differentiation and maintenance of cell fates. The Polycomb repressive complex 2 (PRC2) is believed to regulate transcriptional repression by catalysing the di- and tri-methy...

  4. Mouse Protocadherin-1 Gene Expression Is Regulated by Cigarette Smoke Exposure In Vivo

    NARCIS (Netherlands)

    Koning, Henk; van Oosterhout, Antoon J. M.; Brouwer, Uilke; den Boef, Lisette E.; Gras, Renee; Reinders-Luinge, Marjan; Brandsma, Corry-Anke; van der Toorn, Marco; Hylkema, Machteld N.; Willemse, Brigitte W. M.; Sayers, Ian; Koppelman, Gerard H.; Nawijn, Martijn C.

    2014-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological c

  5. Integrative analyses shed new light on human ribosomal protein gene regulation

    Science.gov (United States)

    Li, Xin; Zheng, Yiyu; Hu, Haiyan; Li, Xiaoman

    2016-01-01

    Ribosomal protein genes (RPGs) are important house-keeping genes that are well-known for their coordinated expression. Previous studies on RPGs are largely limited to their promoter regions. Recent high-throughput studies provide an unprecedented opportunity to study how human RPGs are transcriptionally modulated and how such transcriptional regulation may contribute to the coordinate gene expression in various tissues and cell types. By analyzing the DNase I hypersensitive sites under 349 experimental conditions, we predicted 217 RPG regulatory regions in the human genome. More than 86.6% of these computationally predicted regulatory regions were partially corroborated by independent experimental measurements. Motif analyses on these predicted regulatory regions identified 31 DNA motifs, including 57.1% of experimentally validated motifs in literature that regulate RPGs. Interestingly, we observed that the majority of the predicted motifs were shared by the predicted distal and proximal regulatory regions of the same RPGs, a likely general mechanism for enhancer-promoter interactions. We also found that RPGs may be differently regulated in different cells, indicating that condition-specific RPG regulatory regions still need to be discovered and investigated. Our study advances the understanding of how RPGs are coordinately modulated, which sheds light to the general principles of gene transcriptional regulation in mammals. PMID:27346035

  6. ChIP-on-chip analysis of thyroid hormone-regulated genes and their physiological significance

    Science.gov (United States)

    Lin, Yang-Hsiang; Chi, Hsiang-Cheng; Huang, Ya-Hui; Yang, Chang-Ching; Yeh, Chau-Ting; Tan, Bertrand Chin-Ming; Lin, Kwang-Huei

    2016-01-01

    Triiodothyronine (T3) and its receptor (TR) modulate several physiological processes, including cell development, proliferation, differentiation and metabolism. The regulatory mechanism of T3/TR involves binding to the thyroid hormone response element (TRE) within the target gene promoter. However, the number of target genes directly regulated by TRα1 and the specific pathways of TR-regulated target genes remain largely unknown. Here, we expressed TRα1 in a HepG2 cell line and used chromatin immunoprecipitation coupled with microarray to determine the genes that are directly regulated by TRα1 and also involved in cell metabolism and proliferation. Our analysis identified E74-like factor 2 (ELF2), a transcription factor associated with tumor growth, as a direct target downregulated by T3/TR. Overexpression of ELF2 enhanced tumor cell proliferation, and conversely, its knockdown suppressed tumor growth. Additionally, ELF2 restored the proliferative ability of hepatoma cells inhibited by T3/TR. Our findings collectively support a potential role of T3/TR in tumor growth inhibition through regulation of ELF2. PMID:26968954

  7. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    Science.gov (United States)

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  8. Identification of 2 novel genes developmentally regulated in the mouse aorta-gonad-mesonephros region

    NARCIS (Netherlands)

    C. Orelio; E.A. Dzierzak (Elaine)

    2003-01-01

    textabstractThe first adult-repopulating hematopoietic stem cells (HSCs) emerge in the mouse aorta-gonad-mesonephros (AGM) region at embryonic day 10.5 prior to their appearance in the yolk sac and fetal liver. Although several genes are implicated in the regulation of HSCs, there

  9. MDP Up-Regulates the Gene Expression of Type I Interferons in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiumei Xie

    2012-03-01

    Full Text Available Muramyldipeptide (MDP, the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2. Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  10. MDP up-regulates the gene expression of type I interferons in human aortic endothelial cells.

    Science.gov (United States)

    Lv, Qingshan; Yang, Mei; Liu, Xueting; Zhou, Lina; Xiao, Zhilin; Chen, Xiaobin; Chen, Meifang; Xie, Xiumei; Hu, Jinyue

    2012-03-23

    Muramyldipeptide (MDP), the minimum essential structure responsible for the immuno-adjuvant activity of peptidoglycan, is recognized by intracellular nuclear-binding oligomerization domain 2 (NOD2). Here, we obtained evidence that the treatment of human aortic endothelial cells (HAECs) with MDP up-regulated the gene expression of type I interferons in a dose- and time-dependent manner. MDP also up-regulated the expression of the receptor NOD2, suggesting that MDP may induce a positive feedback response. The up-regulation of interferons was not dependent on the TNFa signaling, as HAECs did not express TNFa with the stimulation of MDP, and TNFa neutralizing antibody did not decrease the induction of IFNs induced by MDP. RT-PCR results showed that HAECs expressed the gene transcripts of interferon regulatory factor (IRF) 1, 2, 3, 9. The western blot results showed that MDP induced the phosphorylation of IRF3. These results suggested that MDP induced the up-regulation of gene transcript of interferons through the activation of IRF3 signaling pathway. Meanwhile, MDP induced the gene expression of pro-inflammatory cytokines, including IL-1ß, IL-8, and MCP-1. Taken together, these results suggested that HAECs may play roles in the anti-infection immune response and in the induction of innate immunity.

  11. Super-Enhancers at the Nanog Locus Differentially Regulate Neighboring Pluripotency-Associated Genes.

    Science.gov (United States)

    Blinka, Steven; Reimer, Michael H; Pulakanti, Kirthi; Rao, Sridhar

    2016-09-27

    Super-enhancers are tissue-specific cis-regulatory elements that drive expression of genes associated with cell identity and malignancy. A cardinal feature of super-enhancers is that they are transcribed to produce enhancer-derived RNAs (eRNAs). It remains unclear whether super-enhancers robustly activate genes in situ and whether their functions are attributable to eRNAs or the DNA element. CRISPR/Cas9 was used to systematically delete three discrete super-enhancers at the Nanog locus in embryonic stem cells, revealing functional differences in Nanog transcriptional regulation. One distal super-enhancer 45 kb upstream of Nanog (-45 enhancer) regulates both nearest neighbor genes, Nanog and Dppa3. Interestingly, eRNAs produced at the -45 enhancer specifically regulate Dppa3 expression by stabilizing looping of the -45 enhancer and Dppa3. Our work illustrates that genomic editing is required to determine enhancer function and points to a method to selectively target a subset of super-enhancer-regulated genes by depleting eRNAs.

  12. Understanding the role of ETS-mediated gene regulation in complex biological processes.

    Science.gov (United States)

    Findlay, Victoria J; LaRue, Amanda C; Turner, David P; Watson, Patricia M; Watson, Dennis K

    2013-01-01

    Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas.

  13. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nguyen

    2016-01-01

    Full Text Available The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7 and 2 enzymes involved in glucose metabolism (pgd and fbp1a were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.

  14. Gene expression profiling identifies a set of transcripts that are up-regulated inhuman testicular seminoma.

    Science.gov (United States)

    Yamada, Shigeyuki; Kohu, Kazuyoshi; Ishii, Tomohiko; Ishidoya, Shigeto; Ishidoya, Shigeru; Hiramatsu, Masayoshi; Kanto, Satoru; Fukuzaki, Atsushi; Adachi, Yutsu; Endoh, Mareyuki; Moriya, Takuya; Sasaki, Hiroki; Satake, Masanobu; Arai, Yoichi

    2004-10-31

    Seminoma constitutes one subtype of human testicular germ cell tumors and is uniformly composed of cells that are morphologically similar to the primordial germ cells and/or the cells in the carcinoma in situ. We performed a genome-wide exploration of the genes that are specifically up-regulated in seminoma by oligonucleotide-based microarray analysis. This revealed 106 genes that are significantly and consistently up-regulated in the seminomas compared to the adjacent normal tissues of the testes. The microarray data were validated by semi-quantitative RT-PCR analysis. Of the 106 genes, 42 mapped to a small number of specific chromosomal regions, namely, 1q21, 2p23, 6p21-22, 7p14-15, 12pll, 12p13, 12q13-14 and 22q12-13. This list of up-regulated genes may be useful in identifying the causative oncogene(s) and/or the origin of seminoma. Furthermore, immunohistochemical analysis revealed that the seminoma cells specifically expressed the six gene products that were selected randomly from the list. These proteins include CCND2 and DNMT3A and may be useful as molecular pathological markers of seminoma.

  15. Regulation of Cardiac Gene Expression by GATA-4/5/6.

    Science.gov (United States)

    Evans, T

    1997-04-01

    The identification of nuclear regulatory proteins provides great promise for advancing our understanding of the transcriptional control of cardiac gene expression. Three new members of the GATA family of DNA-binding transcription factors were recently discovered and designated GATA-4/5/6. On the basis of expression patterns, the identification of candidate cardiac target genes and the current understanding of how other GATA factors function in the hematopoietic system, it appears that these genes are important for regulating programs of cardiac development and terminal differentiation. Indeed, a functional role for GATA-4/5/6 in activating the cardiac differentiation program was demonstrated in cell culture and embryonic systems; however, recent results obtained in embryonic stem (ES) cells with a targeted mutation of GATA-4 raise new questions regarding specificity of action among the three genes. The future direction of research in the field is discussed; understanding GATA-4/5/6 function and regulation is likely to provide important insight into the specification and/or differentiation of cardiac progenitors, development and morphogenesis of the heart, and regulation of cardiac-specific gene expression. (Trends Cardiovasc Med 1997;7:75-83). © 1997, Elsevier Science Inc.

  16. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines.

  17. Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum.

    Science.gov (United States)

    Van Waes, Vincent; Beverley, Joel; Marinelli, Michela; Steiner, Heinz

    2010-08-01

    The psychostimulant methylphenidate (Ritalin) is used in conjunction with selective serotonin reuptake inhibitors (SSRIs) in the treatment of medical conditions such as attention-deficit hyperactivity disorder with anxiety/depression comorbidity and major depression. Co-exposure also occurs in patients on SSRIs who use psychostimulant 'cognitive enhancers'. Methylphenidate is a dopamine/norepinephrine reuptake inhibitor that produces altered gene expression in the forebrain; these effects partly mimic gene regulation by cocaine (dopamine/norepinephrine/serotonin reuptake inhibitor). We investigated whether the addition of SSRIs (fluoxetine or citalopram; 5 mg/kg) modified gene regulation by methylphenidate (2-5 mg/kg) in the striatum and cortex of adolescent rats. Our results show that SSRIs potentiate methylphenidate-induced expression of the transcription factor genes zif268 and c-fos in the striatum, rendering these molecular changes more cocaine-like. Present throughout most of the striatum, this potentiation was most robust in its sensorimotor parts. The methylphenidate + SSRI combination also enhanced behavioral stereotypies, consistent with dysfunction in sensorimotor striatal circuits. In so far as such gene regulation is implicated in psychostimulant addiction, our findings suggest that SSRIs may enhance the addiction potential of methylphenidate.

  18. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    Science.gov (United States)

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.

  19. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  20. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414

  1. MADS-box genes and gibberellins regulate bolting in lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Yingyan Han

    2016-12-01

    Full Text Available Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines.

  2. O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria.

    Science.gov (United States)

    Unden, G; Becker, S; Bongaerts, J; Holighaus, G; Schirawski, J; Six, S

    1995-08-01

    Availability of O2 is one of the most important regulatory signals in facultatively anaerobic bacteria. Various two- or one-component sensor/regulator systems control the expression of aerobic and anaerobic metabolism in response to O2. Most of the sensor proteins contain heme or Fe as cofactors that interact with O2 either by binding or by a redox reaction. The ArcA/ArcB regulator of aerobic metabolism in Escherichia coli may use a different sensory mechanism. In two-component regulators, the sensor is located in the cytoplasmic membrane, whereas one-component regulators are located in the cytoplasm. Under most conditions, O2 can readily reach the cytoplasm and could provide the signal in the cytoplasm. The transcriptional regulator FNR of E. Coli controls the expression of many genes required for anaerobic metabolism in response to O2. Functional homologs of FNR are present in facultatively anaerobic Proteobacteria and presumably also in gram-positive bacteria. The target genes of FNR are mostly under multiple regulation by FNR and other regulators that respond to O2, nitrate, or glucose. FNR represents a 'one-component' sensor/regulator and contains Fe for signal perception. In response to O2 availability, FNR is converted reversibly from the aerobic (inactive) state to the anaerobic (active) state. Experiments suggest that the Fe cofactor is bound by four essential cysteine residues. The O2-triggered transformation between active and inactive FNR presumably is due to a redox reaction at the Fe cofactor, but other modes of interaction cannot be excluded. O2 seems to affect the site-specific DNA binding of FNR at target genes or the formation of an active transcriptional complex with RNA polymerase.

  3. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  4. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available BACKGROUND: RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought. CONCLUSIONS/SIGNIFICANCE: RDR1 is regulated by a much broader range of phytohormones than previously thought

  5. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Dunwoodie, Sally L. [Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010 (Australia); St. Vincent' s Clinical School and the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033 (Australia); Ku, Bon Jeong, E-mail: bonjeong@cnu.ac.kr [Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jeong, Jae-Wook, E-mail: JaeWook.Jeong@hc.msu.edu [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Department of Women' s Health, Spectrum Health System, Grand Rapids, MI (United States)

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.

  6. Adipose Genes Down-Regulated During Experimental Endotoxemia Are Also Suppressed in Obesity

    Science.gov (United States)

    Hinkle, Christine C.; Haris, Lalarukh; Shah, Rhia; Mehta, Nehal N.; Putt, Mary E.; Reilly, Muredach P.

    2012-01-01

    Context: Adipose inflammation is a crucial link between obesity and its metabolic complications. Human experimental endotoxemia is a controlled model for the study of inflammatory cardiometabolic responses in vivo. Objective: We hypothesized that adipose genes down-regulated during endotoxemia would approximate changes observed with obesity-related inflammation and reveal novel candidates in cardiometabolic disease. Design, Subjects, and Intervention: Healthy volunteers (n = 14) underwent a 3 ng/kg endotoxin challenge; adipose biopsies were taken at 0, 4, 12, and 24 h for mRNA microarray. A priority list of highly down-regulated and biologically relevant genes was validated by RT-PCR in an independent sample of adipose from healthy subjects (n = 7) undergoing a subclinical 0.6 ng/kg endotoxemia protocol. Expression of validated genes was screened in adipose of lean and severely obese individuals (n = 11 per group), and cellular source was probed in cultured adipocytes and macrophages. Results: Endotoxemia (3 ng/kg) suppressed expression of 353 genes (to <67% of baseline; P < 1 × 10−5) of which 68 candidates were prioritized for validation. In low-dose (0.6 ng/kg) endotoxin validation, 22 (32%) of these 68 genes were confirmed. Functional classification revealed that many of these genes are involved in cell development and differentiation. Of validated genes, 59% (13 of 22) were down-regulated more than 1.5-fold in primary human adipocytes after treatment with endotoxin. In human macrophages, 59% (13 of 22) were up-regulated during differentiation to inflammatory M1 macrophages whereas 64% (14 of 22) were down-regulated during transition to homeostatic M2 macrophages. Finally, in obese vs. lean adipose, 91% (20 of 22) tended to have reduced expression (χ2 = 10.72, P < 0.01) with 50% (11 of 22) reaching P < 0.05 (χ2 = 9.28, P < 0.01). Conclusions: Exploration of down-regulated mRNA in adipose during human endotoxemia revealed suppression of genes involved in

  7. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  8. Two host microRNAs influence WSSV replication via STAT gene regulation

    Science.gov (United States)

    Huang, Ying; Wang, Wen; Ren, Qian

    2016-01-01

    MicroRNAs (miRNAs) have important roles in post-transcriptional regulation of gene expression. During viral infection, viruses utilize hosts to enhance their replication by altering cellular miRNAs. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays crucial roles in the antiviral responses. In this study, two miRNAs (miR-9041 and miR-9850) from Macrobrachium rosenbergii were found to promote white spot syndrome virus (WSSV) replication. The up-regulation of miR-9041 or miR-9850 suppresses STAT expression in the gills of M. rosenbergii, which subsequently down-regulates the expression of its downstream dynamin (Dnm) genes: Dnm1, Dnm2, and Dnm3. Knockdown of miR-9041 and miR-9850 restricts WSSV replication by up-regulating STAT and Dnm gene expression. The silencing of STAT, Dnm1, Dnm2, or Dnm3 led to an increase of the number of WSSV copies in shrimp. The injection of recombinant Dnm1, Dnm2, or Dnm3 proteins could inhibit WSSV replication in vivo. Overall, our research indicates the roles of host miRNAs in the enhancement of WSSV replication by regulating the host JAK/STAT pathway. PMID:27029712

  9. BACH1, the master regulator gene: A novel candidate target for cancer therapy.

    Science.gov (United States)

    Davudian, Sadaf; Mansoori, Behzad; Shajari, Neda; Mohammadi, Ali; Baradaran, Behzad

    2016-08-15

    BACH1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) is a transcriptional factor and a member of cap 'n' collar (CNC) and basic region leucine zipper factor family. In contrast to other bZIP family members, BACH1 appeared as a comparatively specific transcription factor. It acts as transcription regulator and is recognized as a recently hypoxia regulator and functions as an inducible repressor for the HO-1 gene in many human cell types in response to stress oxidative. In regard to studies lately, although, BACH1 has been related to the regulation of oxidative stress and heme oxidation, it has never been linked to invasion and metastasis. Recent studies have showed that BACH1 is involved in bone metastasis of breast cancer by up-regulating vital metastatic genes like CXCR4 and MMP1. This newly discovered aspect of BACH1 gene provides new insight into cancer progression study and stands on its master regulator role in metastasis process, raising the possibility of considering it as a potential target for cancer therapy.

  10. Identification and characterization of the minimal androgen-regulated kidney-specific kidney androgen-regulated protein gene promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The kidney androgen-regulated protein (Kap) gene is tissue specific and regulated by androgen in mouse kidney proximal tubule cells (PTCs). In the present study, we aimed to identify the minimal PTC-specific androgen-regulated Kap promoter and analyze its androgen response elements (AREs).Adeletion series of the Kap1542 promoter/luciferase constructs were assayed in opossum kidney (OK) PTCs in the presence or absence of 15 nM dihydrotestosterone (DHT). Kap 1542 and Kap637 had low activity and no androgen induction; Kap224 had a basal activity that was 4- to 5-fold higher than that of Kap 1542, but was only sfightly induced by DHT. Kap 147 had a basal activity that was 2- to 3-fold higher than that of Kap 1542 and was induced by DHT 4- to 6-fold. Kap77 abol-ished basal promoter activity but was still induced by DHT. Results showed that, in vitro, Kap147 was a minimal androgen-regulated promoter. Transient transfection in different cells demonstrated that Kap147 specifically initi-ated reporter gene expression in PTCs. Sequence analysis revealed two potential AREs located at positions -124 and -39 of Kap147. Mutational assays showed that only the ARE at -124 was involved in androgen response in OK cells. Electrophoretic mobility shift assay also verified -124 ARE bound specifically to androgen receptor. In conclusion, we defined the minimal Kap 147 promoter that may be a good model for the study of kidney PTC-specific expression and molecular mechanisms that lead to an androgen-specific responsiveness in vivo.

  11. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND DESIGN

  12. Stochastic modeling for the expression of a gene regulated by competing transcription factors.

    Directory of Open Access Journals (Sweden)

    Hsih-Te Yang

    Full Text Available It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer simulation requires detailed information on the interactions of individual molecules, which is often not available for the analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis. Therefore, our approach may help to apply stochastic simulations to broader experimental data.

  13. A computer-based microarray experiment design-system for gene-regulation pathway discovery.

    Science.gov (United States)

    Yoo, Changwon; Cooper, Gregory F

    2003-01-01

    This paper reports the methods and evaluation of a computer-based system that recommends microarray experimental design for biologists - causal discovery in Gene Expression data using Expected Value of Experimentation (GEEVE). The GEEVE system uses causal Bayesian networks and generates a decision tree for recommendations. To evaluate the GEEVE system, we first built an expression simulation model based on a gene regulation model assessed by an expert biologist. Using the simulation model, we conducted a controlled study that involved 10 biologists, some of whom used GEEVE and some of whom did not. The results show that biologists who used GEEVE reached correct causal assessments about gene regulation more often than did those biologists who did not use GEEVE.

  14. Regulation of Sulfotransferase and UDP-Glucuronosyltransferase Gene Expression by the PPARs

    Directory of Open Access Journals (Sweden)

    Melissa Runge-Morris

    2009-01-01

    Full Text Available During phase II metabolism, a substrate is rendered more hydrophilic through the covalent attachment of an endogenous molecule. The cytosolic sulfotransferase (SULT and UDP-glucuronosyltransferase (UGT families of enzymes account for the majority of phase II metabolism in humans and animals. In general, phase II metabolism is considered to be a detoxication process, as sulfate and glucuronide conjugates are more amenable to excretion and elimination than are the parent substrates. However, certain products of phase II metabolism (e.g., unstable sulfate conjugates are genotoxic. Members of the nuclear receptor superfamily are particularly important regulators of SULT and UGT gene transcription. In metabolically active tissues, increasing evidence supports a major role for lipid-sensing transcription factors, such as peroxisome proliferator-activated receptors (PPARs, in the regulation of rodent and human SULT and UGT gene expression. This review summarizes current information regarding the regulation of these two major classes of phase II metabolizing enzyme by PPARs.

  15. Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti.

    Science.gov (United States)

    Gao, Mengsheng; Nguyen, Hahn; Salas González, Isai; Teplitski, Max

    2016-11-01

    The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix(-) phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase-response regulator pair that controls expression of the nitrogenase genes. The ability of Hfq to bind fixLJ in vitro and in planta was demonstrated with gel shift and coimmunoprecipitation experiments. Two (ARN)2 motifs in the fixLJ message were the likely sites through which Hfq exerted its posttranscriptional control. Consistent with the regulatory effects of Hfq, downstream genes controlled by FixLJ (such as nifK, noeB) were also subject to Hfq regulation in planta.

  16. Promoter competition assay for analyzing gene regulation in joint tissue engineering.

    Science.gov (United States)

    Sun, Hui Bin; Malacinski, George M; Yokota, Hiroki

    2002-08-01

    We describe a new biochemical technique, "promoter competition assay," for examining the role of cis-acting DNA elements in tissue cultures. Recent advances in tissue engineering permit the culture of a variety of cells. Many tissues are engineered, however, without an appropriate understanding of molecular machinery that regulates gene expression and cellular growth. For elucidating the role of cis-acting regulatory elements in cellular differentiation and growth, we developed the promoter competition assay. This assay uses a transient transfer into cells of double-stranded DNA fragments consisting of cis-acting regulatory elements. The transferred DNA fragments act as a competitor and titrate the function of their genomic counterparts. Using synovial cells derived from a rheumatoid arthritis patient, we examined a role of NF-kappa B binding sites in the regulation of the expression of matrix metalloproteinase (MMP) genes. The results support a stimulatory role of NF-kappa B in transcriptional regulation of MMP-1 and MMP-13.

  17. IL-17F regulates psoriasis-associated genes through IκBζ

    DEFF Research Database (Denmark)

    Bertelsen, Trine; Ljungberg, Christine; Kjellerup, Rasmus Boye;

    2016-01-01

    the role of IL-17F in the regulation of IκBζ expression and to investigate whether IL-17F regulates psoriasis-associated genes in human keratinocytes through IκBζ. Here, we demonstrate that IL-17F stimulation induces IκBζ expression at both the mRNA and the protein levels in normal human keratinocytes....... Moreover, silencing IκBζ by siRNA revealed that IκBζ is a key regulator of specific IL-17F-inducible psoriasis-associated genes and proteins, including DEFB4/hBD2, S100A7, CCL20, IL-8 and CHI3L1. In addition, IL-17F-induced IκBζ expression is mediated by a mechanism involving the p38 MAPK and NF...

  18. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  19. Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria.

    Science.gov (United States)

    Liu, Huiqin; Dong, Chunling; Zhao, Tingchang; Han, Jucai; Wang, Tieling; Wen, Xiangzhen; Huang, Qi

    2016-01-01

    Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.

  20. Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria.

    Directory of Open Access Journals (Sweden)

    Huiqin Liu

    Full Text Available Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv, we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.

  1. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  2. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes

    Science.gov (United States)

    Pajares, Marta; Jiménez-Moreno, Natalia; García-Yagüe, Ángel J.; Escoll, Maribel; de Ceballos, María L.; Van Leuven, Fred; Rábano, Alberto; Yamamoto, Masayuki; Rojo, Ana I.; Cuadrado, Antonio

    2016-01-01

    ABSTRACT Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies. PMID:27427974

  3. Potential Genes for Regulation of Milk Protein Synthesis in Dairy Goat Mammary Gland

    Institute of Scientific and Technical Information of China (English)

    Chen Dan; Zhang Na; Nan Xue-mei; Li Qing-zhang; Gao Xue-jun

    2016-01-01

    The lactating mammary gland is a prodigious protein-producing factory, but the milk protein synthesis mechanisms are not well understood. The major objective of this paper was to elucidate which genes and pathways were involved in the regulation of milk protein synthesis in the dairy goat mammary gland. Total 36 primiparous Guanzhong dairy goats were allotted in 12 groups according to their mammary development stages: days 90 and 150 of virgin, days 30, 90, and 150 of pregnancy, days 1, 10, 35, and 60 of lactation and days 3, 7, and 21 of involution (three animals per group). Mammary tissue RNA was isolated for quantitative real-time RT-PCR of four casein genes alpha-s1 casein (CSN1S1), alpha-s2 casein (CSN1S2), beta-casein (CSN2) and casein kappa (CSN3), four whey protein genes lactoglobulin (LGB), lactalbumin (LALBA), lactofarrin (LTF), and Whey acidic protein (WAP) and the genes which were potentially to regulate dairy goat milk protein synthesis at the level of transcription or translation [prolactin receptor (PRLR), AKT1, signal transducers and activators of transcription 5 (STAT5), E74-Like Factor 5 (ELF5), eukaryotic translation initiation factor 4E binding protein 1 (EIF4E-BP1), S6kinase (S6K) and caveolin 1]. The results showed that all genes were up-regulated in lactation period. The expressions of PRLR, AKT1, STAT5, ELF5, and S6K were similar to mRNA expressions of milk proteins. Our results indicated that milk protein synthesis in dairy goat mammary gland was possibly regulated by these genes.

  4. Murine cytomegalovirus protein pM92 is a conserved regulator of viral late gene expression.

    Science.gov (United States)

    Chapa, Travis J; Perng, Yi-Cheih; French, Anthony R; Yu, Dong

    2014-01-01

    In this study, we report that murine cytomegalovirus (MCMV) protein pM92 regulates viral late gene expression during virus infection. Previously, we have shown that MCMV protein pM79 and its human cytomegalovirus (HCMV) homologue pUL79 are required for late viral gene transcription. Identification of additional factors involved is critical to dissecting the mechanism of this regulation. We show here that pM92 accumulated abundantly at late times of infection in a DNA synthesis-dependent manner and localized to nuclear viral replication compartments. To investigate the role of pM92, we constructed a recombinant virus SMin92, in which pM92 expression was disrupted by an insertional/frameshift mutation. During infection, SMin92 accumulated representative viral immediate-early gene products, early gene products, and viral DNA sufficiently but had severe reduction in the accumulation of late gene products and was thus unable to produce infectious progeny. Coimmunoprecipitation and mass spectrometry analysis revealed an interaction between pM92 and pM79, as well as between their HCMV homologues pUL92 and pUL79. Importantly, we showed that the growth defect of pUL92-deficient HCMV could be rescued in trans by pM92. This study indicates that pM92 is an additional viral regulator of late gene expression, that these regulators (represented by pM92 and pM79) may need to complex with each other for their activity, and that pM92 and pUL92 share a conserved function in CMV infection. pM92 represents a potential new target for therapeutic intervention in CMV disease, and a gateway into studying a largely uncharted viral process that is critical to the viral life cycle.

  5. Identification of G1-regulated genes in normally cycling human cells.

    Directory of Open Access Journals (Sweden)

    Maroun J Beyrouthy

    Full Text Available BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.

  6. Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucose-regulated genes.

    Directory of Open Access Journals (Sweden)

    Rhiannon K Biddick

    Full Text Available BACKGROUND: Adr1 and Cat8 co-regulate numerous glucose-repressed genes in S. cerevisiae, presenting a unique opportunity to explore their individual roles in coactivator recruitment, chromatin remodeling, and transcription. METHODOLOGY/PRINCIPAL FINDINGS: We determined the individual contributions of Cat8 and Adr1 on the expression of a cohort of glucose-repressed genes and found three broad categories: genes that need both activators for full derepression, genes that rely mostly on Cat8 and genes that require only Adr1. Through combined expression and recruitment data, along with analysis of chromatin remodeling at two of these genes, ADH2 and FBP1, we clarified how these activators achieve this wide range of co-regulation. We find that Adr1 and Cat8 are not intrinsically different in their abilities to recruit coactivators but rather, promoter context appears to dictate which activator is responsible for recruitment to specific genes. These promoter-specific contributions are also apparent in the chromatin remodeling that accompanies derepression: ADH2 requires both Adr1 and Cat8, whereas, at FBP1, significant remodeling occurs with Cat8 alone. Although over-expression of Adr1 can compensate for loss of Cat8 at many genes in terms of both activation and chromatin remodeling, this over-expression cannot complement all of the cat8Delta phenotypes. CONCLUSIONS/SIGNIFICANCE: Thus, at many of the glucose-repressed genes, Cat8 and Adr1 appear to have interchangeable roles and promoter architecture may dictate the roles of these activators.

  7. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice

    Science.gov (United States)

    Liu, Juhong; Shen, Jianqiang; Xu, Yan; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2016-01-01

    CONSTANS (CO)-like genes have been intensively investigated for their roles in the regulation of photoperiodic flowering, but very limited information has been reported on their functions in other biological processes. Here, we found that a CO-like gene, Ghd2 (Grain number, plant height, and heading date2), which can increase the yield potential under normal growth condition just like its homologue Ghd7, is involved in the regulation of leaf senescence and drought resistance. Ghd2 is expressed mainly in the rice (Oryza sativa) leaf with the highest level detected at the grain-filling stage, and it is down-regulated by drought stress conditions. Overexpression of Ghd2 resulted in significantly reduced drought resistance, while its knockout mutant showed the opposite phenotype. The earlier senescence symptoms and the transcript up-regulation of many senescence-associated genes (SAGs) in Ghd2-overexpressing transgenic rice plants under drought stress conditions indicate that Ghd2 plays essential roles in accelerating drought-induced leaf senescence in rice. Moreover, developmental and dark-induced leaf senescence was accelerated in the Ghd2-overexpressing rice and delayed in the ghd2 mutant. Several SAGs were confirmed to be regulated by Ghd2 using a transient expression system in rice protoplasts. Ghd2 interacted with several regulatory proteins, including OsARID3, OsPURα, and three 14-3-3 proteins. OsARID3 and OsPURα showed expression patterns similar to Ghd2 in rice leaves, with the highest levels at the grain-filling stage, whereas OsARID3 and the 14-3-3 genes responded differently to drought stress conditions. These results indicate that Ghd2 functions as a regulator by integrating environmental signals with the senescence process into a developmental programme through interaction with different proteins. PMID:27638689

  8. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-01-01

    Full Text Available Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours, we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  9. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling.

    Directory of Open Access Journals (Sweden)

    Ryo Matoba

    Full Text Available POU transcription factor Pou5f1 (Oct3/4 is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks.

  10. Dissecting Oct3/4-Regulated Gene Networks in Embryonic Stem Cells by Expression Profiling

    Science.gov (United States)

    Matoba, Ryo; Niwa, Hitoshi; Masui, Shinji; Ohtsuka, Satoshi; Carter, Mark G.; Sharov, Alexei A.; Ko, Minoru S.H.

    2006-01-01

    POU transcription factor Pou5f1 (Oct3/4) is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP) assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks. PMID:17183653

  11. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation.

    Science.gov (United States)

    Zhu, Zijue; Li, Chong; Yang, Shi; Tian, Ruhui; Wang, Junlong; Yuan, Qingqing; Dong, Hui; He, Zuping; Wang, Shengyue; Li, Zheng

    2016-01-12

    Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted.

  12. Regulation of Polycomb group genes Psc and Su(z)2 in Drosophila melanogaster.

    Science.gov (United States)

    Park, Sung Yeon; Schwartz, Yuri B; Kahn, Tatyana G; Asker, Dalal; Pirrotta, Vincenzo

    2012-01-01

    Certain Polycomb group (PcG) genes are themselves targets of PcG complexes. Two of these constitute the Drosophila Psc-Su(z)2 locus, a region whose chromatin is enriched for H3K27me3 and contains several putative Polycomb response elements (PREs) that bind PcG proteins. To understand how PcG mechanisms regulate this region, the repressive function of the PcG protein binding sites was analyzed using reporter gene constructs. We find that at least two of these are functional PREs that can silence a reporter gene in a PcG-dependent manner. One of these two can also display anti-silencing activity, dependent on the context. A PcG protein binding site near the Psc promoter behaves not as a silencer but as a down-regulation module that is actually stimulated by the Pc gene product but not by other PcG products. Deletion of one of the PREs increases the expression level of Psc and Su(z)2 by twofold at late embryonic stages. We present evidence suggesting that the Psc-Su(z)2 locus is flanked by insulator elements that may protect neighboring genes from inappropriate silencing. Deletion of one of these regions results in extension of the domain of H3K27me3 into a region containing other genes, whose expression becomes silenced in the early embryo.

  13. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  14. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Tsai, Chung-Jui [Michigan Technological University; Harding, Scott A [Michigan Technological University; Lindroth, richard L [University of Wisconsin, Madison; Yuan, Yinan [Michigan Technological University

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  15. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Pettersson, Fredrik; Larsson, Jan

    2007-11-01

    Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF) protein, which, together with heterochromatin protein 1 (HP1), modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  16. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Directory of Open Access Journals (Sweden)

    Anna-Mia Johansson

    2007-11-01

    Full Text Available Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF protein, which, together with heterochromatin protein 1 (HP1, modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  17. Regulation of a novel gene cluster involved in secondary metabolite production in Streptomyces coelicolor.

    Science.gov (United States)

    Hindra; Pak, Patricia; Elliot, Marie A

    2010-10-01

    Antibiotic biosynthesis in the streptomycetes is a complex and highly regulated process. Here, we provide evidence for the contribution of a novel genetic locus to antibiotic production in Streptomyces coelicolor. The overexpression of a gene cluster comprising four protein-encoding genes (abeABCD) and an antisense RNA-encoding gene (α-abeA) stimulated the production of the blue-pigmented metabolite actinorhodin on solid medium. Actinorhodin production also was enhanced by the overexpression of an adjacent gene (abeR) encoding a predicted Streptomyces antibiotic regulatory protein (SARP), while the deletion of this gene impaired actinorhodin production. We found the abe genes to be differentially regulated and controlled at multiple levels. Upstream of abeA was a promoter that directed the transcription of abeABCD at a low but constitutive level. The expression of abeBCD was, however, significantly upregulated at a time that coincided with the initiation of aerial development and the onset of secondary metabolism; this expression was activated by the binding of AbeR to four heptameric repeats upstream of a promoter within abeA. Expressed divergently to the abeBCD promoter was α-abeA, whose expression mirrored that of abeBCD but did not require activation by AbeR. Instead, α-abeA transcript levels were subject to negative control by the double-strand-specific RNase, RNase III.

  18. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  19. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  20. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation.

    Science.gov (United States)

    Tsuji, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2011-02-01

    Photoperiodic control of flowering time consists of a complicated network that converges into the generation of a mobile flowering signal called florigen. Recent advances identifying the protein FT/Hd3a as the molecular nature responsible for florigen activity have focused current research on florigen genes as the important output of this complex signaling network. Rice is a model system for short-day plants and recent progress in elucidating the flowering network from rice and Arabidopsis, a long-day plant, provides an evolutionarily comparative view of the photoperiodic flowering pathway. This review summarizes photoperiodic flowering control in rice, including the interaction of complex layers of gene networks contributed from evolutionarily unique factors and the regulatory adaptation of conserved factors.

  1. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.