WorldWideScience

Sample records for channel-type crystal structure

  1. Molecular type channeling of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Vyatkin, E.G.; Filimonov, Yu.M.; Taratin, A.M.; Vorobiev, S.A.

    1983-01-01

    Channeling of relativistic electrons in direction in a diamond crystal and the channeling radiation spectra are investigated using computer simulation by the binary collision model and using the model of a continuum potential of the atomic rows. In a computer experiment the atomic- and molecular-type states of channeled elcetrons are revealed, and the orientational dependence of the electron trapping probability in these states is obtained. The peculiarities revealed of the angular distributions and radiation spectra of electrons in the molecular-type states allow to discover these states in the experiment. (author)

  2. The investigation of multi-channel splitters and big-bend waveguides based on 2D sunflower-typed photonic crystals

    Science.gov (United States)

    Liu, Wei; Sun, XiaoHong; Fan, QingBin; Wang, Shuai; Qi, YongLe

    2016-12-01

    Different kinds of multi-channel splitters and big-bend waveguides have been designed and investigated by using sunflower-typed photonic crystals. By comparing the transmission spectra of two kinds of 4-channels beam splitters, we find that "C" type splitter has a relative uniform splitting ratio for different channels in a certain wavelength range. Furthermore three types of waveguides with different bending degrees have been investigated. Except for a little loss in the short wavelength with the increase of the bending degrees, they have almost the same transmission spectra structures. The result can be extended to big-bend waveguides with arbitrary bending degrees. This research is valuable for developing new-typed integrated optical communication devices.

  3. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    International Nuclear Information System (INIS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle–Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation

  4. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  5. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  6. Nanobody mediated crystallization of an archeal mechanosensitive channel.

    Directory of Open Access Journals (Sweden)

    Christian Löw

    Full Text Available Mechanosensitive channels (MS are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.

  7. Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G-Proteins, PIP2 and Sodium

    Science.gov (United States)

    Whorton, Matthew R.; MacKinnon, Roderick

    2011-01-01

    Summary G-protein-gated K+ channels (Kir3.1–Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here we present the first crystal structures of a G-protein-gated K+ channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G-proteins could open a G-loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP2 show that G-proteins open only the G-loop gate in the absence of PIP2, but in the presence of PIP2 the G-loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na+ ion-binding site, which would allow intracellular Na+ to modulate GIRK channel activity. These data provide a mechanistic description of multi-ligand regulation of GIRK channel gating. PMID:21962516

  8. Functional validation of Ca2+-binding residues from the crystal structure of the BK ion channel.

    Science.gov (United States)

    Kshatri, Aravind S; Gonzalez-Hernandez, Alberto J; Giraldez, Teresa

    2018-04-01

    BK channels are dually regulated by voltage and Ca 2+ , providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca 2+ concentration is sensed by a large cytoplasmic region in the channel known as "gating ring", which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca 2+ coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca 2+ . Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca 2+ in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca 2+ sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca 2+ coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca 2+ binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca 2+ binding sites regulating the Ca 2+ dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  10. Synthesis, crystal structure and charge-distribution validation of β-Na4Cu(MoO43 adopting the alluadite structure-type

    Directory of Open Access Journals (Sweden)

    Wassim Dridi

    2016-08-01

    Full Text Available Single crystals of a new variety of tetrasodium copper(II tris[molybdate(VI], Na4Cu(MoO43, have been synthesized by solid-state reactions and characterized by single-crystal X-ray diffraction. This alluaudite structure-type is characterized by the presence of infinite layers of composition (Cu/Na2Mo3O14 parallel to the (100 plane, which are linked by MoO4 tetrahedra, forming a three-dimensional framework containing two types of hexagonal channels in which Na+ cations reside. The Cu2+ and Na2+ cations are located at the same general site with occupancies of 0.5. All atoms are on general positions except for one Mo, two Na (site symmetry 2 and another Na (site symmetry -1 atom. One O atom is split into two separate positions with occupancies of 0.5. The title compound is isotypic with Na5Sc(MoO44 and Na3In2As3O12. The structure model is supported by bond-valence-sum (BVS and charge-distribution CHARDI methods. β-Na4Cu(MoO43 is compared and discussed with the K4Cu(MoO43 and α-Na4Cu(MoO43 structures.

  11. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  12. Microstructural information from channeling measurements

    International Nuclear Information System (INIS)

    Quere, Y.

    1984-09-01

    Channeling is sensitive to nearly all structural changes in solids. One briefly recalls how particles are dechanneled by lattice defects and describes the main applications of channeling to materials science: detection of radiation damage, location of impurity atoms, precipitations in alloys... Channeling being a phenomenon characteristic of perfect crystals, any type of lattice imperfection (phonons, crystal defects, precipitation etc.) is expected to produce dechanneling. Consequently channeling and its opposite, dechanneling, have both been used to study structure and structural changes of materials

  13. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)

    2016-05-06

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  14. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  15. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  16. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  17. Characterization of Crystals for Steering of Protons through Channelling in Hadronic Accelerators

    CERN Document Server

    Guidi, V; Boscolo-Marchi, E; Carnera, A; Chesnokov, Yu A; Della Mea, G; De Salvador, D; Fiorini, M; Ivanov, Y M; Martinelli, G; Mazzolari, A; Milan, E; Milan, R; Sambo, A; Scandale, Walter; Todros, S; Vomiero, A

    2006-01-01

    Channeling of relativistic particles through a crystal may be useful for many applications in accelerators, and particularly for collimation in hadronic colliders. Efficiency proved to be dependent on the state of the crystal surface and hence on the method used for preparation. We investigated the morphology and structure of the surface of the samples that have been used in accelerators with high efficiency. We found that crystal fabrication by only mechanical methods (dicing, lapping, and others) leads to a superficial damaged layer, which is correlated to performance limitation in accelerators. A planar chemical etching was studied and applied in order to remove the superficial damaged layer. RBS channeling analysis with low-energy protons and 4He+ highlighted better crystal perfection at surface, as a result of the etching. A protocol for preparation and characterization of crystal for channelling has been developed, which may be of interest for reliable operation with crystals in accelerators.

  18. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    International Nuclear Information System (INIS)

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-01-01

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III H PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III H and such PGDHs structures having this type are reported for the first time

  19. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  20. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  1. TRANSMISSION ION CHANNELING IMAGES OF CRYSTAL DEFECTS

    NARCIS (Netherlands)

    KING, PJC; BREESE, MBH; WILSHAW, PR; SMULDERS, PJM; GRIME, GW

    This paper demonstrates how images of crystal defects can be produced using ion channeling. A focused, scanned beam of MeV protons from the University of Oxford Nuclear Microprobe has been used. With the beam aligned with a channeling direction of the crystal, protons transmitted through the thinned

  2. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  3. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  4. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  5. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo

    CERN Document Server

    Shiltsev, V.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; Assmann, R.; Previtali, V.; Scandale, W.; Chesnokov, Y.; Yazynin, I.; Guidi, V.; Ivanov, Y.

    2010-01-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding be...

  6. Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Insitute, Anushakti Nagar, Mumbai 400094 (India); Patwe, S. J. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sinha, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mishra, R. K.; Kumar, Amar; Kaushik, C. P. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-05-23

    Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometric analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.

  7. Planar channeling and quasichanneling oscillations in a bent crystal

    International Nuclear Information System (INIS)

    Sytov, A.I.; Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A.; Tikhomirov, V.V.

    2016-01-01

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  8. Planar channeling and quasichanneling oscillations in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Ferrara (Italy); Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy)

    2016-02-15

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  9. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sandip [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Schmandt, Nicolaus [Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States; Gicheru, Yvonne [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Chakrapani, Sudha [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States

    2017-03-06

    Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.

  10. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario Nunes, Sayonara [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP (Brazil); Wang, Chun-Hai; So, Karwei; Evans, John S.O. [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Evans, Ivana Radosavljević, E-mail: ivana.radosavljevic@durham.ac.uk [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.

  11. Monte Carlo Modeling of Crystal Channeling at High Energies

    CERN Document Server

    Schoofs, Philippe; Cerutti, Francesco

    Charged particles entering a crystal close to some preferred direction can be trapped in the electromagnetic potential well existing between consecutive planes or strings of atoms. This channeling effect can be used to extract beam particles if the crystal is bent beforehand. Crystal channeling is becoming a reliable and efficient technique for collimating beams and removing halo particles. At CERN, the installation of silicon crystals in the LHC is under scrutiny by the UA9 collaboration with the goal of investigating if they are a viable option for the collimation system upgrade. This thesis describes a new Monte Carlo model of planar channeling which has been developed from scratch in order to be implemented in the FLUKA code simulating particle transport and interactions. Crystal channels are described through the concept of continuous potential taking into account thermal motion of the lattice atoms and using Moliere screening function. The energy of the particle transverse motion determines whether or n...

  12. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    Science.gov (United States)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  13. Total spectrum of photon emission by an ultra-relativistic positron channelling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Department of Physics, St Petersburg State Maritime Technical University, Leninskii prospect 101, St Petersburg 198262; Solov'yov, A.V.; AF Ioffe Physical-Technical Institute of the Academy of Sciences of Russia, Polytechnicheskaya 26, St Petersburg 194021; Greiner, W.

    2000-01-01

    We present the results of numerical calculations of the channelling and undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due to either the propagation of a transverse acoustic wave through the crystal, or the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the de-channelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of x-ray and γ-radiation. (author). Letter-to-the-editor

  14. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    Science.gov (United States)

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  15. Adsorption structure of dimethyl ether on silicalite-1 zeolite determined using single-crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Fujiyama, Shinjiro; Seino, Shintaro; Kamiya, Natsumi; Nishi, Koji; Yokomori, Yoshinobu

    2014-01-01

    The most stable sorption site of dimethyl ether on silicalite-1 is the sinusoidal channel. The configuration of guest molecules (linear or bent) plays an important role in determining where the stable sorption site is situated. The adsorption structures of dimethyl ether (DME) on silicalite-1 zeolite (MFI-type) are determined using single-crystal X-ray diffraction. The structure of low-loaded DME-silicalite-1 indicates that all DME molecules are located in the sinusoidal channel, which is the most stable sorption site based on the van der Waals interaction between DME and the framework. The configuration of guest molecules (linear or bent) plays an important role in determining where the stable sorption site is in the pore system of MFI-type zeolites. Bent molecules favor the sinusoidal channel, while linear molecules favor the straight channel. The contribution of DME–DME interactions is considerable in the high-loaded DME-silicalite-1 structure

  16. Dissipation of the electronic excitation energy in fluorides with different type of a crystal lattice

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Grechkina, T. V.; Korepanov, V.I.; Lisitsyna, L.A.

    2004-01-01

    F-centers is revealed. Therefore, in researched crystals any of types STE is not starting for creation of the F-centers. The expenditure energy for creation of STE at 20 K and the F-centers in the field of their primary creation (300 K) in crystals LiF and MeF 2 are comparable and equal 1.5-2 eV. It means that formation of both types of defects can be only result of decay created by radiation electronic excitation. Therefore, there are two basic channels of dissipation energy of high-energy electronic excitation, i.e. the creation of two-center type configuration of STEs in triplet state and creation Frenkel pairs defects. Occupation of channels occurs during an oscillatory relaxation of high-energy electronic excitation (a precursor state), instead of a process thermally activation conversion of one type of initial defect to another (from triplet STE to F, H pair). Thus total efficiency of generation of defects on channels remains practically to a constant in all the investigated temperature range 20-500 K. It is established, that the ratio between channels of energy dissipation of a precursor state depends on many parameters: temperatures of a crystal at an irradiation, type of crystal lattice, type and concentration both primary and created the defectiveness of a material during irradiation. Thus, creation of primary radiation defects of a lattice both in crystals LiF and MgF 2 , occurs during a relaxation electronic excitation. All set of experimental results are evidence of identical character of mechanisms of generation of primary defects in these crystals in wide temperature area, as well as similarity of structure and character of behavior of primary defects, specifying on the certain universality of the considered processes in ionic crystals

  17. Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Shpotyuk, O.; Adamiv, V.; Teslyuk, I.; Ingram, A.; Demchenko, P.

    2018-01-01

    Vacancy-type free-volume defects in lithium tetraborate Li2B4O7 single crystal, grown by the Czochralski technique, are probed with positron annihilation spectroscopy in the lifetime measuring mode. The experimental positron lifetime spectrum is reconstructed within the three-component fitting, involving channels of positron and positronium Ps trapping, as well as within the two-component fitting with a positronium-compensating source input. Structural configurations of the most efficient positron traps are considered using the crystallographic specificity of lithium tetraborate with the main accent on cation-type vacancies. Possible channels of positron trapping are visualized using the electronic structure calculations with density functional theory at the basis of structural parameters proper to Li2B4O7. Spatially-extended positron-trapping complexes involving singly-ionized lithium vacancies, with character lifetime close to 0.32 ns, are responsible for positron trapping in the nominally undoped lithium tetraborate Li2B4O7 crystal.

  18. Rainbows in channeling of charged particles in crystals and nanotubes

    CERN Document Server

    Nešković, Nebojša; Ćosić, Marko

    2017-01-01

    This book discusses the effects, modeling, latest results, and nanotechnology applications of rainbows that appear during channeling of charged particles in crystals and nanotubes. The authors begin with a brief review of the optical and particle rainbow effects followed by a detailed description of crystal rainbows, which appear in ion channeling in crystals, and their modeling using catastrophe theory. The effects of spatial and angular focusing of channeled ions are described, with special attention given to the applications of the former effect to subatomic microscopy. The results of a thorough study of the recent high-resolution channeling experiments performed with protons of energies between 2.0 and 0.7 MeV and a 55 nm thick silicon crystal are also provided. This study opens up the potential for accurate analysis of very thin crystals. Also presented are recent results related to rainbows occurring in proton transmission through carbon nanotubes, and a detailed quantum consideration of the transmissio...

  19. Microprobe channeling analysis of pyrite crystals

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Ryan, C.G.

    1992-01-01

    Nuclear microprobe analysis has provided much useful information about the composition of microscopic inclusions in minerals, mainly through the use of Particle Induced X-ray Emission (PIXE). However this technique, while powerful, does not provide any direct information about the chemical state, in particular the lattice location, of the elements in the mineral. This information is often of crucial importance in understanding the ore genesis. The technique of ion channeling may be used to identify lattice location, but many minerals occur as microscopic crystals. Therefore it is necessary to utilize a nuclear microprobe with the technique of Channeling Contrast Microscopy (CCM). As many minerals contain interesting trace elements, it is necessary to measure both the yield of backscattered particles and the induced x-rays to get a clear picture of the lattice location of the elements in the crystal. CCM with PIXE was used to analyse natural pyrite crystals containing a variety of substitutional and non-substitutional elements and natural pyrite crystals from a gold bearing ore. In the latter case, evidence was obtained for two habits for Au in the 400 μm crystals: one as inclusions of Au rich minerals, the other substituted on the pyrite lattice sites. 31 refs., 3 tabs., 6 figs

  20. Extraction from TEV-range accelerators using bent crystal channeling

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.; Jackson, G.; Murphy, C.T.; Newberger, B.

    1993-01-01

    Plans and first results from Fermilab Experiment 853 are presented. E853 is an experiment to test the feasibility and efficiency of extracting a low-intensity beam from the halo of the Tevatron using channeling in a bent silicon crystal. The motivation of the experiment is to apply crystal extraction to trans-TeV accelerators like the SSC. Channeling developments related to crystal extraction and some early results from accelerator studies at the Tevatron are presented

  1. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  2. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  3. Channeling crystals for positron production

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    Particles traversing at small angles along a single crystal axis experience a collective scattering force of many crystal atoms. The enormous fields can trap the particles along an axis or plane, called channeling. High energy electrons are attracted by the positive nuclei and therefore produce strongly enhanced so called coherent bremsstrahlung and pair production. These effects could be used in a positron production target: A single tungsten crystal is oriented to the incident electron beam within 1 mrad. At 28 GeV/c the effective radiation length is with 0.9 mm about one quarter of the amorphous material. So the target length can be shorter, which yields a higher conversion coefficient and a lower emittance of the positron beam. This makes single crystals very interesting for positron production targets. 18 refs., 2 figs

  4. Channeling and related crystal effects

    International Nuclear Information System (INIS)

    Uggerhoj, Erik

    1995-01-01

    Channeling, the interaction of particles with oriented crystals, has been applied in a wide variety of scientific and technological areas. A workshop at Aarhus, Denmark, this summer highlighted progress and future directions. Radiation emission has been explored and linked to coherent bremsstrahlung and other oriented crystal radiations. Dramatic effects have been found for ultra-relativistic electrons with Lorentz factors of 105 6. Single crystals are unique for investigations of quantum electrodynamics in strong external fields because probabilities for processes in axial/ planar fields are determined by the magnitude of these fields in the particle rest frame. Erik Uggerhoj of Aarhus reported on an extensive series of experiments concerning radiation emission, pair production, and shower formation carried out at CERN by the NA43 collaboration. As Vladimir Baier of Novosibirsk and Yuri Kononets of Kurchatov noted, theoretical treatment of these interconnected radiation distributions is challenging and much work needs to be done. In general, the agreement with the CERN experiments is good, but many areas like polarization phenomena and particle production need investigation. Prominent among high energy applications is extraction from accelerators. At the workshop, Alexei Asseev reported on beam extraction using a bent crystal at Serpukhov. Konrad Elsener and Jukka Klem reviewed recent CERN SPS studies driven by the possibility of using crystals for extraction of LHC beams. Thornton Murphy of Fermilab announced a step in that direction, with a demonstration this summer of extraction from the Tevatron at 900 GeV. Bent crystal channeling is also used for handling extracted high energy beams. Niels Doble presented a beautiful example of a beam for the CERN NA48 CP-violation experiment. Yuri Chesnokov reported that beams had been deflected through angles up to 150 milliradians at Serpukhov

  5. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus

    DEFF Research Database (Denmark)

    Wilkens, Casper; Poulsen, Jens-Christian Navarro; Ramløv, Hans

    2014-01-01

    Antifreeze proteins (AFPs) are essential components of many organisms adaptation to cold temperatures. Fish type III AFPs are divided into two groups, SP isoforms being much less active than QAE1 isoforms. Two type III AFPs from Zoarces viviparus, a QAE1 (ZvAFP13) and an SP (ZvAFP6) isoform......, are here characterized and their crystal structures determined. We conclude that the higher activity of the QAE1 isoforms cannot be attributed to single residues, but rather a combination of structural effects. Furthermore both ZvAFP6 and ZvAFP13 crystal structures have water molecules around T18...... equivalent to the tetrahedral-like waters previously identified in a neutron crystal structure. Interestingly, ZvAFP6 forms dimers in the crystal, with a significant dimer interface. The presence of ZvAFP6 dimers was confirmed in solution by native electrophoresis and gel filtration. To our knowledge...

  6. Quantum effects for particles channeling in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Feranchuk, Ilya, E-mail: iferanchuk@gmail.com [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Str., Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Str., Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Belarusian State University, 4 Nezavisimosty Ave., 220030 Minsk (Belarus); San, Nguyen Quang [Belarusian State University, 4 Nezavisimosty Ave., 220030 Minsk (Belarus)

    2016-09-15

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  7. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  8. Tunable dual-channel filter based on the photonic crystal with air defects.

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  9. Doubly-resonant coherent excitation of HCI planar channeled in a Si crystal

    International Nuclear Information System (INIS)

    Nakano, Y; Masugi, S; Muranaka, T; Azuma, T; Kondo, C; Hatakeyama, A; Komaki, K; Yamazaki, Y; Takada, E; Murakami, T

    2007-01-01

    We investigated resonant coherent excitation of H-like Ar 17+ and He-like Ar 16+ ions planar channeled in a Si crystal under the V-type and ladder-type double resonance conditions. In both cases, we observed distinct enhancement in the ionized fraction of the transmitted ions when the double resonance conditions were satisfied. In the ladder-type configuration, the enhancement indicates that the doubly-excited 2p 2 state of He-like Ar 16+ was produced through doubly-resonant coherent excitation

  10. Automation of electron channeling investigations into crystals on the experimental stand

    International Nuclear Information System (INIS)

    Kolodin, L.G.; Kupchishin, A.A.; Bunegin, V.V.

    1995-01-01

    Automated control system of technological processes of the experimental stand is proposed for electron channeling investigation into crystals. The system is proposed for stand control automation and registration of corresponding radiations. There are four main parts in stand complex: Ehlu-6 type electron accelerator; forming and transporting system of electron beams; goniometer system; radiation detection system. Purposes of the automated system creation are following: - improvement of EhLU accelerator operating stability by of automation stabilization of its parameters; - quality improvement of electron beam monochromatization by of automation of monochromator electromagnet control; - simplification of crystal adjustment process relatively of primary electron beam and crystal transporting to the position by of goniometer automation control; - providing of automating collection and processing of data of physical experiments

  11. Of the crystal chemistry of Ruddlesden-Porter type structures in high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Dwivedi, A.; Cormack, A.N.

    1990-01-01

    This paper reports on atomistic computer simulation employed to examine the energetics and crystal chemistry of some Ruddlesden-Popper type oxide superconductors. Similar structural patterns have been noticed in the superconducting oxides. The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is similar in many respects to that seen in the system Sr-Ti-O. However, there are some significant differences, for example, the rocksalt and perovskite blocks in the new superconducting compounds are not necessarily electrically neutral unlike in the Sr-Ti-O system and this may well lead to significant differences in their structural chemistry

  12. The use of radionuclides for the study of crystal structure of solids

    International Nuclear Information System (INIS)

    Jech, C.

    1976-01-01

    It is well known that by the coordinated action of atoms arranged in rows and planes in the crystal lattice, the motion of charged particles such as protons, alpha particles and heavier ions can be influenced so that their range in the single crystals is considerably enhanced in low-index directions. A technique has been developed based on such enhanced penetration (channeling) of radioactive atoms ( 220 Rn) emitted by recoil with a 100 keV energy from a 224 Ra point source to record channeling patterns which show the crystal structure. The radioactive recoil atoms impinging from this source on the surface of a single crystal penetrate deeper in places where their direction of impact is identical with low index crystal directions and planes. These places can be visualized by autoradiography when having first stripped a thin layer from the surface corresponding to the random range of the atoms. This technique is generally applicable in close packed crystals and gives information about the crystal structure of very thin surface layers. (author)

  13. Channeling in helium ion microscopy: Mapping of crystal orientation

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura

    2012-07-01

    Full Text Available Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur.Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima.Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.

  14. Tailoring of silicon crystals for relativistic-particle channeling

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Baricordi, S.; Logallo, F.; Malagu, C.; Milan, E.; Ronzoni, A.; Stefancich, M.; Martinelli, G.; Vomiero, A.

    2005-01-01

    In the last years, the research on channeling of relativistic particles has progressed considerably. A significant contribution has been provided by the development of techniques for quality improvement of the crystals. In particular, a planar etching of the surfaces of the silicon crystals proved useful to remove the superficial layer, which is a region very rich in imperfections, in turn leading to greater channeling efficiency. Micro-fabrication techniques, borrowed from silicon technology, may also be useful: micro-indentation and deposition of tensile or compressive layers onto silicon samples allow one to impart an even curvature to the samples. In this way, different topologies may be envisaged, such as a bent crystal for deflection of protons and ions or an undulator to force coherent oscillations of positrons and electrons

  15. Angular distributions of ions channeled in the Si crystals

    International Nuclear Information System (INIS)

    Petrovic, S.; Korica, S.; Kokkoris, M.; Neskovic, N.

    2002-01-01

    In this study we analyze the angular distributions of Ne 10+ ions channeled in the Si crystals. The ion energy is 60 MeV and the crystal thickness is varied from 286 to 3435 nm. This thickness range corresponds to the reduced crystal thickness range from 0.5 to 6, i.e. from the second to the twelfth rainbow cycle. The angular distributions were obtained via the numerical solution of the ion equations of motion and the computer simulation method. The analysis shows that the angular distribution has a periodic behavior. We also analyze the transmission patterns corresponding to the angular distributions. These patterns should be compared to the experimental patterns obtainable by a two-dimensional position sensitive detector. We demonstrate that, when the ion beam divergence is sufficiently large, i.e. much larger than the critical angle for channeling, the channeling star effect occurs in the transmission patterns

  16. Radiation at planar channeling of relativistic electrons in thick crystals

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1983-01-01

    The distribution kinetics with respect to the transverse energy at electron channeling is discussed. The asymptotic expressions for the radiation intensity into a given collimator at electron channeling in thick crystals are derived. An optimal thickness at which the radiation output is maximal is found. The spectral distribution of the radiation intensity is analysed for the case of a single diamond crystal. (author)

  17. Structure and morphology of surface of silicon crystals to be applied for channeling at relativistic energies

    International Nuclear Information System (INIS)

    Vomiero, Alberto; Restello, Silvio; Scian, Carlo; Marchi, Enrico Boscolo; Mea, Gianantonio Della; Guidi, Vincenzo; Milan, Emiliano; Baricordi, Stefano; Martinelli, Giuliano; Carnera, Alberto; Sambo, Andrea

    2006-01-01

    Bent crystals can be successfully applied for extraction/collimation of relativistic particles. A crucial feature to obtain high extraction efficiencies is the treatment of the surfaces being encountered by the beam, since mechanical operations induce considerable lattice imperfections. In order to remove the superficial damaged layer a planar etching can be applied on the surface exposed to the beam. This work presents a systematic study of the morphology and the crystalline perfection of the surface of the samples that have been used in accelerators with high efficiency. Crystals with different surface treatments have been investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied on the characterisation of surface morphology. Low energy backscattering channeling of 2-MeV α particles or protons was used as a probe for the crystalline structure. The presence of a superficial damaged layer in the samples just after mechanical treatment was unveiled, while, in contrast, chemical etching leaves a surface with high crystalline perfection that can be related to the record efficiency

  18. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  19. Anomalous passage of ultrarelativistic electrons in thick single crystals in axial channeling

    Energy Technology Data Exchange (ETDEWEB)

    Khokonov, M.K. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki); Telegin, V.I. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1983-07-01

    The dynamics of ultrarelativistic axially channeled electrons in thick crystals is studied. It is revealed that a certain fraction of initial electrons have anomalously large dechanneling depths. It is shown also that the dechanneling depth in heavy and light crystals are comparable. In some cases, the number of channeled electrons can strongly increase at the expense of quasi-channeled electrons. The problem of quasi-channeling is also considered.

  20. Advanced Si solid phase crystallization for vertical channel in vertical NANDs

    Directory of Open Access Journals (Sweden)

    Sangsoo Lee

    2014-07-01

    Full Text Available The advanced solid phase crystallization (SPC method using the SiGe/Si bi-layer structure is proposed to obtain high-mobility poly-Si thin-film transistors in next generation vertical NAND (VNAND devices. During the SPC process, the top SiGe thin film acts as a selective nucleation layer to induce surface nucleation and equiaxial microstructure. Subsequently, this SiGe thin film microstructure is propagated to the underlying Si thin film by epitaxy-like growth. The initial nucleation at the SiGe surface was clearly observed by in situ transmission electron microscopy (TEM when heating up to 600 °C. The equiaxial microstructures of both SiGe nucleation and Si channel layers were shown in the crystallized bi-layer plan-view TEM measurements. Based on these experimental results, the large-grained and less-defective Si microstructure is expected to form near the channel region of each VNAND cell transistor, which may improve the electrical characteristics.

  1. X-ray yields from high-energy heavy ions channeled through a crystal: their crystal thickness and projectile dependences

    International Nuclear Information System (INIS)

    Kondo, C.; Takabayashi, Y.; Muranaka, T.; Masugi, S.; Azuma, T.; Komaki, K.; Hatakeyama, A.; Yamazaki, Y.; Takada, E.; Murakami, T.

    2005-01-01

    X-rays emitted from Ar 17+ , Fe 24+ and Kr 35+ ions of about 400 MeV/u transmitting through a thin Si crystal of about 20 μm thickness have been measured in a planar channeling condition and compared with those in a random incident condition. We have found that the X-ray yield from Ar 17+ ions is larger for the channeling condition than for the random incidence, while those from Fe 24+ and Kr 35+ ions are rather smaller. Such tendencies are explained by considering the projectile dependences of excitation and ionization probabilities together with X-ray emission rates. A crude simulation has qualitatively reproduced these experimental results. When the crystal thickness is small, the X-ray yield is smaller in the channeling condition than in the random incident condition, because excitation is depressed. However, for thicker crystals, the X-ray yield is larger, since the survived population of projectile-bound electrons is larger due to small ionization probabilities under the channeling condition. This inversion occurs at a specific crystal thickness depending on projectile species. Whether the thickness of the used crystal is smaller or larger than the inversion thickness determines enhancement or depression of the X-ray yield in the channeling condition

  2. Strain-free polished channel-cut crystal monochromators: a new approach and results

    Science.gov (United States)

    Kasman, Elina; Montgomery, Jonathan; Huang, XianRong; Lerch, Jason; Assoufid, Lahsen

    2017-08-01

    The use of channel-cut crystal monochromators has been traditionally limited to applications that can tolerate the rough surface quality from wet etching without polishing. We have previously presented and discussed the motivation for producing channel cut crystals with strain-free polished surfaces [1]. Afterwards, we have undertaken an effort to design and implement an automated machine for polishing channel-cut crystals. The initial effort led to inefficient results. Since then, we conceptualized, designed, and implemented a new version of the channel-cut polishing machine, now called C-CHiRP (Channel-Cut High Resolution Polisher), also known as CCPM V2.0. The new machine design no longer utilizes Figure-8 motion that mimics manual polishing. Instead, the polishing is achieved by a combination of rotary and linear functions of two coordinated motion systems. Here we present the new design of C-CHiRP, its capabilities and features. Multiple channel-cut crystals polished using the C-CHiRP have been deployed into several beamlines at the Advanced Photon Source (APS). We present the measurements of surface finish, flatness, as well as topography results obtained at 1-BM of APS, as compared with results typically achieved when polishing flat-surface monochromator crystals using conventional polishing processes. Limitations of the current machine design, capabilities and considerations for strain-free polishing of highly complex crystals are also discussed, together with an outlook for future developments and improvements.

  3. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    OpenAIRE

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the ...

  4. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  5. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  6. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghui; Zhang, Wei K.; Benvin, Nicole M.; Zhou, Xiaoyuan; Su, Deyuan; Li, Huan; Wang, Shu; Michailidis, Ioannis E.; Tong, Liang; Li, Xueming; Yang, Jian

    2017-01-23

    The activities of organellar ion channels are often regulated by Ca2+ and H+, which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca2+/pH regulation of TRPML1, a Ca2+-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EM analyses confirmed that this architecture occurs in the full-length channel. Structure–function studies demonstrated that Ca2+ and H+ interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.

  7. First observation of magnetic moment precession of channeled particles in bent crystals

    International Nuclear Information System (INIS)

    Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan

    1992-01-01

    Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized Σ + were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60±17 degree. This agrees with the prediction of 62±2 degree using the world average of Σ + magnetic moment measurements. This new technique gives a Σ + magnetic moment of (2.40±0.46±0.40)μ N , where the quoted uncertainties are statistical and systematic, respectively. We see no evidence of depolarization in the channeling process

  8. Motion of channeling particles in a bent crystal

    International Nuclear Information System (INIS)

    Avakian, A.R.; Harutyunian, A.S.; Hovanessian, A.G.; Shahinian, S.M.; Yang, C.

    1990-01-01

    The motion of high-energy charged particles in a bent crystal is investigated in the approximation of the model of continuous potential of crystallographic planes and with account of incoherent scattering on the atoms of media. Angular distribution of charged particle beams is investigated at the exit of the bent region of the crystal in dependence with the maximum deflection angle and energy of particles. The dependence of the fraction of channeling particles on crystal thickness, crystal curvature and particle energy is found in a simple model approximation. The influence of crystal curvature on incoherent scattering of particles in the crystal is analyzed. The concept of an optimal thickness for the maximum number of particles deflected at a given angle is considered. 8 refs.; 8 figs

  9. Anomalous passage of ultrarelativistic electrons in thick single crystals in axial channeling

    International Nuclear Information System (INIS)

    Khokonov, M.K.; Telegin, V.I.

    1983-01-01

    The dynamics of ultrarelativistic axially channeled electrons in thick crystals is studied. It is revealed that a certain fraction of initial electrons have anomalously large dechanneling depths. It is shown also that the dechanneling depth in heavy and light crystals are comparable. In some cases, the number of channeled electrons can strongly increase at the expense of quasi-channeled electrons. The problem of quasichanneling is also considered. (author)

  10. Experimental evidence of planar channeling in a periodically bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Bandiera, L.; Bellucci, V.; Camattari, R.; Germogli, G.; Guidi, V.; Mazzolari, A. [Univ. di Ferrara, Dipartimento di Fisica, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Berra, A.; Lietti, D.; Prest, M. [Univ. dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); De Salvador, D. [INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); Univ. di Padova, Dipartimento di Fisica, Padua (Italy); Lanzoni, L. [San Marino Univ. (San Marino). Dept. of Engineering; Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Vallazza, E. [INFN, Sezione di Trieste (Italy)

    2014-10-15

    The usage of a crystalline undulator (CU) has been identified as a promising solution for generating powerful and monochromatic γ-rays. A CU was fabricated at Sensors and Semiconductors Lab (SSL) through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities. (orig.)

  11. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    Science.gov (United States)

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  12. Social influence and adolescent health-related physical activity in structured and unstructured settings: role of channel and type.

    Science.gov (United States)

    Spink, Kevin S; Wilson, Kathleen S; Ulvick, Jocelyn

    2012-08-01

    Social influence channels (e.g., parents) and types (e.g., compliance) have each been related to physical activity independently, but little is known about how these two categories of influence may operate in combination. This study examined the relationships between various combinations of social influence and physical activity among youth across structured and unstructured settings. Adolescents (N=304), classified as high or low active, reported the social influence combinations they received for being active. Participants identified three channels and three types of influence associated with being active. For structured activity, compliance with peers and significant others predicted membership in the high active group (values of psocial influence, when examining health-related physical activity.

  13. Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels

    International Nuclear Information System (INIS)

    Adaixo, Ricardo; Morais-Cabral, João Henrique

    2010-01-01

    The N-terminal PAS domains from the eukaryotic EAG potassium channels are thought to have a regulatory function. Here the expression, purification, crystallization and preliminary crystallographic characterization of two of these domains are described. Per–Arnt–Sim (PAS) domains are ubiquitous in nature; they are ∼130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported

  14. Monte-Carlo-calculations for the simulation of channelling-experiments with V3Si-single-crystals

    International Nuclear Information System (INIS)

    Kaufmann, R.

    1978-05-01

    The results of channelling-investigations on single-crystals of A15-type structure, like e.g. V 3 Si, are not directly comparable to analytical model-calculations. Therefore the channelling-process was simulated in a Monte-Carlo-program on the basis of the binary-collision-model. The calculated values for the minimum yield, Chisub(min), and the critical angle, Psisub(1/2), were in good agreement with the results of experiments with 2 MeV- 4 He + -particles. The lattice damage in the range of 2,000 Angstroem at the surface after an irradiation with a fluence of 6 x 10 16 - 4 He + /cm 2 at 300 KeV could be explained by normally distributed static displacements of the V-atoms with a mean value of 0.05 A. The transverse damage structure after an irradiation with a fluence of 1.5 x 10 16 - 4 He + /cm 2 at 50 KeV could be simulated by a step profile of 50% displacements of the V-atoms with a maximum value of 0.5 Angstroem at the depth of the projected range. (orig./HPOE) [de

  15. The crystal structure and twinning of neodymium gallium perovskite single crystals

    International Nuclear Information System (INIS)

    Ubizskii, S.B.; Vasylechko, L.O.; Savytskii, D.I.; Matkovskii, A.O.; Syvorotka, I.M.

    1994-01-01

    By means of X-ray structure analysis, the crystal structure of neodymium gallium perovskite (NGP) single crystals (NdGaO 3 ) being used as a substrate for HTSC film epitaxy has been refined and the position of atoms has been determined. The possibility of YBa 2 Cu 3 O 7-x film epitaxy on the plane (110) of NGP crystal as well as its advantages and pitfalls are analysed from structural data. The twinning types in the NGP crystal were established. The twinning structure of NGP substrates is found to be stable up to a temperature of 1173 K, as differentiated from the LaGaO 3 and LaAlO 3 substrates. It is intimated that the twinning in the NGP substrates oriented as (001) can result in creation of 90 degrees twin bonds in a film, and in the case of (110)-oriented plates it is possible to ignore the twinning presence in substrate completely. (author)

  16. Insight into DEG/ENaC channel gating from genetics and structure.

    Science.gov (United States)

    Eastwood, Amy L; Goodman, Miriam B

    2012-10-01

    The founding members of the superfamily of DEG/ENaC ion channel proteins are C. elegans proteins that form mechanosensitive channels in touch and pain receptors. For more than a decade, the research community has used mutagenesis to identify motifs that regulate gating. This review integrates insight derived from unbiased in vivo mutagenesis screens with recent crystal structures to develop new models for activation of mechanically gated DEGs.

  17. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure

    Energy Technology Data Exchange (ETDEWEB)

    Korasick, David A. [Department of Biochemistry, University of Missouri, Columbia MO USA; Singh, Harkewal [Department of Chemistry, University of Missouri, Columbia MO USA; Pemberton, Travis A. [Department of Chemistry, University of Missouri, Columbia MO USA; Luo, Min [Department of Chemistry, University of Missouri, Columbia MO USA; Dhatwalia, Richa [Department of Chemistry, University of Missouri, Columbia MO USA; Tanner, John J. [Department of Biochemistry, University of Missouri, Columbia MO USA; Department of Chemistry, University of Missouri, Columbia MO USA

    2017-08-01

    Many enzymes form homooligomers, yet the functional significance of self-association is seldom obvious. Herein, we examine the connection between oligomerization and catalytic function for proline utilization A (PutA) enzymes. PutAs are bifunctional enzymes that catalyze both reactions of proline catabolism. Type A PutAs are the smallest members of the family, possessing a minimal domain architecture consisting of N-terminal proline dehydrogenase and C-terminal l-glutamate-γ-semialdehyde dehydrogenase modules. Type A PutAs form domain-swapped dimers, and in one case (Bradyrhizobium japonicum PutA), two of the dimers assemble into a ring-shaped tetramer. Whereas the dimer has a clear role in substrate channeling, the functional significance of the tetramer is unknown. To address this question, we performed structural studies of four-type A PutAs from two clades of the PutA tree. The crystal structure of Bdellovibrio bacteriovorus PutA covalently inactivated by N-propargylglycine revealed a fold and substrate-channeling tunnel similar to other PutAs. Small-angle X-ray scattering (SAXS) and analytical ultracentrifugation indicated that Bdellovibrio PutA is dimeric in solution, in contrast to the prediction from crystal packing of a stable tetrameric assembly. SAXS studies of two other type A PutAs from separate clades also suggested that the dimer predominates in solution. To assess whether the tetramer of B. japonicum PutA is necessary for catalytic function, a hot spot disruption mutant that cleanly produces dimeric protein was generated. The dimeric variant exhibited kinetic parameters similar to the wild-type enzyme. These results implicate the domain-swapped dimer as the core structural and functional unit of type A PutAs.

  18. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  19. Substitution of indium for chromium in TlIn5−xCrxSe8: crystal structure of TlIn4.811(5Cr0.189(5Se8

    Directory of Open Access Journals (Sweden)

    Robin Lefèvre

    2017-04-01

    Full Text Available The new thallium penta(indium/chromium octaselenide, TlIn4.811(5Cr0.189(5Se8, has been synthesized by solid-state reaction. It crystallizes isotypically with TlIn5Se8 in the space group C2/m. Although the two Tl positions are disordered and only partially occupied, no Tl deficiency was observed. The insertion of chromium in the structure has been confirmed by EDS analysis. Chromium substitutes indium exclusively at one of three In sites, viz. at one of the positions with site symmetry 2/m (Wyckoff position 2a. In the crystal structure, edge-sharing InSe6 octahedra, and (In,CrSe6 octahedra and InSe4 tetrahedra make up two types of columns that are linked into a framework in which two different types of channels parallel to [010] are present. The Tl atoms are located in the larger of the channels, whereas the other, smaller channel remains unoccupied.

  20. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  1. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    Science.gov (United States)

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. New Conotoxin SO-3 Targeting N-type Voltage-Sensitive Calcium Channels

    Directory of Open Access Journals (Sweden)

    Lei Wen

    2006-04-01

    Full Text Available Selective blockers of the N-type voltage-sensitive calcium (CaV channels are useful in the management of severe chronic pain. Here, the structure and function characteristics of a novel N-type CaV channel blocker, SO-3, are reviewed. SO-3 is a 25-amino acid conopeptide originally derived from the venom of Conus striatus, and contains the same 4-loop, 6-cysteine framework (C-C-CC-C-C as O-superfamily conotoxins. The synthetic SO-3 has high analgesic activity similar to ω-conotoxin MVIIA (MVIIA, a selective N-type CaV channel blocker approved in the USA and Europe for the alleviation of persistent pain states. In electrophysiological studies, SO-3 shows more selectivity towards the N-type CaV channels than MVIIA. The dissimilarity between SO-3 and MVIIA in the primary and tertiary structures is further discussed in an attempt to illustrate the difference in selectivity of SO-3 and MVIIA towards N-type CaV channels.

  3. Incommensurate composite crystal structure of scandium-II

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki

    2005-01-01

    The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated

  4. RBS cross-section of MeV ions channeling in crystals from quantum theory

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Spizzirri, P.G.; Allen, L.J.

    1999-01-01

    We present an alternative approach to describing Rutherford Backscattered (RBS) angular yield scans. The Bloch wave method to formulate the cross-section is a fundamental approach originating from Schrodinger's equation. This quantum formulation is often used when describing various aspects of electron diffraction including Backscattering, EDX and TEM but has seen little application to the very short wavelength regime of MeV ions. It offers several significant advantages. Great freedom is given to crystal properties and structure in the theory allowing a fundamental insight into the channeling phenomena and hence the crystal itself. We have calculated both planar and axial channeling scans and these maps are shown to be in good agreement to their experimental counterparts. There is excellent correlation between the theoretical and experimental results for both χ min and Ψ 1/2 . Further investigation is required into the area of absorption or dechanneling. This phenomenon requires different mechanisms for electron and ion scattering differ greatly

  5. Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity.

    Science.gov (United States)

    Sharma, Urvashi; Katre, Uma V; Suresh, C G

    2015-05-01

    Crystal structure of a reported PA2 albumin from Cicer arietinum shows that it belongs to hemopexin fold family, has four beta-propeller motifs and possesses hemagglutination activity, making it different from known legume lectins. A plant albumin (PA2) from Cicer arietinum, presumably a lectin (CAL) owing to its hemagglutination activity which is inhibited by complex sugars as well as glycoproteins such as fetuin, desialylated fetuin and fibrinogen. The three-dimensional structure of this homodimeric protein has been determined using X-ray crystallography at 2.2 Å in two crystal forms: orthorhombic (P21212) and trigonal (P3). The structure determined using molecular replacement method and refined in orthorhombic crystal form reached R-factors R free 22.6 % and R work 18.2 % and in trigonal form had 22.3 and 17.9 % in the resolution range of 20.0-2.2 and 35.3-2.2 Å, respectively. Interestingly, unlike the known legume lectin fold, the structure of this homodimeric hemagglutinin belonged to hemopexin fold that consisted of four-bladed β-propeller architecture. Each subunit has a central cavity forming a channel, inside of which is lined with hydrophobic residues. The channel also bears binding sites for ligands such as calcium, sodium and chloride ions, iodine atom in the case of iodine derivative and water molecules. However, none of these ligands seem important for the sugar recognition. No monosaccharide sugar specificity could be detected using hemagglutination inhibition. Chemical modification studies identified a potential sugar-binding site per subunit molecule. Comparison of C-alpha atom positions in subunit structures showed that the deviations between the two crystal forms were more with respect to blades I and IV. Differences also existed between subunits in two forms in terms of type and site of ligand binding.

  6. Total yield of channeling radiation from relativistic electrons in thin Si and W crystals

    International Nuclear Information System (INIS)

    Abdrashitov, S.V.; Bogdanov, O.V.; Dabagov, S.B.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2013-01-01

    Orientation dependences of channeling radiation total yield from relativistic 155–855 MeV electrons at both 〈1 0 0〉 axial and (1 0 0) planar channeling in thin silicon and tungsten crystals are studied by means of computer simulations. The model as well as computer code developed allows getting the quantitative results for orientation dependence of channeling radiation that can be used for crystal alignment in channeling experiments and/or for diagnostics of initial angular divergence of electron beam

  7. Stimulated emission (4F3/2 → 4I11/2 channel) with LD and Xe-flashlamp pumping of tetragonal, incommensurately modulated Ca2MgSi2O7:Nd3+(Na+) – a new disordered laser crystal

    International Nuclear Information System (INIS)

    Kaminskii, A A; Nakao, H; Ueda, K; Shirakawa, A; Bohatý, L; Becker, P; Liebertz, J; Kleinschrodt, R

    2010-01-01

    Non-centrosymmetric tetragonal crystal Ca 2 MgSi 2 O 7 :Nd 3+ (Na + ) with incommensurately modulated melilite-type structure is presented as a new laser crystal. By LD and Xe-flashlamp pumping its CW and free-running pulsed stimulated emission of the 4 F 3/2 → 4 I 11/2 generation channel of Nd 3+ lasant ions was excited

  8. Ion channeling in natural and synthetic beryl crystals

    International Nuclear Information System (INIS)

    Fritzsche, C.R.; Diehl, R.; Goetzberger, A.

    1980-01-01

    The transmission of ions by channeling through natural beryl and synthetic emerald has been studied extensively. The transmission ratios depend upon the angle of incidence with a full half width of less than 0.32 0 . While the maximum ratio obtained up to now is only 4 x 10 -4 for 350 keV protons through a crystal of 21 μm thickness, the energy of the transmitted ions is high, the loss being in the order of a few keV/μm. About 60-80% of the particles emerging from the rear surface are ionized. By varying the ion species transmission could be observed up to atomic number 9. It is assumed that the transmission is facilitated by the existence of an electron free channel core. Higher transmission ratios can be expected for sufficiently perfect crystals. (orig.) 891 CDS/orig. 892 MB

  9. An oxotantalate with network-type structure: Cs3Ta5O14

    International Nuclear Information System (INIS)

    Serafin, M.; Hoppe, R.

    1982-01-01

    Cs 3 Ta 5 O 14 was obtained for the first time as colourless single crystals, orthorhombic, a = 26.235(2), b = 7.429(1), c = 7.388(1) A, Z = 4, space group Pbam. According to four-circle-diffractometer data (1521 hkl, F 0 > 1.5 σ(F 0 ), 3 0 0 , R = 10%) it crystallizes with a complicated network-type structure. Ta is partly in an octahedral (C.N.6), partly in a trigonal-bipyramidal (C.N.5) environment. The [Ta 5 O 14 ] network contains channels occupied by Cs. Effective Coordination Numbers, ECoN, and the Madelung Part of the Lattice Energy, MAPLE, have been calculated and are discussed. (author)

  10. Mechanism of Cd2+-coordination during Slow Inactivation in Potassium Channels

    Science.gov (United States)

    Raghuraman, H.; Cordero-Morales, Julio F.; Jogini, Vishwanath; Pan, Albert C.; Kollewe, Astrid; Roux, Benoît; Perozo, Eduardo

    2013-01-01

    Summary In K+ channels, rearrangements of the pore outer-vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggest these movements to be modest in magnitude. Here, we show that under physiological conditions, the KcsA outer-vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an outer-vestibule cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+-bound Y82C-KcsA in the closed state, together with EPR distance measurements in the KcsA outer-vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation. PMID:22771214

  11. Mathematical theories of classical particle channeling in perfect crystals

    International Nuclear Information System (INIS)

    Dumas, H. Scott

    2005-01-01

    We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling

  12. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2005-01-01

    Crystals of pseudechetoxin and pseudecin, potent peptidic inhibitors of cyclic nucleotide-gated ion channels, have been prepared and X-ray diffraction data have been collected to 2.25 and 1.90 Å resolution, respectively. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction of retinal and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins are structurally classified as cysteine-rich secretory proteins and exhibit structural features that are quite distinct from those of other known small peptidic channel blockers. This article describes the crystallization and preliminary X-ray diffraction analyses of these toxins. Crystals of PsTx belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.30, b = 61.59, c = 251.69 Å, and diffraction data were collected to 2.25 Å resolution. Crystals of Pdc also belonged to space group P2 1 2 1 2 1 , with similar unit-cell parameters a = 60.71, b = 61.67, c = 251.22 Å, and diffraction data were collected to 1.90 Å resolution

  13. Crystal structure of type I ryanodine receptor amino-terminal [beta]-trefoil domain reveals a disease-associated mutation 'hot spot' loop

    Energy Technology Data Exchange (ETDEWEB)

    Amador, Fernando J.; Liu, Shuang; Ishiyama, Noboru; Plevin, Michael J.; Wilson, Aaron; MacLennan, David H.; Ikura, Mitsuhiko; (Toronto)

    2009-12-01

    Muscle contraction and relaxation is regulated by transient elevations of myoplasmic Ca{sup 2+}. Ca{sup 2+} is released from stores in the lumen of the sarco(endo)plasmic reticulum (SER) to initiate formation of the Ca{sup 2+} transient by activation of a class of Ca{sup 2+} release channels referred to as ryanodine receptors (RyRs) and is pumped back into the SER lumen by Ca{sup 2+}-ATPases (SERCAs) to terminate the Ca{sup 2+} transient. Mutations in the type 1 ryanodine receptor gene, RYR1, are associated with 2 skeletal muscle disorders, malignant hyperthermia (MH), and central core disease (CCD). The evaluation of proposed mechanisms by which RyR1 mutations cause MH and CCD is hindered by the lack of high-resolution structural information. Here, we report the crystal structure of the N-terminal 210 residues of RyR1 (RyR{sub NTD}) at 2.5 {angstrom}. The RyR{sub NTD} structure is similar to that of the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor (IP3Rsup), but lacks most of the long helix-turn-helix segment of the 'arm' domain in IP3Rsup. The N-terminal {beta}-trefoil fold, found in both RyR and IP{sub 3}R, is likely to play a critical role in regulatory mechanisms in this channel family. A disease-associated mutation 'hot spot' loop was identified between strands 8 and 9 in a highly basic region of RyR1. Biophysical studies showed that 3 MH-associated mutations (C36R, R164C, and R178C) do not adversely affect the global stability or fold of RyRNTD, supporting previously described mechanisms whereby mutations perturb protein-protein interactions.

  14. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    Science.gov (United States)

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  15. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    Science.gov (United States)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  16. Crystal structure and magnetism of UOsAl

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V., E-mail: andreev@fzu.cz [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Daniš, S. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Šebek, J.; Henriques, M.S.; Vejpravová, J. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Gorbunov, D.I. [Institute of Physics, Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum, Dresden-Rossendorf, D-01314 Dresden (Germany); Havela, L. [Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic)

    2017-04-15

    Crystal structure, magnetization, and specific heat were studied on single crystal of uranium intermetallic compound UOsAl. It is a hexagonal Laves phase of MgZn{sub 2} type, space group P6{sub 3}/mmc, with lattice parameters a=536.4 pm, c=845.3 pm. Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). The compound is a weakly temperature-dependent paramagnet with magnetic susceptibility of ≈1.5*10{sup −8} m{sup 3} mol{sup −1} (at T=2 K), which is slightly higher with magnetic field along the a-axis compared to the c-axis. The Sommerfeld coefficient of electronic specific heat has moderate value of γ=36 mJ mol{sup −1} K{sup −2}. - Highlights: • Crystal structure and magnetic properties were studied on single crystal of UOsAl with hexagonal structure of MgZn{sub 2} type. • Shortest inter-uranium distance 313 pm (along the c-axis) is considerably smaller than the Hill limit (340 pm). • UOsAl has paramagnetic ground state as the compounds with T=Fe and Ru, i.e. 3d and 4d analogues of Os.

  17. Synthesis, crystal structure, and properties of KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11}

    Energy Technology Data Exchange (ETDEWEB)

    Li Manrong; Retuerto, Maria; Bok Go, Yong; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854 (United States); Croft, Mark; Ignatov, Alex [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Ramanujachary, Kandalam V. [Department of Chemistry and Biochemistry, Rowan University, 210 Mullica Hill Road, Glassboro, NJ 08028 (United States); Dachraoui, Walid; Hadermann, Joke [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Tang Meibo; Zhao Jingtai [Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai 200050 (China); Greenblatt, Martha, E-mail: martha@rutchem.rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2013-01-15

    Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long

  18. Secondary electron emission induced by channeled relativistic electrons in a (1 1 0) Si crystal

    International Nuclear Information System (INIS)

    Korotchenko, K.B.; Kunashenko, Yu P.; Tukhfatullin, T.A.

    2012-01-01

    A new effect that accompanies electrons channeled in a crystal is considered. This phenomenon was previously predicted was called channeling secondary electron emission (CSEE). The exact CSEE cross-section on the basis of using the exact Bloch wave function of electron channeled in a crystal is obtained. The detailed investigation of CSEE cross-section is performed. It is shown that angular distribution of electrons emitted due to CSEE has a complex form.

  19. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  20. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    International Nuclear Information System (INIS)

    Yakubovich, Olga V.; Russian Academy of Science, Moscow; Steele, Ian M.; Kiriukhina, Galina V.; Dimitrova, Olga V.

    2015-01-01

    The novel phase K 2.5 Cu 5 Cl(PO 4 ) 4 (OH) 0.5 (VO 2 ).H 2 O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F 2 to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa 3 , and Z = 4. Both symmetrically independent Cu 2+ sites show elongated square-pyramidal coordination. The V 5+ ions reside in strongly distorted five-vertex VO 5 polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO 4 tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H 2 O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu 4 X(TO 4 ) 4 ] 8 (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu 4 (PO 4 ) 4 as a simplest member of this polysomatic series.

  1. Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI

    Science.gov (United States)

    Backe, H.; Lauth, W.; Tran Thi, T. N.

    2018-04-01

    Line structures were observed for (110) planar channeling of electrons in a diamond single crystal even at a beam energy of 180 MeV . This observation motivated us to initiate dechanneling length measurements as function of the beam energy since the occupation of quantum states in the channeling potential is expected to enhance the dechanneling length. High energy loss signals, generated as a result of emission of a bremsstrahlung photon with about half the beam energy at channeling of 450 and 855 MeV electrons, were measured as function of the crystal thickness. The analysis required additional assumptions which were extracted from the numerical solution of the Fokker-Planck equation. Preliminary results for diamond are presented. In addition, we reanalyzed dechanneling length measurements at silicon single crystals performed previously at the Mainz Microtron MAMI at beam energies between 195 and 855 MeV from which we conclude that the quality of our experimental data set is not sufficient to derive definite conclusions on the dechanneling length. Our experimental results are below the predictions of the Fokker-Planck equation and somewhat above the results of simulation calculations of A. V. Korol and A. V. Solov'yov et al. on the basis of the MBN Explorer simulation package. We somehow conservatively conclude that the prediction of the asymptotic dechanneling length on the basis of the Fokker-Planck equation represents an upper limit.

  2. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  3. Ion channeling study of defects in compound crystals using Monte Carlo simulations

    Science.gov (United States)

    Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.

    2014-08-01

    Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.

  4. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  5. Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin.

    Science.gov (United States)

    Nakamura, Toshio; Kotani, Mao; Tonozuka, Takashi; Ide, Azusa; Oguma, Keiji; Nishikawa, Atsushi

    2009-01-30

    The Clostridium botulinum type C 16S progenitor toxin contains a neurotoxin and several nontoxic components, designated nontoxic nonhemagglutinin (HA), HA1 (HA-33), HA2 (HA-17), HA3a (HA-22-23), and HA3b (HA-53). The HA3b subcomponent seems to play an important role cooperatively with HA1 in the internalization of the toxin by gastrointestinal epithelial cells via binding of these subcomponents to specific oligosaccharides. In this study, we investigated the sugar-binding specificity of the HA3b subcomponent using recombinant protein fused to glutathione S-transferase and determined the three-dimensional structure of the HA3a-HA3b complex based on X-ray crystallography. The crystal structure was determined at a resolution of 2.6 A. HA3b contains three domains, domains I to III, and the structure of domain I resembles HA3a. In crystal packing, three HA3a-HA3b molecules are assembled to form a three-leaved propeller-like structure. The three HA3b domain I and three HA3a alternate, forming a trimer of dimers. In a database search, no proteins with high structural homology to any of the domains (Z score >10) were found. Especially, HA3a and HA3b domain I, mainly composed of beta-sheets, reveal a unique fold. In binding assays, HA3b bound sialic acid with high affinity, but did not bind galactose, N-acetylgalactosamine, or N-acetylglucosamine. The electron density of liganded N-acetylneuraminic acid was determined by crystal soaking. In the sugar-complex structure, the N-acetylneuraminic acid-binding site was located in the cleft formed between domains II and III of HA3b. This report provides the first determination of the three-dimensional structure of the HA3a-HA3b complex and its sialic acid binding site. Our results will provide useful information for elucidating the mechanism of assembly of the C16S toxin and for understanding the interactions with oligosaccharides on epithelial cells and internalization of the botulinum toxin complex.

  6. Trace element distribution in geological crystals

    Energy Technology Data Exchange (ETDEWEB)

    Den Besten, J.L.; Jamieson, D.N.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Channelling is a useful microprobe technique for determining the structure of crystals, but until now has not been performed on geological crystals. The composition has been investigated rather than the structure, which can further explain the origin of the crystal and provide useful information on the substitutionality of trace elements. This may then lead to applications of extraction of valuable metals and semiconductor electronics. Natural crystals of pyrite, FeS{sub 2}, which contains a substantial concentration of gold were channeled and examined to identify the channel axis orientation. Rutherford Backscattering (RBS) and Particle Induced X-Ray Emission (PIXE) spectra using MeV ions were obtained in the experiment to provide a comparison of lattice and non-lattice trace elements. 3 figs.

  7. Trace element distribution in geological crystals

    Energy Technology Data Exchange (ETDEWEB)

    Den Besten, J L; Jamieson, D N; Weiser, P S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Channelling is a useful microprobe technique for determining the structure of crystals, but until now has not been performed on geological crystals. The composition has been investigated rather than the structure, which can further explain the origin of the crystal and provide useful information on the substitutionality of trace elements. This may then lead to applications of extraction of valuable metals and semiconductor electronics. Natural crystals of pyrite, FeS{sub 2}, which contains a substantial concentration of gold were channeled and examined to identify the channel axis orientation. Rutherford Backscattering (RBS) and Particle Induced X-Ray Emission (PIXE) spectra using MeV ions were obtained in the experiment to provide a comparison of lattice and non-lattice trace elements. 3 figs.

  8. Defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type

    Energy Technology Data Exchange (ETDEWEB)

    Bolotina, N. B., E-mail: nb-bolotina@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Gorlova, I. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Titov, A. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Arakcheeva, A. V. [Phase Solutions, Co Ltd. (Switzerland)

    2016-11-15

    The defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type has been determined based on X-ray diffraction data. Shear defects manifest themselves as displacements of ab layers (which can imitate a twin) by ∼0.5a. Regular shears facilitate the formation of a superstructure along the c axis. A model of defect in the layer structure is proposed to explain the atomic displacements at an angle to the layer plane.

  9. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  10. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  11. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Yakubovich, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography; Russian Academy of Science, Moscow (Russian Federation). Inst. of Geology of Deposits, Petrography, Mineralogy and Geochemistry; Steele, Ian M. [Notre Dame Univ., IN (United States). Notre Dame Integrated Imaging Facility; Kiriukhina, Galina V.; Dimitrova, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography

    2015-09-01

    The novel phase K{sub 2.5}Cu{sub 5}Cl(PO{sub 4}){sub 4}(OH){sub 0.5}(VO{sub 2}).H{sub 2}O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F{sup 2} to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa{sup 3}, and Z = 4. Both symmetrically independent Cu{sup 2+} sites show elongated square-pyramidal coordination. The V{sup 5+} ions reside in strongly distorted five-vertex VO{sub 5} polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO{sub 4} tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H{sub 2}O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu{sub 4}X(TO{sub 4}){sub 4}]{sub 8} (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu{sub 4}(PO{sub 4}){sub 4} as a simplest member of this polysomatic series.

  13. Design of a high-resolution high-stability positioning mechanism for crystal optics

    International Nuclear Information System (INIS)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-01-01

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  14. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  15. Polarization singularities of optical fields caused by structural dislocations in crystals

    International Nuclear Information System (INIS)

    Savaryn, V; Vasylkiv, Yu; Krupych, O; Skab, I; Vlokh, R

    2013-01-01

    We analyze polarization singularities of optical beams that propagate through crystals possessing structural dislocations. We show that screw dislocations of crystalline structure can lead to the appearance of purely screw-type dislocations of light wavefronts. This can happen only in crystals that belong to trigonal and cubic systems. These polarization singularities will give rise to optical vortices with the topological charge equal to ±1, whenever a crystal sample is placed between crossed circular polarizers. We have also found that edge dislocations present in the cubic and trigonal crystals, with the Burgers vector perpendicular to the three-fold symmetry axes, can impose mixed screw-edge dislocations in the wavefronts of optical beams and generate singly charged optical vortices. The results of our analysis can be applied for detecting and identifying dislocations of different types available in crystals. (paper)

  16. Application of amphipols for structure-functional analysis of TRP channels.

    Science.gov (United States)

    Huynh, Kevin W; Cohen, Matthew R; Moiseenkova-Bell, Vera Y

    2014-10-01

    Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high-resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven to be useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impacts of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants toward determining high-resolution structures of TRP channels.

  17. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    Science.gov (United States)

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  18. Crystal structure of l-leucyl-l-isoleucine 2,2,2-trifluoroethanol monosolvate

    Directory of Open Access Journals (Sweden)

    Carl Henrik Görbitz

    2016-05-01

    Full Text Available Hydrophobic dipeptides with either l-Leu or l-Phe constitute a rather heterogeneous group of crystal structures. Some form materials with large water-filled channels, but there is also a pronounced tendency to incorporate organic solvent molecules, which then act as acceptors for one of the three H atoms of the charged N-terminal amino group. l-Leu-l-Ile has uniquely been obtained as two distinct hydrates, but has so far failed to co-crystallize with a simple alcohol. The present structure of C12H24N2O3·CF3CH2OH, which crystallizes with two dipeptide and two solvent molecules in the asymmetric unit, demonstrates that when 2,2,2-trifluoroethanol is used as a solvent, its high capacity as a hydrogen-bond donor leads to formation of an alcohol solvate.

  19. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6

    International Nuclear Information System (INIS)

    Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2008-01-01

    Adeno-associated virus type 6, a human DNA virus that is being developed as a vector for gene therapy, has been crystallized in a form suitable for structure determination at about 3.2 Å resolution. Adeno-associated viruses are being developed as vectors for gene therapy and have been used in a number of clinical trials. Vectors to date have been based on the type species AAV-2, the structure of which was published in 2002. There is growing interest in modulating the cellular tropism and immune neutralization of AAV-2 with variants inspired by the properties of other serotypes. Towards the determination of a structure for AAV type 6, this paper reports the high-yield production, purification, crystallization and preliminary diffraction studies of infectious AAV-6 virions. The crystals diffracted to 3.2 Å resolution using synchrotron radiation. The most promising crystal form belonged to space group R3 and appeared to be suitable for initial structure determination

  20. The Gd14Ag51 structure type and its relation to some complex amalgam structures

    International Nuclear Information System (INIS)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin

    2015-01-01

    Highlights: • The Gd 14 Ag 51 structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd 14 Ag 51 shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE 14 Ag 51 structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd 14 Ag 51 structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd 14 Ag 51 ). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE 14 Ag 51 structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd 14 Ag 51 structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd 14 Ag 51 structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd 14 Ag 51 , the parent compound of this structure family

  1. Crystal structure of (Na0.70(Na0.70,Mn0.30(Fe3+,Fe2+2Fe2+(VO43, a sodium-, iron- and manganese-based vanadate with the alluaudite-type structure

    Directory of Open Access Journals (Sweden)

    Elhassan Benhsina

    2016-02-01

    Full Text Available The title compound, sodium (sodium,manganese triiron(II,III tris[vanadate(V], (Na0.70(Na0.70,Mn0.30(Fe3+,Fe2+2Fe2+(VO43, was prepared by solid-state reactions. It crystallizes in an alluaudite-like structure, characterized by a partial cationic disorder. In the structure, four of the 12 sites in the asymmetric unit are located on special positions, three on a twofold rotation axis (Wyckoff position 4e and one on an inversion centre (4b. Two sites on the twofold rotation axis are entirely filled by Fe2+ and V5+, whereas the third site has a partial occupancy of 70% by Na+. The site on the inversion centre is occupied by Na+ and Mn2+ cations in a 0.7:0.3 ratio. The remaining Fe2+ and Fe3+ atoms are statistically distributed on a general position. The three-dimensional framework of this structure is made up of kinked chains of edge-sharing [FeO6] octahedra stacked parallel to [10-1]. These chains are held together by VO4 tetrahedral groups, forming polyhedral sheets perpendicular to [010]. Within this framework, two types of channels extending along [001] are present. One is occupied by (Na+/Mn2+ while the second is partially occupied by Na+. The mixed site containing (Na+/Mn2+ has an octahedral coordination sphere, while the Na+ cations in the second channel are coordinated by eight O atoms.

  2. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  3. Axial channeling of uttrarelativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, V.I.; Khokonov, M.Kh. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1982-07-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements.

  4. Axial channeling of uttrarelativistic electrons

    International Nuclear Information System (INIS)

    Telegin, V.I.; Khokonov, M.Kh.

    1982-01-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements

  5. Electrodisintegration of relativistic nuclei by a periodic crystal field in channeling

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Vorob'ev, S.A.

    1981-01-01

    Processes on channeled relativistic nuclei with transition into a continuous spectrum (electrodisintegration of nuclei with emission of neutron, proton, photon and etc.) are considered. A case of plane channeling is considered. The equivalent photon method is used for calculating the disintegration cross section. The beryllium disintegration cross section in the system of tungsten crystal (100) planes is calculated. At the γ=10 2 Lorentz factor the cross section value is 5.27 mb. The process considered is of interest from the viewpoint of production of monoenergy neutrons of high energies and γ quanta of excited nuclei. The channeling effect gives the possibility to study electromagnetic interactions of relativistic nuclei under suppre--ssion conditions of the nuclear interaction channel [ru

  6. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  7. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    Science.gov (United States)

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  8. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    Science.gov (United States)

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  9. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro

    2017-08-15

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  10. Unique Reversible Crystal-to-Crystal Phase Transition – Structural and Functional Properties of Fused Ladder Thienoarenes

    KAUST Repository

    Abe, Yuichiro; Savikhin, Victoria; Yin, Jun; Grimsdale, Andrew C.; Soci, Cesare; Toney, Michael F.; Lam, Yeng Ming

    2017-01-01

    Donor-acceptor type molecules based on fused ladder thienoarenes, indacenodithiophene (IDT) and dithienocyclopenta-thienothiophene (DTCTT), coupled with benzothiadiazole, are prepared and their solid-state structures are investigated. They display a rich variety of solid phases ranging from amorphous glass states to crystalline states, upon changes in the central aromatic core and side group structures. Most notably, the DTCTT-based derivatives showed reversible crystal-to-crystal phase transitions in heating and cooling cycles. Unlike what has been seen in π−conjugated molecules variable temperature XRD revealed that structural change occurs continuously during the transition. A columnar self-assembled structure with slip-stacked π−π interaction is proposed to be involved in the solid-state. This research provides the evidence of unique structural behavior of the DTCTT-based molecules through the detailed structural analysis. This unique structural transition paves the way for these materials to have self-healing of crystal defects, leading to improved optoelectronic properties.

  11. Preparation and crystal structure of Ca4Sb2O

    International Nuclear Information System (INIS)

    Eisenmann, B.; Limartha, H.; Schaefer, H.

    1980-01-01

    The formerly described compound Ca 2 Sb is to be corrected to Ca 4 Sb 2 O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K 2 NiF 4 structure type. (orig.)

  12. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  13. Crystallization and preliminary X-ray crystallographic characterization of a cyclic nucleotide-binding homology domain from the mouse EAG potassium channel

    International Nuclear Information System (INIS)

    Marques-Carvalho, Maria João; Morais-Cabral, João Henrique

    2012-01-01

    The crystallization conditions and preliminary crystal characterization of the cytoplasmic cyclic nucleotide-binding homology domain from the mouse EAG potassium channel are reported. The members of the family of voltage-gated KCNH potassium channels play important roles in cardiac and neuronal repolarization, tumour proliferation and hormone secretion. These channels have a C-terminal cytoplasmic domain which is homologous to cyclic nucleotide-binding domains (CNB-homology domains), but it has been demonstrated that channel function is not affected by cyclic nucleotides and that the domain does not bind nucleotides in vitro. Here, the crystallization and preliminary crystallographic analysis of a CNB-homology domain from a member of the KCNH family, the mouse EAG channel, is reported. X-ray diffraction data were collected to 2.2 Å resolution and the crystal belonged to the hexagonal space group P3 1 21

  14. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics

    Science.gov (United States)

    Trudell, James R.; Harris, R. Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  15. Performance enhancement in p-channel charge-trapping flash memory devices with Si/Ge super-lattice channel and band-to-band tunneling induced hot-electron injection

    International Nuclear Information System (INIS)

    Liu, Li-Jung; Chang-Liao, Kuei-Shu; Jian, Yi-Chuen; Wang, Tien-Ko; Tsai, Ming-Jinn

    2013-01-01

    P-channel charge-trapping flash memory devices with Si, SiGe, and Si/Ge super-lattice channel are investigated in this work. A Si/Ge super-lattice structure with extremely low roughness and good crystal structure is obtained by precisely controlling the epitaxy thickness of Ge layer. Both programming and erasing (P/E) speeds are significantly improved by employing this Si/Ge super-lattice channel. Moreover, satisfactory retention and excellent endurance characteristics up to 10 6 P/E cycles with 3.8 V memory window show that the degradation on reliability properties is negligible when super-lattice channel is introduced. - Highlights: ► A super-lattice structure is proposed to introduce more Ge content into channel. ► Super-lattice structure possesses low roughness and good crystal structure. ► P-channel flash devices with Si, SiGe, and super-lattice channel are investigated. ► Programming/erasing speeds are significantly improved. ► Reliability properties can be kept for device with super-lattice channel

  16. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    International Nuclear Information System (INIS)

    Uhring, Muriel; Bey, Gilbert; Lecompte, Odile; Cavarelli, Jean; Moras, Dino; Poch, Olivier

    2005-01-01

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution

  17. Cloning, purification and crystallization of a Walker-type Pyrococcus abyssi ATPase family member

    Energy Technology Data Exchange (ETDEWEB)

    Uhring, Muriel; Bey, Gilbert; Lecompte, Odile; Cavarelli, Jean; Moras, Dino; Poch, Olivier, E-mail: poch@igbmc.u-strasbg.fr [Département de Biologie et Génomiques Structurales, UMR 7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP Strasbourg, 1 Rue Laurent Fries, 64404 Illkirch (France)

    2005-10-01

    The Walker-type ATPase PABY2304 of P. abyssi has been cloned, overexpressed, purified and crystallized. X-ray diffraction data from selenomethionine-derivative crystals have been collected to 2.6 Å. The structure has been solved by MAD techniques. Several ATPase proteins play essential roles in the initiation of chromosomal DNA replication in archaea. Walker-type ATPases are defined by their conserved Walker A and B motifs, which are associated with nucleotide binding and ATP hydrolysis. A family of 28 ATPase proteins with non-canonical Walker A sequences has been identified by a bioinformatics study of comparative genomics in Pyrococcus genomes. A high-throughput structural study on P. abyssi has been started in order to establish the structure of these proteins. 16 genes have been cloned and characterized. Six out of the seven soluble constructs were purified in Escherichia coli and one of them, PABY2304, has been crystallized. X-ray diffraction data were collected from selenomethionine-derivative crystals using synchrotron radiation. The crystals belong to the orthorhombic space group C2, with unit-cell parameters a = 79.41, b = 48.63, c = 108.77 Å, and diffract to beyond 2.6 Å resolution.

  18. 5,5'-Dithio-bis(2-nitrobenzoic acid) modification of cysteine improves the crystal quality of human chloride intracellular channel protein 2

    International Nuclear Information System (INIS)

    Mi Wei; Li Lanfen; Su Xiaodong

    2008-01-01

    Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5 A at a home X-ray source by treating the protein with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys 114 , and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general

  19. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  20. Moessbauer determination of magnetic structure of Fe3BO6 crystal

    International Nuclear Information System (INIS)

    Kovalenko, P.P.; Labushkin, V.G.; Ovsepyan, A.K.; Sarkisov, Eh.R.; Smirnov, E.V.; Prokopov, A.R.; Seleznev, V.N.

    1984-01-01

    The magnetic structure of a Fe 3 BO 6 crystal belonging to space group Dsub(2h)sup(16)(Psub(nma)) is determined by the Moessbauer γ-radiation diffraction. The bragg reflection (700) of Moessbauer 14.4 keV γ-quanta from the Fe 3 BO 6 monocrystal has been studied experimentally. A high sensitivity of the interference of γ-quantum diffraction scattering on Fe nuclei being in crystallographically non-equivalent 8d- and 4s-positions to the type of magnetic ordering in the crystal is used for determination of the magnetic structure. Agreement of the experimental results with the theoretical calculations, conducted for types of magnetic ordering resolved by the symmetry of the crystal, permitted to reliably determine the magnetic structure of this compound. The results obtained confirm the data of neutrondiffraction studies on magnetic ordering in Fe 3 BO 6 . Advantages of the Moessbauer-diffraction study, as compared to the magnetic neutrondiffraction method, in particular, for investigation of crystals, in which the hyperfine magnetic fields on Fe nuclei have different values, are revealed and discussed in detail

  1. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  2. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    T. N. Wistisen

    2016-07-01

    Full Text Available We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111 plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  3. New orthorhombic derivative of CaCu{sub 5}-type structure: RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho), crystal structure and some magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-12-15

    The crystal structure of new YNi{sub 4}Si-type RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds has been established using powder X-ray diffraction. The YNi{sub 4}Si structure is a new structure type, which is orthorhombic derivative of CaCu{sub 5}-type structure (space group Cmmm N 65, oC12). GdNi{sub 4}Si and DyNi{sub 4}Si compounds order ferromagnetically at 25 and 19 K, respectively whereas YNi{sub 4}Si shows antiferromagnetic nature. At 15 K, DyNi{sub 4}Si shows second antiferromagnetic-like transition. The magnetic moment of GdNi{sub 4}Si at 5 K in 50 kOe field is ∼7.2 μ{sub B}/f.u. suggesting a completely ordered ferromagnetic state. The magnetocaloric effect of GdNi{sub 4}Si is calculated in terms of isothermal magnetic entropy change and it reaches the maximum value of −12.8 J/kg K for a field change of 50 kOe near T{sub C} ∼25 K. - Graphical abstract: The RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds crystallize in new YNi{sub 4}Si-type structure which is orthorhombic derivative of the basic CaCu{sub 5}-type structure. GdNi{sub 4}Si and DyNi{sub 4}Si compounds show the ferromagnetic-like ordering, whereas.YNi{sub 4}Si has the antiferromagnetic nature. The GdNi{sub 4}Si demonstrates the big magnetocaloric effect near temperature of ferromagnetic ordering. The relationship between initial CaCu{sub 5}-type DyNi{sub 5} and YNi{sub 4}Si-type DyNi{sub 4}Si lattices.

  4. Benchmark of the FLUKA model of crystal channeling against the UA9-H8 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schoofs, P.; Cerutti, F.; Ferrari, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Smirnov, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    Channeling in bent crystals is increasingly considered as an option for the collimation of high-energy particle beams. The installation of crystals in the LHC has taken place during this past year and aims at demonstrating the feasibility of crystal collimation and a possible cleaning efficiency improvement. The performance of CERN collimation insertions is evaluated with the Monte Carlo code FLUKA, which is capable to simulate energy deposition in collimators as well as beam loss monitor signals. A new model of crystal channeling was developed specifically so that similar simulations can be conducted in the case of crystal-assisted collimation. In this paper, most recent results of this model are brought forward in the framework of a joint activity inside the UA9 collaboration to benchmark the different simulation tools available. The performance of crystal STF 45, produced at INFN Ferrara, was measured at the H8 beamline at CERN in 2010 and serves as the basis to the comparison. Distributions of deflected particles are shown to be in very good agreement with experimental data. Calculated dechanneling lengths and crystal performance in the transition region between amorphous regime and volume reflection are also close to the measured ones.

  5. On structure of some laminated crystals with organic molecules

    International Nuclear Information System (INIS)

    Volodina, G.F.; Ivanova, V.Ya.; Malinovskij, T.I.

    1982-01-01

    A survey is made of papers dealing with intercalation of organic molecules into crystals of dihalcogenides of some transition metals (TaS 2 , TiS 2 , NbS 2 , ZrS 2 , TaSe 2 ), variation of their structure and physical properties. Among the used intercalates ammonia, pyridine, aniline and other aromatic amines proved to be most satisfactory from the viewpoint of reaction rate and product stability. A possibility is discussed of intercalation into PbI 2 and CdI 2 crystals that are of the same structural type as dihalcogenides

  6. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  7. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  8. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  9. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel.

    Science.gov (United States)

    Bera, Asim K; Aukema, Kelly G; Elias, Mikael; Wackett, Lawrence P

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  10. Energy loss distributions of 7 TeV protons channeled in a bent silicon crystals

    Directory of Open Access Journals (Sweden)

    Stojanov Nace

    2013-01-01

    Full Text Available The energy loss distributions of relativistic protons axially channeled through the bent Si crystals, with the constant curvature radius, R = 50 m, are studied here. The proton energy is 7 TeV and the thickness of the crystal is varied from 1 mm to 5 mm, which corresponds to the reduced crystal thickness, L, from 2.1 to 10.6, respectively. The proton energy was chosen in accordance with the large hadron collider project, at the European Organization for Nuclear Research, in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Dispersion of the proton scattering angle caused by its collisions with the crystal’s electrons was taken into account. [Projekat Ministarstva nauke Republike Srbije, br. III 45006

  11. New Role of P/Q-type Voltage-gated Calcium Channels

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform...... of the voltage-gated calcium channels (P/Q-type), is also expressed and contributes functionally to contraction of renal blood vessels in both mice and humans. Furthermore, preglomerular vascular SMCs and aortic SMCs coexpress L-, P-, and Q-type calcium channels within the same cell. Calcium channel blockers...... are widely used as pharmacological treatments. However, calcium channel antagonists vary in their selectivity for the various calcium channel subtypes, and the functional contribution from P/Q-type channels as compared with L-type should be considered. Confirming the presence of P/Q-type voltage...

  12. Epsilon Systems on Geometric Crystals of type A_n

    Directory of Open Access Journals (Sweden)

    Toshiki Nakashima

    2010-03-01

    Full Text Available We introduce an epsilon system on a geometric crystal of type A_n, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.

  13. The crystal structure of vurroite, Pb20Sn2(Bi,As)(22)S51Cl6

    DEFF Research Database (Denmark)

    Pinto, Daniela; Bonaccorsi, Elena; Balic Zunic, Tonci

    2008-01-01

    The crystal structure of the type specimen of vurroite from Vulcano (Aeolian Islands, Italy) has been solved and refined using single-crystal X-ray diffraction data collected at the Elettra synchrotron facility (Basovizza, Trieste). Vurroite has an OD (order-disorder) structure belonging to the c......The crystal structure of the type specimen of vurroite from Vulcano (Aeolian Islands, Italy) has been solved and refined using single-crystal X-ray diffraction data collected at the Elettra synchrotron facility (Basovizza, Trieste). Vurroite has an OD (order-disorder) structure belonging...... to the category III of OD structures composed of equivalent layers. The OD-groupoid family (lambda and sigma partial operations) and MDO structures were derived by means of the application of the OD theory. The two theoretically possible polytypes with maximum degree of order (MDO polytypes) have pseudo...

  14. A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP)

    International Nuclear Information System (INIS)

    Tsuruta, Osamu; Yokoyama, Hideshi; Fujii, Satoshi

    2012-01-01

    A new crystal lattice structure of H. pylori neutrophil-activating protein has been determined. Iron loading causes a series of conformational changes at the ferroxidase centre. A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP) has been determined in two forms: the native state (Apo) at 2.20 Å resolution and an iron-loaded form (Fe-load) at 2.50 Å resolution. The highly solvated packing of the dodecameric shell is suitable for crystallographic study of the metal ion-uptake pathway. Like other bacterioferritins, HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of channels. Iron loading causes a series of conformational changes of amino-acid residues (Trp26, Asp52 and Glu56) at the ferroxidase centre

  15. The Gd{sub 14}Ag{sub 51} structure type and its relation to some complex amalgam structures

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The Gd{sub 14}Ag{sub 51} structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd{sub 14}Ag{sub 51} shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE{sub 14}Ag{sub 51} structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd{sub 14}Ag{sub 51} structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd{sub 14}Ag{sub 51}). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE{sub 14}Ag{sub 51} structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd{sub 14}Ag{sub 51} structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd{sub 14}Ag{sub 51} structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd{sub 14}Ag{sub 51}, the parent compound of this structure family.

  16. Evaluation of a stream channel-type system for southeast Alaska.

    Science.gov (United States)

    M.D. Bryant; P.E. Porter; S.J. Paustian

    1991-01-01

    Nine channel types within a hierarchical channel-type classification system (CTCS) were surveyed to determine relations between salmonid densities and species distribution, and channel type. Two other habitat classification systems and the amount of large woody debris also were compared to species distribution and salmonid densities, and to stream channel types....

  17. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  18. Analysis of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals

    Directory of Open Access Journals (Sweden)

    Longfei Li

    2016-04-01

    Full Text Available Phononic crystals can be used to control elastic waves due to their frequency bands. This paper analyzes the passive and active control as well as the dispersion properties of longitudinal waves in rod-type piezoelectric phononic crystals over large frequency ranges. Based on the Love rod theory for modeling the longitudinal wave motions in the constituent rods and the method of reverberation-ray matrix (MRRM for deriving the member transfer matrices of the constituent rods, a modified transfer matrix method (MTMM is proposed for the analysis of dispersion curves by combining with the Floquet–Bloch principle and for the calculation of transmission spectra. Numerical examples are provided to validate the proposed MTMM for analyzing the band structures in both low and high frequency ranges. The passive control of longitudinal-wave band structures is studied by discussing the influences of the electrode’s thickness, the Poisson’s effect and the elastic rod inserts in the unit cell. The influences of electrical boundaries (including electric-open, applied electric capacity, electric-short and applied feedback control conditions on the band structures are investigated to illustrate the active control scheme. From the calculated comprehensive frequency spectra over a large frequency range, the dispersion properties of the characteristic longitudinal waves in rod-type piezoelectric phononic crystals are summarized.

  19. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR).

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Aleksandrov, Luba A; Ford, Robert C; Riordan, John R

    2004-09-10

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein that is mutated in patients suffering from cystic fibrosis. Here we report the purification and first crystallization of wild-type human CFTR. Functional characterization of the material showed it to be highly active. Electron crystallography of negatively stained two-dimensional crystals of CFTR has revealed the overall architecture of this channel for two different conformational states. These show a strong structural homology to two conformational states of another eukaryotic ATP-binding cassette transporter, P-glycoprotein. In contrast to P-glycoprotein, however, both conformational states can be observed in the presence of a nucleotide, which may be related to the role of CFTR as an ion channel rather than a transporter. The hypothesis that the two conformations could represent the "open" and "closed" states of the channel is considered.

  20. Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing

    International Nuclear Information System (INIS)

    Torchia, G.A.; Mendez, C.; Roso, L.; Tocho, J.O.

    2008-01-01

    In this work, we present an optical characterization of channel waveguides fabricated by means of femtosecond laser writing on Nd:YAG substrates. These guiding structures show a refractive index increment of about 1x10 -3 which allows TE propagation. By pumping with a CW solid-state laser at 532 nm reaching the 2 G 9/2 and 4 G 7/2 manifolds of Nd 3+ ions, we have explored the emission band corresponding to 4 F 3/2 → 4 I 9/2 optical transitions (peaked at 890 nm). From data, we have found that emission showed similar characteristics for waveguide and bulk. On the other hand, the lifetime corresponding to the 4 F 3/2 metaestable level was determined to be 240 μs for bulk and waveguide. Summarizing, we have made suitable channel waveguides in Nd:YAG crystals, by fs interaction, with similar spectroscopic properties to those of the bulk, a fact that boosters the photonics application of these devices. For the first time to our knowledge, a direct index increment waveguide made by interaction with ultra-short intense pulses in YAG crystals has been performed. This fabrication procedure can be an efficient tool to make several optical circuits in active materials by means of the one-step, fast and low-cost processing

  1. Note: A dual-channel sensor for dew point measurement based on quartz crystal microbalance

    Science.gov (United States)

    Li, Ning; Meng, Xiaofeng; Nie, Jing

    2017-05-01

    A new sensor with dual-channel was designed for eliminating the temperature effect on the frequency measurement of the quartz crystal microbalance (QCM) in dew point detection. The sensor uses active temperature control, produces condensation on the surface of QCM, and then detects the dew point. Both the single-channel and the dual-channel methods were conducted based on the device. The measurement error of the single-channel method was less than 0.5 °C at the dew point range of -2 °C-10 °C while the dual-channel was 0.3 °C. The results showed that the dual-channel method was able to eliminate the temperature effect and yield better measurement accuracy.

  2. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  3. At last! The single-crystal X-ray structure of a naturally occurring sample of the ilmenite-type oxide FeCrO3.

    Science.gov (United States)

    Pérez-Cruz, María Ana; Elizalde-González, María de la Paz; Escudero, Roberto; Bernès, Sylvain; Silva-González, Rutilo; Reyes-Ortega, Yasmi

    2015-10-01

    A natural single crystal of the ferrimagnetic oxide FeCrO3, which was found in an opencast mine situated in the San Luis Potosí State in Mexico, has been characterized in order to elucidate some outstanding issues about the actual structure of this material. The single-crystal X-ray analysis unambiguously shows that transition metal cations are segregated in alternating layers normal to the threefold crystallographic axis, affording a structure isomorphous to that of ilmenite (FeTiO3), in the space group R3̅. The possible occurrence of cation antisite and vacancy defects is below the limit of detection available from X-ray data. Structural and magnetic results are in agreement with the coherent slow intergrowth of magnetic phases provided by the two antiferromagnetic corundum-type parent oxides Fe2O3 (hematite) and Cr2O3 (eskolaite). Our results are consistent with the most recent density functional theory (DFT) studies carried out on digital FeCrO3 [Sadat Nabi & Pentcheva (2011). Phys. Rev. B, 83, 214424], and suggest that synthetic samples of FeCrO3 might present a cation distribution different to that of the ilmenite structural type.

  4. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  5. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  6. 16-channel DWDM based on 1D defect mode nonlinear photonic crystal

    Science.gov (United States)

    Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun

    2018-05-01

    We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).

  7. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions

    International Nuclear Information System (INIS)

    Kiser, Philip D.; Lodowski, David T.; Palczewski, Krzysztof

    2007-01-01

    A 3.02 Å crystal structure of native GroEL from E. coli is presented. GroEL is a member of the ATP-dependent chaperonin family that promotes the proper folding of many cytosolic bacterial proteins. The structures of GroEL in a variety of different states have been determined using X-ray crystallography and cryo-electron microscopy. In this study, a 3.02 Å crystal structure of the native GroEL complex from Escherichia coli is presented. The complex was purified and crystallized in the absence of potassium ions, which allowed evaluation of the structural changes that may occur in response to cognate potassium-ion binding by comparison to the previously determined wild-type GroEL structure (PDB code http://www.rcsb.org/pdb/explore.do?structureId), in which potassium ions were observed in all 14 subunits. In general, the structure is similar to the previously determined wild-type GroEL crystal structure with some differences in regard to temperature-factor distribution

  8. Observation and comparative analysis of proton beam extraction or collimation by different planar channels of a bent crystal

    Directory of Open Access Journals (Sweden)

    A. G. Afonin

    2012-08-01

    Full Text Available In the experiment the efficiency of the 50 GeV proton beam extraction from accelerator by means of a bent crystal as a function of crystal orientation was measured. This allowed one to make a comparative analysis of efficiencies of high-energy protons deflection by different crystal atomic planes with different values of the electrostatic field. The results of simulation of high-energy protons deflection by means of crystal atomic planes and crystal atomic strings are also presented in the article. In the case of planar channeling the simulation shows a good agreement with experimental data. In the case of proton motion in the regime of stochastic scattering by bent atomic strings the simulation shows that angles of particle deflection are much greater than the critical channeling angle.

  9. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Biplab [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chatterjee, S. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.

  10. Structural and functional characterization of HPHT diamond crystals used in photoconductive devices

    Energy Technology Data Exchange (ETDEWEB)

    Pace, E.; Pini, A. [Florence Univ. (Italy). Ist. di Astronomia; Vinattieri, A.; Bogani, F.; Santoro, M.; Messina, G.; Santangelo, S.; Sato, Y.

    2000-09-01

    Diamond films are extensively studied for applications as functional material for UV photoconductors. CVD-grown polycrystalline diamond films show very interesting performances, but their complete exploitation is actually limited by a slow time response if compared to other materials, by a relatively high concentration of structural defects, impurities and grain boundaries, which may affect the collection length of photogenerated charges. High-quality single crystal diamonds could solve some of these problems. The absence of grain boundaries can produce longer collection lengths. The nitrogen and impurity contents can be reduced and then large type-IIa diamond single-crystals can be obtained. In this work, a detailed structural and functional characterization of type Ib HPHT diamond crystals has been carried out and the results have been compared to similar characterizations of CVD films to evaluate the different behavior, taking also into account that these high pressure high temperature (HPHT) diamond crystals contain several tens ppm of nitrogen. (orig.)

  11. Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    International Nuclear Information System (INIS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Schoofs, P.; Smirnov, G.; Valentino, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.

    2016-01-01

    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.

  12. Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Rossi, R. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Schoofs, P. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Smirnov, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Valentino, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S. [Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); and others

    2016-07-10

    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.

  13. Crystal structures of wild-type and mutated cyclophilin B that causes hyperelastosis cutis in the American quarter horse

    Directory of Open Access Journals (Sweden)

    Boudko Sergei P

    2012-11-01

    Full Text Available Abstract Background Hyperelastosis cutis is an inherited autosomal recessive connective tissue disorder. Affected horses are characterized by hyperextensible skin, scarring, and severe lesions along the back. The disorder is caused by a mutation in cyclophilin B. Results The crystal structures of both wild-type and mutated (Gly6->Arg horse cyclophilin B are presented. The mutation neither affects the overall fold of the enzyme nor impairs the catalytic site structure. Instead, it locally rearranges the flexible N-terminal end of the polypeptide chain and also makes it more rigid. Conclusions Interactions of the mutated cyclophilin B with a set of endoplasmic reticulum-resident proteins must be affected.

  14. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.

    2007-01-01

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 μm. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 μm thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 μm thick

  15. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Azadegan, B.

    2007-11-15

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 {mu}m. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 {mu}m thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 {mu}m thick

  16. Angular distributions of 250 GeV/c positive particles axially channeled in germanium crystal. Pt. 3

    International Nuclear Information System (INIS)

    Sun, C.R.; Gibson, W.M.; Kim, I.J.; Williams, G.O.; Carrigan, R.A. Jr.; Chrisman, B.L.; Toohig, T.E.; Guzik, Z.; Nigmanov, T.S.; Tsyganov, A.S.

    1982-01-01

    Channeling phenomena are observed for charged particles of momentum up to 250 GeV/c in a germanium crystal. The angular distributions of the channeled particles are compared with theoretical predictions based on a diffusion model. The results indicate additional mechanisms leading to dechanneling of the particles although channeling effects are observed for particles incident at up to several times the critical angle, in contrast with the results from low energy channeling. (orig.)

  17. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  18. Crystal Structure of a Putative HTH-Type Transcriptional Regulator yxaF from Bacillus subtilis

    International Nuclear Information System (INIS)

    Seetharaman, J.; Kumaran, D.; Bonanno, J.; Burley, S.; Swaminathan, S.

    2006-01-01

    The New York Structural GenomiX Research Consortium (NYSGXRC) has selected the protein coded by yxaF gene from Bacillus subtilis as a target for structure determination. The yxaF protein has 191 residues with a molecular mass of 21 kDa and had no sequence homology to any structure in the Protein Data Bank (PDB) at the time of target selection. We aimed to elucidate the three-dimensional structure for the putative protein yxaF to better understand the relationship between protein sequence, structure, and function. This protein is annotated as a putative helix-turn-helix (HTH) type transcriptional regulator. Many transcriptional regulators like TetR and QacR use a structurally well-defined DNA-binding HTH motif to recognize the target DNA sequences. DNA-HTH motif interactions have been extensively studied. As the HTH motif is structurally conserved in many regulatory proteins, these DNA-protein complexes show some similarity in DNA recognition patterns. Many such regulatory proteins have a ligand-binding domain in addition to the DNA-binding domain. Structural studies on ligand-binding regulatory proteins provide a wealth of information on ligand-, and possibly drug-, binding mechanisms. Understanding the ligand-binding mechanism may help overcome problems with drug resistance, which represent increasing challenges in medicine. The protein encoded by yxaF, hereafter called T1414, shows fold similar to QacR repressor and TetR/CamR repressor and possesses putative DNA and ligand-binding domains. Here, we report the crystal structure of T1414 and compare it with structurally similar drug and DNA-binding proteins

  19. Microvoid channel polymer photonic crystals with large infrared stop gaps and a multitude of higher-order bandgaps fabricated by femtosecond laser drilling in solid resin

    International Nuclear Information System (INIS)

    Straub, M.; Ventura, M.; Gu, M.

    2004-01-01

    Photosensitive polymer materials are ideally suited for laser-induced micro- and nanostructuring, as structural and compositional changes are achieved already under exposure to moderate intensities of high-repetition rate ultrashort-pulsed light. Photonic crystals with bandgaps in the infrared or the visible spectral region are a particularly interesting application, because highly correlated structural elements at a size of only a few hundred nanometers are required. We fabricated infrared photonic crystals based on microvoid channels inside solid polymer material. Femtosecond-pulsed visible light was focused into UV-cured Norland NOA63 resin by a high numerical aperture objective. In the focal spot microexplosions drive the material out of the center of the focus. Void channels of 0.7-1.3 μm diameter are generated by translating the sample along a preprogrammed pathway. Woodpile structures of void channels at layer spacings of 1.6-2.6 μm and in-plane channel spacings of 1.2-1.3 μm allowed for bandgap-induced suppression of infrared transmission in the stacking direction of as much as 86% by only 20 layers. As these structures are highly correlated and do not contain many imperfections, up to three higher-order stop gaps are observed. Consistent with theory, the number and gapwidth of higher-order gaps strongly increases with the ratio between layer- and in-plane spacing. Due to their low refractive index contrast and the missing interconnectivity of voids our structures do not provide complete photonic bandgaps. However, their manifold of sizable higher-order gaps allows for the engineering of photonic stop gaps down to the near-infrared wavelength region using comparatively large structural dimensions

  20. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  1. Investigation of the channeling of light ions through gold crystals having thicknesses of several hundreds of angstroms from 0.5 to 2 MeV

    International Nuclear Information System (INIS)

    Poizat, J.C.; Remillieux, J.

    A technique to obtain a few hundred A thick self-supporting gold crystal is described. These crystals have been used to perform three channeling experiments with 0.5 to 2 MeV light ions: i) The wide angle scattering probability as a function of the distance from the crystal surface was studied for a beam of particles incident in planar and axial directions. ii) The influence of channeling on the light emission from crystal-excited atomic beams was investigated. iii) A strong channeling effect was found on the probability of transmission of a molecular beam of H 2 + ions through a thin crystal

  2. ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3.

    Science.gov (United States)

    Andrini, Olga; Keck, Mathilde; Briones, Rodolfo; Lourdel, Stéphane; Vargas-Poussou, Rosa; Teulon, Jacques

    2015-06-15

    The mutations in the CLCNKB gene encoding the ClC-Kb chloride channel are responsible for Bartter syndrome type 3, one of the four variants of Bartter syndrome in the genetically based nomenclature. All forms of Bartter syndrome are characterized by hypokalemia, metabolic alkalosis, and secondary hyperaldosteronism, but Bartter syndrome type 3 has the most heterogeneous presentation, extending from severe to very mild. A relatively large number of CLCNKB mutations have been reported, including gene deletions and nonsense or missense mutations. However, only 20 CLCNKB mutations have been functionally analyzed, due to technical difficulties regarding ClC-Kb functional expression in heterologous systems. This review provides an overview of recent progress in the functional consequences of CLCNKB mutations on ClC-Kb chloride channel activity. It has been observed that 1) all ClC-Kb mutants have an impaired expression at the membrane; and 2) a minority of the mutants combines reduced membrane expression with altered pH-dependent channel gating. Although further investigation is needed to fully characterize disease pathogenesis, Bartter syndrome type 3 probably belongs to the large family of conformational diseases, in which the mutations destabilize channel structure, inducing ClC-Kb retention in the endoplasmic reticulum and accelerated channel degradation. Copyright © 2015 the American Physiological Society.

  3. "Daisy-like" crystals: A rare and unknown type of urinary crystal.

    Science.gov (United States)

    Fogazzi, G B; Anderlini, R; Canovi, S; Covarelli, C; Gras, J; Kučera, J; Proietti, A; Rogic, D; Teboul, R; Ferraris Fusarini, C; de Liso, F; Garigali, G; Daudon, M

    2017-08-01

    Crystals are well known structures of urinary sediment, most of which are identified by the combined knowledge of crystal morphology, birefringence features at polarized light, and urine pH. In this paper, we report on a cohort of subjects whose urine contained a very rare type of crystal, which we first described in 2004 and which, based on its peculiar morphology, we define as "daisy-like crystal" (DLcr). Reports on DLcr were spontaneously sent to our laboratory over a 10.5-year period by different laboratory professionals and by one veterinary clinician who, in their everyday work, had come across DLcr. After the examination of DLcr images submitted, a number of other information were requested and partly obtained. DLcr were found in 9 human beings in 7 different laboratories, located in 4 countries (Italy, Belgium, Croatia, France). DLcr were found mostly in female (8/9), at all ages (3.5 to 93years), mostly in alkaline urine (pH6.0 to 7.5), at variable specific gravity values (1.010 to 1.030), either as isolated particles (2/8) or in association with other crystals (5/8) and/or leucocytes or bacteria (3/8). In addition, DLcr were found in the urine of a 1-year-old dog, examined in a veterinary clinic of Czech Republic. In 3 cases, DLcr were identified by manual microscopy, while in 7 cases by automated urine sediment analyzers. This paper confirms the possible presence in the urine of DLcr. However, further cases are needed to clarify their frequency, clinical meaning, and composition. Copyright © 2017. Published by Elsevier B.V.

  4. Preparation and crystal structure of Ca/sub 4/Sb/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Limartha, H; Schaefer, H; Graf, H A

    1980-12-01

    The formerly described compound Ca/sub 2/Sb is to be corrected to Ca/sub 4/Sb/sub 2/O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K/sub 2/NiF/sub 4/ type structure.

  5. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  6. Investigation of quantum states of fast electrons under planar channeling in silicon crystals

    International Nuclear Information System (INIS)

    Gridnev, V.I.; Kaplin, V.V.; Khlabutin, V.G.; Rozum, E.I.; Vorobiev, S.A.

    1987-01-01

    The angular distributions of (1.87 to 5.7) MeV electrons channeled in 2 μm Si crystals along (100), (110), and (111) atomic planes are measured. The half-width of measured angular distributions is defined by a critical Lindhard angle. A relation is obtained connecting those energies of electrons at which their angular distributions are similar for various atomic planes. The effect of a 'critical energy' under planar channeling of electrons is found and investigated. (author)

  7. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    Unknown

    The crystals obtained by this method were of good quality exhibiting ... type framework structure having Cs atoms inside it (figures. 3 and 4). This helps for .... Gopalakrishna G S, Prasad J S and Lokanath N K 2001 Proc. joint 4th and 6th ICSTR ...

  8. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H.

    Science.gov (United States)

    Yao, Guorui; Lam, Kwok-Ho; Perry, Kay; Weisemann, Jasmin; Rummel, Andreas; Jin, Rongsheng

    2017-03-08

    Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A-G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (H C ) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the H C . Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-H C at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.

  9. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H

    Directory of Open Access Journals (Sweden)

    Guorui Yao

    2017-03-01

    Full Text Available Botulinum neurotoxins (BoNTs, which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G, a new mosaic toxin type termed BoNT/HA (aka type FA or H was reported recently. Sequence analyses indicate that the receptor-binding domain (HC of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2 that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG and synaptic vesicle glycoprotein 2 (SV2. Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.

  10. Crystal Structure of the Receptor-Binding Domain of Botulinum Neurotoxin Type HA, Also Known as Type FA or H

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Perry, Kay; Weisemann, Jasmin; Rummel, Andreas; Jin, Rongsheng (Cornell); (Dusseldorf); (UCI)

    2017-03-01

    Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (HC) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures

  11. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels.

    Science.gov (United States)

    Gupta, Kanchan; Zamanian, Maryam; Bae, Chanhyung; Milescu, Mirela; Krepkiy, Dmitriy; Tilley, Drew C; Sack, Jon T; Yarov-Yarovoy, Vladimir; Kim, Jae Il; Swartz, Kenton J

    2015-05-07

    Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.

  12. Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing

    International Nuclear Information System (INIS)

    Han, W.Z.; Zhang, Z.F.; Wu, S.D.; Li, S.X.

    2007-01-01

    The influences of crystallographic orientations on the evolution of dislocation structures and the refinement process of sub-grains in Al single crystals processed by one-pass equal-channel angular pressing (ECAP) were systematically investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Three single crystals with different orientations, denoted as crystal I, crystal II and crystal III, were specially designed according to the shape of the ECAP die. For crystal I, its insert direction is parallel to [1 1 0] and its extrusion direction is parallel to [1-bar11]. For crystal II, the (1-bar11) plane is located parallel to the intersection plane of the ECAP die, and the [1 1 0] direction is along the general shear direction on the intersection plane. For crystal III, the (1-bar11) plane is laid on the plane perpendicular to the intersection of the ECAP die, and the [1 1 0] direction is vertical to the general shear direction. For crystal I, abundant cell block structures with multi-slip characters were formed, and they should be induced by four symmetric slip systems, while for crystal II, there are two sets of sub-grain structures with higher misorientation, making an angle of ∼70 deg., which can be attributed to the interactions of the two asymmetric primary slip planes, whereas for crystal III, only one set of ribbon structures was parallel to the traces of (1-bar11) with the lowest misorientation angle among the three single crystals, which should result from the homogeneous slip on the primary slip plane. The different microstructural features of the three single crystals provide clear experimental evidence that the microstructures and misorientation evolution are strongly affected by the crystallographic orientation or by the interaction between shear deformation imposed by the ECAP die and the intrinsic slip deformation of the single crystals. Based on the experimental results and the

  13. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus Emanuel; Liu, Xiang-Yu; Skjørringe, Tina

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, ......Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu...

  14. Shear and shearless Lagrangian structures in compound channels

    Science.gov (United States)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  15. Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System.

    Directory of Open Access Journals (Sweden)

    Federico M Ruiz

    Full Text Available The type VI secretion system (T6SS is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp, which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.

  16. CRYSTAL AND MOLECULAR STRUCTURE OF 5-NITROPIRIDINE PIPERIDINE-SULFENAMIDE

    OpenAIRE

    Brito, Iván; León, Yasna; Arias, Mauricio; Vargas, Danitza; Carmona, Francisco; Ramírez, Eduardo; Restovic, Ambrosio; Cárdenas, Alejandro; Wittke, Oscar; López-Rodríguez, Matías

    2002-01-01

    The crystal and molecular structure of 5-nitropiridine piperidine-sulfenamide, C10H13N3O2 S is described and compared with other sulfenamides and with other similar compounds. This structure belongs to a type of divalent sulphur compound and crystallizes in the orthorhombic space group Pnma with a= 27.810(4), b=6.797(1), c=6.110(1)Å, and Dx =1.376 g cm-3 with Z=4. The S-N bond distance of 1.699(4) Å is shorter than a single S-N bond [1.74 Å]. The NO2-(C6H3N)-S-N(C 5H10) molecule lies on a cry...

  17. Crystal structures and some physical properties of perovskite type vanadites of lanthanide-series elements

    Energy Technology Data Exchange (ETDEWEB)

    Shinike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J

    1980-04-01

    Crystal structures and some physical properties of the perovskite type vanadites of the lanthanide-series elements were studied. LaVO/sub 3/ and CeVO/sub 3/ had a tetragonal unit cell and other compounds studied were isostructural with orthorhombic GdFeO/sub 3/. The conductivity of all compounds showed semiconductive behavior with an activation energy about 0.1 eV. Electrical conductivity at room temperature decreased along the series from LaVO/sub 3/ to GdVO/sub 3/, and quasiconstant values were observed from TbVO/sub 3/ to LuVO/sub 3/. All the compounds studied, with the exception of LaVO/sub 3/, SmVO/sub 3/ and GdVO/sub 3/, were antiferromagnets with a weak ferromagnetism because of antisymmetric exchange interaction at low temperatures. At high temperature, all the compounds showed paragnetism.

  18. Multi-GeV electron and positron channeling in bent silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sushko, Gennady B., E-mail: sushko@fias.uni-frankfurt.de [Goethe-Universitat Frankfurt am Main, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Korol, Andrei V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); St. Petersburg State Maritime University, Leninsky Ave. 101, 198262 St. Petersburg (Russian Federation); Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); A.F. Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    The planar channeling of 3…20 GeV electrons and positrons in bent Si(1 1 1) crystal was simulated by means of the MBN EXPLORER software package. The results of the simulations are analyzed in terms of dechanneling length characterization, angular distribution of outgoing projectiles and radiation spectrum. The results of calculations are compared with the recent experimental data.

  19. Studies on the crystal structure and arrangement of water in sitagliptin L-tartrate hydrates

    Czech Academy of Sciences Publication Activity Database

    Tieger, E.; Kiss, V.; Pokol, G.; Finta, Z.; Dušek, Michal; Rohlíček, Jan; Skořepová, E.; Brázda, Petr

    2016-01-01

    Roč. 18, č. 21 (2016), s. 3819-3831 ISSN 1466-8033 R&D Projects: GA MŠk LO1603; GA ČR GA16-10035S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : sitagliptin tartarate * crystal structure * channel hydrates * hydration * dehydration Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.474, year: 2016

  20. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  1. Monoclonal Antibody Analysis and Insecticidal Spectrum of Three Types of Lepidopteran-Specific Insecticidal Crystal Proteins of Bacillus thuringiensis

    Science.gov (United States)

    Höfte, Herman; Van Rie, Jeroen; Jansens, Stefan; Van Houtven, Annemie; Vanderbruggen, Hilde; Vaeck, Mark

    1988-01-01

    We have investigated the protein composition and the insecticidal spectrum of crystals of 29 Bacillus thuringiensis strains active against lepidopteran larvae. All crystals contained proteins of 130 to 140 kilodaltons (kDa) which could be grouped into three types by the molecular weight of the protoxin and the trypsin-activated core fragment. Proteins of the three types showed a characteristic insecticidal spectrum when tested against five lepidopteran species. Type A crystal proteins were protoxins of 130 or 133 kDa, which were processed into 60-kDa toxins by trypsin. Several genes encoding crystal proteins of this type have been cloned and sequenced earlier. They are highly conserved in the N-terminal half of the toxic fragment and were previously classified in three subtypes (the 4.5-, 5.3-, and 6.6-kilobase subtypes) based on the restriction map of their genes. The present study shows that different proteins of these three subtypes were equally toxic against Manduca sexta and Pieris brassicae and had no detectable activity against Spodoptera littoralis. However, the 4.5-, 5.3-, and 6.6-kilobase subtypes differed in their toxicity against Heliothis virescens and Mamestra brassicae. Type B crystal proteins consisted of 140-kDa protoxins with a 55-kDa tryptic core fragment. These were only active against one of the five insect species tested (P. brassicae). The protoxin and the trypsin-activated toxin of type C were 135- and 63-kDa proteins, respectively. Proteins of this type were associated with high toxicity against S. littoralis and M. brassicae. A panel of 35 monoclonal antibodies was used to compare the structural characteristics of crystal proteins of the three different types and subtypes. Each type of protein could be associated with a typical epitope structure, indicating an unambiguous correlation between antigenic structure and insect specificity. Images PMID:16347711

  2. Atomic structures and mechanical properties of single-crystal GaN nanotubes

    International Nuclear Information System (INIS)

    Xu, B.; Lu, A.J.; Pan, B.C.; Yu, Q.X.

    2005-01-01

    An approach is proposed to theoretically construct a realistic single-crystal GaN nanotube at atomic scale. The generated atomic structures of the single-crystal GaN nanotubes match the structural aspects from experiment very well. Our energetic calculations show that a single-crystal GaN nanotube with [100]-oriented lateral facets is more stable than that with [110]-oriented lateral facets, when they have around the same wall thickness. For a specified orientation of the lateral facets on the single-crystal GaN nanotubes, the energetic stabilities of the tubes obey a P rule, in which P is the ratio of the number of four-coordinated atoms to the number of three-coordinated atoms. Furthermore, the Young's modulus of the considered GaN nanotubes decrease with increasing the ratio of the number of bulk atoms to the number of surface atoms in each type of tube. Our calculations and analysis demonstrate that the surface effect of a single-crystal nanotube enhances its Young's modulus significantly

  3. Crystal Structure of Tetragonal Form of La2NiO4+x

    Science.gov (United States)

    Kajitani, Tsuyoshi; Hosoya, Syoichi; Hirabayashi, Makoto; Fukuda, Tsuguo; Onozuka, Takashi

    1989-10-01

    The crystal structure of the title oxide was studied by means of the X-ray and neutron single crystal diffraction measurements. At room temperature, the tetragonal crystal structure is P42/ncm-type (No. 138), which is one of the subgroup of the space group I4/mmm. The lattice parameters of a sample annealed and slowly cooled in oxygen atmosphere from 673 K are a{=}b{=}5.4640(1) Å and c{=}12.6719(2) Å, while the oxygen content, x{=}0.10(4), was determined from obtained neutron data. The title oxide undergoes a tetragonal (P42/ncm)/tetragonal (I4/mmm) phase transition at about 560 K. The transition temperature is almost identical both in the annealed and as-grown crystals.

  4. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  5. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  6. Channel Control Structures for Souris River, Minot, North Dakota. Hydraulic Model Investigation.

    Science.gov (United States)

    1981-04-01

    in good agreement with other broad - and sharp - crested weirs . 19. Early testing of the typical type I structure indicated that the size of the riprap...III structure (Figure 4) will consist of a concrete weir with a crest lo- cated 10.0 ft above the channel bottom with a 1-ft-high end sill at the end...to the channel, was effective in preventing significant head differ- ential and damage to the strucLure with overbank flow conditions. The weir crest

  7. Crystal structure of the Ce2Ni2Zn15 compound

    International Nuclear Information System (INIS)

    Opainich, I.M.; Pavlyuk, V.V.; Bodak, O.I.; Cherny, R.; Yvon, K.

    1996-01-01

    A structure of a new ternary compound of the composition Ce2Ni2Zn15 (sp.gr.R3-barm,a=0.9080(3) nm, c=1.3294(3) nm) was determined on single-crystal and powder specimens. The study was performed on a Philips PW1100 automatic diffractometer and a DRON-4.07 powder diffractometer. The Ce2Ni2Zn15 compound is crystallized in the Ce2Al2Co15 structure type with the aluminum positions being occupied by nickel and cobalt positions being occupied by zinc

  8. A sodium gadolinium phosphate with two different types of tunnel structure: Synthesis, crystal structure, and optical properties of Na3GdP2O8

    International Nuclear Information System (INIS)

    Fang, M.; Cheng, W.-D.; Zhang, H.; Zhao, D.; Zhang, W.-L.; Yang, S.-L.

    2008-01-01

    A sodium gadolinium phosphate crystal, Na 3 GdP 2 O 8 , has been synthesized by a high-temperature solution reaction, and it exhibits a new structural family of the alkali-metal-rare-earth phosphate system. Although many compounds with formula M 3 LnP 2 O 8 have been reported, but they were shown to be orthorhombic [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] rather than monoclinic as shown in this paper. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group C2/c and the cell parameters: a=27.55 (25), b=5.312 (4), c=13.935(11) A, β=91.30(1) o , and V=2038.80 A 3 , Z=4. Its structure features a three-dimensional GdP 2 O 8 3- anionic framework with two different types of interesting tunnels at where Na atoms are located by different manners. The framework is constructed by Gd polyhedra and isolated PO 4 tetrahedra. It is different from the structure of K 3 NdP 2 O 8 [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] with space group P2 1 /m that shows only one type of tunnel. The emission spectrum and the absorption spectrum of the compound have been investigated. Additionally, the calculations of band structure, density of states, dielectric constants, and refractive indexes have been also performed with the density functional theory method. The obtained results tend to support the experimental data. - Graphical abstract: Projection of the structure of Na 3 GdP 2 O 8 with a unit cell edge along the b-axis. The Na-O bonds are omitted for clarity

  9. Growth and structural, optical, and electrical properties of zincite crystals

    Science.gov (United States)

    Kaurova, I. A.; Kuz'micheva, G. M.; Rybakov, V. B.

    2013-03-01

    An X-ray diffraction study of ZnO crystals grown by the hydrothermal method has revealed reflections that give grounds to assign them to the sp. gr. P3 rather than to P63 mc. The distribution of Zn1, Zn2, O1, and O2 over structural positions, along with vacancies and incorporated zinc atoms, explains the dissymmetrization observed in terms of the kinetic (growth) phase transition of the order-disorder type, which is caused by ordering Zn and O atoms over structural positions. The color of crystals of refined compositions (Zn0.975□0.025)Zn i(0.015)(O0.990□0.010) (green) and (Zn0.965□0.035)Zn i(0.035)O (bright green) is related to different oxygen contents, which is confirmed by the results of electron probe X-ray microanalysis and absorption spectroscopy. The degree of the structural quality of crystals, their resistivity, and activation energy are also related to oxygen vacancies.

  10. Study of unexplained hard photon production by electrons channelled in a crystal

    CERN Multimedia

    2002-01-01

    Our preceding experiment (NA33) designed to study the pair creation process in the interaction of high energy $\\gamma$ with a crystal in alignment conditions had revealed the existence of an unexpected peak in the radiation of 150 GeV e$^{-}$ beam for E$_{\\gamma}$/E$_{e^{-}} \\simeq$ 0.85 incident along the axis of a 185 $\\mu$m. Ge crystal and the photon multiplicity for the peak events has been measured to be M $\\simeq$ 5.7.\\\\ In NA42, in a 76 $\\mu$m crystal of the same crystallographic quality, the peak nearly disappears, and the photon multiplicity at x = 0.85 is only M $\\simeq$ 2.0. \\\\ The thickness dependence of the effect shows that the extrapolated multiplicity in the peak in a very thin crystal tends to unity. The high energy radiation peak emitted by axially channeled electrons in a thick crystal is then interpreted by the radiation cooling mechanism. \\\\ The extrapolation to zero thickness of these results will allow us to extract from the data the single $\\gamma$ radiation spectrum. The comparison o...

  11. Crystal structure of bassetite and saleeite. New insight into autunite-group minerals

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Mees, Florias [Royal Museum for Central Africa, Tervuren (Belgium); Philippo, Simon [Musee National d' Histoire Naturelle, Luxembourg (Luxembourg). Section Mineralogie; Baijot, Maxime; Fontaine, Francois [Liege Univ. (Belgium). Dept. de Geologie

    2016-06-15

    The crystal structures of two autunite-group minerals have been solved recently. The crystal structure of bassetite, Fe{sup 2+}[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from the type locality in Cornwall, United Kingdom (Basset Mines) was solved for the first time. Bassetite is monoclinic, space group P2{sub 1}/n, a = 6.961(1), b = 20.039(2), c = 6.974(1) Aa and β = 90.46(1) . The crystal structure of saleeite, Mg[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from Shinkolobwe, Democratic Republic of Congo, was also solved. Saleeite is monoclinic, space group P2{sub 1}/n, a = 6.951(1), b = 19.942(1), c = 6.967(1) Aa and β = 90.58(1) . The crystal structure investigation of bassetite (R{sub 1} = 0.0658 for 1879 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) and saleeite (R{sub 1} = 0.0307 for 1990 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) confirms that both minerals are topologically identical and that bassetite contains ten water molecules per formula unit. Their structure contains autunite-type sheets, [(UO{sub 2})(PO{sub 4})]{sup -}, consisting of corner-sharing UO{sub 6} square bipyramids and PO{sub 4} tetrahedra. Iron and magnesium are surrounded by water molecules to form Fe(H{sub 2}O){sub 6} or Mg(H{sub 2}O){sub 6} octahedra located in interlayer, between the autunite-type sheets. Two isolated independent water molecules are also located in interlayer. Energy-dispersive X-ray spectroscopy analysis confirmed the chemical composition obtained from structure refinement. These new data prompt a re-assessment of minerals of the autunite and meta-autunite groups.

  12. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  13. Role of T-type channels in vasomotor function

    DEFF Research Database (Denmark)

    Kuo, Ivana Y-T; Howitt, Lauren; Sandow, Shaun L

    2014-01-01

    Low-voltage-activated T-type calcium channels play an important role in regulating cellular excitability and are implicated in conditions, such as epilepsy and neuropathic pain. T-type channels, especially Cav3.1 and Cav3.2, are also expressed in the vasculature, although patch clamp studies of i...

  14. No apparent role for T-type Ca2+ channels in renal autoregulation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Hassing; Salomonsson, Max; Hansen, Pernille B. Lærkegaard

    2016-01-01

    -type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous......Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully...... pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels...

  15. Quantum Channeling Effects for 1 MeV Positrons

    International Nuclear Information System (INIS)

    Haakenaasen, R.; Vestergaard Hau, L.; Golovchenko, J.A.; Palathingal, J.C.; Peng, J.P.; Asoka-Kumar, P.; Lynn, K.G.

    1995-01-01

    A high resolution angular study of positrons transmitted through a thin single crystal of Si clearly reveals a detailed fine structure due to strong quantum channeling effects. The beam transmitted in the forward direction displays many features associated with dynamical diffraction effects and long coherence lengths. Calculations are presented showing that in flight annihilation of channeled positrons can serve as a solid state probe of electron and spin densities in thin crystals

  16. Crystallization of P-type ATPases by the High Lipid-Detergent (HiLiDe) Method

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Wang, Kaituo; Liu, Xiangyu

    2016-01-01

    Determining structures of membrane proteins remains a significant challenge. A technique utilizing high lipid-detergent concentrations ("HiLiDe") circumvents the major bottlenecks of current membrane protein crystallization methods. During HiLiDe, the protein-lipid-detergent ratio is varied in a ...... crystallization techniques. The method has been applied with particular success to P-type ATPases....

  17. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    Science.gov (United States)

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  18. Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal

    International Nuclear Information System (INIS)

    Bandiera, L.; Mazzolari, A.; Bagli, E.; Germogli, G.; Guidi, V.; Sytov, A.; Kirillin, I.V.; Shul'ga, N.F.; Berra, A.; Lietti, D.; Prest, M.; De Salvador, D.; Vallazza, E.

    2016-01-01

    An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We identified a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We introduce the idea of using a short bent crystal, aligned with one of its main axis to the beam direction, as a beam steerer or a beam splitter with adjustable intensity in the field of particle accelerators. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels. (orig.)

  19. Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, L.; Mazzolari, A.; Bagli, E.; Germogli, G.; Guidi, V. [Universita di Ferrara, Dipartimento di Fisica, Ferrara (Italy); INFN, Ferrara (Italy); Sytov, A. [Universita di Ferrara, Dipartimento di Fisica, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Kirillin, I.V. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Akhiezer Institute for Theoretical Physics, Kharkov (Ukraine); Shul' ga, N.F. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Akhiezer Institute for Theoretical Physics, Kharkov (Ukraine); V.N. Karazin Kharkov National University, Kharkov (Ukraine); Berra, A.; Lietti, D.; Prest, M. [Universita dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); De Salvador, D. [INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); Universita di Padova, Dipartimento di Fisica, Padua (Italy); Vallazza, E. [INFN Sezione di Trieste, Trieste (Italy)

    2016-02-15

    An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We identified a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We introduce the idea of using a short bent crystal, aligned with one of its main axis to the beam direction, as a beam steerer or a beam splitter with adjustable intensity in the field of particle accelerators. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels. (orig.)

  20. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  1. Angular distributions of relativistic electrons under channeling in half-wavelength crystal and corresponding radiation

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Bagrov, V.G.; Bogdanov, O.V.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2015-01-01

    New experiments on channeling of 255 MeV electrons in a half-wavelength crystals (HWC) were performed at SAGA Light Source facilities. The simulations of trajectories for (2 2 0) and (1 1 1) planar channeling in Si were performed using the computer code BCM-1.0. Comparison of experimental and theoretical results shows a good agreement. The results of calculations of spectral distribution of radiation in forward direction (θ = 0°) from 255 MeV electrons at (2 2 0) channeling in HWC silicon are presented. Qualitative comparison with radiation spectrum from an electron moving in an arc is performed

  2. The crystal structure of a new ternary antimonide: TmCu4-xSb2 (x 1.065)

    International Nuclear Information System (INIS)

    Fedyna, L.O.; Bodak, O.I.; Fedorchuk, A.O.; Tokaychuk, Ya.O.

    2005-01-01

    The crystal structure of the new ternary compound TmCu 4-x Sb 2 (x 1.065) was determined by direct methods from X-ray powder data (diffractometer DRON-3M, Cu Kα-radiation). It crystallizes with the orthorhombic structure type ErFe 4 Ge 2 (low-temperature modification) and is the first representative of this structure type among known antimonides: space group Pnnm, Pearson code oP14-2.13, a = 7.00565(6) A, b = 7.83582(6) A, c = 4.25051(3) A, Z = 2. Investigated structure is an orthorhombically deformed derivative of the ZrFe 4 Si 2 structure type

  3. Deformation bands and dislocation structures of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation

    International Nuclear Information System (INIS)

    Li, Y.; Li, S.X.; Li, G.Y.

    2004-01-01

    The features of surface morphology and dislocation structure of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation at a constant plastic shear strain amplitude of 2x10 -3 were studied using optical microscope (OP) and electron channelling contrast imaging (ECCI) in the scanning electron microscope (SEM). Experimental results show that there are two sets of the secondary type of deformation band (DBII) formed in the specimen. The geometry relationship of the two sets of deformation bands (DBs) and slip band (SB) are given. The habit planes of DBIIs are close to (1-bar 0 1) and (1-bar 1 0) plane, respectively. The surface dislocation structures in the specimen including vein, irregular dislocation cells and dislocation walls were also observed. The typical dislocation structure in DBII is the dislocation walls

  4. Parallelization for X-ray crystal structural analysis program

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Tokyo (Japan); Minami, Masayuki; Yamamoto, Akiji

    1997-10-01

    In this report we study vectorization and parallelization for X-ray crystal structural analysis program. The target machine is NEC SX-4 which is a distributed/shared memory type vector parallel supercomputer. X-ray crystal structural analysis is surveyed, and a new multi-dimensional discrete Fourier transform method is proposed. The new method is designed to have a very long vector length, so that it enables to obtain the 12.0 times higher performance result that the original code. Besides the above-mentioned vectorization, the parallelization by micro-task functions on SX-4 reaches 13.7 times acceleration in the part of multi-dimensional discrete Fourier transform with 14 CPUs, and 3.0 times acceleration in the whole program. Totally 35.9 times acceleration to the original 1CPU scalar version is achieved with vectorization and parallelization on SX-4. (author)

  5. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  6. Moessbauer determination of magnetic structure of Fe/sub 3/BO/sub 6/ crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, P.P.; Labushkin, V.G.; Ovsepyan, A.K.; Sarkisov, Eh.R.; Smirnov, E.V.; Prokopov, A.R.; Seleznev, V.N.

    1984-10-01

    The magnetic structure of a Fe/sub 3/BO/sub 6/ crystal belonging to space group Dsub(2h)sup(16)(Psub(nma)) is determined by the Moessbauer ..gamma..-radiation diffraction. The bragg reflection (700) of Moessbauer 14.4 keV ..gamma..-quanta from the Fe/sub 3/BO/sub 6/ monocrystal has been studied experimentally. A high sensitivity of the interference of ..gamma..-quantum diffraction scattering on Fe nuclei being in crystallographically non-equivalent 8d- and 4s-positions to the type of magnetic ordering in the crystal is used for determination of the magnetic structure. Agreement of the experimental results with the theoretical calculations, conducted for types of magnetic ordering resolved by the symmetry of the crystal, permitted to reliably determine the magnetic structure of this compound. The results obtained confirm the data of neutrondiffraction studies on magnetic ordering in Fe/sub 3/BO/sub 6/. Advantages of the Moessbauer-diffraction study, as compared to the magnetic neutrondiffraction method, in particular, for investigation of crystals, in which the hyperfine magnetic fields on Fe nuclei have different values, are revealed and discussed in detail.

  7. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool

    2014-07-01

    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  8. Crystal structure of strontium dinickel iron orthophosphate

    Directory of Open Access Journals (Sweden)

    Said Ouaatta

    2015-10-01

    Full Text Available The title compound, SrNi2Fe(PO43, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2, Fe is on 4b (2/m, Ni and the other P atom are on 8g (2, one O atom is on 8h (m and the other on 8i (m. The three-dimensional framework of the crystal structure is built up by [PO4] tetrahedra, [FeO6] octahedra and [Ni2O10] dimers of edge-sharing octahedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octahedra ([Ni2O10] dimer linked to [PO4] tetrahedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetrahedra and FeO6 octahedra sharing apices. The layers are held together through vertices of [PO4] tetrahedra and [FeO6] octahedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms.

  9. Alignment structures in ferroelectric liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N.U

    1998-07-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S{sub C} phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes

  10. Alignment structures in ferroelectric liquid crystals

    International Nuclear Information System (INIS)

    Islam, N.U.

    1998-01-01

    Although for many years liquid crystals were of purely scientific interest, they have now become ubiquitous in everyday life. The use of the nematic liquid crystal phase in flat panel display applications has been the main factor in this popularity. However, with the advent of the SuperTwist Nematic (STN) device, the limits to which this phase could be exploited for display applications was perhaps reached. With the discovery by Clark et al. of the Surface Stabilised Ferroelectric Liquid Crystal (SSFLC) configuration, the possibility arose of using chiral smectic liquid crystals to create large area, passively addressed, fast switching, flat panel displays. Unfortunately, the structures that form within smectic liquid crystals, and the dynamics of the switching within these, are still not fully understood. In this thesis we address the former of these, making a detailed the study of the structures that form within tilted smectic liquid crystal devices. We present here the first complete theoretical and experimental study of various different ferroelectric liquid crystal materials, where we employed theoretical models based on a simple set of assumptions to understand the behaviour of a set of increasingly complex experimental systems. We started with the simplest of these, Freely Suspended Smectic Films (FSSFs) and then worked with progressively more realistic systems in the form of homeotropically, and later, homogeneously aligned liquid crystal cells. The equilibrium structures that form get particularly complex in the last case, taking the form of tilted and chevron layering structures. In each of these cases, the predictions of the modelling are compared with our experimental results. Further, we present here the first model of the chevron cusp that seeks to include the effects of biaxiality in the S C phase. We also present a model that seeks to analyse the stability of the chevron layering structure and its relationship with tilted layers. This includes an

  11. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  12. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  13. Syntheses, Crystal Structures and Thermal Behaviors of Two Supramolecular Salamo-Type Cobalt(II and Zinc(II Complexes

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-07-01

    Full Text Available This paper reports the syntheses of two new complexes, [Co(L1(H2O2] (1 and [{Zn(L2(μ-OAcZn(n-PrOH}2] (2, from asymmetric halogen-substituted Salamo-type ligands H2L1 and H3L2, respectively. Investigation of the crystal structure of complex 1 reveals that the complex includes one Co(II ion, one (L12− unit and two coordinated water molecules. Complex 1 shows slightly distorted octahedral coordination geometry, forming an infinite 2D supramolecular structure by intermolecular hydrogen bond and π–π stacking interactions. Complex 2 contains four Zn(IIions, two completely deprotonated (L23− moieties, two coordinated μ-OAc− ions and n-propanol molecules. The Zn(II ions in complex 2 display slightly distorted trigonal bipyramidal or square pyramidal geometries.

  14. Synthesis, crystal and band structures, and properties of a new supramolecular complex (Hg2As)2(CdI4)

    International Nuclear Information System (INIS)

    Zou Jianping; Wu Dongsheng; Huang Shuping; Zhu Jing; Guo Guocong; Huang Jinshun

    2007-01-01

    A new quaternary supramolecular complex (Hg 2 As) 2 (CdI 4 ) (1) has been prepared by the solid-state reaction and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 crystallizes in the space group P2 1 of the monoclinic system with two formula units in a cell: a=7.945(4), b=12.934(6), c=8.094(4) A, β=116.898 o (1), V=741.7(6) A 3 . The structure of 1 is characterized by a tridymite-like three-dimensional cationic framework, which is composed of mercury and arsenic atoms, with the channels being occupied by discrete CdI 4 2- tetrahedral guest-anions. The optical properties were investigated in terms of the diffuse reflectance and Fourier transform infrared spectra. The electronic band structure along with density of states (DOS) calculated by DFT method indicates that the present compound is a semiconductor with a direct band gap, and that the optical absorption is mainly originated from the charge transitions from I-5p and As-4p to Cd-5s and Hg-6s states. - Graphical abstract: A new quaternary supramolecular complex (Hg 2 As) 2 (CdI 4 ) (1) has been prepared by the solid-state reaction, and structurally characterized by single crystal X-ray diffraction analysis. The structure of 1 is characterized by a 3-D tridymite-like cationic framework with the channels being occupied by discrete CdI 4 2- tetrahedral guest-anions

  15. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  16. Oxygen trapped by rare earth tetrahedral clusters in Nd4FeOS6: Crystal structure, electronic structure, and magnetic properties

    International Nuclear Information System (INIS)

    Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud’ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.

    2015-01-01

    Single crystals of Nd 4 FeOS 6 were grown from an Fe–S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd 4 MnOSe 6 -type structure (P6 3 mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å 3 , Z=2), featuring parallel chains of face-sharing [FeS 6×1/2 ] 4− trigonal antiprisms and interlinked [Nd 4 OS 3 ] 4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd 4 clusters in the [Nd 4 OS 3 ] 4 + chains. Structural differences among Nd 4 MnOSe 6 -type Nd 4 FeOS 6 and the related La 3 CuSiS 7 − and Pr 8 CoGa 3 -type structures have been described. Magnetic susceptibility measurements on Nd 4 FeOS 6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions. - Graphical abstract: Trapping of oxygen in Nd 4 tetrahedral clusters results in the formation of the Nd 4 MnOSe 6 -type Nd 4 FeOS 6 , in contrast to the La 3 CuSiS 7 -type oxygen-free Nd 4 FeS 7 and related Pr 8 CoGa 3 -type structures. Complex magnetic frustration inhibits magnetic ordering at low temperature. - Highlights: • Single crystals of Nd 4 FeOS 6 were grown using self-flux method. • Oxygen was found trapped by Nd 4 tetrahedral clusters. • Comparison with two closely related structural types were discussed. • Magnetic measurements revealed antiferromagnetic (AFM) interaction. • VASP calculations confirmed strong magnetic frustration in AFM model

  17. Crystal structures of Er4Ni13C4 and UW4C4

    International Nuclear Information System (INIS)

    Khalili, M.M.; Bodak, O.I.; Marusin, E.P.; Pecharskaya, A.O.

    1990-01-01

    Crystal structures of Er 4 Ni 13 C 4 (1) (sp.gr. Cmmm, a=1.1975(4), b=1.1694(3), c=0.3856(1) nm, Z=2) and UW 4 C 4 (2) (sp.gr. P4/m, a=0.8328(8), c=0.31345(9) nm, Z=2), relating to new types are determined. Structural type (1) is a derivative of La 2 Ni 5 C 3 structure, structural type (2) is close to UCr 4 C 4 structure

  18. Soft component of channeled electron radiation in silicon crystals

    International Nuclear Information System (INIS)

    Vnukov, I.E.; Kalinin, B.N.; Kiryakov, A.A.; Naumenko, G.A.; Padalko, D.V.; Potylitsyn, A.P.

    2001-01-01

    Radiation spectrum and orientation dependences of photon yield with the energy much lower than characteristic radiation energy during channeling were measured using a crystal-diffraction spectrometer. For electron drop along axis radiation intensity in the spectral range 30 ≤ ω ≤ 360 keV exceeds by nearly an order the intensity of Bremsstrahlung. The shape of radiation spectrum does not coincide with Bremsstrahlung spectrum. Radiation intensity increases gradually with photons energy growth. Bremsstrahlung spectrum from a disoriented crystalline target is described in a satisfactory manner by the currently used theory with phenomenological account of the medium polarization [ru

  19. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    Science.gov (United States)

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  20. Fergusonite-type CeNbO{sub 4+δ}: Single crystal growth, symmetry revision and conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Ryan D. [Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP (United Kingdom); Pramana, Stevin S.; An, Tao; Wei, Fengxia; Kloc, Christian L. [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore); White, Andrew J.P. [Chemical Crystallography Laboratory, Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ (United Kingdom); Skinner, Stephen J. [Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP (United Kingdom); White, Timothy J. [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore); Baikie, Tom, E-mail: tbaikie@ntu.edu.sg [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore)

    2013-08-15

    Large fergusonite-type (ABO{sub 4}, A=Ce, B=Nb) oxide crystals, a prototype electrolyte composition for solid oxide fuel cells (SOFC), were prepared for the first time in a floating zone mirror furnace under air or argon atmospheres. While CeNbO{sub 4} grown in air contained CeNbO{sub 4.08} as a minor impurity that compromised structural analysis, the argon atmosphere yielded a single phase crystal of monoclinic CeNbO{sub 4}, as confirmed by selected area electron diffraction, powder and single crystal X-ray diffraction. The structure was determined in the standard space group setting C12/c1 (No. 15), rather than the commonly adopted I12/a1. AC impedance spectroscopy conducted under argon found that stoichiometric CeNbO{sub 4} single crystals showed lower conductivity compared to CeNbO{sub 4+δ} confirming interstitial oxygen can penetrate through fergusonite and is responsible for the higher conductivity associated with these oxides. - Graphical abstract: Large fergusonite-type CeNbO{sub 4} crystals were prepared for the first time in a floating zone mirror furnace. Crystal growth in an argon atmosphere yielded a single phase monoclinic CeNbO4, as confirmed by selected area electron diffraction, powder and single crystal X-ray diffraction. The structure was determined in the standard space group setting C12/c1 (No. 15), rather than the commonly adopted I12/a1. AC impedance spectroscopy found CeNbO{sub 4} single crystals showed lower conductivity compared to CeNbO{sub 4+δ} confirming interstitial oxygen can penetrate through fergusonite and is responsible for the higher conductivity associated with these oxides. Highlights: • Preparation of single crystals of CeNbO{sub 4} using a floating zone mirror furnace. • Correction to the crystal symmetry of the monoclinic form of CeNbO{sub 4}. • Report the conductivity of a single crystal of CeNbO{sub 4}.

  1. Study of crystal damage by ion implantation using micro RBS/channeling

    International Nuclear Information System (INIS)

    Grambole, D.; Herrmann, F.; Heera, V.; Meijer, J.

    2007-01-01

    The combination of microbeam implantation and in-situ micro RBS/channeling analysis in the Rossendorf nuclear microprobe facility enables crystal damage studies with high current densities not achievable in standard ion implantation experiments. Si(1 0 0) samples were implanted with 600 keV Si + ions and a fluence of 1 x 10 16 cm -2 . Using a beam spot of 200 μm x 200 μm current densities from 4 to 120 μA/cm 2 were obtained. The substrate temperature was varied between RT and 265 deg. C. The implanted regions were subsequently analysed by micro RBS/channeling with a 3 MeV He + beam having a spot size of 50 μm x 50 μm. Crystal damage up to amorphisation was observed in dependence on the substrate temperature. Above a critical temperature T C no amorphisation occurs. T C was determined for each series of samples implanted with the same ion current density j. It was found that the empirical Arrhenius relation j ∼ exp(-E a /kT C ), known from standard implantation experiments, is also valid at high current densities. The observed Arrhenius law can be derived from a model of epitaxial crystallisation stimulated by defect diffusion

  2. Multidirectional channeling analysis of epitaxial CdTe layers using an automatic RBS/channeling system

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.

    1993-12-31

    Rutherford Backscattering Spectrometry (RBS) is an ion beam analysis technique used in many fields. The high depth and mass resolution of RBS make this technique very useful in semiconductor material analysis [1]. The use of ion channeling in combination with RBS creates a powerful technique which can provide information about crystal quality and structure in addition to mass and depth resolution [2]. The presence of crystal defects such as interstitial atoms, dislocations or dislocation loops can be detected and profiled [3,4]. Semiconductor materials such as CdTe, HgTe and Hg+xCd{sub 1-x}Te generate considerable interest due to applications as infrared detectors in many technological areas. The present paper demonstrates how automatic RBS and multidirectional channeling analysis can be used to evaluate crystal quality and near surface defects. 6 refs., 1 fig.

  3. Multidirectional channeling analysis of epitaxial CdTe layers using an automatic RBS/channeling system

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S; Kenny, M J [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.

    1994-12-31

    Rutherford Backscattering Spectrometry (RBS) is an ion beam analysis technique used in many fields. The high depth and mass resolution of RBS make this technique very useful in semiconductor material analysis [1]. The use of ion channeling in combination with RBS creates a powerful technique which can provide information about crystal quality and structure in addition to mass and depth resolution [2]. The presence of crystal defects such as interstitial atoms, dislocations or dislocation loops can be detected and profiled [3,4]. Semiconductor materials such as CdTe, HgTe and Hg+xCd{sub 1-x}Te generate considerable interest due to applications as infrared detectors in many technological areas. The present paper demonstrates how automatic RBS and multidirectional channeling analysis can be used to evaluate crystal quality and near surface defects. 6 refs., 1 fig.

  4. Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures

    Directory of Open Access Journals (Sweden)

    Satoshi Iwamoto

    2016-05-01

    Full Text Available Three-dimensional photonic crystals (3D PhCs are a fascinating platform for manipulating photons and controlling their interactions with matter. One widely investigated structure is the layer-by-layer woodpile structure, which possesses a complete photonic bandgap. On the other hand, other types of 3D PhC structures also offer various possibilities for controlling light by utilizing the three dimensional nature of structures. In this article, we discuss our recent research into novel types of layer-by-layer structures, including the experimental demonstration of a 3D PhC nanocavity formed in a <110>-layered diamond structure and the realization of artificial optical activity in rotationally stacked woodpile structures.

  5. Electron ion interactions in crystal channels: Collisions in ultra-dense electron media

    International Nuclear Information System (INIS)

    Datz, S.; Dittner, P.F.; Gomez del Campo, J.; Krause, H.F.; Rosseel, T.M.; Vane, C.R.

    1990-01-01

    Dielectronic excitation of H-like S, Ca and Ti is shown to occur in the dense electron gas of a crystal channel. Cross sections for collisional ionization of the short lived excited states can then be determined. Ionic excitation can also be achieved by resonant coherent excitation in which case specific m states can be excited for further study. 12 refs., 8 figs

  6. Crystal and magnetic structure of TbFe{sub 0.25}Ge{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Gil, A., E-mail: a.gil@ajd.czest.pl [Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa (Poland); Hoser, A. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14-109 Berlin (Germany); Penc, B.; Szytuła, A. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland)

    2013-10-15

    The crystal and magnetic structure of polycrystalline TbFe{sub 0.25}Ge{sub 2} sample have been determined. X-ray and neutron diffraction studies indicate that this compound has the orthorhombic CeNiSi{sub 2}-type crystal structure (space group Cmcm). The magnetic ordering, based on the neutron diffraction data in low temperature, is described by two components: a collinear antiferromagnetic G-type and a cosine-wave modulated one. In the collinear G-type structure the Tb magnetic moment is equal to 3.81(5) µ{sub B} and it is parallel to the c-axis. The modulated structure is described by the propagation vector k=(0.460(8), 0, 0.305(1)), the Tb magnetic moment equals 7.75(8) µ{sub B,} lies in b–c and forms an angle 23(2)° with the c-axis. The collinear component decreases to zero at 22.6 K while the modulated one at 190.8 K. - Highlights: • We determine crystal and magnetic structure of TbFe{sub 0.25}Ge{sub 2} compound. • We compare the results with other TbT{sub x}Ge{sub 2} compounds. • We observe the complex magnetic structure in TbFe{sub 0.25}Ge{sub 2} with two components: collinear and cosine-wave modulated. • T (3d) element have got significant influence on the interactions in Tb sublattice.

  7. Refractive index sensor based on a 1D photonic crystal in a microfluidic channel

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Asger; Kutter, Jörg Peter

    2010-01-01

    A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental...

  8. Crystallization method employing microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Dwyer, F G; Vartuli, J C

    1992-12-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs.

  9. Crystallization method employing microwave radiation

    International Nuclear Information System (INIS)

    Chu, P.; Dwyer, F.G.; Vartuli, J.C.

    1992-01-01

    This invention relates to a method of crystallizing materials from aqueous crystallization media. Zeolite materials, both natural and synthetic, have been demonstrated in the past to have catalytic properties for various types of hydrocarbon conversion. Certain zeolitic materials are ordered, porous crystalline metallosilicates having a definite crystalline structure as determined by X-ray diffraction within which there are a number of smaller cavities which may be interconnected by a number of still smaller channels or pores. These cavities and pores are uniform in size within a specific zeolite material. Since the dimensions of these pores are such as to accept for adsorption molecules of certain dimensions while rejecting those of large dimensions, these materials have come to be known as molecular sieves and are utilized in a variety of ways to take advantage of these properties. (author). 3 tabs

  10. PIXE channeling for concentration and location measurements of Zn- and Cd-dopants in InP single crystals

    International Nuclear Information System (INIS)

    Vogt, J.; Krause, H.; Flagmeyer, R.; Otto, G.; Lux, M.

    1993-01-01

    We present results of the determination of Cd- and Zn-dopants in InP single crystals using the PIXE and RBS spectrometry at our 2 MeV Van de Graaff accelerator. The (100) oriented crystals were doped by thermodiffusion of Cd and Zn atoms. For concentration and localization measurements we used the ion-channeling technique and energy dispersive spectrometry of proton induced X-ray emission (PIXE). Angular scans of the K-lines of In, Cd and Zn were obtained. The strong In X-rays were attenuated by a rhodium foil in front of the low energy Ge detector. The PIXE-channeling results were compared with SIMS and Hall-effect measurements. (orig.)

  11. Design of a cryo-cooled artificial channel-cut crystal monochromator for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu [European XFEL GmbH, Hamburg, D-22761 (Germany); Shu, Deming, E-mail: shu@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  12. Phase-Type Models of Channel-Holding Times in Cellular Communication Systems

    DEFF Research Database (Denmark)

    Christensen, Thomas Kaare; Nielsen, Bo Friis; Iversen, Villy Bæk

    2004-01-01

    In this paper, we derive the distribution of the channel-holding time when both cell-residence and call-holding times are phase-type distributed. Furthermore, the distribution of the number of handovers, the conditional channel-holding time distributions, and the channel-holding time when cell re...... residence times are correlated are derived. All distributions are of phase type, making them very general and flexible. The channel-holding times are of importance in performance evaluation and simulation of cellular mobile communication systems.......In this paper, we derive the distribution of the channel-holding time when both cell-residence and call-holding times are phase-type distributed. Furthermore, the distribution of the number of handovers, the conditional channel-holding time distributions, and the channel-holding time when cell...

  13. Crystal structure and magnetic properties of Tb6FeSb2

    International Nuclear Information System (INIS)

    Cai Gemei; Zhang Jiliang; He Wei; Qin Pingli; Zeng Lingmin

    2006-01-01

    The crystal structure and magnetic properties of Tb 6 FeSb 2 has been investigated for the first time. The compound crystallizes in the hexagonal, space group P6-bar 2m (No. 189) with the Ho 6 FeSb 2 structure type and lattice parameters a=8.1942(5)A, c=4.1758(3)A, z=1 and D calc =8.564g/cm 3 . Its magnetic properties were measured between 85 and 420K. The Curie temperature T c =256K was obtained using the method of intersecting tangents, and the effective paramagnetic moment was μ eff =9.32μ B per Tb atom

  14. Crystal structures of the solid solutions Na3Zn0.912Cd0.088B5O10 and Na3Zn0.845Mg0.155B5O10

    Directory of Open Access Journals (Sweden)

    Xue-An Chen

    2017-11-01

    Full Text Available Two new pentaborates, trisodium zinc cadmium pentaborate, Na3Zn0.912Cd0.088B5O10, and trisodium zinc magnesium pentaborate, Na3Zn0.845Mg0.155B5O10, have been synthesized by high-temperature solution reactions at 1023 K. Their crystal structures were determined by single-crystal X-ray diffraction. Both solid solutions crystallize in the orthorhombic form of the parent compound Na3ZnB5O10 (space group type Pbca, Z = 8 and contain the double ring [B5O10]5− anion composed of one BO4 tetrahedron and four BO3 triangles as the basic structural motif. The anions are bridged by tetrahedrally coordinated and occupationally disordered M2+ (M = Zn/Cd, Zn/Mg cations via common O atoms to form [MB5O10]n3n− layers. The intralayer intersecting channels and the interlayer voids are occupied by Na+ cations to balance the charge.

  15. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  16. The solid-state structures of organic salts formed by calix[4]arene dihydroxyphosphonic acid with nucleic bases cations: adeninium, cytosinium, guaninium and uracilium

    KAUST Repository

    Shkurenko, Aleksander

    2018-02-19

    Calix[4]arene dihydroxyphosphonic acid has been demonstrated to possess an interesting range of biological properties, including atypical anti-cancer activity. The robustness of calix[4]arene dihydroxyphosphonic acid and its ubiquitous dimeric motif offers perspectives for pre-defined solid state complexation with small molecules. In the current article we describe co-crystals (organic salts) of calix[4]arene dihydroxyphosphonic acid with four nucleic base cations: adeninium, cytosinium, guaninium and uracilium. A number of characteristic interactions between the components in the four co-crystals are pointed out also using the Hirshfeld surface analysis. All the four co-crystals are based on layers of calix[4]arene dimers, alternating with layers of nucleic acid molecules. Two of the reported crystal structures (cytosinium and guaninium) are 1D channel-type structures, while the two others (adeninium and uracilium) represent 2D channel-type structures. In three out of four reported structures, interactions between the cations of nucleic bases are present generating 1D chains of cations. A constant motif is that the nucleic base is present in a type of cavity formed by one aromatic ring and a phosphonic acid moiety.

  17. Crystal structure and thermal behavior of KB3O6

    International Nuclear Information System (INIS)

    Bubnova, R.S.; Fundamenskij, V.S.; Filatov, S.K.; Polyakova, I.G.

    2004-01-01

    The structure of potassium triborate prepared in metastable state by crystallization from melt at ∼ 800 deg C was studied by the method of X-ray diffraction analysis. It was ascertained that KB 3 O 6 belongs to monoclinic crystal system, space group P2 1 /c, a = 9.319(1), b = 6.648(1), c = 21.094(2) A, β = 94.38(1) deg, Z = 12. The compound is referred to a new structural type. Anion of the structure is a single boron-oxygen frame formed by three independent rigid triborate rings of [B 3 O 5 ] - , each of them consisting of two BO 3 triangles and BO 4 tetrahedron. Phase transformations during KB 3 O 6 heating up to 800 deg C, as well as thermal expansion in the range of 20-650 deg C, were studied [ru

  18. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  19. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  20. Lattice location studies of deuterium in Pdsub(0.8)Ausub(0.2) and Ta crystals by ion channeling

    International Nuclear Information System (INIS)

    Takahashi, J.; Yamaguchi, S.; Koiwa, M.; Fujino, Y.; Yoshinari, O.; Hirabayashi, M.

    1978-01-01

    The channelling of 300 to 400 KeV deuterons combined with the D(d,p)T reaction has been used to study the lattice location of deuterium in a fcc crystal of (Pdsub(0.8)Ausub(0.2))Dsub(0.04) and a bcc crystal of TaDsub(0.10). The channelling angular distributions are measured for , , axial and brace 100 brace, brace 110 brace, brace 111 brace planar directions. It is concluded that deuterium in Pdsub(0.8)Ausub(0.2) occupies the octahedral interstice of the fcc lattice, while that in Ta occupies the tetrahedral interstice of the bcc lattice. (author)

  1. Morphological Transition in the Cellular Structure of Single Crystals of Nickel-Tungsten Alloys near the Congruent Melting Point

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Ladygin, A.N.; Sverdlov, V.Ja.; Zhemanyuk, P.D.; Klochikhin, V.V.

    2005-01-01

    The structure and microhardness of single crystals of nickel-tungsten alloys containing 25-36 wt % W are investigated. The temperature gradient at the crystallization front and the velocity of the crystallization front are the variable parameters of directional crystallization. It is found that, when the velocity of the crystallization front is 4 mm/min, the morphology of the cellular structure of the single crystals grown from nickel-tungsten alloys changes from square cells to hexagonal cells at a tungsten content of greater than or equal to 31 wt %. As the velocity of the crystallization front increases to 10 mm/min, no morphological transition occurs. It is shown that impurities play an important role in the formation of a cellular structure with cells of different types

  2. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  3. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  4. Crystal structure of the Csm3-Csm4 subcomplex in the type III-A CRISPR-Cas interference complex.

    Science.gov (United States)

    Numata, Tomoyuki; Inanaga, Hideko; Sato, Chikara; Osawa, Takuo

    2015-01-30

    Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci play a pivotal role in the prokaryotic host defense system against invading genetic materials. The CRISPR loci are transcribed to produce CRISPR RNAs (crRNAs), which form interference complexes with CRISPR-associated (Cas) proteins to target the invading nucleic acid for degradation. The interference complex of the type III-A CRISPR-Cas system is composed of five Cas proteins (Csm1-Csm5) and a crRNA, and targets invading DNA. Here, we show that the Csm1, Csm3, and Csm4 proteins from Methanocaldococcus jannaschii form a stable subcomplex. We also report the crystal structure of the M. jannaschii Csm3-Csm4 subcomplex at 3.1Å resolution. The complex structure revealed the presence of a basic concave surface around their interface, suggesting the RNA and/or DNA binding ability of the complex. A gel retardation analysis showed that the Csm3-Csm4 complex binds single-stranded RNA in a non-sequence-specific manner. Csm4 structurally resembles Cmr3, a component of the type III-B CRISPR-Cas interference complex. Based on bioinformatics, we constructed a model structure of the Csm1-Csm4-Csm3 ternary complex, which provides insights into its role in the Csm interference complex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  6. 5,6-EET potently inhibits T-type calcium channels

    DEFF Research Database (Denmark)

    Cazade, M.; Bidaud, I.; Hansen, Pernille B. Lærkegaard

    2014-01-01

    T-type calcium channels (T-channels) are important actors in neuronal pacemaking, in heart rhythm, and in the control of the vascular tone. T-channels are regulated by several endogenous lipids including the primary eicosanoid arachidonic acid (AA), which display an important role in vasodilation...

  7. Stac gets the skeletal L-type calcium channel unstuck

    Czech Academy of Sciences Publication Activity Database

    Weiss, Norbert

    2015-01-01

    Roč. 34, č. 2 (2015), s. 101-103 ISSN 0231-5882 Institutional support: RVO:61388963 Keywords : calcium channel * L-type calcium channel * Ca(v)1.1 channel * Stac adaptor protein * excitation- contraction coupling * trafficking Subject RIV: CE - Biochemistry Impact factor: 0.892, year: 2015

  8. Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2−x)TiO5 series

    International Nuclear Information System (INIS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Reyes, Massey de los; Sharma, Neeraj; Ling, Christopher D.; Gault, Baptiste; Smith, Katherine L.; Avdeev, Maxim; Cairney, Julie M.

    2014-01-01

    A series of single phase compounds with nominal stoichiometry Sm (x) Yb (2−x) TiO 5 (x=2, 1.4, 1, 0.6, and 0) have been successfully fabricated to generate a range of crystal structures covering the most common polymorphs previously discovered in the Ln 2 TiO 5 series (Ln=lanthanides and yttrium). Four of the five samples have not been previously fabricated in bulk, single phase form so their crystal structures are refined and detailed using powder synchrotron and single crystal x-ray diffraction, neutron diffraction and transmission electron microscopy. Based on the phase information from diffraction data, there are four crystal structure types in this series; orthorhombic Pnma, hexagonal P6 3 /mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The cubic materials show modulated structures with variation between long and short range ordering and the variety of diffraction techniques were used to describe these complex crystal structure types. - Graphical abstract: A high resolution image of the compound Sm 0.6 Yb 1.4 TiO 5 showing contrast from lattice fringes and the corresponding fast Fourier transform (FFT) of the HREM image with pyrochlore related diffraction spots marked “P” and fluorite marked “F”. The crystal is oriented down the [1 1 0] zone axis based on the Fd-3m structure. The ideal crystal structure (no vacancies) of the cubic, pyrochlore-like (Sm 0.6 Yb 1.4 TiO 5 ). - Highlights: • First fabrication of bulk single-phase material with stoichiometry Sm 2 TiO 5 . • Systematic study of crystal structure types within Ln 2 TiO 5 series (Ln=lanthanides). • A novel technique using IFFT of HREM images to study cubic structures

  9. Quantum theory of scattering of channeled electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Goloviznin, V.V.

    1982-01-01

    The quantum theory of elastic scattering of electrons and positrons on plane or axial channeling in a thin crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by atoms of the plane (chain) is investigated. It is shown that incoherent scattering which leads to dechanneling cannot be reduced to scattering by an isolated atom. Allowance for ordered arrangement of the atoms in the plane (chain) of the crystal leads to suppression of the motion levels. It is also shown that on movement of a particle along the plane in directions strongly differing from those of the principal axes, the scattering is incoherent and is determined by thermal vibrations of the nuclei. As the direction of the particle momentum approaches those of the principal axes, the role of coherent scattering without recoil by the crystal lattice nuclei increases and may become dicisive. The probability of large- angle scattering increases relatively in this case. Under certain conditions coherent scattering may become resonant [ru

  10. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A.; McGhie, Emma J.; Sayer, Christopher; Davenport, Colin F. [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Lau, Peter C. [National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 (Canada); Hasegawa, Yoshie; Iwaki, Hiroaki [Kansai University (Japan); Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T. [Greifswald University, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany); Bourenkov, Gleb [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg (Germany); Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom)

    2015-10-31

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.

  11. The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase

    International Nuclear Information System (INIS)

    Isupov, Michail N.; Schröder, Ewald; Gibson, Robert P.; Beecher, Jean; Donadio, Giuliana; Saneei, Vahid; Dcunha, Stephlina A.; McGhie, Emma J.; Sayer, Christopher; Davenport, Colin F.; Lau, Peter C.; Hasegawa, Yoshie; Iwaki, Hiroaki; Kadow, Maria; Balke, Kathleen; Bornscheuer, Uwe T.; Bourenkov, Gleb; Littlechild, Jennifer A.

    2015-01-01

    The first crystal structure of a type II Baeyer–Villiger monooxygenase reveals a different ring orientation of its FMN cofactor compared with other related bacterial luciferase-family enzymes. The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer–Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily

  12. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    Science.gov (United States)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  13. Ordered distribution of I and Cl in the low-temperature crystal structure of mutnovskite, Pb4As2S6ICl: An X-ray single-crystal study

    International Nuclear Information System (INIS)

    Bindi, Luca; Garavelli, Anna; Pinto, Daniela; Pratesi, Giovanni; Vurro, Filippo

    2008-01-01

    To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb 2 AsS 3 (I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm2 1 , with a=11.5394(9) A, b=6.6732(5) A, c=9.3454(7) A, V=719.64(9) A 3 and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicating that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [F o >4σ(F o )] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition Pnma→Pnm2 1 are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively. - Graphical abstract: In the crystal structure of mutnovskite at 110 K the two halogens I and Cl are ordered into two specific sites and only slight changes in the coordination environment around Pb atoms occur during the phase transition Pnma→Pnm2 1 from the RT-structure to the LT-structure. Two kinds of layers alternating along a are present in the LT-structure: Layer I contains Cl atoms and [001] columns of Pb1 and Pb4 prisms, layer II contains I atoms and [001] columns of Pb2 and Pb3 prisms

  14. Synthesis and crystal structure of acid indium phosphite In(H3PO3)3

    International Nuclear Information System (INIS)

    Zakharova, B.S.; Chudinova, N.N.; Ilyhkhin, A.B.

    1996-01-01

    A group of isostructural acid phosphites of trivalent metals M(H 2 PO 3 ) 3 , where M 3 =V, Fe, Ga, In, was synthesized. Crystal structure of In(H 2 PO 3 ) 3 was determined. The compound crystallizes in hexagonal syngony, a = 8.414(2), c = 7.069(2) A, V = 433.3(2) A 3 , Z = 2, sp.gr. P6 3 . In (H 2 PO 3 ) 3 structure is of frame type. 9 refs.; 3 tabs

  15. Energetics and crystal chemistry of Ruddlesden-Popper type structures in high T(sub c) ceramic superconductors

    Science.gov (United States)

    Dwivedi, Anurag; Cormack, A. N.

    1990-01-01

    The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is seen in these oxides which is similar in many respects to what is seen in the system Sr-Ti-O. However, it was observed that there are some significant differences, for example the rocksalt and perovskite blocks in new superconducting compounds are not necessarily electrically, unlike in Sr-Ti-O systems. This will certainly render an additional coulombic bonding energy between two different types of blocks and may well lead to significant differences in their structural chemistry. In the higher order members of the various homologous series, additional Cu-O planes are inserted in the perovskite blocks. In order for the unit cell to electrically neutral the net positive charge on rocksalt block (which remains constant throughout the homologous series) should be balanced by an equal negative charge on perovskite block. It, thus becomes necessary to create oxygen vacancies in the basic perovskite structure, when width of the perovskite slab changes on addition of extra Cu-O planes. Results of atomistic simulations suggest that these missing oxygen ions allow the Cu-O planes to buckle in these compounds. This is also supported by the absence of buckling in the first member of Bi-containing compounds in which there are no missing oxygen ions and the Sr-Ti-O series of compounds. Additional results are presented on the phase stability of polytypoid structures in these crystal chemically complex systems. The studies will focus on the determination of the location of Cu(3+) in the structures of higher order members of the La-Cu-O system and whether Cu(3+) ions or oxygen vacancies are energetically more favorable charge compensating mechanism.

  16. What makes a crystal structure report valid?

    NARCIS (Netherlands)

    Spek, Anthony L.|info:eu-repo/dai/nl/156517566

    2018-01-01

    Single crystal X-ray crystallography has developed into a unique, highly automated and accessible tool to obtain detailed information on molecular structures. Proper archival makes that referees, readers and users of the results of reported crystal structures no longer need to depend solely on the

  17. Crystal structure of a novel cerium indide Ce{sub 6}Pt{sub 11}In{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Stepien-Damm, J.; Bukowski, Z.; Zaremba, V.I.; Pikul, A.P.; Kaczorowski, D

    2004-10-06

    The crystal structure of a new intermetallic compound Ce{sub 6}Pt{sub 11}In{sub 14} has been determined from single crystal X-ray data and was refined by a full-matrix least-squares method down to R{sub 1}=0.0497 for 1215 structure factors and 96 parameters. The unit cell is monoclinic, space group C2/m, Z=2 with the lattice parameters: a=22.729(5) A, b=4.3960(10) A, c=14.780(3) A and {beta}=118.35(3) deg. . It represents a new type of crystal structure of intermetallic compounds.

  18. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURES ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    ABSTRACT. Reaction of [VO(acac)2] (acac = acetylacetonate) with ... Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to ..... Molecular structure of complex (1) at 30% probability displacement. Figure 4.

  19. Crystal structure of the new ternary thorium indide Th{sub 4}Pd{sub 10}In{sub 21}

    Energy Technology Data Exchange (ETDEWEB)

    Hlukhyy, V.; Zaremba, V.; Stepien-Damm, J.; Troc, R

    2003-03-24

    The structure of Th{sub 4}Pd{sub 10}In{sub 21} was refined from single crystal X-ray diffraction data. The compound crystallizes in the monoclinic system, space group C2/m, mC70; with lattice parameters a=23.024(5) A, b=4.512(1) A, c=17.224(3) A, {beta}=124.57(3) deg. The crystal structure was refined using the SHELXL-97 program (R{sub 1}=0.0477, 2561 F{sup 2} values for 108 variables). This compound adopts the Ho{sub 4}Ni{sub 10}Ga{sub 21}-type structure. The crystal chemistry and relationships of this phase to other ones are briefly discussed.

  20. Canali-type channels on Venus - Some genetic constraints

    Science.gov (United States)

    Komatsu, Goro; Kargel, Jeffrey S.; Baker, Victor R.

    1992-01-01

    Canali-type channels on Venus are unique because of their great lengths (up to 6800 km) and nearly constant channel cross sectional shapes along their paths. A simple model incorporating channel flow and radiative cooling suggests that common terrestrial-type tholeiite lava cannot sustain a superheated and turbulent state for the long distances required for thermal erosion of canali within allowable discharge rates. If canali formed mainly by constructional processes, laminar tholeiitic flow of relatively high, sustained discharge rates might travel the observed distances, but the absence of levees would need to be explained. An exotic low temperature, low viscosity lava like carbonatite or sulfur seems to be required for the erosional genesis of canali.

  1. New halides of neodymium and their crystal structures

    International Nuclear Information System (INIS)

    Loechner, U.

    1980-01-01

    The crystal structures of the peritectic phases NdClsub(2.27) (t-phase) and NdClsub(2.37) (rh-phase) were determined. The structure of the rh-phase was solved, from the t-phase only the elementary cell could be determined because no single crystals of sufficient quality were obtained. Jutting out feature of the rh-phase which has to be formulated as Nd 14 Cl 32 O is a polyeder cluster of 6 quadratic antiprisms the inner cubo octahedric cavity of which is occupied by an oxygen atom. The linkage of these polyeder cluster ensues only under each other along the triple axis of the rhomboedric system over 3 upper and 3 lower common borders each. Therewith for the first time a superlattice of the fluorite-type was found in which this unit exclusively occurs. The type of linkage of polyeder clusters causes the occurrence of an exceptional polyeder around the twovalent Nd ions which can be looked at as a zwitter polyeder of icosahedron and cube and therefore coordinates tenfold the twovalent neodymium. The strict order of chemically and crystallografically clearly differentiated cations is expressed by a hexagonal-rhomboedric superstructure of the fluorite-aristotyp with a doubled c-axis. The phase diagram of the system Nd-NdBr 3 was determined and a structure proposition was worked out for the first Vernier phase in there with n=4 of the series Lnsub(n)Xsub(2n+1). (SPI)

  2. The crystal structure of human GDP-L-fucose synthase.

    Science.gov (United States)

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  3. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  4. Investigation on structural distortions in NBCsub(x)-single crystals by means of temperature dependent channeling measurements

    International Nuclear Information System (INIS)

    Kaufmann, R.

    1981-08-01

    Investigations using channeling-experiments were performed on the magnitude of the static displacements of the niobium and the carbon atoms around C-vacancies in NbCsub(x)-single crystals (x = 0.82-0.98). Rutherford backscattering with 2 MeV He + -particles and the 12 C(d,p) 13 C-nuclear reaction with 1.27 MeV deuterons were used for the determination of the interaction yields from Nb and C, respectively. As a function of temperature the half widths at half maximum psisub(1/2) of the angular scans for Nb clearly increased with decreasing temperature in the range from 295 K to 78 K and then remained nearly constant down to 4 K. As a function of C-vacancy concentration in the range x = 0.98-0.90 psisub(1/2) also clearly decreased and then remained approximately constant in the range of x = 0.90-0.82. The C-yield did not depend on the C-concentration. The results of the channeling experiments were interpreted by Monte-Carlo-simulation calculations. A linear increase of the mean static three-dimensional displacements of the Nb-atoms form 0.025 Angstroem to 0.10 Angstroem was found in the concentration range of x = 0.98-0.90 and then the values remained nearly constant in the range of 0.90-0.82. The static displacements of the C-atoms lay below the detection limit of 0.025 Angstroem. The strain field around a vacancy for low vacancy concentrations (x = 0.98-0.96) was calculated employing the Kanzaki-method. (orig./GSCH) [de

  5. First principles investigation of the structure of a bacteriochlorophyll crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)]|[Centre d`Etudes Saclay, Gif-sur-Yvette (France); Hutter, J.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  6. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  7. Raman effect in ferroelectric Cd2Nb2O7 and in other crystals with pyrochlorine-type structure

    International Nuclear Information System (INIS)

    Pisarev, R.V.; Sinij, I.G.; Kuz'minov, E.G.; Myl'nikova, I.E.

    1976-01-01

    Vibrational structure of cadmium and lead pyroniobates and a number of other crystals with a pyrochlore structure has been investigated by Raman scattering. The scattering has been studied using a double monochromator, HeNe laser, and a photons counter. In the Raman spectrum of cadmium and lead pyroniobates three frequency band1 can be distinguished. In the spectrum of rhombohedral lead pyroniobate the band structure in resolved much better than in the spectrum of cubic cadmium pyroniobate. The spectrum of lead pyroniobate crystals doped with magnesium and zinc ions has a medium (in the sense of complexity) structure, because big lead ions deteriorate the pyrochlore structure but doping of lead pyroniobate with Mg 2+ and Zn 2+ ions improves it. More than six bands in the Raman spectrum is associated with the presence of impurities in cubic cadmium pyroniobate that deteriorate its cubic structure. The decrease of temperature leads to a big change of the Cd 2 Nb 2 O 7 spectrum. However, the spectrum of Pb 2 Nb 2 O 7 -Zn cubic crystal measured ar temperatures below 100 deg K remais unchanged. The chages of the Cd 2 Nb 2 O 7 spectrum are associated with phase transitions at 200 and 85 K and also with ferroelectric transition at 185 K

  8. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N'-(2-hydroxy-4- ... Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates .... Molecular structure of the complex at 30% probability displacement.

  9. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  10. Structural peculiarities and point defects of bulk-ZnO single crystals

    International Nuclear Information System (INIS)

    Kaurova, I.A.; Kuz’micheva, G.M.; Rybakov, V.B.; Cousson, A.; Gayvoronsky, V.Ya.

    2014-01-01

    Highlights: • ZnO single crystals of different color were grown by the hydrothermal method. • Point defects in ZnO have been firstly investigated by neutron diffraction. • Presence of additional reflections caused by kinetic growth effects was revealed. • The relationship between the color and zinc and oxygen vacancies was found. • Photoinduced variation of transmittance versus the CW laser intensity was analyzed. - Abstract: ZnO single crystals are related to promising direct wide band gap semiconductor materials belonging to the A II B VI type of compounds with wurtzite structure. “Unintentional” n-type conductivity in ZnO may be caused by zinc and oxygen vacancies, and interstitial zinc atoms. To date, the comprehensive structural investigation and analysis of point defects in ZnO is absent in literature. Green, light green and almost colorless ZnO single crystals grown by the hydrothermal method in concentrated alkali solutions 4M(KOH) + 1M(LiOH) + 0.1M(NH 4 OH) on monohedral seeds [0 0 0 1] at crystallization temperatures in the range of 330–350 °C and pressures in the range of 30–50 MPa have been firstly investigated by neutron diffraction. It was revealed the presence of additional reflections (∼12–∼16%) for all the crystals caused by kinetic growth effects that give grounds to assign them to the space group P3 rather than to P6 3 mc. Analysis of the refined compositions together with the color of ZnO crystals does not rule out the relationship between the color and vacancies in the zinc and oxygen positions whose concentration decreases with the discoloration of the samples. The analysis of the photoinduced variation of the total and on-axis transmittance versus the CW laser intensity showed that the colored samples have profound deep defects related to oxygen vacancies

  11. Crystal chemical characterization of mullite-type aluminum borate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de [Kristallographie, FB05, Klagenfurter Straße / GEO, Universität Bremen, D-28359 Bremen (Germany); Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße / NW2, Universität Bremen, D-28359 Bremen (Germany); Hooper, T.J.N. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Zhao, H.; Kolb, U. [Institut für Anorganische Chemie und Analytische Chemie, Jakob-Welder-WegJakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, D-55128 Mainz (Germany); Murshed, M.M. [Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße / NW2, Universität Bremen, D-28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstraße 1, Universität Bremen, D-28359 Bremen (Germany); Fischer, M.; Lührs, H. [Kristallographie, FB05, Klagenfurter Straße / GEO, Universität Bremen, D-28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstraße 1, Universität Bremen, D-28359 Bremen (Germany); Nénert, G. [Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Kudějová, P.; Senyshyn, A. [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); and others

    2017-03-15

    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The {sup 11}B NMR data show a small amount of BO{sub 4} species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al{sub 5−x}B{sub 1+x}O{sub 9} where Al is substituted by B in the range of 1–3%. The structure of B-rich Al{sub 4}B{sub 2}O{sub 9} (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction. - Graphical abstract: Projections of three-dimensional electron diffraction space of Al{sub 4}B{sub 2}O{sub 9} along the main directions. - Highlights: • The crystal structure of Al{sub 4}B{sub 2}O{sub 9} was re-evaluated. • Structural details vary among different crystals and inside Al{sub 4}B{sub 2}O{sub 9} crystallites. • Diffuse scattering indicate a probable disordered configuration of O5 and O10. • A solid solution series for Al{sub 5−x}B{sub x}O{sub 9} is indicated by PGAA and NMR spectroscopy. • The presence of BO{sub 4} groups is confirmed by {sup 11}B MAS NMR spectroscopy for Al{sub 5−x}B{sub 1+x}O{sub 9}.

  12. T-type Ca(2+) channels and Autoregulation of Local Blood Flow

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Nielsen, Morten Schak; Salomonsson, Max

    2017-01-01

    L-type voltage gated Ca(2+) channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca(2+) channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pre...

  13. Resonant Coulomb excitation of atomic nuclei propagating through a crystal in the channeling mode

    International Nuclear Information System (INIS)

    Stepanov, A.V.

    1996-01-01

    The Coulomb-excitation total cross section and the distribution of decay products originating from a resonant state of a nucleus interacting with a crystal lattice has been calculated for the case of a single inelastic collision (with respect to internal degrees of freedom in a nucleus). These observables have been expressed in terms of time-dependent correlators which describe thermal oscillations of lattice nuclei and the motion of the center of mass of a nucleus propagating across a crystal target in the channelling mode. An expression generalizing the spectrum of equivalent photons calculated by the Weizsaecker-Williams method is given

  14. Research on the Band Gap Characteristics of Two-Dimensional Phononic Crystals Microcavity with Local Resonant Structure

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2015-01-01

    Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.

  15. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  16. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  17. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  18. Single-channel L-type Ca2+ currents in chicken embryo semicircular canal type I and type II hair cells.

    Science.gov (United States)

    Zampini, Valeria; Valli, Paolo; Zucca, Giampiero; Masetto, Sergio

    2006-08-01

    Few data are available concerning single Ca channel properties in inner ear hair cells and particularly none in vestibular type I hair cells. By using the cell-attached configuration of the patch-clamp technique in combination with the semicircular canal crista slice preparation, we determined the elementary properties of voltage-dependent Ca channels in chicken embryo type I and type II hair cells. The pipette solutions included Bay K 8644. With 70 mM Ba(2+) in the patch pipette, Ca channel activity appeared as very brief openings at -60 mV. Ca channel properties were found to be similar in type I and type II hair cells; therefore data were pooled. The mean inward current amplitude was -1.3 +/- 0.1 (SD) pA at - 30 mV (n = 16). The average slope conductance was 21 pS (n = 20). With 5 mM Ba(2+) in the patch pipette, very brief openings were already detectable at -80 mV. The mean inward current amplitude was -0.7 +/- 0.2 pA at -40 mV (n = 9). The average slope conductance was 11 pS (n = 9). The mean open time and the open probability increased significantly with depolarization. Ca channel activity was still present and unaffected when omega-agatoxin IVA (2 microM) and omega-conotoxin GVIA (3.2 microM) were added to the pipette solution. Our results show that types I and II hair cells express L-type Ca channels with similar properties. Moreover, they suggest that in vivo Ca(2+) influx might occur at membrane voltages more negative than -60 mV.

  19. On the possibility of a quantum bremsstrahlung induced self-modulation of a relativistic beam channeling in crystals

    International Nuclear Information System (INIS)

    Vysotskij, V.I.; Vorontsov, V.I.; Kuz'min, R.N.

    1987-01-01

    Physical predictions and quantitative estimations of a new physical effect - the phenomenon of quantum bremsstrahlung induced selfmodulation of a fast beam channeling in the crystals are considered and carried out. The occurrence of induced self-modulation results from nonstationary interference of proper waves of a channeled particle in the range of mutual coherence and with account of difference of selective bremsstrahlung losses of these waves. The modulation frequency for superrelativistic particles is shown to lie within the range from soft X-ray to hard gamma range. It proceeds from the estimations that modulation at these frequencies is preserved within the limits of macroscopically large ranges after the crystal attaining several meters. The maximum frequency of modulation for nonrelativistic heavy particles (protons) corresponds to the optical range

  20. Near equilibrium dynamics and one-dimensional spatial—temporal structures of polar active liquid crystals

    International Nuclear Information System (INIS)

    Yang Xiao-Gang; Wang Qi; Forest, M. Gregory

    2014-01-01

    We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for one-dimensional (1D) spatial—temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial—temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating

  1. Synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yang; Zhuang, Yan; Guo, Sheng-Ping [Yangzhou Univ., Jiangsu (China). College of Chemistry and Chemical Engineering

    2017-03-01

    The synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5} are reported. It is synthesized by high-temperature solid-state reaction and crystallizes in the monoclinic space group P2{sub 1}/c (no. 14) with the unit cell parameters a=4.8860(5), b=7.5229(8), c=9.9587(10) Aa, and β=91.709(3) . Its crystal structure features a polyanion-type layer (GeBO{sub 5}){sup 3-} constructed by BO{sub 4} and GeO{sub 4} tetrahedra connected alternatingly. Eu{sup 3+} ions are located in cavities and are coordinated by eight O atoms. Various structures of the related compounds REMM'O{sub 5} (RE=rare earth metal; M=Si, Ge, and Sn; M'=B, Al, and Ga) are also discussed.

  2. Photonic crystals based on opals and inverse opals: synthesis and structural features

    International Nuclear Information System (INIS)

    Klimonsky, S O; Abramova, Vera V; Sinitskii, Alexander S; Tretyakov, Yuri D

    2011-01-01

    Methods of synthesis of photonic crystals based on opals and inverse opals are considered. Their structural features are discussed. Data on different types of structural defects and their influence on the optical properties of opaline materials are systematized. The possibilities of investigation of structural defects by optical spectroscopy, electron microscopy, microradian X-ray diffraction, laser diffraction and using an analysis of Kossel ring patterns are described. The bibliography includes 253 references.

  3. Single crystal structures of the new vanadates CuMgVO{sub 4} and AgMgVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yahia, Hamdi, E-mail: Hyahia@qf.org.qa [Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha (Qatar); Shikano, Masahiro, E-mail: shikano.masahiro@aist.go.jp [Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Essehli, Rachid; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha (Qatar)

    2016-08-01

    The new compounds CuMgVO{sub 4} and AgMgVO{sub 4} have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. CuMgVO{sub 4} crystallizes with Na{sub 2}CrO{sub 4}-type structure with space group Cmcm, a = 5.6932 (10), b = 8.7055 (15), c = 6.2789 (10) Å, V = 311.20 (9) Å{sup 3}, and Z = 4, whereas AgMgVO{sub 4} crystallizes in the maricite-type structure with space group Pnma, a = 9.4286 (14), b = 6.7465 (10), c = 5.3360 (8) Å, V = 339.42 (9) Å{sup 3}, and Z = 4. Both structures of CuMgVO{sub 4}, and AgMgVO{sub 4} contain MgO{sub 4} chains made up of edge-sharing MgO{sub 6} octahedra. In CuMgVO{sub 4} the MgO{sub 4} chains are interconnected through CuVO{sub 4} double chains made up of VO{sub 4} and CuO{sub 4} tetrahedra sharing corners and edges, however in AgMgVO{sub 4} the chains are interlinked by the VO{sub 4} and AgO{sub 4} tetrahedra sharing only corners. - Highlights: • We have been able to grow CuMgVO{sub 4} and AgMgVO{sub 4} single crystals. • We solved their crystal structures using single crystal data. • We compared the crystal structures of CuMgVO{sub 4} and AgMgVO{sub 4}.

  4. Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Weng, J; Kabaleeswaran, V; Li, H; Cao, Y; Bholse, R; Zhou, M

    2008-01-01

    The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structure of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.

  5. V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), the first quaternary metal-rich -boride adopting the Mo{sub 2}IrB{sub 2}-type structure: Synthesis, crystal and electronic structure and bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian; Fokwa, Boniface P.T. [Institute of Inorganic Chemistry, RWTH Aachen University (Germany)

    2013-02-15

    Polycrystalline samples and single crystals of the new metal-rich boride V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-ray diffraction and EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase adopts the Mo{sub 2}IrB{sub 2}-type structure (space group Pnnm, no. 58) with the lattice parameters a = 7.301(7) Aa, b = 9.388(9) Aa and c = 3.206(5) Aa. It is the first quaternary representative of Mo{sub 2}IrB{sub 2}-type structure. The structure contains zigzag B{sub 4}-fragments with boron-boron distances of 1.83-1.85 Aa. The electronic density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the zigzag B{sub 4}-fragment and two significantly different Ir-B interactions are observed in the new phase and the prototype Mo{sub 2}IrB{sub 2}. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus

    International Nuclear Information System (INIS)

    Levin, Elena J.; Elsen, Nathaniel L.; Seder, Kory D.; McCoy, Jason G.; Fox, Brian G.; Phillips Jr, George N.

    2008-01-01

    The X-ray crystal structure of a soluble Rieske ferredoxin from M. musculus was solved at 2.07 Å resolution, revealing an iron–sulfur cluster-binding domain with similar architecture to the Rieske-type domains of bacterial aromatic dioxygenases. The ferredoxin was also shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases. The 2.07 Å resolution X-ray crystal structure of a soluble Rieske-type ferredoxin from Mus musculus encoded by the gene Mm.266515 is reported. Although they are present as covalent domains in eukaryotic membrane oxidase complexes, soluble Rieske-type ferredoxins have not previously been observed in eukaryotes. The overall structure of the mouse Rieske-type ferredoxin is typical of this class of iron–sulfur proteins and consists of a larger partial β-barrel domain and a smaller domain containing Cys57, His59, Cys80 and His83 that binds the [2Fe–2S] cluster. The S atoms of the cluster are hydrogen-bonded by six backbone amide N atoms in a pattern typical of membrane-bound high-potential eukaryotic respiratory Rieske ferredoxins. However, phylogenetic analysis suggested that the mouse Rieske-type ferredoxin was more closely related to bacterial Rieske-type ferredoxins. Correspondingly, the structure revealed an extended loop most similar to that seen in Rieske-type ferredoxin subunits of bacterial aromatic dioxygenases, including the positioning of an aromatic side chain (Tyr85) between this loop and the [2Fe–2S] cluster. The mouse Rieske-type ferredoxin was shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases, although it was unable to serve as an electron donor for a bacterial monooxygenase complex. The human homolog of mouse Rieske-type ferredoxin was also cloned and purified. It behaved identically to mouse Rieske-type ferredoxin in all biochemical characterizations but did not crystallize. Based on its high sequence identity, the structure of the

  7. Metal-loaded pollucite-like aluminophosphates: dissymmetrisation of crystal structures and physical properties

    Science.gov (United States)

    Shvanskaya, L. V.; Yakubovich, O. V.; Koshelev, A. V.; Vasiliev, A. N.

    2018-02-01

    Two aluminophosphate analogues of the mineral pollucite with the general formula Cs2(M,Al)3P3O12 (where M = Cu or Mn) have been synthesized by high-temperature flux and structurally characterized using the single-crystal X-ray diffraction. Both samples crystallize in cubic I4132 space group, Z = 8, with a = 13.5911(5) and a = 13.8544(7) for Cu- and Mn-loaded phases, respectively. Their framework structures are based on the ANA-type topology and exhibit the partial ordering of the metal (M/Al) and phosphorus (P) cations over the tetrahedral sites. The regular changes in cell dimensions and volumes in the row Cs2(Cu,Al)3P3O12→Cs2(Mn,Al)3P3O12 obviously correspond to increasing radii of the transition metal. The crystal chemical analysis of both pollucite-like phases show correlations between the difference in the radii size of tetrahedral cations and the degree of distortion of flexible ANA-type framework due to decreasing of the intertetrahedral angles (T-O-T). Magnetic susceptibility measurements indicate that both compounds are paramagnets in the temperature range of 2-300 K.

  8. Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides

    International Nuclear Information System (INIS)

    Li Zhiyuan; Ho Kaiming

    2003-01-01

    The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides

  9. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  10. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  11. Determination of a new structure type in the Sc-Fe-Ge-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Brgoch, Jakoah [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ran, Sheng [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thimmaiah, Srinivasa [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Canfield, Paul C. [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Miller, Gordon J., E-mail: gmiller@iastate.edu [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer A new structure type with the composition Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)}. Black-Right-Pointing-Pointer Crystallizes in the space group Immm (No. 71, oI144). Black-Right-Pointing-Pointer Sample obtained using a reactive Sn flux. Black-Right-Pointing-Pointer Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc-Fe-Ge-Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)} and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) A, b = 13.467(3) A, and c = 30.003(6) A. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc-Ge as well as Fe-Sn and Fe-Ge contacts can be assigned to this new structure type.

  12. High-efficiency deflection of high energy protons due to channeling along the 〈110〉 axis of a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2016-09-01

    Full Text Available A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110 planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  13. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  14. Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2017-05-01

    Full Text Available The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite sigma-1 receptors have been confirmed to regulate various types of ion channels, the relationship between the sigma-1 receptor and N-type Ca2+ channel is still unclear. Considering both sigma-1 receptors and N-type Ca2+ channels are involved in intracellular calcium homeostasis and neurotransmission, we undertake studies to explore the possible interaction between these two proteins. In the experiment, we confirmed the expression of the sigma-1 receptors and the N-type calcium channels in the cholinergic interneurons (ChIs in rat striatum by using single-cell reverse transcription-polymerase chain reaction (scRT-PCR and immunofluorescence staining. N-type Ca2+ currents recorded from ChIs in the brain slice of rat striatum was depressed when sigma-1 receptor agonists (SKF-10047 and Pre-084 were administrated. The inhibition was completely abolished by sigma-1 receptor antagonist (BD-1063. Co-expression of the sigma-1 receptors and the N-type calcium channels in Xenopus oocytes presented a decrease of N-type Ca2+ current amplitude with an increase of sigma-1 receptor expression. SKF-10047 could further depress N-type Ca2+ currents recorded from oocytes. The fluorescence resonance energy transfer (FRET assays and co-immunoprecipitation (Co-IP demonstrated that sigma-1 receptors and N-type Ca2+ channels formed a protein complex when they were co-expressed in HEK-293T (Human Embryonic Kidney -293T cells. Our results revealed that the sigma-1 receptors played a negative modulation on N-type Ca2+ channels. The mechanism for the inhibition of sigma-1 receptors on

  15. Structure analysis on synthetic emerald crystals

    Science.gov (United States)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  16. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  17. Simulation of channeling and radiation of 855 MeV electrons and positrons in a small-amplitude short-period bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Korol, Andrei V., E-mail: korol@mbnexplorer.com [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Bezchastnov, Victor G. [A.F. Ioffe Physical-Technical Institute, Politechnicheskaya Str. 26, 194021 St. Petersburg (Russian Federation); Peter the Great St. Petersburg Polytechnic University, Politechnicheskaya 29, 195251 St. Petersburg (Russian Federation); Sushko, Gennady B.; Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany)

    2016-11-15

    Channeling and radiation are studied for the relativistic electrons and positrons passing through a Si crystal periodically bent with a small amplitude and a short period. Comprehensive analysis of the channeling process for various bending amplitudes is presented on the grounds of numerical simulations. The features of the channeling are highlighted and elucidated within an analytically developed continuous potential approximation. The radiation spectra are computed and discussed.

  18. Safety problems of nuclear power plants with channel-type graphite boiling water reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Vasilevskij, V.P.; Volkov, V.P.; Gavrilov, P.A.; Kramerov, A.Ya.; Kuznetsov, S.P.; Kunegin, E.P.; Rybakov, N.Z.

    1977-01-01

    Construction of nuclear power plants in a highly populated region near large industrial centres necessitates to pay a special attention to their nuclear and radiation safety. Safety problems of nuclear reactor operation are discussed, in particular, they are: reliable stoppage of fission chain reaction at any emergency cases; reliable core cooling with failure of various equipment; emergency core cooling with breached pipes of a circulating circuit; and prevention of radioactive coolant release outside the nuclear power plant in amount exceeding the values adopted. Channel-type water boiling reactors incorporate specific features requiring a new approach to safety operation of a reactor and a nuclear power plant. These include primarily a rather large steam volume in the coolant circuit, large amount of accumulated heat, void reactivity coefficient. Channel-type reactors characterized by fair neutron balance and flexible fuel cycle, have a series of advantages alleviating the problem of ensuring their safety. The possibility of reliable control over the state of each channel allows to replace failed fuel elements by the new ones, when operating on-load, to increase the number of circulating loops and reduce the diameter of main pipelines, simplifies significantly the problem of channel emergency cooling and localization of a radioactive coolant release from a breached circuit. The concept of channel-type reactors is based on the solution of three main problems. First, plant safety should be assured in emergency switch off of separate units and, if possible, energy conditions should be maintained, this is of particular importance considering the increase in unit power. Second, the system of safety and emergency cooling should eliminate a great many failures of fuel elements in case of potential breaches of any tube in the circulating circuit. Finally, rugged boxes and localizing devices should be provided to exclude damage of structural elements of the nuclear power

  19. `Pd20Sn13' revisited: crystal structure of Pd6.69Sn4.31

    Directory of Open Access Journals (Sweden)

    Wilhelm Klein

    2015-07-01

    Full Text Available The crystal structure of the title compound was previously reported with composition `Pd20Sn13' [Sarah et al. (1981. Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3:0.62 (3. One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b.

  20. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  1. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  2. Assembly of disperse red 1 molecules in the channels of AlPO4-5 single crystals for second-harmonic generation

    NARCIS (Netherlands)

    Jiang, FY; Lu, WX; Zhai, JP; Ye, JT; Wong, GKL; Han, Xueyao; Tang, ZK

    2006-01-01

    Disperse red 1 (DR1) molecules have been successfully incorporated into the one-dimensional channels of AlPO4-5 single crystals by means of vapor-phase diffusion. Polarizing microscope and SHG results indicate that the DR1 molecules are well aligned in a preferred direction along the crystal

  3. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  4. Structure of fault stackings of molecular layers X-M-X in CdI2 polytypic crystals

    International Nuclear Information System (INIS)

    Palosz, B.; Przedmojski, J.

    1984-01-01

    The arrangements of molecular layers I-Cd-I, which may be regarded as 'faulted' for CdI 2 polytypic crystals, are analyzed. Tentative classification of faults into those which are intermediate structure between the basic polytypes 2H and 4H and faults occurring between different blocks of pure structure 4 H is proposed. The connection between some growth parameters and the structure of faults in CdI 2 crystals grown from solutions is discussed. It is shown that the geometrical classification of stacking faults used for layered inorganic crystals is not appropriate for the description of the faults existing in polytypic crystals of MX 2 type. The effect of weak external electric and magnetic fields on the polytypic structure of CdI 2 is analyzed. The experiments performed for several hundred of polytypes of CdI 2 showed that the external fields may, in some conditions, affect the organization of the polytypic structure of crystals very strongly. In particular, it was found that the external fields may change the period of polytype cells and that the relative number of hexagonal and rhombohedral polytypes differ very strongly for crystals grown in the absence and in the presence of external electric and magnetic fields. (author)

  5. type doping in the channel of graphene nanoribbon

    Indian Academy of Sciences (India)

    type doping in the channel is better with smaller supply voltage compared to higher supply voltage. On increasing the n -type doping concentration, we obtained better on-current and output characteristics in comparison with undoped and p ...

  6. Impact of crystallization on the structure and chemical durability of borosilicate glass

    International Nuclear Information System (INIS)

    Nicoleau, Elodie

    2016-01-01

    This work describes a new approach to help understand the chemical durability of partially crystallized nuclear waste conditioning matrices. Among the studies carried out on nuclear waste deep geological disposal, long term behavior studies have so far been conducted on homogeneous glassy matrices. However, as the crystalline phases may generate modifications in the chemical composition and properties of such matrices, the description and a better understanding of their effects on the chemical durability of waste packages are of primary importance. A protocol to study the durability of heterogeneous model matrices of nuclear interest containing different types of crystalline phases was developed. It is based on a detailed description of the morphology, microstructure and structure of the glassy matrix and crystalline phases, and on the study of various alteration regimes. Three crystal phases that may form when higher concentrations of waste are immobilized in Uranium Oxide type conditioning glasses were studied: alkali and alkaline earth molybdates, rare earth silicates and ruthenium oxide. The results highlight the roles of the composition and the structure of the surrounding glassy matrix as the parameters piloting the alteration kinetics of the partially crystallized glassy matrices. This behavior is identical whatever the nature of the crystalline phases, as long as these phases do not lead to a composition gradient and do not percolate within the glassy matrix. Given these results, a methodology to study partially crystallized matrices with no composition gradient is then suggested. Its key development lies firstly in the evaluation of the behavior of partially crystallized matrices through the experimental study of the residual glassy matrix in various alteration regimes. This methodology may be adapted to the case of new glass formulations with more complex compositions (e.g. highly waste-loaded glass), which may contain crystals formed during cooling

  7. The Crystal Structures of Two Novel Cadmium-Picolinic Acid ...

    African Journals Online (AJOL)

    The crystal structures of two novel cadmium-picolinic acid complexes grown in aqueous solutions at selected pH values are reported. The structures are compared to expected solution species under the same conditions. The crystal structure of complex 1 exhibits a seven coordinate structure which contains a protonated ...

  8. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  9. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  10. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  11. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  12. Landuse Types within Channel Corridor and River Channel Morphology of River Ona, Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Olutoyin Fashae

    2017-12-01

    Full Text Available The importance of river a corridor warrants a well thought out and balanced management approach because it helps in improving or maintaining water quality, protecting wetlands, etc. Hence, this study seeks to identify major landuse types within the River Ona Corridor; examine the impact of these landuse types within the River Ona corridor on its channel morphology and understand the risk being posed by these landuse types. The study is designed by selecting two reaches of six times the average width from each of the four major landuse types that exist along the river corridor. This study revealed that along the downstream section of Eleyele Dam of River Ona, natural forest stabilizes river channel banks, thereby presenting a narrow and shallow width and depth respectively but the widest of all is found at the agricultural zones.

  13. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  14. Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858).

    Science.gov (United States)

    Unciuleac, Mihaela-Carmen; Smith, Paul C; Shuman, Stewart

    2016-05-15

    AAA proteins (ATPases associated with various cellular activities) use the energy of ATP hydrolysis to drive conformational changes in diverse macromolecular targets. Here, we report the biochemical characterization and 2.5-Å crystal structure of a Mycobacterium smegmatis AAA protein Msm0858, the ortholog of Mycobacterium tuberculosis Rv0435c. Msm0858 is a magnesium-dependent ATPase and is active with all nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates (dNTPs) as substrates. The Msm0858 structure comprises (i) an N-terminal domain (amino acids [aa] 17 to 201) composed of two β-barrel modules and (ii) two AAA domains, D1 (aa 212 to 473) and D2 (aa 476 to 744), each of which has ADP in the active site. Msm0858-ADP is a monomer in solution and in crystallized form. Msm0858 domains are structurally homologous to the corresponding modules of mammalian p97. However, the position of the N-domain modules relative to the AAA domains in the Msm0858-ADP tertiary structure is different and would impede the formation of a p97-like hexameric quaternary structure. Mutational analysis of the A-box and B-box motifs indicated that the D1 and D2 AAA domains are both capable of ATP hydrolysis. Simultaneous mutations of the D1 and D2 active-site motifs were required to abolish ATPase activity. ATPase activity was effaced by mutation of the putative D2 arginine finger, suggesting that Msm0858 might oligomerize during the ATPase reaction cycle. A truncated variant Msm0858 (aa 212 to 745) that lacks the N domain was characterized as a catalytically active homodimer. Recent studies have underscored the importance of AAA proteins (ATPases associated with various cellular activities) in the physiology of mycobacteria. This study reports the ATPase activity and crystal structure of a previously uncharacterized mycobacterial AAA protein, Msm0858. Msm0858 consists of an N-terminal β-barrel domain and two AAA domains, each with ADP bound in the active site. Msm0858 is a

  15. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    2017-10-30

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG)2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP21lattice of hexagonal metric. The various twinning criteria give somewhat conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.

  16. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  17. Crystallization and preliminary X-ray analysis of a novel Kunitz-type kallikrein inhibitor from Bauhinia bauhinioides

    International Nuclear Information System (INIS)

    Navarro, Marcos Vicente de A. S.; Vierira, Débora F.; Nagem, Ronaldo A. P.; Araújo, Ana Paula U. de; Oliva, Maria Luiza V.; Garratt, Richard C.

    2005-01-01

    Crystallization and preliminary X-ray diffraction studies are reported for a novel Kunitz-type protease inhibitor from B. bauhinioides which contains no disulfide bridges. A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V M = 2.5 Å 3 Da −1 ). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method

  18. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  19. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams.......We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  20. Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylase

    International Nuclear Information System (INIS)

    Dharmarajan, Lakshmi; Kraszewski, Jessica L.; Mukhopadhyay, Biswarup; Dunten, Pete W.

    2009-01-01

    The expression, purification, crystallization and preliminary diffraction analysis of an archaeal-type phosphoenolpyruvate carboxylase are described. Complete highly redundant X-ray data have been measured from a crystal diffracting to 3.13 Å resolution. An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13 Å resolution have been measured from a crystal soaked in KAu(CN) 2 , using radiation at a wavelength just above the Au L III edge. The asymmetric unit contains two tetramers of PepcA

  1. Photoelectrochemical Stability and Alteration Products of n-Type Single-Crystal ZnO Photoanodes

    Directory of Open Access Journals (Sweden)

    I. E. Paulauskas

    2011-01-01

    Full Text Available The photoelectrochemical stability and surface-alteration characteristics of doped and undoped n-type ZnO single-crystal photoanode electrodes were investigated. The single-crystal ZnO photoanode properties were analyzed using current-voltage measurements plus spectral and time-dependent quantum-yield methods. These measurements revealed a distinct anodic peak and an accompanying cathodic surface degradation process at negative potentials. The features of this peak depended on time and the NaOH concentration in the electrolyte, but were independent of the presence of electrode illumination. Current measurements performed at the peak indicate that charging and discharging effects are apparently taking place at the semiconductor/electrolyte interface. This result is consistent with the significant reactive degradation that takes place on the ZnO single crystal photoanode surface and that ultimately leads to the reduction of the ZnO surface to Zn metal. The resulting Zn-metal reaction products create unusual, dendrite-like, surface alteration structural features that were analyzed using x-ray diffraction, energy-dispersive analysis, and scanning electron microscopy. ZnO doping methods were found to be effective in increasing the n-type character of the crystals. Higher doping levels result in smaller depletion widths and lower quantum yields, since the minority carrier diffusion lengths are very short in these materials.

  2. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2018-05-01

    Full Text Available High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K to generate `structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a `top-hat' geometry, which was rapidly transformed to a `side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT, providing an unparallelled level of structural information during catalysis for redox enzymes.

  3. Evidences for the Formation of Chromium in the Unusual Oxidation State Cr(IV). I. Chemical Reactivity, Microhomogeneity, and Crystal Structures of the Nonstoichiometric Channel Compounds Tl xCr 5Se 8(0 ≤ x≤ 1)

    Science.gov (United States)

    Bensch, W.; Helmer, O.; Näther, C.

    1996-11-01

    The topotactic redox reaction between TlCr 5Se 8and bromine in acetonitrile leads to the formation of metastable samples with 0 ≤ xtransition metal chalcogenide crystallizing in the TlV 5S 8type structure with a Tl content xtopotactic redox reaction does not follow simple kinetics but is rather explained on the basis of the superposition of at least three different fundamental steps. EDAX investigations conducted on selected single crystals reveal that dependent on the deintercalation temperature, Tl is laterally inhomogeneous distributed along the needle axis which coincides with the crystallographic baxis. A pronounced maximum is observed at the middle of the crystals. In stoichiometric TlCr 5Se 8the detailed analysis of the anisotropic displacement parameters of the Tl atoms reveal that the Tl atoms are displaced from the central position by about 0.26 Å. As a consequence the Tl atoms are coordinated by seven Se atoms in an irregular coordination polyhedron. Since the positions x0 zare related by a center of symmetry they cannot be occupied simultaneously. Hence it must be assumed that TlCr 5Se 8has a domain structure with local symmetry Cm. In the Tl poorer phases the refinement of the Tl atoms at the central position leads to unusual high U22components. The observed microinhomogenity as well as an enhanced mobility and/or static disorder of the Tl atom within the channel may be responsible for this. The value for U11decreases with decreasing Tl content whereas U33is not affected. This observation is indicative for a different displacement of the Tl atoms from the central position. With respect to the possible reaction mechanisms, according to our structural investigations, the oxidation of monovalent Tl to trivalent Tl can be excluded. With decreasing Tl content the lattice parameters exhibit very anisotropic behavior, which is a direct consequence of the large changes of the interatomic Cr-Cr distances. The average as well as the nonbonding Se-Se distances

  4. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) with Th7Fe3-type structure

    Science.gov (United States)

    Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.

    2012-08-01

    Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.

  5. RADCHARM++: A C++ routine to compute the electromagnetic radiation generated by relativistic charged particles in crystals and complex structures

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, Laura; Bagli, Enrico; Guidi, Vincenzo [INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44121 Ferrara (Italy); Tikhomirov, Victor V. [Research Institute for Nuclear Problems, Belarusian State University, Minsk (Belarus)

    2015-07-15

    The analytical theories of coherent bremsstrahlung and channeling radiation well describe the process of radiation generation in crystals under some special cases. However, the treatment of complex situations requires the usage of a more general approach. In this report we present a C++ routine, named RADCHARM++, to compute the electromagnetic radiation emitted by electrons and positrons in crystals and complex structures. In the RADCHARM++ routine, the model for the computation of e.m. radiation generation is based on the direct integration of the quasiclassical formula of Baier and Katkov. This approach allows one taking into account real trajectories, and thereby the contribution of incoherent scattering. Such contribution can be very important in many cases, for instance for electron channeling. The generality of the Baier–Katkov operator method permits one to simulate the electromagnetic radiation emitted by electrons/positrons in very different cases, e.g., in straight, bent and periodically bent crystals, and for different beam energy ranges, from sub-GeV to TeV and above. The RADCHARM++ routine has been implemented in the Monte Carlo code DYNECHARM++, which solves the classical equation of motion of charged particles traveling through a crystal under the continuum potential approximation. The code has proved to reproduce the results of experiments performed at the MAinzer MIkrotron (MAMI) with 855 MeV electrons and has been used to predict the radiation spectrum generated by the same electron beam in a bent crystal.

  6. Quaternary chalcogenides of the IVa metals with layered structures: preparation and crystal structures of TlCuTIVQ3 (T=Zr, Hf; Q=S, Se) and their relation to the Re3B structure type

    International Nuclear Information System (INIS)

    Klepp, K.O.; Gurtner, D.

    1996-01-01

    The new compounds TlCuT IV Q 3 (T = Zr, Hf; Q = S, Se) were prepared by reacting intimate mixtures of Tl 2 S or TlSe with stoichiometric amounts of the corresponding Group IV metal, Cu and the corresponding chalcogen at 870 . The four compounds are isostructural and crystallize in Cmcm, Z = 4 with a 3.726(4) A, b = 13.987(9) A, c = 9.783(4) A for TlCuZrS 3 ; a = 3.847(1) A, b 14.381(6) A, c = 10.150(1) A for TlCuZrSe 3 ; a = 3.694(1) A, b = 14.030(3) A, c = 9.750(3) A for TlCuHfS 3 ; and a = 3.831(1) A, b = 14.409(9) A, c = 10.124(2) A for TlCuHfSe 3 . Their crystal structures were determined from single crystal diffractometer data (Mo Kα radiation, ambient temperature) and refined to conventional R values of 0.016, 0.040, 0.019 and 0.031 respectively. An outstanding feature of their crystal structures is the formation of infinite anionic layers, 2 ∞ -[CuT IV Q 3 ] - parallel to (010), which are separated by Tl + cations. These layers are built up by edge sharing TQ 6 octahedra and distorted CuQ 4 tetrahedra. Average T-Q distances are anti d(Zr-S) = 2.586(1) A, anti d(Zr-Se) = 2.707(1) A, anti d(Hf-S) = 2.569(2) A and anti d(Hf-Se) = 2.694(1) A. Cu-chalcogen distances are anti d(Cu-S) = 2.318(2) A and anti d(Cu-Se) = 2.432(3) A respectively. The thallium ions are in bicapped trigonal prismatic chalcogen coordinations. The atomic arrangement corresponds to that of KCuZrS 3 ; based on the thallium-chalcogen partial structure it can be regarded as a filled variant of an anti-Re 3 B structure type. (orig.)

  7. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  8. Compact, low-loss and broadband photonic crystal circulator based on a star-type ferrite rod

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    Full Text Available We propose and investigate a compact, low-loss and broadband circulator based on a star-type ferrite rod in two-dimensional square-lattice photonic crystals. Only one ferrite rod is required to be inserted in our structure. Firstly, the performances of circulator based on the star-type, circle, and square ferrite rod are compared, showing that the circulator with the star-type ferrite rod performs better than the other two ones. And then, based on the star-type ferrite rod circulator, four cases of improvement, in which the background rods around the center ferrite rod are replaced respectively by the backward-triangle, forward-triangle, backward-semicircle, and forward-semicircle rods, are investigated to modulate the coupling between the center magneto-optical micro-cavity and the corresponding waveguides. The results show that, with proper parameters, all the four cases can greatly improve the output properties of the circulator, and different cases have its own advantages. The mechanism behind these improvements is also discussed. Finite-element method is used to calculate the characteristics of the circulator and Nelder-Mead optimization method is employed to obtain the optimized parameters. The ideas presented here are useful for designing broadband, low insertion loss, and high-isolation circulators which have potential application in integrated photonic crystal devices. Keywords: Photonic crystals, Circulator, Magneto-optical material, Photonic crystal waveguides

  9. Spontaneous and stimulated undulator radiation by an ultra-relativistic positron channeling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Solov'yov, A.V.; Greiner, W.

    2001-01-01

    We discuss the radiation generated by positrons channeling in a crystalline undulator. The undulator is produced by periodically bending a single crystal with an amplitude much larger than the interplanar spacing. Different approaches for bending the crystal are described and the restrictions on the parameters of the bending are discussed. We also present numeric calculations of the spontaneous emitted radiation and estimate the conditions for stimulated emission. Our investigations show that the proposed mechanism could be an interesting source for high energy photons and is worth to be studied experimentally

  10. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  11. Crystal Structure of the VapBC Toxin–Antitoxin Complex from Shigella flexneri Reveals a Hetero-Octameric DNA-Binding Assembly

    DEFF Research Database (Denmark)

    Dienemann, Christian; Bøggild, Andreas; Winther, Kristoffer S.

    2011-01-01

    the crystal structure of the intact Shigella flexneri VapBC TA complex, determined to 2.7 Å resolution. Both in solution and in the crystal structure, four molecules of each protein combine to form a large and globular hetero-octameric assembly with SpoVT/AbrB-type DNA-binding domains at each end and a total...

  12. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  13. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  14. Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA

    Science.gov (United States)

    Mitchell, Michael R.; Leibler, Stanislas

    2018-05-01

    The abundance of available static protein structural data makes the more effective analysis and interpretation of this data a valuable tool to supplement the experimental study of protein mechanics. Structural displacements can be difficult to analyze and interpret. Previously, we showed that strains provide a more natural and interpretable representation of protein deformations, revealing mechanical coupling between spatially distinct sites of allosteric proteins. Here, we demonstrate that other transformations of displacements yield additional insights. We calculate the divergence and curl of deformations of the transmembrane channel KcsA. Additionally, we introduce quantities analogous to bend, splay, and twist deformation energies of nematic liquid crystals. These transformations enable the decomposition of displacements into different modes of deformation, helping to characterize the type of deformation a protein undergoes. We apply these calculations to study the filter and gating regions of KcsA. We observe a continuous path of rotational deformations physically coupling these two regions, and, we propose, underlying the allosteric interaction between these regions. Bend, splay, and twist distinguish KcsA gate opening, filter opening, and filter-gate coupling, respectively. In general, physically meaningful representations of deformations (like strain, curl, bend, splay, and twist) can make testable predictions and yield insights into protein mechanics, augmenting experimental methods and more fully exploiting available structural data.

  15. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  16. A structural study of nepheline hydrate I, an inorganic ion exchanger

    International Nuclear Information System (INIS)

    Hansen, S.

    1985-01-01

    The crystal structures of nepheline hydrates I, Na 3 Al 3 Si 3 O 12 x 2H 2 O, and three compounds produced by ion exchange with aqueous KCl, RbCl and CsCl at 80 degrees C, have been studied using X-ray diffraction methods. This synthetic silicate has a tetrahedral framework with a two-dimensional pore system consisting of perpendicular 8-ring and 6-ring channels. The long-range ordering of Si and Al into adjacent tetrahedra is well developed. Some aspects of the topology, geometry and bonding of the tetrahedral frame are discussed. Related framework types are derived by unit cell twinning of the idealized cristobalite structure. A limit in the ion exchange is observed when about 1/3 of the Na + ions have been replaced. This behaviour is explained by the restricted volume of two Na sites situated in the 6-ring channel. The readily exchangeable ions and water molecules in the 8-ring channels an arrangement which gradually changes when the size of the alkali metal-ion increases. Most K + -exchanged crystals have a unit cell which is determined by the translational symmetry of the framework, while the original Na form has a two-fold superstructure and the Rb + -exchanged form has a five-fold superstructure. Caesium-ion-exchanged crystals have incommensurate structures. The occurrence of superstructures is related to long-range ordering of the species in the 8-ring channels. (author)

  17. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  18. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  19. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  20. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  1. SYNTHESIS, CHARACTERIZATION, AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Barium, Crystal structure, 2,6-Pyridinedicarboxylic acid .... The rational design of novel metal-organic frameworks has attracted great ..... Bond, A.D.; Jones, W. Supramolecular Organization and Materials Design, Jones, W.; Rao,.

  2. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.

    Science.gov (United States)

    Hirschi, Marscha; Herzik, Mark A; Wie, Jinhong; Suo, Yang; Borschel, William F; Ren, Dejian; Lander, Gabriel C; Lee, Seok-Yong

    2017-10-19

    The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signalling. The transient receptor potential mucolipin (TRPML) channel family belongs to the TRP superfamily and is composed of three members: TRPML1-TRPML3. TRPMLs are the major Ca 2+ -permeable channels on late endosomes and lysosomes (LEL). They regulate the release of Ca 2+ from organelles, which is important for various physiological processes, including organelle trafficking and fusion. Loss-of-function mutations in the MCOLN1 gene, which encodes TRPML1, cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV, and a gain-of-function mutation (Ala419Pro) in TRPML3 gives rise to the varitint-waddler (Va) mouse phenotype. Notably, TRPML channels are activated by the low-abundance and LEL-enriched signalling lipid phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P 2 ), whereas other phosphoinositides such as PtdIns(4,5)P 2 , which is enriched in plasma membranes, inhibit TRPMLs. Conserved basic residues at the N terminus of the channel are important for activation by PtdIns(3,5)P 2 and inhibition by PtdIns(4,5)P 2 . However, owing to a lack of structural information, the mechanism by which TRPML channels recognize PtdIns(3,5)P 2 and increase their Ca 2+ conductance remains unclear. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3 channel from the common marmoset (Callithrix jacchus) at an overall resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain that we term the mucolipin domain. Combined with functional studies, these data suggest that the mucolipin domain is responsible for PtdIns(3,5)P 2 binding and subsequent channel activation, and that it acts as a 'gating pulley' for lipid-dependent TRPML gating.

  3. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-11-04

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.

  4. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.

    Science.gov (United States)

    Goblirsch, Brandon R; Jensen, Matthew R; Mohamed, Fatuma A; Wackett, Lawrence P; Wilmot, Carrie M

    2016-12-23

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys 143 ) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C 12 and C 14 ) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ 117 ) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis*

    Science.gov (United States)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-01-01

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. PMID:27815501

  6. The E052 - GSI Experiment, Deceleration of highly charged ions by crystal channeling. (Technical notes)

    International Nuclear Information System (INIS)

    Kirsch, R.

    2003-01-01

    The report on the E052 - GSI Experiment, devoted to 'Deceleration of highly charged ions by crystal channeling' present the technical notes and the status of this experiment in 2003. The report contains 13 sections and two annexes. The sections deal with the following issues: 1. File system of the 'PC monitor' for E052 - GSI Experiment in 2003; 2. Parameters of the 'PC monitor' file system; 3. Operation of the two PCs; 3.1. Layout of goniometer remote control; 3.2. 'PC motors' side by the beam hall; 3.3. RS232 connection cabling; 3.4. RS232 configuration on the COM1 ports of the two PCs; 4. Motor connection; 4.1. SubD-25 acquisition PC monitor arm on 'COM1'; 4.2. Motors step by step feeding side SubD-25 on 'COM1'; 4.3. Distribution of digital step by step control signals; 4.5. Upper an lower goniometer connection; 4.6. Rotation and inclination outer goniometer connection; 4.7. Ultra vacuum inner rotation and inclination connection; 5. Motor characteristics; 5.1. Upstream and downstream; 5.2. Rotation; 5.3 Inclination; 5.4. Feedings; 6. Goniometer in-beam positioning; 6.1. Height fine motor positioning; 6.2. Side manual positioning; 7. Goniometer movements; 8. Crystals and electron detection; 8.1. General layout; 8.2. 1 μm Si(100) crystal; 8.3. 33 μm Si(100) crystal; 8.4. Crystal mounting; 8.5. Electron detection; 9. Reference laser positioning of angular movements; 10. Beam track and collimators upstream the target; 11. User manual - Monitoring programme; 11.Start scanning program (GSIscan.exe); 11.2. SCANNING the crystal (Scan Control window); 11.3. MOVING THE GONIOMETER MANUALY (goniometer control window); 11.4. USING THE COUNTERS (counter display window); 11.5. MULTISCALER PLOT DISPLAY; 11.6. SELECT ACTIVE PLOT; 11.7. CURSORS; 11.8. STATISTICS; 11.9. Y SCALE change; 11.10. PLOT view and hide counter; 11.11. SAVE multiscaler spectra; 11.12. PRINT plot; 12. Simplified acquisition electronic setup; 13. The 'PC motors' software; 13.1. The code structure; 13

  7. Crystallization and preliminary X-ray analysis of a novel Kunitz-type kallikrein inhibitor from Bauhinia bauhinioides

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Marcos Vicente de A. S.; Vierira, Débora F. [Institute of Physics of São Carlos, University of São Paulo, Avenida Trabalhador Sãocarlense 400, CEP 13560-970, São Carlos, SP (Brazil); Nagem, Ronaldo A. P. [Biochemistry and Immunology Department, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Caixa Postal 486, CEP 31270-901, Belo Horizonte, MG (Brazil); Araújo, Ana Paula U. de [Institute of Physics of São Carlos, University of São Paulo, Avenida Trabalhador Sãocarlense 400, CEP 13560-970, São Carlos, SP (Brazil); Oliva, Maria Luiza V. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Três de Maio 100, CEP 04044-020, São Paulo, SP (Brazil); Garratt, Richard C., E-mail: richard@if.sc.usp.br [Institute of Physics of São Carlos, University of São Paulo, Avenida Trabalhador Sãocarlense 400, CEP 13560-970, São Carlos, SP (Brazil)

    2005-10-01

    Crystallization and preliminary X-ray diffraction studies are reported for a novel Kunitz-type protease inhibitor from B. bauhinioides which contains no disulfide bridges. A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V{sub M} = 2.5 Å{sup 3} Da{sup −1}). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method.

  8. Insights into the Structures of DNA Damaged by Hydroxyl Radical: Crystal Structures of DNA Duplexes Containing 5-Formyluracil

    Directory of Open Access Journals (Sweden)

    Masaru Tsunoda

    2010-01-01

    Full Text Available Hydroxyl radicals are potent mutagens that attack DNA to form various base and ribose derivatives. One of the major damaged thymine derivatives is 5-formyluracil (fU, which induces pyrimidine transition during replication. In order to establish the structural basis for such mutagenesis, the crystal structures of two kinds of DNA d(CGCGRATfUCGCG with R = A/G have been determined by X-ray crystallography. The fU residues form a Watson-Crick-type pair with A and two types of pairs (wobble and reversed wobble with G, the latter being a new type of base pair between ionized thymine base and guanine base. In silico structural modeling suggests that the DNA polymerase can accept the reversed wobble pair with G, as well as the Watson-Crick pair with A.

  9. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    International Nuclear Information System (INIS)

    Guan, Lei; Wang, Ying

    2015-01-01

    A novel cobalt phosphonate, [Co(HL)(H 2 O) 3 ] n (1) (L=N(CH 2 PO 3 H) 3 3− ) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO 6 octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis

  10. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  11. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  12. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wistisen, T. N. [Aarhus Univ. (Denmark); Uggerhoj, U. I. [Aarhus Univ. (Denmark); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Markiewicz, T. W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Noble, R. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Benson, B. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Smith, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bagli, E. [Univ. of Ferrara (Italy); Bandiera, L. [Univ. of Ferrara (Italy); Germogli, G. [Univ. of Ferrara (Italy); Guidi, V. [Univ. of Ferrara (Italy); Mazzolari, A. [Univ. of Ferrara (Italy); Holtzapple, R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Tucker, S. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  13. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum.

    Science.gov (United States)

    Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan

    2018-02-15

    The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.

  14. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  15. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  16. Crystal structure investigations of ZrAsxSey (x>y, x+y≤2) by single crystal neutron diffraction at 300 K, 25 K and 2.3 K

    International Nuclear Information System (INIS)

    Niewa, Rainer; Czulucki, Andreas; Schmidt, Marcus; Auffermann, Gudrun; Cichorek, Tomasz; Meven, Martin; Pedersen, Bjoern; Steglich, Frank; Kniep, Ruediger

    2010-01-01

    Large single crystals of ZrAs x Se y (x>y, x+y≤2, PbFCl type of structure, space group P4/nmm) were grown by Chemical Transport. Structural details were studied by single crystal neutron diffraction techniques at various temperatures. One single crystal specimen with chemical composition ZrAs 1.595(3) Se 0.393(1) was studied at ambient temperature (R1=5.10 %, wR2=13.18 %), and a second crystal with composition ZrAs 1.420(3) Se 0.560(1) was investigated at 25 K (R1=2.70%, wR2=5.70 %) and 2.3 K (R1=2.30 %, wR2=4.70 %), respectively. The chemical compositions of the crystals under investigation were determined by wavelength dispersive X-ray spectroscopy. The quantification of trace elements was carried out by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. According to the crystal structure refinements the crystallographic 2a site is occupied by As, together with a significant amount of vacancies. One of the 2c sites is fully occupied by As and Se (random distribution). With respect to the fractional coordinates of the atoms, the crystal structure determinations based on the data obtained at 25.0 K and 2.3 K did not show significant deviations from ambient temperature results. The temperature dependence of the displacement parameters indicates a static displacement of As on the 2a sites (located on the (0 0 1) planes) for all temperatures. No indications for any occupation of interstitial sites or the presence of vacancies on the Zr (2a) site were found. - Graphical abstract: Large single crystals of ZrAs x Se y grown by Chemical Transport to study structural details as the As-Se order scheme by single crystal neutron diffraction.

  17. Synthesis and crystal structure analysis of titanium bismuthide oxide, Ti{sub 8}BiO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Shinsaku; Yamane, Hisanori, E-mail: yamane@tagen.tohoku.ac.jp

    2016-08-05

    Silver metallic luster columnar single crystals of a novel compound, Ti{sub 8}BiO{sub 7}, were synthesized using a bismuth flux. Ti{sub 8}BiO{sub 7} having a new structure type crystallizes in an orthorhombic cell, a = 7.8473(4) Å, b = 16.8295(10) Å, c = 3.0256(2) Å, space group: Cmmm. The Ti atoms enter the sites of isosceles-triangle 3-fold and rectangular 4-fold coordination of O atoms and the site of octahedral 6-fold coordination of O and Bi atoms. O atoms are in the rectangles, tetrahedra, and orthogonal pyramids of Ti atoms. The electrical resistivity measured for a Ti{sub 8}BiO{sub 7} single crystal in the c-axis direction was 6.2 × 10{sup −7} Ωm at 300 K and 1.3 × 10{sup −7} Ωm at 10 K. - Highlights: • A novel bismuthide oxide containing titanium, Ti{sub 8}BiO{sub 7}, was synthesized. • Single crystals of Ti{sub 8}BiO{sub 7} were grown by heating a mixture of Ti and Bi{sub 2}O{sub 3}. • Single crystal X-ray diffraction revealed that Ti{sub 8}BiO{sub 7} has a new structure type. • O atoms and Bi atoms are surrounded by Ti atoms in the structure. • Metallic conduction of Ti{sub 8}BiO{sub 7} was exhibited.

  18. Simple Ion Channels: From Structure to Electrophysiology and Back

    Science.gov (United States)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  19. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  20. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ponnusamy, Rajesh [Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal); Lebedev, Andrey A. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Pahlow, Steffen [University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg (Germany); Lohkamp, Bernhard, E-mail: bernhard.lohkamp@ki.se [Karolinska Institutet, Tomtebodavägen 6, 4tr, 17177 Stockholm (Sweden); Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal)

    2014-06-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.

  1. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    International Nuclear Information System (INIS)

    Ponnusamy, Rajesh; Lebedev, Andrey A.; Pahlow, Steffen; Lohkamp, Bernhard

    2014-01-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs

  2. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  3. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  4. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao

    2012-10-09

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single-crystal X-ray diffraction. SU-78 is an intergrowth of SU-78A and SU-78B and contains interconnected 12-ring channels in three directions. The two polymorphs are built from the same building layer, similar to that for the zeolite beta family. The layer stacking in SU-78, however, is different from those in zeolite beta polymorph A, B, and C, showing new zeolite framework topologies. SU-78 is thermally stable up to 600 °C. © 2012 American Chemical Society.

  5. Synthesis and crystal structure analysis of uranyl triple acetates

    Energy Technology Data Exchange (ETDEWEB)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Serezhkina, Larisa B.; Serezhkin, Victor N. [Department of Chemistry, Samara National Research University, 443086 Samara (Russian Federation); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Institute for Energy and Climate Research (IEK-6), Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studied and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.

  6. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  7. Radiation emission at channeling of electrons in a strained layer Si1-xGex undulator crystal

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    ML source. Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation...

  8. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    Science.gov (United States)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  9. Study of structural differences between stoichiometric and congruent lithium niobate

    CERN Document Server

    Kling, A; Correia, J G; Da Silva, M F A; Diéguez, E; Agulló-López, F; Soares, J C

    1996-01-01

    The structural differences between stoichiometric and congruent (lithium deficient) lithium niobate single crystals were studied by RBS- and NRA-channeling as well as perturbed angular correlation (PAC) measurements. The d-PAC111Cd-PAC investigations point out that a second Li site can be detected in congruent material, while only one is present in stoichiometric. Channeling studies of different axes and the comparison of the results with computer simulations corroborated former indications that this additional lattice site can be attributed to the formation of ilmenite type stacking faults. A comparative study of the energy dependence of the dechanneling showed that a remarkable disorder is also present in the Nb sublattice of the congruent crystals and that these defects have a point-like character.

  10. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.

  11. A structure development in electron-irradiated type Ia diamond

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ositinskaya, T.D.; Tkach, V.N.

    1998-01-01

    A type Ia diamond crystal with nitrogen impurity in different forms was irradiated by 3.5 MeV electrons with increasing doses 5 centre dot 10 16 , 2 centre dot 10 17 , 4 centre dot 10 17 , 2 centre dot 10 18 e/cm 2 and investigated before and after each dose by positron annihilation, EPR, and optical spectroscopy. After irradiation with the highest dose, the effect of development of a visible defective structure of the crystal is revealed. A description of this effect and data of EPR and IR-measurements depending on irradiation doses are presented. First results of cathodoluminescence (CL) studies in the form CL-topograms and CL-spectra for difference zones of the crystal are also given

  12. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    Science.gov (United States)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  13. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  14. Refinement of crystal structures of CaHCl, SrHCl, BaHCl, BaHBr, and BaHI

    International Nuclear Information System (INIS)

    Beck, H.P.; Limmer, A.

    1983-01-01

    The structures of CaHCl, SrHCl, BaHBr, BaHCl, and BaHI have been refined using single crystal data. The comparison of the parameters with the corresponding data of isotypic fluorohalide compounds gives a valuable insight into the bonding interactions in this structure type. (author)

  15. Refinement of crystal structures of CaHCl, SrHCl, BaHCl, BaHBr, and BaHI

    Energy Technology Data Exchange (ETDEWEB)

    Beck, H.P.; Limmer, A. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Anorganische Chemie)

    1983-07-01

    The structures of CaHCl, SrHCl, BaHBr, BaHCl, and BaHI have been refined using single crystal data. The comparison of the parameters with the corresponding data of isotypic fluorohalide compounds gives a valuable insight into the bonding interactions in this structure type.

  16. The new barium zinc mercurides Ba3ZnHg10 and BaZn0.6Hg3.4 – Synthesis, crystal and electronic structure

    International Nuclear Information System (INIS)

    Schwarz, Michael; Wendorff, Marco; Röhr, Caroline

    2012-01-01

    The title compounds Ba 3 ZnHg 10 and BaZn 0.6 Hg 3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba 3 ZnHg 10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 4 4 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl 4 . The flat pyramids are connected via Hg–Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M–M distances (273–301 pm; CN 9–11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317–348 pm) to their Zn/Hg neighbours. In the structure of BaZn 0.6 Hg 3.4 (cubic, cI320, space group I4 ¯ 3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba 3 ZnHg 10 , the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6) 4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4) 2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb 3 Hg 20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations

  17. Optimized expression and purification of NavAb provide the structural insight into the voltage dependence.

    Science.gov (United States)

    Irie, Katsumasa; Haga, Yukari; Shimomura, Takushi; Fujiyoshi, Yoshinori

    2018-01-01

    Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels. © 2017 Federation of European Biochemical Societies.

  18. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  19. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  20. Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals

    International Nuclear Information System (INIS)

    Vinnik, D.A.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Nemrava, S.; Bischoff, M.; Perov, N.S.; Semisalova, A.S.; Krivtsov, I.V.; Isaenko, L.I.; Mikhailov, G.G.; Niewa, R.

    2014-01-01

    Highlights: • Growth of large Al-substituted crystals BaFe 12−x Al x O 19. • Al-content controllable by flux composition. • Crystallographic site preference of Al unraveled. • Magnetic characterization depending on Al-content. - Abstract: Large single crystals of aluminum-substituted M-type barium hexaferrite BaFe 12−x Al x O 19 were obtained from carbonate flux. The Al content in the crystals can be controlled via the Al content of the flux up to x = 1.1 according to single crystal X-ray structure refinements. Al shows a distinct preference to substitute Fe on crystallographic sites with high coordination numbers by oxygen atoms, whereas no significant amounts of Al can be found on a tetrahedrally coordinated site. An increasing amount of the aluminum dopant results in a monotonous reduction of the Curie temperature from 440 to 415 °C and the saturation magnetization at room temperature from 68 to 57 emu/g for single crystal and from 61 to 53 emu/g for powder samples

  1. Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.

    Science.gov (United States)

    Haataja, Tatu J K; Koski, M Kristian; Hiltunen, J Kalervo; Glumoff, Tuomo

    2011-05-01

    All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.

  2. Peculiarities of crystalline structure and mechanism of disordering of anion sublattice in superionic conductors of LaF3 structural type

    International Nuclear Information System (INIS)

    Krivorotov, V.F.; Fridman, A.A.

    2005-01-01

    On the basis of the analysis of LaF 3 type lattice structure the physical process of disordering of tysonit type ionic crystals is considered in the region of superionic phase transitions. The correlation of cell movement of disordering sublattice ions with parameter dynamics of Raman scattering spectrum of these crystals is observed. The anomaly behaviour of Raman scattering frequencies and intensities of lines 370, 392 sm -1 (LaF 3 ) and 304, 376, 404 sm -1 (PrF 3 ) in three intervals: 160-180, 260-290, and 440-480 K is obtained. Two more high temperature ones are connected with anion sublattice disordering process in the region of phase transitions. Excessive scattering in the region 160-180 K is described by the change of oscillation state of fluoride ions in small displacements in splitted site positions with several potential minimums. It is shown in the framework of splitted sites model that the possibility of thermoactivational formation of interstitials which are comparable with the size of mobile ions is due to the peculiarities of the structure of tysonit type ionic crystals. (author)

  3. Crystal structure and solid-state properties of discrete hexa cationic ...

    Indian Academy of Sciences (India)

    Subsequently, weight loss of 33% in two stages from 242 to 691◦C can be assigned to the decomposition of triazole ligands. 3.3 Description of the crystal structure. The solid-state structure of ZnT was unambiguously determined by the single crystal X-ray diffraction tech- nique (figures 2 and 3). Compound ZnT crystallizes in.

  4. Crystal structure of an FIV/HIV chimeric protease complexed with the broad-based inhibitor, TL-3

    Directory of Open Access Journals (Sweden)

    Elder John H

    2007-01-01

    Full Text Available Abstract We have obtained the 1.7 Å crystal structure of FIV protease (PR in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR. The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and several drug-resistant HIV mutants 1234. Biochemical analyses have demonstrated that TL-3 inhibits these PRs in the order HIV PR > 12X FIV PR > FIV PR, with Ki values of 1.5 nM, 10 nM, and 41 nM, respectively 234. Comparison of the crystal structures of the TL-3 complexes of 12X FIV and wild-typeFIV PR revealed theformation of additinal van der Waals interactions between the enzyme inhibitor in the mutant PR. The 12X FIV PR retained the hydrogen bonding interactions between residues in the flap regions and active site involving the enzyme and the TL-3 inhibitor in comparison to both FIV PR and HIV PR. However, the flap regions of the 12X FIV PR more closely resemble those of HIV PR, having gained several stabilizing intra-flap interactions not present in wild type FIV PR. These findings offer a structural explanation for the observed inhibitor/substrate binding properties of the chimeric PR.

  5. Axial ion channeling patterns from ultra-thin silicon membranes

    International Nuclear Information System (INIS)

    Motapothula, M.; Dang, Z.Y.; Venkatesan, T.; Breese, M.B.H.; Rana, M.A.; Osman, A.

    2012-01-01

    We present channeling patterns produced by MeV protons transmitted through 55 nm thick [0 0 1] silicon membranes showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [0 0 1], [0 1 1] and [1 1 1] axes. Instead of a ring-like “doughnut” distribution previously observed at small tilts to major axes in thicker membranes, geometric shapes such as squares and hexagons are observed along different axes in ultra-thin membranes. The different shapes arise because of the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal and the reduced multiple scattering which allows the fine angular structure to be resolved. We describe a simple geometric construction of the intersecting planar channels at an axis to gain insight into the origin of the geometric shapes observed in such patterns and how they evolve into the ‘doughnut’ distributions in thicker crystals.

  6. Crystal structure of a Ce2Fe2Mg15 compound

    International Nuclear Information System (INIS)

    Opainich, I.M.; Pavlyuk, V.V.; Bodak, O.I.

    1996-01-01

    A structure of a new Ce2Fe2Mg15 ternary compound (P63/mmc sp.gr., a=1.0324(5) nm, c=1.02080(4) nm) was determined by powder methods on a DRON-4.07 automatic diffractometer. The structure of a Ce2Fe2Mg15 crystal is a new variant of the ordered Th2Ni17 type superstructure, in which cerium atoms occupy the thorium positions; magnesium atoms occupy the nickel position 6g, 12k, and 12j; and iron atoms occupy the 4f position

  7. Magnetic order and crystal structure study of YNi{sub 4}Si-type NdNi{sub 4}Si

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, Grenoble F-38042 (France); CNRS, Institut NEEL, 25 rue des martyrs, Grenoble F-38042 (France); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Ivanova, T.I. [Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Koshkid' ko, Yu.S. [International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland); VSB-Technical University of Ostrava, Ostrava-Poruba 70833 (Czech Republic); Bogdanov, A.E.; Nikitin, S.A. [Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Suski, W. [International Laboratory of High Magnetic Fields and Low Temperatures, Wrocław (Poland); Polish Academy of Sciences, Trzebiatowski Institute of Low Temperatures and Structure Research, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2015-02-15

    Magnetic measurements and neutron powder diffraction investigation of the magnetic structure of the orthorhombic YNi{sub 4}Si-type (space group Cmmm) NdNi{sub 4}Si compound are presented. The magnetocaloric effect of NdNi{sub 4}Si is calculated in terms of the isothermal magnetic entropy change and it reaches the maximum value of –3.3 J/kg K for a field change of 50 kOe near T{sub C}=12 K. Below ∼12 K, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group in a zero magnetic field. At 1.5 K, the neodymium atoms have the magnetic moment of 2.37(5) μ{sub B}. The orthorhombic crystal structure and its thermal evolution are discussed in comparison with the CaCu{sub 5}-type compound. - Graphical abstract: The NdNi{sub 4}Si supplement the series of the orthorhombic derivative of the CaCu{sub 5}-type, namely the YNi{sub 4}Si-type, RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho). Below ∼12 K in a zero applied magnetic field, NdNi{sub 4}Si exhibits a commensurate b-axis collinear ferromagnetic ordering with the Cmm′m magnetic space group. Compared to the CaCu{sub 5}-type NdNi{sub 4}Si compound, the YNi{sub 4}Si-type counterpart has the relatively high ferromagnetic ordering temperature (9.2 K vs. 12 K), the small magnetocaloric effect (–7.3 J/kg K vs. –3.3 J/kg K for ∆H=50 kOe), and the large magnetic anisotropy at low temperatures. In contrast with CaCu{sub 5}-type NdNi{sub 4}Si, YNi{sub 4}Si-type NdNi{sub 4}Si shows distinct hysteresis loop at 2 K.We suggest that orthorhombic distortion may be used as a prospective route for optimization of permanent magnetic properties in the family of CaCu{sub 5}-type rare earth materials. - Highlights: • Below ∼12 K the YNi{sub 4}Si-type NdNi{sub 4}Si shows a ferromagnetic ordering. • MCE of NdNi{sub 4}Si reaches value of –3.3 J/kg K in 0–50 kOe near Curie point. • NdNi{sub 4}Si exhibits b-axis ferromagnetic order with the Cmm′m magnetic space

  8. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    Science.gov (United States)

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  9. On dislocation inhomogeneity of electroerosion crater zone in molybdenum single crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Dubovitskaya, N.V.; Zakharov, S.M.

    1979-01-01

    Methods of diffraction electron microscopy, X-ray analysis and microhardness measurements have been applied to study the inhomogeneity of dislocation structure of the electroerosion crater zone in molybdenum single crystals. Microhardness inhomogeneous distribution in this zone is established, conditioned by changes in dislocation structure as a result of the development of thermally activated processes of the plastic deformation and dynamic recovery. Dislocationless channels are detected in predeformed crystals

  10. Ordering of cations in the voids of the anionic framework of the crystal structure of catapleiite

    Energy Technology Data Exchange (ETDEWEB)

    Yakubovich, O. V., E-mail: yakubol@geol.msu.ru [Moscow State University, Faculty of Geology (Russian Federation); Karimova, O. V. [Russian Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (Russian Federation); Ivanova, A. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Yapaskurt, V. O. [Moscow State University, Faculty of Geology (Russian Federation); Chukanov, N. V. [Russian Academy of Sciences, Institute of the Problems of Chemical Physics (Russian Federation); Kartashov, P. M. [Russian Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (Russian Federation)

    2013-05-15

    The pseudohexagonal crystal structure of the mineral catapleiite Na{sub 1.5}Ca{sub 0.2}[ZrSi{sub 3}(O,OH){sub 9}] {center_dot} 2(H{sub 2}O,F) from the Zhil'naya Valley in the central part of the Khibiny alkaline massif (Kola Peninsula, Russia) is studied by X-ray diffraction (XCalibur-S diffractometer, R = 0.0346): a = 20.100(4), b = 25.673(5), and c = 14.822(3) A; space group Fdd2, Z = 32, and {rho}{sub calcd} = 2.76 g/cm{sup 3}. Fluorine atoms substituting part of H{sub 2}O molecules in open channels of the crystal structure have been found for the first time in the catapleiite composition by microprobe analysis. The pattern of distribution of Na and Ca atoms over the voids of the mixed anionic framework consisting of Zr-octahedra and three-membered rings of Si-tetrahedra accounts for the pronounced pseudoperiodicity along the a and c axes of the pseudohexagonal unit cell and for the lowering of crystal symmetry to the orthorhombic one. It is shown that part of the hydrogen atoms of water molecules is statistically disordered; their distribution correlates with the pattern of the population of large eight-vertex polyhedra by Na and Ca atoms.

  11. Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity

    International Nuclear Information System (INIS)

    Villamagua, Luis; Stashans, Arvids; Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi; Carini, Manuela

    2015-01-01

    Highlights: • Switch from n-type to p-type conductivity in SnO 2 has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO 2 compound shows stable p-type conductivity. • Low resistivity (3.657 × 10 −1 Ω cm) has been obtained. • High carrier concentration (4.858 × 10 19 cm −3 ) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO 2 systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO 2 material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling

  12. The influence of channel anion identity on the high-pressure crystal structure, compressibility, and stability of apatite

    Science.gov (United States)

    Skelton, Richard; Walker, Andrew M.

    2018-03-01

    The material properties of the common phosphate mineral apatite are influenced by the identity of the channel anion, which is usually F-, Cl-, or (OH)-. Density functional theory calculations have been used to determine the effect of channel anion identity on the compressibility and structure of apatite. Hydroxyapatite and fluorapatite are found to have similar zero pressure bulk moduli, of 79.2 and 82.1 GPa, respectively, while chlorapatite is considerably more compressible, with K 0 = 55.0 GPa. While the space groups of hydroxyapatite and fluorapatite do not change between 0 and 25 GPa, symmetrization of the Cl- site in chlorapatite at 7.5 GPa causes the space group to change from P2 1 /b to P6 3 /m. Examination of the valence electron density distribution in chlorapatite reveals that this symmetry change is associated with a change in the coordination of the Cl- anion from threefold to sixfold coordinated by Ca. We also calculate the pressure at which apatite decomposes to form tuite, a calcium orthophosphate mineral, and find that the transition pressure is sensitive to the identity of the channel anion, being lowest for fluorapatite (13.8 GPa) and highest for chlorapatite (26.9 GPa). Calculations are also performed within the DFT-D2 framework to investigate the influence of dispersion forces on the compressibility of apatite minerals.

  13. Structural characteristics and physical properties of diortho(pyro)silicate crystals of lanthanides yttrium and scandium grown by the Czochralski technique

    Energy Technology Data Exchange (ETDEWEB)

    Anan' eva, G.V.; Karapetyan, V.E.; Korovkin, A.M.; Merkulyaeva, T.I.; Peschanskaya, I.A.; Savinova, I.P.; Feofilov, P.P. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1982-03-01

    Optically uniform monocrystals of diortho (pyro) silicates of lanthanides, yttrium, and scandium were grown by the Czochralski technique. Four structural types of Ln/sub 2/(Si/sub 2/O/sub 7/) crystals were determined by the roentgenographic method. The presence of structural subgroups was also supported by the method of spectroscopic probes. Structural parameters were determined and data on certain physical properties (fusion temperature, density, refractive indices, transparency) of investigated crystals were presented. The generation of induced emission at lambda=1.057 ..mu..m was obtained in La/sub 2/(Si/sub 2/O/sub 7/)-Nd/sup 3 +/ crystal.

  14. SIMULATION OF ION-BEAM CHANNELING IN ICOSAHEDRAL AL63CU25FE12

    NARCIS (Netherlands)

    VANVOORTHUYSEN, EHD; SMULDERS, PJM; VANSMAALEN, S

    1993-01-01

    Monte Carlo simulations of channeling on the icosahedral quasicrystal Al63Cu25Fe12 were made, using an experimentally determined structure model for this phase. The channeling effect was found to be nearly as good as for a normal, periodic crystal. Dip widths are in agreement with experimental

  15. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    Science.gov (United States)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  16. Programmatic conversion of crystal structures into 3D printable files using Jmol

    OpenAIRE

    Scalfani, Vincent F.; Williams, Antony J.; Tkachenko, Valery; Karapetyan, Karen; Pshenichnov, Alexey; Hanson, Robert M.; Liddie, Jahred M.; Bara, Jason E.

    2016-01-01

    Background Three-dimensional (3D) printed crystal structures are useful for chemistry teaching and research. Current manual methods of converting crystal structures into 3D printable files are time-consuming and tedious. To overcome this limitation, we developed a programmatic method that allows for facile conversion of thousands of crystal structures directly into 3D printable files. Results A collection of over 30,000 crystal structures in crystallographic information file (CIF) format from...

  17. Growth of large size lithium niobate single crystals of high quality by tilting-mirror-type floating zone method

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Abdur Razzaque, E-mail: razzaque_ru2000@yahoo.com [Department of Physics, University of Rajshahi (Bangladesh)

    2016-05-15

    Large size high quality LiNbO{sub 3} single crystals were grown successfully by tilting-mirror-type floating zone (TMFZ) technique. The grown crystals were characterized by X-ray diffraction, etch pits density measurement, Impedance analysis, Vibrating sample magnetometry (VSM) and UV-Visible spectrometry. The effect of mirror tilting during growth on the structural, electrical, optical properties and defect density of the LiNbO{sub 3} crystals were investigated. It was found that the defect density in the crystals reduced for tilting the mirror in the TMFZ method. The chemical analysis revealed that the grown crystals were of high quality with uniform composition. The single crystals grown by TMFZ method contains no low-angle grain boundaries, indicating that they can be used for high efficiency optoelectronic devices. (author)

  18. Advanced applications of ion channeling for the study of imperfections in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M L [North Carolina Univ., Chapel Hill, NC (United States)

    1997-03-01

    A review will be given of the applications of medium energy ion channeling for the studies of imperfections in the near-surface regions of crystals. The following topics will be discussed: (1.) epitaxial layers, including elemental depositions of a few monolayers, strained-layer superlattices, and compound layers; (2.) lattice defects, including ion damage in diamond, dislocation networks in Si, and anomalous lattice vibrations in high temperature superconductors; (3.) lattice sites of solute atoms, including substitutional sites in compounds (LiNbO{sub 3} and GaP), and interstitial sites produced by association with point defects. (author)

  19. Crystal structure and conformational flexibility of the unligated FK506-binding protein FKBP12.6

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui; Mustafi, Sourajit M. [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); LeMaster, David M. [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); University at Albany – SUNY, Empire State Plaza, Albany, NY 12201 (United States); Li, Zhong [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Héroux, Annie [Brookhaven National Laboratory, Upton, NY 11973 (United States); Li, Hongmin; Hernández, Griselda, E-mail: griselda@wadsworth.org [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); University at Albany – SUNY, Empire State Plaza, Albany, NY 12201 (United States)

    2014-03-01

    Two crystal forms of unligated FKBP12.6 exhibit multiple conformations in the active site and in the 80s loop, the primary site for known protein-recognition interactions. The previously unreported NMR backbone assignment of FKBP12.6 revealed extensive doubling of amide resonances, which reflects a slow conformational transition centered in the 80s loop. The primary known physiological function of FKBP12.6 involves its role in regulating the RyR2 isoform of ryanodine receptor Ca{sup 2+} channels in cardiac muscle, pancreatic β islets and the central nervous system. With only a single previously reported X-ray structure of FKBP12.6, bound to the immunosuppressant rapamycin, structural inferences for this protein have been drawn from the more extensive studies of the homologous FKBP12. X-ray structures at 1.70 and 1.90 Å resolution from P2{sub 1} and P3{sub 1}21 crystal forms are reported for an unligated cysteine-free variant of FKBP12.6 which exhibit a notable diversity of conformations. In one monomer from the P3{sub 1}21 crystal form, the aromatic ring of Phe59 at the base of the active site is rotated perpendicular to its typical orientation, generating a steric conflict for the immunosuppressant-binding mode. The peptide unit linking Gly89 and Val90 at the tip of the protein-recognition ‘80s loop’ is flipped in the P2{sub 1} crystal form. Unlike the >30 reported FKBP12 structures, the backbone conformation of this loop closely follows that of the first FKBP domain of FKBP51. The NMR resonances for 21 backbone amides of FKBP12.6 are doubled, corresponding to a slow conformational transition centered near the tip of the 80s loop, as recently reported for 31 amides of FKBP12. The comparative absence of doubling for residues along the opposite face of the active-site pocket in FKBP12.6 may in part reflect attenuated structural coupling owing to increased conformational plasticity around the Phe59 ring.

  20. X-ray diffraction from ideal mosaic crystals in external fields of certain types. I. Atomic displacements and the corresponding diffraction patterns

    International Nuclear Information System (INIS)

    Treushnikov, E.N.

    2000-01-01

    The problem of the theoretical description of X-ray diffraction from ideal mosaic crystals under the effect of various external fields has been formulated. Electric, magnetic, electromagnetic, and acoustic perturbations are considered. The atomic displacements in crystals under the effect of external fields and the types of the corresponding diffraction patterns are analyzed for various types of perturbations. The crystal classes are determined in which atomic displacements can be recorded experimentally. Diffraction patterns formed under the effect of various external factors are considered on the basis of the derived dependence of the structure factor on the characteristics of an applied force field

  1. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    Science.gov (United States)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  2. Electron density distribution and crystal structure of 27R-AlON, Al9O3N7

    International Nuclear Information System (INIS)

    Asaka, Toru; Banno, Hiroki; Funahashi, Shiro; Hirosaki, Naoto; Fukuda, Koichiro

    2013-01-01

    The crystal structure of Al 9 O 3 N 7 was characterized by laboratory X-ray powder diffraction (CuKα 1 ). The title compound is trigonal with space group R3-bar m (centrosymmetric). The hexagonal unit-cell dimensions (Z=3) are a=0.30656(2) nm, c=7.2008(3) nm and V=0.58605(5) nm 3 . The initial structural model was derived by the powder charge-flipping method and subsequently refined by the Rietveld method. The final structural model showed the positional disordering of two of the five types of Al sites. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The disordered crystal structure was successfully described by overlapping five types of domains with ordered atom arrangements. The distribution of atomic positions in one of the five types of domains can be achieved in the space group R3 ¯ m. The atom arrangements in the four other domains are noncentrosymmetric with the space group R3m. Two of the four types of domains are related by a pseudo-symmetry inversion, and the two remaining domains also have each other the inversion pseudo-symmetry. The very similar domain structure has been also reported for 21R-AlON (Al 7 O 3 N 5 ) in our previous study. - Graphical abstract: A bird’s eye view of electron densities up to 50% (0.074 nm −3 ) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of Al 9 O 3 N 7 . Highlights: • Crystal structure of Al 9 O 3 N 7 is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping five types of domains with ordered atom arrangements

  3. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  4. Solving crystal structures with the symmetry minimum function

    International Nuclear Information System (INIS)

    Estermann, M.A.

    1995-01-01

    Unravelling the Patterson function (the auto-correlation function of the crystal structure) (A.L. Patterson, Phys. Rev. 46 (1934) 372) can be the only way of solving crystal structures from neutron and incomplete diffraction data (e.g. powder data) when direct methods for phase determination fail. The negative scattering lengths of certain isotopes and the systematic loss of information caused by incomplete diffraction data invalidate the underlying statistical assumptions made in direct methods. In contrast, the Patterson function depends solely on the quality of the available diffraction data. Simpson et al. (P.G. Simpson et al., Acta Crystallogr. 18 (1965) 169) showed that solving a crystal structure with a particular superposition of origin-shifted Patterson functions, the symmetry minimum function, is advantageous over using the Patterson function alone, for single-crystal X-ray data.This paper describes the extension of the Patterson superposition approach to neutron data and powder data by (a) actively using the negative regions in the Patterson map caused by negative scattering lengths and (b) using maximum entropy Patterson maps (W.I.F. David, Nature 346 (1990) 731). Furthermore, prior chemical knowledge such as bond lengths and angles from known fragments have been included. Two successful structure solutions of a known and a previously unknown structure (M. Hofmann, J. Solid State Chem., in press) illustrate the potential of this new development. ((orig.))

  5. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  6. Yb5Ni4Sn10 and Yb7Ni4Sn13: New polar intermetallics with 3D framework structures

    International Nuclear Information System (INIS)

    Lei Xiaowu; Sun Zhongming; Li Longhua; Zhong Guohua; Hu Chunli; Mao Jianggao

    2010-01-01

    The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb 5 Ni 4 Sn 10 adopts the Sc 5 Co 4 Si 10 structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) A, c=4.492 (2) A, V=853.7(5) A 3 , and Z=2. Yb 7 Ni 4 Sn 13 is isostructural with Yb 7 Co 4 InGe 12 and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) A, c=4.5318(4) A, V=562.69(7) A 3 , and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements. - Graphical abstract: Two new ytterbium nickel stannides, namely, Yb 5 Ni 4 Sn 10 and Yb 7 Ni 4 Sn 13 , have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.

  7. Equipment and building structures ageing management for WWER type NPPs

    International Nuclear Information System (INIS)

    Mayboroda, O.

    2001-01-01

    This report presents the working group 'Equipment and building structures ageing management for WWER type NPPs' activities. The analysis of experience in ageing management, recommendations for regulatory guidelines on ageing management, investigation of case studies, definition suitable communication channels among regulators for ageing related data are given. Analyses of water chemistry, inspection data (safety margins criteria), plugging criteria, volume and time of ECT implementation in all WWER countries are presented. The results of Working group activity show that it is advisable to concentrate efforts on: set up the permanent communication channel among regulators, collection of regulatory criteria for WWER type NPP key components based on understanding of ageing mechanisms and data collection

  8. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi

    2003-01-01

    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  9. A method to align a bent crystal for channeling experiments by using quasichanneling oscillations

    Science.gov (United States)

    Sytov, A. I.; Guidi, V.; Tikhomirov, V. V.; Bandiera, L.; Bagli, E.; Germogli, G.; Mazzolari, A.; Romagnoni, M.

    2018-04-01

    A method to calculate both the bent crystal angle of alignment and radius of curvature by using only one distribution of deflection angles has been developed. The method is based on measuring of the angular position of recently predicted and observed quasichanneling oscillations in the deflection angle distribution and consequent fitting of both the radius and angular alignment by analytic formulae. In this paper this method is applied on the example of simulated angular distributions over a wide range of values of both radius and alignment for electrons. It is carried out through the example of (111) nonequidistant planes though this technique is general and could be applied to any kind of planes. In addition, the method application constraints are also discussed. It is shown by simulations that this method, being in fact a sort of beam diagnostics, allows one in a certain case to increase the crystal alignment accuracy as well as to control precisely the radius of curvature inside an accelerator tube without vacuum breaking. In addition, it speeds up the procedure of crystal alignment in channeling experiments, reducing beamtime consuming.

  10. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  11. New channeling effects in the radiative emission of 150 GeV electrons in a thin germanium crystal

    International Nuclear Information System (INIS)

    Belkacem, A.; Chevallier, M.; Gaillard, M.J.; Genre, R.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Bologna, G.; Peigneux, J.P.; Sillou, D.; Spighel, M.; Cue, N.; Kimball, J.C.; Marsh, B.; Sun, C.R.

    1986-01-01

    The orientation dependence of the radiative emission of 150 GeV electrons and positrons incident at small angles with respect to the axial direction of a thin (0.185 mm) Ge crystal has been observed. The processes are well understood, except for channeled electrons, which radiate unexpected high energy photons. (orig.)

  12. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1475929: Experimental Crystal Structure Determination : trimethylammonium tribromo-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  15. CCDC 1475930: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  16. CCDC 1475931: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  17. CCDC 1482638: Experimental Crystal Structure Determination : trimethylammonium trichloro-tin(iv)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from

  18. Crystal structure of (NH4)2[Fe(II) 5(HPO3)6], a new open-framework phosphite.

    Science.gov (United States)

    Berrocal, Teresa; Mesa, Jose Luis; Larrea, Edurne; Arrieta, Juan Manuel

    2014-11-01

    Di-ammonium hexa-phosphito-penta-ferrate(II), (NH4)2[Fe5(HPO3)6], was synthesized under mild hydro-thermal conditions and autogeneous pressure, yielding twinned crystals. The crystal structure exhibits an [Fe(II) 5(HPO3)6](2-) open framework with NH4 (+) groups as counter-cations. The anionic skeleton is based on (001) sheets of [FeO6] octa-hedra (one with point-group symmetry 3.. and one with .2.) linked along [001] through [HPO3](2-) oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO6] octa-hedra, giving rise to channels with a radius of ca 3.1 Å in which the disordered NH4 (+) cations are located. The IR spectrum shows vibrational bands typical for phosphite and ammonium groups.

  19. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    In this work, we investigated the formation of n-type polysilicon films on alumina substrates by overdoping a p-type silicon layer obtained by aluminium induced crystallization of amorphous silicon (AIC), and subsequent epitaxy. The phosphorus doping of the AIC was carried out by thermal diffusion from a solid source. The structural quality of the n-type Si film was monitored by optical microscope and scanning electron microscope (SEM). The doping efficiency was determined by resistivity measurements and secondary ion mass spectroscopy (SIMS). The sheet resitivity changed from 2700{omega}/sq to 19.6{omega}/sq after thermal diffusion at 950 deg. C for 1h, indicating the overdoping effect. The SIMS profile carried out after the high temperature epitaxy exhibits a two steps phosphorus distribution, indicating the formation of an n{sup +}n structure.

  20. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  1. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  2. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  3. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The cover scales on the wing of the Emerald-patched Cattleheart butterfly, Parides sesostris, contain gyroid-type biological photonic crystals that brightly reflect green light. A pigment, which absorbs maximally at approximately 395 nm, is immersed predominantly throughout the elaborate upper lamina. This pigment acts as a long-pass filter shaping the reflectance spectrum of the underlying photonic crystals. The additional effect of the filtering is that the spatial distribution of the scale reflectance is approximately angle-independent, leading to a stable wing pattern contrast. The spectral tuning of the original reflectance is verified by photonic band structure modelling. PMID:24098853

  4. Modulated crystal structures of VII and V phases in (NH4)3H(SO4)2. I. Neutron Laue diffraction

    International Nuclear Information System (INIS)

    McIntyre, G.; Smirnov, L.S.; Baranov, A.I.; Dolbinina, V.V.; Frontas'eva, M.V.; Pavlov, S.S.; Pankratova, Yu.S.

    2010-01-01

    The study of crystal structures of VII and V phases of (NH 4 ) 3 H(SO 4 ) 2 by means of neutron Laue diffraction is carried out at temperatures from 5 to 300 K. It is found that crystal structures of VII and V phases have incommensurate modulation with different periods, and phase transition from phase VII to phase V is transition of the first type

  5. T-type Ca2+ channels. New players in the aging brain

    Czech Academy of Sciences Publication Activity Database

    Proft, Juliane; Weiss, Norbert

    2014-01-01

    Roč. 7, č. 2 (2014), e28424/1-e28424/4 ISSN 1942-0889 Institutional support: RVO:61388963 Keywords : Alzheimer's disease * Amyloid beta * calcium channel * calcium signaling * T-type channel Subject RIV: CE - Biochemistry

  6. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  7. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  8. Perspective channel-type reactor with enhanced safety

    International Nuclear Information System (INIS)

    Adamov, E.O.; Grozdov, I.I.; Kuznetsov, S.P.; Petrov, A.A.; Rozhdestvensky, M.I.; Cherkashov, Yu.M.

    1994-01-01

    Following the search for new design solutions to develop within the framework of channel trends the reactor with enhanced safety the Research and Development Institute of Power Engineering has developed the design of the multiloop boiling water reactor (MKER). The MKER enhanced safety is attained when involving the inherent safety features, passive safety systems as well as the accident consequences confinement devices. The design realizes several advantages which are typical of the channel-type reactors, namely: The design desintegration simplifying the manufacture, control, equipment delivery and decreasing, versus the pressure vessel reactors, the accident effect if it proceeds in an explosive manner; small operating reactivity margin and fuel burnup increased due to continuous refuelling; fuel cycle flexibility allowing comparatively easily to adopt the reactor to the conjuncture of the country fuel balance; multiloop circuit of the main coolant which reduces the degree and effect of the accidents connected with the equipment and pipings rupture; monitoring of the channels and fuel assemblies leak-tightness. (orig.)

  9. Magnetic and Crystal Structure of α-RuCl3

    Science.gov (United States)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  10. A novel 2 T P-channel nano-crystal memory for low power/high speed embedded NVM applications

    International Nuclear Information System (INIS)

    Zhang Junyu; Wang Yong; Liu Jing; Zhang Manhong; Xu Zhongguang; Huo Zongliang; Liu Ming

    2012-01-01

    We introduce a novel 2 T P-channel nano-crystal memory structure for low power and high speed embedded non-volatile memory (NVM) applications. By using the band-to-band tunneling-induced hot-electron (BTBTIHE) injection scheme, both high-speed and low power programming can be achieved at the same time. Due to the use of a select transistor, the 'erased states' can be set to below 0 V, so that the periphery HV circuit (high-voltage generating and management) and read-out circuit can be simplified. Good memory cell performance has also been achieved, including a fast program/erase (P/E) speed (a 1.15 V memory window under 10 μs program pulse), an excellent data retention (only 20% charge loss for 10 years). The data shows that the device has strong potential for future embedded NVM applications. (semiconductor devices)

  11. Pricing Decision under Dual-Channel Structure considering Fairness and Free-Riding Behavior

    Directory of Open Access Journals (Sweden)

    Yongmei Liu

    2014-01-01

    Full Text Available Under dual-channel structure, the free-riding behavior based on different service levels between online channel and offline channel cannot be avoided, which would lead to channel unfairness. This study implies that the dual-channel supply chain is built up by online channel controlled by manufacturer and traditional channel controlled by retailer, respectively. Under this channel structure, we rebuild the linear demand function considering free-riding behavior and modify the pricing model based on channel fairness. Then the influences of fair factor and free-riding behavior on manufacturer and retailer pricing and performance are discussed. Finally, we propose some numerical analysis to provide some valuable recommendations for manufacturer and retailer improving channel management performance.

  12. Crystal Structure of AgBi2I7 Thin Films.

    Science.gov (United States)

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  13. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    Science.gov (United States)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  14. Crystal structure and physical properties of CePt{sub 2.4}Al{sub 0.6}

    Energy Technology Data Exchange (ETDEWEB)

    Provino, A., E-mail: alessia.sting@gmail.com [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Bhattacharyya, A. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 (India); Science and Technology Facilities Council, Rutherford Appleton Laboratory, Excitations and Polarized Neutrons Group, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Negretti, L. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Kulkarni, R.; Thamizhavel, A.; Dhar, S.K. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Colaba, Mumbai 400005 (India)

    2015-02-15

    Highlights: • New CePt{sub 2.4}Al{sub 0.6} compound crystallizes in the hexagonal CeNi{sub 3}-type (hP24, P6{sub 3}/mmc). • This crystal structure is a nearly ordered ternary derivative of CeNi{sub 3} prototype. • CePt{sub 2.4}Al{sub 0.6} compound orders ferromagnetically at 1.6 K; Ce ions in trivalent state. • Magnetization, electrical resistivity, low-T heat capacity have been measured. • Negative magnetoresistivity below ∼15 K shows short-range FM in paramagnetic state. - Abstract: The new compound CePt{sub 2.4}Al{sub 0.6} crystallizes in the hexagonal CeNi{sub 3}-type (hP24, space group P6{sub 3}/mmc, N. 194), with lattice parameters a = 5.5203(3) Å and c = 16.886(1) Å; its crystal structure represents a nearly ordered ternary derivative of this prototype. The cerium ions in CePt{sub 2.4}Al{sub 0.6} are in the normal trivalent state and order magnetically near 1.6 K as inferred from the low temperature heat capacity. The magnetic ordering is presumably ferromagnetic as suggested by the behavior of heat capacity in applied magnetic fields. The magnetoresistivity below ∼15 K is negative and is tentatively attributed to the presence of ferromagnetic short range order in the paramagnetic state.

  15. Praseodymium valency from crystal structure in Pr-Ba-Cu-O and (Y-Pr)-Ba-Cu-O single crystals

    International Nuclear Information System (INIS)

    Collin, G.; Albouy, P.A.; Monod, P.; Ribault, M.

    1990-01-01

    The substitution of Pr to Y leads to materials with a general formula (Y 1-v Pr v ) (Ba 2-x Pr x ) (Cu 3-y vac y ) O 6+x/2-y+z and with a structural transition around v + x' ∼ 0.5. For v + x 0.5 the crystals are tetragonal, La 1.5 Ba 1.5 Cu 3 O 7±z type, with the characteristic tri-twinning of this phase. The Pr valency, in the range 3-3.2 + depending on preparation conditions, is determined from interatomic distances. Orthorhombic crystals of Pr Ba Cu O prepared at high temperatures exhibit a high amount of defects, y ∼ 0.25 on the Cu(1) site and are semiconductors with a T -1/4 activation law attributed to the praseodymium valence fluctuation

  16. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  17. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Badreddine Douzi

    Full Text Available The type VI secretion system (T6SS is a widespread machine used by bacteria to control their environment and kill or disable bacterial species or eukaryotes through toxin injection. The T6SS comprises a central tube formed of stacked hexamers of hemolysin co-regulated proteins (Hcp and terminated by a trimeric valine-glycine repeat protein G (VgrG component, the cell puncturing device. A contractile tail sheath, formed by the TssB and TssC proteins, surrounds this tube. This syringe-like machine has been compared to an inverted phage, as both Hcp and VgrG share structural homology with tail components of Caudovirales. Here we solved the crystal structure of a tryptophan-substituted double mutant of Hcp1 from enteroaggregative Escherichia coli and compared it to the structures of other Hcps. Interestingly, we observed that the purified Hcp native protein is unable to form tubes in vitro. To better understand the rationale for observation, we measured the affinity of Hcp1 hexamers with themselves by surface plasmon resonance. The intra-hexamer interaction is weak, with a KD value of 7.2 µM. However, by engineering double cysteine mutants at defined positions, tubes of Hcp1 gathering up to 15 stacked hexamers formed in oxidative conditions. These results, together with those available in the literature regarding TssB and TssC, suggest that assembly of the T6SS tube differs significantly from that of Sipho- or Myoviridae.

  18. Study on parameters of self-oscillations of the coolant flow rate in an evaporating channel of a boiling-type reactor

    International Nuclear Information System (INIS)

    Proshutinskij, A.P.; Lobachev, A.G.

    1979-01-01

    The experimental data on the oscillation frequencies and amplitudes of the coolant flow rate at the limit of the thermohydraulic stability of the boiling type reactor evaporating channel are presented. The experiments have been carried out on the channel simulators of three modifications -smooth-tube, with intensifiers of a transverse crimp type and of an inner spiral ribbing type. The range of the investigated regime parameters is as follows: the pressure - 2.5-14MPa; the heat flux density is 0.015-0.8MV/m 2 , mass velocity is 252-2520 kg/(m 2 xs), the temperature at the channel entrance is from 50 deg C up to (tsub(s) -5)deg C. The experimental data analysis is carried out on the assumption that the period of parameter oscillations in the steam generating channel equals the time of the coolant transfer through the channel. The formular is obtained which provides 25% accuracy of the oscillation frequency calculation in the range of underheating parameter variation B=0.5-3.0. As a result the following conclusions have been made: the oscillation frequency of the coolant flow rate is connected with the time of its transfer through the channel and does not practically depend on the type of the heat exchange intensifiers and the degree of the flux throttling at the channel entrance; the self-oscillation amplitude of the coolant flow rate depends on the regime and structural parameters as well

  19. Crystal Structure of a Trapped Catalytic Intermediate Suggests that Forced Atomic Proximity Drives the Catalysis of mIPS

    OpenAIRE

    Neelon, Kelly; Roberts, Mary F.; Stec, Boguslaw

    2011-01-01

    1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutant...

  20. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Weiyun Huang

    2017-02-01

    Full Text Available ABSTRACT Voltage-gated sodium (Nav channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

  1. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  2. Crystallization and preliminary X-ray diffraction studies of the tetramerization domain derived from the human potassium channel Kv1.3

    International Nuclear Information System (INIS)

    Winklmeier, Andreas; Weyand, Michael; Schreier, Christina; Kalbitzer, Hans Robert; Kremer, Werner

    2009-01-01

    The tetramerization domain of human Kv1.3 was cloned, expressed, purified and crystallized. The crystals belonged to space group I4 and diffracted to 1.2 Å resolution using synchrotron radiation. The tetramerization domain (T1 domain) derived from the voltage-dependent potassium channel Kv1.3 of Homo sapiens was recombinantly expressed in Escherichia coli and purified. The crystals were first grown in an NMR tube in 150 mM potassium phosphate pH 6.5 in the absence of additional precipitants. The crystals showed I4 symmetry characteristic of the naturally occurring tetrameric assembly of the single subunits. A complete native data set was collected to 1.2 Å resolution at 100 K using synchrotron radiation

  3. PDF analysis on re-crystallized structure from amorphous BiT

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Yasuhiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)]. E-mail: yoneda@spring8.or.jp; Kohara, Shinji [Synchrotron Radiation Research Laboratory, Japan Synchrotron Radiation, Research Institute, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hamazaki, Shin' ichi [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Takashige, Masaaki [Department of Electronics, Iwaki Meisei University, Iino 5-5-1, Chuohdai, Fukushima 970-8551 (Japan); Mizuki, Jun' ichiro [Japan Atomic Energy Research Institute, Synchrotron Radiation Research Center, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2005-08-15

    A glass sample of composition Bi{sub 4}Ti{sub 3}O{sub 12} was prepared by rapid quenching. The as-quenched sample was confirmed to be amorphous by synchrotron X-ray measurements. The crystallization process of the amorphous sample was also investigated by high-energy X-ray diffraction and by atomic pair distribution function analysis. The perovskite layer in the crystal Bi{sub 4}Ti{sub 3}O{sub 12} is transformed to a pyrochlore structure in the amorphous sample. The amorphous sample first crystallized to a metastable phase by acquiring long-range ordering of the pyrochlore structure at T {sub cryst1}, and then secondary crystallized into a reverted Bi{sub 4}Ti{sub 3}O{sub 12} structure at T {sub cryst2}.

  4. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K. (Stanford-MED); (ConfometRx); (UCB Pharma)

    2017-02-06

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.

  5. Determination of Ni(II) crystal structure by powder x-ray diffraction ...

    African Journals Online (AJOL)

    X-ray powder diffraction pattern was used to determine the length of the unit cell, “a”, the lattice structure type, and the number of atoms per unit cell of Ni(II) crystal. The “a” value was determined to be 23.66 ± 0.005 Å, particle size of 34.87 nm, volume 13.24 Å and Strain value ε = 9.8 x 10-3. The cell search on PXRD patterns ...

  6. Nucleation of colloidal crystals on configurable seed structures

    NARCIS (Netherlands)

    Hermes, M; Vermolen, E.C.M.; Leunissen, M.E.; Vossen, D.L.J.; van Oostrum, P.D.J.; Dijkstra, M.; van Blaaderen, A.

    2011-01-01

    Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due

  7. Crystal structure of MboIIA methyltransferase.

    Science.gov (United States)

    Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  8. Discussion on several problems on the mineralization of paleo-channel sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Huang Shijie

    1997-01-01

    On the basis of comprehensively analyzing paleo-channel sandstone type uranium deposits at home and abroad, the author discusses the division of mineralization types of paleo-channel sandstone type uranium deposits, and analyzes the metallogenic geologic conditions such as regional geologic background, climatic and geomorphological conditions, basement and sedimentary cover, characteristics of paleo-valley and paleo-channel, mineralization features as well as epigenetic metallogenic process. Future prospecting direction is also proposed

  9. Channeling and dynamic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, IU L; Gonchar, V IU; Truten, V I; Shulga, N F

    1986-01-01

    It is shown that axial channeling of relativistic electrons can give rise to the effect of dynamic chaos which involves essentially chaotic motion of a particle in the channel. The conditions leading to the effect of dynamic chaos and the manifestations of this effect in physical processes associated with the passage of particles through a crystal are examined using a silicon crystal as an example. 7 references.

  10. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  11. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  12. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  13. Crystal structure and chemical bonding analysis of BaPtCd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gulo, Fakhili [Department of Chemical Education, Sriwijaya University, Inderalaya 30662, South Sumatra (Indonesia); Koehler, Juergen [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2015-03-15

    The new ternary intermetallic phase, BaPtCd{sub 2}, was synthesized by solid-state reaction from direct combination of the elements in a stoichiometric mixture. The reaction was done at 850 C for 15 h, followed by an equilibration at 600 C for 4 d. The crystal structure was determined by X-ray diffraction method on a single crystal. BaPtCd{sub 2} is isotypic to MgCuAl{sub 2} and crystallizes in the orthorhombic space group Cmcm [a = 4.467(2), b = 11.143(4), c = 8.240(3) Aa, V = 410.2(3) Aa{sup 3}, and Z = 4]. Barium atoms are linked together forming zigzag chains. Cadmium atoms are bonded to each other forming six-membered rings of platinum centered boat and anti-boat conformations. BaPtCd{sub 2} contains 16 electrons per formula unit and belongs to the electron poorest compounds with MgCuAl{sub 2} type structure. Calculations based on the linear muffin-tin orbitals method in the atomic spheres approximation show that significant bonding states in BaPtCd{sub 2} are unoccupied. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  15. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  16. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  17. Two types of amorphous protein particles facilitate crystal nucleation.

    Science.gov (United States)

    Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G; Furukawa, Erika; Shirai, Manabu; Matsumoto, Hiroaki; Van Driessche, Alexander E S; Tsukamoto, Katsuo

    2017-02-28

    Nucleation, the primary step in crystallization, dictates the number of crystals, the distribution of their sizes, the polymorph selection, and other crucial properties of the crystal population. We used time-resolved liquid-cell transmission electron microscopy (TEM) to perform an in situ examination of the nucleation of lysozyme crystals. Our TEM images revealed that mesoscopic clusters, which are similar to those previously assumed to consist of a dense liquid and serve as nucleation precursors, are actually amorphous solid particles (ASPs) and act only as heterogeneous nucleation sites. Crystalline phases never form inside them. We demonstrate that a crystal appears within a noncrystalline particle assembling lysozyme on an ASP or a container wall, highlighting the role of heterogeneous nucleation. These findings represent a significant departure from the existing formulation of the two-step nucleation mechanism while reaffirming the role of noncrystalline particles. The insights gained may have significant implications in areas that rely on the production of protein crystals, such as structural biology, pharmacy, and biophysics, and for the fundamental understanding of crystallization mechanisms.

  18. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures.

    Science.gov (United States)

    Mayer, Mark L

    2017-11-21

    Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed. Published by Elsevier Inc.

  19. Pressure-induced Polarization Reversal in Z-type Hexaferrite Single Crystal

    Science.gov (United States)

    Jeon, Byung-Gu; Chun, Sae Hwan; Kim, Kee Hoon

    2012-02-01

    Multiferroic materials with a gigantic magnetoelectric (ME) coupling at room temperature have been searched for applications to novel devices. Recently, large direct and converse ME effects were realized at room temperature in the so-called Z-type hexaferrite (Ba,Sr)3Co2Fe24O41 single crystals [1,2]. To obtain a new control parameter for realizing a sensitive ME tuning, we studied ME properties of the crystals under uniaxial pressure. Upon applying a tiny uniaxial pressure of about 0.6 GPa, magnetic field-driven electric polarization reversal and anomaly in a M-H loop start to appear at 10 K and gradually disappear at higher temperature above 130 K. By comparing those results with longitudinal magnetostriction at ambient pressure, we propose the pressure-dependent variations of transverse conical spin configuration as well as its domain structure under small magnetic field bias, and point out the possibility of having two different physical origins of the ME coupling in this system. [1] Y. Kitagawa et al., Nat. Mater. 9, 797 (2010) [2] S. H. Chun et al., submitted.

  20. Photo-assisted Kelvin probe force microscopy investigation of three dimensional GaN structures with various crystal facets, doping types, and wavelengths of illumination

    Science.gov (United States)

    Ali Deeb, Manal; Ledig, Johannes; Wei, Jiandong; Wang, Xue; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-08-01

    Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron-hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influence of the polarity-induced charges is detectable. The SPV behavior of the non-polar m-facets of the Si-doped n-type part of a transferred GaN column is similar to that of a clean c-plane GaN surface during illumination. However, the SPV is smaller in magnitude, which is attributed to intrinsic surface states of m-plane surfaces and their influence on the band bending. The SPV behavior of the non-polar m-facet of the slightly Mg-doped part of this GaN column is found to behave differently. Compared to c- and r-facets of p-type surfaces of GaN-light-emitting diode micro-structures, the m-plane is more chemically stable.

  1. Multi-structure docking analysis of BACE1 crystal structures and non-peptidic ligands.

    Science.gov (United States)

    Haghighijoo, Zahra; Hemmateenejad, Bahram; Edraki, Najmeh; Miri, Ramin; Emami, Saeed

    2017-09-01

    In order to design novel non-peptidic inhibitors of BACE1, many research groups have attempted using computational studies including docking analyses. Since there are too many 3D structures for BACE1 in the protein database, the selection of suitable crystal structures is a key prerequisite for the successful application of molecular docking. We employed a multi-structure docking protocol. In which 615 ligands' structures were docked into 150 BACE1 structures. The large number of the resultant docking scores were post-processed by different data analysis methods including exploratory data analysis, regression analysis and discriminant analysis. It was found that using one crystal structure for docking did not result in high accuracy for predicting activity of the BACE1 inhibitors. Instead, using of the multi-structural docking scores, post-processed by chemometrics methods arrived to highly accurate predictive models. In this regards, the PDB accession codes of 4B70, 4DVF and 2WEZ could discriminate between active and inactive compounds, with higher accuracy. Clustering of the BACE1 structures based on principal component analysis of the crystallographic structures the revealed that the discriminant structures are in the center of the clusters. Thus, these structures can be selected as predominant crystal structures for docking studies of non-peptidic BACE1 inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis, single-crystal structure refinement and Fe/T site preference in the ternary borides Fe {sub x}T{sub 7-x}B{sub 3} (T = Ru, Rh; 0 < x {<=} 1.5)

    Energy Technology Data Exchange (ETDEWEB)

    Fokwa, Boniface P.T. [Institut fuer Anorganische Chemie, Rheinisch-Westfaelische Technische Hochschule Aachen, D-52056 Aachen (Germany); Dronskowski, Richard [Institut fuer Anorganische Chemie, Rheinisch-Westfaelische Technische Hochschule Aachen, D-52056 Aachen (Germany)]. E-mail: drons@HAL9000.ac.rwth-aachen.de

    2007-01-31

    Single crystals of the borides Fe {sub x}Rh{sub 7-x}B{sub 3} (1 < x < 1.5) and Fe {sub x}Ru{sub 7-x}B{sub 3} (0 < x < 1) have been synthesized by arc-melting the elements in a water-cooled copper crucible under argon atmosphere. The silver-like products, structurally characterized by single-crystal X-ray analysis, adopt the hexagonal Th{sub 7}Fe{sub 3} structure type (space group P6{sub 3} mc, no. 186) with Z = 2. Their structures consist of layers of boron-centered trigonal prisms of rhodium or ruthenium (Rh;Ru) and iron on the one side, and one-dimensional channels of face-sharing octahedral (Rh;Ru){sub 6} clusters on the other. Unlike in FeRh{sub 6}B{sub 3}, the iron substitution takes place at two (6c and 2b) of the three available rhodium/ruthenium positions, with a preference for the 6c site in the case of the Fe {sub x}Rh{sub 7-x}B{sub 3} compounds but not for Fe {sub x}Ru{sub 7-x}B{sub 3}.

  3. Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Poulsen, Christian B; Walter, Steen

    2011-01-01

    Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved......-type subtype (Ca(v) 3.1 and Ca(v) 3.2) voltage-gated calcium channels (Ca(v)s), and quantitative PCR showed highest expression of L-type channels in renal arteries and variable expression between patients of subtypes of calcium channels in intrarenal vessels. Immunohistochemical labeling of kidney sections...

  4. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.; Li, Sheng; Tickle, Ian J.; Bricogne, Gérard; Saphire, Erica Ollmann (Scripps); (Globel Phasing); (UCSD)

    2016-11-09

    ABSTRACT

    Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generatype='genus-species'>Marburgvirusandtype='genus-species'>Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV.

    IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the

  5. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  6. Observation of diffraction effects in positron channeling

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Peng, J.P.; Lynn, K.G.; Wu, X.Y.; Schultz, P.J.

    1994-01-01

    An experimental investigation of positron channeling was made with a high-angular resolution apparatus, employing positrons of kinetic energy 1 MeV, derived from the Brookhaven National Laboratory Dynamitron. The pattern of transmission through a Si (100) single crystal of thickness 0.245 μm was investigated for a number of major planes. The authors have observed for the first time, in excellent detail, the fine structure of the channeling pattern expected to arise from the particle diffraction effects, theoretically explainable in terms of the quantum-mechanical many-beam calculations

  7. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    Science.gov (United States)

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.

  8. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  9. Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein

    International Nuclear Information System (INIS)

    Petit-Haertlein, Isabelle; Blakeley, Matthew P.; Howard, Eduardo; Hazemann, Isabelle; Mitschler, Andre; Haertlein, Michael; Podjarny, Alberto

    2009-01-01

    Perdeuterated type III antifreeze protein has been expressed, purified and crystallized. Preliminary neutron data collection showed diffraction to 1.85 Å resolution from a 0.13 mm 3 crystal. The highly homologous type III antifreeze protein (AFP) subfamily share the capability to inhibit ice growth at subzero temperatures. Extensive studies by X-ray crystallography have been conducted, mostly on AFPs from polar fishes. Although interactions between a defined flat ice-binding surface and a particular lattice plane of an ice crystal have now been identified, the fine structural features underlying the antifreeze mechanism still remain unclear owing to the intrinsic difficulty in identifying H atoms using X-ray diffraction data alone. Here, successful perdeuteration (i.e. complete deuteration) for neutron crystallographic studies of the North Atlantic ocean pout (Macrozoarces americanus) AFP in Escherichia coli high-density cell cultures is reported. The perdeuterated protein (AFP D) was expressed in inclusion bodies, refolded in deuterated buffer and purified by cation-exchange chromatography. Well shaped perdeuterated AFP D crystals have been grown in D 2 O by the sitting-drop method. Preliminary neutron Laue diffraction at 293 K using LADI-III at ILL showed that with a few exposures of 24 h a very low background and clear small spots up to a resolution of 1.85 Å were obtained using a ‘radically small’ perdeuterated AFP D crystal of dimensions 0.70 × 0.55 × 0.35 mm, corresponding to a volume of 0.13 mm 3

  10. CHANNELING OF B-IONS IN SILICON

    NARCIS (Netherlands)

    VOS, M; MITCHELL, [No Value; SMULDERS, PJM

    We present new results on the channeling of B ions in Si crystals. Standard surface barrier detectors have been used to record energy spectra for B ions backscattered from the near surface (approximately 1500 angstrom) of a silicon crystal, under perfect, and near axial and planar channeling

  11. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  12. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D. (Scripps)

    2012-03-27

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  13. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  14. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  15. Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8-ySryAl14Si32 (0.6≤y≤1.3) prepared by aluminum flux

    International Nuclear Information System (INIS)

    Roudebush, John H.; Toberer, Eric S.; Hope, Hakon; Jeffrey Snyder, G.; Kauzlarich, Susan M.

    2011-01-01

    The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3-bar n. Electron microprobe characterization indicates the composition to be Ba 8-y Sr y Al 14.2(2) Si 31.8(2) (0.77 1 =0.0233, wR 2 =0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered. -- Graphical abstract: The inorganic type-I clathrate phase with nominal composition Ba 7 Sr 1 Al 14 Si 32 has been prepared by Al flux. Single crystal diffraction at 90 and 12 K reveal that the framework is fully occupied with the cation sites nearly fully occupied. The lattice thermal conductivity is low thereby suggesting further optimization of the carrier concentration will lead to a high zT. Display Omitted Highlights: → Ba 7 Sr 1 Al 14 Si 32 is a light element phase ideal for thermoelectric power generation. → Ba 7 Sr 1 Al 14 Si 32 is a high melting point cubic structure ideal for efficient power generation. → The framework is fully occupied with the cation sites nearly fully occupied. → Further optimization of the carrier concentration is expected to lead to a high zT.

  16. Yb-doped rod-type photonic crystal fibers for single-mode amplification

    DEFF Research Database (Denmark)

    Poli, Frederica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression.......The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression....

  17. Structure of initial crystals formed during human amelogenesis

    Science.gov (United States)

    Cuisinier, F. J. G.; Voegel, J. C.; Yacaman, J.; Frank, R. M.

    1992-02-01

    X-ray diffraction analysis revealed only the existence of carbonated hydroxyapatite (c.HA) during amelogenesis, whereas conventional transmission electron microscopy investigations showed that developing enamel crystals have a ribbon-like habit. The described compositional changes could be an indication for the presence of minerals different from c.HA. However, the absence of identification of such a mineral shows the need of studies by high resolution electron microscopy (HREM) of initial formed human enamel crystals. We demonstrate the existence of two crystal families involved in the early stages of biomineralization: (a) nanometer-size particles which appeared as a precursor phase; (b) ribbon-like crystals, with a structure closely related to c.HA, which by a progressive thickening process tend to attain the mature enamel crystal habit.

  18. Structures of the OmpF porin crystallized in the presence of foscholine-12.

    Science.gov (United States)

    Kefala, Georgia; Ahn, Chihoon; Krupa, Martin; Esquivies, Luis; Maslennikov, Innokentiy; Kwiatkowski, Witek; Choe, Senyon

    2010-05-01

    The endogenous Escherichia coli porin OmpF was crystallized as an accidental by-product of our efforts to express, purify, and crystallize the E. coli integral membrane protein KdpD in the presence of foscholine-12 (FC12). FC12 is widely used in membrane protein studies, but no crystal structure of a protein that was both purified and crystallized with this detergent has been reported in the Protein Data Bank. Crystallization screening for KdpD yielded two different crystals of contaminating protein OmpF. Here, we report two OmpF structures, the first membrane protein crystal structures for which extraction, purification, and crystallization were done exclusively with FC12. The first structure was refined in space group P21 with cell parameters a = 136.7 A, b = 210.5 A, c = 137 A, and beta = 100.5 degrees , and the resolution of 3.8 A. The second structure was solved at the resolution of 4.4 A and was refined in the P321 space group, with unit cell parameters a = 215.5 A, b = 215.5 A, c = 137.5 A, and gamma = 120 degrees . Both crystal forms show novel crystal packing, in which the building block is a tetrahedral arrangement of four trimers. Additionally, we discuss the use of FC12 for membrane protein crystallization and structure determination, as well as the problem of the OmpF contamination for membrane proteins overexpressed in E. coli.

  19. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands

    International Nuclear Information System (INIS)

    Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S.; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-01-01

    Crystals of the wild-type haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 and of its catalytically inactive variant DhaA13 were grown in the presence of various ligands and diffraction data were collected to high and atomic resolution. Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon–halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2 1 2 1 2 1 as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively

  20. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...