WorldWideScience

Sample records for channelisation riparian structure

  1. Effects of Channelisation, Riparian Structure and Catchment Area on Physical Habitats in Small Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge

    2009-01-01

    that are dominated by a hierarchy of physical processes. The complexity is further enhanced by local human alteration of the physical structure, natural processes and alteration of the riparian areas. The aim of the study was to analyse variations in land use and riparian characteristics along small Danish streams......Rivers and streams form a longitudinal network in which physical conditions and biological processes change through the river system. Geomorphology, topography, geology and hydraulic conditions change from site to site within the river system, thereby creating a complex network of reaches...... and to determine the effect of channelisation on physical habitats. Physical stream characteristics were measured in 149 stream small and medium sized Danish streams (catchment area: 0.1 to 67.2 km2). The measured physical parameters included discharge, stream slope, width, depth, current velocity, substrata...

  2. Riparian vegetation structure under desertification scenarios

    Science.gov (United States)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  3. Does stream flow structure woody riparian vegetation in subtropical catchments?

    Science.gov (United States)

    James, Cassandra S; Mackay, Stephen J; Arthington, Angela H; Capon, Samantha J; Barnes, Anna; Pearson, Ben

    2016-08-01

    The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA - Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream-specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are

  4. Morphological evolution of a rural headwater stream after channelisation

    Science.gov (United States)

    Landemaine, Valentin; Gay, Aurore; Cerdan, Olivier; Salvador-Blanes, Sébastien; Rodrigues, Stéphane

    2015-02-01

    In recent decades, stream valleys have been profoundly modified by the construction of weirs and dams and by channelisation. Channelisation modifies the morphology of streams and induces changes in their energy regime and sediment transport capacity. These types of changes in the channel morphology have to be quantified to allow the implementation of management strategies to regulate sediment transfer. However, studies over an entire stream using historical comparisons remain scarce, and the associated uncertainties have not yet been resolved. In this study, the sedimentary response to channelisation on a medium time scale (42 years) of a French river known as the Ligoire is investigated. This river is the main channel of a small rural headwater catchment that has been channelised over 21 km. We have used the historical cross sections before and after channelisation and the current ones, and the objectives of this study were as follows: (1) to develop a methodology of cross section superposition and the associated uncertainties; (2) to quantify the erosion and aggradation processes in the bed and on the banks along the bed profile; and (3) to calculate a sediment budget for the entire stream and determine the relative contributions of the banks and the streambed to this budget. A comparison of the cross sections before and after the channelisation shows that the morphology of the stream has been completely altered: the main channel length was reduced by 10%, the bankfull width was increased on average by 63%, and the slopes were smoothed. A total of 60,000 m3 of sediments was excavated during the channelisation works. Our results indicate that erosion is the dominant process: over 63% of its length, the streambed was incised by 0.41 m on average; and over 60% of its length, the banks were eroded by 0.20 m on average. The successive patterns of erosion and deposition along the stream are the result of the cumulative effects of channelisation and of the presence of

  5. Woody species composition, diversity and structure of riparian forests of four watercourses types in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Oumarou Sambaré; Fidèle Bognounou; Rüdiger Wittig; Adjima Thiombiano

    2011-01-01

    Riparian forests are classified as endangered ecosystems in general, particularly in sahelian countries like Burkina Faso because of human-induced alterations and civil engineering works. The modification of this important habitat is continuing, with little attention being paid to the ecological or human consequences of these changes. The objective of this study is to describe the variation of woody species diversity and dynamic in riparian forests on different type of watercourse banks along phytogeographical gradient in Burkina Faso. All woody species were systematically measured in 90 sample plots with sides of 50 m × 20 m.Density, dominance, frequency and species and family importance values were computed to characterize the species composition. Different diversity indices were calculated to examine the heterogeneity of riparian forests. A total of 196 species representing 139 genera and 51 families were recorded in the overall riparian forests. The species richness of individuals with dbh ≥ 5cm increased significantly from the North to the South along the phytogeographical gradient and varied significantly between the different types of riparian forests. Similarity in tree species composition between riparian forests was low, which indicates high beta diversity and reflects differences in habitat conditions and topography.The structural characteristics varied significantly along the phytogeographical gradient and between the different types of riparian forests.The diameter class distribution of trees in all riparian forests showed a reverse “J” shaped curve except riparian forest of stream indicating vegetation dominated by juvenile individuals. Considering the ecological importance of riparian forest, there is a need to delineate and classify them along watercourses throughout the country.

  6. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    Science.gov (United States)

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long

  7. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    Science.gov (United States)

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long

  8. The role of hydrochory in structuring riparian and wetland vegetation.

    Science.gov (United States)

    Nilsson, Christer; Brown, Rebecca L; Jansson, Roland; Merritt, David M

    2010-11-01

    Hydrochory, or the passive dispersal of organisms by water, is an important means of propagule transport, especially for plants. During recent years, knowledge about hydrochory and its ecological consequences has increased considerably and a substantial body of literature has been produced. Here, we review this literature and define the state of the art of the discipline. A substantial proportion of species growing in or near water have propagules (fruits, seeds or vegetative units) able to disperse by water, either floating, submerged in flowing water, or with the help of floating vessels. Hydrochory can enable plants to colonize sites out of reach with other dispersal vectors, but the timing of dispersal and mechanisms of establishment are important for successful establishment. At the population level, hydrochory may increase the effective size and longevity of populations, and control their spatial configuration. Hydrochory is also an important source of species colonizing recruitment-limited riparian and wetland communities, contributing to maintenance of community species richness. Dispersal by water may even influence community composition in different landscape elements, resulting in landscape-level patterns. Genetically, hydrochory may reduce spatial aggregation of genetically related individuals, lead to high gene flow among populations, and increase genetic diversity in populations receiving many propagules. Humans have impacted hydrochory in many ways. For example, dams affect hydrochory by reducing peak flows and hence dispersal capacity, altering the timing of dispersal, and by presenting physical barriers to dispersal, with consequences for riverine plant communities. Hydrochory has been inferred to be an important vector for the spread of many invasive species, but there is also the potential for enhancing ecosystem restoration by improving or restoring water dispersal pathways. Climate change may alter the role of hydrochory by modifying the

  9. The role of hydrochory in structuring riparian and wetland vegetation.

    Science.gov (United States)

    Nilsson, Christer; Brown, Rebecca L; Jansson, Roland; Merritt, David M

    2010-11-01

    Hydrochory, or the passive dispersal of organisms by water, is an important means of propagule transport, especially for plants. During recent years, knowledge about hydrochory and its ecological consequences has increased considerably and a substantial body of literature has been produced. Here, we review this literature and define the state of the art of the discipline. A substantial proportion of species growing in or near water have propagules (fruits, seeds or vegetative units) able to disperse by water, either floating, submerged in flowing water, or with the help of floating vessels. Hydrochory can enable plants to colonize sites out of reach with other dispersal vectors, but the timing of dispersal and mechanisms of establishment are important for successful establishment. At the population level, hydrochory may increase the effective size and longevity of populations, and control their spatial configuration. Hydrochory is also an important source of species colonizing recruitment-limited riparian and wetland communities, contributing to maintenance of community species richness. Dispersal by water may even influence community composition in different landscape elements, resulting in landscape-level patterns. Genetically, hydrochory may reduce spatial aggregation of genetically related individuals, lead to high gene flow among populations, and increase genetic diversity in populations receiving many propagules. Humans have impacted hydrochory in many ways. For example, dams affect hydrochory by reducing peak flows and hence dispersal capacity, altering the timing of dispersal, and by presenting physical barriers to dispersal, with consequences for riverine plant communities. Hydrochory has been inferred to be an important vector for the spread of many invasive species, but there is also the potential for enhancing ecosystem restoration by improving or restoring water dispersal pathways. Climate change may alter the role of hydrochory by modifying the

  10. Variation and Genetic Structure in Platanus mexicana (Platanaceae along Riparian Altitudinal Gradient

    Directory of Open Access Journals (Sweden)

    Dulce M. Galván-Hernández

    2015-01-01

    Full Text Available Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l. using ten inter-simple sequence repeats (ISSR markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42 and polymorphism reached the top value at the middle altitude (% p = 88.57. Analysis of molecular variance (AMOVA and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  11. Impact of riparian land-use patterns on Ephemeroptera community structure in river basins of the southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Selvakumar C.

    2014-02-01

    Full Text Available This study analysed the impact of riparian land use in structuring the larval ephemeropteran communities from 25 sites in streams and rivers of Kalakad-Mundanthurai Tiger Reserve (KMTR of the southern end of the Western Ghats, India. A total of twenty-eight species belonging to twenty-four genera of six families were collected across all the sites. Baetidae and Leptophlebiidae were the most numerous and ubiquitous families, comprising eight genera in each family and eleven and nine species, respectively. The physico-chemical parameters and species richness and abundance of mayflies varied across streams and rivers with different riparian land-use types. Species distribution was influenced by the environmental gradients. Canonical Correspondence Analysis revealed a clear separation of the mayfly assemblages along water quality and riparian land-use gradients. The results of this study suggest that Ephemeroptera taxa can be potentially used as sensitive indicators of riparian land use in lotic ecosystems.

  12. The influence of riparian vegetation on the energy input of the rivers Lafnitz and Pinka

    Science.gov (United States)

    Holzapfel, Gerda; Rauch, Hans Peter; Weihs, Philipp; Trimmel, Heidelinde; Formayer, Herbert; Leitner, Patrick; Graf, Wolfram; Melcher, Andreas; Dossi, Florian

    2013-04-01

    In Central Europe freshwater ecosystems have to deal with a loss of habitat structures due to channelisation and standardisation. Unimpaired streams and rivers are very rare, which leads to a few, remaining populations of sensitive invertebrate species which are severely fragmented. This progress is mainly noticed in lowland rivers in agricultural intensely used areas, where habitat degradation and pollution affect the ecosystems. Additional pressures on the freshwater systems will be expected due to climate change effects. In the Austrian Lowlands, an increase of air temperature about 2-2.5 °C is predicted till 2040. This will in turn lead to the highest increase in water temperature in the lowland rivers of the "Hungarian Plains", Ecoregion 11 on which the impacts of climate change will most likely be highest in Austria. Global warming on its own may lead to severe changes in aquatic ecosystems. Human impacts increase the negative effects even more. Main factors for a sustainable survival of benthic invertebrates and fishes are closely connected with parameters like water temperature, the availability of oxygen and nutrients, or radiation and nutrients for primary production which are closely related to climate. Natural bank vegetation reduces the influx of solar radiation as well as it forms a microclimate of its own and could provide very important niches for terrestrial and aquatic stages. Riparian areas with trees provide direct shade for the water body and thus avoiding the corresponding increase in water temperature. Wide riparian wooded areas can even decrease evaporation and increase the relative air humidity, which contributes to reducing water temperature. Input of deadwood like trees or logs represents essential habitats for invertebrates and fish assemblages. Its presence is one essential drivers of bed-morphology creating heterogeneous instream habitat patterns. In the framework of the project BIO_CLIC the potential of riparian vegetation to

  13. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil.

    Science.gov (United States)

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species' specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  14. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil

    Science.gov (United States)

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L.; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species’ specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  15. Quantifying riparian zone structure from airborne LiDAR: Vegetation filtering, anisotropic interpolation, and uncertainty propagation

    Science.gov (United States)

    Hutton, Christopher; Brazier, Richard

    2012-06-01

    SummaryAdvances in remote sensing technology, notably in airborne Light Detection And Ranging (LiDAR), have facilitated the acquisition of high-resolution topographic and vegetation datasets over increasingly large areas. Whilst such datasets may provide quantitative information on surface morphology and vegetation structure in riparian zones, existing approaches for processing raw LiDAR data perform poorly in riparian channel environments. A new algorithm for separating vegetation from topography in raw LiDAR data, and the performance of the Elliptical Inverse Distance Weighting (EIDW) procedure for interpolating the remaining ground points, are evaluated using data derived from a semi-arid ephemeral river. The filtering procedure, which first applies a threshold (either slope or elevation) to classify vegetation high-points, and second a regional growing algorithm from these high-points, avoids the classification of high channel banks as vegetation, preserving existing channel morphology for subsequent interpolation (2.90-9.21% calibration error; 4.53-7.44% error in evaluation for slope threshold). EIDW, which accounts for surface anisotropy by converting the remaining elevation points to streamwise co-ordinates, can outperform isoptropic interpolation (IDW) on channel banks, however, performs less well in isotropic conditions, and when local anisotropy is different to that of the main channel. A key finding of this research is that filtering parameter uncertainty affects the performance of the interpolation procedure; resultant errors may propagate into the Digital Elevation Model (DEM) and subsequently derived products, such as Canopy Height Models (CHMs). Consequently, it is important that this uncertainty is assessed. Understanding and developing methods to deal with such errors is important to inform users of the true quality of laser scanning products, such that they can be used effectively in hydrological applications.

  16. Impact of riparian land-use patterns on Ephemeroptera community structure in river basins of the southern Western Ghats, India

    OpenAIRE

    Selvakumar C; Sivaramakrishnan K.G.; Janarthanan S.; Arumugam M; Arunachalam M.

    2014-01-01

    This study analysed the impact of riparian land use in structuring the larval ephemeropteran communities from 25 sites in streams and rivers of Kalakad-Mundanthurai Tiger Reserve (KMTR) of the southern end of the Western Ghats, India. A total of twenty-eight species belonging to twenty-four genera of six families were collected across all the sites. Baetidae and Leptophlebiidae were the most numerous and ubiquitous families, com...

  17. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around...

  18. Assessing the Effects of Periodic Flooding on the Population Structure and Recruitment Rates of Riparian Tree Forests

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Berthelot

    2014-08-01

    Full Text Available Riparian forest stands are subjected to a variety of hydrological stresses as a result of annual fluctuations in water levels during the growing season. Spring floods create additional water-related stress as a result of a major inflow of water that floods riverside land. This exploratory study assesses the impacts of successive floods on tree dynamics and regeneration in an active sedimentation area, while determining the age of the stands using the recruitment rates, tree structure and tree rings based on dendrochronological analysis. Environmental data were also recorded for each vegetation quadrat. In total, 2633 tree stems were tallied throughout the quadrats (200 m2, and tree specimens were analyzed based on the various flood zones. A total of 720 specimens were counted (100 m2 strip to measure natural regeneration. Higher recruitment rates are noted for the no-flood zones and lower rates in active floodplains. During the period of the establishment of tree species, the survival rates are comparable between the flood zones and the no-flood zones. Tree diameter distribution reveals a strong predominance of young trees in flooded areas. Different factors appear to come into play in the dynamics of riparian forest stands, including the disruptions associated with successive flooding.

  19. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  20. Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils

    Science.gov (United States)

    Bodelier, Paul LE; Bär-Gilissen, Marie-Jose; Meima-Franke, Marion; Hordijk, Kees

    2012-01-01

    Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils. This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein. PMID:22408730

  1. Riparian forestry management and adult stream insects

    Directory of Open Access Journals (Sweden)

    R. A. Briers

    2004-01-01

    Full Text Available The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a potentially strong impact on survival and success of adult stages through alteration of microclimate, habitat structure and potential food sources, in addition to effects carried over from larval stages. Here, current riparian management strategies are analysed in the light of available information on the ecology of adult stream insects. On the whole, management practices appear to favour adult stream insects, although an increase in tree cover in riparian areas could be beneficial, by providing more favourable microclimatic conditions for adults. This conclusion is drawn based on rather limited information, and the need for further research into the effects of riparian forestry management on adult stream insects is highlighted. Keywords: microclimate, plantation, life history, riparian vegetation

  2. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  3. Assessing the Utility of Green LiDAR for Characterizing Forest Canopy Structure and Stream Bathymetry in Riparian Zones.

    Science.gov (United States)

    Moskal, L. M.; Richardson, J.

    2014-12-01

    Forested riparian zones serve many ecosystem functions from species habitat through stream shading and large woody debris recruitment, to improvements in water quality. Moreover, stream depth and bathymetry in forested environments is difficult and costly to measure in the field, but critically important for stream-dwelling organisms. Green (bathymetric) LiDAR (G-L) can be used to characterize stream bathymetry, but little is known of its ability to accurately characterize stream bathymetry in narrow (width less than 5 m), heavily forested streams. Canopy characterization with green LiDAR is also poorly understood. We compared canopy and digital elevation models (DEMs) derived from green and near-infrared LiDAR (NIR-L) to field measurements in a narrow, forested stream in Oregon, USA, as well as comparing the two canopy models and DEMs to each other along the length of the stream and to estimates of leaf area index. We observed that the canopy models from the G-L are lower in accuracy compared to NIR-L canopy models. Canopy height models from the G-L were up to 26% less accurate in dense stands, compared to the NIR-L accuracy of 94%. We attribute these errors in part to the lower quality of DEMs generated from the G-L as compared to the NIR-L DEMs. As for bathymetry, the G-L DEM was 0.05 cm higher in elevation than the field measured stream elevation, while the NIR-L ground model was 0.17mm higher. The elevation difference tended to increase with stream depth for both types of LiDAR-derived DEMs, but stream depth only explained a small portion of the variability (coefficient of determination equals 0.09 for NIR-L DEM and 0.05 for G-L DEM). Our results suggest that G-L may be limited in accurately characterizing the bathymetry of narrow streams in heavily forested environments due to difficulty penetrating canopy and interactions with complex topography.

  4. Using Airborne Lidar to Predict Leaf Area Index in Cottonwood Trees and Refine Riparian Water Use Estimates 1877

    Science.gov (United States)

    Quantification of riparian forest structure is important for developing a better understanding of how riparian forest ecosystems function. Additionally, estimation of riparian forest structural attributes, such as Leaf Area Index (LAI), is an important step in identifying the amount of water use in ...

  5. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  6. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Department of Resources — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  7. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Department of Resources — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  8. Estrutura do componente arbóreo de uma floresta estacional decidual ripária em Jaguari, RS Structure of the tree component of a riparian seasonal decidual forest in Jaguari, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Marian Callegaro

    2012-02-01

    Full Text Available Este estudo analisou a estrutura do componente arbóreo de uma mata ciliar, no município de Jaguari, RS. A amostragem foi realizada em 15 parcelas de 10mx10m instaladas ao longo da mata ciliar de um afluente do rio Jaguari. Nessas parcelas, foram identificados e medidos os indivíduos com diâmetro à altura do peito (DAP maior ou igual a 5cm. Podocarpus lambertii, Sebastiania commersoniana e Lithrea molleoides foram as espécies mais representativas da mata ciliar. A distribuição diamétrica do componente arbóreo e das espécies lenhosas de maior valor de importância (VI seguiu o padrão comum a florestas inequiânias, com tendência à forma de "J" invertido, e revelou uma estrutura não balanceada, indicando que não há equilíbrio entre as taxas de mortalidade e recrutamento de indivíduos. A estrutura vertical e as espécies de maior VI apresentaram tendência à distribuição normal, com a maioria dos indivíduos posicionada nas classes intermediárias de altura.This study analyzed the tree component structure of a riparian seasonal decidual forest, in Jaguari, RS. Data was collected in 15 10mx10m-plots randomly assigned along the riparian forest of a Jaguari river tributary. In these plots trees showing DBH equal or above 5cm were identified and measured. Podocarpus lambertii, Sebastiania commersoniana and Lithrea molleoides were the most representative species of the riparian forest. The tree diameter distribution in general and for the species with the higher importance value index showed the inverted "J" trend, typical of uneven-aged forests, and unbalanced structure resulting from different mortality and recruitment rates. The vertical and height species structure showing the highest importance value tended to normal distribution, with most of the individuals positioned in or close to the average height class.

  9. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.

    Science.gov (United States)

    Van de Sompel, Dominique; Brady, Sir Michael; Boone, John

    2011-02-01

    We assess the performance of filtered backprojection (FBP), the simultaneous algebraic reconstruction technique (SART) and the maximum likelihood (ML) algorithm for digital breast tomosynthesis (DBT) under variations in key imaging parameters, including the number of iterations, number of projections, angular range, initial guess, and radiation dose. This is the first study to compare these algorithms for the application of DBT. We present a methodology for the evaluation of DBT reconstructions, and use it to conduct preliminary experiments investigating trade-offs between the selected imaging parameters. This investigation includes trade-offs not previously considered in the DBT literature, such as the use of a stationary detector versus a C-arm imaging geometry. A real breast CT volume serves as a ground truth digital phantom from which to simulate X-ray projections under the various acquisition parameters. The reconstructed image quality is measured using task-based metrics, namely signal CNR and the AUC of a Channelised Hotelling Observer with Laguerre-Gauss basis functions. The task at hand is the detection of a simulated mass inserted into the breast CT volume. We find that the image quality in limited view tomography is highly dependent on the particular acquisition and reconstruction parameters used. In particular, we draw the following conclusions. First, we find that optimising the FBP filter design and SART relaxation parameter yields significant improvements in reconstruction quality from the same projection data. Second, we show that the convergence rate of the maximum likelihood algorithm, optimised with paraboloidal surrogates and conjugate gradient ascent (ML-PSCG), can be greatly accelerated using view-by-view updates. Third, we find that the optimal initial guess is algorithm dependent. In particular, we obtained best results with a zero initial guess for SART, and an FBP initial guess for ML-PSCG. Fourth, when the exposure per view is constant

  10. Can erosion control structures in large dryland arroyo channels lead to resilient riparian and cienega restoration? Observations from LiDAR, monitoring and modeling at Rancho San Bernardino, Sonora, MX

    Science.gov (United States)

    DeLong, S.; Henderson, W. M.

    2012-12-01

    The use of erosion control structures to mitigate or even reverse erosion and to restore ecological function along dryland channels (arroyos and gullies) has led to a long list of both successful and failed restoration efforts. We propose that successful implementation of "engineering" approaches to fluvial restoration that include in-channel control structures require either a quantitative approach to design (by scientists and engineers), or intimate on-the-ground knowledge, local observation, and a commitment to adapt and maintain restoration efforts in response to landscape change (by local land managers), or both. We further propose that the biophysical interactions among engineering, sedimentation, flood hydrology and vegetation reestablishment are what determine resilience to destructive extreme events that commonly cause erosion control structure failure. Our insights come from comprehensive monitoring of a remarkable experiment underway at Ranch San Bernardino, Sonora, MX. At this site, private landowners are working to restore ecosystem function to riparian corridors and former cieñega wetlands using cessation of grazing; vegetation planting; upland grass restoration; large scale rock gabions (up to 100 m wide) to encourage local sediment deposition and water storage; and large earthen berms (up to 900 m wide) with cement spillways that form reservoirs that fill rapidly with water and sediment. Well-planned and managed erosion control structures have been used elsewhere successfully in smaller gully networks, but we are unaware of a comparable attempt to use gabions and berms for the sole purpose of ecological restoration along >10 km of arroyo channels draining watersheds on the order of ~400 km2 and larger. We present an approach to monitoring the efficacy of arroyo channel restoration using terrestrial and airborne LiDAR, remote sensing, streamflow monitoring, shallow groundwater monitoring, hydrological modeling and field observation. Our methods

  11. Influence of floods on natural riparian forests along the Ergis River,west China

    Institute of Scientific and Technical Information of China (English)

    CHENG Kewu; ZANG Runguo; ZHOU Xiaofang; ZHANG Weiyin; BAI Zhiqiang

    2007-01-01

    The riparian forests along the Ergis River,west China,composed mainly of Salicaceae species,play an important role in eco-environment protection and sustainable development of local agriculture,stockbreeding,and social economy of the northern desert region of Xinjiang Uygur Autonomous Region.The study of the influence of floods on the natural riparian forests is imperative for the understanding of the successional process and the acceleration of conservation and restoration of forests.By investigating the relationship between floods and dispersal of seeds,sprouting,natural regeneration,the structure of the forests,and their current distribution,we conclude that:1) the ripening and dispersal periods of Salicaceae species seeds overlap largely with flood occurrence periods,and the sprouting and natural regeneration of seeds depend greatly on flood events;2) floods supply soil water and increase groundwater level of riparian land through flood irrigation and horizontal infiltration to maintain the normal growth of the riparian forests;3) floods have a decisive influence on the structure,composition,and distribution pattern of riparian forests,and any disturbance in the water flow has a profound effect on these characteristics.Given these facts,some management measures for conservation and restoration of the riparian forests are proposed,including the establishment of riparian forest buffer belt,bank stabilization measures,and maintenance of flood protection.

  12. Effect of riparian vegetation cover and season on aquatic macroinvertebrate assemblages in the Ecuadorian Andes

    OpenAIRE

    Gallegos-Sánchez, Silvana Andrea

    2013-01-01

    The purpose of this study was to investigate the effects of season and changes in the riparian vegetation cover on diversity, structure, temporal variability, and trophic structure of aquatic macroinvertebrate assemblage in the Sambache River, Pasochoa Wildlife Refuge, Ecuador. Macroinvertebrate samples were collected using a Surber bottom sampler during the dry and rainy seasons from sections of the river dissecting three different riparian vegetation types with varying degrees of disturbanc...

  13. Minimum sampling area and a biodiversity of riparian broad-leaved/Korean pine forest in Erdaobaihe forested watershed, Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Riparian zone is an important component of forested watershed. Species component, structure, and distribution pattern of plant community in riparian zone are different from those of forest far away from the riparian zone because of edge effect and influence of river, and their minimum sampling areas are also different. To study the minimum area and a biodiversity of broad-leaved/Korean pine forest in riparian zone, three 8 m × 32 m sampling belts were selected and distributed at elevation of 800 m, 900 m, and 1000 m. In the riparian broad-leaved/Korean pine forest, mean minimum sampling areas including 60%, 80%, and 90% of total species were 80 m2 (8 m×10 m), 180 m2 (12 m×15 m), and 320 m2 (16 m × 20 m) respectively; The corresponding mean minimum areas of non-riparian forest were about 260 m2, 380 m2, and 480 m2; and the former were smaller than the latter. In the riparian zone, species richness, Shannon-Weiner index and species evenness were also higher than those in non-riparian forest. On the contrary, species dominance in forest community was higher than that in riparian zone.

  14. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  15. Wetlands & Deepwater Habitats - Montana Wetland and Riparian Framework - Map Service

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Montana Wetland and Riparian Framework represents the extent, type, and approximate location of wetlands, riparian areas, and deepwater habitats in Montana....

  16. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. PMID:27341115

  17. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems.

  18. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests inBenin

  19. The inbuilt long-term unfeasibility of environmental flows when disregarding riparian vegetation requirements

    Directory of Open Access Journals (Sweden)

    R. Rivaes

    2015-10-01

    Full Text Available Environmental flows remain biased towards the traditional fish biological group and ignore the inter-annual flow variability that rules longer species life cycles, thus disregarding the long-term perspective of the riverine ecosystem. Incorporating riparian vegetation requirements into environmental flows could bring an important contribute to fill in this gap. The long-term after-effects of this shortcoming on the biological communities downstream of dams were never estimated before. We address this concern by evaluating the effects of environmental flow regimes disregarding riparian vegetation in the long-term perspective of the fluvial ecosystem. To achieve that purpose, the riparian vegetation evolution was modeled considering its structural response to a decade of different environmental flows, and the fish habitat availability was assessed for each of the resulting riparian habitat scenarios. We demonstrate that fish habitat availability changes accordingly to the long-term structural adjustments that riparian habitat endure following river regulation. Environmental flow regimes considering only aquatic biota become obsolete in few years due to the change of the habitat premises in which they were based on and, therefore, are unsustainable in the long run. Therefore, considering riparian vegetation requirements on environmental flows is mandatory to assure the effectiveness of those in the long-term perspective of the fluvial ecosystem.

  20. Restoration of rivers used for timber floating: effects on riparian plant diversity.

    Science.gov (United States)

    Helfield, James M; Capon, Samantha J; Nilsson, Christer; Jansson, Roland; Palm, Daniel

    2007-04-01

    Fluvial processes such as flooding and sediment deposition play a crucial role in structuring riparian plant communities. In rivers throughout the world, these processes have been altered by channelization and other anthropogenic stresses. Yet despite increasing awareness of the need to restore natural flow regimes for the preservation of riparian biodiversity, few studies have examined the effects of river restoration on riparian ecosystems. In this study, we examined the effects of restoration in the Ume River system, northern Sweden, where tributaries were channelized to facilitate timber floating in the 19th and early 20th centuries. Restoration at these sites involved the use of heavy machinery to replace instream boulders and remove floatway structures that had previously lined stream banks and cut off secondary channels. We compared riparian plant communities along channelized stream reaches with those along reaches that had been restored 3-10 years prior to observation. Species richness and evenness were significantly increased at restored sites, as were floodplain inundation frequencies. These findings demonstrate how river restoration and associated changes in fluvial disturbance regimes can enhance riparian biodiversity. Given that riparian ecosystems tend to support a disproportionate share of regional species pools, these findings have potentially broad implications for biodiversity conservation at regional or landscape scales. PMID:17494401

  1. The inbuilt long-term unfeasibility of environmental flows when disregarding riparian vegetation requirements

    Science.gov (United States)

    Rivaes, R.; Boavida, I.; Santos, J. M.; Pinheiro, A. N.; Ferreira, M. T.

    2015-10-01

    Environmental flows remain biased towards the traditional fish biological group and ignore the inter-annual flow variability that rules longer species life cycles, thus disregarding the long-term perspective of the riverine ecosystem. Incorporating riparian vegetation requirements into environmental flows could bring an important contribute to fill in this gap. The long-term after-effects of this shortcoming on the biological communities downstream of dams were never estimated before. We address this concern by evaluating the effects of environmental flow regimes disregarding riparian vegetation in the long-term perspective of the fluvial ecosystem. To achieve that purpose, the riparian vegetation evolution was modeled considering its structural response to a decade of different environmental flows, and the fish habitat availability was assessed for each of the resulting riparian habitat scenarios. We demonstrate that fish habitat availability changes accordingly to the long-term structural adjustments that riparian habitat endure following river regulation. Environmental flow regimes considering only aquatic biota become obsolete in few years due to the change of the habitat premises in which they were based on and, therefore, are unsustainable in the long run. Therefore, considering riparian vegetation requirements on environmental flows is mandatory to assure the effectiveness of those in the long-term perspective of the fluvial ecosystem.

  2. Species composition and minimum sampling area of a riparian mixed broadleaved-Korean pine forest in Changbai Mountain Nature Reserve

    Institute of Scientific and Technical Information of China (English)

    DAI Fang-zhou; XU Dong; DENG Hong-bing

    2011-01-01

    Riparian areas are unique although often small component of the overall watershed landscape. The structure of riparian forests along Erdaobai River on the north slope of Changhai Mountain were investi- gated by using field data collected from eight sampling transects perpen- dicular to the Erdaobai River channel. Two kinds of species-area satura- tion curves were used to examine the relationship between species num- ber and minimum sampling area. The results showed that riparian gym- nosperms accounted for a high proportion of all gymnosperms in the Changbai Mountain Nature Reserve while riparian ferns and angiosperms accounted for a relatively low proportion. The average minimum sam- pling areas of riparian forest that included 60%, 80%, and 90% of the community species pool were about 85, 185, and 328 m, respectively; while those for nonriparian forest were about 275, 390, and 514 m, correspondingly.

  3. Recovery times of riparian vegetation

    Science.gov (United States)

    Vesipa, R.; Camporeale, C.; Ridolfi, L.

    2016-04-01

    Riparian vegetation is a key element in a number of processes that determine the ecogeomorphological features of the river landscape. Depending on the river water stage fluctuations, vegetation biomass randomly switches between growth and degradation phases and exhibits relevant temporal variations. A full understanding of vegetation dynamics is therefore only possible if the hydrological stochastic forcing is considered. In this vein, we focus on the recovery time of vegetation, namely the typical time taken by vegetation to recover a well-developed state starting from a low biomass value (induced, for instance, by an intense flood). The analytical expression of the plot-dependent recovery time is given, the role of hydrological and biological parameters is discussed, and the impact of river-induced randomness is highlighted. Finally, the effect of man-induced hydrological changes (e.g., river damming or climate changes) is explored.

  4. Recovery times of riparian vegetation

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian vegetation is a key element in a number of processes that determine the eco-geomorphological features of the river landscape. Depending on the river water stage fluctuations, vegetation biomass randomly switches between growth and decay phases, and its biomass exhibits relevant temporal variations. A full understanding of vegetation dynamics is therefore only possible if the hydrological stochastic forcing is considered. In this vein, we focus on the recovery time of vegetation, namely the typical time taken by vegetation to recover a health state starting from a low biomass value (induced, for instance, by an intense flood). The minimalistic stochastic modeling approach is used for describing vegetation dynamics (i.e., the noise-driven alternation of growth and decay phases). The recovery time of biomass is then evaluated according to the theory of the mean first passage time in systems driven by dichotomous noise. The effect of the main hydrological and biological parameters on the vegetation recovery was studied, and the dynamics along the riparian transect was described in details. The effect of climate change and human interventions (e.g., river damming) was also investigated. We found that: (i) the oscillations of the river stage delay the recovery process (up to one order of magnitude, with respect to undisturbed conditions); (ii) hydrological/biological alterations (due to climate change, damming, exotic species invasion) modify the timescales of the recovery. The result provided can be a useful tool for the management of the river. They open the way to the estimation of: (i) the recovery time of vegetation after devastating floods, clear cutting or fires and; (ii) the timescale of the vegetation response to hydrological and biological alterations.

  5. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    Science.gov (United States)

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  6. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    Science.gov (United States)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  7. The effects of riparian forest management on the freshwater environment: a literature review of best management practice

    Directory of Open Access Journals (Sweden)

    S. Broadmeadow

    2004-01-01

    Full Text Available National Forests and Water Guidelines require the establishment of riparian buffers to help protect the freshwater environment from disturbance by silvicultural operations on the adjacent land. The main functions of the riparian buffer are considered to be sediment removal and erosion control, protection of water quality, moderation of shade and water temperature, maintenance of habitat structural diversity and ecological integrity, and improvement of landscape quality. This review paper assesses how these functions are affected by the design and management of the riparian forest zone, with a focus on the width of the buffer, the structure of the vegetation and species choice. It is not possible to specify a definitive riparian buffer width that will protect the freshwater environment from every potential threat. Forestry agencies usually recommend widths between 10 and 30 m. Buffer widths towards the lower end of this scale tend to protect the physical and chemical characteristics of a stream, while the maintenance of ecological integrity requires widths at the upper end. In terms of structure and species, the benefits are greatest where the riparian buffer replicates native riparian woodland with an open canopy of mixed species of varied age class. The optimum level of shade is difficult to quantify but limited work suggests that a good balance is achieved where around 50% of the stream surface is open to sunlight and the remainder covered by dappled shade. Within the management of riparian woodland there is a need to consider a stream’s sensitivity and intrinsic value. Some sites will benefit from active intervention such as thinning, coppicing or pollarding, while others will be favoured by a hands-off approach. Long-term continuity of management is important to ensure that the potential benefits to the freshwater environment are realised. Keywords: riparian woodland, riparian buffer, woodland management, freshwater environment, water

  8. Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    2015-09-01

    Full Text Available Abstract The riparian vegetation in lakes and reservoirs is source of course wood structures such as trunks and branches and is used as sheltering, spawning and foraging habitats for fishes. The reduction of these submerged structures can thus, affect the composition and structure of fish assemblages in reservoirs. Aim To evaluate the influence of riparian vegetation on the biotic condition of fish assemblage by adapting the Reservoir Fish Assemblage Index (RFAI to two reservoirs in the Upper Paranapanema river basin, São Paulo State, Brazil. Methods The RFAI was adapted from metrics related to the functional characteristics and composition of fish assemblages through a protocol of metric selection and validation, and to its response to the presence of riparian vegetation. Results The final RFAI was composed by nine metrics, been lower in sites without riparian vegetation as consequence of the predominance of larger individuals and the percent of piscivorous and detritivorous fishes. Conclusions These results suggest that increasing shore habitat complexity in reservoirs by maintaining riparian vegetation increases fish biotic integrity.

  9. Hiawatha National Forest Riparian Inventory: A Case Study

    Science.gov (United States)

    Abood, S. A.

    2014-12-01

    Riparian areas are dynamic, transitional ecotones between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Riparian areas offers wildlife habitat and stream water quality, offers bank stability and protects against erosions, provides aesthetics and recreational value, and other numerous valuable ecosystem functions. Quantifying and delineating riparian areas is an essential step in riparian monitoring, riparian management/planning and policy decisions, and in preserving its valuable ecological functions. Previous approaches to riparian areas mapping have primarily utilized fixed width buffers. However, these methodologies only take the watercourse into consideration and ignore critical geomorphology, associated vegetation and soil characteristics. Other approaches utilize remote sensing technologies such as aerial photos interpretation or satellite imagery riparian vegetation classification. Such techniques requires expert knowledge, high spatial resolution data, and expensive when mapping riparian areas on a landscape scale. The goal of this study is to develop a cost effective robust workflow to consistently map the geographic extent and composition of riparian areas within the Hiawatha National Forest boundary utilizing the Riparian Buffer Delineation Model (RBDM) v3.0 and open source geospatial data. This approach recognizes the dynamic and transitional natures of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process and the results would suggests incorporating functional variable width riparian mapping within watershed management planning to improve protection and restoration of valuable riparian functionality and biodiversity.

  10. Structure of the tree component in an area of riparian forest in the Piratini River Basin, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Luciano Rodrigues Soares

    2009-09-01

    Full Text Available The vegetation studied belongs to the Pampa biome. The vegetation of this region is described as Open Arboreal Savanna because it presents a herb stratum and an arboreal stratum with a gallery forest. This study aims to describe the structure of the forest trees of the Basin (31º35’33”S and 53º02’39”W contributing to knowledge of forest formation in the southern half of Rio Grande do Sul. All living or standing dead individuals in an area of 0.5ha with DBH ≥ 5cm were sampled. Each individual was recorded for its species, diameter at breast height – DBH, and estimated height. Of the 702 living individuals inventoried, 41 species belonging to 25 families were recorded the Myrtaceae family presented the greatest richness with seven species, followed by Salicaceae with four and Lauraceae with tree species. Anarcadiaceae, Asteraceae, Euphorbiaceae and Sapindaceae each showed two species. The other families sampled consisted of a single species only. About 53 individuals were counted dead, corresponding to 7.5% in relation to the quantity of living individuals. The highest importance value was attributed to Lithraea Brasliensis March. The Shannon diversity was estimated to be 2.99 nats (J’=0.81, one of the highest values registered below the 30º south parallel.

  11. Riparian vegetation in South-western Europe: drivers of change across space and time (Invited)

    Science.gov (United States)

    Aguiar, F. C.; Ferriera, M.

    2010-12-01

    Riparian ecosystems of Mediterranean Europe have been largely disturbed for millennia due to human-driven alterations. Land-use, deforestation, water diversion and river regulation have been the major causes of change of riparian and freshwater ecosystems. Riparian vegetation in this region has particular features due to a large climatic and environmental variation; from the climatic harshness and the flash-flow hydrological regime of southern rivers to high-altitude permanent rivers of the north regions. Riparia is a fundamental element of the Mediterranean landscape by a number of ecological values, and economic and societal benefits, and they are usually seen as “linear oasis” embedded in the complex landscape matrix. We face a huge challenge in understanding the distribution trends of the riparian species assemblages in those diverse biogeographic regions and the varying effects of the multi-scaled drivers of change. I will review the main studies that have explored the patterns of variation of riparian plant assemblages across space and time in South-Western Europe, including its longitudinal and lateral dimension. Structural community features and plant functional traits, that can be described and quantified, are ecological expressions of both natural and human disturbances, and comparatively less understood than floral composition patterns, and many studies suggest that they are more reactive to disturbance. Linkages of taxonomic and functional trait variation will also be addressed, focusing in the influence of environment at various scale levels. Effects of human disturbances, particularly the alien plant invasions and the losses of biodiversity and connectivity will be tackled. These studies provided evidence of shifts in species composition and in structural complexity, as well as in individual and community responses to wetting and drying due to regulation and to physical disturbances of riverbanks. The intensive agriculture in adjacent lands is a

  12. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  13. Estimating Riparian ET through Remote Sensing

    Science.gov (United States)

    Samani, Z.; Bawazir, S.; Bleiweiss, M.; Skaggs, R.; Schmugge, T.

    2005-12-01

    Riparian evapotranspiration (ET) along the Rio Grande River has become a major hydrological as well as political issue in New Mexico. The State of New Mexico has spent millions of dollars in recent years to eradicate riparian vegetation without being able to quantify the change in regional ET. Many studies have focused on measuring evapotranspiration of individual riparian vegetation types, mainly saltcedar and native cottonwood. However, the riparian vegetation on the Middle Rio Grande varies in density and species.. Spatial variation in climate, soil type and depth to groundwater causes variation in ET, as well. It is obvious that in order to obtain more accuracy in measurements, multiple sampling points are needed; thus, making the process costly and impractical An alternative solution, which is also cost-effective, is measuring ET by using remote sensing technology. Remote sensing combines regional satellite data with localized ET measurement to calculate regional ET. REEM (Regional ET Estimation Model) is a process that uses the energy balance at the top of the canopy to estimate ET. REEM has been using ASTER images for values of surface temperature, albedo and NDVI to calculate net radiation (Rn), ground heat flux (G) and sensible heat flux (H). The ET is then calculated as residual of the energy components. The REEM model is being used to calculate regional ET values for the Riparian vegetation of the Middle Rio Grande. The paper compares the ET values for various vegetation types using remote sensing and ET derived from Eddy Covariance Flux Towers.

  14. Riparian zone hydrology and soil water total organic carbon (TOC)

    OpenAIRE

    T. Grabs; K. Bishop; Laudon, H.; Lyon, S. W.; Seibert, J.

    2012-01-01

    Groundwater flowing from hillslopes through riparian (near-stream) soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC) concentration profiles and groundwater levels measured in the riparian zone (RZ) of a 67 km2 catchment in Sweden. TOC exported laterally from 13 riparian soil profiles was then estimated based on the riparian flow–concentration integratio...

  15. Riparian Areas of the Southwest: Learning from Repeat Photographs

    Science.gov (United States)

    Zaimes, George N.; Crimmins, Michael A.

    2010-01-01

    Spatial and temporal variability of riparian areas, as well as potential impacts from climate change, are concepts that land and water managers and stakeholders need to understand to effectively manage and protect riparian areas. Rapid population growth in the southwestern United States, and multiple-use designation of most riparian areas, makes…

  16. Subtropical reservoir shorelines have reduced plant species and functional richness compared with adjacent riparian wetlands

    International Nuclear Information System (INIS)

    Dam construction has large negative effects on biodiversity in river and riparian ecosystems worldwide. This study aimed to determine whether reservoir shorelines had lower plant species diversity and functional diversity than unregulated or lightly regulated riparian wetlands and to examine the responses of plant diversity and functional traits to reservoir shoreline environmental gradients. We surveyed 146, 44, and 67 plots on reservoir shorelines and in mainstem and tributary riparian wetlands, respectively, in a subtropical river–reservoir system. Species richness, functional richness, evenness, and divergence were calculated to reflect the species and functional diversity of plant communities. Environmental factors including elevation above water level, slope, landform type, substrate, disturbance, and cover were measured. The results showed that both species and functional richness were significantly lower on reservoir shorelines than in riparian wetlands. The relative species number of clonal plants and relative cover of annual plants were both negatively related to slope and elevation. Structural equation modeling and other statistical analyses indicated that most environmental factors had significant effects on species and functional richness on reservoir shorelines but had no significant effect on functional evenness and divergence. Our findings suggest that reservoir shoreline wetlands formed by damming rivers and inundating pre-existing riparian wetlands can be a biodiversity coldspot in regulated rivers at the plot level. Topographic factors are important in determining the plant diversity and vegetation establishment on reservoir shorelines in the Yangtze River basin. (letter)

  17. Methods for evaluating riparian habitats with applications to management

    Science.gov (United States)

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  18. Scales of form roughness on riverbanks with different riparian vegetation

    Science.gov (United States)

    Konsoer, K. M.; Rhoads, B. L.; Best, J.; Langendoen, E. J.; Ursic, M.; Abad, J. D.; Garcia, M. H.

    2013-12-01

    Riverbanks often include topographic irregularities that occur over a range of scales and that are produced by interactions among erosional processes, vegetation, and the geotechnical properties of the banks and floodplains. Irregularity of the bank surface can increase form drag, affecting the overall flow resistance, near-bank shear stresses, and patterns of sediment transport. Understanding how dominant scales of form roughness influence the near-bank flow structure, and thus the shear stress partitioning, is vital for the development of accurate predictive morphodynamic models. In this paper, the scales of bank roughness are examined for two meander bends of a large alluvial river with differing riparian vegetation on the Wabash River near Grayville, Illinois. Detailed measurements of bank topography were obtained using terrestrial LiDAR during low flow events and a multibeam echo sounder (MBES) during bankfull events. These measurements yielded high spatial resolution maps (~5-10 cm) that were used to analyze scales of roughness at different elevations along the banks during both subaerial and subaqueous conditions. The results of these analyses provide insight into the influence of riparian vegetation on form roughness and patterns of near-bank flow structure as documented using acoustic Doppler current profilers (ADCP).

  19. Riparian Vegetation Mapping Along the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    FOGWELL, T.W.

    2003-07-11

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY

  20. Preliminary indicators for restoration assessment in riparian reforestations

    Directory of Open Access Journals (Sweden)

    Daniele Nogueira dos Reis

    2014-12-01

    Full Text Available The restoration success in forest ecosystems can be adequately assessed by correct selection of indicators that represent the achievement of established goals. The discriminant analysis technique on indicators selection consists of separation and classification of new observations on pre-defined groups, reducing the number of variables that are discriminant functions linearly dependent of the original variables. This study aims to define an index composed by structural attributes (number of species and individuals planted, height, basal area, number of regenerant species and individuals and chemical and pedological soil attributes to classify riparian reforested environments regarding to restoration taking as reference reforestation around the the Volta Grande reservoir, Minas Gerais State, Brazil. Eleven variables were used for previous classification of plots in partially restored or unrestored groups and also used for discriminant analysis. Variables selected by the discriminant function generated were: number of species and basal area of planted individuals, number of regenerant species and individuals litter accumulation and soil cation exchange capacity. Compatibility of 98% from previous plot classifications and after index formation, show the representativeness of the selected variables on evaluation of restoration of riparian reforestations.

  1. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    scenarios with changing conditions for flow (steady state with no flooding or transient with flooding), hydrogeology, denitrification rate, and extent of flooding it is demonstrated how flow paths, residence times, and nitrate removal are affected. With this previous conceptual models on the hydrology...... of riparian zones are extended by accounting for the effect of flooding and a key result is that flooding enhances nitrate removal given the right hydrogeological characteristics. Moreover the re-established riparian zones were characterized to understand the effects of flooding on subsurface hydrological...... flow paths by combining a number of field investigation methods and 2D modeling for the Brynemade site. Field investigations included: (1) hydrogeological characterization using wells, slug and infiltration tests, (2) geophysical imaging of the subsurface using Multi-Electrode-Profiling, (3...

  2. Sediment retention in rangeland riparian buffers.

    Science.gov (United States)

    Hook, Paul B

    2003-01-01

    Controlling nonpoint-source sediment pollution is a common goal of riparian management, but there is little quantitative information about factors affecting performance of rangeland riparian buffers. This study evaluated the influence of vegetation characteristics, buffer width, slope, and stubble height on sediment retention in a Montana foothills meadow. Three vegetation types (sedge wetland, rush transition, bunchgrass upland) were compared using twenty-six 6- x 2-m plots spanning 2 to 20% slopes. Plots were clipped moderately (10-15 cm stubble) or severely (2-5 cm stubble). Sediment (silt + fine sand) was added to simulated overland runoff 6, 2, or 1 m above the bottom of each plot. Runoff was sampled at 15-s to > 5-min intervals until sediment concentrations approached background levels. Sediment retention was affected strongly by buffer width and moderately by vegetation type and slope, but was not affected by stubble height. Mean sediment retention ranged from 63 to > 99% for different combinations of buffer width and vegetation type, with 94 to 99% retention in 6-m-wide buffers regardless of vegetation type or slope. Results suggest that rangeland riparian buffers should be at least 6 m wide, with dense vegetation, to be effective and reliable. Narrower widths, steep slopes, and sparse vegetation increase risk of sediment delivery to streams. Vegetation characteristics such as biomass, cover, or density are more appropriate than stubble height for judging capacity to remove sediment from overland runoff, though stubble height may indirectly indicate livestock impacts that can affect buffer performance. PMID:12809315

  3. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede;

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...... the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater...... level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly...

  4. Mycorrhizas effects on nutrient interception in two riparian grass species

    OpenAIRE

    Hamid Reza Asghari; Timothy Richard Cavagnaro

    2014-01-01

    Effects of arbuscular mycorrhizal (AM) fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM) plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively) for 8 weeks under glasshouse conditions. Mycorrhi...

  5. Riparian buffer zones as pesticide filters of no-till crops.

    Science.gov (United States)

    Aguiar, Terencio R; Bortolozo, F R; Hansel, F A; Rasera, K; Ferreira, M T

    2015-07-01

    Several studies have pointed to the potential benefits of riparian vegetation as buffer zones for agricultural and industrial pollutants harmful to aquatic ecosystems. However, other studies have called into question its use as an ecological filter, questioning the widths and conditions for which they are effective as a filter. In this work, we have investigated the buffering capacity of the riparian one to retain pesticides in the water-saturated zone, on 27 sites composed by riparian buffer zones with different vegetation structure (woody, shrubs, or grass vegetation) and width (12, 36, and 60 m). Five pesticides were analyzed. The effectiveness of the filtering was largely influenced by the width and vegetation type of the buffer zone. In general, decreasing pesticide removal followed in this order wood > shrubs > grass. The 60 m woody buffer zone was the most effective in the removal of all the pesticides. Only atrazine was detected in this case (0.3 μg L(-1)). Furthermore, a linear correlation (R (2) > 0.97) was observed in their removal for all compounds and buffer zones studied. Thus, preserving the woody vegetation in the riparian zone is important for watershed management and groundwater quality in the no-tillage system in temperate climate. PMID:25744820

  6. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    Science.gov (United States)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  7. Herbicide occurrence in riparian soils and its transporting risk in the Songhua River Basin, China

    OpenAIRE

    Sun, Xiaoyin; Zhou, Qixing; Ren, Wenjie

    2013-01-01

    International audience A riparian zone is the interface between land and a river or stream. Riparian zones are major elements of ecosystems. However, human conversion of riparian land to agricultural uses has reduced the ecological benefits of riparian land such as water and pollutant filtration. Over 80 % of the original riparian area has been lost from North America and Europe over the past 200 years. Intensive land use along riparian areas has increased soil erosion and, in turn, sedime...

  8. Experimental and numerical study on hydrodynamics of riparian vegetation

    Institute of Scientific and Technical Information of China (English)

    UOTANI Takuya; KANDA Keiichi; MICHIOKU Kohji

    2014-01-01

    Recently, many channelized rivers tend to be heavily vegetated due to regime shifts in hydrological, fluvial and ecological processes. Dense vegetation in a river frequently obstructs a flood flow and reduces conveyance capacity of channels. On the other hand, river vegetation provides various ecological services such as habitats for various species and life, natural cycle of organic and inorganic substances, etc.. It is of engineering importance to understand vegetation hydrodynamics in order to preserve vegetation nature and keep a certain level of flow conveyance capacity. In view that willows tend to be densely vegetated along the shoreline of floodplains or sandbars, a field measurement, a physical model experiment and a numerical analysis were carried out for investigating hydrodynamics in an open channel with riparian vegetation. Discussion was made focusing on flow and shear layer structures developed around the vegetation canopy.

  9. An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest

    Science.gov (United States)

    Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.

    2014-12-01

    Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive

  10. Mapping preferential flow pathways in a riparian wetland using ground-penetrating radar

    Science.gov (United States)

    Gormally, Kevin Hill

    Preferential flow of water through channels in the soil has been implicated as a vehicle for groundwater and surface water contamination in forested riparian wetland buffers. Water conducted through these by-pass channels can circumvent interaction with wetland biota, biomass, and soils, thereby reducing the buffering capacity of the riparian strips for adsorption and uptake of excess nutrient loads from neighboring agricultural fields and urbanized lands. Models of riparian function need to account for preferential flow to accurately estimate nutrient flux to stream channels, but there are currently no methods for determining the form and prevalence of these pathways outside of extensive destructive sampling. This research developed, tested, and validated a new application of non-invasive ground-penetrating radar technology (GPR) for mapping the three-dimensional structure of near-surface (0-1 m) lateral preferential flow channels. Manual and automated detection methodologies were created for analyzing GPR scan data to locate the channels in the subsurface. The accuracy of the methodologies was assessed in two field test plots with buried PVC pipes simulating the riparian channels. The manual methodology had a 0% Type I error rate and 8% Type II error rate; the automated version had a validated by transmission of tracer dye through the study site and ground truth generated from soil core samples (92% accurate). These GPR tools will enable researchers to efficiently and effectively characterize lateral preferential flow without negatively impacting environmentally sensitive wetland areas. Scientists can now directly study these flow mechanisms to investigate the effects of by-pass pathways on nutrient fate in riparian buffers and the interactions of preferential flow with plant and animal systems.

  11. NITROUS OXIDE EMISSIONS FROM RIPARIAN BUFFERS AND TREATMENT WETLANDS

    Science.gov (United States)

    Riparian buffers and treatment wetlands are used throughout the world for the protection of water bodies from nonpoint source pollution, particularly nitrogen. Yet, relatively few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide. Nitrous oxide emissio...

  12. Patterns of sediment and phosphorus accumulation in a riparian buffer

    Science.gov (United States)

    Riparian buffers prevent sediment and phosphorus (P) from reaching streams, but their accumulation in buffers is seldom measured. This study's objectives were to determine accumulations of sediment and P in a multi-species riparian buffer, and characterize spatial-temporal patterns of P in soil wate...

  13. Riparian habitat on the Humboldt River, Deeth to Elko, Nevada

    Science.gov (United States)

    Price, K. P.; Ridd, M. K.

    1983-01-01

    A map inventory of the major habitat types existing along the Humbolt River riparian zone in Nevada is described. Through aerialphotography, 16 riparian habitats are mapped that describe the ecological relationships between soil and vegetation types, flooding and soil erosion, and the various management practices employed to date. The specific land and water management techniques and their impact on the environment are considered.

  14. Urbanization and nutrient retention in freshwater riparian wetlands

    Science.gov (United States)

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services

  15. Testing the Effects of an Introduced Palm on a Riparian Invertebrate Community in Southern California

    OpenAIRE

    Theresa Sinicrope Talley; Kim-Chi Nguyen; Anthony Nguyen

    2012-01-01

    Despite the iconic association of palms with semi-arid regions, most are introduced and can invade natural areas. Along the San Diego River (San Diego, California, USA), the introduced Canary Island date palm (Phoenix canariensis) forms dense patches among native riparian shrubs like arroyo willow (Salix lasiolepis). The structural differences between the palm and native shrubs are visually obvious, but little is known about palm's effects on the ecosystem. We tested for the effects of the pa...

  16. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  17. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-06-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, on nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the River Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (>50 % was observed in the willow bush zone, but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22 ‰ for δ15N and up to 12 ‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone, during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pluses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation-soil-groundwater coupling was found to be a~key driver for riparian NO3 removal. We estimated that

  18. Stereophotogrammetry in studies of riparian vegetation dynamics

    Science.gov (United States)

    Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes

    2014-05-01

    Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody vegetation growth rates. Thus

  19. Effects of landscape and riparian condition on a fish index of biotic integrity in a large southeastern Brazil river

    Science.gov (United States)

    Environmental conditions of a large river in southeastern Brazil were assessed by evaluating fish assemblage structure (index of biotic integrity, IBI), landscape use (forest, pasture, urban area, and tributary water) and riparian condition. A survey of the 338 km-long middle rea...

  20. Climate change effects on lowland stream flood regimes and riparian rich fen vegetation communities in Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Baattrup-Pedersen, Annette; Andersen, Hans Estrup;

    2016-01-01

    There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections...... to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained...... predictions with the distribution of rich fen communities to explore whether these are likely to be subjected to increased flooding by a climate change induced increase in river runoff. We found that all regional climate models in the ensemble showed increases in mean annual runoff and that the increase...

  1. Riparian zone controls on base cation concentrations in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-01-01

    Full Text Available Forest riparian zones are a major in control of surface water quality. Base cation (BC concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  2. Riparian Areas of Greece: Their Definition and Characteristics

    Directory of Open Access Journals (Sweden)

    D. Gounaridis

    2010-01-01

    Full Text Available Riparian areas are unique and of high importance ecosystems because they are adjacent to surface freshwater bodies suchas streams, rivers and lakes. They are the semi-aquatic transitional zones (ecotones between terrestrial and aquatic ecosystems.Water, soil and vegetation are the three main characteristics that differentiate them compared to other ecosystems.Furthermore, they are present in all biomes (from deserts to tropical forests and are found in a great range of hydrologic andgeomorphologic conditions that results in a great variety of riparian habitat types. In Greece, there are five major riparianforest habitat types that also occur in most of the semi-arid Mediterranean regions. Frequent disturbance is another uniquecharacteristic that differentiates riparian areas. The major disturbances that shape riparian areas in Greece are unpredictedflood and drought events, as well as fires but to a lesser degree. Wetlands are another important semi-aquatic ecosystemsthat many consider as synonymous to riparian areas. In reality, these two ecosystems overlap but they are also different sincewetlands are considered as “wetter” and less disturbance driven than riparian areas.

  3. Using continuous surface water level and temperature data to characterize hydrological connectivity in riparian wetlands.

    Science.gov (United States)

    Cabezas, Alvaro; Gonzalez-Sanchís, Maria; Gallardo, Belinda; Comín, Francisco A

    2011-12-01

    Methods to characterize hydrological connectivity at riparian wetlands are necessary for ecosystem management given its importance over ecosystem structure and functioning. In this paper, we aimed to describe hydrological connectivity at one Ebro River reach (NE Spain) and test a method to perform such characterization. Continuous surface water level and temperature data were recorded at five riparian wetlands during the period October 2006-June 2007. Combining water level and temperature, we classified the examined wetlands in three groups, which mainly differed in the dominant water source during different flood stages. Firstly, a comparison of water level fluctuations in riparian wetlands with those in the river channel during events with different characteristics was used to describe hydrological connectivity. Such comparison was also used to extract quantitative hydrological connectivity descriptors as the wetland response initiation time. Secondly, water temperature series were divided in phases with different average, range and daily oscillation, and these parameters were interpreted for each phase to identify dominant flowpaths. By doing so, a more complete description of hydrological connectivity was achieved. Our method provided useful insights to describe hydrological connectivity using a qualitative approach that can be expanded if required to include quantitative parameters for studies of biotic assemblages or ecosystem processes. PMID:21400244

  4. Early response of soil properties and function to riparian rainforest restoration.

    Directory of Open Access Journals (Sweden)

    Rose Gageler

    Full Text Available Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2-20 years in an Australian subtropical catchment on ferrosols to determine the extent to which reforestation restores key soil properties. Of the nine soil attributes measured (total nitrogen, nitrate and ammonium concentrations, net nitrification and ammonification rates, organic carbon, bulk density, fine root biomass and water infiltration rates, only infiltration rates were significantly lower in pasture than remnant riparian rainforest. Within reforestation plantings, bulk density decreased up to 1.4-fold and infiltration rates increased up to 60-fold with time post-reforestation. Our results suggest that the main outcome of belowground processes of early reforestation is the recovery of the soils' physical structure, with potential beneficial ecosystem services including reduced runoff, erosion and associated sediment and nutrient loads in waterways. We also demonstrate differential impacts of two commonly planted tree species on a subset of soil properties suggesting that preferential planting of select species could accelerate progress on specific restoration objectives.

  5. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    Science.gov (United States)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  6. Water Table Dynamics of a Rocky Mountain Riparian Area

    Science.gov (United States)

    Westbrook, C. J.

    2009-05-01

    Riparian areas in mountain valleys serve as collection points for local precipitation, hillslope runoff, deeper groundwater, and channel water. Little is known about how complex hydrological interactions among these water sources govern riparian water table dynamics, particularly on an event basis partly owing to a lack of high frequency spatial and temporal data. Herein I describe the magnitude and rate of change of groundwater storage in a 1.3 km2 Canadian Rocky Mountain peat riparian area. Weekly manual measurement of hydraulic heads in a network of 51 water table wells during the summers of 2006 and 2007 showed large temporal and spatial variations in well response. A near constant increase in the spatial heterogeneity of the water table was observed as the riparian area dried. Cluster analysis and principle components analysis were performed on these weekly data to objectively classify the riparian area into spatial response units. Results were classification of the standpipes into five distinct water table regimes. One well representing each water table regime was outfitted with a sensor in 2008 that measured hourly head, which was used to characterize temporal dynamics of water table response. In spring, snowmelt runoff combined with an ice lens 20-30 cm below the ground surface led to consistently high water tables throughout the riparian area. In summer, the water table fell throughout the riparian in response to declining hillslope inputs and increased evaporative demand, but rates of decline were highly variable among the water table regimes. Chloride concentrations suggest variability reflects differences in the degree to which the water table regimes are influenced by stream stage, hillslope inputs, and proximity to beaver dams. Water table regime responses to rain events were flashy, with dramatic rises and falls (up to 20 cm) in short periods of time (export and plant community composition.

  7. A practical scientific approach to riparian vegetation rehabilitation in Australia.

    Science.gov (United States)

    Webb, Ashley A; Erskine, Wayne D

    2003-08-01

    The clearance of indigenous riparian vegetation and removal of large woody debris (LWD) from streams combined with the planting of exotic plant species has resulted in widespread detrimental impacts on the fluvial geomorphology and aquatic ecology of Australian rivers. Vegetation exerts a significant influence on fluvial geomorphology by affecting resistance to flow, bank strength, sediment storage, bed stability and stream morphology and is important for aquatic ecosystem function. As the values of indigenous riparian vegetation are becoming better recognised by Australian river managers, large amounts of money and resources are being invested in the planting of indigenous riparian vegetation as part of river rehabilitation programs. This paper summarises the results of an investigation into the survival, growth and regeneration rates of a series of trial native riparian vegetation plantings on in-channel benches in the Hunter Valley of southeastern Australia. The trials were poorly designed for statistical analysis and the paper highlights a number of shortcomings in the methods used. As a result, a new approach to riparian vegetation rehabilitation is outlined that promotes the use of scientific principles and understanding. Appropriate species should be selected using a combination of remnant vegetation surveys, historical records, palynology and field trials. A number of important factors should be considered in the rehabilitation of riparian vegetation to achieve worthwhile results. These include flood disturbance, vegetation zonation, vegetation succession, substrate composition, corridor planting width, planting techniques, native plant regeneration, LWD recruitment and adaptive ecosystem management. This approach, if adopted, revised and improved by river managers, should result in greater success than has been achieved by previous riparian vegetation rehabilitation efforts in Australia. PMID:12877867

  8. Beyond the Transboundary River: Issues of Riparian Responsibilities

    Science.gov (United States)

    Parhi, P. K.; Sankhua, R. N.

    2013-11-01

    The issues of riparian countries sharing transboundary waters spans decades, and has been greatly strengthened by its collaboration with partner agencies. International cooperation on shared water resources is critical, especially in water scarce regions experiencing the impacts of over-consumption and pollution. Where, river basins are transboundary, this requires regular and structured consultation, coordination and cooperation among all states sharing the catchment. Rapid and unsustainable development of river basins and their wetlands has led to the disruption of natural hydrological cycles. In many cases this has resulted in greater frequency and severity of flooding, drought and pollution. Appropriate transnational planning, protection and allocation of water to wetlands are essential to avoid disaster and enable these ecosystems to continue to provide important goods and services to local communities. Integrated river basin management takes into account policies and measures for the multifunctional use of rivers on a catchment scale and associated institutional changes. The implementation of these involves a number of steps such as definition of aim, construction of conceptual model, selection of variables, comparison with selection criteria, database assessment, and indicator selection division of tasks and responsibilities for river basin management with regard to the development of indicators, data collection, and their application in decision-making. This work presents issues pertaining to the pressure to the river, the state of the river ecosystem, the impact to goods and services provided by the river, and the societal response.

  9. The effects of flooding disturbance on the distribution and behaviour of riparian arthropods along a lowland gravel river

    OpenAIRE

    Lambeets, Kevin

    2009-01-01

    This Ph.D.-thesis aimed to address which environmental factors influence the assemblage structure of mobile, riparian arthropods along spatially structured river banks of a rain-fed, lowland gravel river, the Common Meuse. As riverine ecosystems are basically non-equilibrium, dynamic ecosystems, mainly flow regimes and flood pulse characteristics are expected to shape both the distribution and behaviour of its inhabitants. The river banks along the Common Meuse are (in)frequently disturbed by...

  10. Water Purification Research on Surface Water Runoff of Bamboo Riparian Buffers%竹林河岸缓冲带对地表径流的水质净化研究

    Institute of Scientific and Technical Information of China (English)

    周义彪; 温德华; 李江; 黄红兰

    2014-01-01

    对赣江上游退耕还林河岸缓冲带(宽度12 m)、退耕还林河岸缓冲带(宽度24 m)和农田河岸缓冲带等3种用地类型河段的水质监测结果显示,消减地表水TN、TP能力大小依次均为退耕还林河岸缓冲带(24 m)>农田河岸缓冲带>退耕还林河岸缓冲带(宽度12 m),表明宽度窄的农田竹林缓冲带具复合结构的功能型实用性,可加强研究与实践推广应用。%Water quality monitoring results on three kinds of land use types of grain bamboo riparian buffers (width 12 m), grain bamboo riparian buffers (width 24 m),farmland bamboo riparian buffers in the upriver of the Ganjiang River showed that the reduction of surface water TN, TP concentration were also followed grain bamboo riparian buffers (width 24 m)>farmland bamboo riparian buffers>grain bamboo riparian buffers (width 12 m). This suggests that farmland bamboo riparian owns functional and practical features on its composite structure, so we should strengthen such research and its practice application.

  11. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.

    Science.gov (United States)

    Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe

    2016-03-01

    Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach

  12. 2006 Progress report: Riparian willow restoration along the Illinois river at Arapahoe NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report concerning riparian willow restoration on Arapahoe NWR. Riparian willow communities along the Illinois River at Arapaho NWR provide...

  13. 2005 Progress report: Riparian willow restoration along the Illinois river at Arapahoe NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report concerning riparian willow restoration on Arapahoe NWR. Riparian willow communities along the Illinois River at Arapaho NWR provide...

  14. Understanding the science behind riparian forest buffers : effects on plant and animal communities

    OpenAIRE

    Klapproth, Julia C.; Johnson, James E.

    2000-01-01

    Discusses riparian forests' ability to support many species of wildlife and explains that the importance of a particular riparian area for wildlife will depend on the size of the area, adjoining land uses, riparian vegetation, features inside the area, and the wildlife species of interest.

  15. Bank Erosion Modulated by Exposed Roots from Riparian Vegetation in Small Gravel-Bed Streams

    Science.gov (United States)

    Mendoza, A.; Frias, C. E.; Langendoen, E. J.; Abad, J. D.

    2013-12-01

    Bank erosion is a process present in rivers of all the scales and is a key aspect in the evolution of meandering streams. Its magnitude is significantly controlled by the resistance-to-erosion properties of the floodplain materials, which themselves are modified by the varying presence of riparian vegetation. Earlier studies have stated that the physical science of fluvial geomorphology was flawed because of omitting such processes, because they are difficult to describe physically or statistically. For example, the role of vegetation dynamics in modulating river migration, especially for small rivers where the effect of vegetation on channel morphology may be a more important component when compared to larger river systems such as the Amazon or Mississippi Rivers, is largely unknown. Though earlier studies have researched various aspects concerning the effects of riparian vegetation on bank erosion mechanics, a comprehensive framework that integrates and quantifies fluvial erosion and bank failure processes, near-bank hydrodynamics, soil properties and riparian vegetation characteristics is lacking. The effects of exposed roots and rootwads on the near-bank hydrodynamics and sediment transport processes are still not well understood. Laboratory studies have examined in detail the impact of vegetation located only on the bank toe or stream bed. Moreover, there exist no data that explicitly relates the characteristics of riparian vegetation on the bank top to changes in near-bank hydrodynamics and bank erosion mechanics. Further, there is a need to better understand the processes and their interactions occurring at the different spatial scales: single large root, rootwad, and reach. During 2011, 2012 a field campaign was carried out to study the effects of exposed root systems on flow in Fonner Run and Bates Fork, two tributaries of Tenmile Creek (Green and Washington Counties, Pennsylvania). Data collected consist of annual bathymetry, field velocity profiles

  16. Agricultural conservation planning framework: 2. Classification of riparian buffer design-types with application to assess and map stream corridors

    Science.gov (United States)

    A watershed’s riparian corridor presents opportunities to stabilize streambanks, intercept runoff, and influence shallow groundwater with riparian buffers. This paper presents a system to classify these riparian opportunities and apply it towards riparian management planning in HUC12 watersheds. Hig...

  17. Nitrogen transformation and retention in riparian buffer zones

    NARCIS (Netherlands)

    Hefting, Maria Margaretha

    2003-01-01

    Diffuse pollution of nutrients and pesticides from agricultural areas is increasingly recognised as a major problem in water management. Ecotechnological measures as constructed wetlands and riparian buffer zones clearly have an important role in the reduction of diffuse pollution by removing and mo

  18. Featured collection introduction: riparian ecosystems and buffers II

    Science.gov (United States)

    Riparian ecosystems, the interface of terrestrial and aquatic systems, are zones of high biodiversity (Naiman et al., 1993), rapid biogeochemical activity (Vidon et al., 2010), complex hydrologic activity (Mayer et al., 2010a), and offer solace that can bestow significant mental ...

  19. AN INDICATOR OF POTENTIAL STREAM WOOD CONTRIBUTION FOR RIPARIAN FORESTS

    Science.gov (United States)

    In northwestern Oregon a key function of riparian forests is to provide wood to the stream network. This function is a prominent feature of Federal and State forest practices in the region. Thus, defining indicators which are associated with this function are important for desi...

  20. Monitoring vegetation water uptake in a semiarid riparian corridor

    Science.gov (United States)

    Robinson, J.; Ochoa, C. G.; Leonard, J.

    2015-12-01

    With a changing global climate and growing demand for water throughout the world, responsible and sustainable land and water resource management practices are becoming increasingly important. Accounting for the amount of water used by riparian vegetation is a critical element for better managing water resources in arid and semiarid environments. The objective of this study was to determine water uptake by selected riparian vegetative species in a semiarid riparian corridor in North-Central Oregon. Exo-skin sap flow sensors (Dynamax, Houston, TX, U.S.A.) were used to measure sap flux in red alder (Alnus rubra) trees, the dominant overstory vegetation at the field site. Xylem sap flow data was collected from selected trees at the field site and in a greenhouse setting. Transpiration rates were determined based on an energy balance method, which makes it possible to estimate the mass flow of sap by measuring the velocity of electrical heat pulses through the plant stem. Preliminary field results indicate that red alder tree branches of about 1 inch diameter transpire between 2 and 6 kg of water/day. Higher transpiration rates of up to 7.3 kg of water/day were observed under greenhouse conditions. Streamflow and stream water temperature, vegetation characteristics, and meteorological data were analyzed in conjunction with transpiration data. Results of this study provide insight on riparian vegetation water consumption in water scarce ecosystems. This study is part of an overarching project focused on climate-vegetation interactions and ecohydrologic processes in arid and semiarid landscapes.

  1. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  2. Development and Evaluation of a Riparian Buffer Mapping Tool

    Science.gov (United States)

    Milheim, Lesley E.; Claggett, Peter R.

    2008-01-01

    Land use and land cover within riparian areas greatly affect the conditions of adjacent water features. In particular, riparian forests provide many environmental benefits, including nutrient uptake, bank stabilization, steam shading, sediment trapping, aquatic and terrestrial habitat, and stream organic matter. In contrast, residential and commercial development and associated transportation infrastructure increase pollutant and nutrient loading and change the hydrologic characteristics of the landscape, thereby affecting both water quality and habitat. Restoring riparian areas is a popular and cost effective restoration technique to improve and protect water quality. Recognizing this, the Chesapeake Executive Council committed to restoring 10,000 miles of riparian forest buffers throughout the Chesapeake Bay watershed by the year 2010. In 2006, the Chesapeake Executive Council further committed to 'using the best available...tools to identify areas where retention and expansion of forests is most needed to protect water quality'. The Chesapeake Bay watershed encompasses 64,000 square miles, including portions of six States and Washington, D.C. Therefore, the interpretation of remotely sensed imagery provides the only effective technique for comprehensively evaluating riparian forest protection and restoration opportunities throughout the watershed. Although 30-meter-resolution land use and land cover data have proved useful on a regional scale, they have not been equally successful at providing the detail required for local-scale assessment of riparian area characteristics. Use of high-resolution imagery (HRI) provides sufficient detail for local-scale assessments, although at greater cost owing to the cost of the imagery and the skill and time required to process the data. To facilitate the use of HRI for monitoring the extent of riparian forest buffers, the U.S. Forest Service and the U.S. Geological Survey Eastern Geographic Science Center funded the

  3. Riparian land-use and rehabilitation: impact on organic matter input and soil respiration.

    Science.gov (United States)

    Oelbermann, Maren; Raimbault, Beverly A; Gordon, A M

    2015-02-01

    Rehabilitated riparian zones in agricultural landscapes enhance environmental integrity and provide environmental services such as carbon (C) sequestration. This study quantified differences in organic matter input, soil biochemical characteristics, and soil respiration in a 25-year-old rehabilitated (RH), grass (GRS), and undisturbed natural forest (UNF) riparian zone. Input from herbaceous vegetation was significantly greater (P riparian zone, whereas autumnal litterfall was significantly greater (P riparian zone. Soil bulk density was significantly greater (P riparian zone, but its soil chemical characteristics were significantly lower. Soil respiration rates were lowest (P riparian zones. Soil respiration rates were significantly different (P riparian zones. Soil potential microbial activity indicated a significantly different (P riparian zones, and principle component analysis showed a distinct difference in microbial activity among the riparian land-use systems. Rehabilitating degraded riparian zones with trees rather than GRS is a more effective approach to the long-term mitigation of CO2. Therefore, the protection of existing natural/undisturbed riparian forests in agricultural landscapes is equally important as their rehabilitation with trees, given their higher levels of soil organic C and lower soil respiration rates. PMID:25432450

  4. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  5. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands. PMID:24933893

  6. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  7. Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem

    Science.gov (United States)

    Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.

    2006-01-01

    ??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).

  8. Agrobiodiversity in riparian backyards and rural cutover lands in the Boca do Moa community – Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Williane Maria de Oliveira Martins

    2012-09-01

    Full Text Available The riparian rural cutover lands and backyards represent a sustainable alternative for the production of food and medicinal drugs to the traditional communities from the Amazon, especially with regard to products diversity and income generation. Considering the ecological and social functions of these spaces, this paper aims at analyzing the agrobiodiversity of these environments in the Boca Moa community, in the town of Cruzeiro do Sul, Acre, Brazil. Data collection was carried out through participative, formal, and inductive interviews following a semi-structured questionnaire with open questions, besides in loco visits. The rural cutover lands present many species at the same area, and manioc is the main product cultivated. The backyards have spatial arrangements of food species, with emphasis on fruits and vegetables, besides medicinal plants. Thus, both the backyards and rural cutover lands participate in the subsistence and income of riparian families from this community.

  9. Riparian vegetation dynamics and evapotranspiration in the riparian corridor in the delta of the Colorado River, Mexico

    Science.gov (United States)

    Nagler, P.L.; Glenn, E.P.; Hinojosa-Huerta, O.; Zamora, F.; Howard, K. J.

    2008-01-01

    Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr-1 and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4??108 m3 yr-1, about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the

  10. Using a simple mixing model to assess the role of riparian wetlands in moderating stream water temperatures

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Soulsby, Chris

    2016-04-01

    Stream water temperature is a fundamental physical characteristic of riverine systems, influencing many processes; from biological productivity to many other aspects of water quality. Given climatic global warming projections, and the implications for stream thermal regimes, they are increasingly considered as part of river basin management plans. Along with the effects of energy exchanges at the water-air interface and riparian vegetation cover, advective heat transport from the different sources of water generating stream flow can strongly influence temperature within the stream channel. Riparian wetland areas are important geomorphic components of landscapes in many parts of the world, and are often a dominant source of stream flow during hydrological events. During wet periods large volumes of water may be displaced into stream channels via near-surface flow paths, which typically have high variability. In dry conditions, more groundwater with less variable temperatures dominate. The mixing of these waters can have great influence over the thermal regimes of streams over a range of flow conditions. Here, we present the use of a simple mixing model to predict daily mean stream water temperature on the basis of mixing groundwater and near surface riparian waters as the end-members in a 3.2km2 watershed in the Scottish Highlands. The resulting model fit was analysed against energy balance components and the spatial extent of the wetland to investigate the importance of energy-exchange in riparian wetlands in determining stream temperatures. Results showed generally good agreement between modelled results and measured temperatures under wet conditions. Model fit was generally better in winter than during the summer months (when the model under predicted temperatures), with a strong correlation evident between net radiation and the fit of the model. This indicated the limited skill of the simple mixing structure to account for the increased importance of energy

  11. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  12. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    Science.gov (United States)

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  13. Riparian zone hydrology and soil water total organic carbon (TOC: implications for spatial variability and upscaling of lateral riparian TOC exports

    Directory of Open Access Journals (Sweden)

    T. Grabs

    2012-10-01

    Full Text Available Groundwater flowing from hillslopes through riparian (near-stream soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC concentration profiles and groundwater levels measured in the riparian zone (RZ of a 67 km2 catchment in Sweden. TOC exported laterally from 13 riparian soil profiles was then estimated based on the riparian flow–concentration integration model (RIM. Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI. Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. These TOC fluxes were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. Mineral riparian gley soils, on the other hand, were related to rather small TOC export rates and were characterized by relatively time-invariant TOC concentration profiles. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that potentially controls much of the spatial variability of stream water TOC. We developed an empirical regression model based on the TWI to move beyond the plot scale and to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.

  14. Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes.

    Science.gov (United States)

    Meyer, Lars A; Sullivan, S Mazeika P

    2013-09-01

    Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates. PMID:24147405

  15. Riparian restoration framework for the Upper Gila River, Arizona

    Science.gov (United States)

    Orr, Bruce K.; Leverich, Glen L.; Diggory, Zooey E.; Dudley, Tom L.; Hatten, James R.; Hultine, Kevin R.; Johnson, Matthew P.; Orr, Devyn A.

    2014-01-01

    This technical report summarizes the methods and results of a comprehensive riparian restoration planning effort for the Gila Valley Restoration Planning Area, an approximately 53-mile portion of the upper Gila River in Arizona (Figure 1-1). This planning effort has developed a Restoration Framework intended to deliver science-based guidance on suitable riparian restoration actions within the ecologically sensitive river corridor. The framework development was conducted by a restoration science team, led by Stillwater Sciences with contributions from researchers at the Desert Botanical Garden (DBG), Northern Arizona University (NAU), University of California at Santa Barbara (UCSB), and U.S. Geological Survey (USGS). All work was coordinated by the Gila Watershed Partnership of Arizona (GWP), whose broader Upper Gila River Project Area is depicted in Figure 1-1, with funding from the Walton Family Foundation’s Freshwater Initiative Program.

  16. Groundwater-Stream Interactions in a Seasonal Flooded Riparian Zone

    Science.gov (United States)

    Jensen, J. K.; Engesgaard, P. K.; Nilsson, B.

    2011-12-01

    At Odense River in Denmark several wetlands/riparian zones have recently been reconstructed with one objective to rehabilitate the wetland/riparian zone as a buffer strip enhancing depletion of agricultural inputs of diffuse pollutants like nutrients and pesticides to the receiving Odense River. The approach is initiated to either force the polluted groundwater through a reactive buffer strip and/or allowing polluted river water to flood and infiltrate the reactive riparian zone. However, often the hydraulics of these systems is poorly understood and therefore it is difficult to evaluate the efficiency of the systems and several questions often remain unanswered; Is residence time in the riparian zone long enough to sufficiently deplete the pollutants? What are the effects of flooding and infiltration of polluted river water on the hydraulics of the buffer strip? Can differences in groundwater flow paths in periods with flooding reduce the effect of the buffer strip by shortening flow paths to the surface water and hence alter residence time; that is, does groundwater-stream interaction change during and after flooding? And finally; is it possible to upscale the overall effect for a whole river system? Monitoring is ongoing in a reconstructed riparian zone heavily polluted with nitrate as a part of the EU project AQUAREHAB. The setup is a grid of 50 piezometers installed in selected transects following groundwater flow paths from an adjacent agricultural site to the river. The piezometer setup permits us to follow the changes in hydraulic heads and to perform water sampling for chemical characterization. The site has been characterized by geophysical Multi-Electrode-Profiling and correlated to two geotechnical drillings to depths of 20 m, by slug-test, and hydro periods have been determined from continuous recording of river stage. Temperature is used as a tracer for monitoring discharge of groundwater to the stream (non-continuous converted to an estimate of flux

  17. Wildlife Response to Riparian Restoration on the Sacramento River

    OpenAIRE

    Golet, Gregory H.; Gardali, Thomas; Howell, Christine A.; Hunt, John; Luster, Ryan A.; Rainey, William; Roberts, Michael D; Silveira, Joseph; Swagerty, Helen; Williams, Neal

    2008-01-01

    Studies that assess the success of riparian restoration projects seldom focus on wildlife. More generally, vegetation characteristics are studied, with the assumption that animal populations will recover once adequate habitats are established. On the Sacramento River, millions of dollars have been spent on habitat restoration, yet few studies of wildlife response have been published. Here we present the major findings of a suite of studies that assessed responses of four taxonomic groups (ins...

  18. Riparian deforestation, stream narrowing, and loss of stream ecosystem services

    OpenAIRE

    Sweeney, Bernard W.; Bott, Thomas L.; Jackson, John K; Kaplan, Louis A.; Newbold, J. Denis; Standley, Laurel J.; Hession, W. Cully; Horwitz, Richard J.

    2004-01-01

    A study of 16 streams in eastern North America shows that riparian deforestation causes channel narrowing, which reduces the total amount of stream habitat and ecosystem per unit channel length and compromises in-stream processing of pollutants. Wide forest reaches had more macroinvertebrates, total ecosystem processing of organic matter, and nitrogen uptake per unit channel length than contiguous narrow deforested reaches. Stream narrowing nullified any potential advantages of deforestation ...

  19. Responses of riparian reptile communities to damming and urbanization

    Science.gov (United States)

    Hunt, Stephanie D.; Guzy, Jacquelyn C.; Price, Steven J.; Halstead, Brian J.; Eskew, Evan A.; Dorcas, Michael E.

    2013-01-01

    Various anthropogenic pressures, including habitat loss, threaten reptile populations worldwide. Riparian zones are critical habitat for many reptile species, but these habitats are also frequently modified by anthropogenic activities. Our study investigated the effects of two riparian habitat modifications-damming and urbanization-on overall and species-specific reptile occupancy patterns. We used time-constrained search techniques to compile encounter histories for 28 reptile species at 21 different sites along the Broad and Pacolet Rivers of South Carolina. Using a hierarchical Bayesian analysis, we modeled reptile occupancy responses to a site's distance upstream from dam, distance downstream from dam, and percent urban land use. The mean occupancy response by the reptile community indicated that reptile occupancy and species richness were maximized when sites were farther upstream from dams. Species-specific occupancy estimates showed a similar trend of lower occupancy immediately upstream from dams. Although the mean occupancy response of the reptile community was positively related to distance downstream from dams, the occupancy response to distance downstream varied among species. Percent urban land use had little effect on the occupancy response of the reptile community or individual species. Our results indicate that the conditions of impoundments and subsequent degradation of the riparian zones upstream from dams may not provide suitable habitat for a number of reptile species.

  20. Modelling riparian buffers for water quality enhancement in the Karapiro catchment

    OpenAIRE

    Ramilan, Thiagarajah; Scrimgeour, Frank G.; Marsh, Dan

    2010-01-01

    The use of riparian land buffers is widely promoted as a method of mitigating the effects of sediment and nutrient runoff from intensive land use in New Zealand. Farmers receive advice and financial assistance from Regional Councils for activities such as establishment and planting of riparian buffers, but funding is limited. The effect of buffers on water quality goals varies across land types so the optimum size of riparian buffer width varies across farms. We build a stylised model to dete...

  1. Seedling production of woody riparian species from seeds: techniques and results

    OpenAIRE

    Fabião, António; Carneiro, Marta; Pimentel, Filipa; Fabião, André

    2007-01-01

    Rehabilitation of woody riparian galleries largely depends on the availability of seedlings or seeds of autochthonous species, which are usually difficult to obtain in Portugal. The cultural value of autochthonous seeds of several riparian woody species in nursery conditions was evaluated in order to assess seedling production feasibility. The choice of species was based on their occurrence in riparian habitats, even if not exclusive to such environments, and their suitability to establishmen...

  2. Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state, India

    OpenAIRE

    K.A. Subramanian; Sivaramakrishnan, K.G.; Gadgil, Madhav

    2005-01-01

    The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as ...

  3. Characterization of Pan-Mediterranean Riparian Areas by Remote Sensing Derived Phenological Indices

    OpenAIRE

    IVITS-WASSER Eva; Cherlet, Michael; Sommer, Stefan; MEHL Wolfgang

    2008-01-01

    This report aimed at inventorying characteristics of Mediterranean riparian-use zones using statistical analysis of some phenological indices calculated from remote sensing time series. Riparian areas are focused because of their prime importance in offering potential for adapted agricultural landuse and their ecosystem services. The quantity of vegetation cover present in these wider riparian-use zones has been proven to be directly dependent to adjacent landuse and related to the functionin...

  4. Effect of gender on sap-flux-scaled transpiration in a dominant riparian tree species: Box elder (Acer negundo)

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.; West, A. G.; Ehleringer, J. R.

    2007-09-01

    flux from dominant riparian vegetation adjacent to the stream channel. Results from this investigation show that the population structure of dioecious riparian trees has direct consequences on ecosystem ET, particularly along stream margins. Shifts in population structure therefore, may have profound impacts on several ecohydrological processes including stream discharge, biogeochemical cycling, and ecosystem productivity.

  5. Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003-04

    Science.gov (United States)

    Zelt, Ronald B.; Munn, Mark D.

    2009-01-01

    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the

  6. Riparian strip efficiency assessment in agricultural landscapes using stereoscopic very high spatial resolution satellite imagery

    Science.gov (United States)

    Chokmani, Karem; Novoa, Julio

    2015-04-01

    Riparian strips are used worldwide to protect riverbanks and water quality in agricultural zones because of their several environmental benefits. A metric called the Riparian Strip Quality Index, which is based on the percentage area of riverine vegetation found on the riparian strip, is used to evaluate their ecological condition. This index could be considered an indicator of the potential capacity of riparian strips to filter sediments, retain pollutants, and provide shelter to terrestrial and aquatic species. Thus, in order to know if a riparian strip is truly efficient in agricultural lands, which means that it is fulfilling those ecological functions, it is necessary to understand their ability to intercept surface runoff. The latter is the major cause of water pollution and erosion in these productive areas. Besides vegetation coverage, topographic and hydrologic parameters must be included to model the intensity and spatial distribution of runoff streamflow at local scales. The geospatial information used to assess the ecological efficiency of riparian strips was extracted from very-high-spatial-resolution WorldView-2 satellite imagery. This information was then processed using current geospatial techniques such as object-based image analysis and was used to develop a Riparian Strip Efficiency Index. The results show that this index might be used to assess the efficiency of riparian strips, which will enable land managers to monitor changes occurring over time, identify priority areas for restoration activities. This, in turn, might ensure optimal allocation of private or public funds towards the most inefficient and threatened riparian strips.

  7. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  8. [Spatial variation in riparian soil properties and its response to environmental factors in typical reach of the middle and lower reaches of the Yellow River].

    Science.gov (United States)

    Zhao, Qing-he; Liu, Qian; Ma, Li-jiao; Ding, Sheng-yan; Lu, Xun-ling; Tang, Qian; Xu, Shan-shan

    2015-12-01

    Soil and vegetation are the foundation of maintaining riparian ecosystem services, and their spatial distribution and variations can determine the effects of ecological functions. In the present study, selecting the typical reach of the middle and lower reaches of the Yellow River as the study area, the spatial distributions of riparian soil physicochemical properties and their response to environmental factors were analyzed by employing methods of field investigation, experimental analysis, and redundancy analysis (RDA). The results showed that soil particle was composed significantly of silt in the study area, with the increase of riparian buffer distance, soil bulk density increased initially and then decreased, whereas soil moisture showed the opposite pattern. Changes in total soil phosphorus (TP), available phosphorus (AP), total carbon (TC), total organic carbon (TOC), total nitrogen (TN); ammonium nitrogen (NH₄⁺-N) and nitrate nitrogen (NO₃⁻-N) contents under different riparian buffer distance showed no statistically significant differences. The spatial distribution of soil chemical properties was generally insignificantly different through changes between two vegetation types. Pearson correlation analysis showed that there was close relationship between soil physical and chemical properties, therein, TOC content in the study area was positively and significantly related to TN (P DBH) of the tree layer and coverage of the herb layer. Meanwhile, with the increase of elevation gradient, the content of soil NH₄⁺-N presented an increasing trend, indicating that soil properties were significantly influenced by the effects of community structure and elevation gradient in the study area. PMID:27112021

  9. Testing the effects of an introduced palm on a riparian invertebrate community in southern California.

    Directory of Open Access Journals (Sweden)

    Theresa Sinicrope Talley

    Full Text Available Despite the iconic association of palms with semi-arid regions, most are introduced and can invade natural areas. Along the San Diego River (San Diego, California, USA, the introduced Canary Island date palm (Phoenix canariensis forms dense patches among native riparian shrubs like arroyo willow (Salix lasiolepis. The structural differences between the palm and native shrubs are visually obvious, but little is known about palm's effects on the ecosystem. We tested for the effects of the palm on a riparian invertebrate community in June 2011 by comparing the faunal and environmental variables associated with palm and willow canopies, trunks and ground beneath each species. The palm invertebrate community had lower abundance and diversity, fewer taxa feeding on the host (e.g., specialized hemipterans, and more taxa likely using only the plant's physical structure (e.g., web-builders, oak moths, willow hemipterans. There were no observed effects on the ground-dwelling fauna. Faunal differences were due to the physical and trophic changes associated with palm presence, namely increased canopy density, unpalatable leaves, trunk rugosity, and litter accumulations. Palm presence and resulting community shifts may have further ecosystem-level effects through alteration of physical properties, food, and structural resources. These results were consistent with a recent study of invasive palm effects on desert spring arthropods, illustrating that effects may be relatively generalizable. Since spread of the palm is largely localized, but effects are dramatic where it does occur, we recommend combining our results with several further investigations in order to prioritize management decisions.

  10. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    Science.gov (United States)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution ( 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon

  11. Linking channel hydrology with riparian wetland accretion in tidal rivers

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.

    2014-01-01

    The hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood, yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the non-tidal through oligohaline portion of two coastal plain rivers in Maryland, U.S.A., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a one year period using artificial marker horizons, channel hydrology was measured over a one month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the non-tidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was 2-fold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: the oligohaline zone's SSC was more than double the tidal freshwater zone's, and was greater than historical SSC at the non-tidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. Overall sediment accretion was higher in the embayed river likely due to a single storm discharge and associated sedimentation.

  12. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  13. Mycorrhizas effects on nutrient interception in two riparian grass species

    Directory of Open Access Journals (Sweden)

    Hamid Reza Asghari

    2014-12-01

    Full Text Available Effects of arbuscular mycorrhizal (AM fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively for 8 weeks under glasshouse conditions. Mycorrhizal colonization, AM external hyphae development, plant growth, nutrient uptake and NO3, NH4 and available P in soil and leachate were measured. Mycorrhizal fungi highly colonized roots of exotic grass Phalaris aquatica and significantly increased plant growth and nutrient uptake. Columns containing of AM Phalaris aquatica had higher levels of AM external hyphae, lower levels of NO3, NH4 and available P in soil and leachate than NM columns. Although roots of native grass Austrodanthonia caespitosa had moderately high levels of AM colonization and AM external hyphae in soil, AM inoculation had no significant effects on plant growth, soil and leachate concentration of NO3 and NH4. But AM inoculation decreased available soil P concentration in deeper soil layer and had no effects on dissolved P in leachate. Although both grass species had nearly the same biomass, results showed that leachate collected from Austrodanthonia caespitosa columns significantly had lower levels of NO3, NH4 and dissolve P than leachate from exotic Phalaris aquatica columns. Taken together, these data shows that native plant species intercept higher nutrient than exotic plant species and had no responsiveness to AM fungi related to nutrient leaching, but AM fungi play an important role in interception of nutrient in exotic plant species.

  14. Linking channel hydrology with riparian wetland accretion in tidal rivers

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.

    2014-01-01

    hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the nontidal through oligohaline portion of two coastal plain rivers in Maryland, U.S., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a 1 year period using artificial marker horizons, channel hydrology was measured over a 1 month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the nontidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was twofold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: The oligohaline zone's SSC was more than double the tidal freshwater zone's and was greater than historical SSC at the nontidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. High sediment accretion at the upstream TFFW was likely due to high river discharge following a hurricane.

  15. Riparian zone control on base cation concentration in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-06-01

    Full Text Available Riparian zones (RZ are a major factor controlling water chemistry in forest streams. Base cations' (BC concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.

  16. Riparian zone processes and soil water total organic carbon (TOC): implications for spatial variability, upscaling and carbon exports

    OpenAIRE

    T. Grabs; K. H. Bishop; Laudon, H.; Lyon, S. W.; Seibert, J.

    2012-01-01

    Groundwater flowing from hillslopes through riparian (near stream) soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC) concentrations profiles and groundwater levels measured in the riparian zone (RZ) of a 67 km2 catchment in Sweden. TOC exported from 13 riparian soil profiles was then estimated based on the riparian flow-concentration integration mo...

  17. The impact of flood variables on riparian vegetation

    Science.gov (United States)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be

  18. Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient

    NARCIS (Netherlands)

    Veen, G.F.; Sarneel, J.M.; Ravensbergen, L.; Huig, N.; van Paassen, J.; Rip, W.; Bakker, E.S.

    2013-01-01

    Summary The establishment of riparian plants is determined by abiotic conditions and grazing, although it is usually presumed that the former are most important. We tested the impact of aquatic grazers on the survival and growth of establishing riparian plants and whether the impact of grazing inter

  19. Valuation Challenges of Riparian Restoration in a Dynamic Decision Support Context: What Could Possibly Go Wrong?

    Science.gov (United States)

    A dynamic simulation model is constructed to compare benefit-cost ratios of riparian restoration options for the Middle Rio Grande riparian corridor in Albuquerque, New Mexico, USA. The model is built from original choice experiment valuation data, regional benefit-transfer studi...

  20. HOW EFFECTIVE ARE RIPARIAN BUFFERS IN CONTROLLING NUTRIENT EXPORT FROM AGRICULTURAL WATERSHEDS?

    Science.gov (United States)

    Riparian buffers are being established in many parts of the world as part of nonpoint source pollution management strategies. A large number of studies have documented the potential of riparian buffers to reduce export of nutrients, especially nitrogen, in shallow ground water of...

  1. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system

    Science.gov (United States)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  2. Influence of Herbaceous Riparian Buffers on Channelized Headwater Streams in Central Ohio

    Science.gov (United States)

    Herbaceous riparian buffers are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The importance of forested riparian buffers for headwater streams has been documented, but the ecological impacts of herbaceous ri...

  3. Analysis of microbial populations, denitrification, and nitrous oxide production in riparian buffers

    Science.gov (United States)

    Riparian buffers are used extensively to protect water bodies from nonpoint source nitrogen pollution. However there is relatively little information on the impact of these buffers on production of nitrous oxide (N2O). In this study, we assessed nitrous oxide production in riparian buffers of the so...

  4. Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds

    Science.gov (United States)

    Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...

  5. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier;

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  6. The Effect of Riparian Zones on Nitrate Removal by Denitrification at the River Basin Scale

    NARCIS (Netherlands)

    Hoang, N.K.L.

    2013-01-01

    The riparian zone, the interface between terrestrial and aquatic ecosystems, plays an important role in nitrogen removal in spite of the minor proportion of the land area that it covers. This is verified in a large number of studies related to the effect of wetlands/riparian zones on the discharge o

  7. 2004 progress report : Effects of ungulate browsing on post-fire recovery of riparian cottonwoods : Implications for management of riparian forests, Seedskadee National Wildlife Refuge, Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Browsing pressure by ungulates may limit natural establishment of native cottonwood and willow stands, and fires, which have become more frequent on riparian lands...

  8. Holding onto the Green Zone: A Youth Program for the Study and Stewardship of Community Riparian Areas. Action Guide

    Science.gov (United States)

    US Department of the Interior, 2008

    2008-01-01

    Scientists call the land along the edges of a river, stream, or lake a riparian zone. In this guide, riparian zone will be called the Green Zone. Riparian zones make up only a small part of land in the United States. But they are very important. They protect water quality and quantity, supply food and shelter for fish and wildlife, and provide…

  9. Stream characteristics and their implications for the protection of riparian fens and meadows

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, A.; Larsen, S.E.; Andersen, Peter Mejlhede;

    2011-01-01

    1. Running waters, including associated riparian areas, are embraced by international legal frameworks outlining targets for the preservation, protection and improvement of the quality of the environment. Interactions between stream and river processes and riparian habitats have not received much...... of riparian areas, affecting conditions needed to sustain protected fen and meadow communities. 4. We also found that water chemistry strongly influenced the occurrence of fen and meadow vegetation in riparian areas. The probability of finding fen and meadow vegetation was reduced when total phosphorus (TP...... attention in the management of stream ecosystems, and integrated measures that consider both the ecological status of streams and rivers (sensu EU Water Framework Directive, WFD) and the conservation status of riparian habitats and species (sensu EU Habitats Directive, HD) are rare. 2. Here, we analysed...

  10. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    Science.gov (United States)

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( riparian buffers was detected (4.32 vs. 1.03 kg NO-N ha at WR and LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. PMID:25602568

  11. Riparian Planting Projects Completed within Asotin Creek Watershed : 2000-2002 Asotin Creek Riparian Final Report of Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. J. (Bradley J.)

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for threatened and endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for threatened salmonids since 1994. The Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00 teamed BPA and the Governor

  12. Elevated stream inorganic nitrogen impacts on a dominant riparian tree species: Results from an experimental riparian stream system

    Science.gov (United States)

    Hultine, K. R.; Jackson, T. L.; Burtch, K. G.; Schaeffer, S. M.; Ehleringer, J. R.

    2008-12-01

    The release of inorganic nitrogen from intensive agricultural practices and urbanization has resulted in significant alterations of the aquatic nitrogen cycle in riparian ecosystems. Nevertheless, impacts of stream nitrogen inputs on the terrestrial nitrogen cycle and the water and carbon cycles are unclear. Information on terrestrial ecosystem responses to stream N loading is largely absent in part because of the difficulty in controlling for temporal and spatial variation in streamflow, geomorphology, climate, and vegetation. To address these issues, we constructed a dual-plot artificial stream riparian system within a 10-year-old plantation of a dominant riparian tree species, box elder (Acer negundo). The dual-plot design allowed for different concentrations of stream inorganic nitrogen between plots while controlling for ecohydrologic and geohydrologic variability. The system was used to investigate elevated inorganic stream nitrogen impacts on water use patterns, above-ground productivity, and leaf chemistry of streamside box elder trees over two consecutive growing seasons (2006 and 2007). One plot received inorganic soluble fertilizer that brought the NO3 concentration of stream water from 5 μmol l-1 to about 100 μmol l-1, while the second plot received no additional nitrogen. Relative stem sap flux density (Js) did not vary between plots until near the conclusion of the 2006 growing season, when trees in the fertilized plot showed a steep upswing in Js relative to trees in the control plot. Sap flux in 2007 increased consistently by 0.4% day-1 in the fertilized plot relative to the control plot over a 75-day period, before leveling off near the conclusion of the growing season. At the onset of the experiment, leaf nitrogen per unit mass and leaf nitrogen per unit area were significantly higher in the control plot, and leaf C:N ratios were lower. In 2007, however, differences in leaf chemistry disappeared, suggesting that leaf nitrogen increased in the

  13. Effects of river restoration on riparian biodiversity in secondary channels of the Pite River, Sweden.

    Science.gov (United States)

    Helfield, James M; Engström, Johanna; Michel, James T; Nilsson, Christer; Jansson, Roland

    2012-01-01

    Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating. Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes. In recent years, local authorities have begun to restore channelized rivers. In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River. We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites featured greater zonation, with mesic-hydric floodplain species represented in plots closest to the stream and mesic-xeric upland species represented in plots farthest from the stream. In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream. These patterns likely result from the increased water levels in reconnected channels where, prior to restoration, upland plants had expanded toward the stream. Nonetheless, the restored fluvial regime has not brought about the development of characteristic flood-adapted plant communities, probably due to the short time interval (ca. 5 years) since restoration. Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems. These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies. PMID:22042408

  14. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    Science.gov (United States)

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests. ?? 2007 Springer Science+Business Media, LLC.

  15. Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction.

    Science.gov (United States)

    Marshall, Kristin N; Hobbs, N Thompson; Cooper, David J

    2013-04-01

    Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems.

  16. Restoring environmental flows and improving riparian ecosystem of Tarim River

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim River Basin in the second half of 20 century. Restoration of the endangered riparian ecosystem requires that environmental flow should be restored through restricted and uncontrolled flow diversion irrigation in tributary areas. Implementation of such restriction needs further the basin-wide reallocation of water resources through a set of engineering and non-engineering measures taken to ensure the water requirement in the tributary and maintain effective flows in Tarim River. As one of evolving HELP (Hydrology for Environment, Life and Policy) basins, the article first presents an overview of hydrology, socio-economic development and ecosystem evolution of the Tarim River Basin. Then, those measures for restoring and maintaining environmental flow are reviewed and analyzed along with its applicability and validity. The issues emerging in implementing those measures are also explored, and then the conclusions were summarized. Lessons learned could provide a good example for other basins under similar conditions.

  17. Ecological Impact of LAN: San Pedro Riparian National Conservation Area

    Science.gov (United States)

    Craine, Eric Richard; Craine, Brian L.

    2015-08-01

    The San Pedro River in Southeastern Arizona is home to nearly 45% of the 900 total species of birds in the United States; millions of songbirds migrate though this unique flyway every year. As the last undammed river in the Southwest, it has been called one of the “last great places” in the US. Human activity has had striking and highly visible impacts on the San Pedro River. As a result, and to help preserve and conserve the area, much of the region has been designated the San Pedro Riparian National Conservation Area (SPRNCA). Attention has been directed to impacts of population, water depletion, and border fence barriers on the riparian environment. To date, there has been little recognition that light at night (LAN), evolving with the increased local population, could have moderating influences on the area. STEM Laboratory has pioneered techniques of coordinated airborne and ground based measurements of light at night, and has undertaken a program of characterizing LAN in this region. We conducted the first aerial baseline surveys of sky brightness in 2012. Geographic Information Systems (GIS) shapefiles allow comparison and correlation of various biological databases with the LAN data. The goal is to better understand how increased dissemination of night time lighting impacts the distributions, behavior, and life cycles of biota on this ecosystem. We discuss the baseline measurements, current data collection programs, and some of the implications for specific biological systems.

  18. The Riparian Alder Forests of the Sopron Hills

    Directory of Open Access Journals (Sweden)

    SZMORAD, Ferenc

    2011-01-01

    Full Text Available The present study demonstrates the classification of the riparian alder forests of theAlpokalja region through the analysis of their stands in the Sopron Hills. Besides the historical,ecological and floristic data collection, the differentiation of these forests was examined using36 coenological relevés recorded according to the Braun-Blanquet method. Cluster analysis,principal component analysis and TWINSPAN analysis were applied in the process; the definitionof diagnostic species for the resulting units was carried out by fidelity analysis using the coefficient. The presence of three alder forest associations was verified by the research in thestudy area. In the vicinity of the lower and middle sections of the streams, characterized bystagnant water, small patches of swampy alder forests (Angelico sylvestris – Alnetum glutinosaeoccur. In the fast-flowing stream sections alder woods rich in species of mesophilic deciduousforests (Aegopodio – Alnetum glutinosae can be found, while along the middle and upper sectionsof the streams, at sites with seepage water, mixed ash-alder forests with montane herb species(Carici remotae – Fraxinetum are typical. The investigations revealed that the Carex brizoidesdominance-type alder groves were secondary forests that formed in former meadows and theybelong to the 3 mentioned riparian alder forest types.

  19. Bringing light to remnants of riparian areas in rice field channels: a combined application of linear transects and the mapping method

    OpenAIRE

    Godinho, Carlos; Pereira, Pedro; Rabaça, João E.

    2010-01-01

    The importance of rice fields for bird conservation has been subject of several studies, mainly focused in core areas as habitat for waterbirds. However, significant parts of the rice field structure, like the irrigation channels that control the water level, are often neglected. These corridor-like areas are frequently characterized by the presence of riparian vegetation like willows and ashes or wetland vegetation like reedmace or common reedbeds. In order to assess the importance of these ...

  20. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  1. Riparian and in-stream controls on nutrient concentrations along a headwater forested stream

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2014-07-01

    Full Text Available Headwater streams have a strong capacity to transform and retain nutrients, and thus, a longitudinal decrease in stream nutrient concentrations would be expected from in-stream nutrient removal alone. Yet, a number of other factors within the catchment, including biogeochemical processing within the riparian zone and export to streams, can contribute to stream nutrient concentration, which may overcome the effect of in-stream biogeochemical processing. To explore this idea, we analyzed the longitudinal patterns of stream and riparian groundwater concentrations for chloride (Cl−, nitrate (NO3−, ammonium (NH4+, and phosphate (PO43− along a 3.7 km reach at an annual scale. The reach showed a gradual increase in stream and riparian width, riparian tree basal area, and abundance of riparian N2-fixing tree species. Concentrations of Cl− indicated a~strong hydrological connection at the riparian-stream edge. However, stream and riparian groundwater nutrient concentrations showed a moderate to null correlation, suggesting high biogeochemical processing at the riparian-stream edge and within the stream. A mass balance approach along the reach indicated that, on average, in-stream net nutrient uptake prevailed over release for NH4+ and PO43−, but not for NO3−. On an annual basis, in-stream processes contributed to change stream input fluxes by 11%, 26%, and 29% for NO3−, NH4+, and PO43−, respectively. Yet, longitudinal trends in concentration were not consistent with the prevailing in-stream biogeochem ical processes. During the riparian dormant period, stream concentration decreased along the reach for NO3−, but increased for NH4+ and PO43−. During the riparian vegetative period, NO3− and PO43− increased along the reach while NH4+ showed no clear pattern. These longitudinal trends were partially related to riparian forest features and groundwater inputs, especially for NO3− and PO43−. Our study

  2. Dioecy Impacts on Plant Water Fluxes in Riparian Ecosystems

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.; West, A. G.; Ehleringer, J. R.

    2005-12-01

    Dioecious plants are frequently associated with different spatial distributions of the two sexes across resource gradients. Segregation between sexes might be expected to occur if the cost of reproduction is greater in females than in males. If so, females would be under stronger selection to increase rates of resource uptake. Acer negundo is a dioecious riparian tree species that show spatial segregation among sexes: females are typically more common along streamside (high resource) environments than males. The spatial segregation of the sexes leads to the hypothesis that male and female individuals have varying influence on ecohydrological processes. To address this, we measured sap flux, water relations and hydraulic architecture of mature streamside (less than 1 m from stream channel) male and female Acer negundo trees occurring near Salt Lake City, Utah, USA during the 2004 growing season. Despite similar predawn and midday leaf water potentials, sap flux density ( Js) was 40 percent higher in female trees than in male trees during the 2004 growing season (n = 42 days, F = 73.56, P genders showed a similar relationship between conducting sapwood area to stem diameter ratio suggesting that differences in Js scale to the whole tree level. Sap flux data from Acer negundo trees was compared to five other co-occurring riparian tree species. Female Acer negundo trees showed the highest Js among all species while Js in male Acer negundo trees was lower than all other species except one ( Acer grandidentatum). These data demonstrate that individual female Acer negundo trees have the capacity remove water at higher rates than males in high resource environments. The spatial segregation of the sexes along streamside environments may therefore have profound impacts on ecohydrological processes such as stream discharge, groundwater recharge, and nutrient cycling.

  3. 2004 Progress report : Riparian willow restoration along the Illinois River at Arapaho NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This progress report is concerning the riparian willow restoration along the Illinois river at Arapaho NWR. Included in the report is the background on the...

  4. 2006 Progress report : Riparian willow restoration along the Illinois River at Arapaho NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This progress report is concerning the riparian willow restoration along the Illinois river at Arapaho NWR. Included in the report is the background on the...

  5. 2005 Progress report : Riparian willow restoration along the Illinois River at Arapaho NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This progress report is concerning the riparian willow restoration along the Illinois river at Arapaho NWR. Included in the report is the background on the...

  6. 2003 Progress report : Riparian willow restoration along the Illinois River at Arapaho NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This progress report is concerning the riparian willow restoration along the Illinois river at Arapaho NWR. Included in the report is the background on the...

  7. Riparian Land-Use and Rehabilitation: Impact on Organic Matter Input and Soil Respiration

    Science.gov (United States)

    Oelbermann, Maren; Raimbault, Beverly A.

    2015-02-01

    Rehabilitated riparian zones in agricultural landscapes enhance environmental integrity and provide environmental services such as carbon (C) sequestration. This study quantified differences in organic matter input, soil biochemical characteristics, and soil respiration in a 25-year-old rehabilitated (RH), grass (GRS), and undisturbed natural forest (UNF) riparian zone. Input from herbaceous vegetation was significantly greater ( P land-use systems. Rehabilitating degraded riparian zones with trees rather than GRS is a more effective approach to the long-term mitigation of CO2. Therefore, the protection of existing natural/undisturbed riparian forests in agricultural landscapes is equally important as their rehabilitation with trees, given their higher levels of soil organic C and lower soil respiration rates.

  8. Allocating shortage amongst riparian and appropriative water right holders in California's drought

    Science.gov (United States)

    Lord, B.; Lund, J. R.

    2014-12-01

    Within California's water rights system, water users have different priorities to available water during drought. Higher priority users are less likely to face shortage due to the demands of other users, but may be limited by reduced availability of water. An integrated set of water right allocation models was developed to determine optimal allocation of shortage for riparian and appropriative water right holders, which also allows for including required flows for the environment and public health and safety, and operational reliability for senior water right-holders. Riparian water right holders have equal priority, with water shortage allocated as an equal proportion of normal diversions for all riparian users within each sub-basin. These proportions are determined by water availability, with downstream users likely to receive higher proportions due to downstream accumulations of streamflow. Appropriative users as a class have a lower priority than riparian users. Shortages allocated among appropriative water right holders are made strictly by water right seniority.

  9. EnviroAtlas - Durham, NC - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Durham, NC - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  11. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  12. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  13. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  14. EnviroAtlas - Portland, OR - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  15. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  16. EnviroAtlas - New Bedford, MA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  17. EnviroAtlas - New York, NY - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  18. EnviroAtlas - Memphis, TN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a...

  19. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  20. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    Science.gov (United States)

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  1. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    Science.gov (United States)

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  2. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  3. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody...

  5. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  6. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a...

  7. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody...

  9. EnviroAtlas - Paterson, NJ - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  11. EnviroAtlas - Paterson, NJ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  12. EnviroAtlas - Portland, ME - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  13. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  14. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest...

  15. EnviroAtlas - New York, NY - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest...

  16. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  17. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  18. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  19. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  20. EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  1. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  2. EnviroAtlas - Green Bay, WI - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  3. Monitoring Riparian Birds at Ouray National Wildlife Refuge: 2012 Field Season Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Rocky Mountain Bird Observatory implemented a point count study in 2009 to monitor populations of riparian birds in eastern Utah. A total of 340 point counts were...

  4. Spatial Characterization of Riparian Buffer Effects on Sediment Loads from Watershed Systems

    Science.gov (United States)

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural lands...

  5. EnviroAtlas - Portland, Maine - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Pittsburgh, PA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Portland, OR - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Fresno, CA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Milwaukee, WI - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  11. EnviroAtlas - Pittsburgh, PA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  12. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  13. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  14. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  15. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  16. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  17. EnviroAtlas - Green Bay, WI - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  18. EnviroAtlas - Portland, ME - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  19. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  20. EnviroAtlas - New Bedford, MA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  1. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  2. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  3. EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  5. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Fresno, CA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Milwaukee, WI - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  11. Arapaho National Wildlife Refuge and the Owl Moutain Partnership riparian/meadow management demonstration project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Arapaho National Wildlife Refuge (Refuge) and the Owl Mountain Partnership (OMP) are implementing a 5-year riparian/meadow management demonstration project. The...

  12. Predicting the impact of water demand and river flow regulation over riparian vegetation through mathematical modeling

    Science.gov (United States)

    Garcia-Arias, A.; Pons, C.; Frances, F.

    2013-12-01

    The vegetation of the riversides is a main part of the complex riparian ecosystems and has an important role maintaining the fluvial ecosystems. Biotic and abiotic interactions between the river and the riverbank are essential for the subsistence and the development of both ecosystems. In semi-arid Mediterranean areas, the riparian vegetation growth and distribution is especially controlled by the water accessibility, determining the limit between the lush riparian bands and the sparse upland. Human intervention can alter the river hydrology determining the riparian vegetation wellbeing and its distribution and, in consequence, affecting both riparian and fluvial ecosystems. Predictive models are necessary decision support tools for adequate river management and restoration initiatives. In this context, the RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation. RibAV is able to reproduce the vegetation performance on the riverside allowing the scenarios analysis in terms of vegetation distribution and wellbeing. In this research several flow regulation and water demand scenarios are proposed and the impacts over three plant functional types (PFTs) are analyzed. The PFTs group the herbaceous riparian plants, the woody riparian plants and the terrestrial vegetation. The study site is the Terde reach at the Mijares River, a 539m length reach located in a semi-arid Mediterranean area in Spain. The scenarios represent river flow alterations required to attend different human demands. These demands encompass different seasonality, magnitude and location. The seasonality is represented as hydroelectric (constant all over the year), urban (increased during the summer period) and agricultural demands (monthly seasonality). The magnitude is varied considering the 20%, the 40% and the 80% of the mean daily flow. Two locations are considered, upstream or downstream the study site. To attend the demands located

  13. Riparian buffer zones on selected rivers in Lower Silesia - an important conservation practice and the management strategy in urban planning

    Science.gov (United States)

    Adamska, Maryna

    2013-09-01

    Buffer zones are narrow strips of land lying along the surface water, covered with appropriately selected vegetation. They separate aquatic ecosystems from the direct impact of agricultural land and reduce the movement of nutrients in the environment. In 2008 the European Commission established requirements for the implementation of buffer strips along water courses. Poland committed to the enforcement of these requirements until 1 January 2012. This was one of the reasons of this study. The subject of the analysis included the following rivers in Lower Silesia: Smortawa, Krynka, Czarna Woda and the selected transects of Ślęza and Nysa Łużycka. Detailed studies were designed to estimate the buffer zones occurring on these watercourses and assess these zones’ structure. This will be used to develop clear criteria for the selection of the width of these zones based on land use land management. It can be used in the implementation of executive acts at different levels of space management. Field research consisted of inventory the extent of riparian buffer strips on selected water courses and photographic documentation. Species composition of the vegetation forming a buffer zone was identified by using Braun-Blanquet method. There was lack of continuity of the riparian buffer zones on investigated rivers. Buffer zones should have carefully formulated definition and width because they are element of the significant ecological value, they perform important environmental protective functions and they are also the subject of Community law.

  14. Near-Term Effects of Repeated-Thinning with Riparian Buffers on Headwater Stream Vertebrates and Habitats in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Deanna H. Olson

    2014-11-01

    Full Text Available We examined the effects of a second-thinning harvest with alternative riparian buffer management approaches on headwater stream habitats and associated vertebrates in western Oregon, USA. Our analyses showed that stream reaches were generally distinguished primarily by average width and depth, along with the percentage of the dry reach length, and secondarily, by the volume of down wood. In the first year post-harvest, we observed no effects of buffer treatment on stream habitat attributes after moderate levels of thinning. One of two “thin-through” riparian treatments showed stronger trends for enlarged stream channels, likely due to harvest disturbances. The effects of buffer treatments on salamanders varied among species and with habitat structure. Densities of Plethodon dunni and Rhyacotriton species increased post-harvest in the moderate-density thinning with no-entry buffers in wider streams with more pools and narrower streams with more down wood, respectively. However, Rhyacotriton densities decreased along streams with the narrowest buffer, 6 m, and P. dunni and Dicamptodon tenebrosus densities decreased in thin-through buffers. Our study supports the use of a 15-m or wider buffer to retain sensitive headwater stream amphibians.

  15. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  16. Restoration or Disturbance: Assessing the Impacts of a Salmon Habitat Restoration Project on Riparian Vegetation Composition

    OpenAIRE

    Azevedo, Andhra; Chin, Larissa; Dullemond, Kia; Morton, Lovena; Naghshinepour, Negar; Salihue, Hafsa

    2013-01-01

    Invasive plant species can threaten the biodiversity and resilience of riparian ecosystems. A vegetation assessment of the riparian zone beside the Stoney Creek Off-Channel Habitat Project compared with a non-restored site and a previously replanted site showed that the sites were significantly different in their vegetation composition. All three sites had several invasive species of concern playing dominant roles in the ecosystem with the most common two species being English ivy (Hedera hel...

  17. Long-term effects of riparian-plant diversity loss on a stream invertebrate shredder

    OpenAIRE

    Fernandes, Isabel Rodrigues; Duarte, Sofia; Pascoal, Cláudia; Cássio, Fernanda

    2012-01-01

    We used a pool of 3 common riparian-plant species in Portugal (alder, oak and eucalyptus) to examine the potential long-term impacts of riparian diversity loss on the feeding behaviour and body composition of a stream invertebrate shredder (Limnephilidae). Fine-mesh bags containing mixtures of the 3 leaf species were immersed in a mixed-forested stream to allow microbial colonization. After 2 weeks, colonized leaves were transferred to microcosms contain...

  18. Eutrophication alters the effects of riparian plant diversity on litter decomposition by macroinvertebrates

    OpenAIRE

    Fernandes, Eva Lima

    2011-01-01

    Dissertação de mestrado em Ecology In low-order forested streams, plant-litter decomposition is a key ecosystem process. Invertebrate shredders are responsible for the breakdown of plant litter and are very sensitive to stream water quality degradation. Increased eutrophication and loss or alteration of riparian vegetation can have negative effects on stream organisms and alter ecosystem processes. However, the interactive effects of riparian vegetation loss and increased nu...

  19. Early Response of Soil Properties and Function to Riparian Rainforest Restoration

    OpenAIRE

    Gageler, Rose; Bonner, Mark; Kirchhof, Gunnar; Amos, Mark; Robinson, Nicole; Schmidt, Susanne; Shoo, Luke P.

    2014-01-01

    Reforestation of riparian zones is increasingly practiced in many regions for purposes of biodiversity conservation, bank stabilisation, and improvement in water quality. This is in spite of the actual benefits of reforestation for recovering underlying soil properties and function remaining poorly understood. Here we compare remnant riparian rainforest, pasture and reforestation plantings aged 2–20 years in an Australian subtropical catchment on ferrosols to determine the extent to which ref...

  20. Riparian plant community responses to increased flooding: a meta-analysis.

    Science.gov (United States)

    Garssen, Annemarie G; Baattrup-Pedersen, Annette; Voesenek, Laurentius A C J; Verhoeven, Jos T A; Soons, Merel B

    2015-08-01

    A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta-analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta-analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both 'quiescence' and 'escape' proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient-rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain-fed lowland streams). Species richness usually increased at sites in desert and semi-arid climate regions (e.g. intermittent

  1. Water quality dynamics and hydrology in nitrate loaded riparian zones in Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Hefting, Mariet [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands)]. E-mail: m.m.hefting@bio.uu.nl; Beltman, Boudewijn [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands); Karssenberg, Derek [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands); Rebel, Karin [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands); Riessen, Mirjam van [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands); Spijker, Maarten [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands)

    2006-01-15

    Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO{sub 3} {sup -}-N m{sup -2} y{sup -1} and significantly lower in the grassland zone with 15 g NO{sub 3} {sup -}-N m{sup -2} y{sup -1}. Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed. - Riparian zones reduced nitrate from agricultural lands.

  2. Distribution pattern of rare plants along riparian zone in Shennongjia Area

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Due to the importance of riparian zone in maintaining and protecting regional biodiversity, increasingly more ecologists paid their attentions to riparian zone and had been aware of the important effects of riparian zone in basic study and practical management. In this study, 42 sampling belts (10 m×100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia Area were selected to investigate the riparian vegetation and rare plants. 14 species of rare plants were found distributing in riparian zone, accounting for 42.4% of the total rare plant species in Shennongjia Area. The main distribution range of the 14 rare plant species was the evergreen and deciduous mixed broadleaved forest at elevation of 1200-1800 m, where, species diversity of plant community was the maximum at the moderate elevation. The analysis of TWINSPAN divided the 14 rare species into 3 groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation species group. The analysis of DCA ordination showed similar results to that of TWINSPAN. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out that the important function of riparian zone on rare plant species protection.

  3. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1). PMID:18270743

  4. Past and Future Riparian Vegetation Change Along the Semiarid San Pedro River (Invited)

    Science.gov (United States)

    Stromberg, J. C.; Dixon, M.

    2010-12-01

    The past: Understanding causes of forest change is essential for formulating conservation plans. The San Pedro River is one of the few undammed perennial rivers in the semiarid American Southwest. Over 100 years ago, intense floods initiated channel incision and substantially altered hydrogeomorphic conditions. Pioneer trees began to establish in the widening post-entrenchment zone as the surfaces began to stabilize. Analysis of a time-series of aerial photographs indicated that wooded area in the post-entrenchment zone nearly tripled from 1955 to 2003, while bare ground decreased and the active channel narrowed. This forest expansion represents a long-term response to river entrenchment, with the particular temporal pattern influenced by recent flood cycles and biogeomorphic feedbacks. Populus-Salix established episodically during the infrequent years with high winter flood runoff, sequentially filling available recruitment space. Old cohorts now cover wide swaths of the floodplain. Pioneer tree regeneration is shifting toward a fringe replacement mode, typified by narrow bands of seedlings along the channel margin. An additional factor that has shaped the spatial pattern of post-entrenchment forest expansion is water withdrawal. Populus-Salix forest increase has been greatest within a conservation area, where stream flows are largely perennial. In drier, agricultural sectors, Populus-Salix have declined while the more deeply-rooted introduced Tamarix has increased. The study reveals that long-term fluctuations in pioneer forest area and age structure are features of dryland rivers, and shows how past events such as extreme floods can interact with recent environmental practices such as freshwater withdrawal to influence riparian forest composition and structure. The future: Climate change will influence the riparian vegetation by influencing stream flow patterns. Increasing aridity is predicted to cause declines in stream base flows and water tables in the

  5. [Spatial variation in riparian soil properties and its response to environmental factors in typical reach of the middle and lower reaches of the Yellow River].

    Science.gov (United States)

    Zhao, Qing-he; Liu, Qian; Ma, Li-jiao; Ding, Sheng-yan; Lu, Xun-ling; Tang, Qian; Xu, Shan-shan

    2015-12-01

    Soil and vegetation are the foundation of maintaining riparian ecosystem services, and their spatial distribution and variations can determine the effects of ecological functions. In the present study, selecting the typical reach of the middle and lower reaches of the Yellow River as the study area, the spatial distributions of riparian soil physicochemical properties and their response to environmental factors were analyzed by employing methods of field investigation, experimental analysis, and redundancy analysis (RDA). The results showed that soil particle was composed significantly of silt in the study area, with the increase of riparian buffer distance, soil bulk density increased initially and then decreased, whereas soil moisture showed the opposite pattern. Changes in total soil phosphorus (TP), available phosphorus (AP), total carbon (TC), total organic carbon (TOC), total nitrogen (TN); ammonium nitrogen (NH₄⁺-N) and nitrate nitrogen (NO₃⁻-N) contents under different riparian buffer distance showed no statistically significant differences. The spatial distribution of soil chemical properties was generally insignificantly different through changes between two vegetation types. Pearson correlation analysis showed that there was close relationship between soil physical and chemical properties, therein, TOC content in the study area was positively and significantly related to TN (P soil and then accelerate the degradation rate of organic matters in soils. In addition, the results of RDA indicated that TOC and NH₄⁺-N contents increased with increasing the height and coverage of the tree layer. Soil TP and NO₃⁻-N contents increased with increasing the plant diameter at breast height (DBH) of the tree layer and coverage of the herb layer. Meanwhile, with the increase of elevation gradient, the content of soil NH₄⁺-N presented an increasing trend, indicating that soil properties were significantly influenced by the effects of community

  6. Costs of Producing Biomass from Riparian Buffer Strips

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow, A.

    2000-09-01

    Nutrient runoff from poultry litter applied to agricultural fields in the Delmarva Peninsula contributes to high nutrient loadings in Chesapeake Bay. One potential means of ameliorating this problem is the use of riparian buffer strips. Riparian buffer strips intercept overland flows of water, sediments, nutrients, and pollutants; and ground water flows of nutrients and pollutants. Costs are estimated for three biomass systems grown on buffer strips: willow planted at a density of 15,300 trees/ha (6200 trees/acre); poplar planted at a density of 1345 trees/ha (545 trees/acre); and switchgrass. These costs are estimated for five different scenarios: (1) total economic costs, where everything is costed [cash costs, noncash costs (e.g., depreciation), land rent, labor]; (2) costs with Conservation Reserve Program (CRP) payments (which pays 50% of establishment costs and an annual land rent); (3) costs with enhanced CRP payments (which pays 95% of establishment costs and an annual payment of approximately 170% of land rent for trees and 150% of land rent for grasses); (4) costs when buffer strips are required, but harvest of biomass is not required [costs borne by biomass are for yield enhancing activities (e.g., fertilization), harvest, and transport]; and (5) costs when buffer strips are required. and harvest of biomass is required to remove nutrients (costs borne by biomass are for yield enhancing activities and transport). CRP regulations would have to change to allow harvest. Delivered costs of willow, poplar, and switchgrass [including transportation costs of $0.38/GJ ($0.40/million Btu) for switchgrass and $0.57/GJ ($0.60/million Btu) for willow and poplar] at 11.2 dry Mg/ha-year (5 dry tons/acre-year) for the five cost scenarios listed above are [$/GJ ($million BIN)]: (1) 3.30-5.45 (3.45-5.75); (2) 2.30-3.80 (2.45-4.00); (3) 1.70-2.45 (1.80-2.60); (4) l-85-3.80 (1.95-4.05); and (5) 0.80-1.50 (0.85-1.60). At yields of 15.7 to 17.9 GJ/ha-year (7 to 8 dry tons

  7. Integration of LiDAR and QuickBird imagery for mapping riparian zones in Australian tropical savannas.

    OpenAIRE

    Arroyo Méndez, Lara Ainoa; Johansen, Kasper; Armston, John; Phinn, Stuart; Pascual Castaño, Isabel Cristina

    2008-01-01

    Riparian zones are exposed to increasing pressures because of disturbance from agricultural and urban expansion and overgrazing. Accurate and cost-effective mapping of riparian environments is important for managing their functions associated with water quality, biodiversity, and wildlife habitats. The objective of this research was to integrate Light Detection and Ranging (LiDAR) and high spatial resolution QuickBird-2 imagery to estimate riparian zone attributes. A digital terrain model (DT...

  8. Herbivore-induced "deshrubification" alters the biogeochemistry of subarctic riparian ecosystems

    Science.gov (United States)

    Smis, Adriaan; Ravolainen, Virve; Bråthen, Kari Anne; Ims, Rolf; Meire, Patrick; Struyf, Eric

    2013-04-01

    In the European subarctic, river valleys and other moist zones are dominated by tall shrub tundra, dominated by willows. Although climate warming is generally hypothesized to result in an expansion of this shrub zone, intensive reindeer husbandry in Finnmark (Northern Fennoscandia) during the last three decades seems to have resulted in a "deshrubification": riparian tall willow dominated shrub zones evolved to open meadows, dominated by grasses. These changes in land cover may have major biogeochemical consequences for both the terrestrial and aquatic environment. We investigated the relation between this "deshrubification" and the biogeochemical cycling of silicon (Si), nitrogen (N) and phosphorous (P), essential nutrients for aquatic primary production. This study was conducted along a climatic gradient from the moist and warm southwest towards the drier and colder northeast of Finnmark. Along the contrast of Finnmarks typical reindeer husbandry system, with intensively grazed summer pastures and extensively grazed spring/autumn pastures, we quantified the difference in vegetation composition and the associated differences in terrestrial pools of Si, N, P and soil organic carbon. Intensive reindeer grazing consistently excludes the presence of willow shrubs in the studied riparian zone and the transition from willow dominated tall shrub tundra towards open meadows dominated by grasses is associated with a clear silicification of the vegetation: all dominating grasses in the open meadow-state show 10 to 30 times higher Si concentrations compared to the dominating willow and forb species of the tall shrub vegetation, but also original tall shrub species show increased Si-concentrations under the intensive grazing regime. Silicon is a known defence component against herbivory, especially in grasses. Opposite, a transition to more N- and P-poor species occurs under intensive reindeer grazing: the continuum between tall willow dominated shrubs and open meadows is

  9. Suspended sediment control and water quality conservation through riparian vegetation:

    Science.gov (United States)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    Soil erosion and Suspended Sediment River are strongly related in the Apennines catchments which are generally characterised by a clayey lithology and impermeable soils and extensive and severe erosion and slope stability problems. In fact the suspended sediment yield represents one of the most reliable tools to assess real basin soil loss (Pavanelli and Pagliarani, 2002; Pavanelli and Rigotti, 2007) from the surface rain erosive features in a mountain watershed, as rills and interrills erosion, gullies, bad-lands (calanchi basins). Suspended sediment yield is known to imply several detrimental consequences: soil losses from agricultural land, worsening of the quality of the water, clogging of water supply filters and reservoir siltation. In addition, suspended sediment yield is also one of the main vector for pollutants and nutrients: various studies have already proved how nitrogen content has been constantly rising in aquifers and surface waters [Böhlke and Denver, 1995]. Finer particles and their aggregates have been proved to be the preferential vehicle for particulate nitrogen [Droppo et al., 1997; Ongley et al., 1992]. In one research [Pavanelli and al. 2006] four Apennines torrents (Gaiana, Sillaro, Savena and Lavino) with mountain basins ranging from 8.7 to 139 Km2 were monitored via automatic sampling devices, the samples of water collected were analysed to characterise suspended solids in terms of their grain size distribution and total nitrogen with respect to the source of eroded area in the catchment. Preliminary results [Pavanelli and al. 2007] seem to show the existence of a direct relationship between nitrogen concentration and finer particle concentration (position within the catchment and the availability of suspended particles. The results seem to indicate hillsides as main sources of suspended sediment to the torrents monitored. The problem of controlling the river suspended sediment concentration can be tackled by increasing the riparian

  10. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade

    2010-04-01

    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  11. Floral ecology and insect visitation in riparian Tamarix sp. (saltcedar)

    Science.gov (United States)

    Andersen, D.C.; Nelson, S.M.

    2013-01-01

    Climate change projections for semiarid and arid North America include reductions in stream discharge that could adversely affect riparian plant species dependent on stream-derived ground water. In order to better understand this potential impact, we used a space-for-time substitution to test the hypotheses that increasing depth-to-groundwater (DGW) is inversely related to Tamarix sp. (saltcedar) flower abundance (F) and nectar production per flower (N). We also assessed whether DGW affected the richness or abundance of insects visiting flowers. We examined Tamarix floral attributes and insect visitation patterns during 2010 and 2011 at three locations along a deep DWG gradient (3.2–4.1 m) on a floodplain terrace adjacent to Las Vegas Wash, an effluent-dominated Mojave Desert stream. Flower abundance and insect visitation patterns differed between years, but no effect from DGW on either F or N was detected. An eruption of a novel non-native herbivore, the splendid tamarisk weevil (Coniatus splendidulus), likely reduced flower production in 2011.

  12. Riparian vegetation of the Snake River in Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.C. [Pacific Northwest Lab., Richland, WA (United States); Mettler, L. [US Army Corps of Engineers (United States)

    1994-06-01

    In January 1992, the US Army Corps of Engineers selected reservoir drawdown and lowered pool elevation as the preferred alternative in the Columbia River Salmon Flow Measured Options Analysis/Environmental Impact Statement (EIS). During March 1992, reservoirs upstream from Lower Granite and Little Goose Dams on the Snake River were drawn down below the minimum operating pool (MOP), which is 5 vertical feet below ordinary high water level (0@) level. The reservoir upstream from Lower Granite Dam was drawn down to approximately 37 ft below 0 while that upstream of Little Goose Dam was drawn down to approximately 15 ft (4.5 m) below MOP. Following the drawdown (March 1--31, 1992), the reservoirs of all four dams in the Snake River of Washington State (Lower Granite, Little Goose, Lower Monumental, Ice Harbor) were maintained at MOP (April 1--July 31,1992). This allowed a defined portion of shoreline to be exposed for an extended period. The objectives of the study were to monitor impacts to the associated upland, riparian/wetland, and aquatic vegetation and newly exposed shorelines of four reservoirs of the Snake River during the flow measures study; and monitor the newly exposed shorelines for invasion of pioneering species during the entire period of the wildlife monitoring study.

  13. Investigation of Nitrogen Pathways in Typical Entropic-Modified Riparian Zones of the Arges River Catchment’s Area, Romania

    International Nuclear Information System (INIS)

    Surface and groundwater pollution by nutrients from agriculture is a major environmental problem in Romania. Agricultural intensification with excess use of fertilizer and pesticide, more than crop need contributed to such pollution. This pollution problem can continue into the future even if improved practices are implemented. Therefore it is necessary to find viable solutions that can be applied at large spatial scale and with relatively low costs. Use of natural areas located along the rivers and other surface waters as a buffer in retention and removal of excess nutrients used in agricultural areas, is a solution which can be widely applied with extremely low cost. The scope of paper is to estimate the different types of riparian zones in nutrient acquisition and storage using carbon and nitrogen isotopes; with a role in reducing pollution of surface water, ground water and increase agricultural production. The study was carried out in a small catchment (45 km2) located in the Romanian Plain, in southern Romania, in an area with high potential for nutrient pollution from agricultural. Within this riparian zone five vegetation zones (agriculture (A), pasture (P), querceta forest (F1), mixed forest (F2), and wetland (W) were selected for nutrient and biomass accessions. The average annual rainfall for the catchment is 570 mm with a potential, evaporation of 717 mm. The soils of the catchment belong to two classes such as clayed and land bill. Agriculture is practiced in the majority of the land (73%) with rest occupied by forests, wetlands, other surface waters and urban development. Within agriculture wheat is the predominant crop (86%) with sunflower and maize occupy the rest. vegetation present in riparian zones of the rivers is the most important structure for nutrient uptake and to reduce nutrients into water resource. The results showed that the largest quantities of biomass are produce by mixed forest following by querceta forest, a significant

  14. Sediment dynamics in restored riparian forest with different widths and agricultural surroundings

    Science.gov (United States)

    Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel

    2016-04-01

    The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an

  15. Downstream Effects of Diversion Dams on Riparian Vegetation Communities in the Routt National Forest, Colorado

    Science.gov (United States)

    Caskey, S. T.; Wohl, E. E.; Dwire, K. A.; Merritt, D. M.; Schnackenberg, L.

    2012-12-01

    The relationship between riparian vegetation and changes in fluvial processes as a response to flow diversion is not well understood. Water extraction affects the hydrologic flow regime (i.e., magnitude, duration, and frequency of flows) reducing peak and base-flows, which could negatively impact riparian vegetation. Vegetation communities are temporally and spatially variable and are strongly interrelated with alluvial landforms and hydrograph variability. This research compares riparian community characteristics on diverted and undiverted pool-riffle channels and low gradient valleys to examine changes associated with flow diversion in the Routt National Forest (RNF). The RNF is the only under-appropriated area in Colorado, making future water extraction proposals likely. Many small extraction canals siphon water from small, headwater streams in the RNF, but the site-specific or cumulative effects of these diversions on riverine ecosystems have not been investigated. Systematic investigation is necessary, however, to determine whether existing flow diversions have influenced riparian communities and, if so, which communities are most sensitive to diversions. A total of 36 sites were sampled with five channel cross sections established per site, extending into the riparian zone at distance of two times the active channel width, and vegetation was sampled using the line-point intercept method. Preliminary results suggest a shift in vegetation communities from typical riparian species composition to more upland vegetation. The relative sensitivity of these responses are different depending on valley type; low- gradient, unconfined areas are less tolerant of diversion than steeper, confined reaches. Additionally, when stratified by plant assemblage, Salix abundance is significantly reduced downstream of diversion. The results of this study contribute to the collective understanding of mountain headwater riparian vegetation community response to changes in flow

  16. Fire and grazing influences on rates of riparian woody plant expansion along grassland streams.

    Directory of Open Access Journals (Sweden)

    Allison M Veach

    Full Text Available Grasslands are threatened globally due to the expansion of woody plants. The few remaining headwater streams within tallgrass prairies are becoming more like typical forested streams due to rapid conversion of riparian zones from grassy to wooded. Forestation can alter stream hydrology and biogeochemistry. We estimated the rate of riparian woody plant expansion within a 30 m buffer zone surrounding the stream bed across whole watersheds at Konza Prairie Biological Station over 25 years from aerial photographs. Watersheds varied with respect to experimentally-controlled fire and bison grazing. Fire frequency, presence or absence of grazing bison, and the historical presence of woody vegetation prior to the study time period (a proxy for proximity of propagule sources were used as independent variables to predict the rate of riparian woody plant expansion between 1985 and 2010. Water yield was estimated across these years for a subset of watersheds. Riparian woody encroachment rates increased as burning became less frequent than every two years. However, a higher fire frequency (1-2 years did not reverse riparian woody encroachment regardless of whether woody vegetation was present or not before burning regimes were initiated. Although riparian woody vegetation cover increased over time, annual total precipitation and average annual temperature were variable. So, water yield over 4 watersheds under differing burn frequencies was quite variable and with no statistically significant detected temporal trends. Overall, burning regimes with a frequency of every 1-2 years will slow the conversion of tallgrass prairie stream ecosystems to forested ones, yet over long time periods, riparian woody plant encroachment may not be prevented by fire alone, regardless of fire frequency.

  17. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  18. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    Science.gov (United States)

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  19. An Investigation Into the Ecohydrology of Riparian Wetlands Along the Gila River, NM, USA

    Science.gov (United States)

    Samson, J.; Stone, M. C.

    2013-12-01

    The dynamism of the Gila River, in southwestern New Mexico, USA, has resulted in the creation of a topographically diverse floodplain that supports an array of riparian wetlands. The purpose of this study is to investigate the ecohydrologic and ecohydraulic processes of two of these wetlands, in order to predict their potential response to anthropogenic or natural changes in hydrology. One represents a natural wetland and the other a wetland that exists only as a result of an anthropogenic modification to the river system. A network of 30 wells and 2 weather stations were installed in early 2013 to provide a high resolution of data on surface water and ground water hydrologic conditions. Phreatic surface contour maps were produced to aid in the visualization of sub-surface gradients. Based on these results, an electrical resistivity investigation was conducted to identify paleoflow channels as well as depth to bedrock and other potential areas of interest. These data formed the development of three dimensional ModFlow models that were used to investigate potential future stream flow scenarios on wetland hydrology. The model outputs are being used in tandem with the results of quarterly ecological surveys on vegetation, algae, benthic, and bird communities, to make predictions of potential changes in community structure and function.

  20. 河岸带生态学研究进展与展望%Research progress and prospects on riparian zone ecology

    Institute of Scientific and Technical Information of China (English)

    韩路; 王海珍; 于军

    2013-01-01

      河岸带是河流—陆地生态系统之间进行物质、能量、信息交换的重要生态过渡区,具有独特的生态系统结构和服务功能,近年来成为国内外生态学和环境科学的研究热点之一。在阐述河岸带结构与功能基础上,分析了河岸带的影响因素与其退化机制,退化河岸带的生态恢复理论、基本原则、生态重建技术和发展方向。认为影响河岸带结构与功能的主要因素可归纳为水文与地貌过程、植被与人为干扰4个方面;识别影响河岸带生态系统的生物和物理作用过程及其退化成因是关键,指出了生态恢复应遵循的原则与宜采用的生态重建技术。在此基础上,提出河岸带生态恢复应在景观或流域尺度上借助“3S”技术和多学科协作从微观、中观和宏观不同层次开展研究,甄别生态退化的主导因素,采用植被重建与水文调控技术尽可能恢复与重建原有自然景观。从系统生态学与景观生态学的角度,提出河岸带生态学未来研究方向。建议今后应加强对河岸带生态系统结构、生态过程与功能及生态重建技术的研究成果进行系统整合,建立能够预测河岸带结构与功能动态的数量模型和评价体系,为实现河岸带重建与高效管理提供科学指导。%Riparian zone is an important ecotone exchanging substance, energy and information between river and land ecosystems and have unique ecosystem structure and ecological service function. It is a research hotspot of ecology and environmental science around the world in recent years. Much attention has been paid to the resulted environmental effects, but how to restore a healthy riparian ecosystem is still lacking scientific methodology. In this paper, the structure and function of riparian zone, affecting factors and degradation mechanisms, and related restoration principles of degraded riparian ecosystem, and reconstruction

  1. Riparian Vegetation Influence on Stream Channel Dimensions: Key Driving Mechanisms and Their Timescales

    Science.gov (United States)

    McBride, M.; Hession, W.; Rizzo, D. M.; Thompson, D. M.

    2006-05-01

    Combined results from field-based investigations and flume experiments demonstrated key mechanisms driving channel widening following the reforestation of riparian zones in small streams. Riparian reforestation is a common occurrence either due to restoration efforts, intended to improve water quality, temperature regimes, and in-stream physical habitat or due to passive reforestation that is common when agricultural land uses decline. Previous studies have documented the influence of riparian vegetation on channel size, but driving mechanisms and the timescales at which they operate have not been evaluated. Field-based investigations were conducted in the Sleepers River basin in northeastern Vermont to revisit streams that were previously surveyed in the 1960s. We measured channel dimensions, large woody debris (LWD), and steam velocities in reaches with non-forested and forested riparian vegetation, in reaches currently in transition between vegetation types, and reaches with no change in riparian vegetation over the last 40 years. Flume experiments were performed with a 1:5 scale, fixed-bed model of a tributary to Sleepers River. Two types of riparian vegetation scenarios were simulated: 1) forested, with rigid, wooden dowels; and 2) non-forested, with synthetic grass carpeting. Three-dimensional velocities were measured during flume runs to determine turbulent kinetic energy (TKE) during overbank flows. Results showed that stream reaches with recently reforested vegetation have widened since the mid 1960s, but are not as wide as reaches with older riparian forests. LWD was more abundant in reaches with older riparian forests than in reaches with younger forests; however, scour around LWD did not appear to be a significant driving mechanism for channel widening. Velocity and TKE measurements from the prototype stream and the flume model indicate that TKE was significantly elevated in reforested reaches. Given that bed and bank erosion can be amplified in flows

  2. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  3. Nutrient vectors and riparian nutrient processing in African semiarid savanna ecosystems

    Science.gov (United States)

    Jacobs, Shayne M.; Bechtold, J.S.; Biggs, Harry C.; Grimm, N. B.; McClain, M.E.; Naiman, R.J.; Perakis, Steven S.; Pinay, G.; Scholes, M.C.

    2007-01-01

    This review article describes vectors for nitrogen and phosphorus delivery to riparian zones in semiarid African savannas, the processing of nutrients in the riparian zone and the effect of disturbance on these processes. Semiarid savannas exhibit sharp seasonality, complex hillslope hydrology and high spatial heterogeneity, all of which ultimately impact nutrient fluxes between riparian, upland and aquatic environments. Our review shows that strong environmental drivers such as fire and herbivory enhance nitrogen, phosphorus and sediment transport to lower slope positions by shaping vegetative patterns. These vectors differ significantly from other arid and semiarid ecosystems, and from mesic ecosystems where the impact of fire and herbivory are less pronounced and less predictable. Also unique is the presence of sodic soils in certain hillslopes, which substantially alters hydrological flowpaths and may act as a trap where nitrogen is immobilized while sediment and phosphorus transport is enhanced. Nutrients and sediments are also deposited in the riparian zone during seasonal, intermittent floods while, during the dry season, subsurface movement of water from the stream into riparian soils and vegetation further enrich riparian zones with nutrients. As is found in mesic ecosystems, nutrients are immobilized in semiarid riparian corridors through microbial and plant uptake, whereas dissimilatory processes such as denitrification may be important where labile nitrogen and carbon are in adequate supply and physical conditions are suitablea??such as in seeps, wallows created by animals, ephemeral wetlands and stream edges. Interaction between temporal hydrologic connectivity and spatial heterogeneity are disrupted by disturbances such as large floods and extended droughts, which may convert certain riparian patches from sinks to sources for nitrogen and phosphorus. In the face of increasing anthropogenic pressure, the scientific challenges are to provide a basic

  4. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    Science.gov (United States)

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. PMID:21385181

  5. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  6. Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico

    Directory of Open Access Journals (Sweden)

    Romeo Mendez-Estrella

    2016-08-01

    Full Text Available Riparian Zones are considered biodiversity and ecosystem services hotspots. In arid environments, these ecosystems represent key habitats, since water availability makes them unique in terms of fauna, flora and ecological processes. Simple yet powerful remote sensing techniques were used to assess how spatial and temporal land cover dynamics, and water depth reflect distribution of key land cover types in riparian areas. Our study area includes the San Miguel and Zanjon rivers in Northwest Mexico. We used a supervised classification and regression tree (CART algorithm to produce thematic classifications (with accuracies higher than 78% for 1993, 2002 and 2011 using Landsat TM scenes. Our results suggest a decline in agriculture (32.5% area decrease and cultivated grasslands (21.1% area decrease from 1993 to 2011 in the study area. We found constant fluctuation between adjacent land cover classes and riparian habitat. We also found that water depth restricts Riparian Vegetation distribution but not agricultural lands or induced grasslands. Using remote sensing combined with spatial analysis, we were able to reach a better understanding of how riparian habitats are being modified in arid environments and how they have changed through time.

  7. The use of phytometers for evaluating restoration effects on riparian soil fertility.

    Science.gov (United States)

    Dietrich, Anna L; Lind, Lovisa; Nilsson, Christer; Jansson, Roland

    2014-11-01

    The ecological restoration of streams in Sweden has become increasingly important to counteract effects of past timber floating. In this study, we focused on the effect on riparian soil properties after returning coarse sediment (cobbles and boulders) to the channel and reconnecting riparian with in-stream habitats. Restoration increases habitat availability for riparian plants, but its effects on soil quality are unknown. We also analyzed whether the restoration effect differs with variation in climate and stream size. We used standardized plant species to measure the performance of a grass ( L.) and a forb ( L.) in soils sampled in the riparian zones of channelized and restored streams and rivers. Furthermore, we analyzed the mass fractions of carbon (C) and nitrogen (N) along with the proportions of the stable isotopes C and N in the soil, as well as its grain size composition. We found a positive effect of restoration on biomass of phytometers grown in riparian soils from small streams, indicating that restoration enhanced the soil properties favoring plant performance. We suggest that changed flooding with more frequent but less severe floods and slower flows, enhancing retention, could explain the observed patterns. This positive effect suggests that it may be advantageous to initiate restoration efforts in small streams, which make up the highest proportion of the stream network in a catchment. Restoration responses in headwater streams may then be transmitted downstream to facilitate recovery of restored larger rivers. If the larger rivers were restored first, a slower reaction would be expected. PMID:25602208

  8. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models

    Science.gov (United States)

    Ajami, Hoori; Meixner, Thomas; Maddock, Thomas; Hogan, James F.; Guertin, D. Phillip

    2011-09-01

    Riparian groundwater evapotranspiration (ETg) constitutes a major component of the water balance especially in many arid and semi-arid environments. Although spatial and temporal variability of riparian ETg are controlled by climate, vegetation and subsurface characteristics, depth to water table (DTWT) is often considered the major controlling factor. Relationships between ETg rates and DTWT, referred to as ETg curves, are implemented in MODFLOW ETg packages (EVT, ETS1 and RIP-ET) with different functional forms. Here, the sensitivity of the groundwater budget in MODFLOW groundwater models to ETg parameters (including ETg curves, land-surface elevation and ETg seasonality) are investigated. A MODFLOW model of the hypothetical Dry Alkaline Valley in the Southwestern USA is used to show how spatial representation of riparian vegetation and digital elevation model (DEM) processing methods impact the water budget when RIPGIS-NET (a GIS-based ETg program) is used with MODFLOW's RIP-ET package, and results are compared with the EVT and ETS1 packages. Results show considerable impact on ETg and other groundwater budget components caused by spatial representation of riparian vegetation, vegetation type, fractional coverage areas and land-surface elevation. RIPGIS-NET enhances ETg estimation in MODFLOW by incorporating vegetation and land-surface parameters, providing a tool for ecohydrology studies, riparian ecosystem management and stream restoration.

  9. Remote sensing approach to map riparian vegetation of the Colorado River Ecosystem, Grand Canyon area, Arizona

    Science.gov (United States)

    Nguyen, U.; Glenn, E.; Nagler, P. L.; Sankey, J. B.

    2015-12-01

    Riparian zones in the southwestern U.S. are usually a mosaic of vegetation types at varying states of succession in response to past floods or droughts. Human impacts also affect riparian vegetation patterns. Human- induced changes include introduction of exotic species, diversion of water for human use, channelization of the river to protect property, and other land use changes that can lead to deterioration of the riparian ecosystem. This study explored the use of remote sensing to map an iconic stretch of the Colorado River in the Grand Canyon National Park, Arizona. The pre-dam riparian zone in the Grand Canyon was affected by annual floods from spring run-off from the watersheds of Green River, the Colorado River and the San Juan River. A pixel-based vegetation map of the riparian zone in the Grand Canyon, Arizona, was produced from high-resolution aerial imagery. The map was calibrated and validated with ground survey data. A seven-step image processing and classification procedure was developed based on a suite of vegetation indices and classification subroutines available in ENVI Image Processing and Analysis software. The result was a quantitative species level vegetation map that could be more accurate than the qualitative, polygon-based maps presently used on the Lower Colorado River. The dominant woody species in the Grand Canyon are now saltcedar, arrowweed and mesquite, reflecting stress-tolerant forms adapted to alternated flow regimes associated with the river regulation.

  10. Risk assessment of riparian plant invasions into protected areas.

    Science.gov (United States)

    Foxcroft, Llewellyn C; Rouget, Mathieu; Richardson, David M

    2007-04-01

    Protected areas are becoming increasingly isolated. River corridors represent crucial links to the surrounding landscape but are also major conduits for invasion of alien species. We developed a framework to assess the risk that alien plants in watersheds adjacent to a protected area will invade the protected area along rivers. The framework combines species- and landscape-level approaches and has five key components: (1) definition of the geographical area of interest, (2) delineation of the domain into ecologically meaningful zones, (3) identification of the appropriate landscape units, (4) categorization of alien species and mapping of their distribution and abundance, and (5) definition of management options. The framework guides the determination of species distribution and abundance through successive, easily followed steps, providing the means for the assessment of areas of concern. We applied the framework to Kruger National Park (KNP) in South Africa. We recorded 231 invasive alien plant species (of which 79 were major invaders) in the domain. The KNP is facing increasing pressure from alien species in the upper regions of the drainage areas of neighboring watersheds. On the basis of the climatic modeling, we showed that most major riparian invaders have the ability to spread across the KNP should they be transported down the rivers. With this information, KNP managers can identify areas for proactive intervention, monitoring, and resource allocation. Even for a very large protected area such as the KNP, sustainable management of biodiversity will depend heavily on the response of land managers upstream managing alien plants. We suggest that this framework is applicable to plants and other passively dispersed species that invade protected areas situated at the end of a drainage basin.

  11. Denitrification and a nitrogen budget of created riparian wetlands.

    Science.gov (United States)

    Batson, Jacqulyn A; Mander, Ulo; Mitsch, William J

    2012-01-01

    Riparian wetland creation and restoration have been proposed to mediate nitrate-nitrogen (NO-N) pollution from nonpoint agricultural runoff. Denitrification by anaerobic microbial communities in wetland soils is believed to be one of the main sinks for NO-N as it flows through wetlands. Denitrification rates were quantified using an in situ acetylene inhibition technique at 12 locations in three wetland/riverine sites at the Olentangy River Wetland Research Park, Columbus, Ohio for 1 yr. Sites included two created flow-through experimental wetlands and one bottomland forest/river-edge site. Points were spatially distributed at inflows, center, and outflows of the two wetlands to include permanently flooded open water, intermittently flooded transitions, and upland. Annual denitrification rates (median [mean]) were significantly higher ( wetlands (266 [415] μg NO-N m h) than in shallower transition zones (58 [37.5] μg NO-N m h). Median wetland transition zone denitrification rates did not differ significantly ( ≥ 0.05) from riverside or upland sites. Denitrification rates peaked in spring; for the months of April through June, median denitrification rates ranged from 240 to 1010 μg NO-N m h in the permanently flooded zones. A N mass balance analysis showed that surface water flux of N was reduced by 57% as water flowed through the wetland, but only about 3.5% of the N inflow was permanently removed through denitrification. Most N was probably lost through groundwater seepage. Comparison with denitrification rates measured previously in these wetlands suggests that these rates have remained steady over the past 4 to 5 yr.

  12. Dynamic processes and ecological restoration of hyporheic layer in riparian zone%河岸带潜流层动态过程与生态修复

    Institute of Scientific and Technical Information of China (English)

    夏继红; 陈永明; 王为木; 韩玉玲; 刘海洋; 胡玲

    2013-01-01

    河岸带潜流层是河岸带内地表水与地下水相互作用的生态交错带,在水文地理学、生态学、环境学上含义不尽相同.河岸带潜流层具有复杂的垂向、横向、纵向结构特征,其边缘效应显著,表现为泥沙、水流、生物、环境化学因子之间的复杂动态过程,主要包括水动力动态过程、生态学过程、溶质循环与化学过程等.水动力动态过程是驱动条件,氧气浓度是生态过程、溶质循环和化学过程的决定性因素.在各动态过程的驱动下,河岸带潜流层具有调蓄洪水、削减污染、净化缓冲环境和提供适宜栖息地等功能.针对河岸带潜流层功能退化的问题,需开展健康诊断,明确致病机理,实施适宜的生态修复.未来中国在开展河岸带潜流层研究时,应根据中国河岸带特点,采用示踪试验、数值模拟等方法,集成GIS等现代技术手段,研究多尺度下,水文条件、地形变化、土壤渗透系数、河岸带建设方式、植被分布等对河岸带潜流层水文、热传导、生化、生态等的影响机制,准确界定河岸带潜流层区域范围,制定适宜的生态修复策略.%Hyporheic layer of riparian zone is an active transition zone and ecotone between river and groundwater in riparian zone,which can be denoted respectively from hydrogeography,ecology and environment.Due to its unique structure properties in vertical,lateral and longitudinal directions,hyporheic layer of riparian zone was characterized to have some edge-effects and dynamic processes,including flow dynamics,ecological and chemical processes,which were driven by interactions among sediments,flow,communities,organic matters,solutes and environmental factors.As the three dynamic processes have affected each other and ecological and chemical processes have depended on flow dynamics driving and oxygen concentration,it has resulted that hyporheic layer in riparian zone could have stored floods and supplied

  13. Contribution of Wetland Resources to Household Incomes of Riparian Communities of Katonga Wetland in Mpigi District, Uganda

    Directory of Open Access Journals (Sweden)

    E. Kateyo

    2014-05-01

    Full Text Available Katonga wetland which lies to the western part of Lake Victoria covers an area of 237.4 km2. Although the wetland is known to contain flora and fauna that support livelihoods, there has been lack of information on the economic value of these resources and their contribution to livelihoods particularly of the rural riparian communities. The objective of the study was to generate information on the vital wetland resources, the economic value and contribution of these resources to riparian community livelihoods. The study was carried out in Nkozi and Kituntu sub-counties in Mpigi District-Uganda; it covered six parishes through which the wetland runs and involved 120 respondents. The study established that resources in the wetland are collected for subsistence and direct commercial extraction. The most important resource derived from the wetland for subsistence use was water for rural domestic use with each household using an average of 188l per day (23l per person and was estimated at an annual economic value of Uganda shillings (Ushs 490,191 (U$ 233.4 per person per year. Fisheries were the most important commercial activities undertaken in these parts of the wetland involving 36% of respondents collecting an average of 119kg per week with an estimated annual value of Ushs. 3,991,367 (U$ 1,900.6 per person. These activities particularly collection of water and fuel wood are undertaken throughout the year, while harvesting of craft materials is mainly done during the dry season (January-March and June-August. Fishing is done mainly in the wet season (March-May and September-November. he wetland is a source of income for at least 74% of the respondents. The majority of respondents, 57.5%, were among low income groups earning up to Ushs 600,000 per respondent annually. Fishing provides the highest gross incomes per respondent Ushs 200,000 per month hence the high value of the wetland to its riparian communities. It was noted that 30% of respondents

  14. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  15. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    International Nuclear Information System (INIS)

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  16. Management of riparian habitat for mammals, birds, reptiles, and amphibians. Appendix C

    Science.gov (United States)

    Knutson, M.G.; Ribic, C.

    1999-01-01

    Melinda Knutson (USGS Upper Midwest Environmental Sciences Center) and Christine Ribic (USGS Wisconsin Cooperative Wildlife Research Unit) contributed to a recent report published by the USDA Natural Resources Conservation Service. The report summarizes a workshop held 8 December 1999 in Chicago, IL. Highlights of the report include resources and land management recommendations for riparian zones in the Midwest. The full report will soon be available at the USDA NRCS Wildlife Habitat Management Institute website: http://www.ms.nrcs.usda.gov/whmi/habitat.htm Knutson, M., and C. Ribic. 2000. Management of riparian habitat for mammals, birds, reptiles, and amphibians. Pages 22-24, Appendix C in W. Hohman, ed. NRCS Management and Restoration of Midwestern Riparian Systems Workshop Report. USDA Natural Resources Conservation Service, Chicago, IL.

  17. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  18. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  19. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p2=0.80, d.f.=34, p Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate

  20. Floristic composition of the riparian forest in the lower Gramame river, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Hermes de Oliveira Machado Filho

    2015-09-01

    Full Text Available Riparian forest has a key ecological and economic significance to productive chains associated with it. This study aimed to conduct a floristic survey of riparian forest stretches in the Gramame river, state of Paraíba, Brazilian Northeast region, and analyze the floristic similarity with Brazilian riparian vegetation fragments. We found 136 species belonging to 106 genera and 43 families. The most representative families were: Fabaceae (19 spp., Cyperaceae (16 spp., and Rubiaceae (11 spp.. The predominant habit was herbaceous and the best represented biological spectrum was camephyte. Regarding the geographic distribution, there was a predominance of widely distributed species associated with the Neotropical province. The distribution patterns have shown a low similarity between areas, and largely distributed species stand out. Similarity analysis pointed out that the area was floristically related to other two coastal areas in the Brazilian Northeast and Southeast regions. Only species typically related to estuarine environments might explain the floristic connections detected.

  1. Riparian zone processes and soil water total organic carbon (TOC: implications for spatial variability, upscaling and carbon exports

    Directory of Open Access Journals (Sweden)

    T. Grabs

    2012-03-01

    Full Text Available Groundwater flowing from hillslopes through riparian (near stream soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC concentrations profiles and groundwater levels measured in the riparian zone (RZ of a 67 km2 catchment in Sweden. TOC exported from 13 riparian soil profiles was then estimated based on the riparian flow-concentration integration model (RIM. Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI. Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. Exports were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. From more mineral riparian gley soils, on the other hand, only small amounts with relatively time-invariant concentrations were exported. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that controls much of the spatial variability of stream water TOC. We developed an empirical regression-model based on the TWI to move beyond the plot scale to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.

  2. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: a scenario analysis

    Science.gov (United States)

    Groundwater is a key driver of riparian condition on dryland rivers but is in high demand for municipal, industrial, and agricultural uses. Approaches are needed to guide decisions that balance human water needs while conserving riparian ecosystems. We developed a space-for-time substitution model ...

  3. 76 FR 20368 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2011-04-12

    ... Fish and Wildlife Service Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/ Fish Screen...) for the proposed Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility...) pumping plant and fish screen facility. This notice advises the public that we intend to...

  4. Effects of climate-induced increases in summer drought on riparian plant species : a meta-analysis

    NARCIS (Netherlands)

    Garssen, Annemarie G.; Verhoeven, Jos T. A.; Soons, Merel B.

    2014-01-01

    Frequency and duration of summer droughts are predicted to increase in the near future in many parts of the world, with considerable anticipated effects on riparian plant community composition and species richness. Riparian plant communities along lowland streams are characterised by high species ri

  5. Holding onto the Green Zone: A Youth Program for the Study and Stewardship of Community Riparian Areas. Leader Guide

    Science.gov (United States)

    Reilly, Kate; Wooster, Betsy

    2008-01-01

    Riparian ecosystems are an exciting and dynamic subject for study. These areas are valuable lands and important wildlife habitats, and they contribute greatly to the environmental health of an area. Definitions for the term "riparian" vary, but in this curriculum, the land called the "Green Zone" lies between flowing water and upland ecosystems.…

  6. Estrutura e síndromes de dispersão de espécies arbóreas em um trecho de mata ciliar, Sirinhaém, Pernambuco, Brasil Structure and dispersal syndromes of tree species in a stretch of riparian vegetation, Sirinhaém, Pernambuco State, Brazil

    Directory of Open Access Journals (Sweden)

    Roseane Karla Soares da Silva

    2012-03-01

    Full Text Available

    Este trabalho teve por objetivo conhecer a fitossociologia do componente arboreo em uma mata ciliar de um corrego que desagua no Rio Sirinhaem, localizado no Engenho Buranhem, Sirinhaem, PE e identificar as sindromes de dispersao das especies. O corrego esta situado em um fragmento de Floresta Ombrofila Densa de Terras Baixas, com 272 ha. Utilizou-se como area amostral um hectare (40 unidades amostrais, 10 m x 25 m onde foram registrados 1.307 individuos arboreos com circunferencia a altura do peito (CAP ≥ 15 cm. Foram identificadas 118 especies, pertencentes a 40 familias botanicas. Protium heptaphyllum e Pouteria sp.1 foram as especies mais abundantes. Em termos de valor de importancia (VI, as especies Protium heptaphyllum, Pouteria sp.1 e Virola gardneri estao entre as mais importantes ecologicamente. As sindromes de dispersao predominantes foram: zoocoria (72,8%, autocoria (13,6% e anemocoria (4,8%. Nao foi possivel determinar a sindrome de dispersao de 8,8% das especies estudadas.

     

    doi: 10.4336/2012.pfb.32.69.01

    This study aimed to know the phytosociology of the tree component of riparian vegetation in a stream that flows into the Sirinhaem River in Engenho Buranhem, Sirinhaem, Pernambuco State, and identify the species dispersal syndromes. The stream is located in a fragment of dense rain forest of the lowlands, with 272 ha. It was sempled used one hectare (40 sampling units of 10 m x 25 m each. It was registered 1,307 trees with circumference at breast height (CAP . 15 cm. We identified 118 species belonging to 40 botanical families. Protium heptaphyllum and Pouteria sp.1 were the most abundant species. In terms of importance value (IV, Protium heptaphyllum, Pouteria sp.1 and Virola gardneri are among the most important ecologically species. The predominant dispersal syndromes were zoocory (72.8%, autocory (13.6% and anemochory (4.8%. It was not possible to determine the type of dispersal of 8.8% of the

  7. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index

    Directory of Open Access Journals (Sweden)

    Russell L. Scott

    2013-08-01

    Full Text Available Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa based on the Enhanced Vegetation Index (EVI from the Moderate Resolution Imaging Spectrometer (MODIS sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo. The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI − c], where the term (1 − e−bEVI is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73. It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89 difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  8. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    Science.gov (United States)

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction estimated to be due to dilution and 65 to 70% due to reduction and/or denitrification.Using data derived from a study area located in the Contentnea Creek Drainage Basin in North Carolina, the presence of riparian buffers 30-m wide or more and composed of lowland hardwood vegetation was assessed statistically in terms of nitrate-nitrogen concentrations in discharging groundwater passing beneath the buffers. The groundwater and surface-water sampling sites were selected by overlaying a digital coverage of a ma

  9. The Role of Legacy Effects and Reactive Amendments on Phosphorus Retention Within Riparian Zones

    Science.gov (United States)

    Surridge, B.; Habibiandehkordi, R.; Quinton, J.

    2014-12-01

    Undisturbed riparian zones, including river floodplains and field buffer strips, can significantly reduce phosphorus (P) export associated with agricultural production. However, riparian zones are frequently disturbed, including through conversion to agricultural land. Restoring disturbed riparian zones is promoted widely within agri-environment schemes. However, restoration presents significant challenges, two of which are considered in this paper: understanding the impacts of restoration on legacy P within riparian zone soils; and maximising the efficacy of riparian zones for removal of all P fractions, including the more immediately bioavailable soluble P fractions. Firstly, we examine changes in porewater soluble P concentration following re-wetting of a river floodplain in Norfolk, UK, using laboratory mesocosms and in-situ field monitoring. Substantial release of P from sediment to porewater was observed following re-wetting (porewater soluble P concentration exceeded 6.5 mg P L-1), probably associated with reductive-dissolution of iron-bound P within floodplain sediments. Export of soluble P from porewater into adjacent receiving waters was observed following both natural hydrological events and management of the hydrological regime within the floodplain. Secondly, we examine how retention of soluble P with grass buffer strips can be enhanced through application of reactive industrial by-products, focussing on ochre and aluminium-based water treatment residuals. Application of these by-products to buffer strips increased removal of soluble P from surface runoff by over 50% compared to non-amended buffer strips. The long-term effectiveness of reactive amendments is also considered, using repeated runoff events under field conditions. Taken together, the research offers new insights into riparian zone P biogeochemistry within agricultural landscapes.

  10. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  11. Beyond cool: adapting upland streams for climate change using riparian woodlands.

    Science.gov (United States)

    Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J

    2016-01-01

    Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem

  12. Climate correlates of 20 years of trophic changes in a high-elevation riparian system

    Science.gov (United States)

    Martin, T.E.

    2007-01-01

    The consequences of climate change for ecosystem structure and function remain largely unknown. Here, I examine the ability of climate variation to explain long-term changes in bird and plant populations, as well as trophic interactions in a high-elevation riparian system in central Arizona, USA, based on 20 years of study. Abundances of dominant deciduous trees have declined dramatically over the 20 years, correlated with a decline in overwinter snowfall. Snowfall can affect overwinter presence of elk, whose browsing can significantly impact deciduous tree abundance. Thus, climate may affect the plant community indirectly through effects on herbivores, but may also act directly by influencing water availability for plants. Seven species of birds were found to initiate earlier breeding associated with an increase in spring temperature across years. The advance in breeding time did not affect starvation of young or clutch size. Earlier breeding also did not increase the length of the breeding season for single-brooded species, but did for multi-brooded species. Yet, none of these phenology-related changes was associated with bird population trends. Climate had much larger consequences for these seven bird species by affecting trophic levels below (plants) and above (predators) the birds. In particular, the climate-related declines in deciduous vegetation led to decreased abundance of preferred bird habitat and increased nest predation rates. In addition, summer precipitation declined over time, and drier summers also were further associated with greater nest predation in all species. The net result was local extinction and severe population declines in some previously common bird species, whereas one species increased strongly in abundance, and two species did not show clear population changes. These data indicate that climate can alter ecosystem structure and function through complex pathways that include direct and indirect effects on abundances and interactions

  13. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  14. Water Tables, Flooding, and Water Use by Riparian Phreatophyte Communities

    Science.gov (United States)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2010-12-01

    Phreatophytic riparian vegetation relies heavily on ground water transported from upstream sources. In the American southwest, the phenology of native phreatophytes, e.g., Rio Grande cottonwood, (Populus deltoides) is also dependent on seasonal flooding, which has been greatly diminished by hydrologic alterations and competing allocations. In this semi-arid, water-scarce region, a long history of agriculture and a rapidly expanding population impose limits on water available for ecological purposes, such as managed, restorative flooding. At native and non-native (e.g., saltcedar, (Tamarix spp.)) sites along the Rio Grande floodplain of central New Mexico, eddy covariance flux towers and monitoring wells are deployed to quantify evapotranspiration (ET) and investigate relationships between ET, water table (WT) depth, and flooding. Season-long measurements have been completed over several years in flooding and non-flooding sites under climatic conditions fluctuating from wet to extreme drought. Total growing season ET declines with deeper WTs across sites, with robust correlations where strong hydrologic connections exist between the river and ground water. As such, wet years with elevated WTs result in greater annual ET. However, ET responds less clearly to floods within the growing season. Longer duration floods lasting several weeks are more typical earlier in the growing season, associated with sufficient snowmelt runoff. Extensive spring flooding in two recent years coincided with significantly higher ET at a young, mixed stand, but had no effect on ET at a mature saltcedar forest. Summer monsoons and drier springs typically bring more transitory flood pulses with rapid WT ascent and decline measured in days. Elevated ET occurred during only one of several shorter flood pulses, at a saltcedar site during an otherwise dry spring. ET was not affected by monsoon flood pulses. Recruitment of native vegetation requires spring floods with favorable timing, magnitude

  15. Wheeler County Riparian Buffers; 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Judy; Homer, Will (Wheeler County Soil and Water Conservation District, John Day, OR)

    2004-02-01

    Problems Encountered During Contract Year--Wheeler County residents are mostly non participants when it comes to Farm Services programs. Results of the counties non participation is the rental rates are the lowest in the state. There is a government fear factor as well as an obvious distance limitation. The FSA office is nearly 150 mile roundtrip from two of the counties urban areas. I find myself not only selling the CREP-Riparian Buffer but also selling Farm Services in general. Training has been very limited. NRCS is obviously not designed around training and certification. They are an on-the-job training organization. It has caused a hesitation in my outreach program and a great deal of frustration. I feel my confidence will strengthen with the follow through of the current projects. The most evident problem has come to light as of late. The program is too expensive to implement. The planting is too intensive for a 12''-18'' rainfall area. I provide the potential landowner a spread sheet with the bonuses, the costs, and the final outcome. No matter the situation, CREP or CCRP, the landowner always balks at the cost. The program assumes the landowner has the capital to make the initial investment. For example, project No.2 is going to be a minimum width buffer. It is approximately 3,000 ft long and 5.5 acres. The buffer for tree planting and fencing alone will result in a cost of nearly $13,000. With the water developments it nears $23,000. That is nearly 10% of a 250 mother-cow operating budget. Project No.1, the tree planting estimate is $45,000. This alone is nearly 25% of the same type of budget. I would greatly appreciate any help in finding a third party willing to put money to work covering the initial costs of the program, expecting reimbursement from Farm Services Agency. I believe this could create a powerful tool in buffering streams in Wheeler County. Outlook for Contract Year 2--I have been in this position now for 6 months. I am

  16. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  17. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  18. Nitrogen mineralization in riparian soils along a river continuum within a multi-landuse basin

    Science.gov (United States)

    Nitrogen dynamics in riparian systems are often addressed within one landuse type and are rarely studied on watershed scales involving multiple land uses. This study tested for both temporal trends and watershed-wide spatial patterns in N mineralization and identified site fact...

  19. Multiyear Riparian Evapotranspiration and Groundwater Use for the Upper San Pedro Basin 1915

    Science.gov (United States)

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper,...

  20. Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction to the special collection

    NARCIS (Netherlands)

    Stutter, M.I.; Chardon, W.J.; Kronvang, B.

    2012-01-01

    Catchment riparian areas are considered key zones to target mitigation measures aimed at interrupting the movement of diffuse substances from agricultural land to surface waters. Hence, unfertilized buffer strips have become a widely studied and implemented “edge of field” mitigation measure assumed

  1. AN INTERDISCIPLINARY APPROACH TO RIPARIAN MEADOW CHARACTERIZATION AND PRIORITIZATION, CENTRAL GREAT BASIN

    Science.gov (United States)

    The Great Basin Ecosystem Management Research group has described the hydrological, geophysical, and geomorphic conditions that lead to the formation and maintenance of riparian meadows of central Nevada. Previous work on these systems has focused on understanding a few study mea...

  2. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  3. Greenhouse gas emissions from a Danish riparian wetland before and after restoration

    DEFF Research Database (Denmark)

    Audet, Joachim; Elsgaard, Lars; Kjærgaard, Charlotte;

    2013-01-01

    of greenhouse gases (GHG) such as nitrous oxide (N2O) and methane (CH4). The effect of the restoration of a Danish riparian wetland on the emission of GHG was assessed by determining the fluxes of N2O, CH4 and carbon dioxide from ecosystem respiration (Reco) prior to and after restoration of a stream and its...

  4. Grazed Riparian Management and Stream Channel Response in Southeastern Minnesota (USA) Streams

    Science.gov (United States)

    Magner, Joseph A.; Vondracek, Bruce; Brooks, Kenneth N.

    2008-09-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.

  5. Sustainable cropping systems using cover crops, native species field borders and riparian buffers for environmental quality

    Science.gov (United States)

    This presentation will focus on the application of sustainable management practices for no-till cultivation using cover crops, native species field borders, and fast growing woody species integrated in vegetative strips and riparian buffers. An ongoing field project at the Bradford Research and Exte...

  6. Connecting Seasonal Riparian Buffer Metrics and Nitrogen Concentrations in a Pulse-Driven Agricultural System

    Science.gov (United States)

    Riparian buffers have been well studied as best management practices for nutrient reduction at field scales yet their effectiveness for bettering water quality at watershed scales has been difficult to determine. Seasonal dynamics of the stream network are often overlooked when ...

  7. Riparian litter inputs to streams in the central Oregon Coast Range

    Science.gov (United States)

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  8. Riparian shrub metal concentrations and growth in amended fluvial mine tailings

    Science.gov (United States)

    Fluvial mine tailing deposition has caused extensive riparian damage throughout the western United States. Willows are often used for fluvial mine tailing revegetation, but some species accumulate excessive metal concentrations which could be detrimental to browsers. In a greenhouse experiment, gr...

  9. Assessment of water-recharging based on ecological features of riparian forest in the lower reaches of Tarim River

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhenyong; WANG Ranghui; SUN Hongbo; ZHANG Huizhi

    2006-01-01

    The occurrence and development of riparian forests which are mainly dominated by mesophytes species relate closely with surface water.Since there is no water discharge to the lower reaches of Tarim River in past 5 decade years, the riparian forests degrade severely. Based on the analyses of the monitored data of Yingsu, Argan and Luobuzhuang in 2002 and 2003, the effect of water-recharging is discussed. The water-recharging project neglects the fact that that it is flooding that controls the process of Populus euphratica colonizing on the bare surface, but focuses on groundwater influence on vegetation. The flooding control deviates inherent laws of riparian forests development, so the natural regeneration of riparian forests is checked.The responsescope of riparian plants on groundwater uplift is extremely narrow, and most riparian communities have not been optimized. No seedlings of dominant species are found in flooding areas because their physio-ecological characteristics are ignored. The vegetation changes in vicinities of stream only reflect the demand of mesophytes species on the shallow groundwater, however, the water-recharging fails to provide suitable habitats for the seedlings establishment of riparian plants. The present water-recharging scheme is difficult to realize vegetation restoration.

  10. Diversity, composition and phenology of araneid orb-weavers (Araneae, Araneidae associated with riparian forests in southern Brazil

    Directory of Open Access Journals (Sweden)

    Everton N. L. Rodrigues

    2015-03-01

    Full Text Available The Araneidae is a speciose family including web-spinning spiders that are very abundant in various terrestrial ecosystems. Several studies demonstrate that changes in vegetation surrounding rivers, streams and brooks affect the associated araneofauna. The aim of this research was to compare differences found in diversity (abundance and richness, composition and phenology of Araneidae spiders sampled in different habitats in four riparian forest catchments in southern Brazil. Samples were taken from riparian forests in four rivers of Rio Grande do Sul State: Piratini, Camaquã, Sinos and Maquiné rivers, each in a different hydrographic basin. Samples were taken twice seasonally on each basin during two years, sampling the araneofauna of the tree-shrub strata with beating tray. Six transects were employed on each basin, two per habitat: edge with grassland, forest interior and river edge. Araneids totalled 20 genera and 65 species. Comparing riparian forests significant differences are found. Spider abundance differed among riparian forests as well as species richness. Overall, Piratini river riparian forest had the higher abundance and richness for Araneidae; the lower values were in Sinos river forest. The stronger degradation and fragmentation of the riparian forests of Sinos river probably influenced the results, with human disturbance gradients associated negatively to web building. We present data on the diversity of these spiders, which were very abundant in the riparian forest interior and very rich in species in the grassland/riparian forest edge. Species composition also differs among the studied habitats (the above plus river/riparian forest edge. For the most abundant species the phenological pattern across the seasons was also analysed.

  11. River management impacts on riparian forest vegetation along the Middle Rio Grande: 1935-2014

    Science.gov (United States)

    Petrakis, Roy E.

    Riparian ecosystems of the southwestern United States are highly valuable to both the ecological and human communities which surround them. Over the past century, they have been subject to shifting management practices to maximize human use, control, ecosystem service, and conservation. This creates a complex relationship between water policy, management, and the natural ecosystem necessitating research on spatial and temporal dynamics of riparian vegetation. The San Acacia Reach of the Middle Rio Grande, a 60 mile stretch from the San Acacia Diversion Dam to San Marcial, has experienced multiple management and river flow fluctuations over the past 80 years, resulting in threats to riparian and aquatic ecosystems. This research was completed through the use and analysis of multi-source remote sensing data, GIS, and a review of the on-the-ground management decisions to better understand how the location and composition of the riparian vegetation has been affected by these shifting practices. This research focused on four phases, each highlighting different management practices and river flow patterns during the last 80-years. Each of these periods provides a unique opportunity to observe a direct relationship between river management and riparian land cover response and change. Overall, management practices reduced surface river flows and limited overbank flooding and resulted in changes in the composition, density, and spatial patterns of the vegetation, including increased non-native vegetation growth. Restoration efforts over the past few decades have begun to reduce the presence of non-native species. Despite these changes, this ecosystem was shown to be extremely resilient in maintaining its function/service throughout the entire study time frame.

  12. Alternative standardization approaches to improving streamflow reconstructions with ring-width indices of riparian trees

    Science.gov (United States)

    Meko, David M; Friedman, Jonathan M.; Touchan, Ramzi; Edmondson, Jesse R.; Griffin, Eleanor R.; Scott, Julian A.

    2015-01-01

    Old, multi-aged populations of riparian trees provide an opportunity to improve reconstructions of streamflow. Here, ring widths of 394 plains cottonwood (Populus deltoids, ssp. monilifera) trees in the North Unit of Theodore Roosevelt National Park, North Dakota, are used to reconstruct streamflow along the Little Missouri River (LMR), North Dakota, US. Different versions of the cottonwood chronology are developed by (1) age-curve standardization (ACS), using age-stratified samples and a single estimated curve of ring width against estimated ring age, and (2) time-curve standardization (TCS), using a subset of longer ring-width series individually detrended with cubic smoothing splines of width against year. The cottonwood chronologies are combined with the first principal component of four upland conifer chronologies developed by conventional methods to investigate the possible value of riparian tree-ring chronologies for streamflow reconstruction of the LMR. Regression modeling indicates that the statistical signal for flow is stronger in the riparian cottonwood than in the upland chronologies. The flow signal from cottonwood complements rather than repeats the signal from upland conifers and is especially strong in young trees (e.g. 5–35 years). Reconstructions using a combination of cottonwoods and upland conifers are found to explain more than 50% of the variance of LMR flow over a 1935–1990 calibration period and to yield reconstruction of flow to 1658. The low-frequency component of reconstructed flow is sensitive to the choice of standardization method for the cottonwood. In contrast to the TCS version, the ACS reconstruction features persistent low flows in the 19th century. Results demonstrate the value to streamflow reconstruction of riparian cottonwood and suggest that more studies are needed to exploit the low-frequency streamflow signal in densely sampled age-stratified stands of riparian trees.

  13. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery

    Science.gov (United States)

    Michez, Adrien; Piégay, Hervé; Jonathan, Lisein; Claessens, Hugues; Lejeune, Philippe

    2016-02-01

    Riparian zones are key landscape features, representing the interface between terrestrial and aquatic ecosystems. Although they have been influenced by human activities for centuries, their degradation has increased during the 20th century. Concomitant with (or as consequences of) these disturbances, the invasion of exotic species has increased throughout the world's riparian zones. In our study, we propose a easily reproducible methodological framework to map three riparian invasive taxa using Unmanned Aerial Systems (UAS) imagery: Impatiens glandulifera Royle, Heracleum mantegazzianum Sommier and Levier, and Japanese knotweed (Fallopia sachalinensis (F. Schmidt Petrop.), Fallopia japonica (Houtt.) and hybrids). Based on visible and near-infrared UAS orthophoto, we derived simple spectral and texture image metrics computed at various scales of image segmentation (10, 30, 45, 60 using eCognition software). Supervised classification based on the random forests algorithm was used to identify the most relevant variable (or combination of variables) derived from UAS imagery for mapping riparian invasive plant species. The models were built using 20% of the dataset, the rest of the dataset being used as a test set (80%). Except for H. mantegazzianum, the best results in terms of global accuracy were achieved with the finest scale of analysis (segmentation scale parameter = 10). The best values of overall accuracies reached 72%, 68%, and 97% for I. glandulifera, Japanese knotweed, and H. mantegazzianum respectively. In terms of selected metrics, simple spectral metrics (layer mean/camera brightness) were the most used. Our results also confirm the added value of texture metrics (GLCM derivatives) for mapping riparian invasive species. The results obtained for I. glandulifera and Japanese knotweed do not reach sufficient accuracies for operational applications. However, the results achieved for H. mantegazzianum are encouraging. The high accuracies values combined to

  14. Comparative use of riparian corridors and oases by migrating birds in southeast Arizona

    Science.gov (United States)

    Skagen, S.K.; Melcher, C.P.; Howe, W.H.; Knopf, F.L.

    1998-01-01

    The relative importance of cottonwood-willow riparian corridors and isolated oases to land birds migrating across southeastern Arizona was evaluated during four spring migrations, 1989 to 1994, based on patterns of species richness, relative abundance, density, and body condition of birds. We surveyed birds in 13 study sites ranging in size and connectivity from small isolated patches to extensive riparian forest, sampled vegetation and insects, and captured birds in mistnets. The continuous band of riparian vegetation along the San Pedro River does not appear to be functioning as a corridor for many migrating species, although it may for a few, namely Yellow-breasted Chats (Icteria virens), Summer Tanagers (Piranga rubra), and Northern Rough-winged Swallows (Steldigopteryx serripennis), which account for fewer than 10% of the individuals migrating through the area. Small, isolated oases hosted more avian species than the corridor sites, and the relative abundances of most migrating birds did not differ between sites relative to size-connectivity. There were few differences in between-year variability in the relative abundances of migrating birds between corridor and oasis sites. Between-year variability decreased with overall abundance of species and was greater for species with breeding ranges that centered north of 50??N latitude. Body condition of birds did not differ relative to the size-connectivity of the capture site, but individuals of species with more northerly breeding ranges had more body fat than species that breed nearby. Peak migration densities of several bird species far exceeded breeding densities reported for the San Pedro River, suggesting that large components of these species were en route migrants. Peak densities of Yellow Warblers (Dendroica petechia) reached 48.0 birds/ha, of Wilson's Warblers (Wilsonia pusilla) 33.7 birds/ha, and of Yellow-rumped Warblers (D. coronata) 30.1 birds/ha. Riparian vegetation is limited in extent in the

  15. BIODIVERSITY MANAGEMENT APPROACHES FOR STREAM-RIPARIAN AREAS: PERSPECTIVES FOR PACIFIC NORTHWEST HEADWATER FORESTS, MICROCLIMATES, AND AMPHIBIANS

    Science.gov (United States)

    Stream-riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is...

  16. Impact of Temporal and Spatial Variations in agrochemical Fluxes within the Riparian Buffer on Exports from a First Order Watershed

    Science.gov (United States)

    Both agricultural nitrogen and metolachlor ethane sulfonic acid (MESA), a prevalent metabolite of metolachlor, are primarily delivered to streams via groundwater flows. The ability of riparian ecosystems to remove agrochemicals from exfiltrating groundwater is a potentially important control on the...

  17. Biodiversity and Phytosociological Studies of Upstream and Downstream Riparian Areas of Pakistan: Special Reference to Taunsa Wildlife Sanctuary and Keti Shah Forests

    International Nuclear Information System (INIS)

    Pakistan riparian zone mostly belongs to Sindh and Punjab provinces and prone to climatic problems and anthropogenic activities. The research was conduct to estimate and compare the structure and composition of riverine floral diversity in low riparian zone of River Indus. The data was collected from Keti Shah forest and Taunsa wildlife sanctuary. Total 14259 plants/individuals were recorded, which belong to 54 plant species with 18 different families. In Taunsa pre-monsoon survey, total 30 plant species were found with 4476 plants from 16 different families. In Taunsa post-monsoon survey total 3348 individuals were recorded from 20 plant species and 9 families. Similarly, in Keti Shah forest, total 3975 individual were recorded from 22 species and 11 families during the pre-monsoon season and 2460 plants were recorded in post-monsoon season, belonging to 16 species and 10 families. These species mostly belong to Fabaceae, Poaceae, Cyperaceae and Asclepiadaceae. Different phytosociological parameters indicate Tamarix dioca, Cynodon dactylon, Desmostachya bipinnata, Imperata cylindrica, Fimbristylis hispidula, Acacia nilotica, Phragmites karka, Tamarix sp. and Saccharum bengalense as dominant species. The biodiversity in upstream and downstream areas were rich in pre-monsoon season in comparison to post-monsoon season in surveyed areas. This study is useful for management of the area in the future as conservation strategies can be made through considering the adaptive tree species in future plantation and endangered species can be conserved. (author)

  18. Assessing the Potential Impacts to Riparian Ecosystems Resulting from Hemlock Mortality in Great Smoky Mountains National Park

    OpenAIRE

    Scott W. Roberts; Tankersley, Roger; Orvis, Kenneth H.

    2009-01-01

    Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impact...

  19. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America

    Science.gov (United States)

    Perry, Laura G.; Andersen, Douglas C.; Reynolds, Lindsay V.; Nelson, S. Mark; Shafroth, Patrick B.

    2012-01-01

    Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian

  20. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    Science.gov (United States)

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-04-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  1. Spatial and temporal mapping of shallow groundwater tables in the riparian zone of a Swedish headwater catchment

    OpenAIRE

    Hellstrand, Eva

    2012-01-01

    Understanding the hydrology of the riparian zone in a catchment can be an important prerequisite for determining solute loads and concentrations in streams. The riparian zone is the transition zone between surrounding landscape and an open water stream. This study focuses on the spatial and temporal variations of shallow groundwater levels in a forested headwater catchment in the Bergslagen area of central Sweden. Three snapshot campaigns were conducted during dry, humid and wet conditions to...

  2. Controls on the spatial and temporal variability of Rn-222 in riparian groundwater in a lowland Chalk catchment.

    OpenAIRE

    Mullinger, Neil J.; Pates, Jackie M.; Binley, Andrew M.; Crook, N. P.

    2009-01-01

    Radon is a powerful tracer of stream-aquifer interactions. However, it is important to consider the source and behaviour of radon in groundwater when interpreting observations of river radon in relation to groundwater discharge. Here we characterise the variability in groundwater radon concentrations in the riparian zone of a Chalk catchment. Groundwater 222Rn (radon) concentrations were determined in riparian zone boreholes at two sites in the Lambourn catchment, Berkshire, UK, over a two ye...

  3. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  4. Applications of Remote Sensing and GIS to the Assessment of Riparian Zones for Environmental Restoration in Agricultural Watersheds

    Institute of Scientific and Technical Information of China (English)

    GU Fengxia; LIU Wenbao

    2010-01-01

    Geographical design of riparian buffers with long-term vegetation cover for environmental restoration in agricul turalwatersheds needs to assess how much farmland is located in the buffers of a concerned watershed. Traditionally, this assessment was done by field surveying and manual mapping, which was a time-consuming and costly process for a large region. In this paper,remote sensing (RS) and geographical information system (GIS) as cost-effective techniques were used to develop a catchments-based approach for identifying critical sites of agricultural riparian buffer restoration. The method was explained through a case study of watershed with 11 catchments and results showed that only four of the catchments were eligible in terms of higher priority for riparian buffer restoration. This research has methodological contributions to the spatial assessment of farming intensities in catchments-based riparian buffers across a watershed and to the geographical designs of variable buffering scenarios within catchments. The former makes the catchments-based management strategy possible, and the latter provides alternative restoration scenarios to meet different management purposes, both of which have direct implementations to the environmental restoration of riparian buffers in the real world. This study, thus, highlights the great potential of RS and GIS applications to the planning and management of riparian buffer restoration in agricultural watersheds.

  5. Improving the quantification of land cover pressure on stream ecological status at the riparian scale using High Spatial Resolution Imagery

    Science.gov (United States)

    Tormos, T.; Kosuth, P.; Durrieu, S.; Villeneuve, B.; Wasson, J. G.

    The aim of this paper is to demonstrate the interest of High Spatial Resolution Imagery (HSRI) and the limits of coarse land cover data such as CORINE Land Cover (CLC), for the accurate characterization of land cover structure along river corridors and of its functional links with freshwater ecological status on a large scale. For this purpose, we compared several spatial indicators built from two land cover maps of the Herault River corridor (southern France): one derived from the CLC database, the other derived from HSRI. The HSRI-derived map was obtained using a supervised object-based classification of multi-source remotely-sensed images (SPOT 5 XS-10 m and aerial photography-0.5 m) and presents an overall accuracy of 70%. The comparison between the two sets of spatial indicators highlights that the HSRI-derived map allows more accuracy in the quantification of land cover pressures near the stream: the spatial structure of the river landscape is finely resolved and the main attributes of riparian vegetation can be quantified in a reliable way. The next challenge will consist in developing an operational methodology using HSRI for large-scale mapping of river corridor land cover, for spatial indicator computation and for the development of related pressure/impact models, in order to improve the prediction of stream ecological status.

  6. Biomass accumulation and nutrient uptake of 16 riparian woody plant species in Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shuai Yu; Wei Chen; Xingyuan He; Zhouli Liu; Yanqing Huang

    2014-01-01

    Our research focused on eutrophication control and species screening for riparian zone vegetation restoration in the upstream reach of the Hun River. We studied 16 hardwood plant species to investigate nutrient concentrations and nitrogen and phosphorus accumulations. After about 120 days of growth in pots, these 16 species varied in dry matter biomass, ranging from 15.13 to 637.16 g. Total nitrogen (TN) and total phosphorus (TP) concentrations and distribution in roots, stems and foliage differed both within and between tested species. Mean TN and TP accumulation ranged from 0.167 to 14.730 g per plant and from 0.016 to 1.20 g, respectively. All 16 species, but especially Lespedeza bicolor, Robinia pseudoacacia and Sorbaria sorbifolia had strong potential to remove TN and TP from soil and could be widely utilized for the restora-tion of destroyed riparian zones in northeast China.

  7. 淮河干流岸边带生态健康遥感评估%Remote sensing assessment of ecological health of the riparian buffer along Huaihe River

    Institute of Scientific and Technical Information of China (English)

    殷守敬; 吴传庆; 王晨; 马万栋; 何游云

    2016-01-01

    结合高分辨率遥感影像在岸边带范围提取、生态系统高精度分类、生态结构特征提取方面的优势,将景观结构指数纳入岸边带生态健康评估指标体系,从生态功能、生态结构和生态胁迫三个方面对淮河干流岸边带生态健康状况进行全面调查评估.评价结果显示,淮河干流岸边带生态健康指数低于0.3,生态健康状况总体处于较差水平,并具有明显的空间走向特征,从上游到中游呈现出生态环境状况逐渐变差、再略有改善的趋势.通过对淮河干流岸边带生态环境问题的分析,认为人类开发强度大、植被覆盖率低、自然岸线保有率低、人为干扰强度大是造成淮河干流岸边带生态健康状况较差的主要原因.%This study introduces landscape structure indices into the ecological assessment system of riparian health, taking advantage of remote sensing capabilities in the derivation of riparian zone, feature extraction of ecological structure, and high-precision classification of ecological system. An overall ecological investigation and assessment of riparian health along Huaihe River was carried out from the aspects of ecological function, ecosystem structure and ecological stress. The results showed that the health of riparian ecology along Huaihe River was generally poor, with an ecological health index less than 0.3. A significant spatial characteristic was shown that the ecological environment gradually became worse from upstream to midstream and then slightly improved. Intensive human development, low vegetation coverage, low natural shoreline rate and high human disturbance were identified as the main cause of the bad ecological condition of the riparian zone along Huaihe River, according to the analysis of ecological and environmental problems.

  8. Valuing Riparian Forests Restoration: a CVM Application in Corumbatai River Basin

    OpenAIRE

    Caetano Brugnaro

    2010-01-01

    This study is an application of CVM to a specific area in Brazil, the Corumbatai river basin, in the state of Sao Paulo, aiming to estimate the value attached by affected people to a hypothetical riparian forest restoration project. The method used was the double bounded dichotomous choice under a logit model. Data were obtained by street-intercept interviews with a net sample of 930 individuals, 20 years or older, living in seven municipalities (cities and respective rural areas) that contai...

  9. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index

    OpenAIRE

    Scott, Russell L.; Uyen Nguyen; Glenn, Edward P; Pamela L. Nagler; Tanya Doody

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorith...

  10. Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry

    Science.gov (United States)

    Carlyle, G. C.; Hill, A. R.

    2001-07-01

    This study examines the influence of riparian zone hydrology, lithology and redox chemistry on groundwater phosphate dynamics. Patterns of soluble reactive phosphorus (SRP), dissolved oxygen (DO) and ferrous iron (Fe 2+) in combination with hydrologic data and sediment characteristics were studied in a forested floodplain connected to a large upland sand aquifer in an agricultural region of southern Ontario, Canada. Groundwater discharge from the upland aquifer flowed laterally beneath peat in a 2-4 m thick zone of permeable sands across the floodplain to the river. Within the sands, low SRP concentrations (3 mg L -1 and Fe 2+ concentrations <0.2 mg L -1 which extended for a horizontal distance of 100-140 m across the riparian zone. High SRP concentrations (50-950 μg L -1) were associated with low DO and high Fe 2+ concentrations which exceeded 1 mg L -1 in buried channel sediments near the river bank. Sediment P fractionation indicated that the buried channel sediments contained a much higher pool of total P and Fe+Al-P than the sands. Groundwater SRP concentrations at the river bank were 25-80 μg L -1 compared to <10 μg L -1 in river water indicating that the floodplain was a source of SRP to the river. Areas of elevated SRP and Fe 2+ within the floodplain expanded in August when DO concentrations in groundwater were lower than in late spring or autumn. These data suggest that the microbial reduction of Fe 3+ to soluble Fe 2+ in anaerobic conditions influences groundwater SRP concentrations in the riparian zone. This study shows that well-organized patterns of groundwater SRP concentrations occur in riparian zones which reflect the interaction of hydrologic flowpaths and environments of different redox state. Internal sources of P associated with buried channel sediments can also influence subsurface SRP transport and release to streams.

  11. Responses to river inundation pressures control prey selection of riparian beetles.

    Directory of Open Access Journals (Sweden)

    Matt J O'Callaghan

    Full Text Available BACKGROUND: Riparian habitats are subjected to frequent inundation (flooding and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance. METHOD/PRINCIPAL FINDINGS: We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples. CONCLUSIONS/SIGNIFICANCE: Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the

  12. Connecting differential responses of native and invasive riparian plants to climate change and environmental alteration.

    Science.gov (United States)

    Flanagan, Neal E; Richardson, Curtis J; Ho, Mengchi

    2015-04-01

    Climate change is predicted to impact river systems in the southeastern United States through alterations of temperature, patterns of precipitation and hydrology. Future climate scenarios for the southeastern United States predict (1) surface water temperatures will warm in concert with air temperature, (2) storm flows will increase and base flows will decrease, and (3) the annual pattern of synchronization between hydroperiod and water temperature will be altered. These alterations are expected to disturb floodplain plant communities, making them more vulnerable to establishment of invasive species. The primary objective of this study is to evaluate whether native and invasive riparian plant assemblages respond differently to alterations of climate and land use. To study the response of riparian wetlands to watershed and climate alterations, we utilized an existing natural experiment imbedded in gradients of temperature and hydrology-found among dammed and undammed rivers. We evaluated a suite of environmental variables related to water temperature, hydrology, watershed disturbance, and edaphic conditions to identify the strongest predictors of native and invasive species abundances. We found that native species abundance is strongly influenced by climate-driven variables such as temperature and hydrology, while invasive species abundance is more strongly influenced by site-specific factors such as land use and soil nutrient availability. The patterns of synchronization between plant phenology, annual hydrographs, and annual water temperature cycles may be key factors sustaining the viability of native riparian plant communities. Our results demonstrate the need to understand the interactions between climate, land use, and nutrient management in maintaining the species diversity of riparian plant communities. Future climate change is likely to result in diminished competitiveness of native plant species, while the competitiveness of invasive species will increase

  13. INTEGRATION OF THE MODELS OF ANNAGNPS AND REMM TO ASSESS RIPARIAN BUFFER SYSTEM FOR SEDIMENT REDUCTION

    Institute of Scientific and Technical Information of China (English)

    Yongping YUAN; Ronald BINGNER; Randall WILLIAMS; Richard LOWRANCE; David BOSCH; Joe SHERIDAN

    2007-01-01

    The United States Department of Agriculture (USDA) Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) is used to help evaluate a watershed response to agricultural management practices to control water quality. However, AnnAGNPS version 3.5 does not contain features to estimate the effect of a riparian buffer (RB) system on water quality. The Riparian Ecosystem Management Model (REMM) is used to simulate the impact of riparian buffer systems on water quality. However, frequently the lack of measured upland loadings that are required by REMM simulation limits the application of REMM. To address this data gap, a study was conducted to integrate AnnAGNPS with REMM for RB system simulation. AnnAGNPS was used to simulate water and sediment loadings from an upland field into a three-zone RB system at the Gibbs Farm located in the Georgia coastal plain. These AnnAGNPS outputs were used as the inputs to REMM. REMM was used to simulate water and sediment movement along the riparian buffers. The AnnAGNPS simulated amount of annual runoff at the edge of the field was close to observed amounts (Nash-Sutcliffe efficiency of 0.92). It is believed that a substantial portion of sand was removed from the runoff one meter into the grass buffer where the samplers were located; therefore, sand was excluded from the AnnAGNPS simulation for comparison with observed sediment. Excluding sand, the AnnAGNPS predicted amount of annual sediment matches the observed amount fairly well (Nash-Sutcliffe efficiency of 0.46). In addition, based on evaluating the percent reduction of sediment at each zonal interface, the AnnAGNPS/REMM model well simulated the function of the RB system to reduce sediment.

  14. Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction to the special collection

    OpenAIRE

    Stutter, M. I.; Chardon, W.J.; B. Kronvang

    2012-01-01

    Catchment riparian areas are considered key zones to target mitigation measures aimed at interrupting the movement of diffuse substances from agricultural land to surface waters. Hence, unfertilized buffer strips have become a widely studied and implemented “edge of field” mitigation measure assumed to provide an effective physical barrier against nitrogen (N), phosphorus (P), and sediment transfer. To ease the legislative process, these buffers are often narrow mandatory strips along streams...

  15. Hydrological Characterization of A Riparian Vegetation Zone Using High Resolution Multi-Spectral Airborne Imagery

    OpenAIRE

    Akasheh, Osama Zaki

    2008-01-01

    The Middle Rio Grande River (MRGR) is the main source of fresh water for the state of New Mexico. Located in an arid area with scarce local water resources, this has led to extensive diversions of river water to supply the high demand from municipalities and irrigated agricultural activities. The extensive water diversions over the last few decades have affected the composition of the native riparian vegetation by decreasing the area of cottonwood and coyote willow and increasing the spread o...

  16. Movement of nitrogen through a riparian forest in a tropical, agricultural landscape

    OpenAIRE

    Connor, Sarah

    2012-01-01

    Riparian zones have been widely reported to function as effective buffers, removing nitrate (NO₃⁻) from groundwater before it is discharged into adjacent streams. This is particularly important in agricultural catchments where additional nitrogen (N) from fertilisers may be leached into groundwater. On coastal plains, NO₃⁻ in groundwater discharged into streams can potentially enrich coastal waters. The permanent removal of NO₃⁻ through denitrification can improve water quality, however incom...

  17. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones

    OpenAIRE

    CLERICI NICOLA; PARACCHINI Maria-Luisa; MAES JOACHIM

    2014-01-01

    Riparian zones, transitional environments between terrestrial and freshwater ecosystems, have been historically threatened in Europe by land reclamation and exploitation of their natural resources. These fragile environments deliver a large number of ecological and societal services, while simultaneously playing a key role in the maintenance of biodiversity in fragmented landscapes. At large scales, one of the clearest and most informative indicators of alteration of state and characteristics...

  18. Landscape change in an agricultural watershed: the effect of parcelization on riparian forest cover

    OpenAIRE

    R E Kleiman; Erickson, D. L.

    1996-01-01

    In this research we address factors contributing to landscape change in a midwestern (USA) watershed. Specifically, the relationship between the parcelization of agricultural land (ownership subdivisions) and changes in amounts of riparian forest cover are explored. The study area is the River Raisin Watershed in southeastern Michigan, which is typical of rural watersheds in the lower Great Lakes region. Two townships within the watershed were sampled from data spanning a 20-year time period....

  19. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  20. Soil Quality under Riparian Forest at Different Stages of Ecological Succession and Cultivated with Sugarcane

    Science.gov (United States)

    Silva, Luiz Gabriel; Casagrande, José Carlos; Colato, Alexandre; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2014-05-01

    This work aimed at evaluating the quality of the soil through its chemical, physical and microbiological attributes, using additive pondered model, as well as studying the characteristics of the linear method of combination of data, figures of merit (FoMs), the process of assigning weights and standard score functions, using measurements collected in three areas (two riparian forests and a commercial crop of sugarcane) in two soil types (Oxisol and Podzol) located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. The soil was sampled in the depths of 0-0.2 and 0.2-0.4m, and was determined some of its chemical attributes (nutrient content and organic matter, cationic exchange capacity - CEC, etc.), physical (particle size distribution, density and porosity) and microbiological (microbial biomass and basal respiration). Two models were built, one containing two hierarchical levels of FoMs (Mod1), and another containing three levels (Mod2), in order to try to isolate FoMs highly correlated from each other within a top-level FoM. At FoMs of Mod1 were assigned various combinations of weights, and those of Mod2 were assigned weights from three methods, distribution from fixed value, classification and pair-wise comparison. In the Mod1, in virtually all combinations of weights used, values of Soil Quality Index (SQI) were superior in older forests, while the most recent forest presented the lowest SQI, for both types of soil. The variation of SQI values obtained from the sets of weights used also differed between the combinations tested, with the set of values of the ancient forest showing smaller amplitude. It could also be observed that the sets of values of Oxisol showed higher SQI and lower amplitude in relation to that of Podzol. It was observed that these facts are due mainly to the soil organic matter content (MO), which differs between the vegetations and soil types, and influences many parameters used in the model. Thus, in the structures where MO had

  1. Responses of distribution pattern of desert riparian forests to hydrologic process in Ejina oasis

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Wenzhi; CHANG; Xueli

    2004-01-01

    By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process,but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.

  2. Disproportionate contribution of riparian inputs to organic carbon in freshwater systems.

    Science.gov (United States)

    Marwick, Trent Richard; Van Acker, Kristof; Darchambeau, François; Vieira Borges, Alberto; Bouillon, Steven

    2014-05-01

    A lack of appropriate proxies has traditionally hampered our ability to distinguish riverine organic carbon (OC) sources at the landscape scale. However, the dissection of tropical and sub-tropical C4 savannah grasslands by C3 riparian vegetation, and the distinct carbon stable isotope signature (δ13C) of these two photosynthetic pathways, provides a unique setting to assess the relative contribution of riparian and more distant sources to riverine C pools. Here, we show through the comparison of δ13C signatures of bulk sub-basin vegetation (δ13CVEG) with those of riverine OC pools, that in contrasting C3- and C4-dominated sub-tropical drainage basins, riverine OC is disproportionately sourced from bordering riparian vegetation, irrespective of climatic season. Our findings carry implications for the use of sedimentary δ13C signatures as proxies for past forest-grassland distribution and climate, as the C4 component may be considerably underestimated due to its disconnection from riverine OC pools.

  3. Geophysical Evidence to Link Terrestrial Insect Diversity and Groundwater Availability in Non-Riparian Ecosystems

    Science.gov (United States)

    Pehringer, M.; Carr, G.; Long, H.; Parsekian, A.

    2015-12-01

    Wyoming, the third driest state in the United States, is home to a high level of biodiversity. In many cases, ecosystems are dependent on the vast systems of water resting just below the surface. This groundwater supports a variety of organisms that live far from surface water and its surrounding riparian zone, where more than 70% of species reside. In order to observe the correlation of groundwater presence and biodiversity in non-riparian ecosystems, a study was conducted to look specifically at terrestrial insect species linked to groundwater in Bighorn National Forest, WY. It was hypothesized that the more groundwater present, the greater the diversity of insects would be. Sample areas were randomly selected in non-riparian zones and groundwater was evaluated using a transient electromagnetic (TEM) geophysical instrument. Electrical pulses were transmitted through a 40m by 40m square of wire to measure levels of resistivity from near the surface to several hundred meters below ground. Pulses are echoed back to the surface and received by a smaller 10m by 10m square of wire, and an even smaller 1m by 1m square of wire set inside the larger transmitting wire. An insect population and species count was then conducted within the perimeter set by the outer transmitting wire. The results were not as hypothesized. More inferred groundwater below the surface resulted in a smaller diversity of species. Inversely, the areas with a smaller diversity held a larger total population of terrestrial insects.

  4. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area

    Science.gov (United States)

    Yue, Weifeng; Wang, Tiejun; Franz, Trenton E.; Chen, Xunhong

    2016-03-01

    Groundwater evapotranspiration (ETg) links various ecohydrological processes and is an important component in regional water budgets. In this study, an extensive monitoring network was established in a semiarid riparian area to investigate various controls on the spatiotemporal pattern of water table fluctuations (WTFs) and ETg induced by riparian vegetation. Along a vegetation gradient (˜1200 m), diurnal WTFs were observed during a growing season in areas covered by woody species (Populus sect. Aigeiros and Juniperus virginiana) and wet slough vegetation (Panicum virgatum and Bromus inermis) with deeper root systems; whereas, no diurnal WTFs were found in the middle section with shallower-rooted grasses (Poa pratensis and Carex sp.). The occurrence of diurnal WTFs was related to temperature-controlled plant phenology at seasonal scales and to radiation at subdaily scales. Daily ETg in the mid-growing season was calculated using the White method. The results revealed that depth to water table (DTWT) was the dominant control on ETg, followed by potential evapotranspiration (ETp). By combining the effects of DTWT and ETp, it was found that at shallower depths, ETg was more responsive to changes in ETp, due to the closer linkage of land surface processes with shallower groundwater. Finally, exponential relationships between ETg/ETp and DTWT were obtained at the study site, although those relationships varied considerably across the sites. This study demonstrates the complex interactions of WTFs and ETg with surrounding environmental variables and provides further insight into modeling ETg over different time scales and riparian vegetation.

  5. Soil Seed Bank Dynamics of a Riparian Forest and its Adjacent Upland Vegetation

    Directory of Open Access Journals (Sweden)

    Omowumi Omotoyosi OLALOYE

    2016-03-01

    Full Text Available The present study was conducted to determine the densities and soil seed bank composition of a riparian forest and its adjacent upland vegetation for a better understanding the potentials of the soil seed banks in facilitating succession towards a more natural forest of native tree species. Three contiguous 20 m x 20 m plots were systematically established on both riparian forest and upland vegetation. Species enumeration, identification and distribution into families of the standing vegetation were carried out. Furthermore, five replicates soil samples were collected at two different depths (0-15 cm, 15-30 .The seedling emergence test was carried out for six months in the greenhouse to determine the species composition and the density of the seed in both vegetation types. The results of the seedling emergence revealed that more seeds were deposited at the upper depth (0-15 cm than the lower depth 15-30 cm in the two vegetation types in both dry and rainy season. There was low similarity in species composition between the standing vegetation and soil seed bank in each of the two vegetation types. Herbaceous species recorded the highest number of seedlings as compared to the other habit. The low similarity between seed bank and standing vegetation of the riparian forest and the adjacent upland vegetation suggested that soil seed bank was insignificant in their restoration.

  6. Riparian zone hydrology and biogeochemistry as a function of stream evolution stage in glaciated landscapes of the US Northeast

    Science.gov (United States)

    Rook, S. P.; Vidon, P.; Walter, M. T.

    2011-12-01

    The management of riparian buffer strips is often regarded as one of the most economical and sustainable methods of managing non-point source pollution and water quality. However, current riparian management often follows a 'one size fits all' design, which fails to recognize the complexity of the many biogeochemical processes that regulate pollutant transformation and retention in these systems. This study addresses two critical gaps in knowledge: (1) How carbon, nitrogen, phosphorous, and iron cycles interact with one another (rather than individually). (2) How stream channel geometry and evolution regulate these nutrient cycles and greenhouse gas (GHG) dynamics in the near stream zone. This project specifically explores the hydrological and biogeochemical functioning of riparian zones across a gradient of stream meander evolution stages, with the primary goal of understanding and predicting potential interactions between nutrient dynamics in these systems. Key research questions include: (1) How does stream meander curvature affect riparian zone hydrology? (2) How does stream meander curvature influence riparian zone biogeochemistry? (3) What relationships exist among N, P, Fe, and GHG dynamics? We instrumented three riparian sites near Ithaca, NY, with a dense network of wells, piezometers, and static chambers. These sites represent three riparian zones along three evolution stages of stream meanders: an inner meander, a straight stream section, and an outer bend of the stream with an oxbow lake formation. In spring through fall 2011, water samples and gas samples were collected at a tri-weekly bases at each of the three sites. Water samples were analyzed for oxidation-reduction potential, dissolved oxygen, temperature, FeII/FeIII, nutrients (NO3-, NH4+, PO43-) and dissolved organic carbon (DOC). GHG fluxes at the soil-atmosphere interface were measured for N2O, CO2, and CH4 gases. We predict that stream curvature will significantly affect groundwater flow

  7. Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and of natural regeneration

    OpenAIRE

    Aline Luiza Tomazi; Carlos Eduardo Zimmermann; Rudi Ricardo Laps

    2010-01-01

    Riparian habitats are important to the maintenance of ecological processes and environmental services. However, a significant portion of the riparian vegetation in the Brazilian Atlantic forest has been removed in response to increasing human pressure. Therefore, the application of restoration techniques in these habitats becomes essential. In this context, a nucleation model with 18 artificial perches was evaluated for the restoration of a degraded riparian area in Gaspar, Santa Catarina, Br...

  8. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    Science.gov (United States)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    each patch. Model parameters of tree life-history traits (e.g., dispersal timing) and hydrogeomorphic processes (e.g., sedimentation rate) were determined by field and experimental studies, and aerial LIDAR, with separate range of values for point bar versus floodplain habitats. In most runs, abandoned channels were colonized one third as frequently as point bars, but supported much larger forest patches when colonization was successful (from 15-99% of forest area, depending on point bar success). Independent evaluation of aerial photos confirm that cottonwood forest stands associated with abandoned channels were less frequent (38% of all stands) but more extensive (53% of all forest area) relative to those caused by migrating point bars. Results indicate that changes to the rate and scale of river migration, and particularly channel abandonment, from human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics, with consequences for the community of organisms that depend on this habitat.

  9. Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river

    Science.gov (United States)

    Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure

    2013-11-01

    Dynamic fluvial processes strongly influence ecological communities and ecosystem health in riverine and riparian ecosystems, particularly in drought-prone regions. In these systems, there is a need to develop tools to measure impacts from local and regional hydrogeomorphic changes on the key biological and physical processes that sustain riparian ecosystem health and potential recovery. We used dendrochronology of Populus nigra, a riparian tree that is vulnerable to changes in local hydrology, to analyze ecosystem response following channel incision due to gravel mining along the Drôme River, a Mediterranean Basin stream in southern France. We cored 55 trees at seven floodplain sites, measured ring widths, and calculated basal area growth to compare the severity and timing of local growth decline along the river. Current basal area increment (BAI) growth per tree ranged almost 10-fold among sites (7.7 ± 1.3 to 63.9 ± 15.2 cm2 year- 1, mean ± SE) and these differences were significant. Mean BAI was correlated positively with the proportion of healthy trees at a site, and negatively with proportion of dead canopy area. Regime shift analysis of the tree-ring series indicates that tree growth declined significantly at four sites since 1978, coincident with documented channel incision. In addition, patterns of low growth and crown dieback are consistent with stress due to reduced water supply. The most impaired sites were not directly adjacent to local mining pits visible on aerial photographs, nor did the sequence of growth regime shifts suggest a pattern of channel incision progressing from these areas. The initiation of site growth declines was most typically associated with drought years, and the most impaired sites were spatially distributed to suggest the influence of local bedrock controls on soil depth. Climate in the Drôme basin and in the Mediterranean region is trending significantly toward hotter growing seasons with a decrease in summer river

  10. Breeding Bird Community Continues to Colonize Riparian Buffers Ten Years after Harvest.

    Directory of Open Access Journals (Sweden)

    Scott F Pearson

    Full Text Available Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1-2 years and long-term (~10 years avian community responses (occupancy and abundance to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13 m forested buffers on each side of the stream, and sites with wider (~30 m and more variable width unharvested buffer. Buffer treatments exhibited a 31-44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63-74% relative to the controls (29%. We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29% and Wide buffers (short-term: 21%; long-term 93% relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that

  11. Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes.

    Directory of Open Access Journals (Sweden)

    Rui P Rivaes

    Full Text Available Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.

  12. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares.

    Science.gov (United States)

    Tape, Ken D; Christie, Katie; Carroll, Geoff; O'Donnell, Jonathan A

    2016-01-01

    Warming during the 20th century has changed the arctic landscape, including aspects of the hydrology, vegetation, permafrost, and glaciers, but effects on wildlife have been difficult to detect. The primary aim of this study is to examine the physical and biological processes contributing to the expanded riparian habitat and range of snowshoe hares (Lepus americanus) in northern Alaska. We explore linkages between components of the riparian ecosystem in Arctic Alaska since the 1960s, including seasonality of stream flow, air temperature, floodplain shrub habitat, and snowshoe hare distributions. Our analyses show that the peak discharge during spring snowmelt has occurred on average 3.4 days per decade earlier over the last 30 years and has contributed to a longer growing season in floodplain ecosystems. We use empirical correlations between cumulative summer warmth and riparian shrub height to reconstruct annual changes in shrub height from the 1960s to the present. The effects of longer and warmer growing seasons are estimated to have stimulated a 78% increase in the height of riparian shrubs. Earlier spring discharge and the estimated increase in riparian shrub height are consistent with observed riparian shrub expansion in the region. Our browsing measurements show that snowshoe hares require a mean riparian shrub height of at least 1.24-1.36 m, a threshold which our hindcasting indicates was met between 1964 and 1989. This generally coincides with observational evidence we present suggesting that snowshoe hares became established in 1977 or 1978. Warming and expanded shrub habitat is the most plausible reason for recent snowshoe hare establishment in Arctic Alaska. The establishment of snowshoe hares and other shrub herbivores in the Arctic in response to increasing shrub habitat is a contrasting terrestrial counterpart to the decline in marine mammals reliant on decreasing sea ice. PMID:26527375

  13. From Midges to Spiders: Mercury Biotransport in Riparian Zones Near the Buffalo River Area of Concern (AOC), USA.

    Science.gov (United States)

    Pennuto, C M; Smith, M

    2015-12-01

    Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p mercury depuration is rapid or tissue dilution occurs in these riparian predators. Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.

  14. Riparian forest potential to retain sediment and carbon evaluated by the {sup 137}Cs fallout and carbon isotopic ratio techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiz F. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Lab. de Fisica Aplicada a Solos e Ciencias Ambientais], e-mail: lfpires@uepg.br, e-mail: luizfpires@gmail.com; Bacchi, Osny O.S.; Reichardt, Klaus; Filippe, Joseline [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Fisica dos Solos; Correchel, Vladia [Universidade Federal de Goias (UFG), Goiania, GO (Brazil)

    2009-07-01

    Riparian forests can provide an important service for aquatic ecosystems by sequestering hill slope-derived sediments. However, the width of a riparian buffer zone required to filter sediments is not yet well-understood. Here are used two complementary tracers to measure sediment retention. The {sup 137}Cs technique and the soil carbon isotopic ratios ({delta} {sup 13}C) are utilized to investigate sediment deposition and erosion rates on a slope transect cultivated with sugarcane followed by a secondary riparian forest zone in Iracemapolis, State of Sao Paulo, Brazil. The {sup 137}Cs technique and the {delta} {sup 13}C analysis showed that the width of a riparian vegetation in accordance to a Brazilian Environmental Law (N. 4.771/65) was not sufficient in trapping sediments coming from agricultural lands, but indicated the importance of these forests as a conservation measure at the watershed scale. The complementary {delta} {sup 13}C analysis together with soil morphology aspects allowed a better interpretation of the sediment redistribution along the sugarcane and riparian forest transect. (author)

  15. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants.

    Science.gov (United States)

    Yang, Changming; Wang, Mengmeng; Chen, Haiyan; Li, Jianhua

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.

  16. Nitrate and dissolved nitrous oxide in groundwater within cropped fields and riparian buffers

    Directory of Open Access Journals (Sweden)

    D.-G. Kim

    2009-01-01

    Full Text Available Transport and fate of dissolved nitrous oxide (N2O in groundwater and its significance to nitrogen dynamics within agro-ecosystems are poorly known in spite of significant potential of N2O to global warming and ozone depletion. Increasing denitrification in riparian buffers may trade a reduction in nitrate (NO3 transport to surface waters for increased N2O emissions resulting from denitrification-produced N2O dissolved in groundwater being emitted into the air when groundwater flows into a stream or a river. This study quantifies the transport and fate of NO3 and dissolved N2O moving from crop fields through riparian buffers, assesses whether groundwater exported from crop fields and riparian buffers is a significant source of dissolved N2O emissions, and evaluates the Intergovernmental Panel on Climate Change (IPCC methodology to estimate dissolved N2O emission. We measured concentrations of NO3; chloride (Cl; pH; dissolved N2O, dissolved oxygen (DO, and organic carbon (DOC in groundwater under a multi-species riparian buffer, a cool-season grass filter, and adjacent crop fields located in the Bear Creek watershed in central Iowa, USA. In both the multi-species riparian buffer and the cool-season grass filter, concentrations of dissolved N2O in the groundwater did not change as it passed through the sites, even when the concentrations of groundwater NO3 were decreased by 50% and 59%, respectively, over the same periods. The fraction of N lost to leaching and runoff (0.05 and the modified N2O emission factor, [ratio of dissolved N2O flux to N input (0.00002] determined for the cropped fields indicate that the current IPCC methodology overestimates dissolved N2O flux in the sites. A low ratio between

  17. Penetration and survival of riparian tree roots in compacted coarse gravel mixtures

    Science.gov (United States)

    Muellner, Michael; Weissteiner, Clemens; Konzel, Christoph; Rauch, Hans Peter

    2016-04-01

    Root growth and penetration of riparian trees along paved cycling paths and service roads of rivers causes often traffic safety problems. Damages occur mostly on street surfaces with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. Analyses of the dominating process mechanisms demonstrated that mainly the naturally growing pioneer vegetation along rivers is responsible for the asphalt damages caused by their constant and rapid growth. The investigations of the root growth characteristics showed that tree roots mostly penetrate the road structure between the gravel sublayer and the asphalt because of the high compaction of the layer itself. In a second step of the research project the influence of different gravel size mixtures on the root penetration and survival are analysed. Coarse gravel size mixtures with the lowest possible fine granular fraction are suposed to inhibit root growth due to the mechanical impedance and air pruning of roots. Furthermore coarse gravel size mixtures could influence the presence of condensate formed at the underside of the asphalt layer. Therefore seven different compositions of matrix stone gravel size mixtures (0/32, 4/32, 8/32, 16/32, 0/64, 8/64 hydraulic bound mixture and 16/64) as sublayer material were tested in a small scale experimental set-up. Wooden boxes with a dimension of 1x1.5x0.5 m and 0.5x0.5x0.5 m were used as frames for the different matrix stone mixtures. On one side the boxes were delimited to the surrounding soil with a steel mesh followed by a wire mesh and a geotextile. Boxes were located in an 80 cm deep hole on a 30 cm thick drainage layer. Willow and poplar cuttings were planted laterally to the root penetrable side of the boxes. Large boxes were filled and compacted with 6 different gravel size mixtures (all but 4/32) and

  18. Nitrate retention in riparian ground water at natural and elevated nitrate levels in North Central Minnesota

    Science.gov (United States)

    Duff, J.H.; Jackman, A.P.; Triska, F.J.; Sheibley, R.W.; Avanzino, R.J.

    2007-01-01

    The relationship between local ground water flows and NO3- transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO3- concentrations decreased from ???3 mg N L-1 beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L-1 at wells 1 to 3 m from the channel. The Cl- concentrations and NO3/Cl ratios decreased toward the channel indicating NO3- dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect looted ???5 m from the stream to assess the effectiveness of the riparian zone as a NO3- sink. Subsurface NO3- injections revealed transport of up to 15 mg N L-1 was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO3- retention under both background and elevated NO 3- levels in summer and winter. Disappearance of added NO3- was followed by transient NO2- formation and, in the presence of C2H2, by N2O formation, demonstrating potential denitrification. Under current land use, most NO3- associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO 3- levels through agricultural cultivation would likely result in increased NO3- transport to the channel. ?? ASA, CSSA, SSSA.

  19. Functional redundancy as a tool for bioassessment: A test using riparian vegetation.

    Science.gov (United States)

    Bruno, D; Gutiérrez-Cánovas, C; Velasco, J; Sánchez-Fernández, D

    2016-10-01

    There is an urgent need to track how natural systems are responding to global change in order to better guide management efforts. Traditionally, taxonomically based metrics have been used as indicators of ecosystem integrity and conservation status. However, functional approaches offer promising advantages that can improve bioassessment performance. In this study, we aim to test the applicability of functional redundancy (FR), a functional feature related to the stability, resistance and resilience of ecosystems, as a tool for bioassessment, looking at woody riparian communities in particular. We used linear mixed-effect models to investigate the response of FR and other traditional biomonitoring indices to natural (drought duration) and anthropogenic stress gradients (flow regulation and agriculture) in a Mediterranean basin. Such indices include species richness, a taxonomic index, and the Riparian Quality Index, which is an index of ecological status. Then, we explored the ability of FR and the other indices to discriminate between different intensities of human alteration. FR showed higher explanatory capacity in response to multiple stressors, although we found significant negative relationships between all the biological indices (taxonomic, functional and ecological quality) and stress gradients. In addition, FR was the most accurate index to discriminate among different categories of human alteration in both perennial and intermittent river reaches, which allowed us to set threshold values to identify undisturbed (reference condition), moderately disturbed and highly disturbed reaches in the two types of river. Using these thresholds and the best-fitting model, we generated a map of human impact on the functional redundancy of riparian communities for all the stretches of the river network. Our results demonstrate that FR presents clear advantages over traditional methods, which suggests that it should be part of the biomonitoring toolbox used for

  20. Riparian zones attenuate nitrogen loss following bark beetle-induced lodgepole pine mortality

    Science.gov (United States)

    Biederman, Joel A.; Meixner, Thomas; Harpold, Adrian A.; Reed, David E.; Gutmann, Ethan D.; Gaun, Janelle A.; Brooks, Paul D.

    2016-03-01

    A North American bark beetle infestation has killed billions of trees, increasing soil nitrogen and raising concern for N loss impacts on downstream ecosystems and water resources. There is surprisingly little evidence of stream N response in large basins, which may result from surviving vegetation uptake, gaseous loss, or dilution by streamflow from unimpacted stands. Observations are lacking along hydrologic flow paths connecting soils with streams, challenging our ability to determine where and how attenuation occurs. Here we quantified biogeochemical concentrations and fluxes at a lodgepole pine-dominated site where bark beetle infestation killed 50-60% of trees. We used nested observations along hydrologic flow paths connecting hillslope soils to streams of up to third order. We found soil water NO3 concentrations increased 100-fold compared to prior research at this and nearby southeast Wyoming sites. Nitrogen was lost below the major rooting zone to hillslope groundwater, where dissolved organic nitrogen (DON) increased by 3-10 times (mean 1.65 mg L-1) and NO3-N increased more than 100-fold (3.68 mg L-1) compared to preinfestation concentrations. Most of this N was removed as hillslope groundwater drained through riparian soils, and NO3 remained low in streams. DON entering the stream decreased 50% within 5 km downstream, to concentrations typical of unimpacted subalpine streams (~0.3 mg L-1). Although beetle outbreak caused hillslope N losses similar to other disturbances, up to 5.5 kg ha-1y-1, riparian and in-stream removal limited headwater catchment export to <1 kg ha-1y-1. These observations suggest riparian removal was the dominant mechanism preventing hillslope N loss from impacting streams.

  1. RESEARCH: Prospects for Preservation and Restoration of Riparian Forests in the Sacramento Valley, California, USA.

    Science.gov (United States)

    Hunter; B Willett K; McCoy; Quinn; Keller

    1999-07-01

    / This GIS-based study analyzes the distribution and management of woody riparian vegetation in California's Sacramento Valley and discusses the prospects for its conservation. Although forests were the predominant floodplain vegetation prior to extensive settlement, only 3.3% of floodplain was covered by forest in the late 1980s. This remaining forest was fragmented into 2607 patches with an average area of 3.1 ha. Only 180 patches were >10 ha, with three patches >100 ha. Despite over two decades of conservation efforts, these forests are essentially unpreserved: Only 14.5% of extant forests are in public ownership or on land managed primarily for biological conservation. Some privately owned forests represent opportunities for preservation, but owing to their small size and scattered distribution, reforestation would be necessary to obtain a high cover of forest over large areas. Additionally, high property values, existing land uses, and regulated hydrology constrain conservation efforts. As a consequence of these constraints, and current distribution and ownership patterns, preservation or restoration of substantial areas of riparian forest would be extremely expensive and would divert conservation resources from other habitats in this rapidly developing state. Therefore, efforts to conserve these forests should satisfy two criteria: (1) that the specific goals are attainable with available funding and existing human uses, and (2) funding the effort will result in more effective regional conservation than would funding the conservation of other habitats.KEY WORDS: Central Valley; Conservation; Floodplains; Geographic information systems; Riparian vegetationhttp://link.springer-ny.com/link/service/journals/00267/bibs/24n1p65.html PMID:10341063

  2. Evaluation of the riparian forest state program in Pitangueiras county, Parana /
    Avaliação do programa estadual “Mata Ciliar” no município de Pitangueiras, Paraná

    OpenAIRE

    Cristovon Videira Ripol; Ricardo Ralisch; Marli Candalaft Alcantara Parra Peres

    2009-01-01

    Riparian forest restoration is fundamental for maintenance of vegetable, animal and human life. The objective of this study was to evaluate the efficiency of a Riparian Forest state program in the enlargement of the riparian forests in Pitangueiras county, state of Paraná, in the period of 2004 to 2006. Concerning the riparian reforestation, it was ansewered the reasons that convinced the farmers to join the program, the main difficulties found in its execution, and their views on environment...

  3. INDICATED SPECIES TO RESTORATION OF RIPARIAN FORESTS IN SUBWATERSHED OF PEIXE-BOI RIVER, PARÁ STATE

    OpenAIRE

    Igor do Vale; Luiz Gonzaga Silva Costa; Izildinha Souza Miranda

    2014-01-01

    http://dx.doi.org/10.5902/1980509815736This study aims to indicate native species to be used in the restoration of degraded riparian forests in the subwatershed of Peixe-Boi river. All trees and shrubs with diameter at breast height (DBH) > 5 cm were inventoried in ten areas of secondary forest and six areas of igapó forest. The results were analyzed by Principal Component Analysis and the silviculture of the species was assessed by literature review. In Igapó areas 66 species were found; ...

  4. Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil: An undisturbed soil column study

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Leoz, Borja [Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao (Spain); Antigueedad, Inaki [Department of Geodynamic, University of the Basque Country, UPV/EHU, E-48940 Leioa (Spain); Garbisu, Carlos [Department of Ecosystems, NEIKER-Tecnalia, E-48160 Derio (Spain); Ruiz-Romera, Estilita, E-mail: estilita.ruiz@ehu.es [Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao (Spain)

    2011-01-15

    Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO{sub 2} and N{sub 2}O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO{sub 3}{sup -} L{sup -1} solution (rate: 90 mL day{sup -1}) for 125 days at two different temperatures (10 and 20 {sup o}C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO{sub 3}{sup -} concentration, NH{sub 4}{sup +} concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO{sub 2} and N{sub 2}O) were determined in the undisturbed soil columns. The A horizon at 20 {sup o}C showed the highest rates of NO{sub 3}{sup -} removal (1.56 mg N-NO{sub 3}{sup -} kg{sup -1} DW soil day{sup -1}) and CO{sub 2} and N{sub 2}O production (5.89 mg CO{sub 2} kg{sup -1} DW soil day{sup -1} and 55.71 {mu}g N-N{sub 2}O kg{sup -1} DW soil day{sup -1}). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO{sub 3}{sup -} ha{sup -1} year{sup -1}, and potential greenhouse gas emissions of 5620 kg CO{sub 2} ha{sup -1} year{sup -1} and 240 kg N-N{sub 2}O ha{sup -1} year{sup -1}. - Research Highlights: {yields}A new experimental design is proposed for leaching assays to simulate nitrogen transformations in riparian wetland soil. {yields}Denitrification is the main process responsible for nitrate removal in the riparian zone of Salburua wetland. {yields

  5. Waste management system in the riparian towns of the Romanian Danube sector

    Directory of Open Access Journals (Sweden)

    Radu Săgeată

    2016-09-01

    Full Text Available In Romania, managing and recycling household garbage is one of the least performing systems in the European Union. Numerous waste dumping sites are unconformable to European standards, besides there is little garbage recycling. This paper makes a complex waste management analysis of the Romanian Danube riparian towns subjected to strong human pressure; this sector is also of great European interest for the protection of its biodiversity. The main dysfunctions of garbage dumping, the price asked by scavenging services, the steps taken for the ecological management of waste dumping sites in conformity with EU norms and better waste recycling, as well as future measures are also discussed in this paper.

  6. Hydrological responses in a pre-alpine head watershed: the role of hillslopes and riparian zones

    Science.gov (United States)

    von Freyberg, Jana; Radny, Dirk; Schirmer, Mario

    2014-05-01

    Mountainous watersheds are characterized by generally high precipitation inputs and very heterogeneous landscape properties, which make them very dynamic hydrologic systems that play an important role in the water cycle. Their groundwater systems sustain downstream baseflow in larger catchments in many parts of the world, particularly in the densely populated lowlands of Switzerland. Hillslope aquifers are often categorized as one of the dominant groundwater resources in mountainous watersheds. These aquifers may also act as source areas for pollutants in rivers due to intensive agricultural land use. In our study we seek to improve the understanding of the groundwater flow processes and runoff generation mechanisms in high altitude watersheds, under explicit consideration of the joint behaviors of climate and groundwater. The role of the hillslope groundwater contribution to catchment outflow and streamflow composition was investigated in the pre-alpine Rietholzbach catchment (~1 sq km) in northeast Switzerland. The field site, equipped with an extensive hydrometric setup, facilitates the monitoring of annual, inter-seasonal and short-term dynamics of water flow and composition, as well as its links to associated parameters describing atmospheric, surface and subsurface properties. In this study, we focused on the effects of antecedent moisture, rainfall characteristics and landscape properties on groundwater and river responses in order to develop a conceptual model of runoff generation. Our observations indicate generally low hydraulic conductivities and average groundwater travel times of several months in the hillslope aquifers resulting from high clay-contents of the unconsolidated glacial Moraine deposits. Event analysis revealed that only a small portion of the total watershed area generates event discharge and we have identified the saturated valley bottom (riparian zones) and lower hillslopes as the two dominant hydrological landscape units. Runoff

  7. Vascular Flora of a Riparian Site on the Canadian River, Cleveland County, Oklahoma

    OpenAIRE

    Lacy Burgess; Bruce W. Hoagland

    2006-01-01

    This article reports the results of an inventory of the vascular plants from a riparian site in central Oklahoma. One hundred and sixty-three species of vascular plants in 131 genera and 45 families were collected. The most species were collected from the families Asteraceae (32) and Poaceae (26). Fifty-eight species were annuals, 97 perennials, and 8 biennials. Eight species of woody plants were present. Twenty-nine species, or 18% of the flora, were exotic to Oklahoma. No species listed as ...

  8. The effect of riparian forest management on flood risk and flood hydrology

    Science.gov (United States)

    Dixon, S.; Sear, D.

    2012-04-01

    Riparian forests are a source of in-stream Large Wood. In-stream Large Wood has been shown to produce complex in-stream hydraulic patterns which can act to dissipate flood energy and attenuate flood peaks. Furthermore riparian forest are also commonly characterised by a complex flood plain surface which acts to slow overbank flow. Increased channel and floodplain flow resistance in forested catchments has the effect of increasing the duration and height of overbank inundation locally, but also, and significantly, can potentially increase flood wave travel time and reduce flood peak magnitude at downstream locations. River restoration programmes can include riparian afforestation of headwater stream and increases to in-stream hydraulic roughness; there is a need for research to quantify the effect of such changes on flood hydrology. This study uses a loosely coupled modelling approach to investigate the response of flood behaviour to catchment wide forest management strategies. A USDA Riparian Forest growth model (NE-CWD) calibrated for UK forests using Forestry Commission Biometrics data is used to deliver predictions of in-stream wood loads under different forest management scenarios over time. Scenarios include continuation of plantation management with harvesting/thinning, hands-off management with no harvesting and reforestation of cleared areas of the catchment. Wood load predictions from NE-CWD are translated into predictions of logjam frequency and values for channel hydraulic roughness based on field data collected over two field seasons. Flood modelling is conducted using OVERFLOW, a model developed for the simulation of flood events where the magnitude and travel time of a flood peak to a downstream location are of interest. Predictions linking land use to flood behaviour can be delivered by varying the forest management scenarios within NE-CWD and the associated channel and floodplain roughness. The output of OVERFLOW includes individual contributions

  9. Florística e estrutura da comunidade arbórea de um remanescente florestal ripário no município de Guariba, Estado de São Paulo, Brasil. Floristic and structure of the arboreal community of riparian forest remain at Guariba municipality, São Paulo State, Brazil.

    Directory of Open Access Journals (Sweden)

    Nicole Maria Marson DONADIO

    2009-06-01

    Full Text Available O conhecimento sobre a composição eestrutura de comunidades florestais é fundamentalpara embasar ações de conservação e restauração.O objetivo deste trabalho foi realizar olevantamento florístico e descrever a estrutura dacomunidade arbórea de um remanescente florestallocalizado no município de Guariba, Estado de SãoPaulo. Foram alocadas 30 parcelas de 10 x 10 m,para amostrar os indivíduos arbóreos e arbustivoscom diâmetro à altura do peito (DAP ³ 5 cm.Foram encontradas 54 espécies, pertencentes a 47gêneros, distribuídos em 32 famílias botânicas,com índice de diversidade (H’ de 2,67 eequabilidade (J de 0,20. As famílias Meliaceae eFabaceae apresentaram maior riqueza em espécies.Calophyllum brasiliensis, Astronium graveolens,Scheffera morototoni, Xylopia aromatica eProtium widgrenii destacaram-se como as espéciesde maior valor de importância. Foram amostrados420 indivíduos. A presença de espécies do cerradosugere condição de ecótono e a dominância de umaespécie higrófila indica saturação hídrica em parteda área. A distribuição dos indivíduos em classesde tamanho revelou uma comunidade emregeneração com a maioria dos indivíduos com até15,0 cm de DAP e distribuídos entre 7 e 14,9 m,e com estoques de jovens tanto das espéciespioneiras como secundárias podendo garantir ofuturo da comunidade. Em termos sucessionais aárea estudada encontra-se em estádio de médiopara avançado.Knowledge of the composition andstructure of arboreal communities is paramount forconservation and restoration efforts. The mainobjectives of this study were to characterize thearboreal species floristic composition and describethe structure of the arboreal community of aremaining forest located at the municipality ofGuariba, State of São Paulo. Thirty plots of 10 x 10 mwere allocated. In each plot, diameter and heightwere measured for each individual tree withdiameter at breast height (dbh ³ 5 cm. Fifty-fourspecies were

  10. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers

    NARCIS (Netherlands)

    Marzin, A.; Verdonschot, P.F.M.; Pont, D.

    2013-01-01

    This study compares the relative influences of physiography and anthropogenic pressures on river biota at catchment, riparian corridor, and reach scales. Environmental data, catchment and riparian corridor land use, anthropogenic modifications and biological data were compiled for 301 French sites s

  11. Asteretum lanceolati: Xenospontaneous community on wet and riparian habitats

    Directory of Open Access Journals (Sweden)

    Obratov-Petković Dragica

    2011-01-01

    Full Text Available Invasive species Aster lanceolatus grows on moist habitats on the whole territory of Serbia. In Belgrade, this species is recorded with a higher degree of presence at a number of localities. With the aim to investigate the community in which this species is dominant, the wide area of Serbia was researched, and 8 localities on the territory of Belgrade were chosen for the analysis of the community. Floristic structure of the community was determined by the standard Braun-Blanquet method (1964, phytogeographical analysis was performed according to Gajić (1980, 1984, and determination of life forms according to Raunkier (Ellenberg, Mueller-Dombois, 1967. pH soil analysis and electric conductivity (EC were performed at all investigated localities. It was established that the community dominates the moist habitats of Belgrade. It is composed of 104 species and among them Aster lanceolatus Willd., Cichorium intybus L., Agropyrum repens (L. Beauv., Calystegia sepium (L. R. Br., Cirsium arvense (L. Scop., Symphytum officinale L. and Rumex obtusifolius L. are the most frequent. In relation to life forms, the community has hemicriptophytes character, and in relation to phytogeography Euroasian and Middle Europaean floral elements are dominant, with a high presence of cosmopolitan and adventive floral elements. On the locialities Veliko Ratno ostrvo (island and Makiš, EC values point to the fact that the amount of nutrient in the soil is higher than at other localities.

  12. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  13. Spatial and temporal distribution of acetochlor in sediments and riparian soils of the Songhua River Basin in northeastern China

    Institute of Scientific and Technical Information of China (English)

    Xiaoyin Sun; Qixing Zhou; Wenjie Ren; Xuhui Li; Liping Ren

    2011-01-01

    The Songhua River Basin is a burgeoning agricultural area in the modern times in China.Particularly in recent years,increasing chemical fertilizers and pesticides have been applied with the development of agricultural production.However,the situation of nonpoint source pollution (NSP) from agricultural production in this basin is still obscure.In order to solve the problem,the occurrence and distribution of acetochlor in sediments and riparian soils of the Songhua River Basin before rain season and after rain season were investigated.In addition,total organic carbon was analyzed.The result showed that the concentration of acetochlor ranged from 0.47 to 11.76 μg/kg in sediments and 0.03 to 709.37 μg/kg in riparian soils.During the high flow period in 2009,the mean concentration was 4.79 μg/kg in sediments and 0.75 μg/kg in riparian soils,respectively.Similarly,the mean concentration was 2.53 μg/kg in sediments and 61,36 μg/kg in riparian soils,during the average flow period in 2010.There was a significant correlation between the concentration of acetochlor and total organic carbon in surface sediments.Moreover,the distribution of acetochlor in sediments of the Songhua River was signiicantly correlated to land use and topography of the watershed.The investigated data suggested that the concentration of acetochlor in the Songnen Plain and the Sanjiang Plain was higher than that in the other areas of the basin,and riparian buffering zones in these areas had been destroyed by human activities.The optimal agricultural measures to alleviate the contamination of pesticides should be adopted,including controlling agricultural application of acetochlor and ecological restoration of riparian buffering strips.

  14. Influence of long-term trends of flooding on habitat conditions in lowland riparian wetlands under low antropopression

    Science.gov (United States)

    Mirosław-Świątek, Dorota; Grygoruk, Mateusz

    2016-04-01

    Temporal, volumetric and areal trends of flooding remain dominant factors shaping habitat conditions of riparian wetlands. In contemporary Europe, where the pristine extent of riparian wetlands strongly decreased due to antropopression and the flow regime of majority of rivers was decently modified in agricultural and hydropower purposes, valuable riparian habitats that remained in good ecological state require appropriate maintenance of floods. Even though multiple environmental regulations were implemented worldwide in order to mitigate negative effects of antropopression to flow regime and habitats, it is the climatic change that challenges riparian ecosystem management to the extent comparable (if not higher) than the direct human interventions. Wishing to detect probable influence of the ongoing climatic change on the flood regime one should search for catchment systems of a low antropopression, where the long term variability of flood extents, flood depths and recurrence intervals are likely to reflect climatic changes rather than human activity. In our study we analysed 60-years long time series of the discharge data of Biebrza river (NE Poland) that was found in numerous studies a reference in a temperate-continental European riparian and mire ecosystem research. Daily data of river discharge was used as boundary conditions in the WETFLOD - a developed integrated river-floodplain-groundwater flow model applied to the environment of Lower Biebrza Basin. The model was used to simulate and analyze trends of changes in flood extent and water depths in selected, well preserved vegetation patches namely the Caricetum appropinquatae, Caricetum gracilis, Phragmitetum communis and Glycerietum maximae. Temporal trends were analysed on the basis of distribution deciles of flood extents, depths and recurrence intervals. Study revealed that flood extents and flood depths in the first decade of the 21st century were decently different from the ones modeled for the second

  15. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  16. Degradation of Riparian Tree Diversity on Spring Fed Drains and Its Impacts to Water Quality, East Java

    Directory of Open Access Journals (Sweden)

    Chatarina Gradict Semiun

    2013-05-01

    Full Text Available This research aimed to determine the impact of degradation riparian tree diversity on water quality along some spring to its drains in East Java. This descriptive research conducted in selected springs and itsdrains in Jember, Kediri, Pasuruan, and Malang on April 2012 to January 2013. We used a spring water of Meru Betiri National Park as a reference site. Quality of riparian trees diversity and water were sampled with three replication.Data were tabulated by statistical analyzed using cluster and Spearman correlation. The result showed that species richness ofriparian tree in spring water and its drains has found were 69 species belonging to 28 families. Moraceae was key family of natural riparian tree and almost all the spring and its drains (92.75 % were grown by native trees except in Kediri. All observed spring were degrading comparing to the natural one in Meru Betiri National Park where trees grown in strata A to E, and shown a highest diversity index (H’=3.2. All water spring were observed in high quality but water in its downstream become turbid depend on the quality of treesriparian diversity grown around spring waters. Quality of riparian diversity was strongly influenced by land use and human activities such as illegal logging, intensive agriculture, and settlement. There was a positive correlation between riparian tree diversity, water transparency and color, but it had a negative correlation with pH value of water.Low pH, high water transparency and colorless water were found in stations where we found high tree species richness, diversity index, riparian width and stratified of tree.

  17. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants

    Institute of Scientific and Technical Information of China (English)

    Changming Yang; Mengmeng Wang; Haiyan Chen; Jianhua Li

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis,Zizaaia aquatica,and Acorus calamus.The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants.A.calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils,as compared with Z aquatica and P.australis.Half-life time of butachlor degradation in the rhizospheric soils of P.australis,Z.aquatica,and A.calamus were 7.5,9.8 and 5.4 days,respectively.Residual butachlor concentration in A.calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z.aquatica and P.australis rhizosphere soils,respectively,indicating that A.calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant.In general,microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition,despite the riparian plant types.However,rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species.Compared to Z.aquatica and P.australis,A.calamus showed significantly larger microbial number,higher enzyme activities and soil respiration rates in the rhizosphere soils.The results indicated that A.calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butaehlor contamination from agricultural nonpoint pollution.

  18. PHYTOSOCIOLOGICAL AND PHYTOGEOGRAPHIC CHARACTERIZATION OF A RIPARIAN FOREST SECTOR IN ALFREDO WAGNER, SANTA CATARINA STATE, AS SUBSIDY FOR ECOLOGICAL RESTORATION

    Directory of Open Access Journals (Sweden)

    Ana Carolina da Silva

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812342The understanding of floristic and structure of tree communities is essential to subside the strategies offorest restoration. In this sense, a phyto-sociological survey was conducted in a forest fragment situated along a tributary of Caeté river, in Alfredo Wagner, state of Santa Catarina, in order to: i know the structureof trees and flora in this forest, ii classify the species found according to ecological groups and iii comparethe flora of the study area with other studies in Araucaria forest (FOM, Atlantic Rain Forest (FOD andthe transition area between FOM-FOD of Santa Catarina state. In this fragment, 10 plots of 400 m2 wereallocated, where all individual trees with the circumference at breast height (CBH, measured at 1.30 mabove the ground greater than or equal to 15.7 cm were measured, marked and identified. The species wereclassified into the following succession groups: pioneer, climax light-demanding or climax shade-tolerant.The Rectified Correspondence Analysis (DCA was used for the floristic comparison. The structure of thetree component was described by the density, frequency, dominance and importance value (VI. The resultsshowed elevated species richness (98 species. It was found typical species of FOM, such as Araucariaangustifolia (Bert. Kuntze, and species characteristics of FOD such as Byrsonima ligustrifolia A.Juss.,confirming the study fragment as an area of ecological tension between FOM and FOD. The species withmost elevated VI were Psychotria vellosiana Benth., Alsophila setosa Kaulf. and Guatteria australis A.St.-Hil. The species with elevated VI, for their considerable representation in the area, are important in therestoration of degraded riparian forests in the region. The species seedlings plantation should be plannedobserving the group successional of each species, planting pioneer and light-demanding climax speciesfirst (e.g. Psychotria vellosiana, followed by, after the

  19. ASSESSMENT OF A 5-YEAR-OLD REHABILITATED RIPARIAN FOREST: IS IT ALREADY SUSTAINABLE?

    Directory of Open Access Journals (Sweden)

    Vinícius Londe

    2015-08-01

    Full Text Available ABSTRACTAs important as the establishment of projects of ecological restoration is its assessment post-implementation to know whether the area is becoming self-sustainable or need to be redirected. In this way, this study aimed to know the current situation of a 5-year-old rehabilitated riparian forest,inserted in an anthropogenic impacted region,at the das Velhas River, Minas Gerais State, studying the canopy openness and recruitment of seedlings as plant indicators. 15 plots were allocated in the forest, where hemispherical photographs were taken to analyze the canopy openness and evaluate all seedlings from 0.30 m to 1.30 m height.Canopy openness ranged from 23.7% to 38.8% between seasons and only 192 seedlings were found,from 13 species, five of them exotic and aggressive. Although canopy openness was low, it seems that lateral penetration of light has been favoring the development and dominancy of plants from invasive species, whereas few native ones have been recruited. The exotic/invasive plants may compromise the success of restoration mainly by competition with native planted species. The outcomes evidenced an unsustainability of the riparian forest and the requirement of some management actions to control exotic and invasive plants and ensure the preservation of the area and its ecological roles over time.

  20. Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession

    Science.gov (United States)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.; Harman, Ciaran; Gooseff, Michael N.; Singha, Kamini

    2016-02-01

    Solute transport along riparian and hyporheic flow paths is broadly expected to respond to dynamic hydrologic forcing by streams, aquifers, and hillslopes. However, direct observation of these dynamic responses is lacking, as is the relative control of geologic setting as a control on responses to dynamic hydrologic forcing. We conducted a series of four stream solute tracer injections through base flow recession in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow riparian wells in each watershed. We found hyporheic mean arrival time, temporal variance, and fraction of stream water in the bedrock-constrained valley bottom and near large roughness elements in the wider valley bottom were not variable with discharge, suggesting minimal control by hydrologic forcing. Conversely, we observed increases in mean arrival time and temporal variance and decreasing fraction stream water with decreasing discharge near the hillslopes in the wider valley bottom. This may indicate changes in stream discharge and valley bottom hydrology control transport in less constrained locations. We detail five hydrogeomorphic responses to base flow recession to explain observed spatial and temporal patterns in the interactions between streams and their valley bottoms. Models able to account for the transition from geologically dominated processes in the near-stream subsurface to hydrologically dominated processes near the hillslope will be required to predict solute transport and fate in valley bottoms of headwater mountain streams.

  1. Heavy metal distribution of natural and reclaimed tidal riparian wetlands in south estuary, China

    Institute of Scientific and Technical Information of China (English)

    Honggang Zhang; Baoshan Cui; Kejiang Zhang

    2011-01-01

    We evaluated the distribution and accumulation ofCd,Cr,Cu,Ni,Pb and Zn in two plant species (Scirpus tripueter Linn.and Cyperus malaccensis Lam.),in water and soils sampled from the reclaimed tidal riparian wetlands (RTRWs) and the natural riparian wetlands (NRWs) in the Pearl River Estuary (PRE).The results showed that the concentrations of studied heavy metals in soils exceeded the eco-toxic threshold recommended by US EPA.The concentrations ofCd,Cr and Zn in plants may lead to toxic effects.The heavy metal concentrations were high in water and low in soils of RTRWs compared with that in the NRWs.The accumulation of heavy metals in the roots of plants was higher in NRWs than those in RTRWs while the opposite result was found for heavy metal accumulation in shoots.Based on the bioaccumulation and translocation factors,the plants in NRWs had a higher capacity to accumulate heavy metals while higher abilities to transport heavy metals from roots to shoots were observed in RTRWs.Heavy metal contaminations in RTRWs were dominated by anthropogenic sources from both side uplands and river water,whereas in NRWs,the metal accumulations were simultaneously affected by anthropogenic and natural factors

  2. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management

    Science.gov (United States)

    Bury, R.B.

    2008-01-01

    Temperature has a profound effect on survival and ecology of amphibians. In the Pacific Northwest, timber harvest is known to increase peak stream temperatures to 24??C or higher, which has potential to negatively impact cold-water stream amphibians. I determined the Critical Thermal Maxima (CT max) for two salamanders that are endemic to the Pacific Northwest. Rhyacotriton variegatus larvae acclimated at 10??C had mean CTmax of 26.7 ?? 0.7 SD??C and adults acclimated at 11??C had mean CT max of 27.9 ?? 1.1??C. These were among the lowest known values for any amphibian. Values were significantly higher for larval Dicamptodon tenebrosus acclimated at 14??C (x = 29.1 ?? 0.2??C). Although the smallest R. variegatus had some of the lowest values, size of larvae and adults did not influence CTmax in this species. Current forest practices retain riparian buffers along larger fish-bearing streams; however, such buffers along smaller headwaters and non-fish bearing streams may provide favorable habitat conditions for coldwater-associated species in the Pacific Northwest. The current study lends further evidence to the need for protection of Northwest stream amphibians from environmental perturbations. Forest guidelines that include riparian buffer zones and configurations of upland stands should be developed, while monitoring amphibian responses to determine their success. ?? 2008 Brill Academic Publishers.

  3. Impact of Dams on Riparian Frog Communities in the Southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Rohit Naniwadekar

    2014-08-01

    Full Text Available The Western Ghats is a global biodiversity hotspot and home to diverse and unique assemblages of amphibians. Several rivers originate from these mountains and hydropower is being tapped from them. The impacts of hydrological regulation of riparian ecosystems to wildlife and its habitat are poorly documented, and in particular the fate of frog populations is unknown. We examined the effects of dams on riparian frog communities in the Thamirabarani catchment in southern Western Ghats. We used nocturnal visual encounter surveys constrained for time, to document the species richness of frogs below and above the dam, and also at control sites in the same catchment. While we did not find differences in species richness below and above the dams, the frog community composition was significantly altered as a likely consequence of altered flow regime. The frog species compositions in control sites were similar to above-dam sites. Below-dam sites had a distinctly different species composition. Select endemic frog species appeared to be adversely impacted due to the dams. Below-dam sites had a greater proportion of generalist and widely distributed species. Dams in the Western Ghats appeared to adversely impact population of endemic species, particularly those belonging to the genus Nyctibatrachus that shows specialization for intact streams.

  4. Health Assessment of Mercury Exposure in a Riparian Community in the Madeira River

    Directory of Open Access Journals (Sweden)

    Vega C. M.

    2014-07-01

    Full Text Available Mercury concentrations were analyzed in a riparian community from the Cuniã Lake RESEX (a riparian extrativist reserve at the Madeira river, located in the Amazon region. The studied population age ranged from 2 to 90 years old and hair was used as biomarker. A total of 252 hair samples were collected from fishermen families. Hg concentrations averaged 6.0 (IC95% 5.58-6.58 ± 3.9 μg.g-1 (SD. The fish consumption for adults in this community ranges from 40 to 600 grams per day. The results showed significant gender differences for Hg levels (p-value < 0.05; for male individuals the average was 7.4 (IC 95% 5.56-8.28±4,5 μg.g-1 and for female individuals was of 5.0 (IC 95% 4.49-5.54 ±3.3 μg.g-1. Studies on neurological symptoms and diet of this community are under way along with other clinical trials and biochemical measurements.

  5. Bottom-up factors influencing riparian willow recovery in Yellowstone National Park

    Science.gov (United States)

    Tercek, M.T.; Stottlemyer, R.; Renkin, R.

    2010-01-01

    After the elimination of wolves (Canis lupis L.) in the 1920s, woody riparian plant communities on the northern range of Yellowstone National Park (YNP) declined an estimated 50%. After the reintroduction of wolves in 19951996, riparian willows (Salix spp.) on YNP's northern range showed significant growth for the first time since the 1920s. However, the pace of willow recovery has not been uniform. Some communities have exceeded 400 cm, while others are still at pre-1995 levels of 250 cm max. height) willow sites where willows had escaped elk (Cervus elaphus L.) browsing with "short" willow sites that could still be browsed. Unlike studies that manipulated willow height with fences and artificial dams, we examined sites that had natural growth differences in height since the reintroduction of wolves. Tall willow sites had greater water availability, more-rapid net soil nitrogen mineralization, greater snow depth, lower soil respiration rates, and cooler summer soil temperatures than nearby short willow sites. Most of these differences were measured both in herbaceous areas adjacent to the willow patches and in the willow patches themselves, suggesting that they were not effects of varying willow height recovery but were instead preexisting site differences that may have contributed to increased plant productivity. Our results agree with earlier studies in experimental plots which suggest that the varying pace of willow recovery has been influenced by abiotic limiting factors that interact with top-down reductions in willow browsing by elk. ?? 2010 Western North American Naturalist.

  6. Comparison of water consumption in two riparian vegetation communities along the central Platte River, Nebraska, 2008–09 and 2011

    Science.gov (United States)

    Hall, Brent M.; Rus, David L.

    2013-01-01

    The Platte River is a vital natural resource for the people, plants, and animals of Nebraska. A recent study quantified water use by riparian woodlands along central reaches of the Platte River, Nebraska, finding that water use was mainly regulated below maximum predicted levels. A comparative study was launched through a cooperative partnership between the U.S. Geological Survey, the Central Platte Natural Resources District, the Nebraska Department of Natural Resources, and the Nebraska Environmental Trust to compare water use of a riparian woodland with that of a grazed riparian grassland along the central Platte River. This report describes the results of the 3-year study by the U.S. Geological Survey to measure the evapotranspiration (ET) rates in the two riparian vegetation communities. Evapotranspiration was measured during 2008–09 and 2011 using the eddy-covariance method at a riparian woodland near Odessa, hereinafter referred to as the “woodland site,” and a riparian grassland pasture near Elm Creek, hereinafter referred to as the “grassland site.” Overall, annual ET totals at the grassland site were 90 percent of the annual ET measured at the woodland site, with averages of 653 millimeters (mm) and 726 mm, respectively. Evapotranspiration rates were similar at the grassland site and the woodland site during the spring and fall seasons, but at the woodland site ET rates were higher than those of the grassland site during the peak-growth summer months of June through August. These seasonal differences and the slightly lower ET rates at the grassland site were likely the result of differing plant communities, disturbance effects related to grazing and flooding, and climatic differences between the sites. The annual water balance was calculated for each site and indicated that the predominant factors in the water balance at both sites were ET and precipitation. Annual precipitation for the study period ranged from near to above the normal

  7. Guild structure of a riparian avifauna relative to seasonal cattle grazing

    Science.gov (United States)

    Knopf, F.L.; Sedgwick, J.A.; Cannon, R. W.

    1988-01-01

    Knopf et al. found that summer cattle grazing has an adverse effect on the presence of certain willow-dependent songbirds. Pastures that have historical summer grazing no longer have the Willow flycatcher, Lincoln's sparrow and the White-crowned sparrow present. Yet in these same areas, birds like the American Robin, Brown-headed cowbird and the Red-winged blackbird have increased in density. One possible answer for the decrease in some songbirds is the fact that the main focus of the Arapaho National Wildlife Refuge is on waterfowl habitat, which requires large amounts of open space (opposite of desirable songbird habitat).

  8. 南芬细河河岸带土壤理化性质分析%Soil Physical and Chemical Properties of Riparian Zone Along Xi River

    Institute of Scientific and Technical Information of China (English)

    杨春璐; 马溪平; 侯伟; 李法云; 刘强; 李悦; 程志辉; 孔维静

    2012-01-01

    为揭示人为扰动对河岸带土壤造成的影响,以近年来频繁受到人为干扰的、辽宁省本溪市南芬区的细河河岸带为研究对象,采用野外调查和实验室分析测定的方法,对研究区27个点位,0-20cm、20-30cm、30-40cm 3个不同采样深度的土壤进行了多项理化性质的分析.结果表明,南芬细河河岸带土壤基质较硬,容重普遍较大而孔隙率较小,土壤结构性差;土壤呈中性或碱性;河岸带土壤全磷质量比普遍较高,而速效磷质量比极低;有机质和全氮质量比随采样点不同差异较大,二者之间存在极显著的相关性;不同理化指标数值普遍在研究区域的不同采样点表现出明显差异,而在同一点位的不同采样深度上的数值差异不显著.研究结果说明,频繁的人为干扰对南芬细河河岸带土壤层次性造成了较为严重的影响,其恢复过程尚需较长时间.%To reveal the impact of human disturbance on the riparian zone soil, the riparian zone of Xi River, where is frequently disturbed by human in recent years, and is located in Benxi City, Liaoning Province, has been selected as the research object. By using field investigation and laboratory analysis methods, the soil physical and chemical properties of the 27 points at three different sampling depths of 0-20cm, 20-30cm, and 30-40cm were studied. The results indicate that the riparian zone soil of Xi River has a hard soil matrix and a poor soil structure. The values of bulk densities are generally high, and total porosity of that is generally low. The soils are neutral or alkalescent. Contents of soil total phosphorus are generally high; however, the available phosphorus is extremely low. The value of organic matter and total nitrogen is very different in different points, and there is. A significant relationship between the two properties. In the general, the property values in different points is significantly different, however it is insignificantly

  9. Invasiveness does not predict impact: response of native land snail communities to plant invasions in riparian habitats.

    Directory of Open Access Journals (Sweden)

    Jitka Horáčková

    Full Text Available Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.× bohemica in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16-48% reduction in snail species numbers, and 29-90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities.

  10. Invasiveness does not predict impact: response of native land snail communities to plant invasions in riparian habitats.

    Science.gov (United States)

    Horáčková, Jitka; Juřičková, Lucie; Šizling, Arnošt L; Jarošík, Vojtěch; Pyšek, Petr

    2014-01-01

    Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.× bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16-48% reduction in snail species numbers, and 29-90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities. PMID:25238059

  11. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  12. Using monitoring, LiDAR and MODFLOW to Estimate Hyporheic Fluxes for a Dynamic Large River Riparian Area

    Science.gov (United States)

    In unrevetted reaches, the Willamette River in northwest Oregon is a dynamic anastomosing system. Riparian zones are frequently divided into multiple islands during most of the wet winter season. The dividing stream channels are mostly absent during the dry summer season. This po...

  13. Moving window analysis and riparian boundary delineation on the Northern Plains of Kruger National Park, South Africa

    Science.gov (United States)

    Kröger, Robert; Khomo, Lesego M.; Levick, Shaun; Rogers, Kevin H.

    2009-09-01

    Landscapes commonly comprise of mosaics, patches and boundaries. Riparian boundaries are complex to delineate and characterize, with a multitude of variables available for delineation. Multiple methods exist for boundary delineation such as two-dimensional wombling, constrained classification techniques and discontinuity detection. One method that has proven to be reliable in boundary delineation with one-dimensional transect data is the moving split window (MSW) analysis. This study demonstrates the efficacy of MSW to delineate grass species turnover and environmental boundaries across two geologically dissimilar riparian zones in the Kruger National Park, South Africa. There are few studies that have delineated riparian boundaries of Kruger National Park, and none that have used the MSW analysis. MSW detects significant changes in dissimilarity indices of variables along gradients. Significant shifts in dissimilarity designate boundaries at various spatial scales dictated by window sizes. Significant boundaries emerge by altering window sizes, increasing quadrat width and removing infrequent herbaceous species. By utilizing these three methods, MSW background variance was reduced and riparian and wetland/upland boundaries were sharper and more easily defined.

  14. 77 FR 26569 - Llano Seco Riparian Sanctuary Unit Restoration and Pumping Plant/Fish Screen Facility Protection...

    Science.gov (United States)

    2012-05-04

    ... to prevent river meander. Alternative 2: Spur Dikes and Site-Specific Plantings Under Alternative 2, bank protection measures would consist of installing eight rock spur dikes along the Sacramento River on the northern side of the Riparian Sanctuary. The dike field would extend about 2,000 feet...

  15. SHRUBBY TREE COMPONENT OF RIPARIAN CORRIDORS IN RESTORATION AND NATURAL REMAINING AREAS OF MATRIX FORESTRY, RIO NEGRINHO, SC STATE

    Directory of Open Access Journals (Sweden)

    Eliziane Carla Scariot

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814578The aim of this study was to analyze the shrubby tree component in riparian corridors in restoration process and natural remainders in a matrix forestry. We identified the richness, diversity, dispersal and pollination syndromes of the individuals and estimate the floristic similarity. The study was conducted at the producing farm of Pinus spp. wood Santa Alice, located in Rio Negrinho city, Santa Catarina state, Brazil. We adopted the center-quarter method for survey the shrubby tree component in four sample groups: CA (advanced stage of riparian corridors vegetation, CR (riparian corridors in restoration, MA (advanced stage of natural remaining, MI (intermediate stage of natural remaining. We found the highest richness and diversity index in MA and CR. Regarding the number of individuals, the dispersal and pollination syndromes predominant in all sample groups were zoochory and zoophilia. CR and CA had the highest percentage of floristic similarity while MA and MI did not form clusters. The sample group CR has composition, richness and diversity more similar to CA. This indicates that the restoration of riparian zones has conditions to rescue the components and the interactions of an ecological community.

  16. Experimental and numerical study of the relation between flow paths and fate of a pesticide in a riparian wetland

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Dahl, Mette; Engesgaard, Peter Knudegaard;

    2010-01-01

    A field-scale pulse-injection experiment with the herbicide Isoproturon was conducted in a Danish riparian wetland. A non-reactive tracer (bromide) experiment was also carried out to characterize the physical transport system. Groundwater flow and reactive transport modelling was used to simulate...

  17. Changes in soil organic matter compositrion after introduction of riparian vegetation on shores of hydroelectric reservoires (Southeast of Brazil)

    NARCIS (Netherlands)

    Alcantara, de F.A.; Buurman, P.; Curi, N.; Furtini Neto, A.E.; Lagen, van B.; Meijer, E.M.

    2004-01-01

    This work is part of a research program with the general objective of evaluating soil sustainability in areas surrounding hydroelectric reservoirs, which have been planted with riparian forest. The specific aims were: (i) to assess if and how the soil organic matter (SOM) chemical composition has ch

  18. SWAT-REMM Linked Approach for Estimating Water Quality Benefits of Riparian Forest Buffers in the Little River Watershed

    Science.gov (United States)

    Riparian forest buffers (RFBs) have considerable potential for improving water quality by filtering pollutants as they are transported from upland areas to streams. Insight into the benefits of the RFBs can be gained through appropriate computer simulation of the process. The Soil and Water Assessm...

  19. Hydrologic and Hydraulic effects of Riparian Root Networks on Streambank Stability: Is Mechanical Root-Reinforcement the Whole Story?

    Science.gov (United States)

    Riparian vegetation has a number of effects on the mechanisms by which streambanks fail, some positive and some negative. Previous research has shown that the effect of mechanical root-reinforcement on soil stability can be considerable, and can be successfully quantified and included in streambank ...

  20. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants

    Science.gov (United States)

    Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    * In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. * We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. * Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. * The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.

  1. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  2. 78 FR 25299 - Notice of Intent To Prepare a Resource Management Plan for the San Pedro Riparian National...

    Science.gov (United States)

    2013-04-30

    ... Bureau of Land Management Notice of Intent To Prepare a Resource Management Plan for the San Pedro Riparian National Conservation Area and Associated Environmental Impact Statement, Arizona AGENCY: Bureau of Land Management, Interior. ACTION: Notice of intent. SUMMARY: In compliance with the...

  3. [Relationship between groundwater quality index of physics and chemistry in riparian zone and water quality in river].

    Science.gov (United States)

    Xu, Hua-Shan; Zhao, Tong-Qian; Meng, Hong-Qi; Xu, Zong-Xue; Ma, Chao-Hong

    2011-03-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that, affected by the river and pond water, the highest point of groundwater temperature is near the pond in spring, and near the river in winter; and regulation for water and sediment at the Xiaolangdi Reservoir also affects groundwater temperature in riparian zone, which reaches its maximum at 100 m far from the river bank. There exists a strong zone of nitrification area at 50 m from the river bank, and in this area, the groundwater pH value is lower by 0.2 to 0.4 unit than that of the other regions, with great annual varieties. The turbidity of groundwater is affected by irrigation, which is more obvious than other indicators of groundwater. The turbidity of groundwater and river water increase rapidly during the early phase of flood retreat, and slope stability of river bank is the initial impact of the soil erosion of river bank. Conductivity, chloride and sulfate data show that the range of 50-200 m in riparian wetland is a very important salt accumulation zone, and the width of salt accumulation zone changes with seasons, and this area is also a very important zone of sulfur reduction. The quality of groundwater at 200 m from the river bank is also significantly affected by floods. Physical and chemical indicators of water change strongly in this area. The result indicates that

  4. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  5. Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon.

    Science.gov (United States)

    Ledesma, José L J; Futter, Martyn N; Laudon, Hjalmar; Evans, Christopher D; Köhler, Stephan J

    2016-08-01

    In boreal forest catchments, solute transfer to streams is controlled by hydrological and biogeochemical processes occurring in the riparian zone (RZ). However, RZs are spatially heterogeneous and information about solute chemistry is typically limited. This is problematic when making inferences about stream chemistry. Hypothetically, the strength of links between riparian and stream chemistry is time-scale dependent. Using a ten-year (2003-2012) dataset from a northern Swedish catchment, we evaluated the suitability of RZ data to infer stream dynamics at different time scales. We focus on the role of the RZ versus upslope soils in controlling sulfate (SO4(2)(-)) and dissolved organic carbon (DOC). A priori, declines in acid deposition and redox-mediated SO4(2)(-) pulses control sulfur (S) fluxes and pool dynamics, which in turn affect dissolved organic carbon (DOC). We found that the catchment is currently a net source of S, presumably due to release of the S pool accumulated during the acidification period. In both, RZ and stream, SO4(2-) concentrations are declining over time, whereas DOC is increasing. No temporal trends in SO4(2-) and DOC were observed in upslope mineral soils. SO4(2-) explained the variation of DOC in stream and RZ, but not in upslope mineral soil. Moreover, as SO4(2-) decreased with time, temporal variability of DOC increased. These observations indicate that: (1) SO4(2-) is still an important driver of DOC trends in boreal catchments and (2) RZ processes control stream SO4(2-) and subsequently DOC independently of upslope soils. These phenomena are likely occurring in many regions recovering from acidification. Because water flows through a heterogeneous mosaic of RZs before entering the stream, upscaling information from limited RZ data to the catchment level is problematic at short-time scales. However, for long-term trends and annual dynamics, the same data can provide reasonable representations of riparian processes and support

  6. Climate and flow variation revealed in tree rings of riparian cottonwood, western North Dakota, USA

    Science.gov (United States)

    Friedman, J. M.; Edmondson, J. R.; Meko, D. M.; Touchan, R.; Griffin, E. R.; Zhou, H.

    2014-12-01

    In the western Great Plains, where old upland trees are scarce, rings of riparian trees provide an important opportunity for reconstructing past river flow and climate. We present data from 489 plains cottonwood (Populus deltoides ssp. monilifera) trees along the Little Missouri River in western North Dakota. The trees are in randomly selected flood-plain locations within the North and South units of Theodore Roosevelt National Park. The two sites are separated by 160 river km. The Little Missouri watershed contains foothills but no mountains, and most annual high flows result from snowmelt in March or April. Cores were collected and processed using standard dendrochronological methods. The effect of tree age was removed from the chronology using a single relation for the site as a whole (age-curve standardization), which preserves century-scale variation. Trees were as old as 371 years. Given that cottonwood establishment depends upon channel migration, abundant establishment from 1864-1891 at both sites suggests that one or more large floods occurred prior to this period. At the North Unit, establishment continued at a lower rate during the next century, but upstream at the South Unit, tree establishment was greatly curtailed after the 1800s. Comparison of General Land Office Maps from 1907 to recent satellite imagery confirms that channel migration in the last century was much greater within the North Unit, a difference caused in part by a downstream increase in flood amplification by ice jamming. Ring widths show that even on the flood plain riparian trees were chronically drought stressed. At both sites growth was strongly positively correlated with flow and precipitation and weakly negatively correlated with temperature. Growth was most strongly correlated with flow and precipitation in April-July, which is consistent with dendrometer-band measurements showing growth cessation in August. Whereas cottonwood establishment decreased in the 1900s, ring widths

  7. Coupled hydrological, ecological, decision and economic models for monetary valuation of riparian ecosystem services

    Science.gov (United States)

    Goodrich, D. C.; Brookshire, D.; Broadbent, C.; Dixon, M. D.; Brand, L. A.; Thacher, J.; Benedict, K. K.; Lansey, K. E.; Stromberg, J. C.; Stewart, S.; McIntosh, M.

    2011-12-01

    Water is a critical component for sustaining both natural and human systems. Yet the value of water for sustaining ecosystem services is not well quantified in monetary terms. Ideally decisions involving water resource management would include an apples-to-apples comparison of the costs and benefits in dollars of both market and non-market goods and services - human and ecosystem. To quantify the value of non-market ecosystem services, scientifically defensible relationships must be developed that link the effect of a decision (e.g. human growth) to the change in ecosystem attributes from current conditions. It is this linkage that requires the "poly-disciplinary" coupling of knowledge and models from the behavioral, physical, and ecological sciences. In our experience another key component of making this successful linkage is development of a strong poly-disciplinary scientific team that can readily communicate complex disciplinary knowledge to non-specialists outside their own discipline. The time to build such a team that communicates well and has a strong sense of trust should not be underestimated. The research described in the presentation incorporated hydrologic, vegetation, avian, economic, and decision models into an integrated framework to determine the value of changes in ecological systems that result from changes in human water use. We developed a hydro-bio-economic framework for the San Pedro River Region in Arizona that considers groundwater, stream flow, and riparian vegetation, as well as abundance, diversity, and distribution of birds. In addition, we developed a similar framework for the Middle Rio Grande of New Mexico. There are six research components for this project: (1) decision support and scenario specification, (2) regional groundwater model, (3) the riparian vegetation model, (4) the avian model, (5) methods for displaying the information gradients in the valuation survey instruments (Choice Modeling and Contingent Valuation), and (6

  8. Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon.

    Science.gov (United States)

    Ledesma, José L J; Futter, Martyn N; Laudon, Hjalmar; Evans, Christopher D; Köhler, Stephan J

    2016-08-01

    In boreal forest catchments, solute transfer to streams is controlled by hydrological and biogeochemical processes occurring in the riparian zone (RZ). However, RZs are spatially heterogeneous and information about solute chemistry is typically limited. This is problematic when making inferences about stream chemistry. Hypothetically, the strength of links between riparian and stream chemistry is time-scale dependent. Using a ten-year (2003-2012) dataset from a northern Swedish catchment, we evaluated the suitability of RZ data to infer stream dynamics at different time scales. We focus on the role of the RZ versus upslope soils in controlling sulfate (SO4(2)(-)) and dissolved organic carbon (DOC). A priori, declines in acid deposition and redox-mediated SO4(2)(-) pulses control sulfur (S) fluxes and pool dynamics, which in turn affect dissolved organic carbon (DOC). We found that the catchment is currently a net source of S, presumably due to release of the S pool accumulated during the acidification period. In both, RZ and stream, SO4(2-) concentrations are declining over time, whereas DOC is increasing. No temporal trends in SO4(2-) and DOC were observed in upslope mineral soils. SO4(2-) explained the variation of DOC in stream and RZ, but not in upslope mineral soil. Moreover, as SO4(2-) decreased with time, temporal variability of DOC increased. These observations indicate that: (1) SO4(2-) is still an important driver of DOC trends in boreal catchments and (2) RZ processes control stream SO4(2-) and subsequently DOC independently of upslope soils. These phenomena are likely occurring in many regions recovering from acidification. Because water flows through a heterogeneous mosaic of RZs before entering the stream, upscaling information from limited RZ data to the catchment level is problematic at short-time scales. However, for long-term trends and annual dynamics, the same data can provide reasonable representations of riparian processes and support

  9. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Science.gov (United States)

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  10. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams.

    Science.gov (United States)

    Miserendino, María Laura; Casaux, Ricardo; Archangelsky, Miguel; Di Prinzio, Cecilia Yanina; Brand, Cecilia; Kutschker, Adriana Mabel

    2011-01-01

    Changes in land-use practices have affected the integrity and quality of water resources worldwide. In Patagonia there is a strong concern about the ecological status of surface waters because these changes are rapidly occurring in the region. To test the hypothesis that greater intensity of land-use will have negative effects on water quality, stream habitat and biodiversity we assessed benthic macroinvertebrates, riparian/littoral invertebrates, fish and birds from the riparian corridor and environmental variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 macroinvertebrate taxa, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird species, and 15 aquatic plant species, were recorded considering all sites. Urban land-use produced the most significant changes in streams including physical features, conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and managed native forest sites appeared in an intermediate situation. The highest values of fish and bird abundance and diversity were observed at disturbed sites; this might be explained by the opportunistic behavior displayed by these communities which let them take advantage of increased trophic resources in these environments. As expected, non-managed native forest sites showed the highest integrity of ecological conditions and also great biodiversity of benthic communities. Macroinvertebrate metrics that reflected good water quality were positively related to forest land cover and negatively related to urban and pasture land cover. However, by offering stream edge areas, pasture sites still supported rich communities of riparian/littoral invertebrates, increasing overall biodiversity. Macroinvertebrates were good indicators of land-use impact and water quality conditions and resulted useful tools to early alert of

  11. Rapid replacement of riparian rainforest habitat and the impacts on the meandering dynamics of the Kinabatangan River, Borneo

    Science.gov (United States)

    Horton, Alexander J.; Constantine, José A.

    2014-05-01

    Meandering rivers are defined by their nature to migrate, remobilising floodplain sediment and constructing new surfaces for riparian vegetation to colonise. The presence of riparian vegetation has long been known to limit the ability of rivers to erode riverbanks, but it has remained unclear the principal means by which vegetation provides this function. As a result, most models that predict meandering behaviour do not fully incorporate vegetation, thereby limiting their utility where forest is rapidly replaced. The problem is particularly acute along the Kinabatangan River of Sabah in Malaysian Borneo, where oil palm plantations are replacing one of the oldest riparian rainforests on the planet. The area of Sabah has seen rapid and extensive land use change in the last 40 years, as virgin rainforest has been systematically cleared for logging, and to make way for oil palm plantations. In the 18 years from 1990 to 2008, Sabah lost half of its intact rainforest, which equates to more than 1.85 million hectares. Using Landsat imagery dating back to 1973, we report here the impacts of this rapid land-use change on rates of meander migration on a 280-km reach of the Kinabatangan River. The river planform has been remarkably stable throughout the time period of study, but individual meanders show a rapid response to large discharge events, migrating over an order of magnitude faster than nearby reaches. Rapidly migrating meanders generally occur along portions of floodplain that have been artificially cleared of riparian vegetation, potentially resulting in significant increases in sediment load and within-channel bar development. A field campaign is planned to investigate the mechanisms by which riparian vegetation effect meander migration in these tropical regions.

  12. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on riparian vegetation of the Green River, Utah and Colorado

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K.E.; Van Lonkhuyzen, R.A. [Argonne National Lab., IL (United States). Ecological Sciences Section

    1995-06-01

    Four hydropower operational scenarios at Flaming Gorge Dam were evaluated to determine their potential effects on riparian vegetation along the Green River in Utah and Colorado. Data collected in June 1992 indicated that elevation above the river had the largest influence on plant distribution. A lower riparian zone occupied the area between the approximate elevations of 800 and 4,200-cfs flows--the area within the range of hydropower operational releases. The lower zone was dominated by wetland plants such as cattail, common spikerush, coyote willow, juncus, and carex. An upper riparian zone was above the elevation of historical maximum power plant releases from the dam (4,200 cfs), and it generally supported plants adapted to mesic, nonwetland conditions. Common species in the upper zone included box elder, rabbitbrush, grasses, golden aster, and scouring rush. Multispectral aerial videography of the Green River was collected in May and June 1992 to determine the relationship between flow and the areas of water and the riparian zone. From these relationships, it was estimated that the upper zone would decrease in extent by about 5% with year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation, but it would increase by about 8% under seasonally adjusted steady flow. The lower zone would increase by about 13% for both year-round and seasonally adjusted high fluctuation scenarios but would decrease by about 40% and 74% for seasonally adjusted moderate fluctuation and steady flows, respectively. These changes are considered to be relatively minor and would leave pre-dam riparian vegetation unaffected. Occasional high releases above power plant capacity would be needed for long-term maintenance of this relict vegetation.

  13. A Long-term Reach-Scale Monitoring Network for Riparian Evapotranspiration, Rock Creek, Kansas

    Science.gov (United States)

    Rajaram, H.; Solis, J. A.; Whittemore, D. O.; Butler, J. J.; Reboulet, E.; Knobbe, S.; Dealy, M.

    2011-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impact on water management and conservation. In narrow riparian zones, typical of much of the subhumid to semi-arid U.S., direct measurement of RET by eddy correlation is precluded by the limited fetch distance of riparian vegetation. Alternative approaches based on water balance analyses have a long history, but their accuracy is not well understood. Factors such as heterogeneity in soil properties and root distributions, and sparse measurements, introduce uncertainties in RET estimates. As part of a larger effort aimed at improving understanding of basin-wide RET using scaling theories, we installed a continuous monitoring system for water balance estimation at the scale of a single (~100 m long) reach along Rock Creek in the Whitewater Basin in central Kansas. The distinguishing features of this site include a vadose zone with fine-grained soils underlain by a phreatic zone of coarse gravel embedded in clay, overlying karst bedrock. Across the width (~40 m) of the riparian zone, we installed one transect of four wells screened at the bottom of the alluvium (6-7 m depth), each accompanied by a soil moisture profiler with capacitance sensors at 4 vertical levels above the local water-table elevation (~2.5 m depth) and a shallow well screened just below the water table. All wells were instrumented with pressure transducers for monitoring water levels. Additional sets of all sensors were installed at the upstream and downstream ends of the study reach. Initial results from the monitoring network suggest significant complexities in the behavior of the subsurface system at the site, including a high degree of heterogeneity. All deep wells show a rapid response to streamflow variations and nearby pumping. However, the shallow water-table wells do not respond rapidly to either. Both the shallow wells and soil

  14. Shade Trading: An Emerging Riparian Forest-Based Payment for Ecosystem Services Market in Oregon, USA

    Science.gov (United States)

    Guillozet, Kathleen

    2015-10-01

    This paper describes the regulatory and compliance context for Oregon's emerging ecosystem services (ES) market in riparian shade to meet water quality obligations. In Oregon's market as with many other ES programs, contracts and other regulatory documents not only delimit the obligations and liabilities of different parties, but also constitute a primary mechanism through which ES service delivery is measured. Through a review of compliance criteria I find that under Oregon's shade trades, permittees are held to a number of input-based criteria, which essentially affirm that parties comply with predetermined practices and procedures, and one `pseudo output based' criterion, in which ES delivery is estimated through a model. The case presented in the paper critically engages with the challenges of measuring ES and in assessing the outcomes of ES projects. It places these challenges as interrelated and proposes that market designers, policymakers, and other stakeholders should consider explicit efficacy, efficiency, and equity targets.

  15. High flow and riparian vegetation along the San Miguel River, Colorado

    Science.gov (United States)

    Friedman, J.M.; Auble, G.T.

    2000-01-01

    Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.

  16. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    Science.gov (United States)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    River temperature influences strongly growth and survival in salmonid fish, which are often the target of river management strategies. Temperature is controlled by transfers of heat and water to/ from the river system, with land and water management modifying exchanges and consequently thermal regime. In the UK, fisheries managers are promoting riparian forest planting as a climate change adaption measure to reduce water temperature extremes. However, scientific understanding lags behind management and policy needs. Specifically, there is an urgent requirement to determine planting strategies that maximise expected benefits of riparian forest in terms of reduction in maximum water temperature. Scientific knowledge is necessary to underpin conceptual and deterministic models to inform management. To address this research gap, this paper analyses high resolution (15 minute) hydrometeorological data collected over a calendar year in the western Scottish Highlands (Loch Ard) to understand the controls and processes determining river temperature dynamics under open moorland (control), semi-natural woodland and commercial forest. The research programme aims: (1) to characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across forest treatments; (2) to identify the hydrological, climatological and site-specific factors affecting stream temperature; (3) to estimate the energy balance at sites representative of each forest treatment and, thus, yield physical process understanding about dominant heat exchanges driving thermal variability; and (4) to use 1-3 to predict stream temperature sensitivity under different forestry and hydroclimatological scenarios. Results indicated that inter-treatment differences in mean and maximum daily water column temperature were ordered open > semi-natural > commercial during summer, but semi-natural > commercial > open during winter. Minimum water temperature was ordered commercial > semi

  17. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  18. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  19. Remote sensing of the impact of a large dam on the riparian vegetation canopy

    Science.gov (United States)

    Zhou, X.; Kellogg, C.

    2013-12-01

    To tap the water resources and hydropower from large rivers, numerous large dams have been built in the world. How the construction of such dams impacts the riparian vegetation ecosystem along the river at which the dams have been built is still an open question. In this study we use the Three Gorges dam on the Yangtze River in China as a case to study the impact of the fluctuation of water levels of the reservoir due to the dam along the river (see Figure 1). Our hypothesis is that the impact of the dam construction on riparian plant ecosystem should be elevation-related. To test this, we divide the riparian area along the river into a certain zones according to elevation. Based on the remotely sensed Normalized Difference Vegetation Index (NDVI) of Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite, we derived the Fraction of Absorbed Photosynthetically Active Radiation (FPAR). Remotely sensed NDVI, Enhanced Vegetation Index (EVI), and the derived FPAR data sources represent the vigor and health status of vegetation canopy and vegetation cover. The status of vegetation cover is categorized into three categories according to NDVI, EVI, or FPAR. For instance, the three categories according to NDVI are: non-vegetated (NDVI 0.6). Area of each category within each elevation zone was derived from the vegetation indices or FPAR data and the overlapping digital elevation model (DEM) data from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The time evolution of the area of each category within each elevation zone can thus be tracked down and regression analyzed with the water level data. Results show that over the decade-long water-storing period (2000-2010), non-vegetated land cover increased in the inundated zone (elevation below 175m); dense vegetation land cover increased within the elevation zone of 175m-775m and no change in vegetation cover was observed above 775m in elevation. Increasing water levels during

  20. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Paradzayi Tagwireyi

    Full Text Available Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation, computed patch metrics (area, density, edge, richness, and shape, and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM], whereas ant diversity (using the Berger-Park Index [DBP] was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57. Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62 whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65. Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64. These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian

  1. Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones.

    Science.gov (United States)

    Vidon, P; Marchese, S; Welsh, M; McMillan, S

    2015-08-01

    Recent research indicates that riparian zones have the potential to contribute significant amounts of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere. Yet, the short-term spatial and temporal variability in GHG emission in these systems is poorly understood. Using two transects of three static chambers at two North Carolina agricultural riparian zones (one restored, one unrestored), we show that estimates of the average GHG flux at the site scale can vary by one order of magnitude depending on whether the mean or the median is used as a measure of central tendency. Because the median tends to mute the effect of outlier points (hot spots and hot moments), we propose that both must be reported or that other more advanced spatial averaging techniques (e.g., kriging, area-weighted average) should be used to estimate GHG fluxes at the site scale. Results also indicate that short-term temporal variability in GHG fluxes (a few days) under seemingly constant temperature and hydrological conditions can be as large as spatial variability at the site scale, suggesting that the scientific community should rethink sampling protocols for GHG at the soil-atmosphere interface to include repeated measures over short periods of time at select chambers to estimate GHG emissions in the field. Although recent advances in technology provide tools to address these challenges, their cost is often too high for widespread implementation. Until technology improves, sampling design strategies will need to be carefully considered to balance cost, time, and spatial and temporal representativeness of measurements. PMID:26169979

  2. Quantitative estimation of groundwater recharge ratio along the riparian of the Yellow River.

    Science.gov (United States)

    Yan, Zhang; Fadong, Li; Jing, Li; Qiang, Liu; Guangshuai, Zhao

    2013-01-01

    Quantitative estimation of groundwater recharge is crucial for limited water resources management. A combination of isotopic and chemical indicators has been used to evaluate the relationship between surface water, groundwater, and rainfall around the riparian of the Yellow River in the North China Plain (NCP). The ion molar ratio of sodium to chloride in surface- and groundwater is 0.6 and 0.9, respectively, indicating cation exchange of Ca(2+) and/or Mg(2+) for Na(+) in groundwater. The δD and δ(18)O values in rainfall varied from -64.4 to -33.4‰ and from -8.39 to -4.49‰. The groundwater samples have δD values in the range of -68.7 to -58.0‰ and δ(18)O from -9.29 to -6.85‰. The δ(18)O and δD in surface water varied from -8.51 to -7.23‰ and from -64.42 to -53.73‰. The average values of both δD and δ(18)O from surface water are 3.92‰ and 0.57‰, respectively, higher compared to groundwater. Isotopic composition indicated that the groundwater in the riparian area of the Yellow River was influenced by heavy rainfall events and seepage of surface water. The mass balance was applied for the first time to estimate the amount of recharge, which is probably 6% and 94% of the rainfall and surface water, respectively.

  3. A wooded riparian strip set up for nitrogen removal can affect the water flux microbial composition

    Directory of Open Access Journals (Sweden)

    Mizanur Md. Rahman

    2014-02-01

    Full Text Available This research is part of a project aimed at verifying the potential of a specifically assessed wooded riparian zone in removing excess of combined nitrogen from the Zero river flow for the reduction of nutrient input into Venice Lagoon. Specific objectives were pursued to determine seasonal fluctuations of the microbial populations from the input water to a drainage ditch, conveying back the flux into the river after passing through the soil of the wooded riparian strip. The bacterial communities were determined by combined approaches involving cultivation, microscopic methods and DNA based techniques to determine both culturable and total microbial community in water. The results indicate that the size of the bacterial population, including the culturable fraction, increases from the river to the drainage ditch especially on the warm season. The multiple approach here adopted enabled also to demonstrate that the special condition created in the buffer strip supports the development and the metabolism of the microbial community. The nature of the bacterial population, in terms of phylotypes distribution, was investigated by 16S rDNA analysis indicating that the most represented genera belong to Gamma-proteobacteria, which is known to include an exceeding number of important pathogens. In spring, the effect of the buffer strip seems to significantly reduce such a sub-population. The changes observed for the total bacterial community composition become much evident in summer, as revealed by both denaturing gradient gel electrophoresis cluster analysis and by the diversity index calculation. The hydraulic management coupled to the suspension of farming practices and the development of the woody and herbaceous vegetation resulted in a condition suitable for the containment of undesired microbiota (mainly during the spring season while continuing to support denitrification activity (especially throughout the summer as verified by the total nitrogen

  4. Effects of Riparian Buffer Vegetation and Width: A 12-Year Longitudinal Study.

    Science.gov (United States)

    King, S E; Osmond, D L; Smith, J; Burchell, M R; Dukes, M; Evans, R O; Knies, S; Kunickis, S

    2016-07-01

    Agricultural contributions of nitrogen are a serious concern for many water resources and have spurred the implementation of riparian buffer zones to reduce groundwater nitrate (NO). The optimum design for buffers is subject to debate, and there are few long-term studies. The objective of this project was to determine the effectiveness over time (12 yr) of buffer types (trees, switchgrass, fescue, native, and a control) and buffer widths (8 and 15 m) by measuring groundwater NO-N and dissolved organic carbon (DOC) trends. At the intermediate groundwater depth (1.5-2.1 m), NO-N reduction effectiveness was 2.5 times greater (46 vs. 16%) for the wider buffer, and, regardless of width, buffer effectiveness increased 0.62% yr. Buffer vegetative type was never statistically significant. In the deep-groundwater depth (2.1-3.5 m), there was no change in NO-N removal over time, although the statistical interaction of width and vegetative type indicated a wide range of removal rates (19-82%). The DOC concentrations were analyzed at the field/buffer and buffer/stream sampling locations. Depending on location position and groundwater sampling depth, DOC concentrations ranged from 1.6 to 2.8 mg L at Year 0 and increased at a rate of 0.13 to 0.18 mg L yr but always remained low (≤5.0 mg L). Greater DOC concentrations in the intermediate-depth groundwater did not increase NO-N removal; redox measurements indicated intermittent reduced soil conditions may have been limiting. This study suggests that riparian buffer width, not vegetation, is more important for NO-N removal in the middle coastal plain of North Carolina for a newly established buffer. PMID:27380072

  5. Epidemiologic confirmation that fruit consumption influences mercury exposure in riparian communities in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Since deforestation has recently been associated with increased mercury load in the Amazon, the problem of mercury exposure is now much more widespread than initially thought. A previous exploratory study suggested that fruit consumption may reduce mercury exposure. The objectives of the study were to determine the effects of fruit consumption on the relation between fish consumption and bioindicators of mercury (Hg) exposure in Amazonian fish-eating communities. A cross-sectional dietary survey based on a 7-day recall of fish and fruit consumption frequency was conducted within 13 riparian communities from the Tapajos River, Brazilian Amazon. Hair samples were collected from 449 persons, and blood samples were collected from a subset of 225, for total and inorganic mercury determination by atomic absorption spectrometry. On average, participants consumed 6.6 fish meals/week and ate 11 fruits/week. The average blood Hg (BHg) was 57.1±36.3 μg/L (median: 55.1 μg/L), and the average hair-Hg (HHg) was 16.8±10.3 μg/g (median: 15.7 μg/g). There was a positive relation between fish consumption and BHg (r=0.48; P2=36.0%) and HHg levels (fish: β=1.2, P2=21.0%). ANCOVA models showed that for the same number of fish meals, persons consuming fruits more frequently had significantly lower blood and HHg concentrations. For low fruit consumers, each fish meal contributed 9.8 μg/L Hg increase in blood compared to only 3.3 μg/L Hg increase for the high fruit consumers. In conclusion, fruit consumption may provide a protective effect for Hg exposure in Amazonian riparians. Prevention strategies that seek to maintain fish consumption while reducing Hg exposure in fish-eating communities should be pursued

  6. Landscape geomorphic characteristic impacts on greenhouse gas fluxes in exposed stream and riparian sediments.

    Science.gov (United States)

    Vidon, Philippe; Serchan, Satish

    2016-07-13

    While excessive releases of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere due to the burning of fossil fuel remains a concern, we also need to better quantify GHG emissions from natural systems. This study investigates GHG fluxes at the soil-atmosphere interface in a series of 7 stream reaches (riparian zones + exposed streambed sediment) across a range of geomorphic locations from headwaters reaches to lowland wetland reaches. When riparian fluxes (RZ) are compared to fluxes from in-stream locations (IS) under summer baseflow conditions, total CO2-equivalent (CO2eq) emissions are approximately 5 times higher at RZ locations than at IS locations, with most CO2eq driven by CH4 production at RZ locations where wet conditions dominate (headwater wetlands, lowland wetlands). On a gas-by-gas basis, no clear differences in N2O fluxes between RZ and IS locations were observed regardless of locations (headwater vs. lowland reaches), while CO2 fluxes were significantly larger at RZ locations than IS locations. Methane fluxes were significantly higher in wetland-influenced reaches than other reaches for both RZ and IS locations. However, GHG fluxes were not consistently correlated to DOC, DO, NO3(-), NH4(+), or water temperature, stressing the limitations of using water quality parameters to predict GHG emissions at the floodplain scale, at least during summer baseflow conditions. As strategies are developed to further constrain GHG emission for whole watersheds, we propose that approaches linking landscape geomorphic characteristics to GHG fluxes at the soil-atmosphere interface offer a promising avenue to successfully predict GHG emissions in floodplains at the watershed scale. PMID:27306099

  7. Effects of Riparian Buffer Vegetation and Width: A 12-Year Longitudinal Study.

    Science.gov (United States)

    King, S E; Osmond, D L; Smith, J; Burchell, M R; Dukes, M; Evans, R O; Knies, S; Kunickis, S

    2016-07-01

    Agricultural contributions of nitrogen are a serious concern for many water resources and have spurred the implementation of riparian buffer zones to reduce groundwater nitrate (NO). The optimum design for buffers is subject to debate, and there are few long-term studies. The objective of this project was to determine the effectiveness over time (12 yr) of buffer types (trees, switchgrass, fescue, native, and a control) and buffer widths (8 and 15 m) by measuring groundwater NO-N and dissolved organic carbon (DOC) trends. At the intermediate groundwater depth (1.5-2.1 m), NO-N reduction effectiveness was 2.5 times greater (46 vs. 16%) for the wider buffer, and, regardless of width, buffer effectiveness increased 0.62% yr. Buffer vegetative type was never statistically significant. In the deep-groundwater depth (2.1-3.5 m), there was no change in NO-N removal over time, although the statistical interaction of width and vegetative type indicated a wide range of removal rates (19-82%). The DOC concentrations were analyzed at the field/buffer and buffer/stream sampling locations. Depending on location position and groundwater sampling depth, DOC concentrations ranged from 1.6 to 2.8 mg L at Year 0 and increased at a rate of 0.13 to 0.18 mg L yr but always remained low (≤5.0 mg L). Greater DOC concentrations in the intermediate-depth groundwater did not increase NO-N removal; redox measurements indicated intermittent reduced soil conditions may have been limiting. This study suggests that riparian buffer width, not vegetation, is more important for NO-N removal in the middle coastal plain of North Carolina for a newly established buffer.

  8. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    Science.gov (United States)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    A long list of articles in the literature examines several issues of flood risk management and applications of flood scenarios, taking into consideration the climate changes, as well as decision making tools in flood planning. The present study tries to highlight the conversation concerning flood impacts on the development rate of a riparian area. More specifically, Archaia (Ancient) Olympia watershed was selected as a case study area, since it is considered as a region of special interest and international significance. In addition, Alfeios River, which is the longest river of Peloponnisos Peninsula, passes through the plain of Archaia Olympia. Flood risk scenarios allow scientists and practitioners to understand the adverse effects of flooding on development activities such as farming, tourism etc. and infrastructures in the area such as road and railway networks, Flokas dam and the hydroelectric power plant, bridges, settlements and other properties. Flood risks cause adverse consequences on the region of Archaia Olympia (Ancient Olympic stadium) and Natura 2000 site area. Furthermore, SWOT analysis was used in order to quantify multicriteria and socio-economic characteristics of the study area. SWOT analysis, as a planning method, indicates the development perspective by identifying the strengths, weaknesses, threads and opportunities. Subsequent steps in the process of intergraded River Management Plan of Archaia Olympia could be derived from SWOT analysis. The recognition and analysis of hydro-geomorphological influences on riparian development activities can lead to the definition of hazardous and vulnerability zones and special warning equipment. The former information combined with the use of the spatial database for the catchment area of the River Alfeios, which aims to gather multiple watershed data, could serve in preparing the Management Plan of River Basin District 01 where Alfeios R. belongs. Greece has to fulfill the obligation of implementing River

  9. Planning riparian restoration in the context of tamarix control in Western North America

    Science.gov (United States)

    Shafroth, P.B.; Beauchamp, Vanessa B.; Briggs, M.K.; Lair, K.; Scott, M.L.; Sher, A.A.

    2008-01-01

    Throughout the world, the condition of many riparian ecosystems has declined due to numerous factors, including encroachment of non-native species. In the western United States, millions of dollars are spent annually to control invasions of Tamarix spp., introduced small trees or shrubs from Eurasia that have colonized bottomland ecosystems along many rivers. Resource managers seek to control Tamarix in attempts to meet various objectives, such as increasing water yield and improving wildlife habitat. Often, riparian restoration is an implicit goal, but there has been little emphasis on a process or principles to effectively plan restoration activities, and many Tamarix removal projects are unsuccessful at restoring native vegetation. We propose and summarize the key steps in a planning process aimed at developing effective restoration projects in Tamarix-dominated areas. We discuss in greater detail the biotic and abiotic factors central to the evaluation of potential restoration sites and summarize information about plant communities likely to replace Tamarix under various conditions. Although many projects begin with implementation, which includes the actual removal of Tamarix, we stress the importance of pre-project planning that includes: (1) clearly identifying project goals; (2) developing realistic project objectives based on a detailed evaluation of site conditions; (3) prioritizing and selecting Tamarix control sites with the best chance of ecological recovery; and (4) developing a detailed tactical plan before Tamarix is removed. After removal, monitoring and maintenance as part of an adaptive management approach are crucial for evaluating project success and determining the most effective methods for restoring these challenging sites. ?? 2008 Society for Ecological Restoration International.

  10. Riparian reforestation: are there changes in soil carbon and soil microbial communities?

    Science.gov (United States)

    Mackay, J E; Cunningham, S C; Cavagnaro, T R

    2016-10-01

    Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (β-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon:nitrogen (C:N) and fungal:bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling

  11. Occurrence and controls on transport and transformation of nitrogen in riparian zones of Dongting Lake, China.

    Science.gov (United States)

    Zhao, Shan; Zhou, Nianqing; Liu, Xiaoqun

    2016-04-01

    Dongting Lake is the second largest freshwater lake in China. It is suffering from significant eutrophication as a result of excessive nutrients inputs, among which nitrogen (N) is becoming a major contributor. The objective of this study is to document the occurrence and controls on N transport and transformation in riparian zones of Dongting Lake wetland. Field experiments were conducted in the cultivated Li River (LR) and uncultivated Yuan River (YR) regions of the wetlands from June to November, 2014. Groundwater depth, redox potential (Eh), pH, and temperature were measured in situ. Groundwater and surface water samples were collected to determine concentrations of nitrate nitrogen (NO3 (-)-N), nitrite nitrogen (NO2 (-)-N), and ammonia nitrogen (NH4 (+)-N). The results showed that NH4 (+)-N was the dominant N pollutant with maximum average value of 2.7760 mg L(-1). All the groundwater samples were rated to Class V based on NH4 (+)-N content according to the groundwater quality standard, indicating the load of N in riparian zones had exceeded their capacity for assimilation and purification. Internal controls (including Eh and pH, temperature, and groundwater depth) and external controls (including surface water, land use, and rainfall) were analyzed in detail. The results suggested that Eh and pH were more significant in controlling N transport and transformation than temperature and groundwater depth; external controls influenced N fates through imposing an effect on internal controls. This study will provide important insights and a scientific basis for N pollution treatment and better protection of the Dongting Lake wetlands. PMID:26635216

  12. Noise-driven cooperative dynamics between vegetation and topography in riparian zones

    Science.gov (United States)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian ecosystems exhibit complex biotic and abiotic dynamics, where the triad vegetation-sediments-stream determines the eco-geomorphological features of the river landscape. Random fluctuations of the water stage are a key trait of this triad, and a number of behaviors of the fluvial environment can be understood only taking into consideration the role of noise. In fact, in a given plot, vegetation biomass can grow (if the stage is below the plot elevation) or decay (if the stage is above the plot elevation). As a result, biomass exhibits significant temporal variations. In this framework, the capability of vegetation to alter the transect topography (namely, the plot elevation) is crucial. Vegetation can increase the plot elevation by a number of mechanisms (trapping of water- and wind-transported sediment particles, production of organic soil, stabilization of the soil surface). The increment of plot elevation induces the reduction of the plot-specific magnitude, frequency and duration of floods. These more favorable plot-specific hydrological conditions, in turn, induce an increment of biomass. Moreover, the higher the vegetation biomass, the higher the plot elevation increment induced by these mechanisms. In order to elucidate how the stochastically varying water stage and the vegetation-induced topographic alteration shape the bio-morphological characteristics of riparian transects, a stochastic model that takes into account the main links between vegetation, sediments and the stream was adopted. In particular, the capability of vegetation to alter the plot topography was emphasized. In modeling such interactions, the minimalistic approach was pursued. The complex vegetation-sediments-stream interactions were modeled by a set of state-depended stochastic eco-hydraulic equations. The probability density function of vegetation biomass was then analytically evaluated in any transect plot. This pdf strongly depends on the vegetation-topography feedback. We

  13. Post-wildfire natural restoration of riparian vegetation under stable hydro-geomorphic conditions: Nahal Grar, Northern Negev Desert, Israel

    Science.gov (United States)

    Egozi, Roey

    2015-04-01

    Wildfires are common to the Mediterranean region due to its defined dry season and long historical anthropogenic activities. Most of post-wildfire studies focus on mountains areas and thus refer to the hill-slope and its physical characteristics, e.g. morphology, length, angles, and aspect; its soil characteristics, e.g. type, infiltration rate, repellency; and its vegetative covers, e.g. planted trees vs. natural forest or native vs. exotic vegetation. In contrary there is very limited literature focusing on ecological and hydro-geomorphic aspects of post-wildfire of riparian vegetation / zone probably because of its negligible burned area relative to the spread of the fire, sometimes, over the whole watershed area. The limited literature on the topic is surprising given the fact that riparian vegetation zone has been acknowledged as a unique and important habitat supporting rich biodiversity. Herein we report on a wildfire event occurred on October 14th 2009 in a river section of Nahal Grar, Northern Negev Desert, Israel. The wildfire although was limited in its area (only 3 hectare) extended over the channel alone from bank to bank and thus provide a unique case study of completely burn down of riparian vegetation, mainly dense stands of Common Red (Australis Phragmites. Therefore a detailed study of this event provides an opportunity to tackle one of the basics questions which is determining the rate of natural restoration process that act at the immediate time after the wildfire event occurred. This type of information is most valuable to professional and stakeholders for better management of post-fire riparian zones. The results of the study suggest that under stable conditions, i.e. no major flood events occurred; disturbance time was short and ranged over 200 days due to, almost, immediate recovery of the riparian vegetation. However the re-growth of the riparian vegetation was not even but rather deferential and more complex then reported in the literature

  14. Riparian forest and permanent groundwater: a key coupling for balancing the hillslope water budget in Sudanian West Africa

    Directory of Open Access Journals (Sweden)

    A. Richard

    2013-05-01

    Full Text Available Forests are thought to play an important role in the regional dynamics of the West African monsoon, through their capacity to extract water from permanent aquifers located deep in the soil and pump it into the atmosphere even during the dry season. This is especially true for riparian forests located at the bottom of the hillslopes. This coupling between the riparian forests and the permanent aquifers is investigated, looking for quantifying its contribution to the catchment water balance. To this end, use is made of the observations available from a comprehensively instrumented hillslope through the framework of the AMMA-CATCH (African Monsoon Multidisciplinary Analysis – Coupling the Tropical Atmosphere and the Hydrological Cycle observing system. Attention is paid to measurements of actual evapotranspiration, soil moisture and deep groundwater level. A vertical 2-D approach is followed using the physically-based Hydrus 2-D model in order to simulate the hillslope hydrodynamics, the model being calibrated and evaluated through a multi-criteria approach. The model correctly simulates the hydrodynamics of the hillslope as far as soil moisture dynamics, deep groundwater fluctuation and actual evapotranspiration dynamics are concerned. In particular, the model is able to reproduce the observed hydraulic disconnection between the deep permanent groundwater table and the river. A virtual experiment shows that the riparian forest depletes the deep groundwater table level through transpiration occurring throughout the year so that the permanent aquifer and the river are not connected. Moreover the riparian forest and the deep groundwater table form a coupled transpiration system: the riparian forest transpiration is due to the water redistribution at the hillslope scale feeding the deep groundwater through lateral saturated flow. The annual cycle of the transpiration origin is also quantified. The riparian forest which covers only 5% of the

  15. Using Repeated LIDAR to Characterize Topographic Changes in Riparian Areas and Stream Channel Morphology in Areas Undergoing Urban Development: An Accuracy Assessment Guide for Local Watershed Managers

    Science.gov (United States)

    Urban development and the corresponding increases in impervious surfaces associated with that development have long been known to have adverse impacts upon urban riparian systems, water quality and quantity, groundwater recharge, streamflow, and aquatic ecosystem integrity. The ...

  16. Spatial and temporal analysis of the land cover in riparian buffer zones (Areas for Permanent Preservation in Sorocaba City, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Sergio Henrique Alves

    2009-08-01

    Full Text Available Considering the fundamental role that the riparian vegetation plays in relation to maintenance of the environmental health of a watershed and the necessity of restoring sectors of the buffer zone without natural vegetation, in this paper we investigated what land cover classes occur along the riparian buffer stripes considered Area for Permanent Preservation (APP in the Sorocaba municipality, SP in three periods: 1988, 1995 and 2003. Based on GIS technology and using the drainage network map, the APP stripes (riparian buffer zones map was generated, and this map was overlaid to the land cover map (1988, 1995 and 2003 to provide a land cover map specifically of the riparian buffer zones. The results show that 58.43% of the APPs have no land cover of native vegetation and therefore, need to be reforested, representing 5,400 hectares to be restored.

  17. Riparian Zones, Protected River corridors in 9 county region in South Georgia, Published in 1999, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Riparian Zones dataset, published at 1:7200 (1in=600ft) scale, was produced all or in part from Other information as of 1999. It is described as 'Protected...

  18. Terrestrial Riparian Arthropod Investigations In the Big Beaver Creek Research Natural Area, North Cascades National Park Service Complex,1995-1996: Part III, Arachnida:Araneae

    Data.gov (United States)

    Oak Ridge National Laboratory — Ground-dwelling spider communities of nine distinct habitat types were sampled within the riparian corridor of lower Big Beaver Creek, North Cascades National Park...

  19. Field-based evaluations of sampling techniques to support long-term monitoring of riparian ecosystems along wadeable streams on the Colorado Plateau

    Science.gov (United States)

    Scott, Michael L.; Reynolds, Elizabeth W.

    2007-01-01

    To better plan for and implement long-term ecological monitoring, we measured riparian vegetation and fluvial geomorphic features at pilot study sites on four wadeable perennial stream reaches, representative of drainages across the Colorado Plateau. Our primary objectives were to (1) collect field data, (2) evaluate the efficiency and effectiveness of various ecological measures and measurement techniques for riparian ecosystems, and (3) use field-based sampling to inform and refine the development of standard operating procedures for use in implementing integrated, long-term monitoring of riparian ecosystems. Ultimately, this work was aimed at providing NPS staff with some of the information and methods needed to design and implement long-term monitoring of NPS riparian resources, which is both relevant to management, and fully operational within institutional resource constraints.

  20. Influence of Nutrient Loading on the Invasion of an Alien Plant Species, Giant Reed (Arundo donax), in Southern California Riparian Ecosystems

    OpenAIRE

    Ambrose, Richard F.; Rundel, Philip W.

    2007-01-01

    Giant reed, Arundo donax L., is one of the greatest threats to riparian ecosystems of Mediterranean-type climate regions, including California. Forming extensive monotypic stands, A. donax increases the risks of flooding and fire, uses prodigious amounts of water, and reduces habitat value for wildlife. Urban and agricultural development adjacent to riparian ecosystems may contribute to its invasion success. The main hypothesis of this project is that the current abundance of nutrients, water...

  1. Do Adaptive Comanagement Processes Lead to Adaptive Comanagement Outcomes? A Multicase Study of Long-term Outcomes Associated with the National Riparian Service Team's Place-based Riparian Assistance

    Directory of Open Access Journals (Sweden)

    Jill A. Smedstad

    2013-12-01

    Full Text Available Adaptive comanagement (ACM is a novel approach to environmental governance that combines the dynamic learning features of adaptive management with the linking and network features of collaborative management. There is growing interest in the potential for ACM to resolve conflicts around natural resource management and contribute to greater social and ecological resilience, but little is known about how to catalyze long lasting ACM arrangements. We contribute to knowledge on this topic by evaluating the National Riparian Service Team's (NRST efforts to catalyze ACM of public lands riparian areas in seven cases in the western U.S. We found that the NRST's approach offers a relatively novel model for integrating joint fact-finding, multiple forms of knowledge, and collaborative problem solving to improve public lands riparian grazing management. With this approach, learning and dialogue often helped facilitate the development of shared understanding and trust, key features of ACM. Their activities also influenced changes in assessment, monitoring, and management approaches to public lands riparian area grazing, also indicative of a transition to ACM. Whereas these effects often aligned with the NRST's immediate objectives, i.e., to work through a specific issue or point of conflict, there was little evidence of long-term effects beyond the specific issue or intervention; that is, in most cases the initiative did not influence longer term changes in place-based governance and institutions. Our results suggest that the success of interventions aimed at catalyzing the transformation of governance arrangements toward ACM may hinge on factors external to the collaborative process such as the presence or absence of (1 dynamic local leadership and (2 high quality agreements regarding next steps for the group. Efforts to establish long lasting ACM institutions may also face significant constraints and barriers, including existing laws and regulations

  2. From forests to cattail: how does the riparian zone influence stream fish?

    Directory of Open Access Journals (Sweden)

    Lilian Casatti

    2012-01-01

    Full Text Available The aim of this study was to verify whether taxonomic and functional composition of stream fishes vary under three different preservation conditions of riparian zone: preserved (PRE, intermediate condition (INT, and degraded (DEG. Five stream stretches representing each condition were selected. Samples were taken from each stream in three occasions during the dry seasons from 2004 to 2007. Electro fishing (PRE and INT, sieves, dip nets, and hand seines (DEG were used according to the characteristics of each sampled site. Overall, 46 species were registered. Differences in the taxonomic and functional species composition among groups were found, following the condition of riparian zones. The ichthyofauna recorded in the PRE was typical to pristine environments, consisting of species with specialized habits, notably benthic insectivores, intolerant, and rheophilics. In the INT group, replacement of riparian forest with shrubs and/or grasses created environmental conditions which favor the occurrence of tolerant species but also harbor a residual fauna of sensitive species. DEG streams presented mostly detritivores, tolerant, small sized fishes which occupy the surface and preferred slow water flux. Changes in the species composition were represented by the occurrence and dominance of tolerant species in detriment of the more sensitive and specialist species, following the gradient of degradation in the riparian zone. Forested streams act as unique habitats to many specialized species and it can be presumable that the degradation of riparian vegetation can generate biotic homogenization which may reduce species diversity and ecosystem services.O presente estudo verificou se a composição taxonômica e funcional de peixes de riachos varia ao longo de três condições de preservação da zona ripária: preservada (PRE, preservação intermediária (INT e degradada (DEG. Cinco riachos de cada grupo foram selecionados e amostras foram obtidas em cada

  3. Value of Riparian Vegetation Remnants for Leaf-Litter Ants (Hymenoptera: Formicidae) in a Human-Dominated Landscape in Central Veracruz, Mexico.

    Science.gov (United States)

    García-Martínez, Miguel Á; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela; Valenzuela-González, Jorge E

    2015-12-01

    Riparian remnants are linear strips of vegetation immediately adjacent to rivers that may act as refuges for biodiversity, depending on their habitat quality. In this study, we evaluated the role of riparian remnants in contributing to the diversity of leaf-litter ants by determining the relationship between ant diversity and several riparian habitat characteristics within a human-dominated landscape in Veracruz, Mexico. Sampling was carried out in 2012 during both dry and rainy seasons at 12 transects 100 m in length, where 10 leaf-litter samples were collected along each transect and processed with Berlese-Tullgren funnels and Winkler sacks. A total of 8,684 individuals belonging to 53 species, 22 genera, and seven subfamilies were collected. The observed mean alpha diversity accounted for 34.4% of the total species recorded and beta diversity for 65.6%. Species richness and composition were significantly related to litter-layer depth and soil compaction, which could limit the distribution of ant species depending on their nesting, feeding, and foraging habits. Riparian remnants can contribute toward the conservation of ant assemblages and likely other invertebrate communities that are threatened by anthropogenic pressures. In human-dominated landscapes where remnants of riparian vegetation give refuge to a diverse array of myrmecofauna, the protection of the few remaining and well-preserved riparian sites is essential for the long-term maintenance of biodiversity.

  4. Variability in riparian zone potential and actual evapotranspiration in a 1st order agricultural catchment in Southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    M. C. English

    2002-02-01

    Full Text Available Micrometeorological and hydrological measurements were made over one growing season using automatic weather stations and weighing lysimeters at several locations within a multiple land-use agricultural catchment in Southern Ontario. This paper compares modelled potential evapotranspiration (PET and measured actual evapotranspiration (AET values obtained from the soil weighing lysimeters, and determines the spatial variability in riparian zone AET in a multiple land-use agricultural watershed in Southern Ontario. Two sites were chosen in two different riparian areas of the watershed, representing the surface conditions dominant in the upper and lower reaches of the basin. The results indicated that AET was higher in the northern end of the basin than in the southern portion of the basin, while the hydrological and energy balance components were similar at both sites. The causes of the different rates are attributed to the surrounding vegetation on adjacent fields and the differing wind regimes.

  5. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarily attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.

  6. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  7. Evaluation of an extreme-condition-inverse calibration remote sensing model for mapping energy balance fluxes in arid riparian areas

    OpenAIRE

    Hong, S.-H.; Hendrickx, J.M.H.; J. Kleissl; R. G. Allen; Bastiaanssen, W. G. M.; Scott, R.L.; A. L. Steinwand

    2014-01-01

    Accurate information on the distribution of the surface energy balance components in arid riparian areas is needed for sustainable management of water resources as well as for a better understanding of water and heat exchange processes between the land surface and the atmosphere. Since the spatial and temporal distributions of these fluxes over large areas are difficult to determine from ground measurements alone, their prediction from remote sensing data is ...

  8. Quantifying Microstegium vimineum seed movement by non-riparian water dispersal using an ultraviolet-marking based recapture method.

    Directory of Open Access Journals (Sweden)

    Daniel R Tekiela

    Full Text Available Microstegium vimineum is a shade tolerant annual C4 invasive grass in the Eastern US, which has been shown to negatively impact species diversity and succession in hardwood forests. To date, empirical studies have shown that population expansion is limited to <1 m yr(-1, which is largely driven by gravity dispersal. However, this likely does not fully account for all mechanisms of population-scale dispersal as we observe greater rates of population expansion. Though water, both riparian and non-riparian water (i.e., ephemeral overland flow, have been speculated mechanisms for M. vimineum dispersal, few studies have empirically tested this hypothesis. We designed an experiment along the slopes of a Southwest Virginia hardwood forest to test the role of non-riparian water on local seed dispersal. We developed a seed marking technique by coating each seed with an ultraviolet (UV powder that did not affect buoyancy to aid in situ seed recapture. Additionally, a new image analysis protocol was developed to automate seed identification from UV photos. Total seed mobility (summation of individual seed movement within each transect was positively correlated with precipitation. Over a period of one month with 52.32 mm of precipitation, the maximum dispersal distance of any single recaptured seed was 2.4 m, and the average distance of dispersed seed was 0.21±0.04 m. This is the first quantitative evidence of non-riparian water dispersal in a forest understory, which accounts for an additional pathway of population expansion.

  9. Impacts of riparian wetlands on the seasonal variations of watershed-scale methane budget in a temperate monsoonal forest

    Science.gov (United States)

    Sakabe, Ayaka; Kosugi, Yoshiko; Okumi, Chika; Itoh, Masayuki; Takahashi, Kenshi

    2016-07-01

    Forest soils are considered a methane (CH4) sink because dry soils can oxidize CH4; however, previous studies on CH4 fluxes in humid temperate forests indicated a high spatial and temporal variability in CH4 fluxes, especially in CH4 emissions from wet soils close to riparian zones, which can turn the soil of a whole forest from a CH4 sink to a CH4 source. In this study, the spatial and temporal variability of soil CH4 fluxes was investigated in a Japanese coniferous forest, including a riparian wetland and a hillslope water-unsaturated forest floor, based on multipoint flux measurements using laser-based CH4 analyzers over a period of 2 years. We identified CH4 emission hot spots (60.2 ± 169.1 nmol m-2 s-1 from 117 sampling points) in the wetland in late summer, while the CH4 absorption rate in the forest floor was comparatively lower (-1.2 ± 1.4 nmol m-2 s-1 from 119 sampling points). The temporal variability of watershed-scale CH4 flux was amplified by a clear seasonal cycle of soil temperature and rainfall pattern under the Asian monsoon climate. The watershed-scale CH4 budget showed that the forest turned into a CH4 source during the summer owing to the high and variable CH4 emissions from the riparian wetland and the lower part of the hillslope. Overall, our results indicated that CH4 emissions from small riparian areas are important in controlling forest CH4 dynamics at a watershed scale.

  10. The effects of riparian forestry on invertebrate drift and brown trout in upland streams of contrasting acidity

    Science.gov (United States)

    Ormerod, S. J.; Jones, M. E.; Jones, M. C.; Phillips, D. R.

    Variations in macroinvertebrate drift and benthic invertebrate abundance were assessed in 30 upland Welsh streams of varying acidity (pH 6.0) and riparian land-use (conifer, moorland or native broadleaf). The consequences for the diet and condition of wild brown trout Salmo trutta were also assessed. As expected from previous studies, there were significant reductions in benthic invertebrate abundance, aquatic drift density (by >60%), aquatic drift biomass (by >35%), total drift density (by >35%) and total drift biomass (by >20%) at acid sites by comparison with circumneutral sites due largely to the scarcity of mayflies. Absolute drift from terrestrial sources was unrelated to stream pH but formed a significantly greater proportion of total drift at acid sites (30-65% of density) than at circumneutral sites (20-40%) as aquatic contributions declined. Most of this apparent land use effect reflected significantly increased terrestrial drift under broadleaves. There was no significant reduction in terrestrial or aquatic drift at conifer forest sites per se after accounting for low pH. Trout diet varied substantially between locations partly reflecting variations in drift: significantly fewer mayflies and stoneflies were eaten at acid sites, and significantly more terrestrial prey were eaten under broadleaves. However, acidity did not reduce trout condition or gut-fullness. Unexpectedly, trout condition was significantly enhanced at conifer sites, irrespective of their pH. Hence, acidity has greater effects on the benthic abundance and drift density of invertebrates in upland streams than does riparian land use. However, trout forage flexibly enough to offset any possible food deficit, for example by switching to chironomids and terrestrial invertebrates. Enhanced terrestrial contributions to invertebrate drift from riparian broadleaf trees may be important in supplementing foraging opportunities for trout where aquatic prey are scarce. These data illustrate the value

  11. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    Science.gov (United States)

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink. PMID:12549558

  12. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services in Three Watersheds with Contrasting Agricultural Land Use

    OpenAIRE

    Julien Fortier; Benoit Truax; Daniel Gagnon; France Lambert

    2016-01-01

    In temperate agricultural watersheds, the rehabilitation of tree vegetation in degraded riparian zones can provide many ecosystem services. This study evaluated ecosystem service provision potential following the conversion of non-managed herbaceous buffers to hybrid poplar (Populus spp.) buffers in three watersheds (555–771 km2) of southern Québec (Canada), with contrasting agricultural land uses. To extrapolate services at the watershed level, total stream length where hybrid poplars could ...

  13. Spatial-seasonal variation of soil denitrification under three riparian vegetation types around the Dianchi Lake in Yunnan, China.

    Science.gov (United States)

    Wang, Shaojun; Cao, Zilin; Li, Xiaoying; Liao, Zhouyu; Hu, Binghui; Ni, Jie; Ruan, Honghua

    2013-05-01

    Outbreaks of nuisance cyanobacterial bloom are predicted to occur frequently under the effect of severe eutrophication in the water body of Lake Dianchi since the 1990s. Riparian buffers are now well recognized for their roles in the removal of inorganic nitrogen mainly via denitrification. Little is known, however, about the mechanisms of nitrate removal in the riparian buffers of Lake Dianchi. We investigated the wet and dry seasonal dynamics of denitrification rate (DNR) in the soil profiles along the topographic gradient in three riparian buffers with different vegetation types (i.e. forest, open forest, and grass). A strong vertical pattern was observed in soil organic C and N concentrations (i.e. total N, DON, NO3-N, and NH4-N) along the soil layers. We also found significantly higher in situ denitrification activity in the upper horizon along each topohydrosequence while the activities of soil denitrification could be detected down to deeper soil horizons (0.1 to 0.8 mg N per kg dry soil per day), which may contribute significantly to the reduction of the ground water nitrate. Meanwhile, the DNR in the zones near the lake was significantly higher than that in zones near the border with the upland terrace, and also in the wet seasons than in dry seasons. Denitrification rates in the forest, open forest and grass sites were significantly different only in wet seasons. Especially, we found soil organic C had a strong correlation with denitrification in all sites, despite the large intersite variability of soil and vegetation. Our data suggested spatial heterogeneity of substrate availability along a hydrologic and topographic gradient can be the primary control on spatial-seasonal patterns of denitrification in riparian buffers.

  14. Influence of rhizosphere microbial ecophysiological parameters from different plant species on butachlor degradation in a riparian soil.

    Science.gov (United States)

    Yang, Changming; Wang, Mengmeng; Li, Jianhua

    2012-01-01

    Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil.

  15. Catchment controls on water temperature and the development of simple metrics to inform riparian zone management

    Science.gov (United States)

    Johnson, Matthew; Wilby, Robert

    2015-04-01

    of thermal refuge could be important in the context of future climate change, potentially maintaining populations of animals excluded from other parts of the river during hot summer months. International management strategies to mitigate rising temperatures tend to focus on the protection, enhancement or creation of riparian shade. Simple metrics derived from catchment landscape models, the heat capacity of water, and modelled solar radiation receipt, suggest that approximately 1 km of deep riparian shading is necessary to offset a 1° C rise in temperature in the monitored catchments. A similar value is likely to be obtained for similar sized rivers at similar latitudes. Trees would take 20 years to attain sufficient height to shade the necessary solar angles. However, 1 km of deep riparian shade will have substantial impacts on the hydrological and geomorphological functioning of the river, beyond simply altering the thermal regime. Consequently, successful management of rising water temperature in rivers will require catchment scale consideration, as part of an integrated management plan.

  16. Delineating forested river habitats and riparian floodplain hydrology with LiDAR

    Science.gov (United States)

    Vondrasek, Chris

    Rivers and the riparian forest corridor comprise a valuable freshwater ecosystem that has been altered by human activities including timber management, road building, and other land conversions. The habitats of river dependent species in the Pacific Northwest, in particular salmon have often been degraded by these activities. Many salmon runs have become threatened with extinction and have been Endangered Species Act listed. New conservation planning and policies have developed around protecting freshwater habitats and restoring more natural river processes. In WA State, timber landowners, officials from State and Federal agencies, Native tribes, and other stakeholders developed Forest Practice rules and codified a Habitat Conservation Plan with dual goals of providing regulatory surety for timber land owners and helping to recover the threatened salmon runs in forested watersheds. Conserving critical stream ecological functions and potential fish habitats throughout watersheds while managing and regulating timber harvest across the State requires accurate and up-to-date delineation and mapping of channels, tributaries, and off-channel wetlands. Monitoring the effectiveness of protection efforts is necessary but can also be difficult. Agency staff and resources are limited for both day-to-day implementation of Forest Practice rules and adaptive management. The goal of this research has been to develop efficient and accessible methods to delineate wetlands, side-channels, tributaries, and pools and backwaters created by large log jams in forested watersheds. It was also essential to use publicly available LiDAR data and to model these waters at ecologically meaningful flows. I tested a hydraulic model at a 2-year and 50-year flows, and a relative height above river surface model and compared them. I completed two additional remote sensing investigations to correlate channel movement and the locations of off-channel wetlands: an analysis of historical aerial imagery

  17. Interaction of Bar Morphology and Riparian Vegetation in Gravel-Bed Rivers

    Science.gov (United States)

    Francalanci, S.; Bertoldi, W.; Siviglia, A.; Solari, L.; Toffolon, M.; Vetsch, D.

    2013-12-01

    Gravel-bed rivers are often characterized by complex bed topography, including single- and multiple-row alternate bars, bed undulations associated with channel curvature, riffle and pool sequences, presence of riparian vegetation in the floodplain, etc. The interaction of these features results in different morphologies with complex patterns and dynamics. The present work investigates the effect of the riparian vegetation on the bar dynamics, in particular it is investigated how the vegetation, which grows during the dry season on the bars, can alter the topographic patterns evolution during flood conditions. Performing two-dimensional numerical simulations we try to answer to the following research questions: which is the interaction of vegetation with bar morphology? which are the changes in sediment discharge and flow resistance, at cross-sectional and reach scale? Which are the changes in distribution of emerged and submerged areas, and potential feedbacks for vegetation growth? Which is the effect of vegetation on bar wave-length? The code BASEMENT (Faeh et al., 2010) has been used for performing the numerical runs. It has been properly modified in order to deal with the numerical description of the vegetation. The vegetation was allowed to grow during the dry season on the top of dry emergent areas, and the vertical distribution of vegetation in equilibrium condition was modeled as a function of the bed elevation using a simple analytical formulation, following Marani et al (2013). Then, during the flood events we assume that the vegetation distribution does not change, and that it can only be uprooted if the bed is eroded.The flow resistance was divided into a resistance exerted by the soil and a resistance exerted by the plants (Crosato and Saleh, 2010; Li and Millar, 2011); in this way it was possible to reproduce both the decrease in bed shear stress, reducing the sediment transport capacity of the flow within the plants, and the increase in hydraulic

  18. Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil

    Science.gov (United States)

    Cruz, Bruna B.; Miranda, Leandro E.; Cetra, Mauricio

    2013-01-01

    We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south-eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.

  19. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders.

    Science.gov (United States)

    Benjamin, Joseph R; Fausch, Kurt D; Baxter, Colden V

    2011-10-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout.

  20. Evaluation of an extreme-condition-inverse calibration remote sensing model for mapping energy balance fluxes in arid riparian areas

    Science.gov (United States)

    Hong, S.-H.; Hendrickx, J. M. H.; Kleissl, J.; Allen, R. G.; Bastiaanssen, W. G. M.; Scott, R. L.; Steinwand, A. L.

    2014-12-01

    Accurate information on the distribution of the surface energy balance components in arid riparian areas is needed for sustainable management of water resources as well as for a better understanding of water and heat exchange processes between the land surface and the atmosphere. Since the spatial and temporal distributions of these fluxes over large areas are difficult to determine from ground measurements alone, their prediction from remote sensing data is very attractive as it enables large area coverage and a high repetition rate. In this study the Surface Energy Balance Algorithm for Land (SEBAL) was used to estimate all the energy balance components in the arid riparian areas of the Middle Rio Grande Basin (New Mexico), San Pedro Basin (Arizona), and Owens Valley (California). We compare instantaneous and daily SEBAL fluxes derived from Landsat TM images to surface-based measurements with eddy covariance flux towers. This study presents evidence that SEBAL yields reliable estimates for actual evapotranspiration rates in riparian areas of the southwestern United States. The great strength of the SEBAL method is its internal calibration procedure that eliminates most of the bias in latent heat flux at the expense of increased bias in sensible heat flux.

  1. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  2. Caloric content of leaves of five tree species from the riparian vegetation in a forest fragment from South Brazil

    Directory of Open Access Journals (Sweden)

    Leandro Fabrício Fiori

    2015-09-01

    Full Text Available Abstract Aim: The measurement of the caloric content evidences the amount of energy that remains in the leaf and that can be released to the aquatic trophic chain. We assessed the energy content of leaves from five riparian tree species of a forest fragment in south Brazil and analyzed whether leaf caloric content varied between leaf species and between seasons (dry and wet. The studied sites are located in Northwest of Paraná State, inside a Semi-Deciduous Forest fragment beside two headwater streams. Methods Sampling sites were located along the riparian vegetation of these two water bodies, and due to its proximity and absence of statistical differences of caloric values, analyzed as one compartment. Results Caloric content varied significantly among species and among all pairs of species, with exception of Nectandra cuspidata Ness and Calophyllum brasiliensis Cambess. Two species presented significant differences between seasons, Sloanea guianensis (Aubl. Ben and Calophyllum brasiliensis Cambess. Conclusions The absence of significant seasonal differences of energy content for some species may be due to the characteristics of the tropical forest, in which temperature did not varied dramatically between seasons. However, the energy differed between species and seasons for some species, emphasizing the necessity of a preliminary inspection of energy content, before tracing energy fluxes instead of using a single value to all species from riparian vegetation.

  3. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders.

    Science.gov (United States)

    Benjamin, Joseph R; Fausch, Kurt D; Baxter, Colden V

    2011-10-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout. PMID:21688160

  4. Evaluation of an extreme-condition-inverse calibration remote sensing model for mapping energy balance fluxes in arid riparian areas

    Directory of Open Access Journals (Sweden)

    S.-H. Hong

    2014-12-01

    Full Text Available Accurate information on the distribution of the surface energy balance components in arid riparian areas is needed for sustainable management of water resources as well as for a better understanding of water and heat exchange processes between the land surface and the atmosphere. Since the spatial and temporal distributions of these fluxes over large areas are difficult to determine from ground measurements alone, their prediction from remote sensing data is very attractive as it enables large area coverage and a high repetition rate. In this study the Surface Energy Balance Algorithm for Land (SEBAL was used to estimate all the energy balance components in the arid riparian areas of the Middle Rio Grande Basin (New Mexico, San Pedro Basin (Arizona, and Owens Valley (California. We compare instantaneous and daily SEBAL fluxes derived from Landsat TM images to surface-based measurements with eddy covariance flux towers. This study presents evidence that SEBAL yields reliable estimates for actual evapotranspiration rates in riparian areas of the southwestern United States. The great strength of the SEBAL method is its internal calibration procedure that eliminates most of the bias in latent heat flux at the expense of increased bias in sensible heat flux.

  5. Valuing riparian forests restoration: a CVM application in Corumbatai river basin

    Directory of Open Access Journals (Sweden)

    Caetano Brugnaro

    2010-09-01

    Full Text Available This study is an application of CVM to a specific area in Brazil, the Corumbatai river basin, in the state of Sao Paulo, aiming to estimate the value attached by affected people to a hypothetical riparian forest restoration project. The method used was the double bounded dichotomous choice under a logit model. Data were obtained by street-intercept interviews with a net sample of 930 individuals, 20 years or older, living in seven municipalities (cities and respective rural areas that contain the basin. Protest bid responses were not excluded in a first approximation, resulting in a R$ 2.06 mean willingness to pay (WTP for the riparian forest restoration, equivalent to approximately R$ 274,000 per month (R$ 1.00 equivalent to US$ 0.52 at the survey period when accounting for about 133,000 residences in the area. It was observed an expressive number of "no-no" responses from people ascribing the problem to government and farmers and suspecting on misuse of funds by the official agencies involved.Para este estudo, foi aplicado o CVM (Contingent Valuation Method a uma área específica do Brasil, a bacia do rio Corumbataí, no estado de São Paulo, visando estimar o valor atribuído pela população afetada a um hipotético projeto de reposição de matas ciliares. O método utilizado foi o de escolha dicotômica com limite duplo, sob o modelo da distribuição logística. Os dados foram obtidos por meio de entrevistas nas ruas, numa amostra líquida de 930 pessoas com 20 anos ou mais, moradoras de sete municípios que englobam a bacia. Numa primeira aproximação, não se excluíram as manifestações de protesto, resultando em R$ 2,06 como valor médio da disposição a pagar pela reposição de matas ciliares, o que equivale a aproximadamente R$ 274 mil por mês, quando computadas as aproximadamente 133 mil residências na área. Observou-se um grande número de respostas "não-não" de pessoas que atribuem o problema ao governo e agricultores e

  6. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    Directory of Open Access Journals (Sweden)

    P. B. Kristensen

    2013-05-01

    Full Text Available Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature

  7. Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing

    Science.gov (United States)

    Geli, Hatim Mohammed Eisa

    Modeling of surface energy fluxes and evapotranspiration (ET ) requires the understanding of the interaction between land and atmosphere as well as the appropriate representation of the associated spatial and temporal variability and heterogeneity. This dissertation provides new methodology showing how to rationally and properly incorporate surface features characteristics/properties, including the leaf area index, fraction of cover, vegetation height, and temperature, using different representations as well as identify the related effects on energy balance flux estimates including ET. The main research objectives were addressed in Chapters 2 through 4 with each presented in a separate paper format with Chapter 1 presenting an introduction and Chapter 5 providing summary and recommendations. Chapter 2 discusses a new approach of incorporating temporal and spatial variability of surface features. We coupled a remote sensing-based energy balance model with a traditional water balance method to provide improved estimates of ET. This approach was tested over rainfed agricultural fields ˜ 10 km by 30 km in Ames, Iowa. Before coupling, we modified the water balance method by incorporating a remote sensing-based estimate for one of its parameters to ameliorate its performance on a spatial basis. Promising results were obtained with indications of improved estimates of ET and soil moisture in the root zone. The effects of surface features heterogeneity on measurements of turbulence were investigated in Chapter 3. Scintillometer-based measurements/estimates of sensible heat flux (H) were obtained over the riparian zone of the Cibola National Wildlife Refuge (CNWR), California. Surface roughness including canopy height (hc), roughness length, and zero-plane displacement height were incorporated in different ways, to improve estimates of H. High resolution, 1-m maps of ground surface digital elevation model and canopy height, hc, were derived from airborne LiDAR sensor data

  8. Dynamics of Greenhouse Gas Emissions from Riparian Buffer Zones and Wetlands as Hot Spots in Agricultural Landscapes

    International Nuclear Information System (INIS)

    The study considers various aspects of riparian buffer zones and wetlands for greenhouse gas emissions in agricultural landscapes of northern and north-eastern Europe. In particular, the impact of pulsing water regime, continuous loading and several alterations of environmental conditions on greenhouse gas emissions are taken into the consideration. In two case studies the isotopologue technique was used to distinguish between N2O sources in both riparian zones and constructed wetlands. Nitrous oxide (N2O) and nitrogen (N2) emissions, isotopic signatures of N2O and nitrate (NO3-) in groundwater of two differently loaded riparian grey alder stands in southern Estonia were investigated over a period of nine months. One area was a 38-year-old stand in Porijõgi (PJ), where uphill agricultural activities had been abandoned since the middle of 1990s, and the second area was a 55-year-old alder stand in Viiratsi (Vi), which still receives polluted lateral flow from uphill fields applied with pig slurry. Gas fluxes were measured in six sampling sessions, and water samples were analysed for NO3-, N2, N2O, and isotopic signatures of oxygen-18 (delta 18O, δ18O) and nitrogen-15 (delta 15N, δ15N) in N2O and NO3- in four of the six sessions. The N2O and N2 fluxes from both riparian zones did not differ significantly, being 9.6 ± 4.7 and 14.5 ± 3.9 μg N2O–N m−2 h−1, and 2 466 ± 275 and 3 083 ± 371 μg N2–N m−2 h−1 in PJ and Vi sites respectively, suggesting that gaseous N2 is the dominant gas emission from these alder stands. The isotopic signatures of N2O and NO3- were not significantly different between PJ and Vi study sites suggesting possible conversion of NO3- to N2O in both areas. The greater prevalence of N2 emissions over N2O in both areas, and the strong relationship between NO3- and N2O concentrations (r2 = 0.846, with p < 0.01) further suggested that denitrification is the main source of N2O and N2 fluxes in these grey alder stands. The dominant

  9. Interactions among riparian vegetation, flow and sediment in a sand bed river: Implications for restoration

    Science.gov (United States)

    Gorrick, S.; Rodriguez, J. F.

    2012-12-01

    We present a set of laboratory experiments based on field site conditions on a sand bed stream in Australia that is currently being restored by reintroduction of lost riparian vegetation. Three experiments were conducted in order to investigate both the local and reach-scale impacts of bank vegetation on flow and sediment dynamics. The first experiment contained no bank vegetation and was similar to the original state of the stream. The second experiment placed a series of three inline vegetation patches along the outer bank, simulating the design of the ongoing restoration works. The third experiment used a continuous strip of vegetation along the outer bank, which represents a more traditional restoration technique. In each experiment flow and sediment measurements were carried out, including ADV velocities, water surface elevations, suspended and bedload sediment transport rates and bed evolution. The analysis focussed on the quantification of flow and sediment fluxes and the resulting stream morphology, which responded to the presence of vegetation and to changes in stream curvature and width. Both arrangements of vegetation provided effective bank protection; however the patches used less vegetation and were thus more efficient. The reach-scale effects included changes to stream curvature, stream width and redistribution of sediments, all of which have important implications for management. Recommendations also include the selection of optimum patch size and spacing as well as plant composition.

  10. Variations in Soil Salinity and Riparian Vegetation Coverage as Indicators of Stress in an Arid Watershed

    Science.gov (United States)

    Gutierrez, M.; Mickus, K.; Johnson, E.

    2003-12-01

    Soil salinity and riparian vegetation coverages of an arid area in northern Mexico through time were investigated. The study area comprises a 10 km segment of the lower Rio Conchos and surrounding undeveloped, non-irrigated land. The amount of area affected by salinity and the type of salinity were determined using EC (electrical conductivity) in conjunction with satellite images and corroborated by field analysis. The soil salinity derived from the remote sensing data was tied to precipitation, greenness of vegetation and water level of a nearby reservoir. The most appropriate method to assess soil salinity was found to be the selective principal component (SPCA) technique of Chavez and Kwarteng while the techniques utilized to discriminate vigorously-growing vegetation were tasseled cap transformation and the normalized difference vegetation index (NDVI). With this region undergoing a severe drought for the last ten years, the response of different parts of the ecosystem and changes in vegetation that so closely affect wildlife and other natural resources in this area can be better evaluated.

  11. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin

    Directory of Open Access Journals (Sweden)

    J. Meynendonckx

    2006-05-01

    Full Text Available The relative influence of a set of watershed characteristics on surface water nutrient concentrations was examined in 173 watersheds within two subcatchments (Upper-Scheldt and Nete of the River Scheldt Basin (Flanders, Belgium. Each watershed was described by seasonal rainfall, discharge loading of point sources, morphological characteristics (area, average slope, drainage density, elongation, land use and soil properties (soil texture and drainage. Partial regression analysis revealed that soil drainage variables had the strongest influence on nutrient concentrations. Additional influence was exerted by land use and point source loading variables. Nitrate concentrations were positively correlated with effluent loadings coming from wastewater treatment plants and with the area of agricultural land. Phosphate concentrations were best explained by effluent loadings of industrial point sources and by the area of urban land. Land use close to the river was not a better predictor of nitrate and phosphate concentrations than land use away from the river. This suggests that the mediating impact of riparian zones is rather explained by the hydrologic pathways within the buffer strip.

  12. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin

    Directory of Open Access Journals (Sweden)

    J. Meynendonckx

    2006-01-01

    Full Text Available The relative influence of a set of watershed characteristics on surface water nutrient concentrations was examined in 173 watersheds within two subcatchments (Upper-Scheldt and Nete of the River Scheldt Basin (Flanders, Belgium. Each watershed was described by seasonal rainfall, discharge loading of point sources, morphological characteristics (area, average slope, drainage density, elongation, land use and soil properties (soil texture and drainage. Partial regression analysis revealed that soil drainage variables had the strongest influence on nutrient concentrations. Additional influence was exerted by land use and point source loading variables. Nitrate concentrations were positively correlated with effluent loadings coming from wastewater treatment plants and with the area of agricultural land. Phosphate concentrations were best explained by effluent loadings of industrial point sources and by the area of urban land. Land use close to the river was not a better predictor of nitrate and phosphate concentrations than land use away from the river. This suggests that the mediating impact of riparian zones is rather explained by the hydrologic pathways within the buffer strip.

  13. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Science.gov (United States)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  14. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle

    2014-01-01

    Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.

  15. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  16. Spatial distribution characteristics of fine roots of Populus euphratica in a desert riparian forest

    Institute of Scientific and Technical Information of China (English)

    Jianhua SI; Qi FENG; Jianlin LI; Jian ZHAO

    2008-01-01

    The soil-plant system is a very important sub-system of the soil-plant-atmosphere continuum (SPAC). The water uptake by plant roots is an important subject in the research on water transport in this SPAC and is also the most active study direction in the fields of ecology, hydrology and environment. The study of the spatial dis-tribution pattern of fine roots of plants is the basis of constructing a water absorption model of plant roots. Our study on the spatial distribution pattern of fine roots of Populus euphratica in a desert riparian forest shows that the density distribution of its root lengths can be expressed horizontally as a parabola. The fine roots are concen-trated within the range of 0-350 cm from the tree trunk and their amount accounts for 91.9% of the total root mass within the space of 0-500 cm. In the vertical dir-ection, the density distribution of the fine root lengths shows a negative exponential relation with soil depth. The fine roots are concentrated in the 0-80 cm soil layer, accounting for 96.8% of the total root mass in the 0-140 cm soil layer.

  17. Isolation and Characterization of Four Gram-PositiveNickel-Tolerant Microorganisms from Contaminated Riparian Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joy D.; Khijniak, Tatiana V.; Gentry, Terry J.; Novak, Michelle T.; Sowder, Andrew G.; Zhou, Jizhong Z.; Bertsch, PaulM.; Morris, Pamela J.

    2006-08-30

    Microbial communities from riparian sediments contaminatedwith high levels of Ni and U were examined for metal-tolerantmicroorganisms. Isolation of four aerobic Ni-tolerant, Gram-positiveheterotrophic bacteria indicated selection pressure from Ni. Theseisolates were identified as Arthrobacter oxydans NR-1, Streptomycesgalbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatosporacystarginea NR-4 based on partial 16S rDNA sequences. A functional genemicroarray containing gene probes for functions associated withbiogeochemical cycling, metal homeostasis, and organic contaminantdegradation showed little overlap among the four isolates. Fifteen of thegenes were detected in all four isolates with only two of these relatedto metal resistance, specifically to tellurium. Each of the four isolatesalso displayed resistance to at least one of six antibiotics tested, withresistance to kanamycin, gentamycin, and ciprofloxacin observed in atleast two of the isolates. Further characterization of S. aureofaciensNR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Nitolerance constitutively. In addition, both were able to grow in higherconcentrations of Ni at pH 6 as compared to pH 7 (42.6 and 8.5 mM Ni atpH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examinedin these two isolates; a similar pH-dependent metal tolerance wasobserved when grown with Co and Zn. Neither isolate was tolerant to Cd.These findings suggest that Ni is exerting a selection pressure at thissite for metal-resistant actinomycetes.

  18. Researches on Dynamical Succession Simulation of Typical Riparian Forests in Wenyu Watershed Upstream%文峪河流域上游典型河岸林动态演替模拟研究

    Institute of Scientific and Technical Information of China (English)

    郭玉永

    2012-01-01

    Dynamical succession of typical riparian forests and ecological footprint of species replacement were analyzed using the Markov model to research structure and function of existing communities in 33 typical riparian plots in Wenyu watershed upstream. Results showed that the change rate of pioneer species P. cathayana was the largest and it was quickly replaced by other species after improvement of lighting conditions and microclimate in the community succession process ; the quantity of B. albo-sinensis and B. platyphyUa were the largest during 40-80 year and quantity peak of Larix gmelinii appeared in 120-160 year while Picea asperata quantity was in growth condition with the time until 600 years ; the forest mainly consisted of Larix gmelinii and Picea asperata with the proportion of 50% respectively ; the riparian forest would develop to the climax community (spruce stands) after 600 years and plenty of realized communities in Wenyu watershed upstream were the pioneer and transitional period at 40-80 year scale. The study would be foundation for the mechanism of riparian dynamical succession and serve the ecosystem management of riparian forest buffer zone.%笔者通过在文峪河上游选取典型河岸林群落样地33块,采用Markov线性模型模拟预测河岸林群落的动态演替过程,分析群落乔木物种替代的轨迹变化,阐明现实林分组成的结构和功能特性。研究结果表明:1)在演替过程中,以先锋树种青杨的变化速率最大,在完成林地光照条件及小气候的改善后,迅速被其它树种排挤。2)红桦和白桦在40a-80a间林分数量达到最高点;落叶松林分数量最高点出现在120a-160a间,以后几百年逐步退化减少。云杉林分数量随时间延长处于增长状态,在600a内未达到生长顶峰。3)落叶松和云杉林二者数量在230a左右时约为10株,林分以落叶松和云杉林为主,比例各占50%.4)文峪河上游大部分河

  19. Types and soil conservation capacity of riparian vegetation at middle reach of Shiyang river%石羊河中游河岸植被及其护岸能力研究

    Institute of Scientific and Technical Information of China (English)

    郑庆钟; 刘世增; 刘虎俊; 袁宏波; 李银科; 郭春秀; 刘淑娟; 张莹花

    2012-01-01

    调查分析石羊河中游河岸植被及其保护河岸能力可为河岸管理与植被恢复提供参考。通过植被组成与结构以及河岸地貌调查,选用植被密度、覆盖度、根系主分布层深度计算河岸植被的保持土壤能力指数。结果表明:石羊河中游的植被可分为12个群丛。灌丛或灌丛+乔木群落成块状或条带状夹在其他植被类型之间,成为河岸植被的骨架。从河岸完整性以及群落保持土壤能力指数综合判断,沼泽化草甸以及盐化草甸+灌木的护岸能力较强,其次为灌丛,再次为灌丛+乔木。河岸植被保护石羊河中游两岸,使其形成限制性河床,不仅增加了河岸稳定性,而且提高了防治灾害能力。%Shiyang River basin is one of the inland river basins where the ecological environment is strongly disturbed by artificial action which leads to the degraded environment.It is signality to study the riparian vegetation of Shiyang River for management and protection of bank and returning to ecological environment.The element and structure of the riparian vegetation at middle reach of Shiyang River was investigated,and the density of plant,coverage ratio,the spreading depth of root density,vegetation type and biotype of dominant species were employed to comprehensively evaluate the riparian vegetation for protecting bank.The results are as follows: there are 11 associations.The shrubland or tree-shrub forest,which is the support of the riparian vegetation,thread amount others of vegetation.The number of coverage ratio and density of swamp-meadow are the biggest,but the depth of root is shallow and simple,so the meadow + shrub with second of coverage ratio and density and more depth of root have the strong capacity to protect the bank.The shrubland that is constituted of by Tamarix ramosissima or Salix lineaisriputlaris is stronger to protect bank than that of tree-land with Populus gansuensis or Elaiagnus angustifolia,and it is

  20. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  1. Variation in the diet of a small characin according to the riparian zone coverage in an Atlantic Forest stream, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Márcia Emília de Jesus Trindade

    2013-03-01

    Full Text Available AIM: in this study we present data from the diet of Astyanax vermilion which were used as a tool to compare two sites of streams with different vegetation cover in Ribeirão Limoeiro, Cachoeira River Basin, BA. METHODS: Four samples were taken (March, June, September and December using electrofishing as the collection method in two contiguous sites of the headwaters: stretch without riparian vegetation and with riparian vegetation. RESULTS: The qualitative composition of the diet was analyzed by the method of frequency of occurrence. The allochthonous resources of vegetal origin made up the bulk of the diet in the stretch without riparian vegetation with a frequency of occurrence of 64%. In the section with riparian vegetation allochthonous resources of animal origin made up the bulk of the diet with a frequency of 62%, which emphasizes the importance of food items from the surrounding environment. The mean Shannon diversity index, calculated from the frequency of occurrence of food items was significantly different (p = 0.04 when comparing reach deforested (H'= 1.44 with reach forested (H'= 1.80. The average weight of stomachs in the deforested reach (WS D = 0.18g was significantly higher than that of the forested reach (WS F = 0.14g. CONCLUSIONS: in the stretch with riparian vegetation, the food diversity was greater and the fish that are in the riparian stretch do not need as much food to satisfy their physiological needs. These results underscore the importance of the type of riparian vegetation as a food source for fish

  2. 梯级河岸人工湿地的数值模拟研究%Study on Numerical Simulation of Cascaded Riparian Constructed Wetlands

    Institute of Scientific and Technical Information of China (English)

    王俊; 黄岁樑; 沈静; 范志云

    2012-01-01

    通过梯级河岸人工湿地的数值模拟,以总磷(TP)在梯级河岸人工湿地的运移为例,通过流场、TP浓度场和TP运移归宿的分析,探讨了植物根系和填料对TP运移和去除效果的影响.研究结果表明,对TP而言,有植物湿地的去除率均大于相应无植物湿地的去除率;含豆石层(降解系数和渗透系数相对较大)湿地的去除率均略大于相应无豆石层湿地的去除率.%Riparian constructed wetlands have been promoted as a means of reducing nutrient inputs from nonpoint pollution and river pollution. Riparian constructed wetlands have combined the treatment principles of both natural ri- parian wetlands and constructed wetlands. A three dimensional numerical model was developed for modeling TP trans- port in cascaded riparian constructed wetlands. The effects of plant roots and filler to TP transport and removal effi- ciency were discussed from the aspects of the flow fields, TP concentration fields and the fate of TP. The removal effi- ciencies of the riparian constructed wetlands with plants are higher than the corresponding riparian constructed wet- lands without Plants. The removal efficiencies of the riparian constructed wetlands with pisolite (degradation parame- ter and conductivity parameter were relatively larger) are a little higher than the corresponding riparian constructed wetlands without pisolite.

  3. Main ecological service functions in riparian vegetation buffer zone:Research progress and prospects%河岸植被缓冲带主要生态服务功能研究的现状与展望

    Institute of Scientific and Technical Information of China (English)

    郭二辉; 孙然好; 陈利顶

    2011-01-01

    河岸植被缓冲带是河流生态系统和陆地生态系统之间的生态交错带,具有独特的生态系统结构和服务功能,也是近年来生态学和环境科学研究的热点之一.本文对河岸带的生态系统结构及其在生物多样性维持、非点源氮素污染防治等主要生态服务功能方面的研究进行了系统总结和分析.由于岸边缓冲带具有结构复杂、系统内外干扰因子多、时空异质性强等特征,要实现对河岸带生态系统的科学有效管理,还需要进行大量的理论和案例研究.从系统生态学和景观生态学的角度,展望了该领域的研究前景:(1)加强人类活动干扰如土地利用的时空变化对河岸区域生物多样性分布特征和生态环境效应的影响研究;(2)加强不同河岸植被缓冲带结构和区域环境特征对非点源氮素污染净化机理和控制过程的研究;(3)在小尺度长期定位观测和机理研究的基础上,综合运用数学方法、遥感(RS)和地理信息系统(GIS)等工具,开发适合我国地域特点和环境特征的生态系统管理模型,定量研究河岸带生态系统结构、过程与功能动态变化及其与人类活动干扰之间的相互关系和影响机制,为区域社会经济的可持续发展提供科学依据和管理对策.%Riparian vegetation buffer zone is the ecotone between aquatic and terrestrial ecosystems, which has unique spatial structure and ecological service functions, being a research hotspot in ecological and environmental sciences. In this paper, the researches on the ecosystem structure of the riparian zone and its main ecological service functions in biodiversity conservation and non-point nitrogen pollution prevention were summarized and analyzed. Owing to the complicated structure, multiple interference factors, and high spatial-temporal heterogeneity of the riparian zone, more theoretical and case studies are needed to improve the scientific management of riparian

  4. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.

    Science.gov (United States)

    Krause, Stefan; Jacobs, Joerg; Voss, Anja; Bronstert, Axel; Zehe, Erwin

    2008-01-15

    In many European lowland rivers and riparian floodplains diffuse nutrient pollution is causing a major risk for the surface waters and groundwater to not achieve a good status as demanded by the European Water Framework Directive. In order to delimit the impact of diffuse nutrient pollution substantial and often controversial changes in landuse and management are under discussion. In this study we investigate the impact of two complex scenarios considering changes in landuse and land management practices on the nitrate loads of a typical lowland stream and the riparian groundwater in the North German Plains. Therefore the impacts of both scenarios on the nitrate dynamics, the attenuation efficiency and the nitrate exchange between groundwater and surface water were investigated for a 998.1 km(2) riparian floodplain of the Lower and Central Havel River and compared with the current conditions. Both scenarios target a substantial improvement of the ecological conditions and the water quality in the research area but promote different typical riparian landscape functions and consider a different grade of economical and legal feasibility of the proposed measures. Scenario 1 focuses on the optimisation of conservation measures for all natural resources of the riparian floodplain, scenario 2 considers measures in order to restore a good status of the water bodies mainly. The IWAN model was setup for the simulation of water balance and nitrate dynamics of the floodplain for a perennial simulation period of the current landuse and management conditions and of the scenario assumptions. The proposed landuse and management changes result in reduced rates of nitrate leaching from the root zone into the riparian groundwater (85% for scenario 1, 43% for scenario 2). The net contributions of nitrate from the floodplain can be reduced substantially for both scenarios. In case of scenario 2 a decrease by 70% can be obtained. For scenario 1 the nitrate exfiltration rates to the

  5. Disturbance regimes and gaps characteristics of the desert riparian forest at the middle reaches of Tarim River%塔里木荒漠河岸林干扰状况与林隙特征

    Institute of Scientific and Technical Information of China (English)

    韩路; 王海珍; 陈加利; 于军

    2011-01-01

    majority of gaps consisted of 2 to 5 gap makers with the 4 gap makers category being the most abundant group and the average number of gap makers was 4. I per gap. The diameter at breast height ( DBH) of most gap makers ranged from 5 to 25cm, and their height varied from 4 to 8m. The average area of EG and CG formed by each gap maker was 27. 12m2 and 11. 32m2 , respectively. The structure of DBH classes of the gap border trees ( GBT) show a normal distribution, but tree height classes show a left-skewed distribution. The average numbers of GBTs was 8. 375 per gap. The average DBH of' GBT was 73. 1% higher than that of' gap makers, indicating the gap disturbance was a frequent occurrence in the desert riparian forest, and the continuously declining level of underground water was the driving force of gap formation.

  6. Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: the Upper San Pedro, Arizona, United States

    Science.gov (United States)

    Nguyen, Uyen; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2015-01-01

    The Upper San Pedro River is one of the few remaining undammed rivers that maintain a vibrant riparian ecosystem in the southwest United States. However, its riparian forest is threatened by diminishing groundwater and surface water inputs, due to either changes in watershed characteristics such as changes in riparian and upland vegetation, or human activities such as regional groundwater pumping. We used satellite vegetation indices to quantify the green leaf density of the groundwater-dependent riparian forest from 1984 to 2012. The river was divided into a southern, upstream (mainly perennial flow) reach and a northern, downstream (mainly intermittent and ephemeral flow) reach. Pre-monsoon (June) Landsat normalized difference vegetation index (NDVI) values showed a 20% drop for the northern reach (P  0·05). NDVI and enhanced vegetation index values were positively correlated (P factor in reducing river flows. Climate change, regional groundwater pumping, changes in the intensity of monsoon rain events and lack of overbank flooding are feasible explanations for deterioration of the riparian forest in the northern reach.

  7. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera): A turbiditic deep-water or storm-dominated prodelta inner-shelf system?

    Science.gov (United States)

    Basilici, Giorgio; de Luca, Pedro Henrique Vieira; Poiré, Daniel G.

    2012-08-01

    Turbidity-current and storm-induced deposits may exhibit similarities, in particularly when the latter is laid down by a combination of oscillatory and unidirectional flows. Recent progress in facies analysis helps to discriminate the sedimentary effects of oscillatory from unidirectional components of the flow. On the basis of detailed analysis of sedimentary facies, strata geometry, and palaeocurrent data, the present study reinterprets the Punta Negra Formation (PNF) (Lower-Middle Devonian, Argentine Precordillera), previously considered as a depositional system of deep-water, as a storm-dominated prodeltaic shelf depositional system. In the sandstone beds of the PNF, planar, low-angle and undulating laminations with weakly asymmetric hummocky and swaley bedforms, combined-flow ripples, accretionary hummocky cross-stratification-like (HCS-like), and anisotropic HCS-like suggest the action of oscillatory currents combined with unidirectional currents in forming the deposits. Different hypotheses on the origin of the oscillatory currents have been examined. The most convincing interpretation is that the oscillatory component of the velocity is attributed to storm-induced waves. The palaeocurrent data indicate offshore current directions, suggesting that the unidirectional flow was a gravity-induced bottom current. Inverse grading at the base and overlying normally graded divisions of the sandstone beds testify to waxing-waning behaviour of the depositional flows; interbedding of sedimentary structures (undulating laminations, low-angle and parallel laminations, and combined-flow ripples) in the lower and intermediate divisions of the beds indicate fluctuations of flow velocity. This organisation of the sedimentary structures permits association of the unidirectional component with hyperpycnal bottom currents. The terrestrial origin of the hyperpycnal flows is suggested by the abundance of terrestrial plant remains, the mineralogical and textural immaturity of the

  8. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    Science.gov (United States)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    Ash-leaved maple (Acer negundo) is one of the most invasive species occurring in riparian zones. The invasion is especially effective in disturbed areas, as the plant favours anthropogenic sites. The plant was also observed to be able to penetrate into sandy bars, also those separated from the land, inaccessible to people. It's removal is time-consuming and laborious, often involves damage done to sensitive vegetation and the results are doubtful, as the plant quickly regenerates. The invasion patterns and establishment of ash-leaved maple in natural ecosystems are poorly investigated. The aim of this study was to test how habitat factors such as: light availability, soil characteristics and competition contribute to ash-leaved maple effective colonization of natural sand bars free from anthropogenic pressure. In 2014 sand bars located in Vistula River Valley in Warsaw were inventoried and classified basing on their development stage as 1 - initial, 2 - unstable, 3 - stable. Apart from the occurrence of the invasive ash-leaved maple the plants competing with it were recognized and the percentage of the shoots of shrubs and herbaceous plants was estimated. PAR was measured at ground level and 1 meter above ground, the thickness of organic layer formed on the top of the sand was also measured as the indicator of sand bar development stage. The maple's survival in extremely difficult conditions resembles the strategy of willows and poplars naturally occurring in the riparian zones, which are well adapted to this environment. The success of invasion strongly depends on the plants establishment during sand bars initial stage of development. The seedlings growth correlates with the age of the sand bar (r1=0,41, r2=0,42 i r3=0,57). The colonization lasts for 4-6 years and the individuals start to cluster in bigger parches. After that period the maple turns into the phase of competition for space. Habitat factors such as shading (r2=0,41 i r3=0,51) and organic layer

  9. INDICATED SPECIES TO RESTORATION OF RIPARIAN FORESTS IN SUBWATERSHED OF PEIXE-BOI RIVER, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    Igor do Vale

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815736This study aims to indicate native species to be used in the restoration of degraded riparian forests in the subwatershed of Peixe-Boi river. All trees and shrubs with diameter at breast height (DBH > 5 cm were inventoried in ten areas of secondary forest and six areas of igapó forest. The results were analyzed by Principal Component Analysis and the silviculture of the species was assessed by literature review. In Igapó areas 66 species were found; the areas had low richness and low diversity index of Shannon, when compared with data from the secondary forests. The floristic composition was heterogeneous, and the floristic similarity is higher between areas that are closer geographically. In the secondary forests were found 175 species; the areas showed high abundance of individuals, high species richness, diversity and evenness. Secondary forests were separated according to geographic proximity and age, which is directly linked to the successional stage. The PCA analysis established the ecological importance of 29 tree species; however only ten species had enough silvicultural information. Due to a greater ecological importance and viable silvicultural techniques available in the literature, Carapa guianensis, Pachira aquatica, Spondias mombin, Tapirira guianensis and Virola guianensis are the most suitable species to restore the degraded areas, in association with Inga edulis, Jacaranda copaia, Pseudopiptadenia psilostachya, Simarouba amara and Vismia guianensis of the secondary forests, that can be planted in the borders and in the nearby areas of igapó forests.

  10. Multi-scale Modeling of Energy Balance Fluxes in a Dense Tamarisk Riparian Forest

    Science.gov (United States)

    Neale, C. M.; Santos, C. A.; Watts, D.; Osterberg, J.; Hipps, L. E.; Sritharan, S. I.

    2008-12-01

    Remote sensing of energy balance fluxes has become operationally more viable over the last 10 years with the development of more robust multi-layer models and the availability of quasi-real time satellite imagery from most sensors. Riparian corridors in semi-arid and arid areas present a challenge to satellite based techniques for estimating evapotranspiration due to issues of scale and pixel resolution, especially when using the thermal infrared bands. This paper will present energy balance measurement and modeling results over a Salt Cedar (Tamarix Ramosissima) forest in the Cibola National Wildlife Refuge along the Colorado River south of Blythe, CA. The research site encompasses a 600 hectare area populated by mostly Tamarisk stands of varying density. Three Bowen ratio systems are installed on tall towers within varying densities of forest cover in the upwind footprint and growing under varying depths to the water table. An additional eddy covariance tower is installed alongside a Bowen ratio system on one of the towers. Flux data has been gathered continuously since early 2007. In the summer of 2007, a Scintec large aperture scintillometer was installed between two of the towers over 1 km apart and has been working continuously along with the flux towers. Two intensive field campaigns were organized in June 2007 and May 2008 to coincide with LANDSAT TM5, MODIS and ASTER overpasses. High resolution multispectral and thermal imagery was acquired at the same time with the USU airborne system to provide information for the up- scaling of the energy balance fluxes from tower to satellite scales. The paper will present comparisons between the different energy balance measuring techniques under the highly advective conditions of the experimental site, concentrating on the scintillometer data. Preliminary results of remotely sensed modeling of the fluxes at different scales and model complexity will also be presented.

  11. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    Directory of Open Access Journals (Sweden)

    Melissa Koontz

    2016-02-01

    Full Text Available This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1, the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  12. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    Science.gov (United States)

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  13. Riparian woodland encroachment following flow regulation: a comparative study of Mediterranean and Boreal streams

    Directory of Open Access Journals (Sweden)

    Dolores Bejarano M.

    2011-10-01

    Full Text Available Water development accompanying mankind development has turned rivers into endangered ecosystems. Improving the understanding of ecological responses to river management actions is a key issue for assuring sustainable water management. However, few studies have been published where ecological metrics have been quantified in response to various degrees of flow alteration. In this work, changes in natural distribution of trees and shrubs within the riparian corridor (as indicator of the ecological status of the fluvial ecosystem were quantified at multiple sites along a flow alteration gradient (as indicator of impact along two regulated river reaches, one Boreal and the other Mediterranean, each downstream of a dam. Based on the obtained relationships we evaluated differences in response trends related to local physico-climatic factors of the two biomes and regarding to differing life-forms. Woody vegetation establishment patterns represented objective indicators of ecological responses to flow alteration. We found different responses between life-forms. Both trees and shrubs migrated downwards to the channel after dam closure, but shrubs were most impacted under higher degrees of flow alteration in terms of lateral movement. In addition, our results show clear longitudinal recovery trends of natural patterns of tree and shrub distribution corresponding to a decrease in intensity of hydrologic alteration in the Boreal river. However, vegetation encroachment persisted along the entire Mediterranean study reach. This may result from a relatively low gradient of decrease of hydrologic alteration with distance from the dam, coupled with other overlapping pressures and the mediating effect of physico-climatic characteristics on vegetation responses.

  14. A sampling plan for riparian birds of the Lower Colorado River-Final Report

    Science.gov (United States)

    Bart, Jonathan; Dunn, Leah; Leist, Amy

    2010-01-01

    A sampling plan was designed for the Bureau of Reclamation for selected riparian birds occurring along the Colorado River from Lake Mead to the southerly International Boundary with Mexico. The goals of the sampling plan were to estimate long-term trends in abundance and investigate habitat relationships especially in new habitat being created by the Bureau of Reclamation. The initial objective was to design a plan for the Gila Woodpecker (Melanerpes uropygialis), Arizona Bell's Vireo (Vireo bellii arizonae), Sonoran Yellow Warbler (Dendroica petechia sonorana), Summer Tanager (Piranga rubra), Gilded Flicker (Colaptes chrysoides), and Vermilion Flycatcher (Pyrocephalus rubinus); however, too little data were obtained for the last two species. Recommendations were therefore based on results for the first four species. The study area was partitioned into plots of 7 to 23 hectares. Plot borders were drawn to place the best habitat for the focal species in the smallest number of plots so that survey efforts could be concentrated on these habitats. Double sampling was used in the survey. In this design, a large sample of plots is surveyed a single time, yielding estimates of unknown accuracy, and a subsample is surveyed intensively to obtain accurate estimates. The subsample is used to estimate detection ratios, which are then applied to the results from the extensive survey to obtain unbiased estimates of density and population size. These estimates are then used to estimate long-term trends in abundance. Four sampling plans for selecting plots were evaluated based on a simulation using data from the Breeding Bird Survey. The design with the highest power involved selecting new plots every year. Power with 80 plots surveyed per year was more than 80 percent for three of the four species. Results from the surveys were used to provide recommendations to the Bureau of Reclamation for their surveys of new habitat being created in the study area.

  15. River and riparian restoration in the southwest: Results of the National River Restoration Science Synthesis project

    Science.gov (United States)

    Follstad, Shah J.J.; Dahm, Clifford N.; Gloss, S.P.; Bernhardt, E.S.

    2007-01-01

    Restoration activity has exponentially increased across the Southwest since 1990. Over 37,000 records were compiled into the National River Restoration Science Synthesis (NRRSS) database to summarize restoration trends and assess project effectiveness. We analyzed data from 576 restoration projects in the Southwest (NRRSS-SW). More than 50% of projects were less than or equal to 3 km in length. The most common restoration project intent categories were riparian management, water quality management, in-stream habitat improvement, and flow modification. Common project activities were well matched to goals. Conservative estimates of total restoration costs exceeded $500 million. Most restoration dollars have been allocated to flow modification and water quality management. Monitoring was linked to 28% of projects across the Southwest, as opposed to just 10% nationwide. Mean costs were statistically similar whether or not projects were monitored. Results from 48 telephone interviews provided validation of NRRSS-SW database analyses but showed that project costs are often underreported within existing datasets. The majority of interviewees considered their projects to be successful, most often based upon observed improvements to biota or positive public reaction rather than evaluation of field data. The efficacy of restoration is difficult to ascertain given the dearth of information contained within most datasets. There is a great need for regional entities that not only track information on project implementation but also maintain and analyze monitoring data associated with restoration. Agencies that fund or regulate restoration should reward projects that emphasize monitoring and evaluation as much as project implementation. ?? 2007 Society for Ecological Restoration International.

  16. Incorporating Climate Change and Exotic Species into Forecasts of Riparian Forest Distribution

    Science.gov (United States)

    Ikeda, Dana H.; Grady, Kevin C.; Shuster, Stephen M.; Whitham, Thomas G.

    2014-01-01

    We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4) By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent) and P. fremontii (13 percent). In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC. PMID:25216285

  17. The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.

    Science.gov (United States)

    Nahlik, Amanda M; Mitsch, William J

    2008-01-01

    Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.

  18. Value and Resilience in the Case of 'Invasive' Tamarix in the Colorado River Riparian Corridor

    Science.gov (United States)

    Loring, P. A.; Gerlach, S.; Zamora, F.

    2009-12-01

    A common premise of science for conservation and sustainability is an assumption that despite any human definitions of value, there are ecological first principles, e.g., resilience, which must be understood if sustainability is to be possible. As I show here, however, pursuits such as restoration, conservation, and sustainability remain tangled in (and sometimes at odds with one another regarding) many value-laden decisions regarding the equity, justice, and morality of human-environment interactions. These include such important decisions as: what should be restored or sustained and for whom, how and by whom, and at what cost. This paper uses examples from the lower Colorado River Riparian Corridor, in particular the issue of the so-called ‘invasive’ saltcedar (Tamarix spp.), to illustrate some of the implicit value judgments common to the practice of managing ecosystems. There are many possible perspectives to be taken on a matter like Tamarix, each implicitly or explicitly representing different worldviews and agendas for the ecosystems in question. Resilience theory provides one such perspective, but as I show here, it proves incapable of producing recommendations for managing the corridor that are free of subjective valuations. I end with a case study of habitat and Tamarix management practices in the Mexican portion of the Colorado River Delta, highlighting the proven potential when up-front values are explicitly coupled to the practice of sustainability science, rather than left as details for 'good governance,' a realm presently imagined as separate from science, to sort out. Map of the Colorado River Delta. The Sonoran Institute manages projects in the Mexican portion of the Colorado River Delta region, along the Rio Hardy, the mainstem of the Colorado River in Baja California, MX and in the Cienega de Santa Clara wetlands, Sonora, MX. Map courtesy of Water Education Foundation. www.watereducation.org

  19. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Conley, Will

    2003-10-01

    , significant progress was made on acquisition and development of spatial data, monitoring of steelhead spawning, riparian revegetation, streamflow monitoring, completion of maintenance and repair work, completion of a working version of a habitat database, and completion of the Swale Creek assessment.

  20. Population ecology of vervet monkeys in a high latitude, semi-arid riparian woodland

    Directory of Open Access Journals (Sweden)

    Graham Pasternak

    2013-02-01

    Full Text Available Narrow riparian woodlands along non-perennial streams have made it possible for vervet monkeys to penetrate the semi-arid karoo ecosystem of South Africa, whilst artificial water points have more recently allowed these populations to colonize much more marginal habitat away from natural water sources. In order to better understand the sequelae of life in these narrow, linear woodlands for historically ‘natural’ populations and to test the prediction that they are ecologically stressed, we determined the size of troops in relation to their reliance on natural and artificial water sources and collected detailed data from two river-centred troops on activity, diet and ranging behaviour over an annual cycle. In comparison to other populations, our data indicate that river-centred troops in the karoo were distinctive primarily both for their large group sizes and, consequently, their large adult cohorts, and in the extent of home range overlap in what is regarded as a territorial species. Whilst large group size carried the corollary of increased day journey length and longer estimated interbirth intervals, there was little other indication of the effects of ecological stress on factors such as body weight and foraging effort. We argue that this was a consequence of the high density of Acacia karroo, which accounted for a third of annual foraging effort in what was a relatively depauperate floristic habitat. We ascribed the large group size and home range overlap to constraints on group fission.Conservation implications: The distribution of group sizes, sampled appropriately across habitats within a conservation area, will be of more relevance to management than average values, which may be nothing more than a statistical artefact, especially when troop sizes are bimodally distributed.