WorldWideScience

Sample records for channel structure final

  1. Ion channel structure. Final technical report, April 1, 1993--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    During the past decade, endogenous antimicrobial peptides have become recognized as important, ubiquitous, and ancient contributors to the innate mechanisms which permit animals (including humans), and plants to resist infection. Most of these host defense peptides are small (18-35 amino acids), amphipathic and possess either an {alpha}-helical or cystine-stabilized {beta}-sheet structure. These peptides are probably too small for enzymatic function and, so far, no specific receptors have been found. All evidence indicates that their target of action is the lipid matrix of the bacterial cytoplasmic membranes. This project aimed at clarifying the mechanism of peptide-membrane interactions, in particular the pore formation by the peptides which appear to be the mode of action of these antimicrobials. Tremendous progress was made during the project period. We summarize our findings in the following report.

  2. Study about the Asymmetry Competing Channel Structure under Bargaining Power

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lan; AI Xing-zheng

    2005-01-01

    On the problem of competing channel structure, we present asymmetry competing channel structure models under bargaining power, analyze the evolving process of channel structure under different bargaining power and product nature, find different bargaining power and product nature important role for channel structure, and also present equilibrium result. Furthermore, the academic proof for channel structure choice is presented.

  3. High transformer ratio of multi-channel dielectric wakefield structures

    Science.gov (United States)

    Shchelkunov, Sergey V.; Marshall, Thomas C.; Sotnikov, Gennadij V.; Hirshfield, Jay L.

    2016-09-01

    Dielectric wakefield (DWA) accelerator concepts are receiving attention on account of their promising performance, mechanical simplicity, and anticipated low cost. Interest in DWA physics directed toward an advanced high-gradient accelerator has been enhanced by a finding that some dielectrics can withstand very high fields (>1 GV/m) for the short times during the passage of charged bunches along dielectric-lined channels. In a two-channel structure, a drive bunch train propagates in a first channel, and in the second adjacent channel where a high gradient wakefield develops, a witness bunch is accelerated. Compared with single-channel DWA's, a two-beam accelerator delivers a high transformer ratio, and thereby reduces the number of drive beam sections needed to achieve a given final test beam energy. An overview of multi-channel DWA structures will be given, with an emphasis on two-channel structures, presenting their advantages and drawbacks, and potential impact on the field. Studies aimed to examine charging rate and charge distribution in a thin walled dielectric wakefield accelerator from a passing charge bunch and the physics of conductivity and discharge phenomena in dielectric materials useful for such accelerator applications are presented in a separate paper in the EAAC-2015 conference proceedings.

  4. High transformer ratio of multi-channel dielectric wakefield structures

    Energy Technology Data Exchange (ETDEWEB)

    Shchelkunov, Sergey V., E-mail: sergey.shchelkunov@gmail.com [Omega-P R& D, Inc, CT 06511 (United States); Yale University, CT (United States); Marshall, Thomas C. [Omega-P R& D, Inc, CT 06511 (United States); Sotnikov, Gennadij V. [NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Hirshfield, Jay L. [Omega-P R& D, Inc, CT 06511 (United States)

    2016-09-01

    Dielectric wakefield (DWA) accelerator concepts are receiving attention on account of their promising performance, mechanical simplicity, and anticipated low cost. Interest in DWA physics directed toward an advanced high-gradient accelerator has been enhanced by a finding that some dielectrics can withstand very high fields (>1 GV/m) for the short times during the passage of charged bunches along dielectric-lined channels. In a two-channel structure, a drive bunch train propagates in a first channel, and in the second adjacent channel where a high gradient wakefield develops, a witness bunch is accelerated. Compared with single-channel DWA's, a two-beam accelerator delivers a high transformer ratio, and thereby reduces the number of drive beam sections needed to achieve a given final test beam energy. An overview of multi-channel DWA structures will be given, with an emphasis on two-channel structures, presenting their advantages and drawbacks, and potential impact on the field. Studies aimed to examine charging rate and charge distribution in a thin walled dielectric wakefield accelerator from a passing charge bunch and the physics of conductivity and discharge phenomena in dielectric materials useful for such accelerator applications are presented in a separate paper in the EAAC-2015 conference proceedings.

  5. The complex channel networks of bone structure

    CERN Document Server

    Costa, Luciano da Fontoura; Beletti, Marcelo E

    2006-01-01

    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussed

  6. Pricing Decision under Dual-Channel Structure considering Fairness and Free-Riding Behavior

    Directory of Open Access Journals (Sweden)

    Yongmei Liu

    2014-01-01

    Full Text Available Under dual-channel structure, the free-riding behavior based on different service levels between online channel and offline channel cannot be avoided, which would lead to channel unfairness. This study implies that the dual-channel supply chain is built up by online channel controlled by manufacturer and traditional channel controlled by retailer, respectively. Under this channel structure, we rebuild the linear demand function considering free-riding behavior and modify the pricing model based on channel fairness. Then the influences of fair factor and free-riding behavior on manufacturer and retailer pricing and performance are discussed. Finally, we propose some numerical analysis to provide some valuable recommendations for manufacturer and retailer improving channel management performance.

  7. Brazing titanium structures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pressly, H.B.

    1977-03-01

    A vacuum furnace brazing process using Ag-5A1-0.5Mn brazing alloy has been developed for joining titanium alloy Ti-6Al-4V structures. Lap-shear strengths of the braze joints and the effects of the brazing thermal cycle on the tensile and bending properties of mill-annealed Ti-6Al-4V alloy sheet are reported. Nondestructive test methods were evaluated for detecting defects in these braze joints.

  8. Study about the Competing Channel Structure under Bargaining Power

    Institute of Scientific and Technical Information of China (English)

    AI Xing-zheng; ZHANG Chi

    2005-01-01

    From the bargaining process, competing channel structure models are presented. The evolving process of channel structure under different bargaining power is analyzed. The important role of different bargaining power is discussed and the equilibrium result is found. Also the theoretical evidences for competing channel structure choice are given.

  9. Structure selection and coordination in dual-channel supply chains

    Directory of Open Access Journals (Sweden)

    Jingjing Cai

    2015-04-01

    Full Text Available Purpose: This paper investigates the influence of channel structures and channel coordination on the supplier, the retailer and the entire supply chain in the context of two different kinds of marketing models: The common retailer and the exclusive shop.Methodology: With suppliers who manufacture the alternative commodities and retailers in the dual-channel supply chains as the object of the research, this paper compares suppliers' profits, consumer utility without coordination and contrasts suppliers' and retailers' profits with coordination to determine the range of the revenue sharing rates and which parameters are related.Findings: The analysis suggests the preference lists of the supplier and the retailer over channel structures with and without coordination are different, and depend on parameters like channel basic demand, channel cost and channel substitutability.Originality/value: In this research, new sales model for two suppliers should choose the same retailer or the exclusive retailers to sell their commodities.

  10. Piezo channels: from structure to function.

    Science.gov (United States)

    Volkers, Linda; Mechioukhi, Yasmine; Coste, Bertrand

    2015-01-01

    Mechanotransduction is the conversion of mechanical stimuli into biological signals. It is involved in the modulation of diverse cellular functions such as migration, proliferation, differentiation, and apoptosis as well as in the detection of sensory stimuli such as air vibration and mechanical contact. Therefore, mechanotransduction is crucial for organ development and homeostasis and plays a direct role in hearing, touch, proprioception, and pain. Multiple molecular players involved in mechanotransduction have been identified in the past, among them ion channels directly activated by cell membrane deformation. Most of these channels have well-established roles in lower organisms but are not conserved in mammals or fail to encode mechanically activated channels in mammals due to non-conservation of mechanotransduction property. A family of mechanically activated channels that counts only two members in human, piezo1 and 2, has emerged recently. Given the lack of valid mechanically activated channel candidates in mammals in the past decades, particular attention is given to piezo channels and their potential roles in various biological functions. This review summarizes our current knowledge on these ion channels.

  11. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    Science.gov (United States)

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  12. Molecular modeling of mechanosensory ion channel structural and functional features.

    Science.gov (United States)

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  13. Molecular modeling of mechanosensory ion channel structural and functional features.

    Directory of Open Access Journals (Sweden)

    Renate Gessmann

    Full Text Available The DEG/ENaC (Degenerin/Epithelial Sodium Channel protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1. MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  14. Na+ channel function, regulation, structure, trafficking and sequestration

    Science.gov (United States)

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  15. Modeling the ion channel structure of cecropin.

    OpenAIRE

    Durell, S R; Raghunathan, G.; Guy, H R

    1992-01-01

    Atomic-scale computer models were developed for how cecropin peptides may assemble in membranes to form two types of ion channels. The models are based on experimental data and physiochemical principles. Initially, cecropin peptides, in a helix-bend-helix motif, were arranged as antiparallel dimers to position conserved residues of adjacent monomers in contact. The dimers were postulated to bind to the membrane with the NH2-terminal helices sunken into the head-group layer and the COOH-termin...

  16. Emerging approaches to probing ion channel structure and function

    Institute of Scientific and Technical Information of China (English)

    Wei-Guang Li; Tian-Le Xu

    2012-01-01

    Ion channels,as membrane proteins,are the sensors of the cell.They act as the first line of communication with the world beyond the plasma membrane and transduce changes in the external and internal environments into unique electrical signals to shape the responses of excitable cells.Because of their importance in cellular communication,ion channels have been intensively studied at the structural and functional levels.Here,we summarize the diverse approaches,including molecular and cellular,chemical,optical,biophysical,and computational,used to probe the structural and functional rearrangements that occur during channel activation (or sensitization),inactivation (or desensitization),and various forms of modulation.The emerging insights into the structure and function of ion channels by multidisciplinary approaches allow the development of new pharmacotherapies as well as new tools useful in controlling cellular activity.

  17. Determination of channeling perspectives for complex crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, W.R.

    1993-03-01

    Specification of the atomic arrangement for axes and planes of high symmetry is essential for crystal alignment using Rutherford backscattering and for studies of the lattice location of impurities in single crystals. By rotation of an inscribed orthogonal coordinate system, a visual image for a given perspective of a crystal structure can be specified. Knowledge of the atomic arrangement permits qualitative channeling perspectives to be visualized and calculation of continuum potentials for channeling. Channeling angular-yield profiles can then be analytically modeled and, subsequently, shadowing by host atoms of positions within the unit cell predicted. Software to calculate transformed atom positions for a channeling perspective in a single crystal are described and illustrated for the spinel crystal structure.

  18. Molecular Structure of the Human CFTR Ion Channel.

    Science.gov (United States)

    Liu, Fangyu; Zhang, Zhe; Csanády, László; Gadsby, David C; Chen, Jue

    2017-03-23

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that uniquely functions as an ion channel. Here, we present a 3.9 Å structure of dephosphorylated human CFTR without nucleotides, determined by electron cryomicroscopy (cryo-EM). Close resemblance of this human CFTR structure to zebrafish CFTR under identical conditions reinforces its relevance for understanding CFTR function. The human CFTR structure reveals a previously unresolved helix belonging to the R domain docked inside the intracellular vestibule, precluding channel opening. By analyzing the sigmoid time course of CFTR current activation, we propose that PKA phosphorylation of the R domain is enabled by its infrequent spontaneous disengagement, which also explains residual ATPase and gating activity of dephosphorylated CFTR. From comparison with MRP1, a feature distinguishing CFTR from all other ABC transporters is the helix-loop transition in transmembrane helix 8, which likely forms the structural basis for CFTR's channel function.

  19. Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter.

    Science.gov (United States)

    Tilegenova, Cholpon; Cortes, D Marien; Cuello, Luis G

    2017-03-21

    Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K(+) channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K(+) channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K(+) as the permeant ion; (ii) that Cs(+) or Rb(+), known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.

  20. Structure and Mechanism of a Pentameric Formate Channel

    Energy Technology Data Exchange (ETDEWEB)

    Waight, A.; Love, J; Wang, D

    2010-01-01

    Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-{angstrom} structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-{angstrom} high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.

  1. Horticultural marketing channels in Kenya: Structure and development.

    NARCIS (Netherlands)

    Dijkstra, T.

    1997-01-01

    This study analyses the structure and development of horticultural marketing channels in Kenya. It is based primarily on a farm survey among some 500 farmers in Nyandarua, Kisii and Taita Taveta Districts and a trade survey of about 750 horticultural traders in 18 different market places. The survey

  2. Just How Final are Today's Quantum Structures?

    CERN Document Server

    Busch, P

    2001-01-01

    I present a selection of conceptual and mathematical problems in the foundations of modern physics as they derive from the title question. Contribution to a panel session, ``Springer Forum: Quantum Structures -- Physical, Mathematical and Epistemological Problems", held at the Biannual Symposium of the International Quantum Structures Association, Liptovsky Jan, September 1998. To appear in journal: Soft Computing (2001).

  3. The structure and regulation of magnesium selective ion channels.

    Science.gov (United States)

    Payandeh, Jian; Pfoh, Roland; Pai, Emil F

    2013-11-01

    The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.

  4. Structural and functional diversity of acidic scorpion potassium channel toxins.

    Directory of Open Access Journals (Sweden)

    Zong-Yun Chen

    Full Text Available BACKGROUND: Although the basic scorpion K(+ channel toxins (KTxs are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K(+ channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. PRINCIPAL FINDINGS: Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new α-KTx subfamilies (α-KTx28, α-KTx29, and α-KTx30, and two are new members of the known κ-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the α-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized α-helix-loop-β-sheet (CS-α/β fold motif that has no apparent α-helixs and β-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a K(d of 11.69 µM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized α-helix-loop-helix (CS-α/α fold scaffold motif, blocked both Kv1.3 and KCNQ1 channels. StKTx23 toxin, with a cystine-stabilized α-helix-loop-β-sheet (CS-α/β fold motif, could inhibit Kv1.3 channel, but not the KCNQ1 channel. CONCLUSIONS/SIGNIFICANCE: These findings characterize the structural and functional diversity of acidic KTxs, and could accelerate the development and clinical use of acidic KTxs as pharmacological tools and

  5. Guideline based structured documentation: the final goal?

    Science.gov (United States)

    Bürkle, Thomas; Ganslandt, Thomas; Tübergen, Dirk; Menzel, Josef; Kucharzik, Torsten; Neumann, Klaus; Schlüter, Stefan; Müller, Marcel; Veltmann, Ursula; Prokosch, Hans-Ulrich

    2002-01-01

    Structured documentation of medical procedures facilitates information retrieval for research and therapy and may help to improve patient care. Most medical documents until today however consist mainly of unstructured narrative text. Here we present an application for endoscopy which is not only fully integrated into a comprehensive clinical information system, but which also supports various degrees of structuring examination reports. The application is used routinely in a German University hospital since summer 2000. We present the first unstructured version which permits storage of a free text report together with selected examination images. The next step added improved structure to the document using a catalogue of index terms. The practical advantages of selective patient retrieval are described. Today we use a version which supports fully structured, guideline based documentation of endoscopy reports in order to automatically generate essential classification codes and the narrative examination report All versions have advantages and disadvantages and we conclude that guideline based documentation may not be suitable for all endoscopy cases.

  6. Structural engineering, mechanics and materials: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report on structural engineering, mechanics and materials is divided into three parts: a discussion on using Lanczos vectors and Ritz vectors for computing dynamic responses: solution of viscously damped linear systems using a finite element displacement formulation; and vibration analysis of fluid-solid systems using a finite element displacement formulation. (JF)

  7. Investigation of coal structure. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  8. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  9. Investigation of Nuclear Partonic Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Henry J. [Univ. of California, Berkeley, CA (United States); Engelage, J. M.

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  10. Insulating Structural Ceramics Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas

  11. Modeling of diffusion mechanism of conductive channel oxidation in a Pt/NiO/Pt memory switching structure

    Science.gov (United States)

    Sysun, V. I.; Bute, I. V.; Boriskov, P. P.

    2016-09-01

    The transition process from the low resistance state into the high resistance state in a Pt/NiO/Pt memory switching structure has been studied by numerical modeling. Detailed analysis shows, that thermally induced diffusion oxidation by nickel vacancies is the key factor for distortion of the channel metallic conductivity. Spatial dynamics of the process of oxidation defines channel narrowing mainly in its central part, and also sets the critical current through the structure sufficient for final rupture of the channel and the transition to high resistance state. The increase in critical current above the limit even by 10% reduces the switching time by an order of magnitude, which is in agreement with experiments. The developed radial diffusion model of conductive channel (or filaments) oxidation may be suitable for the analysis of switching effect a number of other ReRAM oxide structures.

  12. On the structural features of fiber suspensions in converging channel flow

    Institute of Scientific and Technical Information of China (English)

    林建忠; 张凌新

    2003-01-01

    The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective viscosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of the rate-of-strain tensor and the fiber orientation state; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local streamlines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of effective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds number but on the converging channel angle.

  13. The complete structure of an activated open sodium channel

    Science.gov (United States)

    Sula, Altin; Booker, Jennifer; Ng, Leo C. T.; Naylor, Claire E.; DeCaen, Paul G.; Wallace, B. A.

    2017-01-01

    Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4–S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate. PMID:28205548

  14. Study Competition Channel Structure Based on the Differences of Cost and Products

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lan; AI Xingzheng; ZHANG Chi

    2004-01-01

    The purpose of this paper is to expand Trivedig study on the influence of channel structure ,which based on product difference,to cost difference;and analyze the evolution course of channel structure under different conditions.We find that like product difference,cost difference have important influence on the choice of channel structure.This paper has improved the present result and provided proof for the choice of channel structure under different environments.

  15. Morphodynamics structures induced by variations of the channel width

    Science.gov (United States)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  16. The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs.

    Science.gov (United States)

    Shen, Peter S; Yang, Xiaoyong; DeCaen, Paul G; Liu, Xiaowen; Bulkley, David; Clapham, David E; Cao, Erhu

    2016-10-20

    The Polycystic Kidney Disease 2 (Pkd2) gene is mutated in autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic disorders. Here, we present the cryo-EM structure of PKD2 in lipid bilayers at 3.0 Å resolution, which establishes PKD2 as a homotetrameric ion channel and provides insight into potential mechanisms for its activation. The PKD2 voltage-sensor domain retains two of four gating charges commonly found in those of voltage-gated ion channels. The PKD2 ion permeation pathway is constricted at the selectivity filter and near the cytoplasmic end of S6, suggesting that two gates regulate ion conduction. The extracellular domain of PKD2, a hotspot for ADPKD pathogenic mutations, contributes to channel assembly and strategically interacts with the transmembrane core, likely serving as a physical substrate for extracellular stimuli to allosterically gate the channel. Finally, our structure establishes the molecular basis for the majority of pathogenic mutations in Pkd2-related ADPKD.

  17. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures.

    Science.gov (United States)

    Thomas, Joice; Dobrzańska, Liliana; Van Meervelt, Luc; Quevedo, Mario Alfredo; Woźniak, Krzysztof; Stachowicz, Marcin; Smet, Mario; Maes, Wouter; Dehaen, Wim

    2016-01-18

    A synthetic route towards homodiselenacalix[4]arene macrocycles is presented, based on the dynamic covalent chemistry of diselenides. The calixarene inner rim is decorated with either alkoxy or tert-butyl ester groups. Single-crystal X-ray analysis of two THF solvates with methoxy and ethoxy substituents reveals the high similarity of their molecular structures and alterations on the supramolecular level. In both crystal structures, solvent channels are present and differ in both shape and capacity. Furthermore, the methoxy-substituted macrocycle undergoes a single-crystal-to-single-crystal transformation during which the molecular structure changes its conformation from 1,3-alternate (loaded with THF/water) to 1,2-alternate (apohost form). Molecular modelling techniques were applied to explore the conformational and energetic behaviour of the macrocycles.

  18. An 8-Channel Wavelength MMI Demultiplexer in Slot Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Bar Baruch Ben Zaken

    2016-11-01

    Full Text Available We propose a novel 8-channel wavelength multimode interference (MMI demultiplexer in slot waveguide structures that operate at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm, and 1565 nm. Gallium nitride (GaN surrounded by silicon (Si was found to be a suitable material for the slot-waveguide structures. The proposed device was designed by seven 1 × 2 MMI couplers, fourteen S-bands, and one input taper. Numerical investigations were carried out on the geometrical parameters using a full vectorial-beam propagation method (FV-BPM. Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530–1565 nm with low crosstalk (−19.97–−13.77 dB and bandwidth (1.8–3.6 nm. Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM technology.

  19. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  20. Structural dynamics of potassium-channel gating revealed by single-molecule FRET.

    Science.gov (United States)

    Wang, Shizhen; Vafabakhsh, Reza; Borschel, William F; Ha, Taekjip; Nichols, Colin G

    2016-01-01

    Crystallography has provided invaluable insights regarding ion-channel selectivity and gating, but to advance understanding to a new level, dynamic views of channel structures within membranes are essential. We labeled tetrameric KirBac1.1 potassium channels with single donor and acceptor fluorophores at different sites and then examined structural dynamics within lipid membranes by single-molecule fluorescence resonance energy transfer (FRET). We found that the extracellular region is structurally rigid in both closed and open states, whereas the N-terminal slide helix undergoes marked conformational fluctuations. The cytoplasmic C-terminal domain fluctuates between two major structural states, both of which become less dynamic and move away from the pore axis and away from the membrane in closed channels. Our results reveal mobile and rigid conformations of functionally relevant KirBac1.1 channel motifs, implying similar dynamics for similar motifs in eukaryotic Kir channels and in cation channels in general.

  1. Structural dynamics of potassium channel gating revealed by single molecule FRET

    Science.gov (United States)

    Borschel, William F.; Ha, Taekjip; Nichols, Colin G.

    2016-01-01

    Crystallography has provided invaluable insights to ion channel selectivity and gating, but to advance understanding to a new level, dynamic views of channel structures within membranes are essential. We labeled tetrameric KirBac1.1 potassium channels with single donor and acceptor fluorophores at different sites, and examined structural dynamics within lipid membranes by single molecule FRET. We found that the extracellular region is structurally rigid in both closed and open states, whereas the N-terminal slide helix undergoes marked conformational fluctuations. The cytoplasmic C-terminal domain fluctuates between two major structural states both of which become less dynamic and move away from the pore axis and away from the membrane in closed channels. Our results reveal mobile and rigid conformations of functionally relevant KirBac1.1 channel motifs, implying similar dynamics for similar motifs in eukaryotic Kir channels and for cation channels in general. PMID:26641713

  2. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    Science.gov (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  3. Structural analysis of a dipole system in two-dimensional channels.

    Science.gov (United States)

    Haghgooie, Ramin; Doyle, Patrick S

    2004-12-01

    A system of magnetic dipoles in two-dimensional (2D) channels was studied using Brownian dynamics simulations. The dipoles interact with a purely repulsive r(-3) potential and are confined by two hard walls in one of the dimensions. Solid crystals were annealed in the 2D channels and the structural properties of the crystals were investigated. The long-ranged nature of the purely repulsive dipoles combined with the presence of hard walls led to structural deviations from the unbounded (infinite) 2D dipolar crystal. The structures in the channels were characterized by a high density of particles along the walls. The particles along the wall became increasingly localized as the channel width was increased. The spacing of the walls was important in determining the properties of the structures formed in the channel. Small changes in the width of the channel induced significant structural changes in the crystal. These structural changes were manifested in the density profiles, defect concentrations, and local bond-orientation order of the system. Oscillations in the structural properties were observed as the channel width was increased, indicating the existence of magic-number channel widths for this system. As the channel width was increased the properties of the confined system approached those of the unbounded system surprisingly slowly.

  4. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  5. Effect of the Flow Channel Structure on the Nanofiltration Separation Performance

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2013-01-01

    Full Text Available Two kinds of newly designed feed channels, for example, a spiral and a serpentine feed channels, for a bench-scale nanofiltration module were developed to improve the filtration performance. The experiments were carried out with the modules using a commercial flat NF membrane to investigate the effects of Reynolds number (Re and flow channel structures on the flux of permeate and Mg2+ rejection. It was shown from the experimental results that although the effects of Reynolds number on fluxes were not obvious for the two new feed channels compared with a normal flow channel structure, the Mg2+ rejections varied apparently with Re. The Mg2+ rejections were almost the same for the modules with two new feed channels and larger than that for the module with normal feed channel. The numerical simulations of fluid flow in the three kinds of feed channels were completed at Re of 4800 to explain the phenomena. The results demonstrated that there was a secondary flow in both new feed channels, which strongly influences the Mg2+ rejection. The rejection increased with increasing average shear stress at the membrane wall. The spiral feed channel was the best one among the flow channel structures investigated.

  6. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  7. On the structural features of fiber suspensions in converging channel flow

    Institute of Scientific and Technical Information of China (English)

    林建忠; 张凌新

    2003-01-01

    The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.

  8. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  9. Final design of the generic upper port plug structure for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Feder, Russell [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia; Josseaume, Fabien [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kalish, Michael; Loesser, Douglas [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Ordieres, Javier; Panizo, Marcos [NATEC, Ingenieros, Gijón (Spain); Pitcher, Spencer; Portalès, Mickael [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Proust, Maxime [CEA, Cadarache, St. Paul-lez-Durance (France); Ronden, Dennis [FOM Institute DIFFER, Nieuwegein (Netherlands); Serikov, Arkady [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Tanchuk, Victor [NIIEFA, St.-Petersburg (Russian Federation); Udintsev, Victor; Vacas, Christian [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2016-01-15

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review in 2013, is described here. The diagnostic port plug is cantilevered to the vacuum vessel with a heavy payload at the front, so called the diagnostic first wall (DFW) and the diagnostic shield module (DSM). Most of electromagnetic (EM) load (∼80%) occurs in DFW/DSM. Therefore, the mounting design to transfer the EM load from DFW/DSM to the GUPP structure is challenging, which should also comply with thermal expansion and tolerance for assembly and manufacturing. Another key design parameter to be considered is the gap between the port plug and the vacuum vessel port. The gap should be large enough to accommodate the remote handling of the heavy port plug (max. 25 t), the structural deflection due to external loads and machine assembly tolerance. At the same time, the gap should be minimized to stop the neutron streaming according to the ALARA (as low as reasonably achievable) principle. With these design constraints, the GUPP structure should also provide space for diagnostic integration as much as possible. This requirement has led to the single wall structure having the gun-drilled water channels inside the structure. Furthermore, intensive efforts have been made on the manufacturing study including material selection, manufacturing codes and French regulation related to nuclear equipment and safety. All these main design and manufacturing aspects are discussed in this paper, including requirements, interfaces, loads and structural assessment and maintenance.

  10. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of experiments have been performed to demonstrate the significant drag reduction of the laminar flow in the ultrahydrophobic channels with dual-scale micro-nano structured surfaces.However,in previous experiments,the ultrahydrophobic surfaces were fabricated with micro-structures or nano-structures and the channels were on the microscale.For the drag reduction in macro-scale channels few reports are available.Here a new method was developed to fabricate ultrahydrophobic surfaces with micro-nano hierarchical structures made from carbon nanotubes.The drag reductions up to 36.3% were observed in the macro-channels with ultrahydrophobic surfaces.The micro-PIV was used to measure the flow velocity in channels.Compared with the traditional no-slip theory at walls,a significant slip velocity was observed on the ultrahydrophobic surfaces.

  11. Final report for the virtual channel encryptor laboratory directed research and development project

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D.J.; Sarfaty, R.A.

    1997-08-01

    A workstation with a single physical connection to a data communications network may have a requirement for simultaneous `virtual` communication channels to more than one destination. This report describes the development of techniques based on the Data Encryption Standard (DES) which encrypt these virtual channels to secure the data being transmitted against unauthorized access. A software module has been developed for the UNIX operating system using these techniques for encryption, and some development has also been done on a hardware device to be included between the workstation and network which can also provide these functions. The material presented in this report will be useful to those with a need to protect information in data communications systems from unauthorized access.

  12. Cysteine mutagenesis in the voltage-dependent sodium channel structural insights and implications.

    Science.gov (United States)

    Tomaselli, G F

    1997-08-01

    The superfamily of ion channel proteins comprise multisubunit transmembrane glycoproteins that are the fundamental electrical signaling molecules in the heart and other excitable tissues. The large size and hydrophobicity of these proteins present a formidable obstacle to the generation of a crystal structure. In lieu of a high-resolution structure, complementary methods have been used to study the structure function relationships of these essential excitability proteins. Molecular cloning and biophysical analysis of heterologously expressed wild-type and mutant channel proteins have provided insights into the structural basis of the essential channel functions of permeation and gating. This powerful combination of techniques also provides dynamic structural information regarding channel proteins not likely to be forthcoming from a crystal structure. (Trends Cardiovasc Med 1997;7:211-218). © 1997, Elsevier Science Inc.

  13. Interaction between Syntactic Structure and Information Structure in the Processing of a Head-Final Language

    Science.gov (United States)

    Koizumi, Masatoshi; Imamura, Satoshi

    2017-01-01

    The effects of syntactic and information structures on sentence processing load were investigated using two reading comprehension experiments in Japanese, a head-final SOV language. In the first experiment, we discovered the main effects of syntactic and information structures, as well as their interaction, showing that interaction of these two…

  14. Three-dimensional structure of the S4-S5 segment of the Shaker potassium channel.

    Science.gov (United States)

    Ohlenschläger, Oliver; Hojo, Hironobu; Ramachandran, Ramadurai; Görlach, Matthias; Haris, Parvez I

    2002-06-01

    The propagation of action potentials during neuronal signal transduction in phospholipid membranes is mediated by ion channels, a diverse group of membrane proteins. The S4-S5 linker peptide (S4-S5), that connects the S4 and S5 transmembrane segments of voltage-gated potassium channels is an important region of the Shaker ion-channel protein. Despite its importance, very little is known about its structure. Here we provide evidence for an amphipathic alpha-helical conformation of a synthetic S4-S5 peptide of the voltage-gated Drosophila melanogaster Shaker potassium channel in water/trifluoroethanol and in aqueous phospholipid micelles. The three-dimensional solution structures of the S4-S5 peptide were obtained by high-resolution nuclear magnetic resonance spectroscopy and distance-geometry/simulated-annealing calculations. The detailed structural features are discussed with respect to model studies and available mutagenesis data on the mechanism and selectivity of the potassium channel.

  15. Computational Methods for Structural and Functional Studies of Alzheimer's Amyloid Ion Channels.

    Science.gov (United States)

    Jang, Hyunbum; Arce, Fernando Teran; Lee, Joon; Gillman, Alan L; Ramachandran, Srinivasan; Kagan, Bruce L; Lal, Ratnesh; Nussinov, Ruth

    2016-01-01

    Aggregation can be studied by a range of methods, experimental and computational. Aggregates form in solution, across solid surfaces, and on and in the membrane, where they may assemble into unregulated leaking ion channels. Experimental probes of ion channel conformations and dynamics are challenging. Atomistic molecular dynamics (MD) simulations are capable of providing insight into structural details of amyloid ion channels in the membrane at a resolution not achievable experimentally. Since data suggest that late stage Alzheimer's disease involves formation of toxic ion channels, MD simulations have been used aiming to gain insight into the channel shapes, morphologies, pore dimensions, conformational heterogeneity, and activity. These can be exploited for drug discovery. Here we describe computational methods to model amyloid ion channels containing the β-sheet motif at atomic scale and to calculate toxic pore activity in the membrane.

  16. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.

    Science.gov (United States)

    Wu, Fei; Minteer, Shelley

    2015-02-02

    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon.

  17. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels.

  18. Coherent Structures near Narrow Gaps in Channel Flows

    Science.gov (United States)

    Guellouz, M. S.; Tavoularis, S.

    1996-11-01

    Flow visualization and hot-wire anemometry were used to investigate the velocity field in axial flow within a rectangular channel containing a single cylindrical rod, parallel to the channel's axis and positioned at different distances from the wall. The formation of a street of three-dimensional, quasi-periodic, counter-rotating vortices in the vicinity of the gap has been observed, even for relatively large gaps. The Strouhal number, convection speed and streamwise spacing of these vortices have been determined as functions of the gap size and the flow parameters. A useful feature of these vortices is the large-scale transport of fluid across the gap, which enhances momentum, heat and mass transfer.

  19. Structure parameters in rotating Couette-Poiseuille channel flow

    Science.gov (United States)

    Knightly, George H.; Sather, D.

    1986-01-01

    It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form: v + lambda Av + lambda B(v) = 0, v is the summation of H, lambda is the summation of one-dimensional Euclid space, where H is an appropriate (real or complex) Hilbert space. Here lambda is a typical load parameter, e.g., the Reynolds number, A is a linear operator, and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems were obtained. A rotating Couette-Poiseuille channel flow was studied, and it showed that, in general, the superposition of a Poiseuille flow on a rotating Couette channel flow is destabilizing.

  20. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  1. Spatial Diversity in Composition and Structure of Nekton in Ngenep Spring and its Channels, Karangploso - Malang

    Directory of Open Access Journals (Sweden)

    Lia Hapsari

    2014-04-01

    Full Text Available Water springs and its channel degradation due to anthropogenic pollution may alter the community structure of aquatic organisms. Water spring degradation tehrefore affect the quality of water as tourism resources. This study aims to investigate the changes in community structure of nekton  and determine the relationships between water quality characteristics to the diversity of nekton.  The field survey was set up in Ngenep spring and its channels. Results showed that nekton species found in Ngenep spring and its channels consists of 4 classes, 4 orders, 6 families, and 7 species with total 627 nekton samples. It is comprises of fishes, shrimp, frogs and waterstriders. Nekton diversity index (H’ in the spring and irrigation channel were in moderate level (1channel was low (0,67. Evenness values of nekton ranged 0,24 – 0,53, whereas dominancy index of nekton ranged 0,41 – 0,74. Evenness value in settlement channel was very low (0, 24 with high dominancy index (0, 74; it indicates that nekton species were spread not evenly in the channel, it dominated by fish Rasbora sp. (highest IVI, 184,95. There were spatial variations of  physico-chemical water qualitiy parameters in Ngenep springs and its channels (temperature, stream velocity, turbidity, conductivity, pH, DO, BOD and TOM which affected to nekton diversity and community structure. Clustering analyses and PCA result shows correlation pattern between nekton distribution with physico-chemical water quality parameters. However, physico-chemical water quality parameters in Ngenep springs and its channel were still optimum as nekton habitat (PP No. 82/ 2001. Keywords: Community structure, Nekton, Spatial diversity, Spring, Water channel

  2. The s-channel charged Higgs in the fully hadronic final state at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ijaz [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia); COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Hashemi, Majid [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Tajuddin, Wan Ahmad [University of Malaya, National Center for Particle Physics, Kuala Lumpur (Malaysia)

    2016-04-15

    With the current measurements performed by CMS and ATLAS experiments, the light charged Higgs scenario (m{sub H}{sup {sub ±}} < 160 GeV), is excluded for most of the parameter space in the context of MSSM. However, there is still possibility to look for heavy charged Higgs boson particularly in the s-channel single top production process where the charged Higgs may appear as a heavy resonance state and decay to t anti b. The production process under consideration in this paper is pp → H{sup ±} → t anti b + h.c., where the top quark decays to W{sup +}b and W{sup +} boson subsequently decays to two light jets. It is shown that despite the presence of large QCD and electroweak background events, the charged Higgs signal can be extracted and observed at a large area of MSSM parameter space (m{sub H}{sup {sub ±}}, tanβ) at LHC. The observability of charged Higgs is potentially demonstrated with 5σ contours and 95% confidence level exclusion curves at different integrated LHC luminosities assuming a nominal center of mass energy of √(s) = 14 TeV. (orig.)

  3. A structural view of ligand-dependent activation in thermoTRP channels

    Directory of Open Access Journals (Sweden)

    Ximena eSteinberg

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called thermoTRP channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  4. Covariance-based Spatial Channel Structure Emulation for MIMO OTA Testing

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Fan, Wei;

    2014-01-01

    The paper presents a general framework for recreating the spatial channel structure in a MIMO over-the-air (OTA) multiprobe anechoic chamber testing setup. The idea is to find the power weights of the spatial taps (antenna probes) that minimize a certain distance between the spatial channel covar...... among the antennas-under-test by considering the whole spatial covariance structure. The simulation results validate the improved performance of the suggested approach in terms of emulation accuracy compared to the key emulation methods proposed in the literature.......The paper presents a general framework for recreating the spatial channel structure in a MIMO over-the-air (OTA) multiprobe anechoic chamber testing setup. The idea is to find the power weights of the spatial taps (antenna probes) that minimize a certain distance between the spatial channel...

  5. A LINEAR THEORY FOR DISTURBANCE OF COHERENT STRUCTURE AND MECHANISM OF SAND WAVES IN OPEN-CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    Yuchuan BAI; Andreas MALCHEREK; Changbo JIANG

    2001-01-01

    The formation of sand wave is such a process in which the roughness and discontinuity of the original bed surface cause the disturbance of the bottom laminar flow in an open channel,and the development of the disturbance in turn leads to instability of the flow and the appearance of the coherent structure. The evolution and development of the coherent structure further promote the undulations of bed surface and sand waves rise finally. The sand wave is explained as a result of action that the bed sediment particles are disturbed by the coherent structure. This study shows that the sand wave formation is the result of disturbance action of neutral coherent structure, and the sand wave shape obtained in computations is identical to the practical one.

  6. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

  7. Building channels for transparent risk assessment. Final report RISCOM pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Espejo, R. [Syncho Ltd, Birmingham (United Kingdom); Wene, C.O. [Profu AB, Lund (Sweden)

    1998-01-01

    Recent developments in the Swedish programme for nuclear waste management have underlined the need for a broad consultation process with public participation. Decision procedures that provide transparency for people outside the groups of experts and political decision-makers must be developed. This report explores what this transparency means and how it could be enhanced. It is acknowledged that the concept of transparency includes three equally important aspects: factual issues, normative issues, and stakeholder``s authenticity. So far experts have dominated the decision process in the nuclear waste area. Value judgements of experts may appear as normative issues, for instance among other scientists; or they may be related to issues of authenticity, for instance when discussions take place with community stakeholders. The formal decision process must always be the basis for building transparency. Two dominant approaches are compared: the Swedish ``review/decide`` approach, and the ``inquiry/decide`` approach used in the UK. Suggestions are made as to how the best features of the two approaches could be combined. The report also includes a study on the systemic roles of SKI/SSI in the Swedish nuclear waste management system. This study identifies several systemic functions carried out by SKI/SSI. Awareness of these roles within SKI and SSI (and among other stakeholders) is crucial for transparency. This report argues that a key element in building transparency is to create mechanisms for ``stretching`` SKB. Various channels for stretching and providing new perspectives are explored. Among the procedures discussed are those concerned with hearings and dialogue. Environmental Impact Assessment (EIA) is seen as the umbrella under which most of the stretching activities can take place. Team Syntegrity was used as a method to compare the Swedish and UK procedures. It is a non-hierarchical approach that enhances the effective contribution of a wide variety of

  8. Lithographic definition of channel and void structures in multilayer PZT microactuators

    Science.gov (United States)

    Rosqvist, Tobias; Johansson, Stefan A. I.

    1999-10-01

    We are investigating techniques to fabricate advanced microactuators cost efficiently and in particular to combine silicon microstructures with multilayer PZT microelements. Aiming at an increased freedom in design of multilayer PZT elements, various process steps to build channel and void structures in the actuator body are investigated. In a multilayer actuator, channels and voids can be used for transportation of fluids or to change transducer properties. A PZT green ceramic body is built with internal sacrificial structures defined using photolithography and patterned polymer foil and these structures are removed during binder burnout. In difference to conventional green tape lamination the technique used in the presented experiments, wet building, tends to planarize consecutive layers cast. This is particularly advantageous for high aspect ratio sacrificial structures. Results show that possible channel dimensions range from 10 micrometers up to above 200 micrometers . The lower channel dimension limitation is determined by the surface roughness of a cast green layer and the grain growth during sintering. No sagging of the channels is observed at the investigated channel dimensions. The mechanical and chemical stability of the sacrificial material during exposure to solvent and moderate heat is found to be important. The large scale manufacturing aspect of the investigated technique is also discussed.

  9. Structural basis of water-specific transport through the AQP1 water channel

    Science.gov (United States)

    Sui, Haixin; Han, Bong-Gyoon; Lee, John K.; Walian, Peter; Jap, Bing K.

    2001-12-01

    Water channels facilitate the rapid transport of water across cell membranes in response to osmotic gradients. These channels are believed to be involved in many physiological processes that include renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. Members of the water channel superfamily have been found in a range of cell types from bacteria to human. In mammals, there are currently 10 families of water channels, referred to as aquaporins (AQP): AQP0-AQP9. Here we report the structure of the aquaporin 1 (AQP1) water channel to 2.2Å resolution. The channel consists of three topological elements, an extracellular and a cytoplasmic vestibule connected by an extended narrow pore or selectivity filter. Within the selectivity filter, four bound waters are localized along three hydrophilic nodes, which punctuate an otherwise extremely hydrophobic pore segment. This unusual combination of a long hydrophobic pore and a minimal number of solute binding sites facilitates rapid water transport. Residues of the constriction region, in particular histidine 182, which is conserved among all known water-specific channels, are critical in establishing water specificity. Our analysis of the AQP1 pore also indicates that the transport of protons through this channel is highly energetically unfavourable.

  10. Discharge capacity of sluiceway channel of water intake structure for diversion power plant in winter

    Directory of Open Access Journals (Sweden)

    N.P. Lavrov

    2013-06-01

    Full Text Available The paper presents results of research hydraulic processes at the intake structures of diversion power plants in winter. On the basis of the physical modeling results the flow characteristics of sluiceway channel of water intake on the river Issyk-Ata, Kyrgyzstan were determined. Statistical models of discharges of elements of sluiceway channel with their mutual influence were obtained, using the methods of experimental design and data analysis. The influence of the concentration of brash ice on the sluiceway channel and its elements is described. The comparison of experimental data with data obtained by other authors before is made by comparing flow coefficients. Recommendations for normal operation of ice pass at sluiceway track channel of water intake structure for diversion power plant are given.

  11. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Science.gov (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  12. Three-dimensional structure of the S4-S5 segment of the Shaker potassium channel.

    OpenAIRE

    2002-01-01

    The propagation of action potentials during neuronal signal transduction in phospholipid membranes is mediated by ion channels, a diverse group of membrane proteins. The S4-S5 linker peptide (S4-S5), that connects the S4 and S5 transmembrane segments of voltage-gated potassium channels is an important region of the Shaker ion-channel protein. Despite its importance, very little is known about its structure. Here we provide evidence for an amphipathic alpha-helical conformation of a synthetic ...

  13. Mambalgin-1 Pain-relieving Peptide, Stepwise Solid-phase Synthesis, Crystal Structure, and Functional Domain for Acid-sensing Ion Channel 1a Inhibition.

    Science.gov (United States)

    Mourier, Gilles; Salinas, Miguel; Kessler, Pascal; Stura, Enrico A; Leblanc, Mathieu; Tepshi, Livia; Besson, Thomas; Diochot, Sylvie; Baron, Anne; Douguet, Dominique; Lingueglia, Eric; Servent, Denis

    2016-02-05

    Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.

  14. Research of error structure of standard time signal synchronization system via digital television channels

    OpenAIRE

    Троцько, Максим Леонідович; Тріщ, Роман Михайлович

    2014-01-01

    The error structure of the standard time signal synchronization system via digital television channels was investigated. The relevance of this research is determined by changing the format of television broadcasting in Ukraine from analog to digital, which has necessitated the creation of a new standard time signal transmission system, adapted to the current format.An estimate of the basic permissible error of the system of standard time signal transmission via digital television channels, wh...

  15. TURBULENT COHERENT STRUCTURES IN CHANNELS WITH SAND WAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sand wave bed is one of the typical shape of complicated boundaries in hydraulics and river dynamics, and sand wave motion is the main form of the bed load motion in-rivers, thence the study of turbulent structures over sand waves is of importance both in theory and practice. In this paper turbulent coherent structures over single-and multi-sand waves were studied experimentally, the formulae for the separation length and vortex shedding period of the turbulent flow over single-sand wave were suggested, and the characteristics of turbulent coherent structures over multi-sand waves were also given.

  16. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori.

    Science.gov (United States)

    Strugatsky, David; McNulty, Reginald; Munson, Keith; Chen, Chiung-Kuang; Soltis, S Michael; Sachs, George; Luecke, Hartmut

    2013-01-10

    Half the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH(3) and CO(2), neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.

  17. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin film fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.

  18. Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction

    Science.gov (United States)

    Davis, Jennifer; Correll, Robert N.; Trappanese, Danielle M.; Hoffman, Nicholas E.; Troupes, Constantine D.; Berretta, Remus M.; Kubo, Hajime; Madesh, Muniswamy; Chen, Xiongwen; Gao, Erhe; Molkentin, Jeffery D.; Houser, Steven R.

    2014-01-01

    Rationale The cellular and molecular basis for post myocardial infarction (MI) structural and functional remodeling is not well understood. Objective To determine if Ca2+ influx through transient receptor potential (canonical) (TRPC) channels contributes to post-MI structural and functional remodeling. Methods and Results TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte specific expression of a dominant negative (dn: loss of function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes (AFMs) to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 over expression in AFMs induced calcineurin (Cn)-Nuclear Factor of Activated T cells (NFAT) mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in AFMs increased rested state contractions and increased spontaneous sarcoplasmic reticulum (SR) Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady state pacing, likely due to enhanced SR Ca2+ leak. Conclusions Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function. PMID:25047165

  19. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  20. Final design of the generic upper port plug structure for ITER diagnostic systems

    NARCIS (Netherlands)

    Pak, S.; Feder, R.; Giacomin, T.; Guirao, J.; Iglesias, S.; Josseaume, F.; Kalish, M.; Loesser, D.; Maquet, P.; Ronden, D.; Ordieres, J.; Panizo, M.; Pitcher, S.; M. Portalès,; Proust, M.; Serikov, A.; Suarez, A.; Tanchuk, V.; Udintsev, V.; Vacas, C.; Walsh, M.; Zhai, Y.

    2016-01-01

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review i

  1. Bimane fluorescence scanning suggests secondary structure near the S3-S4 linker of BK channels.

    Science.gov (United States)

    Semenova, Nina P; Abarca-Heidemann, Karin; Loranc, Eva; Rothberg, Brad S

    2009-04-17

    Gating of large conductance Ca(2+)-activated K(+) channels (BK or maxi-K channels) is controlled by a Ca(2+)-sensor, formed by the channel cytoplasmic C-terminal domain, and a voltage sensor, formed by its S0-S4 transmembrane helices. Here we analyze structural properties of a portion of the BK channel voltage sensing domain, the S3-S4 linker, using fluorescence lifetime spectroscopy. Single residues in the S3-S4 linker region were substituted with cysteine, and the cysteine-substituted mutants were expressed in CHO cells and covalently labeled with the sulfhydryl-reactive fluorophore monobromo-trimethylammonio-bimane (qBBr). qBBr fluorescence is quenched by tryptophan and, to a lesser extent, tyrosine side chains. We found that qBBr fluorescence in several of the labeled cysteine-substituted channels shows position-specific quenching, as indicated by increase of the brief lifetime component of the qBBr fluorescence decay. Quenching was reduced with the mutation W203F (in the S4 segment), suggesting that Trp-203 acts as a quenching group. Our results suggest a working hypothesis for the secondary structure of the BK channel S3-S4 region, and places residues Leu-204, Gly-205, and Leu-206 within the extracellular end of the S4 helix.

  2. Functional mutagenesis screens reveal the 'cap structure' formation in disulfide-bridge free TASK channels.

    Science.gov (United States)

    Goldstein, Matthias; Rinné, Susanne; Kiper, Aytug K; Ramírez, David; Netter, Michael F; Bustos, Daniel; Ortiz-Bonnin, Beatriz; González, Wendy; Decher, Niels

    2016-01-22

    Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels.

  3. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells

    Science.gov (United States)

    Sun, Chen; Hassanisaber, Hamid; Yu, Richard; Ma, Sai; Verbridge, Scott S.; Lu, Chang

    2016-07-01

    In this report, we demonstrate a unique method for embedding magnetic structures inside a microfluidic channel for cell isolation. We used a molding process to fabricate these structures out of a ferrofluid of cobalt ferrite nanoparticles. We show that the embedded magnetic structures significantly increased the magnetic field in the channel, resulting in up to 4-fold enhancement in immunomagnetic capture as compared with a channel without these embedded magnetic structures. We also studied the spatial distribution of trapped cells both experimentally and computationally. We determined that the surface pattern of these trapped cells was determined by both location of the magnet and layout of the in-channel magnetic structures. Our magnetic structure embedded microfluidic device achieved over 90% capture efficiency at a flow velocity of 4 mm/s, a speed that was roughly two orders of magnitude faster than previous microfluidic systems used for a similar purpose. We envision that our technology will provide a powerful tool for detection and enrichment of rare cells from biological samples.

  4. Structural insight into the transmembrane segments 3 and 4 of the hERG potassium channel.

    Science.gov (United States)

    Li, Qingxin; Wong, Ying Lei; Ng, Hui Qi; Gayen, Shovanlal; Kang, CongBao

    2014-12-01

    The hERG (human ether-a-go-go related gene) potassium channel is a voltage-gated potassium channel containing an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2-S3 linker, S3, S4 and the S4-S5 linker of the hERG channel was purified into detergent micelles. This construct exhibits good quality NMR spectrum when it was purified in lyso-myristoyl phosphatidylglycerol (LMPG) micelles. Structural study showed that S3 contains two short helices with a negatively charged surface. The S4 and S4-S5 linker adopt helical structures. The six positively charged residues in S4 localize at different sides, suggesting that they may have different functions in channel gating. Relaxation studies indicated that S3 is more flexible than S4. The boundaries of S3-S4 and S4-S4-S5 linker were identified. Our results provided structural information of the S3 and S4, which will be helpful to understand their roles in channel gating.

  5. The lifting scheme of 4-channel orthogonal wavelet transforms

    Institute of Scientific and Technical Information of China (English)

    PENG Lizhong; CHU Xiaoyong

    2006-01-01

    The 4-channel smooth wavelets with linear phase and orthogonality are designed from the 2-channel orthogonal wavelets with high transfer vanishing moments. Reversely, for simple lifting scheme of such 4-channel orthogonal wavelet transforms, a new 2-channel orthogonal wavelet associated with this 4-channel wavelet is constructed. The new 2-channel wavelet has at least the same number of vanishing moments as the associated 4-channel one. Finally, by combining the two such 2-channel wavelet systems, the lifting scheme of 4-channel orthogonal wavelet transform, which has simple structure and is easy to apply, is presented.

  6. Studying the operation characteristics and structure of vertical channel copper-phthalocyanine organic semiconductor transistor

    Institute of Scientific and Technical Information of China (English)

    ZHU Min; SONG Ming-xin; GUI Tai-long; WANG Xuan; YIN Jing-hua; WANG Dong-xing; ZHAO Hong

    2005-01-01

    The creation of Au/CuPc/Al/CuPc/structure is a perpendicular type electricity found in the channel of organic static induction transistor. In the following we analyze transistor operation characteristics and machine structural relation. The results express that the transistor drives the voltage low and has no-saturation currentvoltage characteristics. Its operation characteristics are dependant on gate bias voltage and the construction of the aluminum electrode.The vertical channel of organic static induction transistor (OSIT) , with structure of Au/CuPc/Al/CuPc/Cu, has been determined. According to the test results, the relation of its operation characteristics and device structure was analyzed. The results show that this transistor has a low driving voltage and unsaturation Ⅰ-Ⅴ characteristics. Its operation characteristics are dependant on gate bias voltage and the structure of the aluminum electrode.

  7. Numerical study on the thermal and flow characteristics of periodically formed inner wavy structures in a cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Chul; Park, Sang Hu; Son, Chang Min; Min, June Kee; Ha, Man Yeong [Pusan National University, Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime University, Busan (Korea, Republic of)

    2015-09-15

    In industrial fields of machine and aerospace, cooling systems consisting of channels are widely used to increase energy efficiency and prevent system overheat. In cooling channels, a reduced pressure drop, an enhanced heat transfer, and a short channel length are considered key design requirements for optimizing the total volume and weight of a system. In this work, we improved heat transfer efficiency by using milli-scale wavy structures inside the channel. By optimizing the inner structures through computational fluid dynamics analysis and Taguchi method, the Nusselt number increased by approximately 11.7% with a similar pressure drop compared with that of a normal channel for a Reynolds number of 1000.

  8. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    Science.gov (United States)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  9. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  10. Numerical investigation on the flow structures in a narrow confined channel with staggered jet array arrangement

    Directory of Open Access Journals (Sweden)

    Liu Haiyong

    2015-12-01

    Full Text Available A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000 and three channel configurations with different ratios of the channel height to the impingement hole diameter (Zr = 1, 3, 5 are analyzed by solving the Reynolds averaged Navier–Stokes equations with the realizable k–ε turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.

  11. Structure of the channeling electrons wave functions under dynamical chaos conditions

    CERN Document Server

    Shul'ga, N F; Tarnovsky, A I; Isupov, A Yu

    2015-01-01

    The stationary wave functions of fast electrons axially channeling in the silicon crystal near [110] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.

  12. Focused ion beam nano-structuring of Bragg gratings in $Al_2O_3$ channel waveguides

    NARCIS (Netherlands)

    Ay, Feridun; Uranga, Amaia; Bradley, Jonathan D.B.; Wörhoff, Kerstin; Ridder, de René M.; Pollnau, Markus; Ridder, de R.M.; Ay, F.; Kauppinen, L.J.

    2008-01-01

    We report our recent results on an optimization study of focused ion beam (FIB) nano-structuring of Bragg gratings in $Al_2O_3$ channel waveguides. By optimizing FIB milling parameters such as ion current, dwell time, loop repetitions, scanning strategy, and applying a top metal layer for reducing c

  13. Defect structure and mechanical stability of microcrystalline titanium produced by equal channel angular pressing

    Science.gov (United States)

    Betekhtin, V. I.; Kadomtsev, A. G.; Narykova, M. V.; Amosova, O. V.; Sklenicka, V.

    2017-01-01

    It is established that increases in nanoporosity and the proportion of high-angle grain boundaries in the process of equal-channel angular pressing are the main structural factors leading to reduction in mechanical stability (durability) of microcrystalline titanium during long-term tests under creeping conditions.

  14. Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Andre [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    Hafnium Oxide (HfO2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO2 thin films which hasn’t been done with the technique of this study. In this study, two HfO2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer. Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.

  15. Expectation and Locality Effects in German Verb-final Structures.

    Science.gov (United States)

    Levy, Roger P; Keller, Frank

    2013-02-01

    Probabilistic expectations and memory limitations are central factors governing the real-time comprehension of natural language, but how the two factors interact remains poorly understood. One respect in which the two factors have come into theoretical conflict is the documentation of both locality effects, in which more dependents preceding a governing verb increase processing difficulty at the verb, and anti-locality effects, in which more preceding dependents facilitate processing at the verb. However, no controlled study has previously demonstrated both locality and anti-locality effects in the same type of dependency relation within the same language. Additionally, many previous demonstrations of anti-locality effects have been potentially confounded with lexical identity, plausibility, and sentence position. Here, we provide new evidence of both locality and anti-locality effects in the same type of dependency relation in a single language-verb-final constructions in German-while controlling for lexical identity, plausibility, and sentence position. In main clauses, we find clear anti-locality effects, with the presence of a preceding dative argument facilitating processing at the final verb; in subject-extracted relative clauses with identical linear ordering of verbal dependents, we find both anti-locality and locality effects, with processing facilitated when the verb is preceded by a dative argument alone, but hindered when the verb is preceded by both the dative argument and an adjunct. These results indicate that both expectations and memory limitations need to be accounted for in any complete theory of online syntactic comprehension.

  16. Stability of Bulk Metallic Glass Structure. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  17. Structural evolution of carbon during oxidation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, A.F.

    1998-04-01

    The examination of the structural evolution of carbon during oxidation has proven to be of scientific interest. Early modeling work of fluidized bed combustion showed that most of the reactions of interest occurs in the micropores, and this work has concentrated on these pores. This work has concentrated on evolution of macroporosity and microporosity of carbons during kinetic controlled oxidation using SAXS, CO{sub 2} and TEM analysis. Simple studies of fluidized bed combustion of coal chars has shown that many of the events considered fragmentation events previously may in fact be {open_quotes}hidden{close_quotes} or nonaccessible porosity. This makes the study of the microporous combustion characteristics of carbon even more important. The generation of a combustion resistant grid, coupled with measurements of the SAXS and CO{sub 2} surface areas, fractal analysis and TEM. Studies has confirmed that soot particles shrink during their oxidation, as previously suspected. However, this shrinkage results in an overall change in structure. This structure becomes, on a radial basis, much more ordered near the edges, while the center itself becomes transparent to the TEM beam, implying a total lack of structure in this region. Although complex, this carbon structure is probably burning as to keep the density of the soot particles nearly the same. The TEM techniques developed for examination of soots has also been applied to Spherocarb. The Spherocarb during oxidation also increases its ordering. This ordering, by present theories, would imply that the reactivity would go. However, the reactivity goes up, implying that structure of carbon is secondary in importance to catalytic effects.

  18. Tree-Structured Random Vector Quantization for Limited-Feedback Wireless Channel

    CERN Document Server

    Santipach, Wiroonsak

    2011-01-01

    We consider quantizing transmit beamforming vector in a multiantenna channel and signature vector in code division multiple access (CDMA). Assuming perfect channel knowledge, receiver selects for a transmitter the vector that maximizes the performance from a random vector quantization (RVQ) codebook, which consists of independent isotropically distributed unit-norm vectors. The quantized vector is then relayed to the transmitter via a rate-limited feedback channel. The RVQ codebook requires exhaustive search to locate the selected entry. To reduce the search complexity, we apply generalized Lloyd or $k$-dimensional (kd)-tree algorithms to organize RVQ entries into a tree. In examples shown, the search complexity of tree-structured (TS) RVQ can be a few orders of magnitude less than that of the unstructured RVQ for the same performance. We also derive the performance approximation for TS-RVQ in a large system limit, which predicts the performance of moderate-size systems very well.

  19. Comparison of Dual-Channel Supply Chain Structures: E-Commerce Platform as Different Roles

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2016-01-01

    Full Text Available E-commerce platforms can act as an e-tailer or a third-party intermediary that charge a commission and allow manufacturers to sell products on their platform directly. These two forms of dual-channel supply chain structures have different impacts on decisions and profits of manufacturers and traditional retailers. This paper establishes different Stackelberg game models for both dual-channel supply chain structures and achieves the equilibrium results. The results state that both structures can increase the consumer surplus and social welfare. More importantly, when the platform acts as an e-tailer, the manufacturer and the traditional retailer can form a “win-win” situation. Nevertheless, when the platform acts as a third-party intermediary allowing manufacturers to sell products on the platform directly, it is bound to harm the interests of the traditional retailer.

  20. Structural basis of dual Ca(2+)/pH regulation of the endolysosomal TRPML1 channel.

    Science.gov (United States)

    Li, Minghui; Zhang, Wei K; Benvin, Nicole M; Zhou, Xiaoyuan; Su, Deyuan; Li, Huan; Wang, Shu; Michailidis, Ioannis E; Tong, Liang; Li, Xueming; Yang, Jian

    2017-01-23

    The activities of organellar ion channels are often regulated by Ca(2+) and H(+), which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca(2+)/pH regulation of TRPML1, a Ca(2+)-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EM analyses confirmed that this architecture occurs in the full-length channel. Structure-function studies demonstrated that Ca(2+) and H(+) interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.

  1. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  2. Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels

    CERN Document Server

    Jones, Sian A; Méheust, Yves; Cox, Simon J; Cantat, Isabelle

    2013-01-01

    The velocity of a two-dimensional aqueous foam has been measured as it flows through two parallel channels, at a constant overall volumetric flow rate. The flux distribution between the two channels is studied as a function of the ratio of their widths. A peculiar dependence of the velocity ratio on the width ratio is observed when the foam structure in the narrower channel is either single staircase or bamboo. In particular, discontinuities in the velocity ratios are observed at the transitions between double and single staircase and between single staircase and bamboo. A theoretical model accounting for the viscous dissipation at the solid wall and the capillary pressure across a film pinned at the channel outlet predicts the observed non-monotonic evolution of the velocity ratio as a function of the width ratio. It also predicts quantitatively the intermittent temporal evolution of the velocity in the narrower channel when it is so narrow that film pinning at its outlet repeatedly brings the flow to a near...

  3. Final Technical Report: Electronic Structure Workshop (ES13)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiwei [College of William and Mary, Williamsburg, VA (United States)

    2015-02-26

    The 25th Annual Workshop on Recent Developments in Electronic Structure Methods (ES2013) was successfully held at the College of William & Mary in Williamsburg VA on June 11-14, 2013. The workshop website is at http://es13.wm.edu/ , which contains updated information on the workshop and a permanent archive of the scientific contents. DOE's continued support has been instrumental to the success of the workshop.

  4. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  5. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  6. Flow structures in submarine channels affected by Coriolis forces: Experimental observations

    Science.gov (United States)

    Cossu, R.; Wells, M. G.

    2011-12-01

    In this talk we will show how Coriolis forces can control the flow dynamics of turbidity currents flowing in sinuous channels at high latitudes. We describe how the internal velocity structure changes with latitude, based on observations from rotating laboratory experiments. When these results are combined with existing conceptual facies and depositional models we can now describe the changes in sedimentation patterns that are observed at different latitudes. The experiments were conducted in a sinuous channel model placed in a tank that was rotated at various rates (reflected by the Coriolis parameters f) ranging from f = 0 (at the equator) to ± 0.5 rad s-1 (at higher latitudes). The dependence of the density interface of gravity currents on rotation is shown in Figure 1a. At the equator the interface slopes up to the outer bend due to the centrifugal forces. In the Northern Hemisphere (NH) the tilt of the interface increases as now the Coriolis forces reinforce the centrifugal acceleration. In contrast, in the Southern Hemisphere (SH) the current ramps up to the inner bend and Coriolis forces dominate over centrifugal forces. Figure 1b shows the corresponding position of the downstream velocity core in the bend apex. At the equator the core is predominantly close to the centerline, whilst in the NH the core is deflected to the inner bend and in the SH the velocity core is shifted to the outer bank. Based upon our experimental results, we hypothesize that Coriolis forces can affect the velocity structure and sedimentation regime. Lateral accretion packages (LAPs) are built only on one side in the channel and finer sediments will be deposited mainly on the levee bank to which the high velocity core is deflected. The Rossby number RoW = U/fW (where U is the mean downstream velocity and W the channel width) can be used to determine the influence of Coriolis forces. In channel systems at high-latitudes (with RoW 1 implying that Coriolis forces are negligible. LAPs

  7. Antenna Array Structures Effect on Water-Filling Capacity of Indoor NLOS MIMO Channel

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-gang; L(U) Ying-hua; DU Juan; LI Yun-zhuang; WANG Xu-ying

    2005-01-01

    A 2-D Shooting and Bouncing Ray-tracing method (SBR) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cumulative Distribution Functions (CCDFS) of indoor Non-Line-of-Sight (NLOS) Multiple-Input Multiple-Output (MIMO) channel. The results have shown that in NLOS indoor environment different antenna array structures affect on the CCDFS differently. The CCDFS of MIMO systems with antenna spacing 5λ change slightly with antenna array structures and all approach the in independent and identically distribution (i.i.d.) rayleigh channel water-filling capacity. When antenna spacing decreased to 0.5λ, the capacities of MIMO systems drop also, and change with antenna array structures greatly. The results on outage water-filling capacity also show that there exist a fixed relationship that i.i.d. rayleigh channel capacity is larger than the capacity equipped with linear antenna array which is larger than the capacity equipped with rectangular antenna array and the capacity equipped with circular antenna array.

  8. Final Technical Report: Investigation of Nuclear Partonic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Henry J. [Univ. of California, Berkeley, CA (United States)

    2016-08-30

    Our research program had two primary goals during the period of this grant, to search for new and rare particles produced in high-energy nuclear collisions and to understand the internal structure of nuclear matter. We have developed electronics to pursue these goals at the Relativistic Heavy Ion Collider (RHIC) in the Solenoidal Tracker at RHIC (STAR) experiment and the AnDY experiment. Our results include discovery of the anti-hyper-triton, anti- 3Λ-barH, which opened a new branch on the chart of the nuclides, and the anti-alpha, anti- 4He, the heaviest form of anti-matter yet seen, as well as uncovering hints of gluon saturation in cold nuclear matter and observation of jets in polarized proton-proton collisions that will be used to probe orbital motion inside protons.

  9. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1.

    Science.gov (United States)

    Wei, Risheng; Wang, Xue; Zhang, Yan; Mukherjee, Saptarshi; Zhang, Lei; Chen, Qiang; Huang, Xinrui; Jing, Shan; Liu, Congcong; Li, Shuang; Wang, Guangyu; Xu, Yaofang; Zhu, Sujie; Williams, Alan J; Sun, Fei; Yin, Chang-Cheng

    2016-09-01

    Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca(2+)-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca(2+) activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.

  10. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    Science.gov (United States)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  11. Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    The ion channel-like nanotube structure of the oligomers of amyloid β-peptide (Aβ) was first investigated by molecular modeling. The results reveal that the hydrogen bond net is one of the key factors to stabilize the structure. The hydrophobicity distribution mode of the side chains is in favor of the structure inserting into the bilayers and forming a hydrophilic pore. The lumen space is under the control of the negative potential, weaker but spreading continuously, to which the cation selectivity attributes; meanwhile, the alternate distribution of the stronger positive and negative potentials makes the electrostatic distribution of the structure framework balance, which is also one of the key factors stabilizing the structure. The results lay the theoretical foundation for illuminating the structure stability and the ion permeability, and give a clue to elucidating the molecular mechanism of Alzheimer's disease (AD) and designing novel drugs to prevent or reverse AD at the root.

  12. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  13. Structural analysis of the S4-S5 linker of the human KCNQ1 potassium channel.

    Science.gov (United States)

    Gayen, Shovanlal; Li, Qingxin; Kang, CongBao

    2015-01-02

    KCNQ1 plays important roles in the cardiac action potential and consists of an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. KCNQ1 is a voltage-gated potassium channel and its channel activity is regulated by membrane potentials. The linker between transmembrane helices 4 and 5 (S4-S5 linker) is important for transferring the conformational changes from the voltage-sensor domain to the pore domain. In this study, the structure of the S4-S5 linker of KCNQ1 was investigated by solution NMR, circular dichroism and fluorescence spectroscopic studies. The S4-S5 linker adopted a helical structure in detergent micelles. The W248 may interact with the cell membrane.

  14. Identification and structural analysis of ricin inhibitors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Robertus, J.D.

    1996-12-01

    Ricin is a potent cytotoxin which has been used by governments and terrorists as a poison. The three-dimensional structure of this toxic molecule was solved by X-ray crystallography, including an atomic description of its active site. The goal of this project was to use computer searches and other molecular modeling techniques to identify an inhibitor or ricin A chain (RTA). The program CHEM-X was used to predict that pteroic acid (PTA) would bind to RTA. This was shown to be the case by kinetic assays, where PTA protected ribosomes against the action of RTA, and by X-ray crystallography. The affinity of PTA is weak, with a Ki estimated at 600 Micrometers. The pterin group of PTA was observed to make many polar interactions with RTA within the specificity site of the enzyme, and to bind more strongly than the natural substrate adenine. Further work will be required to increase the binding affinity of this class of inhibitors, and to improve their solubility if efficacious antidotes are to be designed from this lead.

  15. Relay Channel with Orthogonal Components and Structured Interference Known at the Source

    OpenAIRE

    Bakanoglu, Kagan; Erkip, Elza; Simeone, Osvaldo; Shamai, Sholomo

    2012-01-01

    A relay channel with orthogonal components that is affected by an interference signal that is noncausally available only at the source is studied. The interference signal has structure in that it is produced by another transmitter communicating with its own destination. Moreover, the interferer is not willing to adjust its communication strategy to minimize the interference. Knowledge of the interferer's signal may be acquired by the source, for instance, by exploiting HARQ retransmissions on...

  16. Structure of the channeling electrons wave functions under dynamical chaos conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shul’ga, N.F. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., Kharkov 61108 (Ukraine); V.N. Karazin National University, 4, Svodody Sq., Kharkov 61022 (Ukraine); Syshchenko, V.V., E-mail: syshch@yandex.ru [Belgorod National Research University, 85, Pobedy St., Belgorod 308015 (Russian Federation); Tarnovsky, A.I. [Belgorod National Research University, 85, Pobedy St., Belgorod 308015 (Russian Federation); Isupov, A.Yu. [Laboratory of High Energy Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-01

    The stationary wave functions of fast electrons axially channeling in the silicon crystal near [1 1 0] direction have been found numerically for integrable and non-integrable cases, for which the classical motion is regular and chaotic, respectively. The nodal structure of the wave functions in the quasi-classical region, where the energy levels density is high, is agreed with quantum chaos theory predictions.

  17. Design Methodology of the Structure of Postal Express Mail Networks of Aviation Channels in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the basis of the postal area center office system, the continuous space approximation is used to study the structure of postal express mail networks of aviation channels in China. Tradeoffs among sorting, handling, transportation, administrative and facilities costs are examined. The optimizing design methodology proposed in this paper can be used to analyze and design the postal express mail network. The objective is to minimize the total system cost.

  18. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors.

    Science.gov (United States)

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm(2)/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers.

  19. Structural Basis for the Function and Inhibition of an Influenze Virus Proton Channel

    Energy Technology Data Exchange (ETDEWEB)

    Stouffer,A.; Acharya, R.; Salom, D.; Levine, A.; Di Costanzo, L.; Soto, C.; Tershko, V.; Nanda, V.; Stayrook, S.; DeGrado, W.

    2008-01-01

    The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating2. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses3, 4. Binding of amantadine physically occludes the pore, and might also perturb the pKa of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.

  20. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael; Wackett, Lawrence P.

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  1. Inventory of vegetation structure and phenology at Kulm Wetland Management District : Inventory and Monitoring final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Fiscal year 2012 final report for the inventory of vegetation structure and phenology at Kulm Wetland Management District. The purpose of the study was to conduct a...

  2. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    Science.gov (United States)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  3. Large woody debris input and its influence on channel structure in agricultural lands of Southeast Brazil.

    Science.gov (United States)

    de Paula, Felipe Rossetti; Ferraz, Silvio Frosini de Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also

  4. Signatures of protein structure in the cooperative gating of mechanosensitive ion channels

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Membrane proteins deform the surrounding lipid bilayer, which can lead to membrane-mediated interactions between neighboring proteins. Using the mechanosensitive channel of large conductance (MscL) as a model system, we demonstrate how the observed differences in protein structure can affect membrane-mediated interactions and cooperativity among membrane proteins. We find that distinct oligomeric states of MscL lead to distinct gateway states for the clustering of MscL, and predict signatures of MscL structure and spatial organization in the cooperative gating of MscL. Our modeling approach establishes a quantitative relation between the observed shapes and cooperative function of membrane~proteins.

  5. Variable structure control for MRAC systems with perturbations in input and output channels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A design scheme of variable structure model reference control systems using only input and output measurements is presented for the systems with unmodeled dynamics and disturbances in input and output channels. The modeled part of the systems has relative degree greater than one and unknown upper bound of degree. By introducing some auxiliary signals and normalized signals with memory functions and appropriate choice of controller parameters, the developed variable structure controller guarantees the global stability of the closed-loop system and the arbitrarily small tracking error.

  6. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    Science.gov (United States)

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.

    2015-11-01

    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  7. Multi-channel quantum dragons from rectangular nanotubes with even-odd structure

    Science.gov (United States)

    Inkoom, Godfred; Novotny, Mark

    Recently, a large class of nanostructures called quantum dragons have been discovered theoretically. Quantum dragons are nanostuctures with correlated disorder but have an electron transmission probability  (E) =1 for all energies E when connected to idealized leads. Hence for a single channel, the electrical conductance for a two-probe measurement should give the quantum of conductance Go =2e2/h . The time independent Schrödinger equation for the single band tight binding model is solved exactly to obtain  (E) . We have generalized the matrix method and the mapping methods of in order to study multi-channel quantum dragons for rectangular nanotubes with even-odd structure. The studies may be relevant for experimental rectangular nanotubes, such as MgO, copper phthalocyanine or some types of graphyne.. Supported in part by NSF Grant DMR-1206233.

  8. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel.

    Science.gov (United States)

    Hilf, Ricarda J C; Dutzler, Raimund

    2009-01-01

    The X-ray structure of a pentameric ligand-gated ion channel from Erwinia chrysanthemi (ELIC) has recently provided structural insight into this family of ion channels at high resolution. The structure shows a homo-pentameric protein with a barrel-stave architecture that defines an ion-conduction pore located on the fivefold axis of symmetry. In this structure, the wide aqueous vestibule that is encircled by the extracellular ligand-binding domains of the five subunits narrows to a discontinuous pore that spans the lipid bilayer. The pore is constricted by bulky hydrophobic residues towards the extracellular side, which probably serve as barriers that prevent the diffusion of ions. This interrupted pore architecture in ELIC thus depicts a non-conducting conformation of a pentameric ligand-gated ion channel, the thermodynamically stable state in the absence of bound ligand. As ligand binding promotes pore opening in these ion channels and the specific ligand for ELIC has not yet been identified, we have turned our attention towards a homologous protein from the cyanobacterium Gloebacter violaceus (GLIC). GLIC was shown to form proton-gated channels that are activated by a pH decrease on the extracellular side and that do not desensitize after activation. Both prokaryotic proteins, ELIC and GLIC form ion channels that are selective for cations over anions with poor discrimination among monovalent cations, characteristics that resemble the conduction properties of the cation-selective branch of the family that includes acetylcholine and serotonin receptors. Here we present the X-ray structure of GLIC at 3.1 A resolution. The structure reveals a conformation of the channel that is distinct from ELIC and that probably resembles the open state. In combination, both structures suggest a novel gating mechanism for pentameric ligand-gated ion channels where channel opening proceeds by a change in the tilt of the pore-forming helices.

  9. Crystal Structure of Inhibitor-Bound P450BM-3 Reveals Open Conformation of Substrate Access Channel

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Donovan C.; Chen, Baozhi; Tomchick, Diana R.; Bondlela, Muralidhar; Hegde, Amita; Machius, Mischa; Peterson, Julian A. (Texas); (UTSMC)

    2008-08-19

    P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. {omega}-Imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the {omega}-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.

  10. High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure.

    Science.gov (United States)

    Tsai, Chien-Hsiung; Lin, Che-Hsin; Fu, Lung-Ming; Chen, Hui-Chun

    2012-06-01

    A high-performance microfluidic rectifier incorporating a microchannel and a sudden expansion channel is proposed. In the proposed device, a block structure embedded within the expansion channel is used to induce two vortex structures at the end of the microchannel under reverse flow conditions. The vortices reduce the hydraulic diameter of the microchannel and, therefore, increase the flow resistance. The rectification performance of the proposed device is evaluated by both experimentally and numerically. The experimental and numerical values of the rectification performance index (i.e., the diodicity, Di) are found to be 1.54 and 1.76, respectively. Significantly, flow rectification is achieved without the need for moving parts. Thus, the proposed device is ideally suited to the high pressure environment characteristic of most micro-electro-mechanical-systems (MEMS)-based devices. Moreover, the rectification performance of the proposed device is superior to that of existing valveless rectifiers based on Tesla valves, simple nozzle/diffuser structures, or cascaded nozzle/diffuser structures.

  11. Three-dimensional structure of alternative Reynolds stresses in turbulent channels

    Science.gov (United States)

    Osawa, Kosuke; Jimenez, Javier

    2016-11-01

    As explained in another talk in this meeting, the ambiguity of the fluxes in the momentum conservation law allows alternative definitions for the Reynolds stresses. We study here the three-dimensional structures of the tangential stress that minimises the total r.m.s. flux fluctuations in turbulent channels at several Reτ >=103 . As in the case of the classical shear stress, it is found that the structures can be classified into wall-detached and wall-attached families. The latter carry most of the overall stress and are geometrically self-similar, although less elongated than for the classical ones. Although they span the full range of scales from viscous to the channel height, larger structures are less common than in the classical case, apparently missing very large 'global' modes. They are also less fractal (DF 2 . 5) than the 'sponges of flakes' of the classical quadrant structures (DF 2 . 1) , and more inclined with respect to the wall, 45° versus 20°, suggesting that they may be related to the 'hairpin legs' discussed by several authors. Funded by the Coturb project of the ERC and Erasmus Mundus.

  12. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels

    Directory of Open Access Journals (Sweden)

    Go Kasuya

    2016-02-01

    Full Text Available P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn2+ ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn2+ potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg2+. Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.

  13. Final state interaction in $D^+\\to K^-\\pi^+\\pi^+$ with $K\\pi$ I=1/2 and 3/2 channels

    CERN Document Server

    Guimar\\aes, K S F F; de Paula, W; Frederico, T; Reis, A C dos

    2014-01-01

    The final state interaction contribution to $D^+$ decays is computed for the $K^-\\pi^+\\pi^+$ channel within a light-front relativistic three-body model for the final state interaction. The rescattering process between the kaon and two pions in the decay channel is considered. The off-shell decay amplitude is a solution of a four-dimensional Bethe-Salpeter equation, which is decomposed in a Faddeev form. The projection onto the light-front of the coupled set of integral equations is performed via a quasi-potential approach. The S-wave $K\\pi$ interaction is introduced in the resonant isospin $1/2$ and the non-resonant isospin $3/2$ channels. The numerical solution of the light-front tridimensional inhomogeneous integral equations for the Faddeev components of the decay amplitude is performed perturbatively. The loop-expansion converges fast, and the three-loop contribution can be neglected in respect to the two-loop results for the practical application. The dependence on the model parameters in respect to the ...

  14. The INTELLIGENT RuleTutor: A Structured Approach to Intelligent Tutoring. Final Report.

    Science.gov (United States)

    Scandura, Alice B.

    This final report describes a general purpose system for developing intelligent tutors based on the Structural Learning Theory. The report opens with a discussion of the rules and related constructs that underlie cognitive constructs in all structural learning theories. The remainder of the text provides: (1) an introduction to the Structural…

  15. Effect of equal channel angular pressing (ECAP) on structure and properties of the constructional steel St3

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The objective of this study was to describe two different ways for performing equal channel angular pressing of the constructional steel St3 and the relation between these two ways and steel's structure and properties.

  16. Quantitative Structure-Activity Relationship Studies of 4-Imidazolyl- 1,4-dihydropyridines as Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Farzin Hadizadeh

    2013-08-01

    Conclusion: The predictive ability of the model was found to be satisfactory and could be used for designing a similar group of 1,4- dihydropyridines , based on a pyridine structure core which can block calcium channels.

  17. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    Science.gov (United States)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.

  18. FLOW STRUCTURE OF PARTLY VEGETATED OPEN-CHANNEL FLOWS WITH EELGRASS

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; YU Ji-yu; WANG Pei-fang; GUO Peng-cheng

    2009-01-01

    Aquatic vegetation can influence the transport of sediment and contaminants by changing the mean velocity and turbulent flow structure in channels. It is important to understand the hydraulics of the flows over vegetation in order to manage fluvial processes. Experiments in an open-channel flume with natural vegetation were carried out to study the influence of vegetation on the flows. In a half channel with two different densities of vegetation, the flow velocity, Reynolds stresses, and turbulence intensities were measured using an Acoustic Doppler Velocimeter (ADV). We obtained velocity profiles in the lateral direction, Reynolds stresses in the vertical direction, and the flow transition between the vegetated and non-vegetated zones in different flow regimes. The results show that the streamwise velocity in the vegetated zone with higher density is almost entirely blocked. Reynolds stress distribution distinguishes with two different regions: inside and above the vegetation canopies. The turbulence intensities increase with increasing Reynolds number. The coherent vortices dominate the vertical transport of momentum and are advected clockwise between the vegetated zone and non-vegetated zone by secondary currents (a relatively minor flow superimposed on the primary flow, with significantly different speed and direction), generated by the anisotropy of the turbulence.

  19. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Pattanayak, Deepak K; Matsushita, T; Sasaki, K; Nishida, N; Kokubo, T; Nakamura, T

    2011-05-01

    Many studies have shown that certain biomaterials with specific porous structures can induce bone formation in non-osseous sites without the need for osteoinductive biomolecules, however, the mechanisms responsible for this phenomenon (intrinsic osteoinduction of biomaterials) remain unclear. In particular, to our knowledge the type of pore structure suitable for osteoinduction has not been reported in detail. In the present study we investigated the effects of interconnective pore size on osteoinductivity and the bone formation processes during osteoinduction. Selective laser melting was employed to fabricate porous Ti implants (diameter 3.3mm, length 15 mm) with a channel structure comprising four longitudinal square channels, representing pores, of different diagonal widths, 500, 600, 900, and 1200 μm (termed p500, p600, p900, and p1200, respectively). These were then subjected to chemical and heat treatments to induce bioactivity. Significant osteoinduction was observed in p500 and p600, with the highest observed osteoinduction occurring at 5mm from the end of the implants. A distance of 5mm probably provides a favorable balance between blood circulation and fluid movement. Thus, the simple architecture of the implants allowed effective investigation of the influence of the interconnective pore size on osteoinduction, as well as the relationship between bone quantity and its location for different pore sizes.

  20. Influence of surfactant conditions on the structure of an upward bubbly channel flow

    Science.gov (United States)

    Ogasawara, Toshiyuki

    2005-11-01

    We investigated an upward bubbly channel flow and the effects of surfactant on its flow structure experimentally. 3-Pentanol and Triton X-100 are used as surfactants. By the addition of small amount of surfactant, bubble coalescences are prevented and mono-dispersed 1mm spherical bubbles are obtained. Under all of our experimental conditions, the added surfactants do not influence the single-phase turbulence. On the other hand, small amount of surfactant drastically changes the whole flow structure of bubbly flow. On the low concentration of 3-Pentanol (21-63ppm), bubbles strongly migrate towards the wall and these highly accumulated bubbles on the wall form crescent-like shaped horizontal bubble clusters of 10-40mm length. However, in 3-Pentanol solution of higher concentration (˜168ppm) or in the 2ppm Triton X-100 solution, the tendency of the lateral migration of bubbles is weaken and the bubbles are distributed uniformly in the channel. In the surfactant solution, the slip velocity on the bubble surface retards and the bubble rising velocity decreases (Marangoni effect). The change of boundary condition on the bubble surface affects not only drag force but shear-induced lift force. It is indicated that this change of shear-induced lift force greatly relates to the lateral migration of bubbles and the disaggregation of the bubble clusters. We also measured the turbulent properties using LDV and discuss the flow structure.

  1. Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2010-01-01

    PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution...... of u′ is bimodal in the separated shear layer downstream of the rib. The maximum Reynolds shear stresses occur at the leading edge of the rib. Based on quadrant analysis, it is found that ejection motions make a dominant contribution to the Reynolds shear stress in this region. Moreover, topology...

  2. Single-top production t-channel cross section measurement in the electron+jets final state at ATLAS with 35 pb{sup -1}of data

    Energy Technology Data Exchange (ETDEWEB)

    Khoriauli, Gia

    2012-07-15

    The cross section of the Standard Model electroweak production of a single top quark in the t-channel has been measured using the LHC proton-proton collision data at {radical}(s)=7 TeV, 35 pb{sup -1} of integrated luminosity, recorded by the ATLAS detector during the year 2010. The measurement has been based on a selection of the collision events with an electron and one b-tagged hadronic jet in the central region of the detector and one extra jet in the forward region of the detector. These requirements are dictated by the topology of the final state particles in the t-channel process. They helped to optimize an expected fraction of the t-channel process, according to a study based on Monte-Carlo simulation, in the selected events and suppress the contribution of the background processes. The main background processes such as production of hadronic jets via the strong interaction and production of a single W boson with associated hadronic jets are measured by means of data driven methods developed in this work. The measured cross section of single top quark production in the t-channel process is 59{sup +44}{sub -39}(stat.){sup +63}{sub -39}(syst.) pb. The measured upper limit on the cross section is 226 pb at the 95% confidence level. The results are in agreement with the latest theoretical prediction of the t-channel cross section of the Standard Model production of a single top quark calculated at NNLO, 64.6{sup +3.3}{sub -2.6} pb, considering m {sub t-quark}=172.5 GeV.

  3. Structural basis for ether-a-go-go-related gene K+ channel subtype-dependent activation by niflumic acid.

    Science.gov (United States)

    Fernandez, David; Sargent, John; Sachse, Frank B; Sanguinetti, Michael C

    2008-04-01

    Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridinecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K(+) channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. NFA acted from the extracellular side of the membrane to differentially enhance ERG channel currents independent of channel state. At 1 mM, NFA shifted the half-point for activation by -6, -18, and -11 mV for ERG1, ERG2, and ERG3 channels, respectively. The half-point for channel inactivation was shifted by +5 to +9 mV by NFA. The structural basis for the ERG subtype-specific response to NFA was explored with chimeric channels and site-directed mutagenesis. The molecular determinants of enhanced sensitivity of ERG2 channels to NFA were isolated to an Arg and a Thr triplet in the extracellular S3-S4 linker.

  4. Numerical study of the structure of thermal plume in a vertical channel: Effect of the height of canal

    Directory of Open Access Journals (Sweden)

    Jouini Belgacem

    2016-01-01

    Full Text Available In this paper we propose to study numerically, by means of a software Named Calculation FDS, a thermal plume evolve from a source at the entrance to of a vertical channel. In the literature, there are researchers who interested in the interaction of plume with his the confinement medium. These studies are based on the determination of the global structure of plume confined. They found that this plume consists of three distinct zones. A first zone near source (instability zone followed by a second zone, such as the development of plume, and a third zone which is the zone of turbulence, Comparing the overall structure of the plume confined to that of the free plume, we can identify the presence of a third zone (zone of instability. The aim is firstly to determine the height of the instability zone located above of source, and secondly, to make a spectral study frequencies exhaust. Thus, effects of the geometrical parameters on frequencies of these escapements and the height an instability zone. The final aim is to establish correlations between the dimensionless numbers of Strouhal and Grashof.

  5. Final structural and mechanical evaluation of the W7-X magnet support system

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, N. E-mail: nikola.jaksic@ipp.mpg.de; Simon-Weidner, J.; Sapper, J

    2001-11-01

    The plasma fusion experiment WENDELSTEIN7-X (W7-X) of the stellarator family, which was developed at the Max-Planck-Institute for Plasmaphysik, is in the state of the final detail design. W7-X is planned for first operation in 2006. Currently the main components (coils, magnet support structure, vacuum vessel, etc) are ordered to be manufactured. This paper gives a summarisation of the development of the magnet support structure during the last 10 years. Of course, the final design and its structural analyses are the main topic of the discussion. Finally, it is tried to summarize the cognition won until now and based on this knowledge to give the recommendations for future activities.

  6. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  7. Solution structure and alanine scan of a spider toxin that affects the activation of mammalian voltage-gated sodium channels.

    Science.gov (United States)

    Corzo, Gerardo; Sabo, Jennifer K; Bosmans, Frank; Billen, Bert; Villegas, Elba; Tytgat, Jan; Norton, Raymond S

    2007-02-16

    Magi 5, from the hexathelid spider Macrothele gigas, is a 29-residue polypeptide containing three disulfide bridges. It binds specifically to receptor site 4 on mammalian voltage-gated sodium channels and competes with scorpion beta-toxins, such as Css IV from Centruroides suffusus suffusus. As a consequence, Magi 5 shifts the activation voltage of the mammalian rNav1.2a channel to more hyperpolarized voltages, whereas the insect channel, DmNav1, is not affected. To gain insight into toxin-channel interactions, Magi 5 and 23 analogues were synthesized. The three-dimensional structure of Magi 5 in aqueous solution was determined, and its voltage-gated sodium channel-binding surfaces were mapped onto this structure using data from electrophysiological measurements on a series of Ala-substituted analogues. The structure clearly resembles the inhibitor cystine knot structural motif, although the triple-stranded beta-sheet typically found in that motif is partially distorted in Magi 5. The interactive surface of Magi 5 toward voltage-gated sodium channels resembles in some respects the Janus-faced atracotoxins, with functionally important charged residues on one face of the toxin and hydrophobic residues on the other. Magi 5 also resembles the scorpion beta-toxin Css IV, which has distinct nonpolar and charged surfaces that are critical for channel binding and has a key Glu involved in voltage sensor trapping. These two distinct classes of toxin, with different amino acid sequences and different structures, may utilize similar groups of residues on their surface to achieve the common end of modifying voltage-gated sodium channel function.

  8. The possible role of Coriolis forces in structuring large-scale sinuous patterns of submarine channel-levee systems.

    Science.gov (United States)

    Wells, Mathew; Cossu, Remo

    2013-01-01

    Submarine channel-levee systems are among the largest sedimentary structures on the ocean floor. These channels have a sinuous pattern and are the main conduits for turbidity currents to transport sediment to the deep ocean. Recent observations have shown that their sinuosity decreases strongly with latitude, with high-latitude channels being much straighter than similar channels near the Equator. One possible explanation is that Coriolis forces laterally deflect turbidity currents so that at high Northern latitudes both the density interface and the downstream velocity maximum are deflected to the right-hand side of the channel (looking downstream). The shift in the velocity field can change the locations of erosion and deposition and introduce an asymmetry between left- and right-turning bends. The importance of Coriolis forces is defined by two Rossby numbers, RoW=U/Wf and RoR=U/Rf, where U is the mean downstream velocity, W is the width of the channel, R is the radius of curvature and f is the Coriolis parameter. In a bending channel, the density interface is flat when RoR∼-1, and Coriolis forces start to shift the velocity maximum when |RoW|Coriolis forces could lead to straighter channels at high latitudes.

  9. Influence of structural parameters on the immunity of short-channel effects in grooved-gate nMOSFET

    Institute of Scientific and Technical Information of China (English)

    Tong Jian-Nong; Zou Xue-Cheng; Shen Xu-Bang

    2004-01-01

    This paper presents the influences of structural parameters on the immunity of short-channel effects in groovedgate n-channel metal-oxide-semiconductor field effect transistor (nMOSFET) using the simulator PISCES-Ⅱ. The zero or negative groove-junction depth is beneficial to the improvement of the threshold characters, but there exists a limited range. The doping concentration of both substrate and channel has a significant influence on the threshold characters as well as on the device transconductance. Thus, the variation in these adjustable parameters may help to optimize the device design.

  10. Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel

    Science.gov (United States)

    Tew Kai, Emilie; Marsac, Francis

    2010-07-01

    Mesoscale physical features as fronts and eddies appear to play a key role in the dynamics of marine communities. In the Indian Ocean, the Mozambique Channel (MC) is a natural laboratory to investigate mesoscale eddies (100-300 km in diameter); indeed, four to seven eddies per year are know to transit through the Channel, from North to South. We studied the structuring role of the mesoscale eddies on spatial dynamics and foraging strategy of top predators using seabirds and tuna as examples. Emphasis was on the central part of the MC (16-24°S) where eddy activity is most developed. We integrated three main categories of information: (i) satellite altimetry for sea-level anomaly (SLA) and geostrophic current, remotely-sensed surface temperature (SST) and SeaWiFS data for chlorophyll concentration (CC); (ii) individual tracking of Great Frigatebirds ( Fregata minor) to characterize foraging areas; and (iii) detailed catch statistics from purse-seine fisheries to describe distribution of tuna schools. Generalized Additive Models were applied to quantify the relative influence of mesoscale descriptors, SST and CC on foraging behaviour of Great Frigatebirds and location of purse-seine sets. Our results show that seabirds are more closely tied to mesoscale eddies compared to tuna. We underline the role of eddy boundaries on the response of frigatebirds and tuna. Good foraging conditions are promoted along the edge of eddies as a result of the interplay of the maturation process from cyclonic eddies and the concentration process by eddy interactions. A decrease in the number or intensity of eddies in the MC, as observed during strong El Niño events, could potentially affect the eddy-related ecosystem with putative negative repercussions on central-place foragers such as Great Frigatebirds. We discuss the importance of a better understanding of the “eddy system”, in marine conservation and tuna fisheries management in the Mozambique Channel.

  11. Search for associated production of the Higgs boson in the H → WW channel with a fully leptonic final state

    CERN Document Server

    Bortolotto, V; The ATLAS collaboration

    2014-01-01

    A search for the Higgs boson in the WH and ZH associated production modes, with H→WW(∗) and a fully leptonic final state with electrons or muons, is performed using the data collected in 2012 with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to 20.7 fb−1 of proton-proton collision data at a center-of-mass energy of 8 TeV. The result obtained with the 2012 data is combined with a search for WH, with H→WW(∗) and a fully leptonic final state with electrons or muons, corresponding to 4.7 fb−1 of data recorded at a center-of-mass energy of 7 TeV.

  12. Synthesis and Structure of a Novel Three-dimensional Organo-zincophosphite with Three Intersecting Channels

    Institute of Scientific and Technical Information of China (English)

    陈文斌; 李牛; 项寿鹤

    2005-01-01

    The hydrothermal synthesis and X-my single crystal diffraction analysis of a novel three-dimensional organo-zincophosphite, [HO(CH2)2NH3]2·[Zn3(HPO3)4], are described. The framework is built up from strictly alternating vertex-linked ZnO4 tetrahedron and HPO3 pseudo pyramid incorporating ethanolamine (EOA) cations into its channels. The structure is formed through 2nO4 tetrahedron connecting with two kinds of four-membered ring chains along different directions. There are three intersecting channels with eight-membered ring windows along [0 1 0], [0 4 15] and [0 -4 15], which have not been found in organo-zincophosphites before. Crystal data:[HO(CH2)2NH3]2·[Zn3(HPO3)4], Mr=640.21, Orthorhombic, Fdd2, a=2.8528nm, b=0.8426nm, c=1.6159nm,Z=8,V=3.884nm3, R1=0.0219,wR2=0.0544.

  13. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale.

    Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  14. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  15. Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: takagi@mach.t.u-tokyo.ac.jp

    2009-12-15

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters. (invited paper)

  16. INVITED PAPER: Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    Science.gov (United States)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro

    2009-12-01

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters.

  17. Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hideki Shigematsu

    Full Text Available Mechanosensing in plants is thought to be governed by sensory complexes containing a Ca²⁺-permeable, mechanosensitive channel. The plasma membrane protein MCA1 and its paralog MCA2 from Arabidopsis thaliana are involved in mechanical stress-induced Ca²⁺ influx and are thus considered as candidates for such channels or their regulators. Both MCA1 and MCA2 were functionally expressed in Sf9 cells using a baculovirus system in order to elucidate their molecular natures. Because of the abundance of protein in these cells, MCA2 was chosen for purification. Purified MCA2 in a detergent-solubilized state formed a tetramer, which was confirmed by chemical cross-linking. Single-particle analysis of cryo-electron microscope images was performed to depict the overall shape of the purified protein. The three-dimensional structure of MCA2 was reconstructed at a resolution of 26 Å from 5,500 particles and appears to comprise a small transmembrane region and large cytoplasmic region.

  18. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.

    2010-09-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  19. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  20. Experimental study of a novel manifold structure of micro-channel heat exchanger

    Science.gov (United States)

    Xu, Bo; Xu, Kunhao; Wei, Wei; Han, Qing; Chen, Jiangping

    2013-07-01

    Refrigerant flow distribution with phase change heat transfer was experimentally studied for a micro-channel heat exchanger having horizontal headers. In order to solve the problem of maldistribution, a novel manifold structure with orifice and bypass tube was proposed and experimentally studied compared to the conventional structure. Tests were conducted with downward flow for mass flux from 70 to 110 kg m-2s-1 (air side flow velocity from 1 to 2ms-1). The surface temperature distribution of the heat exchanger recorded by thermal imager and the square deviation of it were used to judge the uniformity of flow distribution. It is shown that as mass flux increased, better flow distribution is obtained (small square deviation of temperature distribution means better flow distribution: conventional structure from 32 to 27, novel structure from 19 to 14), and flow distribution of the novel structure was much better than that of the conventional one. The heat transfer performances of the two heat exchangers were also studied. The cooling capacity of the novel heat exchanger was 14.8% higher than that of the conventional because of the better flow distribution. And the refrigerant pressure drop was 120% higher because of bigger mass flow and the resistance of the orifice. It's worth noting that the air pressure drop of novel heat exchanger was also higher (about 28.3%)than that of the conventional one, even when they have same fin and flat tube structure. From the pictures of the heat exchanger surfaces, it was found that some surface area of the conventional heat exchanger was not wet because of the low mass flow and high superheat, which leaded to a poor performance and relatively small air pressure drop.

  1. Cascade Grating Structure for Increasing the Channel Number on Holographic Demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Jun Won AN

    2006-01-01

    The expansion capability of the channel number in the optical demultiplexer using two cascaded photopolymer volume gratings is reported. It could be accomplished by designing of two gratings with different spectral range. As a result of the experiment, a 0.4-nm-spaced 130-channel demultiplexer with the channel uniformity of 3.5dB, the 3 dB-bandwidth of 0.12 nm, and the channel crosstalk of - 20 dB is experimentally demonstrated.

  2. Crystal Structure of the Mammalian GIRK2 KplusChannel and Gating Regulation by G Proteins PIP2 and Sodium

    Energy Technology Data Exchange (ETDEWEB)

    M Whorton; R MacKinnon

    2011-12-31

    G protein-gated K{sup +} channels (Kir3.1--Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K{sup +} channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP{sub 2} suggest that G proteins open only the G loop gate in the absence of PIP{sub 2}, but in the presence of PIP{sub 2} the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na{sup +} ion-binding site, which would allow intracellular Na{sup +} to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.

  3. Structural basis of slow activation gating in the cardiac IKs channel complex

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Pusch, Michael; Wolf, Steffen;

    2011-01-01

    Accessory ß-subunits of the KCNE gene family modulate the function of various cation channel a-subunits by the formation of heteromultimers. Among the most dramatic changes of biophysical properties of a voltage-gated channel by KCNEs are the effects of KCNE1 on KCNQ1 channels. KCNQ1 and KCNE1 ar...

  4. FLUID-STRUCTURE INTERACTION OF HYDRODYNAMIC DAMPER DURING THE RUSH INTO THE WATER CHANNEL

    Institute of Scientific and Technical Information of China (English)

    XU Qing-xin; SHEN Rong-ying

    2008-01-01

    The hydrodynamic damper is a device to decrease the motion of armament carrier by use of the water resistance. When hydrodynamic damper rushes into the water channel with high velocity, it is a complicated flow phenomenon with fluid-structure interaction, free surface and moving interface. Numerical simulation using the Smoothed Particle Hydrodynamics (SPH) method coupled with the Finite Element (FE) method was successfully conducted to predict the dynamic characteristics of hydrodynamic damper. The water resistance, the pressure in the interface and the stress of structure were investigated, and the relationship among the peak of water resistance, initial velocity and actual draught was also discussed. The empirical formula was put forward to predict the water resistance. And it is found that the resistance coefficient is commonly in the range of 0.3≤C ≤0.5, when the initial velocity is larger than 50 m/s. It can be seen that the SPH method coupled with the FE method has many obvious advantages over other numerical methods for this complicated flow problem with fluid-structure interaction.

  5. Effect of extended confinement on the structure of edge channels in the quantum anomalous Hall effect

    Science.gov (United States)

    Yue, Z.; Raikh, M. E.

    2016-09-01

    The Quantum anomalous Hall (QAH) effect in the films with nontrivial band structure accompanies the ferromagnetic transition in the system of magnetic dopants. Experimentally, the QAH transition manifests itself as a jump in the dependence of longitudinal resistivity on a weak external magnetic field. Microscopically, this jump originates from the emergence of a chiral edge mode on one side of the ferromagnetic transition. We study analytically the effect of an extended confinement on the structure of the edge modes. We employ the simplest model of the extended confinement in the form of a potential step next to the hard wall. It is shown that, unlike the conventional quantum Hall effect, where all edge channels are chiral, in the QAH effect, a complex structure of the boundary leads to nonchiral edge modes which are present on both sides of the ferromagnetic transition. Wave functions of nonchiral modes are different above and below the transition: on the "topological" side, where the chiral edge mode is supported, nonchiral modes are "repelled" from the boundary; i.e., they are much less localized than on the "trivial" side. Thus, the disorder-induced scattering into these modes will boost the extension of the chiral edge mode. The prime experimental manifestation of nonchiral modes is that, by contributing to longitudinal resistance, they smear the QAH transition.

  6. A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore.

    Science.gov (United States)

    Streit, Anne K; Netter, Michael F; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S P; Stansfeld, Phillip J; Decher, Niels

    2011-04-22

    Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.

  7. Smart Intelligent Aircraft Structures (SARISTU) : Proceedings of the Final Project Conference

    CERN Document Server

    Papadopoulos, Michael

    2016-01-01

    The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations. With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites. The gap- and edge-free deformation of aerodynamic surfaces known as conformal morphing has gained previously unrealized capabilities such as inherent de-icing, erosion protection and lightning strike protection, while at the same time the technological risk has been greatly reduced. Individual structural health monitoring techniques can now be applied at the part-manufacturin...

  8. Controlling Initial and Final Radii to Achieve a Low-Complexity Sphere Decoding Technique in MIMO Channels

    Directory of Open Access Journals (Sweden)

    Fatemeh Eshagh Hosseini

    2012-01-01

    Full Text Available In order to apply sphere decoding algorithm in multiple-input multiple-output communication systems and to make it feasible for real-time applications, its computational complexity should be decreased. To achieve this goal, this paper provides some useful insights into the effect of initial and the final sphere radii and estimating them effortlessly. It also discusses practical ways of initiating the algorithm properly and terminating it before the normal end of the process as well as the cost of these methods. Besides, a novel algorithm is introduced which utilizes the presented techniques according to a threshold factor which is defined in terms of the number of transmit antennas and the noise variance. Simulation results show that the proposed algorithm offers a desirable performance and reasonable complexity satisfying practical constraints.

  9. Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.

    Directory of Open Access Journals (Sweden)

    Divya Kesters

    Full Text Available Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.

  10. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking.

    Science.gov (United States)

    Galea, Charles A; Nguyen, Hai M; George Chandy, K; Smith, Brian J; Norton, Raymond S

    2014-04-01

    MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.

  11. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    Science.gov (United States)

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen

  12. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    Science.gov (United States)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  13. The solution structure of the S4-S5 linker of the hERG potassium channel.

    Science.gov (United States)

    Gayen, Shovanlal; Li, Qingxin; Kang, CongBao

    2012-02-01

    The human ether-à-go-go related gene (hERG) encodes a protein that forms a voltage-gated potassium channel and plays an important role in the heart by controlling the rapid delayed rectifier K(+) current (I(Kr)). The S4-S5 linker was shown to be important for the gating of the hERG channel. Nuclear magnetic resonance study showed that a peptide derived from the S4-S5 linker had no well-ordered structure in aqueous solution and adopted a 3(10) -helix (E544-Y545-G546) structure in detergent micelles. The existence of an amphipathic helix was confirmed, which may be important for interaction with cell membrane. Close contact between side chains of residues R541 and E544 was observed, which may be important for its regulation of channel gating.

  14. Positive Allosteric Modulation of Kv Channels by Sevoflurane: Insights into the Structural Basis of Inhaled Anesthetic Action.

    Directory of Open Access Journals (Sweden)

    Qiansheng Liang

    Full Text Available Inhalational general anesthesia results from the poorly understood interactions of haloethers with multiple protein targets, which prominently includes ion channels in the nervous system. Previously, we reported that the commonly used inhaled anesthetic sevoflurane potentiates the activity of voltage-gated K+ (Kv channels, specifically, several mammalian Kv1 channels and the Drosophila K-Shaw2 channel. Also, previous work suggested that the S4-S5 linker of K-Shaw2 plays a role in the inhibition of this Kv channel by n-alcohols and inhaled anesthetics. Here, we hypothesized that the S4-S5 linker is also a determinant of the potentiation of Kv1.2 and K-Shaw2 by sevoflurane. Following functional expression of these Kv channels in Xenopus oocytes, we found that converse mutations in Kv1.2 (G329T and K-Shaw2 (T330G dramatically enhance and inhibit the potentiation of the corresponding conductances by sevoflurane, respectively. Additionally, Kv1.2-G329T impairs voltage-dependent gating, which suggests that Kv1.2 modulation by sevoflurane is tied to gating in a state-dependent manner. Toward creating a minimal Kv1.2 structural model displaying the putative sevoflurane binding sites, we also found that the positive modulations of Kv1.2 and Kv1.2-G329T by sevoflurane and other general anesthetics are T1-independent. In contrast, the positive sevoflurane modulation of K-Shaw2 is T1-dependent. In silico docking and molecular dynamics-based free-energy calculations suggest that sevoflurane occupies distinct sites near the S4-S5 linker, the pore domain and around the external selectivity filter. We conclude that the positive allosteric modulation of the Kv channels by sevoflurane involves separable processes and multiple sites within regions intimately involved in channel gating.

  15. The Structural Basis and Functional Consequences of Interactions Between Tetrodotoxin and Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    C. Ruben

    2006-04-01

    Full Text Available Abstract: Tetrodotoxin (TTX is a highly specific blocker of voltage-gated sodium channels. The dissociation constant of block varies with different channel isoforms. Until recently, channel resistance was thought to be primarily imparted by amino acid substitutions at a single position in domain I. Recent work reveals a novel site for tetrodotoxin resistance in the P-region of domain IV.

  16. Effect of Levee and Channel Structures on Long Lava Flow Emplacement: Martian Examples from THEMIS and MOLA Data

    Science.gov (United States)

    Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.

    2003-01-01

    Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.

  17. Formation of vortex structures in channels with mass injection and their interaction with surfaces in solid-fuel rocket engines

    Science.gov (United States)

    Benderskiy, B. Ya.; Chernova, A. A.

    2015-03-01

    The topological features of the structure of combustion products flow in the flow paths with different shapes of channel cross sections at power installations are considered. The results of mathematical modeling of internal gas dynamics of the flow paths of power installations are compared with experimental data.

  18. The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels.

    Science.gov (United States)

    Sampieri, Alicia; Diaz-Muñoz, Mauricio; Antaramian, Anaid; Vaca, Luis

    2005-07-01

    In the present study we have explored structural determinants of the functional interaction between skeletal muscle ryanodine receptor (RyR1) and transient receptor potential channel 1 (TRPC1) channels expressed in Chinese hamster ovary cells. We have illustrated a functional interaction between TRPC1 channels and RyR1 for the regulation of store-operated calcium entry (SOCE) initiated after releasing calcium from a caffeine-sensitive intracellular calcium pool. RNA interference experiments directed to reduce the amount of TRPC1 protein indicate that RyR1 associates to at least two different types of store-operated channels (SOCs), one dependent and one independent of TRPC1. In contrast, bradykinin-induced SOCE is completely dependent on the presence of TRPC1 protein, as we have previously illustrated. Removing the foot structure from RyR1 results in normal caffeine-induced release of calcium from internal stores but abolishes the activation of SOCE, indicating that this structure is require for functional coupling to SOCs. The footless RyR1 protein shows a different cellular localization when compared with wild type RyR1. The later protein shows a higher percentage of colocalization with FM-464, a marker of plasma membrane. The implications of the foot structure for the functional and physical coupling to TRPC and SOCs is discussed.

  19. Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance

    Directory of Open Access Journals (Sweden)

    Ahmed I. Al-Amoud

    2014-06-01

    Full Text Available The effects of water temperature and structural parameters of a labyrinth emitter on drip irrigation hydraulic performance were investigated. The inside structural parameters of the trapezoidal labyrinth emitter include path width (W and length (L, trapezoidal unit numbers (N, height (H, and spacing (S. Laboratory experiments were conducted using five different types of labyrinth-channel emitters (three non-pressure compensating and two pressure-compensating emitters commonly used for subsurface drip irrigation systems. The water temperature effect on the hydraulic characteristics at various operating pressures was recorded and a comparison was made to identify the most effective structural parameter on emitter performance. The pressure compensating emitter flow exponent (x average was 0.014, while non-pressure compensating emitter’s values average was 0.456, indicating that the sensitivity of non-pressure compensating emitters to pressure variation is an obvious characteristic (p<0.001 of this type of emitters. The effects of water temperature on emitter flow rate were insignificant (p>0.05 at various operating pressures, where the flow rate index values for emitters were around one. The effects of water temperature on manufacturer’s coefficient of variation (CV values for all emitters were insignificant (p>0.05. The CV values of the non-pressure compensating emitters were lower than those of pressure compensating emitters. This is typical for most compensating models because they are manufactured with more elements than non-compensating emitters are. The results of regression analysis indicate that N and H are the essential factors (p<0.001 to affect the hydraulic performance.

  20. Scale of Severe Channel Disturbances Relative to the Structure of Fish Populations

    Science.gov (United States)

    Luce, C. H.; Rieman, B. E.; King, J. G.; Dunham, J. B.

    2002-12-01

    Stream temperature and channel disturbance are two potentially important controls on the distribution and persistence of fish populations. Temperature regulates primary physiological processes that constrain the demographic response of populations to their environments. Ultimately temperature may be a first order determinant of the patterns of potential habitat and occurrence for many species. Stream temperature can be estimated from locally derived empirical relationships with elevation or based on detailed energy balances and thus used to model the distribution of potential habitats for fishes across whole landscapes. The role of disturbance is more hypothetical. Metapopulation theory proposes that environmental variation may have an important influence on the dynamics of populations. Disturbances may depress or even eliminate local populations, but a regional population may persist because other populations are not affected. Demographic support or recolonization may occur through dispersal among populations. Clearly the scale of disturbance and population structure can be important. If the characteristic size of disturbances is larger than the extent of a local population, then adjacent populations may decline simultaneously and metapopulation structure will offer little benefit. Conversely, if the characteristic size is smaller the benefit of structure could be important. In this paper we examine the spatial scale of large disturbances in the Boise River catchment over the last 50 years. We compare that to the scale of habitat patches for bull trout defined by stream temperature and the patterns of genetic variation detected by molecular techniques. Implications for species conservation are discussed in the context of climate change (influencing habitat patch size) and fire and fuels management (influencing the scale of disturbance).

  1. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  2. Structural Dynamics of the Potassium Channel Blocker ShK: SRLS Analysis of (15)N Relaxation.

    Science.gov (United States)

    Meirovitch, Eva; Tchaicheeyan, Oren; Sher, Inbal; Norton, Raymond S; Chill, Jordan H

    2015-12-10

    The 35-residue ShK peptide binds with high affinity to voltage-gated potassium channels. The dynamics of the binding surface was studied recently with (microsecond to millisecond) (15)N relaxation dispersion and (picosecond to nanosecond) (15)N spin relaxation of the N-H bonds. Relaxation dispersion revealed microsecond conformational-exchange-mediated exposure of the functionally important Y23 side chain to the peptide surface. The spin relaxation parameters acquired at 14.1 and 16.45 T have been subjected to model-free (MF) analysis, which yielded a squared generalized order parameter, S(2), of approximately 0.85 for virtually all of the N-H bonds. Only a "rigid backbone" evaluation could be inferred. We ascribe this limited information to the simplicity of MF in the context of challenging data. To improve the analysis, we apply the slowly relaxing local structure (SRLS) approach, which is a generalization of MF. SRLS describes N-H bond dynamics in ShK in terms of a local potential, u, ranging from 10 to 18.5 kBT, and a local diffusion rate, D2, ranging from 4.2 × 10(8) to 2.4 × 10(10) s(-1). This analysis shows that u is outstandingly strong for Y23 and relatively weak for K22, whereas D2 is slow for Y23 and fast for K22. These observations are relevant functionally because of the key role of the K22-Y23 dyad in ShK binding to potassium channels. The disulfide-bond network exhibits a medium-strength potential and an alternating wave-like D2 pattern. This is indicative of moderate structural restraints and motional plasticity, in support of, although not directly correlated with, the microsecond binding-related conformational exchange process detected previously. Thus, new information on functionally important residues in ShK and its overall conformational stability emerged from the SRLS analysis, as compared with the previous MF-based estimate of backbone dynamics as backbone rigidity.

  3. Reversible supra-channel effects: 3D kagome structure and catalysis via a molecular array of 1D coordination polymers.

    Science.gov (United States)

    Lee, Haeri; Noh, Tae Hwan; Jung, Ok-Sang

    2013-10-14

    Self-assembly of CuX2 (X(-) = ClO4(-) and BF4(-)) with 2,3-bis(nicotinoyloxy)naphthalene yields a 1D loop-chain skeleton. The loop-chains form an ensemble constituting a unique 3D kagome-type structure with both hexagonal and trigonal supra-channels. The unprecedented supra-channel effects on the catalytic oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylbenzoquinone were investigated.

  4. Probing the structure-function relationship of alpha-latrotoxin-formed channels with antibodies and pronase.

    Science.gov (United States)

    Chanturiya, A N; Nikolaenko, A N; Shatursky OYa; Lishko, V K

    1996-10-01

    The major toxic component of black widow spider (Latrodectus mactans tredecimguttatus) venom, alpha-latrotoxin, is known to form ionic channels in different membranes. In order to probe the extramembrane domains of alpha-latrotoxin molecule, alpha-latrotoxin channels in planar lipid membrane were treated with antibodies to latrotoxin or with pronase added to different sides of the membrane. It was found that antibody addition to the same side as the toxin (cis) decreased channel conductance only at positive potentials across the membrane. In contrast, trans side addition of antibodies changed the channel conductance at both positive and negative potentials: at positive potential conductance first slightly increased then decreased by more then 50%; at negative potential it decreased much more quickly, to only about 20% of the initial value. No dependence on membrane potential was found for pronase treatment of incorporated channels. For both cis and trans application of pronase, channel selectivity for Ca2+, Mg2+, Ba2+ and K+, Na+, Li+ ions did not change significantly but Cd2+ block was decreased. Trans pronase treatment also resulted in some rectification of I/V curves and an increase in channel conductance. We interpret these findings as evidence that alpha-latrotoxin channel has protruding parts on both sides of the membrane and that its conformation in the membrane depends on membrane potential.

  5. Experimental investigation of internal structure of open-channel flow with intense transport of sediment

    Directory of Open Access Journals (Sweden)

    Matoušek Václav

    2015-12-01

    Full Text Available Gravity-driven open-channel flows carrying coarse sediment over an erodible granular deposit are studied. Results of laboratory experiments with artificial sediments in a rectangular tilting flume are described and analyzed. Besides integral quantities such as flow rate of mixture, transport concentration of sediment and hydraulic gradient, the experiments include measurements of the one-dimensional velocity distribution across the flow. A vertical profile of the longitudinal component of local velocity is measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods. Due to strong flow stratification, the velocity profile covers regions of very different local concentrations of sediment from virtually zero concentration to the maximum concentration of bed packing. The layered character of the flow results in a velocity distribution which tends to be different in the transport layer above the bed and in the sediment-free region between the top of the transport layer and the water surface. Velocity profiles and integral flow quantities are analyzed with the aim of evaluating the layered structure of the flow and identifying interfaces in the flow with a developed transport layer above the upper plane bed.

  6. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons.

    Science.gov (United States)

    Spafford, J David; Munno, David W; Van Nierop, Pim; Feng, Zhong-Ping; Jarvis, Scott E; Gallin, Warren J; Smit, August B; Zamponi, Gerald W; Syed, Naweed I

    2003-02-01

    We report here that unlike what was suggested for many vertebrate neurons, synaptic transmission in Lymnaea stagnalis occurs independent of a physical interaction between presynaptic calcium channels and a functional complement of SNARE proteins. Instead, synaptic transmission in Lymnaea requires the expression of a C-terminal splice variant of the Lymnaea homolog to mammalian N- and P/Q-type calcium channels. We show that the alternately spliced region physically interacts with the scaffolding proteins Mint1 and CASK, and that synaptic transmission is abolished following RNA interference knockdown of CASK or after the injection of peptide sequences designed to disrupt the calcium channel-Mint1 interactions. Our data suggest that Mint1 and CASK may serve to localize the non-L-type channels at the active zone and that synaptic transmission in invertebrate neurons utilizes a mechanism for optimizing calcium entry, which occurs independently of a physical association between calcium channels and SNARE proteins.

  7. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2016-02-15

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  8. Final Report - Interaction of radiation and charged particles in miniature plasma structures

    Energy Technology Data Exchange (ETDEWEB)

    Antonsen, Thomas M. [Univ. of Maryland, College Park, MD (United States). Inst. for Electronics and Applied Physics

    2014-07-16

    The extension of our program to the development of theories and models capable of describing the interactions of intense laser pulses and charged particles in miniature plasma channels is reported. These channels, which have recently been created in the laboratory, have unique dispersion properties that make them interesting for a variety of applications including particle acceleration, high harmonic generation, and THz generation. Our program systematically explored the properties of these channels, including dispersion, losses, and coupling. A particular application that was pursued is the generation of intense pulses of THz radiation by short laser pulses propagating these channels. We also explored the nonlinear dynamics of laser pulses propagating in these channels.

  9. Enhancement-Mode AIGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Arrayy Structure

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-Hou; Cheng P. Wen; QIN Hua; ZHANG Bao-Shun; CAI Yong; GONG Ru-Min; WANG Jin-Yan; ZENG Chun-Hong; SHI Wen-Hua; FENG Zhi-Hong; WANG Jing-Jing; YIN Jia-Yun

    2011-01-01

    A nano-channel array (NCA) structure is applied to realize enhancement-mode (E-mode) A1GaN/GaN high electron mobility transistors (HEMTs). The fabricated NCA-HEMT,consisting of 1000 channels connected in parallel with a channel width of 64 nm,shows a threshold voltage of 0.15 V and a subthreshold slope of 78mY/dec,compared to -3.92 V and 99mV/dec for a conventional HEMT (C-HEMT),respectively.Both the NCA-HEMT and C-HEMT show similar gate leakage current,indicating no significant degradation in gate leakage characteristics for the NCA-HEMT.The surrounding-field effect and relieved polarization contribute to the very large positive threshold voltage shift,while the work function difference makes it positive.

  10. Crystal Structure of 12-Lipoxygenase Catalytic-Domain-Inhibitor Complex Identifies a Substrate-Binding Channel for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shu; Mueser, Timothy C.; Marnett, Lawrence J.; Funk, Jr., Max O. (Toledo); (Vanderbilt)

    2014-10-02

    Lipoxygenases are critical enzymes in the biosynthesis of families of bioactive lipids including compounds with important roles in the initiation and resolution of inflammation and in associated diseases such as diabetes, cardiovascular disease, and cancer. Crystals diffracting to high resolution (1.9 {angstrom}) were obtained for a complex between the catalytic domain of leukocyte 12-lipoxygenase and the isoform-specific inhibitor, 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP). In the three-dimensional structure of the complex, the inhibitor occupied a new U-shaped channel open at one end to the surface of the protein and extending past the redox-active iron site that is essential for catalysis. In models, the channel accommodated arachidonic acid, defining the binding site for the substrate of the catalyzed reaction. There was a void adjacent to the OPP binding site connecting to the surface of the enzyme and providing a plausible access channel for the other substrate, oxygen.

  11. A secondary structural transition in the C-helix promotes gating of cyclic nucleotide-regulated ion channels.

    Science.gov (United States)

    Puljung, Michael C; Zagotta, William N

    2013-05-03

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels.

  12. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating

    Science.gov (United States)

    Martin, Gregory M; Yoshioka, Craig; Rex, Emily A; Fay, Jonathan F; Xie, Qing; Whorton, Matthew R; Chen, James Z; Shyng, Show-Ling

    2017-01-01

    KATP channels are metabolic sensors that couple cell energetics to membrane excitability. In pancreatic β-cells, channels formed by SUR1 and Kir6.2 regulate insulin secretion and are the targets of antidiabetic sulfonylureas. Here, we used cryo-EM to elucidate structural basis of channel assembly and gating. The structure, determined in the presence of ATP and the sulfonylurea glibenclamide, at ~6 Å resolution reveals a closed Kir6.2 tetrameric core with four peripheral SUR1s each anchored to a Kir6.2 by its N-terminal transmembrane domain (TMD0). Intricate interactions between TMD0, the loop following TMD0, and Kir6.2 near the proposed PIP2 binding site, and where ATP density is observed, suggest SUR1 may contribute to ATP and PIP2 binding to enhance Kir6.2 sensitivity to both. The SUR1-ABC core is found in an unusual inward-facing conformation whereby the two nucleotide binding domains are misaligned along a two-fold symmetry axis, revealing a possible mechanism by which glibenclamide inhibits channel activity. DOI: http://dx.doi.org/10.7554/eLife.24149.001 PMID:28092267

  13. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  14. Structural and Biochemical Consequences of Disease-Causing Mutations in the Ankyrin Repeat Domain of the Human TRPV4 Channel

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Hitoshi; Procko, Erik; Sotomayor, Marcos; Gaudet, Rachelle (Harvard-Med); (Harvard)

    2012-10-23

    The TRPV4 calcium-permeable cation channel plays important physiological roles in osmosensation, mechanosensation, cell barrier formation, and bone homeostasis. Recent studies reported that mutations in TRPV4, including some in its ankyrin repeat domain (ARD), are associated with human inherited diseases, including neuropathies and skeletal dysplasias, probably because of the increased constitutive activity of the channel. TRPV4 activity is regulated by the binding of calmodulin and small molecules such as ATP to the ARD at its cytoplasmic N-terminus. We determined structures of ATP-free and -bound forms of human TRPV4-ARD and compared them with available TRPV-ARD structures. The third inter-repeat loop region (Finger 3 loop) is flexible and may act as a switch to regulate channel activity. Comparisons of TRPV-ARD structures also suggest an evolutionary link between ARD structure and ATP binding ability. Thermal stability analyses and molecular dynamics simulations suggest that ATP increases stability in TRPV-ARDs that can bind ATP. Biochemical analyses of a large panel of TRPV4-ARD mutations associated with human inherited diseases showed that some impaired thermal stability while others weakened ATP binding ability, suggesting molecular mechanisms for the diseases.

  15. Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly.

    Science.gov (United States)

    Hardwick, Steven W; Gubbey, Tobias; Hug, Isabelle; Jenal, Urs; Luisi, Ben F

    2012-04-01

    Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.

  16. Varying the counter ion changes the kinetics, but not the final structure of colloidal gels.

    Science.gov (United States)

    Zhang, Li; Mikhailovskaya, Alesya; Constantin, Doru; Foffi, Giuseppe; Tavacoli, Joseph; Schmitt, Julien; Muller, François; Rochas, Cyrille; Wang, Nan; Langevin, Dominique; Salonen, Anniina

    2016-02-01

    We show that, while the gelation of colloidal silica proceeds much faster in the presence of added KCl than NaCl, the final gels are very similar in structure and properties. We have studied the gelation process by visual inspection and by small angle X-ray scattering for a range of salt and silica particle concentrations. The characteristic times of the early aggregation process and the formation of a stress-bearing structure with both salts are shown to collapse onto master curves with single multiplicative constants, linked to the stability ratio of the colloidal suspensions. The influence of the salt type and concentration is confirmed to be mainly kinetic, as the static structure factors and viscoelastic moduli of the gels are shown to be equivalent at normalized times. While there is strong variation in the kinetics, the structure and properties of the gel at long-times are shown to be mainly controlled by the concentration of particles, and hardly influenced by the type or the concentration of salt. This suggests that the differences between gels generated by different salts are only transient in time.

  17. Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I.

    OpenAIRE

    Rehm, H; Lazdunski, M

    1988-01-01

    The binding protein for the K+-channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3800- to 4600-fold enrichment and a recovery of 8-16%. The high affinity (Kd, 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purif...

  18. Comparison of the coupled-channel calculation with the WKB method for α-decay fine structure

    Science.gov (United States)

    Ni, Dongdong; Ren, Zhongzhou

    2013-05-01

    The α-decay fine structures in heavy deformed even-even and odd-mass nuclei are investigated using the newly developed multichannel cluster model (MCCM) and the WKB barrier penetration formalism. The MCCM is based on the coupled-channel Schrödinger equation with outgoing wave boundary conditions. For even-even nuclei, the two methods yield comparable results concerning the branching ratios for 0+ and 2+ states but the WKB formula fails in reproducing the branching ratios for excited 4+ states. For odd-mass nuclei, it is hard to use the WKB formula to interpret the unexpected behavior BRI+1 >BRI while the MCCM succeeds. These emphasize that the coupling effects of decay channels cannot be ignored in describing the α-decay fine structure.

  19. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    Science.gov (United States)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  20. Specific features of proton interaction with transistor structures having a 2D AlGaN/GaN channel

    Science.gov (United States)

    Emtsev, V. V.; Zavarin, E. E.; Kozlovskii, M. A.; Kudoyarov, M. F.; Lundin, V. V.; Oganesyan, G. A.; Petrov, V. N.; Poloskin, D. S.; Sakharov, A. V.; Troshkov, S. I.; Shmidt, N. M.; V'yuginov, V. N.; Zybin, A. A.; Parnes, Ya. M.; Vidyakin, S. I.; Gudkov, A. G.; Chernyakov, A. E.; Kozlovskii, V. V.

    2016-11-01

    It has been shown that the interaction of 1 MeV protons at doses of (0.5-2) × 1014 cm-2 with transistor structures having a 2D AlGaN/GaN channel (AlGaN/GaN HEMTs) is accompanied not only by the generation of point defects, but also by the formation of local regions with a disordered nanomaterial. The degree of disorder of the nanomaterial was evaluated by multifractal analysis methods. An increase in the degree of disorder of the nanomaterial, manifested the most clearly at a proton dose of 2 × 1014 cm-2, leads to several-fold changes in the mobility and electron density in the 2D channel of HEMT structures. In this case, the transistors show a decrease in the source-drain current and an order-of-magnitude increase in the gate leakage current. In HEMT structures having an enhanced disorder of the nanomaterial prior to exposure to protons, proton irradiation results in suppression of the 2D conductivity in the channel and failure of the transistors, even at a dose of 1 × 1014 cm-2.

  1. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Steven H. [Naval Research Laboratory

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a

  2. Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure.

    Science.gov (United States)

    Aguilella-Arzo, M; Aguilella, V M

    2010-04-01

    We have computed the pK(a)'s of the ionizable residues of a protein ion channel, the Staphylococcus aureus toxin alpha-hemolysin, by using two types of input structures, namely the crystal structure of the heptameric alpha-hemolysin and a set of over four hundred snapshots from a 4.38 ns Molecular Dynamics simulation of the protein inserted in a phospholipid planar bilayer. The comparison of the dynamic picture provided by the Molecular Simulation with the static one based on the X-ray crystal structure of the protein embedded in a lipid membrane allows analyzing the influence of the fluctuations in the protein structure on its ionization properties. We find that the use of the dynamic structure provides interesting information about the sensitivity of the computed pK(a) of a given residue to small changes in the local structure. The calculated pK(a) are consistent with previous indirect estimations obtained from single-channel conductance and selectivity measurements.

  3. Turbulent spots in channel flow: an experimental study Large-scale flow, inner structure and low order model

    CERN Document Server

    Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo

    2013-01-01

    We present new experimental results on the development of turbulent spots in channel flow. The internal structure of a turbulent spot is measured, with Time Resolved Stereoscopic Particle Image Velocimetry. We report the observation of travelling-wave-like structures at the trailing edge of the turbulent spot. Special attention is paid to the large-scale flow surrounding the spot. We show that this large-scale flow is an asymmetric quadrupole centred on the spot. We measure the time evolution of the turbulent fluctuations and the mean flow distortions and compare these with the predictions of a nonlinear reduced order model predicting the main features of subcritical transition to turbulence.

  4. Simultaneous 3D turbulent large-scale structures in a flood flow by multi-channels measuring systems

    OpenAIRE

    Hino, Mikio; Meng, Yang; Murayama, Nobuyoshi; 日野 幹雄; Meng, Y.; 村山 宣義

    1992-01-01

    Field measurements on turbulent large-scale structure of a flood flow in the Hinuma river at a high Reynolds number of the order of 10 (exp 6) were conducted with 16-channels electromagnetic velocimeters. The turbulent velocity components (u, v) at eight points in a plane perpendicular to the mean flow have been sampled and recorded simultaneously by a A/D converter. The quasi-instantaneous 3D images of coherent structures in the flood flow were reconstructed from these data by using a new me...

  5. Coupled-channels calculations of nonelastic cross sections using a density-functional structure model

    CERN Document Server

    Nobre, G P A; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

    2010-01-01

    A microscopic calculation of the reaction cross-section for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole (p-h) excitation states in the target and to all one-nucleon pickup channels. The p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for 40,48Ca, 58Ni, 90Zr and 144Sm were described in a QRPA framework using a Skyrme functional. Reaction cross sections calculated in this approach were compared to predictions of a fitted optical potential and to experimental data, reaching very good agreement. Couplings between inelastic states were found to be negligible, while the couplings to pickup channels contribute significantly. For the first time observed reaction cross-sections are completely accounted for by explicit channel coupling, for incident energies between 10 and 40 MeV.

  6. Calcium Channels: Structure and Function (Annals of the New York Academy of Sciences. Volume 560)

    Science.gov (United States)

    1989-06-26

    8033 Planegg, Federal Republic of Germany c Dipartimento di Anatomia e Fisiologia Umana Corso Raffaello 30 1-10125 Torino, Italy INTRODUCTION In...4313-4317. I Modulation of Ca Channels in Peripheral Neuronsa E. CARBONE Dipardmento di Anatomia e Fisiologia Umana Corso Raffaello 30 1-10125 Torino

  7. Effectiveness Using Circular Fibre Steel Flap Gate As a Control Structure Towards the Hydraulic Characteristics in Open Channel

    Science.gov (United States)

    Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.

    2016-07-01

    Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.

  8. A near-peer teaching program designed, developed and delivered exclusively by recent medical graduates for final year medical students sitting the final objective structured clinical examination (OSCE

    Directory of Open Access Journals (Sweden)

    Sobowale Oluwaseun

    2011-03-01

    Full Text Available Abstract Background The General Medical Council states that teaching doctors and students is important for the care of patients. Our aim was to deliver a structured teaching program to final year medical students, evaluate the efficacy of teaching given by junior doctors and review the pertinent literature. Methods We developed a revision package for final year medical students sitting the Objective Structured Clinical Examination (OSCE. The package was created and delivered exclusively by recent medical graduates and consisted of lectures and small group seminars covering the core areas of medicine and surgery, with a focus on specific OSCE station examples. Students were asked to complete a feedback questionnaire during and immediately after the program. Results One hundred and eighteen completed feedback questionnaires were analysed. All participants stated that the content covered was relevant to their revision. 73.2% stated that junior doctors delivered teaching that is comparable to that of consultant - led teaching. 97.9% stated the revision course had a positive influence on their learning. Conclusions Our study showed that recent medical graduates are able to create and deliver a structured, formal revision program and provide a unique perspective to exam preparation that was very well received by our student cohort. The role of junior doctors teaching medical students in a formal structured environment is very valuable and should be encouraged.

  9. Channelization in porous media driven by erosion and deposition

    Science.gov (United States)

    Jäger, R.; Mendoza, M.; Herrmann, H. J.

    2017-01-01

    We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.

  10. Channelization in Porous Media driven by Erosion and Deposition

    CERN Document Server

    Jäger, Robin; Herrmann, Hans Jürgen

    2016-01-01

    We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.

  11. Measurement of flow speed in the channels of novel threadlike structures on the surfaces of mammalian organs

    Science.gov (United States)

    Sung, Baeckkyoung; Kim, Min Su; Lee, Byung-Cheon; Yoo, Jung Sun; Lee, Sang-Hee; Kim, Youn-Joong; Kim, Ki-Woo; Soh, Kwang-Sup

    2008-02-01

    There have been several reports on novel threadlike structures (NTSs) on the surfaces of the internal organs of rats and rabbits since their first observation by Bonghan Kim in 1963. To confirm this novel circulatory function, it is necessary to observe the flow of liquid through the NTS as well as the structurally corroborating channels in the NTS. In this article, we report on the measurement of the flow speed of Alcian blue solution in the NTSs on the organ surfaces of rabbits, and we present electron microscopic images depicting the cribrous cross-section with channels. The speed was measured as 0.3 ± 0.1 mm/s, and the flow distance was up to 12 cm. The flow was unidirectional, and the phase contrast microscopic images showed that the NTSs were strongly stained with Alcian blue. The ultrastructure of the NTSs revealed by cryo-scanning electron microscopy and high-voltage electron microscopy showed that (1) there were cell-like bodies and globular clumps of matter inside the sinus of the channel with thin strands of segregated zones which is a microscopic evidence of the liquid flow, (2) the sinuses have wall structures surrounded with extracellular matrices of collagenous fibers, and (3) there exists a cribriform structure of sinuses. To understand the mechanism for the circulation, a quantitative analysis of the flow speed has been undertaken applying a simplified windkessel model. In this analysis, it was shown that the liquid flow through the NTSs could be due to peristaltic motion of the NTS itself.

  12. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale Univ., New Haven, CT (United States)

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  13. Marine Toxins Targeting Ion Channels

    Directory of Open Access Journals (Sweden)

    Hugo R. Arias

    2006-04-01

    Full Text Available Abstract: This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs, as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs, are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV, Ca2+ (CaV, and K+ (KV channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR, and the ATP-activated (P2XnR receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+, whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−. In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers of ion channel functions to treat or to alleviate a specific

  14. [Three-dimensional structure of human Kv10.2 ion channel studied by single particle electron microscopy and molecular modeling].

    Science.gov (United States)

    Sokolova, O S; Shaĭtan, K V; Grizel', A V; Popinako, A V; Karlova, M G; Kirpichnikov, M P

    2012-01-01

    Here we present a three-dimensional structure of human voltage gated Kv10.2 ion channel solved at 2.5 nm resolution. We demonstrated that Kv10.2 channel structure is subdivided into two layers. For interpretation of the structure we used the homology modeling, using the transmembrane regions of MlotiK1 channel (C subunit), and cytoplasmic PAS-PAC and cNBD domains of the N-terminal tail of hERG (A subunit) and the bacterial cyclic nucleotide-activated K+ channel binding domain as the templates. The homologous transmembrane part can be fitted into the upper part of the reconstruction. The cytoplasmic domains form the structure, similar to a "hanging gondola", which is connected to the membrane-embedded domain with linkers. The length of linkers allow contacts between C-terminal cNBD domains and N-terminal PAS domains.

  15. An experimental study on turbulent-stripe structure in transitional channel flow

    CERN Document Server

    Tsukahara, Takahiro

    2014-01-01

    Turbulent stripe, which would occur in turbulent channel flows at transitional Reynolds numbers, was studied experimentally by flow visualization using reflective flake particles. In a range of bulk mean Reynolds number Re = 1700-2000, the turbulent stripe was observed to be inclined at angles of 20-30 degree against the streamwise direction, and its streamwise wave length was about 60 times of the channel half width (delta). The longitudinal streaks with the spanwise spacing of 1.6delta were found in the quasi-laminar regions. The critical Reynolds number was Re = 1300. Time traces of the streamwise velocity were measured by laser Doppler velocimetry, revealing similarity to the equilibrium turbulent puff in the transitional pipe flow.

  16. Structural analysis of erbium {delta}-doped InP by OMVPE with RBS-channeling

    Energy Technology Data Exchange (ETDEWEB)

    Yuhara, Junji; Takeda, Hitoshi; Matsubara, Naoki; Tabuchi, Masao; Fujiwara, Yasufumi; Morita, Kenji; Takeda, Yoshikazu [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    We have determined the lattice location of Er in InP {delta}-doped by OMVPE with RBS-channeling. Er concentrations along the <001> and <011> directions are same as random yields, while a significant flux peaking effect is seen for the <111> direction. These data suggest that Er atoms occupy the site equivalent to the hexahedral site in InP lattice. (author)

  17. The non-independence discussion about cycle structure in the computer language: the final simplification of computer language in the structural design

    Science.gov (United States)

    Yang, Peilu

    2013-03-01

    In the first place, the article discusses the theory, content, development, and questions about structured programming design. The further extension on this basement provides the cycle structure in computer language is the sequence structure, branch structure, and the cycle structure with independence. Through the deeply research by the writer, we find the non-independence and reach the final simplification about the computer language design. In the first, the writer provides the language structure of linear structure (I structure) and curvilinear structure (Y structure). This makes the computer language has high proficiency with simplification during the program exploration. The research in this article is corresponding with the widely used dualistic structure in the computer field. Moreover, it is greatly promote the evolution of computer language.

  18. Effect of a Weir-Type Obstruction with Different Geometric and Hydraulic Conditions on Flow Structure in an Open Channel

    Directory of Open Access Journals (Sweden)

    Shahid Ali

    2014-07-01

    Full Text Available This paper presents results from an experimental study which was conducted at Technical University Delft, Netherland. The research was made on obstructions resembling weirs in an open channel. This weir-type obstruction was a representative of groyne/dike in a natural channel. The experimentation was performed in the laboratory for different values of inflow (25 l/sec and 40 l/sec, weir with and without vegetation and with different leeward slopes of the weir (1:4 and 1:7. The results were obtained for Reynolds normal stresses, longitudinal and vertical velocities. A comparison was made between the results of 1:4 and 1:7 leeward slope ratios. The data was collected with a LDA (Laser Doppler Anemometer. The vegetation was modeled with vertical circular rods placed over the crest of the weir. The blockage area due to this vegetation was 25% of the total area. The velocity data was gathered at around ten locations both at upstream and downstream the weir to get an insight into the flow structure. The results have been presented in the shape of vertical profiles both for velocities as well as Reynolds stresses at different locations of the channel.

  19. Structural Basis for Ether-a-go-go-Related Gene K+ Channel Subtype-Dependent Activation by Niflumic Acid[S

    Science.gov (United States)

    Fernandez, David; Sargent, John; Sachse, Frank B.; Sanguinetti, Michael C.

    2008-01-01

    Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridin-ecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K+ channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. NFA acted from the extracellular side of the membrane to differentially enhance ERG channel currents independent of channel state. At 1 mM, NFA shifted the half-point for activation by −6, −18, and −11 mV for ERG1, ERG2, and ERG3 channels, respectively. The half-point for channel inactivation was shifted by +5 to +9 mV by NFA. The structural basis for the ERG subtype-specific response to NFA was explored with chimeric channels and site-directed mutagenesis. The molecular determinants of enhanced sensitivity of ERG2 channels to NFA were isolated to an Arg and a Thr triplet in the extracellular S3-S4 linker. PMID:18218980

  20. Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin.

    Science.gov (United States)

    Cestèle, Sandrine; Yarov-Yarovoy, Vladimir; Qu, Yusheng; Sampieri, François; Scheuer, Todd; Catterall, William A

    2006-07-28

    Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. beta-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that beta-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu(779) in extracellular loop IIS1-S2 and both Glu(837) and Leu(840) in extracellular loop IIS3-S4 reduce the binding affinity of beta-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect beta-scorpion toxin binding but alter voltage dependence of activation and enhance beta-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states.

  1. Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin*S

    Science.gov (United States)

    Cestèle, Sandrine; Yarov-Yarovoy, Vladimir; Qu, Yusheng; Sampieri, François; Scheuer, Todd; Catterall, William A.

    2006-01-01

    Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. β-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that β-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu779 in extracellular loop IIS1–S2 and both Glu837 and Leu840 in extracellular loop IIS3–S4 reduce the binding affinity of β-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect β-scorpion toxin binding but alter voltage dependence of activation and enhance β-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states. PMID:16679310

  2. The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate.

    Science.gov (United States)

    Rosenberg, Mark F; O'Ryan, Liam P; Hughes, Guy; Zhao, Zhefeng; Aleksandrov, Luba A; Riordan, John R; Ford, Robert C

    2011-12-09

    Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized in the outward facing state and resembled the well characterized Sav1866 transporter. We identified regions in the CFTR map, not accounted for by Sav1866, which were potential locations for the regulatory region as well as the channel gate. In this analysis, we were aided by the fact that the unit cell was composed of two molecules not related by crystallographic symmetry. We also identified regions in the fitted Sav1866 model that were missing from the map, hence regions that were either disordered in CFTR or differently organized compared with Sav1866. Apart from the N and C termini, this indicated that in CFTR, the cytoplasmic end of transmembrane helix 5/11 and its associated loop could be partly disordered (or alternatively located).

  3. Polyphase Structure Based Eigen Design of Two-Channel Quadrature Mirror Filter Bank

    Directory of Open Access Journals (Sweden)

    S. K. Agrawal

    2014-09-01

    Full Text Available This paper presents a method for the design of two-channel quadrature mirror filter (QMF banks with linear phase in frequency domain. Low-pass prototype filter of the QMF bank is implemented using polyphase decomposition. Prototype filter coefficients are optimized to minimize an objective function using eigenvalue-eigenvector approach without matrix inversion. The objective function is formulated as a weighted sum of four terms, pass-band error and stop-band residual energy of low-pass analysis filter, the square error of the overall transfer function at the quadrature frequency and amplitude distortion of the filter bank. The simulation results clearly show that the proposed method requires less computational efforts in comparison to the other state-of-art existing design methods.

  4. Structural Features of the Final Intermediate in the Biosynthesis of the Lantibiotic Nisin. Influence of the Leader Peptide

    NARCIS (Netherlands)

    Hooven, Henno W. van den; Rollema, Harry S.; Siezen, Roland J.; Hilbers, Cornelis W.; Kuipers, Oscar P.

    1997-01-01

    The antimicrobial membrane-interacting polypeptide nisin is a prominent member of the lantibiotic family, the members of which contain thioether-bridged residues called lanthionines. To gain insight into the complex biosynthesis and the structure/function relationship of lantibiotics, the final inte

  5. The feasible study of the water flow in the micro channel with the Y-junction and narrow structure for various flow rates

    Directory of Open Access Journals (Sweden)

    Jasikova D.

    2015-01-01

    Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.

  6. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Pagani, Alberto; Minassi, Alberto;

    2009-01-01

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4alpha-phorbol esters was investigated by combining information from chemical modification of 4alpha-phorbol-didecanoate (4alpha-PDD, 2a), site-directed mutagenesis, Ca(2+) imaging, and electrophysiolog...... of TRPV4 activation by small molecules and obtain information for the rational design of structurally simpler ligands for this ion channel....

  7. The interference effects of multi-channel pion-pion scattering contributions to the final states of $\\Psi$- and $\\Upsilon$-meson family decays

    CERN Document Server

    Surovtsev, Yu S; Gutsche, T; Kamiński, R; Lyubovitskij, V E; Nagy, M

    2016-01-01

    It is shown that the basic shape of dipion mass distributions in the two-pion transitions of both charmonia and bottomonia states are explained by an unified mechanism based on the contribution of the $\\pi\\pi$, $K\\overline{K}$ and $\\eta\\eta$ coupled channels including their interference.

  8. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    Science.gov (United States)

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  9. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    Science.gov (United States)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  10. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca[superscript 2+]·calmodulins

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen; Loy, Ryan E.; Yang, Guojun; Dirksen, Robert T.; Hamilton, Susan L.; Quiocho, Florante A.; (Baylor); (Rochester-Med)

    2009-11-10

    Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.

  11. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  12. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5.

    Science.gov (United States)

    Schroeter, Annett; Walzik, Stefan; Blechschmidt, Steve; Haufe, Volker; Benndorf, Klaus; Zimmer, Thomas

    2010-07-01

    Voltage-gated sodium channels mediate the rapid upstroke of the action potential in excitable tissues. The tetrodotoxin (TTX) resistant isoform Na(v)1.5, encoded by the SCN5A gene, is the predominant isoform in the heart. This channel plays a key role for excitability of atrial and ventricular cardiomyocytes and for rapid impulse propagation through the specific conduction system. During recent years, strong evidence has been accumulated in support of the expression of several Na(v)1.5 splice variants in the heart, and in various other tissues and cell lines including brain, dorsal root ganglia, breast cancer cells and neuronal stem cell lines. This review summarizes our knowledge on the structure and putative function of nine Na(v)1.5 splice variants detected so far. Attention will be paid to the distinct biophysical properties of the four functional splice variants, to the pronounced tissue- and species-specific expression, and to the developmental regulation of Na(v)1.5 splicing. The implications of alternative splicing for SCN5A channelopathies, and for a better understanding of genotype-phenotype correlations, are discussed.

  13. Probing the Structure of the Mechanosensitive Channel of Small Conductance in Lipid Bilayers with Pulsed Electron-Electron Double Resonance

    Science.gov (United States)

    Ward, Richard; Pliotas, Christos; Branigan, Emma; Hacker, Christian; Rasmussen, Akiko; Hagelueken, Gregor; Booth, Ian R.; Miller, Samantha; Lucocq, John; Naismith, James H.; Schiemann, Olav

    2014-01-01

    Mechanosensitive channel proteins are important safety valves against osmotic shock in bacteria, and are involved in sensing touch and sound waves in higher organisms. The mechanosensitive channel of small conductance (MscS) has been extensively studied. Pulsed electron-electron double resonance (PELDOR or DEER) of detergent-solubilized protein confirms that as seen in the crystal structure, the outer ring of transmembrane helices do not pack against the pore-forming helices, creating an apparent void. The relevance of this void to the functional form of MscS in the bilayer is the subject of debate. Here, we report PELDOR measurements of MscS reconstituted into two lipid bilayer systems: nanodiscs and bicelles. The distance measurements from multiple mutants derived from the PELDOR data are consistent with the detergent-solution arrangement of the protein. We conclude, therefore, that the relative positioning of the transmembrane helices is preserved in mimics of the cell bilayer, and that the apparent voids are not an artifact of detergent solution but a property of the protein that will have to be accounted for in any molecular mechanism of gating. PMID:24559986

  14. An Eruptive Hot-Channel Structure Observed at Metric Wavelength as a Moving Type-IV Solar Radio Burst

    CERN Document Server

    Vasanth, V; Feng, Shiwei; Ma, Suli; Du, Guohui; Song, Hongqiang; Kong, Xiangliang; Wang, Bing

    2016-01-01

    Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structure in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($\\sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structu...

  15. Structure and properties of an Mg-0.3% ca magnesium alloy after multiaxial deformation and equal-channel angular pressing

    Science.gov (United States)

    Dobatkin, S. V.; Rokhlin, L. L.; Salishchev, G. A.; Kopylov, V. I.; Serebryany, V. N.; Stepanov, N. D.; Tarytina, I. E.; Kuroshev, I. S.; Martynenko, N. S.

    2014-11-01

    Multiaxial deformation (MAD) of an Mg-0.3% Ca alloy is performed when temperature decreases within the ranges 425-375 and 400-325°C. A decrease in the temperature at the end of MAD causes a decrease in the grain size from 7-8 to 0.5-2 μm and the spread of a sharp prismatic texture, which determine a high strength (σu = 194 MPa) and plasticity (δ = 39%). After MAD in the range 425-375°C, the Mg-0.3% Ca alloy is subjected to equal-channel angular pressing (ECAP) at temperatures of 275 and 325°C. ECAP causes a decrease in the grain size from 7-8 μm to 2 and 5 μm, respectively. The texture also changes from prismatic to tilted basal texture. This results in an increase in the strength to 170-160 MPa at plasticity δ = 25-30%. It is shown that MAD can be used as both final and preliminary processing before ECAP to form an ultrafine-grained structure in the Mg-0.3% Ca alloy.

  16. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins.

    Science.gov (United States)

    Ovchinnikova, Tatiana V; Balandin, Sergey V; Aleshina, Galina M; Tagaev, Andrey A; Leonova, Yulia F; Krasnodembsky, Eugeny D; Men'shenin, Alexander V; Kokryakov, Vladimir N

    2006-09-22

    A novel 40-residue antimicrobial peptide, aurelin, exhibiting activity against Gram-positive and Gram-negative bacteria, was purified from the mesoglea of a scyphoid jellyfish Aurelia aurita by preparative gel electrophoresis and RP-HPLC. Molecular mass (4296.95 Da) and complete amino acid sequence of aurelin (AACSDRAHGHICESFKSFCKDSGRNGVKLRANCKKTCGLC) were determined. Aurelin has six cysteines forming three disulfide bonds. The total RNA was isolated from the jellyfish mesoglea, RT-PCR and cloning were performed, and cDNA was sequenced. A 84-residue preproaurelin contains a putative signal peptide (22 amino acids) and a propiece of the same size (22 amino acids). Aurelin has no structural homology with any previously identified antimicrobial peptides but reveals partial similarity both with defensins and K+ channel-blocking toxins of sea anemones and belongs to ShKT domain family.

  17. Rutherford backscattering and channelling studies of erbium implanted SIMOX refid="FN1">**SIMOX: separation by implanted oxygen. structures

    Science.gov (United States)

    Zhang, Jingping; Tang, Y. S.; Hemment, P. L. F.; Sealy, B. J.

    1990-04-01

    The behaviour of 250 keV 166Er + implanted into SIMOX structures has been investigated by Rutherford backscattering and channelling analysis. The implantation doses were 1.5 ×10 14 cm -2 and 1.5 × 10 15 cm -2. Both conventional furnace and rapid therm annealing were carried out in the temperature range 600°C-1100°C. Regrowth of the amorphized silicon and redistribution of the erbium were found to be strongly influenced by the status of the damaged layer. Different regrowth processes of the completely damaged silicon overlayer were suggested respectively for conventional furnace and rapid thermal annealing. It is found that the regrowth rate increases rapidly when the temperature is higher than 900° C in both cases. The redistribution of the erbium atoms was controlled by the regrowth boundary between the damaged and the recrystallized silicon.

  18. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity.

    Science.gov (United States)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter

    2016-04-01

    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides-Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23°. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed

  19. Crystal Structure of the Mammalian GIRK2 K[superscript +] Channel and Gating Regulation by G Proteins, PIP[subscript 2], and Sodium

    Energy Technology Data Exchange (ETDEWEB)

    Whorton, Matthew R.; MacKinnon, Roderick (Rockefeller)

    2011-11-17

    G protein-gated K{sup +} channels (Kir3.1-Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K{sup +} channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP{sub 2} suggest that G proteins open only the G loop gate in the absence of PIP{sub 2}, but in the presence of PIP{sub 2} the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na{sup +} ion-binding site, which would allow intracellular Na{sup +} to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.

  20. Structural dynamics of the monoamine transporter homolog LeuT from accelerated conformational sampling and channel analysis.

    Science.gov (United States)

    Thomas, James R; Gedeon, Patrick C; Madura, Jeffry D

    2014-10-01

    The bacterial leucine transporter LeuT retains significant secondary structure similarities to the human monoamine transporters (MAT) such as the dopamine and serotonin reuptake proteins. The primary method of computational study of the MATs has been through the use of the crystallized LeuT structure. Different conformations of LeuT can give insight into mechanistic details of the MAT family. A conformational sampling performed through accelerated molecular dynamics simulations testing different combinations of the leucine substrate and bound sodium ions revealed seven distinct conformational clusters. Further analysis has been performed to target salt-bridge residues R30-D404, Y108-F253, and R5-D369 and transmembrane domains on both the seven isolated structures and the total trajectories. In addition, solvent accessibility of LeuT and its substrate binding pockets has been analyzed using a program for calculating channel radii. Occupation of the Na2 site stabilizes the outward conformation and should bind to the open outward conformation before the leucine and Na1 sodium while two possible pathways were found to be available for intracellular transport.

  1. Structural dynamics of the monoamine transporter homologue LeuT from accelerated conformational sampling and channel analysis

    Science.gov (United States)

    Thomas, James R.; Gedeon, Patrick C.; Madura, Jeffry D.

    2014-01-01

    The bacterial leucine transporter LeuT retains significant secondary structure similarities to the human monoamine transporters (MAT) such as the dopamine and serotonin reuptake proteins. The primary method of computational study of the MATs has been through the use of the crystallized LeuT structure. Different conformations of LeuT can give insight into mechanistic details of the MAT family. A conformational sampling performed through accelerated molecular dynamics (aMD) simulations testing different combinations of the leucine substrate and bound sodium ions revealed seven distinct conformational clusters. Further analysis has been performed to target salt-bridge residues R30–D404, Y108–F253, and R5–D369 and transmembrane domains on both the seven isolated structures and the total trajectories. In addition, solvent accessibility of LeuT and its substrate binding pockets has been analyzed using a program for calculating channel radii. Occupation of the Na2 site stabilizes the outward conformation and should bind to the open outward conformation before the leucine and Na1 sodium while two possible pathways were found to be available for intracellular transport. PMID:24753369

  2. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    Science.gov (United States)

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    accuracy and convergence of the numerical routines in the model are demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed. The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady flow are presented. Assumptions and the limitations of the model also are presented. The schematization of the stream system and the conversion of the physical characteristics of the stream reaches and a wide range of special features into function tables for model applications are described. The modified dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor hydraulic structures and channel constrictions determined from an equivalent energy slope is developed. The matrix equation relating flows and depths at computational nodes throughout the stream system by the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages and warnings issued are presented.

  3. Structural elements of the mitochondrial preprotein-conducting channel Tom40 dissolved by bioinformatics and mass spectrometry.

    Science.gov (United States)

    Gessmann, Dennis; Flinner, Nadine; Pfannstiel, Jens; Schlösinger, Andrea; Schleiff, Enrico; Nussberger, Stephan; Mirus, Oliver

    2011-12-01

    Most mitochondrial proteins are imported into mitochondria from the cytosolic compartment. Proteins destined for the outer or inner membrane, the inter-membrane space, or the matrix are recognized and translocated by the TOM machinery containing the specialized protein import channel Tom40. The latter is a protein with β-barrel shape, which is suggested to have evolved from a porin-type protein. To obtain structural insights in the absence of a crystal structure the membrane topology of Tom40 from Neurospora crassa was determined by limited proteolysis combined with mass spectrometry. The results were interpreted on the basis of a structural model that has been generated for NcTom40 by using the structure of mouse VDAC-1 as a template and amino acid sequence information of approximately 270 different Tom40 and approximately 480 VDAC amino acid sequences for refinement. The model largely explains the observed accessible cleavage sites and serves as a structural basis for the investigation of physicochemical properties of the ensemble of our Tom40 sequence data set. By this means we discovered two conserved polar slides in the pore interior. One is possibly involved in the positioning of a pore-inserted helix; the other one might be important for mitochondrial pre-sequence peptide binding as it is only present in Tom40 but not in VDAC proteins. The outer surface of the Tom40 barrel reveals two conserved amino acid clusters. They may be involved in binding other components of the TOM complex or bridging components of the TIM machinery of the mitochondrial inner membrane.

  4. A field investigation of the basaltic ring structures of the Channeled Scabland and the relevance to Mars

    Science.gov (United States)

    Kestay, Laszlo P.; Jaeger, Windy L.

    2015-01-01

    The basaltic ring structure (BRS) is a class of peculiar features only reported in the Channeled Scabland of eastern Washington State. They have been suggested to be good analogs, however, for some circular features on Mars. BRSs are found where Pleistocene floods scoured the Columbia River Basin, stripping off the uppermost part of the Miocene Columbia River Basalt Group and exposing structures that were previously embedded in the lava. The “Odessa Craters,” near Odessa, WA, are 50–500-m-wide BRSs that are comprised of discontinuous, concentric outcrops of subvertically-jointed basalt and autointrusive dikes. Detailed field investigation of the Odessa Craters in planform and a cross-sectional exposure of a similar structure above Banks Lake, WA, lead us to propose that BRSs formed by concurrent phreatovolcanism and lava flow inflation. In this model, phreatovolcanic (a.k.a., “rootless”) cones formed on a relatively thin, active lava flow; the lava flow inflated around the cones, locally inverting topography; tensile stresses caused concentric fracturing of the lava crust; lava from within the molten interior of the flow exploited the fractures and buried the phreatovolcanic cones; and subsequent erosive floods excavated the structures. Another population of BRSs near Tokio Station, WA, consists of single-ringed, raised-rimmed structures that are smaller and more randomly distributed than the Odessa Craters. We find evidence for a phreatovolcanic component to the origin as well, and hypothesize that they are either flood-eroded phreatovolcanic cones or Odessa Crater-like BRSs. This work indicates that BRSs are not good analogs to the features on Mars because the martian features are found on the uneroded surfaces. Despite this, the now superseded concepts for BRS formation are useful for understanding the formation of the martian features.

  5. The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure.

    Science.gov (United States)

    Labro, Alain J; Boulet, Inge R; Choveau, Frank S; Mayeur, Evy; Bruyns, Tine; Loussouarn, Gildas; Raes, Adam L; Snyders, Dirk J

    2011-01-07

    In vivo, KCNQ1 α-subunits associate with the β-subunit KCNE1 to generate the slowly activating cardiac potassium current (I(Ks)). Structurally, they share their topology with other Kv channels and consist out of six transmembrane helices (S1-S6) with the S1-S4 segments forming the voltage-sensing domain (VSD). The opening or closure of the intracellular channel gate, which localizes at the bottom of the S6 segment, is directly controlled by the movement of the VSD via an electromechanical coupling. In other Kv channels, this electromechanical coupling is realized by an interaction between the S4-S5 linker (S4S5(L)) and the C-terminal end of S6 (S6(T)). Previously we reported that substitutions for Leu(353) in S6(T) resulted in channels that failed to close completely. Closure could be incomplete because Leu(353) itself is the pore-occluding residue of the channel gate or because of a distorted electromechanical coupling. To resolve this and to address the role of S4S5(L) in KCNQ1 channel gating, we performed an alanine/tryptophan substitution scan of S4S5(L). The residues with a "high impact" on channel gating (when mutated) clustered on one side of the S4S5(L) α-helix. Hence, this side of S4S5(L) most likely contributes to the electromechanical coupling and finds its residue counterparts in S6(T). Accordingly, substitutions for Val(254) resulted in channels that were partially constitutively open and the ability to close completely was rescued by combination with substitutions for Leu(353) in S6(T). Double mutant cycle analysis supported this cross-talk indicating that both residues come in close contact and stabilize the closed state of the channel.

  6. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  7. Snowflake vitreoretinal degeneration (SVD) mutation R162W provides new insights into Kir7.1 ion channel structure and function.

    Science.gov (United States)

    Pattnaik, Bikash R; Tokarz, Sara; Asuma, Matti P; Schroeder, Tyler; Sharma, Anil; Mitchell, Julie C; Edwards, Albert O; Pillers, De-Ann M

    2013-01-01

    Snowflake Vitreoretinal Degeneration (SVD) is associated with the R162W mutation of the Kir7.1 inwardly-rectifying potassium channel. Kir7.1 is found at the apical membrane of Retinal Pigment Epithelial (RPE) cells, adjacent to the photoreceptor neurons. The SVD phenotype ranges from RPE degeneration to an abnormal b-wave to a liquid vitreous. We sought to determine how this mutation alters the structure and function of the human Kir7.1 channel. In this study, we expressed a Kir7.1 construct with the R162W mutation in CHO cells to evaluate function of the ion channel. Compared to the wild-type protein, the mutant protein exhibited a non-functional Kir channel that resulted in depolarization of the resting membrane potential. Upon co-expression with wild-type Kir7.1, R162W mutant showed a reduction of IKir7.1 and positive shift in '0' current potential. Homology modeling based on the structure of a bacterial Kir channel protein suggested that the effect of R162W mutation is a result of loss of hydrogen bonding by the regulatory lipid binding domain of the cytoplasmic structure.

  8. THE ASSORTMENT STRUCTURE AND THE PRICE LEVELS AS A FACTOR OF MARKETING CHANNEL COMPETITIVENESS–EMPIRICAL EVIDENCE FROM THE REPUBLIC OF SERBIA

    Directory of Open Access Journals (Sweden)

    Jelena Končar

    2016-12-01

    Full Text Available In this paper, the authors point out the differences in the structure of the product assortment of retailers who show their offers on the Web, with the aim of proving that the structure of the assortment may be a factor of marketing channel competitiveness that the consumers recognize and that makes them opt for a certain marketing channel. On the same basis we aim to compare the prices of representative product categories, in order to determine the impact of prices on marketing channel competitiveness, without taking other factors of channel competitiveness into consideration. Based on the conducted research, we can conclude that having a number of categories of products in the assortment presents a competitive advantage for the retailer in the traditional marketing channel since retailers with electronic sales have a more diverse assortment in their retail store than online. Compared to “pure play” electronic retailers, the structure of assortment measured in number of categories of products that are on offer in e-stores is not significantly different between “pure play” and “bricks and clicks” electronic retailers. On the other hand, if we look at the price levels, there is a difference in prices of product categories on websites of “brick and click” retailers since prices in retail stores are higher than prices in the traditional retail store of the same retailer. However, offers on the website of “pure play” electronic retailers are higher compared to “brick and click” retailers.

  9. Exploring the structure of the voltage-gated Na+ channel by an engineered drug access pathway to the receptor site for local anesthetics.

    Science.gov (United States)

    Lukacs, Peter; Gawali, Vaibhavkumar S; Cervenka, Rene; Ke, Song; Koenig, Xaver; Rubi, Lena; Zarrabi, Touran; Hilber, Karlheinz; Stary-Weinzinger, Anna; Todt, Hannes

    2014-08-01

    Despite the availability of several crystal structures of bacterial voltage-gated Na(+) channels, the structure of eukaryotic Na(+) channels is still undefined. We used predictions from available homology models and crystal structures to modulate an external access pathway for the membrane-impermeant local anesthetic derivative QX-222 into the internal vestibule of the mammalian rNaV1.4 channel. Potassium channel-based homology models predict amino acid Ile-1575 in domain IV segment 6 to be in close proximity to Lys-1237 of the domain III pore-loop selectivity filter. The mutation K1237E has been shown previously to increase the diameter of the selectivity filter. We found that an access pathway for external QX-222 created by mutations of Ile-1575 was abolished by the additional mutation K1237E, supporting the notion of a close spatial relationship between sites 1237 and 1575. Crystal structures of bacterial voltage-gated Na(+) channels predict that the side chain of rNaV1.4 Trp-1531 of the domain IV pore-loop projects into the space between domain IV segment 6 and domain III pore-loop and, therefore, should obstruct the putative external access pathway. Indeed, mutations W1531A and W1531G allowed for exceptionally rapid access of QX-222. In addition, W1531G created a second non-selective ion-conducting pore, bypassing the outer vestibule but probably merging into the internal vestibule, allowing for control by the activation gate. These data suggest a strong structural similarity between bacterial and eukaryotic voltage-gated Na(+) channels.

  10. Final Progress Report: FRACTURE AND SUBCRITICAL DEBONDING IN THIN LAYERED STRUCTURES: EXPERIMENTS AND MULTI-SCALE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-30

    Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.

  11. The light nuclei spin structure from hadronic channels at intermediate energies

    CERN Document Server

    Kurilkin, P K; Uesaka, T; Glagolev, V V; Gurchin, Yu V; Isupov, A Yu; Itoh, K; Janek, M; Karachuk, J T; Kawabata, T; Khrenov, A N; Kiselev, A S; Kizka, V A; Kurepin, A B; Kurilkin, A K; Krasnov, V A; Ladygina, N B; Lipchinski, D; Livanov, A N; Maeda, Y; Malakhov, A I; Martinska, G; Nedev, S; Piyadin, S M; Plekhanov, E B; Popovichi, J; Rangelov, S; Reznikov, S G; Rukoyatkin, P A; Sakaguchi, S; Sakai, H; Sekiguchi, K; Suda, K; Terekhin, A A; Urban, J; Vasiliev, T A; Vnukov, I E

    2011-01-01

    The investigation of the d, 3H and 3He spin structure has been performed at the RIKEN(Japan) accelerator research facility and VBLHEP(JINR) using both polarized and unpolarized deuteron beams. The experimental results on the analyzing powers studies in dp- elastic scattering, d(d,3H)p and d(d,3He)n reactions are presented. The vector and tensor analyzing powers for dp-elastic scattering at 880 and 2000 MeV are obtained at the Nuclotron(VBLHEP). The result on the analyzing powers Ay, Ayy of the deuteron at 2000 MeV are compared with relativistic multiple scattering model calculations. The data on the tensor analyzing powers for the d(d,3H)p and d(d,3He)n reactions obtained at Ed = 200 and 270 MeV demonstrate the sensitivity to the 3H, 3He and deuteron spin structure. The essential disagreements between the experimental results and the theoretical calculations within the one-nucleon exchange model framework are observed. The wide experimental program on the study of the polarization effects in dp- elastic scatt...

  12. Analytical model and new structure of the enhancement-mode polarization-junction HEMT with vertical conduction channel

    Science.gov (United States)

    Yang, Chao; Xiong, Jiayun; Wei, Jie; Wu, Junfeng; Peng, Fu; Deng, Siyu; Zhang, Bo; Luo, Xiaorong

    2016-04-01

    A novel enhancement-mode (E-mode) polarization-junction HEMT with vertical conduction channel (PVC-HEMT) is proposed, and its analytical model for threshold voltage (Vth) is presented. It has two features: one is GaN/AlGaN/GaN double hetero-structure, the other is that source and drain locate at the same side of trench-type MOS gate (T-gate), and the source contacts with the T-gate, which forms vertical conduction channel (VC). The 2-D hole gas (2-DHG) and 2-D electron gas (2-DEG) are formed at the GaN-top/AlGaN and AlGaN/GaN-buffer interface, respectively, forming the polarization-junction. First, the E-mode operation is realized because 2-DHG under the source prevents the electrons injecting from source to 2-DEG, breaking through the conventional E-mode method by depleting 2-DEG under the gate. Second, a uniform electric field (E-field) distribution is achieved due to the assisted depletion effect by polarization-junction. Third, the source reduces the E-field peak at the T-gate side and modulates the E-field distribution. The breakdown voltage (BV) of PVC-HEMT is 705 V and specific ON-resistance (RON,sp) is 1.18 mΩ cm2. Compared with conventional HEMT (C-HEMT), PVC-HEMT has a smaller size due to the special location of the source and T-gate. An analytic threshold voltage model is presented and the analytical results agree well with the simulated results.

  13. Development and application of a channelized Hotelling observer for DBT optimization on structured background test images with mass simulating targets

    Science.gov (United States)

    Petrov, Dimitar; Michielsen, Koen; Cockmartin, Lesley; Zhang, Gouzhi; Young, Kenneth; Marshall, Nicholas; Bosmans, Hilde

    2016-03-01

    Digital breast tomosynthesis (DBT) is a 3D mammography technique that promises better visualization of low contrast lesions than conventional 2D mammography. A wide range of parameters influence the diagnostic information in DBT images and a systematic means of DBT system optimization is needed. The gold standard for image quality assessment is to perform a human observer experiment with experienced readers. Using human observers for optimization is time consuming and not feasible for the large parameter space of DBT. Our goal was to develop a model observer (MO) that can predict human reading performance for standard detection tasks of target objects within a structured phantom and subsequently apply it in a first comparative study. The phantom consists of an acrylic semi-cylindrical container with acrylic spheres of different sizes and the remaining space filled with water. Three types of lesions were included: 3D printed spiculated and non-spiculated mass lesions along with calcification groups. The images of the two mass lesion types were reconstructed with 3 different reconstruction methods (FBP, FBP with SRSAR, MLTRpr) and read by human readers. A Channelized Hotelling model observer was created for the non-spiculated lesion detection task using five Laguerre-Gauss channels, tuned for better performance. For the non-spiculated mass lesions a linear relation between the MO and human observer results was found, with correlation coefficients of 0.956 for standard FBP, 0.998 for FBP with SRSAR and 0.940 for MLTRpr. Both the MO and human observer percentage correct results for the spiculated masses were close to 100%, and showed no difference from each other for every reconstruction algorithm.

  14. Partially obstructed channel: Contraction ratio effect on the flow hydrodynamic structure and prediction of the transversal mean velocity profile

    Science.gov (United States)

    Ben Meftah, M.; Mossa, M.

    2016-11-01

    In this manuscript, we focus on the study of flow structures in a channel partially obstructed by arrays of vertical, rigid, emergent, vegetation/cylinders. Special attention is given to understand the effect of the contraction ratio, defined as the ratio of the obstructed area width to the width of the unobstructed area, on the flow hydrodynamic structures and to analyze the transversal flow velocity profile at the obstructed-unobstructed interface. A large data set of transversal mean flow velocity profiles and turbulence characteristics is reported from experiments carried out in a laboratory flume. The flow velocities and turbulence intensities have been measured with a 3D Acoustic Doppler Velocimeter (ADV)-Vectrino manufactured by Nortek. It was observed that the arrays of emergent vegetation/cylinders strongly affect the flow structures, forming a shear layer immediately next to the obstructed-unobstructed interface, followed by an adjacent free-stream region of full velocity flow. The experimental results show that the contraction ratio significantly affects the flow hydrodynamic structure. Adaptation of the Prandtl's log-law modified by Nikuradse led to the determination of a characteristic hydrodynamic roughness height to define the array resistance to the flow. Moreover, an improved modified log-law predicting the representative transversal profile of the mean flow velocity, at the obstructed-unobstructed interface, is proposed. The benefit of this modified log-law is its easier practical applicability, i.e., it avoids the measurements of some sensitive turbulence parameters, in addition, the flow hydrodynamic variables forming it are predictable, using the initial hydraulic conditions.

  15. Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel)

    Science.gov (United States)

    Selleslagh, Jonathan; Amara, Rachid

    2008-09-01

    The fish assemblage structure was analyzed along an estuarine gradient of a small macrotidal estuary (the Canche, France). Fishes were collected every two months between May 2006 and July 2007 from 12 sampling stations using a 1.5-m beam trawl with a 5 mm mesh size in the cod end. To complement this information, sampling was also performed using 15-m fyke nets (8 mm mesh size in the cod end). For each sample, abiotic (temperature, salinity, pH, oxygen, turbidity, river flow, wind speed and depth) and biotic (macro crustacean species abundances) were recorded. Throughout the study, 28 fish species belonging to 20 families were collected. Fish catches were dominated by juveniles, especially Young-Of-the-Year (YOY) for the majority of the species. According to the Index of Relative Importance (IRI), common goby Pomatoschistus microps, flounder Platichtys flesus, sprat Sprattus sprattus, sea-bass Dicentrarchus labrax and plaice Pleuronectes platessa were the most abundant species, together accounting for 99.2% of the total IRI. Estuarine residents (ER = 66.2%) and marine juvenile migrants species (MJ = 31.4%) were the most important ecological guilds. The structure of the fish assemblage and its relationship to environmental variables was examined using multivariate techniques. Cluster and non-metric multidimensional scaling (nMDS) analysis defined six distinct groups in the Canche estuary, which are discriminated by specific species (SIMPER). Spatio-temporal variations in fish assemblage structure reflect the density peaks of the most abundant species. Spearman rank correlations and canonical correspondence analysis (CCA) showed that among the ten environmental variables examined, temperature, salinity and Crangon crangon (a potential predator for YOY fish or prey for older ones) are the three most important factors influencing fish species richness and abundances. Our observations reinforce the idea that certain fish species may have different life history styles in

  16. Development of a new feed channel spacer for reverse osmosis elements. Phase 2 final report, October 1, 1994--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Milstead, C.E.; Riley, R.L.

    1998-02-11

    During Phase 1, computer modeling techniques were used as the prime instrument of evaluation of designs for a new feed channel spacer to replace the 30 mil thick standard mesh (Vexar) spacer currently used in ROWPU [Reverse Osmosis Water Processing Unit] spiral-wound elements. A hemispherical peg model, based on a Bed of Nails concept developed in Phase 1, was selected for prototype production of spiral-wound elements for field testing. Evaluation in the See-Thru test cell to observe pressure drops through the spacer, feed mixing patterns and ease of cleaning fouled membrane samples showed considerable benefit over Vexar. This design would be suitable for production by roll embossing (or rotary punching) methods instead of expensive injection molding techniques. A 10{1/2} inch die set was fabricated to prove this concept using a 12 ton press brake. Due to a number of factors, however, the equipment did not work as anticipated and numerous modifications are currently in progress. This work will continue at no cost to the government until completed. A seawater test system has been constructed for field testing of various commercially available feed channel spacers for comparison with the Vexar spacer.

  17. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  18. USFWS/DU Floating Nest Structure Project Report: 1997 season and final summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report presents four-year results from a waterfowl floating nest structure project in the Morris Wetland District, Minnesota. The study was conducted from 1994...

  19. Structural and Dynamic Characterization of Amorphous Solids and Associated Phase Transitions. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yarger, J. L.

    2000-08-15

    The effect of hydrostatic pressure on the structure of glasses is not well understood. There is extensive evidence now indicating that glasses undergo structural transformation upon application of pressure. These transformations are usually evidenced by changes in density, sound velocity, and structural changes from diffraction measurements (x-ray and neutron). In vitreous GeO{sub 2}, a change in Ge-coordination from 4-6 is evidenced on the application of pressure. The coordination change reverts back to 4 on releasing the pressure indicating that the structural transformation is reversible with pressure. But a shift towards higher Q (inverse space) of the first sharp diffraction peak (FSDP) on the pressure compacted v-SiO{sub 2} and v-GeO{sub 2} suggests that application of pressure has both reversible and irreversible components such that on the release of pressure, the glass remains in a permanently compacted state.

  20. Impact of processing parameters on the LTCC channels geometry*

    Directory of Open Access Journals (Sweden)

    Macioszczyk Jan

    2015-12-01

    Full Text Available A great advantage of Low Temperature Co-fired Ceramics (LTCC yields the possibility of channel and air cavity fabrication. Such empty spaces have numerous applications, for example, in microfluidics, microwave techniques and integrated packaging. However, improper geometry of these structures can degrade the performance of the final device. The processing parameters recommended by the LTCC tape supplier are relevant for the production of multilayer circuits but not surface embedded channels and/or cavities. Thus, it is important to examine which factors of the fabrication process are the most significant. In our study, special attention has been paid to the geometric performance of the channel structure resulting from the applied processing parameters. Laser cutting parameters were checked to obtain the structures with great fidelity. The impact of an isostatic lamination on the quality of the final structure was analyzed. The influence of pressure and temperature of the lamination process on the channel geometry and tape shrinkage were examined. The performed experiments showed that some improvements in channel/cavity geometry may be achieved by optimizing the processing procedures. The microscopic observations combined with the Analysis of Variance (ANOVA showed which combinations of the processing parameters are the best for achieving a channel/cavity structure with the desired geometry.

  1. Semiempirical Studies of Atomic Structure. Final Report for July 1, 2000 - June 30, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, L. J.

    2004-05-01

    This project has developed a comprehensive and reliable base of accurate atomic structure data for complex many-electron systems. This has been achieved through the use of sensitive data-based parametric systematizations, precise experimental measurements, and supporting theoretical computations. The atomic properties studies involved primary data (wavelengths, frequency intervals, lifetimes, relative intensities, production rates, etc.) and derived structural parameters (energy levels, ionization potentials, line strengths, electric polarizabilities, branching fractions, excitation functions, etc).

  2. Quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding

    Science.gov (United States)

    Parsons, D. R.; Simmons, S.; Best, J.

    2010-12-01

    Multibeam Echo-Sounder systems have developed rapidly over recent decades and are routinely deployed to provide high-resolution bathymetric details in range of aquatic environments. Modern data handling and storage technologies now facilitate the logging of the raw acoustic back-scatter information that was previously discarded by these systems. This paper describes methodologies that exploit this logging capability to quantify the concentration and dynamics of suspended sediment within the water column and presents a novel method that also allows for quantification of 2D flow velocities. This development provides a multi-purpose tool for the holistic surveying of the process linkages between flow, sediment transport and bed morphology. The application of this new technique is illustrated with reference to flow over alluvial sand dunes, which allows, for the first time in a field study, quantitative visualization of larg-scale, whole flow field, turbulent coherent flow structures, associated with the dune leeside, that are responsible for suspending bed sediment. This methodology holds great potential for use in a wide range of aqueous geophysical flows. CFS captured by MBES in the lee of an alluvial dune. Contours of suspended sediment concentration and superimposed 2D flow velocity vectors

  3. Full-Eulerian fluid-structure coupling simulation of hyperelastic channel flow

    Science.gov (United States)

    Nagano, Naohiro; Sugiyama, Kazuyasu; Takeuchi, Shintaro; Satoshi, II; Takagi, Shu; Matsumoto, Yoichiro

    2010-11-01

    A full-Eulerian simulation for coupling a Newtonian fluid and hyperelastic material is conducted. The system involves an interaction problem between the fluid and hyperelastic walls and is driven by pressure difference, mimicking a blood flow in a blood vessel. A single set of the governing equations for the fluid and solid is employed, and a volume-of-fluid idea is employed to describe a multi-component geometry. The solid stress is defined in Eulerian frame by using a left Cauchy-Green deformation tensor, and the temporal change in the solid deformation is described by updating the tensor. The method employs a uniform fixed grid system for both fluid and solid and it does not require any mesh generation or reconstruction, aiming at facilitating the practical bio-mechanical fluid-structure analysis based on a medical image. The validity of the simulation results is established through comparison with a theoretical prediction. As an application of the present method, pulsating flows are simulated to demonstrate a nonlinear behavior of the flow rate on the pulsating amplitude, and an effect of employing an anisotropic hyperelastic material is discussed.

  4. Temperature effects on chemical structure and motion in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, G.E.

    1996-09-30

    The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.

  5. Design of a Photonic-Crystal Channel-Drop Filter Based on the Two-Dimensional Triangular-Lattice Hole Structure

    Institute of Scientific and Technical Information of China (English)

    Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park

    2003-01-01

    A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.

  6. Decrypting the sequence of structural events during the gating transition of pentameric ligand-gated ion channels based on an interpolated elastic network model.

    Directory of Open Access Journals (Sweden)

    Wenjun Zheng

    Full Text Available Despite many experimental and computational studies of the gating transition of pentameric ligand-gated ion channels (pLGICs, the structural basis of how ligand binding couples to channel gating remains unknown. By using a newly developed interpolated elastic network model (iENM, we have attempted to compute a likely transition pathway from the closed- to the open-channel conformation of pLGICs as captured by the crystal structures of two prokaryotic pLGICs. The iENM pathway predicts a sequence of structural events that begins at the ligand-binding loops and is followed by the displacements of two key loops (loop 2 and loop 7 at the interface between the extracellular and transmembrane domain, the tilting/bending of the pore-lining M2 helix, and subsequent movements of M4, M3 and M1 helices in the transmembrane domain. The predicted order of structural events is in broad agreement with the Φ-value analysis of α subunit of nicotinic acetylcholine receptor mutants, which supports a conserved core mechanism for ligand-gated channel opening in pLGICs. Further perturbation analysis has supported the critical role of certain intra-subunit and inter-subunit interactions in dictating the above sequence of events.

  7. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, R.; Dover, K; Laezza, F; Shtraizent, N; Huang, X; Tchetchik, D; Eliseenkova, A; Goldfarb, M; Mohammadi, M; et. al.

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.

  8. Final Report---Next-Generation Solvers for Mixed-Integer Nonlinear Programs: Structure, Search, and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Linderoth, Jeff T. [University of Wisconsin-Madison; Luedtke, James R. [University of Wisconsin-Madison

    2013-05-30

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.

  9. Nonlinear dynamics and control of SDI structural components. Final report, September 1987-February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, A.H.; Burns, J.A.; Cliff, E.M.

    1990-05-18

    The report summarizes results of experimental and theoretical investigations into the nonlinear response and control of structural elements. Methods for the analysis and design of control procedures applicable to certain nonlinear distributed parameter systems were investigated. Analytical and computational techniques were developed for evaluating the nonlinear effects on control designs. Bench-type experiments were conducted for validating some of the theoretical results.

  10. Modelling of space plasma dynamics and structure. Final report, 1 December 1992-30 November 1994

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J.; Anderson, S.; Silevitch, M.; Villalon, E.

    1995-11-01

    The research described in this report was focused into two related areas. These were: (A) A study of nonadiabatic particle orbits and the electrodynamic structure of the coupled magnetosphere ionosphere auroral arc system. (B) An examination of electron acceleration and pitch angle scattering due to wave actions in the ionosphere and radiation belts.

  11. Fluid-structure interaction in BWR suppression pool systems. Final report. [PELE-IC code

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1979-09-01

    The discharge of safety relief valves or a severe loss-of-coolant event in a boiling-water-cooled reactor steam supply system triggers a complex pressure suppression system that is based upon sub-surface steam condensation in large pools of water. The physical problems fall into two categories. The first is referred to as vent clearing and describes the process of expelling non-condensables from the system prior to steam flow. The second category covers a variety of phenomena related to the transient overexpansion of a condensable volume and the subsequent inertially-driven volume decrease. The dynamic loading of either event, depending upon fluid-structural design parameters, can be of concern in safety analysis. This report describes the development of a method for calculating the loads and the structural response for both types of problems. The method is embedded in a computer code, called PELE-IC, that couples a two-dimensional, incompressible eulerian fluid algorithm to a finite element shell algorithm. The fluid physics is based upon the SOLA algorithm, which provideds a trial velocity field using the Navier-Stokes equations that is subsequently corrected iteratively so that incompressibility, fluid-structure interface compatibility, and boundary conditions are satisfied. These fluid and fluid-structure algorithms have been extensively verified through calculations of known solutions from the classical literature, and by comparison to air and steam blowdown experiments.

  12. Driven tracers in narrow channels

    Science.gov (United States)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2017-01-01

    Steady-state properties of a driven tracer moving in a narrow two-dimensional (2D) channel of quiescent medium are studied. The tracer drives the system out of equilibrium, perturbs the density and pressure fields, and gives the bath particles a nonzero average velocity, creating a current in the channel. Three models in which the confining effect of the channel is probed are analyzed and compared in this study: the first is the simple symmetric exclusion process (SSEP), for which the stationary density profile and the pressure on the walls in the frame of the tracer are computed. We show that the tracer acts like a dipolar source in an average velocity field. The spatial structure of this 2D strip is then simplified to a one-dimensional (1D) SSEP, in which exchanges of position between the tracer and the bath particles are allowed. Using a combination of mean-field theory and exact solution in the limit where no exchange is allowed gives good predictions of the velocity of the tracer and the density field. Finally, we show that results obtained for the 1D SSEP with exchanges also apply to a gas of overdamped hard disks in a narrow channel. The correspondence between the parameters of the SSEP and of the gas of hard disks is systematic and follows from simple intuitive arguments. Our analytical results are checked numerically.

  13. Game Theoretic Analysis of Carbon Emission Abatement in Fashion Supply Chains Considering Vertical Incentives and Channel Structures

    Directory of Open Access Journals (Sweden)

    Longfei He

    2015-04-01

    Full Text Available We study an emission-dependent dyadic fashion supply chain made up of a supplier and a manufacturer, both of which can reduce their own component/product emissions to serve the carbon-footprint sensitive consumers. With Carbon Tax regulation, we consider four scenarios resulting from two ways in form of adopting transfer price contract and/or introducing third-party emission-reduction service (TPERS to enhance the efficiency of systematic emission reductions. We refine four models from these corresponding scenarios, which in turn constitute a decision-making framework composed of determining vertical incentives and choosing supply chain structures. By exploiting Stackelberg games in all models, we compare their emission reduction efficiencies and profitability for each pair of settings. Theoretic analysis and numerical studies show that adopting vertical transfer payment schemes can definitely benefit channel carbon footprint reduction and Pareto improvement of supply chain profitability, regardless of whether the emission-reduction service exists or not. However, whether introducing TPERS or not is heavily depending on systematic parameters when the transfer payment incentive is adopted there. We also provide insights on the sensitivity of carbon tax parameters with respect to the supply chain performance, overall carbon emission reduction, vertical incentive and TPERS adopting decision-makings.

  14. Conductance and resonant tunneling in multi-channel double barrier structures under transverse and longitudinal electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, Pedro, E-mail: pereyrapedro@gmail.com; Mendoza-Figueroa, M. G. [Departamento de Ciencias Básicas, UAM-Azcapotzalco, C.P. 02200 México D.F. (Mexico)

    2015-03-21

    Transport properties of electrons through biased double barrier semiconductor structures with finite transverse width w{sub y}, in the presence of a channel-mixing transverse electric field E{sub T} (along the y-axis), were studied. We solve the multichannel Schrödinger equation using the transfer matrix method and transport properties, like the conductance G and the transmission coefficients T{sub ij} have been evaluated as functions of the electrons' energy E and the transverse and longitudinal (bias) electric forces, f{sub T} and f{sub b}. We show that peak-suppression effects appear, due to the applied bias. Similarly, coherent interference of wave-guide states induced by the transverse field is obtained. We show also that the coherent interference of resonant wave-guide states gives rise to resonant conductance, which can be tuned to produce broad resonant peaks, implying operation frequencies of the order of 10 THz or larger.

  15. Mechanical properties and the structure of chromium-zirconium bronze after dynamic channel-angular pressing and subsequent aging

    Science.gov (United States)

    Zel'dovich, V. I.; Dobatkin, S. V.; Frolova, N. Yu.; Khomskaya, I. V.; Kheifets, A. E.; Shorokhov, E. V.; Nasonov, P. A.

    2016-01-01

    Changes in the structure and mechanical properties of the low-alloy chromium-zirconium bronze Cu-0.14% Cr-0.04% Zr have been investigated after a high-strain-rate (104-105 s-1) deformation by the method of dynamic channel-angular pressing (DCAP) and following annealings at 300-700°C. A significant increase in the mechanical properties of the investigated bronze after DCAP and after DCAP and subsequent aging at temperatures of 400-450°C has been established. Thus, compared to the initial quenched state the ultimate tensile strength increases by a factor of 2.6 and 2.8 and the yield stress, by a factor of 3.3 and 5.1, respectively, with the retention of satisfactory plasticity. It has been shown that, upon DCAP and subsequent annealings, in the low-alloyed bronze under investigation there occurs a decomposition of the α solid solution with the precipitation of nanosized particles. This leads to a significant strengthening of the bronze and to an increase in its thermal stability compared with the pure copper subjected to DCAP.

  16. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  17. Final report: ES11: The 23rd Annual Workshop on Electronic Structure Methods

    Energy Technology Data Exchange (ETDEWEB)

    Rappe, Andrew M. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Chemistry

    2011-08-31

    ES11: the 23rd Annual Workshop on Electronic Structure Methods was held from June 6-9, 2011 at the University of Pennsylvania. The local organizing committee (see Section II) led by PI Andrew M. Rappe supervised the organization of the conference, before, during, and after the meeting itself. The national organizing committee set the technical program of talks, and provided support and advice in various ways. The conference was well-attended (see Section III). An important feature of this conference was a series of panel discussions (see Section IV) to discuss the field of electronic structure and to set new directions. The technical program was of extraordinarily high quality (see Section V). The host institution, the University of Pennsylvania, provided a supportive environment for this meeting (see Section VI).

  18. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  19. Studies of low temperature, low flux radiation embrittlement of nuclear reactor structural materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G.R.; Lucas, G.E.

    1993-06-01

    There are several existing research programs which have components pertinent to the issue of low flux/low temperature embrittlement; in particular, examination of the Shippingport shield tank which has been exposed to low flux and relatively low temperature is being performed by ANL, and evaluation of low temperature embrittlement in A508 and A533B steels in support of the HTGR is currently being performed by ORNL. However, these programs are not specifically directed at the broader issue of low flux/low temperature embrittlement in a range of structural steels. Hence, the authors coordinated their effort with these programs so that their investigations were complementary to existing programs, and they focused on a set of materials which expand the data base developed in these programs. In particular, the authors have investigated embrittlement phenomena in steels that are similar to those used in support structure.

  20. Crystal Structure of the Eukaryotic Strong Inward-Rectifier K[superscript +] Channel Kir2.2 at 3.1 Å Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xiao; Avalos, Jose L.; Chen, Jiayun; MacKinnon, Roderick; (Rockefeller)

    2010-03-29

    Inward-rectifier potassium (K{sup +}) channels conduct K{sup +} ions most efficiently in one direction, into the cell. Kir2 channels control the resting membrane voltage in many electrically excitable cells, and heritable mutations cause periodic paralysis and cardiac arrhythmia. We present the crystal structure of Kir2.2 from chicken, which, excluding the unstructured amino and carboxyl termini, is 90% identical to human Kir2.2. Crystals containing rubidium (Rb{sup +}), strontium (Sr{sup 2+}), and europium (Eu{sup 3+}) reveal binding sites along the ion conduction pathway that are both conductive and inhibitory. The sites correlate with extensive electrophysiological data and provide a structural basis for understanding rectification. The channel's extracellular surface, with large structured turrets and an unusual selectivity filter entryway, might explain the relative insensitivity of eukaryotic inward rectifiers to toxins. These same surface features also suggest a possible approach to the development of inhibitory agents specific to each member of the inward-rectifier K{sup +} channel family.

  1. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  2. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    Science.gov (United States)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  3. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  4. Structural safety of coolant channel components under excessively high pressure tube diametral expansion rate at garter spring location

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, M. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sinha, S.K., E-mail: sunilks@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-08-15

    Structural safety of coolant channel assembly in the event of high diametral expansion of pressure tube in a 220 MWe pressurised heavy water reactor was investigated using axisymmetric and 3-D finite element models. The axisymmetric analyses were performed and stresses were evaluated for pressure tube, girdle wire and calandria tube at different point of time for diametral expansion rates of 0.2%, 0.25% and 0.3% per year of the pressure tube inside diameter. The results of this study indicated that for the case of 0.3% per year of diametral expansion rate (worst case scenario), occurrence of complete circumferential interference of garter spring with calandria tube at the location of maximum expansion would take place much earlier at around 14 years or 4.2% of the total expansion of pressure tube as opposed to its anticipated design life (30 years). This fact was further corroborated by 3-D finite element analysis performed for the actual assembly configuration under actual loadings. The latter analysis revealed that net section yielding of calandria tube occurs in just 1 year after the occurrence of total circumferential interference between calandria tube and garter spring spacer. It has also been observed that the maximum stress intensity in girdle wire does not increase beyond the ultimate tensile strength even when maximum stress intensity in calandria tube reaches its yield strength. These analyses also revealed that the structural as well as functional integrity of pressure tube and the garter spring is not affected as result of this interference.

  5. GABA(A) receptor M2-M3 loop secondary structure and changes in accessibility during channel gating.

    Science.gov (United States)

    Bera, Amal K; Chatav, Maya; Akabas, Myles H

    2002-11-08

    The gamma-aminobutyric acid type A (GABA(A)) receptor M2-M3 loop structure and its role in gating were investigated using the substituted cysteine accessibility method. Residues from alpha(1)Arg-273 to alpha(1)Ile-289 were mutated to cysteine, one at a time. MTSET(+) or MTSES(-) reacted with all mutants from alpha(1)R273C to alpha(1)Y281C, except alpha(1)P277C, in the absence and presence of GABA. The MTSET(+) closed-state reaction rate was >1000 liters/mol-s at alpha(1)N274C, alpha(1)S275C, alpha(1)K278C, and alpha(1)Y281C and was <300 liters/mol-s at alpha(1)R273C, alpha(1)L276C, alpha(1)V279C, alpha(1)A280C, and alpha(1)A284C. These two groups of residues lie on opposite sides of an alpha-helix. The fast reacting group lies on a continuation of the M2 segment channel-lining helix face. This suggests that the M2 segment alpha-helix extends about two helical turns beyond alpha(1)N274 (20'), aligned with the extracellular ring of charge. At alpha(1)S275C, alpha(1)V279C, alpha(1)A280C, and alpha(1)A284C the reaction rate was faster in the presence of GABA. The reagents had no functional effect on the mutants from alpha(1)A282C to alpha(1)I289C, except alpha(1)A284C. Access may be sterically hindered possibly by close interaction with the extracellular domain. We suggest that the M2 segment alpha-helix extends beyond the predicted extracellular end of the M2 segment and that gating induces a conformational change in and/or around the N-terminal half of the M2-M3 loop. Implications for coupling ligand-evoked conformational changes in the extracellular domain to channel gating in the membrane-spanning domain are discussed.

  6. Theoretical studies in nuclear structure. Final progress report, June 1, 1991--July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Marshalek, E.R.

    1997-06-01

    The general purview of the project is the theory of collective motion in atomic nuclei. The chief aim is to elucidate the phenomena of (1) anharmonic multiphonon excitations, and (2) collective tilted rotation, both of which are topics of considerable current interest. In the primary stage of an investigation it is often necessary to develop appropriate mathematical tools, as was the case here. In the next stage, the formalism must be tested on simple soluble models. The work described here is mainly concerned with these two stages. The final stage of realistic applications will require more time, manpower and, of course, the necessary funding. Some planning for this last stage has been carried out and anticipated problems axe briefly discussed. As it turns out, both of the above topics can be approached within the unified framework of a theorem that I developed, called the Cranking Bifurcation Theorem (CBT) to be described below. The CBT can be regarded as an outgrowth of the boson expansion method, which provides a general, and, in principal, exact formalism for treating collective excitations. We begin with a brief discussion of the CBT and then continue on to the applications.

  7. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Corren, Dean [Verdant Power, Inc.; Colby, Jonathan [Verdant Power, Inc.; Adonizio, Mary Ann [Verdant Power, Inc.

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  8. Investigation of 2D laterally dispersive photonic crystal structures : LDRD 33602 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Subramania,Ganapathi Subramanian; Vawter, Gregory Allen; Wendt, Joel Robert; Peake, Gregory Merwin; Guo, Junpeng; Peters, David William; Hadley, G. Ronald

    2003-12-01

    Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.

  9. Structures and functions of oligosaccharins. Final report, December 15, 1989--June 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P.

    1994-10-01

    This document contain abstracts of 25 papers published or in preparation describing the structure and function of oligosaccharins. Research is described in the following areas: Phytotoxic effects of microbial pectic enzymes; Fungal enzymes, plant cell wall fragments, and plant cell death; Roles of cell wall constituents in plant-pathogen interactions; The control of morphogenesis in tobacco thin cell-layer explants; Studies of the ability of xyloglucan oligosaccharides to inhibit auxin-stimulated growth; and Oligosaccharins - oligosaccharides that regulate growth, development and defence responses in plants.

  10. A sodium channel inhibitor ISTX-I with a novel structure provides a new hint at the evolutionary link between two toxin folds

    Science.gov (United States)

    Rong, Mingqiang; Liu, Jiangxin; Zhang, Meilin; Wang, Gan; Zhao, Gang; Wang, Guodong; Zhang, Yaping; Hu, Kaifeng; Lai, Ren

    2016-01-01

    Members of arachnida, such as spiders and scorpions, commonly produce venom with specialized venom glands, paralyzing their prey with neurotoxins that specifically target ion channels. Two well-studied motifs, the disulfide-directed hairpin (DDH) and the inhibitor cystine knot motif (ICK), are both found in scorpion and spider toxins. As arachnids, ticks inject a neurotoxin-containing cocktail from their salivary glands into the host to acquire a blood meal, but peptide toxins acting on ion channels have not been observed in ticks. Here, a new neurotoxin (ISTX-I) that acts on sodium channels was identified from the hard tick Ixodes scapularis and characterized. ISTX-I exhibits a potent inhibitory function with an IC50 of 1.6 μM for sodium channel Nav1.7 but not other sodium channel subtypes. ISTX-I adopts a novel structural fold and is distinct from the canonical ICK motif. Analysis of the ISTX-I, DDH and ICK motifs reveals that the new ISTX-I motif might be an intermediate scaffold between DDH and ICK, and ISTX-I is a clue to the evolutionary link between the DDH and ICK motifs. These results provide a glimpse into the convergent evolution of neurotoxins from predatory and blood-sucking arthropods. PMID:27407029

  11. Final Report: Computer Simulation of Osmosis and Reverse Osmosis in Structured Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sohail Murad

    2012-01-03

    Molecular simulation methods were developed as part of this project to increase our fundamental understanding of membrane based separation systems. Our simulations clarified for example that steric (size) effects had a significant impact on the desalination membranes. Previously it was thought the separation was entirely driven by coulombic force (attractive/repulsive forces at the membrane surfaces). Steric effects played an important role, because salt ions in brackish water are never present alone, but are strongly hydrated which effectively increases their size, and makes it impossible to enter a membrane, while the smaller water molecules can enter more readily. Membrane surface effects did play a role in increasing the flux of water, but not in the separation itself. In addition we also developed simulation methods to study ion exchange, gas separations, and pervaporation. The methods developed were used to once again increase our fundamental understanding of these separation processes. For example our studies showed that when the separation factor of gases in membranes can be significantly affected by the presence of another gas, it is generally because the separation mechanism has changed. For example in the case of nitrogen and carbon dioxide, in their pure state the separation factor is determined by diffusion, while in mixtures it is influenced more by adsorption in the membrane (zeolite in our case) Finally we developed a new technique using the NMR chemical shift to determine intermolecular interactions for mixtures. For polar-nonpolar systems such as Xe dissolved in water we were able to significantly improve the accuracy of gas solubilities, which are very sensitive to the cross interaction between water and Xe.

  12. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    Energy Technology Data Exchange (ETDEWEB)

    Downer, Michael

    2014-12-19

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10

  13. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr. (.; .); Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous

  14. Molecular dissection of the contribution of negatively and positively charged residues in S2, S3, and S4 to the final membrane topology of the voltage sensor in the K+ channel, KAT1.

    Science.gov (United States)

    Sato, Yoko; Sakaguchi, Masao; Goshima, Shinobu; Nakamura, Tatsunosuke; Uozumi, Nobuyuki

    2003-04-11

    Voltage-dependent ion channels control changes in ion permeability in response to membrane potential changes. The voltage sensor in channel proteins consists of the highly positively charged segment, S4, and the negatively charged segments, S2 and S3. The process involved in the integration of the protein into the membrane remains to be elucidated. In this study, we used in vitro translation and translocation experiments to evaluate interactions between residues in the voltage sensor of a hyperpolarization-activated potassium channel, KAT1, and their effect on the final topology in the endoplasmic reticulum (ER) membrane. A D95V mutation in S2 showed less S3-S4 integration into the membrane, whereas a D105V mutation allowed S4 to be released into the ER lumen. These results indicate that Asp(95) assists in the membrane insertion of S3-S4 and that Asp(105) helps in preventing S4 from being releasing into the ER lumen. The charge reversal mutation, R171D, in S4 rescued the D105R mutation and prevented S4 release into the ER lumen. A series of constructs containing different C-terminal truncations of S4 showed that Arg(174) was required for correct integration of S3 and S4 into the membrane. Interactions between Asp(105) and Arg(171) and between negative residues in S2 or S3 and Arg(174) may be formed transiently during membrane integration. These data clarify the role of charged residues in S2, S3, and S4 and identify posttranslational electrostatic interactions between charged residues that are required to achieve the correct voltage sensor topology in the ER membrane.

  15. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, S.J.; Lippert, T.E

    1994-12-01

    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  16. ICFD modeling of final settlers - developing consistent and effective simulation model structures

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Guyonvarch, Estelle; Ramin, Elham

    of (6). Further details are shown in (5). Results and discussions Factor screening. Factor screening is carried out by imposing statistically designed moderate (under-loaded) and extreme (under-, critical and overloaded) operational boundary conditions on the 2-D CFD SST model (8). Results obtained......CFD concept. The case of secondary settling tanks (SSTs) is used to demonstrate the methodological steps using the validated CFD model with the hindered-transientcompression settling velocity model by (10). Factor screening and latin hypercube sampling (LSH) are used to degenerate a 2-D axi-symmetrical CFD...... through the calibration of three different model structures for D, the pseudo-dispersion coefficient. Correlation equations for the D parameter (meta-models) are then identified as a function of the selected design and flow boundary conditions, and their accuracy is evaluated against the D values...

  17. Stress, seismicity and structure of shallow oil reservoirs of Clinton County, Kentucky. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Smith, T. [Kentucky Geological Survey, Lexington, KY (United States)

    1995-12-12

    Between 1993 and 1995 geophysicists of the Los Alamos National Laboratory, in a project funded by the US Department of Energy, conducted extensive microseismic monitoring of oil production in the recently discovered High Bridge pools of Clinton County and were able to acquire abundant, high-quality data in the northern of the two pools. This investigation provided both three-dimensional spatial and kinetic data relating to the High Bridge fracture system that previously had not been available. Funded in part by the Los Alamos National Laboratory, the Kentucky Geological Survey committed to develop a geological interpretation of these geophysical results, that would be of practical benefit to future oils exploration. This publication is a summary of the results of that project. Contents include the following: introduction; discovery and development; regional geology; fractured reservoir geology; oil migration and entrapment; subsurface stress; induced seismicity; structural geology; references; and appendices.

  18. High resolution interface nanochemistry and structure: Final project report, December 1, 1993--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R.W.; Lin, S.H.

    1997-02-27

    Work includes studies of interface and grain boundary chemistry and structure in silicon nitride matrix/silicon carbide whisker composites, and in monolithic silicon nitride and silicon carbide synthesized by several different methods. Off-stoichiometric, impurity, and sintering aid elemental distributions in these materials (and other ceramics) have been of great interest because of expected effects on properties but these distributions have proven very difficult to measure because the spatial resolution required is high. The authors made a number of these measurements for the first time, using techniques and instrumentation developed here. Interfaces between metals and SiC are the basis for important metal matrix composites and contacts for high temperature SiC-based solid state electronic devices. The authors have investigated ultrapure interfaces between Ti, Hf, Ti-Hf alloys, Pt, and Co and Si-terminated (0001) 6H SiC single crystals for the first time.

  19. Athermalized channeled spectropolarimeter enhancement.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  20. Structural mapping of the voltage-dependent sodium channel. Distance between the tetrodotoxin and Centruroides suffusus suffusus II beta-scorpion toxin receptors.

    Science.gov (United States)

    Darbon, H; Angelides, K J

    1984-05-25

    A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.

  1. Structure of membrane-active toxin from crab spider Heriaeus melloteei suggests parallel evolution of sodium channel gating modifiers in Araneomorphae and Mygalomorphae.

    Science.gov (United States)

    Berkut, Antonina A; Peigneur, Steve; Myshkin, Mikhail Yu; Paramonov, Alexander S; Lyukmanova, Ekaterina N; Arseniev, Alexander S; Grishin, Eugene V; Tytgat, Jan; Shenkarev, Zakhar O; Vassilevski, Alexander A

    2015-01-01

    We present a structural and functional study of a sodium channel activation inhibitor from crab spider venom. Hm-3 is an insecticidal peptide toxin consisting of 35 amino acid residues from the spider Heriaeus melloteei (Thomisidae). We produced Hm-3 recombinantly in Escherichia coli and determined its structure by NMR spectroscopy. Typical for spider toxins, Hm-3 was found to adopt the so-called "inhibitor cystine knot" or "knottin" fold stabilized by three disulfide bonds. Its molecule is amphiphilic with a hydrophobic ridge on the surface enriched in aromatic residues and surrounded by positive charges. Correspondingly, Hm-3 binds to both neutral and negatively charged lipid vesicles. Electrophysiological studies showed that at a concentration of 1 μm Hm-3 effectively inhibited a number of mammalian and insect sodium channels. Importantly, Hm-3 shifted the dependence of channel activation to more positive voltages. Moreover, the inhibition was voltage-dependent, and strong depolarizing prepulses attenuated Hm-3 activity. The toxin is therefore concluded to represent the first sodium channel gating modifier from an araneomorph spider and features a "membrane access" mechanism of action. Its amino acid sequence and position of the hydrophobic cluster are notably different from other known gating modifiers from spider venom, all of which are described from mygalomorph species. We hypothesize parallel evolution of inhibitor cystine knot toxins from Araneomorphae and Mygalomorphae suborders.

  2. Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow

    Science.gov (United States)

    Zhong, Qiang; Chen, Qigang; Wang, Hao; Li, Danxun; Wang, Xingkui

    2016-05-01

    Long streamwise-elongated high- and low-speed streaks are repeatedly observed near the free surface in open channel flows in natural rivers and lab experiments. Super-streamwise vortex model has been proposed to explain this widespread phenomenon for quite some time. However, statistical evidence of the existence of the super-streamwise vortices as one type of coherent structures is still insufficient. Correlation and proper orthogonal decomposition (POD) analysis based on PIV experimental data in the streamwise-spanwise plane near the free surface in a smooth open channel flow are employed to investigate this topic. Correlation analysis revealed that the streaky structures appear frequently near the free surface and their occurrence probability at any spanwise position is equal. The spanwise velocity fluctuation usually flows from low-speed streaks toward high-speed streaks. The average spanwise width and spacing between neighboring low (or high) speed streaks are approximately h and 2h respectively. POD analysis reveals that there are streaks with different spanwise width in the instantaneous flow fields. Typical streamwise rotational movement can be sketched out directly based on the results from statistical analyses. Point-by-point analysis indicates that this pattern is consistent everywhere in the measurement window and is without any inhomogeneity in the spanwise direction, which reveals the essential difference between coherent structures and secondary flow cells. The pattern found by statistical analysis is consistent with the notion that the super-streamwise vortices exist universally as one type of coherent structure in open channel flows.

  3. Unravelling lignin formation and structure. Final report, April 1, 1988--March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.G. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry

    1991-12-31

    During this study, we established that the Fagaceae exclusively accumulate Z-monolignois/glucosides, and not the E-isomers. Evidence for the presence of a novel E{yields}Z isomerse has been obtained. Our pioneering work in lignin biosynthesis and structure in situ has also progressed smoothly. We established the bonding environments of a woody angiosperm, Leucanea leucocephala, as well as wheat (T. aestivum) and tobacco (N. tabacum). A cell culture system from Pinus taeda was developed which seems ideal for investigating the early stages of lignification. These cultures excrete peroxidase isozymes, considered to be specifically involved in lignin deposition. We also studied the effect of the putative lignin-degrading enzyme, lignin peroxidase, on monolignols and dehydropolymerisates therefrom. In all cases, polymerization was observed, and not degradation; these polymers are identical to that obtained with horseradish peroxidases/H{sub 2}O{sub 2}. It seems inconceivable that these enzymes can be considered as being primarily responsible for lignin biodegradation.

  4. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  5. Structure and expression of nuclear genes encoding rubisco activase. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, R.E.

    1994-06-01

    Rubisco activase (Rca) is a soluble chloroplast protein that catalyzes the activation of rubisco, the enzyme that initiates the photosynthetic carbon reduction cycle, to catalytic competency. Rca in barley consists of three polypeptides, one of 46- and two of 42-kDa, but the quaternary structure of the protein is not known. The authors have isolated and completely sequenced 8.8 kb of barley genomic DNA containing two, tandemly oriented activase genes (RcaA and RcaB) and three different cDNAs encoding the 42- and 46-kDa Rca polypeptide isoforms. Genomic Southern blot assays indicate that these sequences represent the entire Rca gene family in barley. Pre-mRNAs transcribed from the RcaA gene are alternatively spliced to give mRNAs encoding both 46- (RcaA1) and 42-kDa (RcaA2) Rca isoforms. The RcaB gene encodes a single polypeptide of 42 kDa. Primer extension and northern blot assays indicate that RcaB mRNA is expressed at a level that is 10- to 100-fold lower than RcaA mRNA. Analyses at the mRNA and protein level showed that Rca gene expression is coordinated by that of the rubisco subunits during barley leaf development.

  6. Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Science.gov (United States)

    SunSpiral, Vytas; Agogino, Adrian; Atkinson, David

    2015-01-01

    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration.

  7. STRUCTURAL FLUCTUATIONS, ELECTRICAL RESPONSE AND THE RELIABILITY OF NANOSTRUCTURES (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Rous; Ellen D. Williams; Michael S. Fuhrer

    2006-07-31

    The goal of the research supported by DOE-FG02-01ER45939 was to synthesize a number of experimental and theoretical approaches to understand the relationship between morphological fluctuations, the electrical response and the reliability (failure) of metallic nanostructures. The primary focus of our work was the study of metallic nanowires which we regard as prototypical of nanoscale interconnects. Our research plan has been to link together these materials properties and behaviors by understanding the phenomenon of, and the effects of electromigration at nanometer length scales. The thrust of our research has been founded on the concept that, for nanostructures where the surface-to-volume ratio is necessarily high, surface diffusion is the dominant mass transport mechanism that governs the fluctuations, electrical properties and failure modes of nanostructures. Our approach has been to develop experimental methods that permit the direct imaging of the electromagnetic distributions within nanostructures, their structural fluctuations and their electrical response. This experimental research is complemented by a parallel theoretical and computational program that describes the temporal evolution of nanostructures in response to current flow.

  8. Evaporative Lithography in Open Microfluidic Channel Networks.

    Science.gov (United States)

    Lone, Saifullah; Zhang, Jia Ming; Vakarelski, Ivan U; Li, Er Qiang; Thoroddsen, Sigurdur T

    2017-03-13

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  9. DMT of weighted Parallel Channels: Application to Broadcast Channel

    CERN Document Server

    Mroueh, Lina; Othman, Ghaya Rekaya-Ben; Belfiore, Jean-Claude

    2008-01-01

    In a broadcast channel with random packet arrival and transmission queues, the stability of the system is achieved by maximizing a weighted sum rate capacity with suitable weights that depend on the queue size. The weighted sum rate capacity using Dirty Paper Coding (DPC) and Zero Forcing (ZF) is asymptotically equivalent to the weighted sum capacity over parallel single-channels. In this paper, we study the Diversity Multiplexing Tradeoff (DMT) of the fading broadcast channel under a fixed weighted sum rate capacity constraint. The DMT of both identical and different parallel weighted MISO channels is first derived. Finally, we deduce the DMT of a broadcast channel using DPC and ZF precoders.

  10. Information transfer through quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmann, D.

    2007-03-12

    This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory

  11. Final Report for Geometric Analysis for Data Reduction and Structure Discovery DE-FG02-10ER25983, STRIPES award # DE-SC0004096

    Energy Technology Data Exchange (ETDEWEB)

    Vixie, Kevin R. [Washington State Univ., Pullman, WA (United States)

    2014-11-27

    This is the final report for the project "Geometric Analysis for Data Reduction and Structure Discovery" in which insights and tools from geometric analysis were developed and exploited for their potential to large scale data challenges.

  12. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    Science.gov (United States)

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  13. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Tanaya Chatterjee

    Full Text Available Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX and Accessory cholera enterotoxin (Ace secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC inhibitors, namely CaCCinh-A01, digallic acid (DGA and tannic acid. Biophysical studies indicate that the unfolding (induced by urea free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders.

  14. Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

    Science.gov (United States)

    Chatterjee, Tanaya; Sheikh, Irshad Ali; Chakravarty, Devlina; Chakrabarti, Pinak; Sarkar, Paramita; Saha, Tultul; Chakrabarti, Manoj K.; Hoque, Kazi Mirajul

    2015-01-01

    Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser attention has been paid to the interaction of chloride channel modulators with bacterial toxins. Here we report the modulation of the structure/function of recombinant Ace by small molecule calcium-activated chloride channel (CaCC) inhibitors, namely CaCCinh-A01, digallic acid (DGA) and tannic acid. Biophysical studies indicate that the unfolding (induced by urea) free energy increases upon binding CaCCinh-A01 and DGA, compared to native Ace, whereas binding of tannic acid destabilizes the protein. Far-UV CD experiments revealed that the α-helical content of Ace-CaCCinh-A01 and Ace-DGA complexes increased relative to Ace. In contrast, binding to tannic acid had the opposite effect, indicating the loss of protein secondary structure. The modulation of Ace structure induced by CaCC inhibitors was also analyzed using docking and molecular dynamics (MD) simulation. Functional studies, performed using mouse ileal loops and Ussing chamber experiments, corroborate biophysical data, all pointing to the fact that tannic acid destabilizes Ace, inhibiting its function, whereas DGA stabilizes the toxin with enhanced fluid accumulation in mouse ileal loop. The efficacy of tannic acid in mouse model suggests that the targeted modulation of Ace structure may be of therapeutic benefit for gastrointestinal disorders. PMID:26540279

  15. Separated Structure Functions for the Exclusive Electroproduction of K+Lambda and K+Sigma0 Final States

    Energy Technology Data Exchange (ETDEWEB)

    Pawel Ambrozewicz; Daniel Carman; Rob Feuerbach; Mac Mestayer; Brian Raue; Reinhard Schumacher; Avtandil Tkabladze

    2006-11-19

    We report measurements of the exclusive electroproduction of K{sup +}{Lambda} and K{sup +}{Sigma}{sup 0} final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions {sigma}{sub T}, {sigma}{sub L},{sigma}{sub TT}, and {sigma}{sub LT} were extracted from the {Phi}- and {epsilon}-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first {sigma}{sub L}/{sigma}{sub T} separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from 0.5 {le} Q{sup 2} {le} 2.8 GeV{sup 2} and invariant energy from 1.6 {le} W {le} 2.4 GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the {Lambda} and {Sigma}{sup 0} hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

  16. Relationship between Rheological Behaviour and Final Structure of Al2O3 and YSZ Foams Produced by Replica

    Directory of Open Access Journals (Sweden)

    S. Y. Gómez

    2012-01-01

    Full Text Available Using rheological parameters of ceramic suspensions, it is possible to taylor the structure of the ceramic foams produced by replica. This method consists in the impregnation of a polymeric flexible template (polyurethane foam with a ceramic suspension (slurry containing the appropriate additives, followed by burning out organic compounds and additives and sintering the ceramic structure. In this work, ceramic foams were produced by the replica method from Al2O3 and 3% Y2O3-ZrO2. Rheological parameters of the ceramic suspensions were investigated to improve the mechanical performance of final structures. Different types and quantities of raw materials were combined in order to select the formulations for ceramic foams. The parameters that have a significant influence on the process are the binder type and the amount of solids. Significant changes on the hysteresis area of the suspensions resulted in a lower density of macrodefects in the material. Likewise, when the shear rate viscosity is enhanced, the thickness of the struts increased proportionally. Lastly, when the hysteresis area magnitude and the ceramic thickness increased, the material with higher uniformity was internally densified, and the stress concentration of the internal defects was smoothed

  17. 斑点叉尾(鮰)病毒(CCV)结构蛋白的鉴定%Identification of Structural Proteins of Channel Catfish Virus (CCV)

    Institute of Scientific and Technical Information of China (English)

    毕鹏; 吴志新; 苏念; 李莉娟

    2012-01-01

    采用蔗糖密度梯度离心法分离纯化斑点叉尾(鮰)病毒(Channel catfish virus,CCV),利用电喷雾-四级杆-飞行时间质谱(ESI-Q-TOF MS/MS)对得到的样品进行分析.结果共鉴定了13种结构蛋白,包含1种未报道过的结构蛋白ORF22.实验结果为进一步研究CCV结构蛋白的功能及蛋白质组学提供了参考.%Channel catfish virus (CCV) in channel catfish ovary cells were purified through sucrose density gradient centrifu-gation, and then analyzed using the ESI-Q-TOF mass spectrometry technique. Totally, 13 structural proteins were identified, including a novel structural protein ORF22. This study provided a good reference to further study the function of structural proteins and proteomics of the CCV.

  18. The NN final-state interaction in the helicity structure of $\\vec d(\\vec\\gamma,\\pi^-)pp$ reaction

    CERN Document Server

    Darwish, E M

    2005-01-01

    The influence of final-state $NN$-rescattering on the helicity structure of the $\\vec\\gamma\\vec d\\to\\pi^-pp$ reaction in the energy range from $\\pi$-threshold up to 550 MeV has been investigated. The differential polarized cross-section difference for the parallel and antiparallel helicity states is predicted and compared with recent experimental data. It is shown that the effect of $NN$-rescattering is much less important in the polarized differential cross-section difference than in the previously studied unpolarized differential cross section. Furthermore, the contribution of $\\vec\\gamma\\vec d\\to\\pi^-pp$ to the spin asymmetry of the deuteron is explicitly evaluated over the region of the $\\Delta$(1232)-resonance with inclusion of $NN$-rescattering. The effect of $NN$ final-state interaction is found to be much larger in the asymmetry than in the total cross section and leads to an appreciable reduction of the spin asymmetry in the $\\Delta$-region.

  19. TRP channels in schistosomes

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2016-12-01

    Full Text Available Praziquantel (PZQ is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting.

  20. Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel.

    Science.gov (United States)

    Galaz, Sebastián; Morales-Quintana, Luis; Moya-León, María Alejandra; Herrera, Raúl

    2013-03-01

    Alcohol acyltransferases (AAT) play a key role in ester biosynthesis. In Cucumis melo var. cantalupensis, AATs are encoded by a gene family of four members (CmAAT1-4). CmAAT1, CmAAT3 and CmAAT4 are capable of synthesizing esters, with CmAAT1 the most active. CmAAT2 is inactive and has an Ala268 residue instead of a threonine which is present in all other active AATs, although the role of this residue is still unclear. The present work aims to understand the molecular mechanism involved in ester biosynthesis in melon fruit and to clarify the importance of the Ala268 residue. First, structural models for each protein were built by comparative modelling methodology. Afterwards, conformational interaction between the protein and several ligands, alcohols and acyl-CoAs was explored by molecular docking and molecular dynamics simulation. Structural analysis showed that CmAATs share a similar structure. Also, well-defined solvent channels were described in the CmAATs except for CmAAT2 which does not have a proper channel and instead has a small pocket around Ala268. Residues of the catalytic HxxxD motif interact with substrates within the solvent channel, with Ser363 also important. Strong binding interaction energies were described for the best substrate couple of each CmAAT (hexyl-, benzyl- and cinnamyl-acetate for CmAAT1, 3 and 4 respectively). CmAAT1 and CmAAT2 protein surfaces share similar electrostatic potentials; nevertheless the entrance channels for the substrates differ in location and electrostatic character, suggesting that Ala268 might be responsible for that. This could partly explain the major differences in activity reported for these two enzymes.

  1. Experimental and numerical investigations of three-dimensional turbulent flow of water surrounding a CANDU simulation fuel bundle structure inside a channel

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, F.; Yu, S.D. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Cao, J. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)], E-mail: jcao@ryerson.ca

    2009-11-15

    Computational fluid dynamics (CFD) is used to simulate highly turbulent coolant flows surrounding a simulation CANDU fuel bundle structure inside a flow channel. Three CFD methods are used: large eddy simulation (LES), detached eddy simulation (DES), and Reynolds stress model (RSM). The outcome of the simulations is compared with the experimental pressure data measured using an in-water microphone and a miniature pressure transducer placed at various locations in the vicinity of the bundle structure. Among all the three methods employed in developing computational models, LES provides the most accurate results for turbulent pressures.

  2. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    Science.gov (United States)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a "step-composition gradient channel." We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (-3.7 V) and good instability characteristics with a reduced threshold voltage shift ( Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm2/V s. We presented a unique active layer of the "step-composition gradient channel" in the oxide TFTs and explained the mechanism of adequate channel design.

  3. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    Science.gov (United States)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  4. Analysis of vortical structure over sinusoidal riblet surface in turbulent channel flow by means of Dual-plane stereoscopic PIV measurement

    Science.gov (United States)

    Mamori, Hiroya; Yamaguchi, Kyotaro; Sasamori, Monami; Iwamoto, Kaoru; Murata, Akira

    2016-11-01

    We perform a dual-plane stereoscopic particle image velocimetry (DPS-PIV) measurement to investigate vortical structure over a sinusoidal riblet surface in the turbulent channel flow. In the sinusoidal riblet surface, its lateral spacing of the adjacent walls varies in the streamwise direction and 12% of the drag reduction rate has been confirmed in the turbulent channel flow. The DPS-PIV measurement system consists of four high-speed CCD cameras and the two laser sheets. In the flat case, the profile of the velocity statistics shows a good agreement with previous data. In the ribet case, the velocity statistics decrease in the region close to the wall as compared with that of the flat case. Since all velocity components are measured on adjacent laser sheets simultaneously, vortical structures can be obtained by a second invariant of the tensor i.e. the Q value. According to an analysis for the Q value, we found that the vortical structure is shifted up and attenuated owing to the riblet. Moreover, the riblet prevents the approaching of the vortical structure: the upward and downward flows in the region near the wall are generated by the riblet; if the vortical structure approaches the wall, it is shifted away from the wall due to the upward flow.

  5. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  6. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  7. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels.

    Science.gov (United States)

    Levitz, Joshua; Royal, Perrine; Comoglio, Yannick; Wdziekonski, Brigitte; Schaub, Sébastien; Clemens, Daniel M; Isacoff, Ehud Y; Sandoz, Guillaume

    2016-04-12

    Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels.

  8. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel.

    Science.gov (United States)

    Corzo, Gerardo; Gilles, Nicolas; Satake, Honoo; Villegas, Elba; Dai, Li; Nakajima, Terumi; Haupt, Joachim

    2003-07-17

    Six peptide toxins (Magi 1-6) were isolated from the Hexathelidae spider Macrothele gigas. The amino acid sequences of Magi 1, 2, 5 and 6 have low similarities to the amino acid sequences of known spider toxins. The primary structure of Magi 3 is similar to the structure of the palmitoylated peptide named PlTx-II from the North American spider Plectreurys tristis (Plectreuridae). Moreover, the amino acid sequence of Magi 4, which was revealed by cloning of its cDNA, displays similarities to the Na+ channel modifier delta-atracotoxin from the Australian spider Atrax robustus (Hexathelidae). Competitive binding assays using several 125I-labelled peptide toxins clearly demonstrated the specific binding affinity of Magi 1-5 to site 3 of the insect sodium channel and also that of Magi 5 to site 4 of the rat sodium channel. Only Magi 6 did not compete with the scorpion toxin LqhalphaIT in binding to site 3 despite high toxicity on lepidoptera larvae of 3.1 nmol/g. The K(i)s of other toxins were between 50 pM for Magi 4 and 1747 nM for Magi 1. In addition, only Magi 5 binds to both site 3 in insects (K(i)=267 nM) and site 4 in rat brain synaptosomes (K(i)=1.2 nM), whereas it showed no affinities for either mammal binding site 3 or insect binding site 4. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel.

  9. Structure and Function of FS50, a salivary protein from the flea Xenopsylla cheopis that blocks the sodium channel NaV1.5

    Science.gov (United States)

    Xu, Xueqing; Zhang, Bei; Yang, Shilong; An, Su; Ribeiro, José M. C.; Andersen, John F.

    2016-01-01

    Naturally occurring toxins have been invaluable tools for the study of structural and functional relationships of voltage-gated sodium channels (VGSC). Few studies have been made of potential channel-modulating substances from blood-feeding arthropods. He we describe the characterization FS50, a salivary protein from the flea, Xenopsylla cheopis, that exhibits an inhibitory activity against the NaV1.5 channel with an IC50 of 1.58 μM. The pore-blocking mechanism of this toxin is evident from the kinetics of activation and inactivation suggesting that FS50 does not interfere with the voltage sensor of NaV1.5. FS50 exhibits high specificity for NaV1.5, since 10 μM FS50 had no discernable effect on voltage-gated Na+, K+ and Ca2+ channels in rat dorsal root ganglia or VGSC forms individually expressed in HEK 293T cells. Furthermore, intravenous injection of FS50 into rats and monkeys elicited recovery from arrhythmia induced by BaCl2, as would be expected from a blockade of NaV1.5. The crystal structure of FS50 revealed a βαββ domain similar to that of scorpion β toxin and a small N-terminal βαβ domain. Site-directed mutagenesis experiments have implicated a basic surface including the side chains of Arg 6, His 11 and Lys 32 as potentially important in the FS50 NaV1.5 interaction. PMID:27819327

  10. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  11. The Bolivar Channel Ecosystem of the Galapagos Marine Reserve: Energy flow structure and role of keystone groups

    Science.gov (United States)

    Ruiz, Diego J.; Wolff, Matthias

    2011-08-01

    The Bolivar Channel Ecosystem (BCE) is among the most productive zones in the Galapagos Marine Reserve (GMR). It is exposed to relatively cool, nutrient-rich waters of the Cromwell current, which are brought to the photic zone through topographic upwelling. The BCE is characterized by a heterogeneous rocky reef habitat covered by dense algae beds and inhabited by numerous invertebrate and fish species, which represent the food for higher predators including seals and sharks and exploited fish species. In addition, plankton and detritus based food chains channel large amounts of energy through the complex food web. Important emblematic species of the Galapagos archipelagos reside in this area such as the flightless cormorant, the Galapagos penguin and the marine iguanas. A trophic model of BCE was constructed for the habitats barracudas should be emphasized for their great contribution to the trophic flows and biomass of the system.

  12. Rock riprap design for protection of stream channels near highway structures; Volume 2, Evaluation of Riprap design procedures

    Science.gov (United States)

    Blodgett, J.C.; McConaughy, C.E.

    1986-01-01

    In volume 2, seven procedures now being used for design of rock riprap installations were evaluated using data from 26 field sites. Four basic types of riprap failures were identified: Particle erosion, translational slide, modified slump, and slump. Factors associated with riprap failure include stone size , bank side slope, size gradation, thickness, insufficient toe or endwall, failure of the bank material, overtopping during floods, and geomorphic changes in the channel. A review of field data and the design procedures suggests that estimates of hydraulic forces acting on the boundary based on flow velocity rather than shear stress are more reliable. Several adjustments for local conditions, such as channel curvature, superelevation, or boundary roughness, may be unwarranted in view of the difficulty in estimating critical hydraulic forces for which the riprap is to be designed. Success of the riprap is related not only to the appropriate procedure for selecting stone size, but also to the reliability of estimated hydraulic and channel factors applicable to the site. (See also W89-04910) (Author 's abstract)

  13. Covert Flow Graph Approach to Identifying Covert Channels

    Directory of Open Access Journals (Sweden)

    XiangMei Song

    2011-12-01

    Full Text Available In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of Shared Resource Matrix and Covert Flow Tree method. Finally, the comparison between Covert Flow Graph approach and other two methods is discussed. Different from previous methods, Covert Flow Graph approach provides a deep insight for system’s information flows, and gives an effective algorithm for covert channel identification.

  14. Ion channels in postnatal neurogenesis: potential targets for brain repair.

    Science.gov (United States)

    Swayne, Leigh Anne; Wicki-Stordeur, Leigh

    2012-01-01

    Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.

  15. Structural Health and Prognostics Management for Offshore Wind Plants; Final Report of Sandia R&D Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2015-04-01

    This final report is a compilation of resear ch efforts - funded by the US Department of Energy Wind and Water Power Technolog ies Office over a four-year period from FY11 through FY14. The goals of this re search program were to develop and evaluate technical innovati ons with promise for maxi mizing revenues and reducing levelized cost of energy (LCOE) for offs hore wind plants - more specifically the goals of the Structural H ealth and Prognostics Management (SHPM) program were to reduce O&M costs and increase energy capture through use of SHPM-based technologies. A technology roadmap was deve loped at the start of the project to guide the research efforts. This roadmap identified and outlined six major research thrust areas each having five stages of ma turity. Research was conducted in each of these thrust areas, as documented throughout this report, although a major focus was on development of damage detection strategi es for the most frequent blade damage conditions and damage mitigation and life-exte nsion strategies via changes in turbine operations (smart loads management). Th e work summarized in this compilation report is the product of the work of many researchers. A summary of the major findings, status of the SHPM Technology Ro admap and recommendations for future work are also provided.

  16. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter.

    Science.gov (United States)

    Kuner, T; Beck, C; Sakmann, B; Seeburg, P H

    2001-06-15

    In AMPA receptor channels, a single amino acid residue (Q/R site) of the M2 segment controls permeation of calcium ions, single-channel conductance, blockade by intracellular polyamines, and permeation of anions. The structural environment of the Q/R site and its positioning with regard to a narrow constriction were probed with the accessibility of substituted cysteines to positively and negatively charged methanethiosulfonate reagents, applied from the extracellular and cytoplasmic sides of the channel. The accessibility patterns confirm that the M2 segment forms a pore loop with the Q/R site positioned at the tip of the loop (position 0) facing the extracellular vestibule. Cytoplasmically accessible residues on the N- and C-terminal sides of position 0 form the ascending alpha-helical (-8 to -1) and descending random coil (+1 to +6) components of the loop, respectively. Substitution of a glycine residue at position +2 with alanine strongly decreased the permeability of organic cations, indicating that position +2 contributes to the narrow constriction. The anionic 2-sulfonatoethyl-methanethiosufonate reacted with a cysteine at position 0 only from the external side and with cysteines at positions +1 to +4 only from the cytoplasmic side. These results suggest that charge selectivity occurs external to the constriction (+2) and possibly involves interactions of ions with the negative electrostatic potential created by the dipole of the alpha-helix formed by the ascending limb of the loop.

  17. Design, Synthesis and Structure-activity of N-Glycosyl-1-pyridyl-1H-pyrazole-5-carboxamide as Inhibitors of Calcium Channels

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yun-yun; LI Yu-xin; LI Yi-ming; YANG Xiao-ping; MAO Ming-zhen; LI Zheng-ming

    2013-01-01

    Carbohydrates,with broad-spectrum structures and biological functions,are key organic compounds in nature,along with nucleic acids and proteins.As part of our ongoing efforts to develop a new class of pesticides with novel mechanism of action,a series of novel N-glycosyl-l-pyridyl-lH-pyrazole-5-carboxamide was designed and synthesized via the reactions of glycosyl methanamides and pyridyl-pyrazole acid.The compounds were characterized by 1H NMR and 13C NMR.The bioassay results indicate that some of these compounds exhibit moderate insecticidal activities and assessed as potential inhibitors of calcium channels.The modulation of voltage-gated calcium channels by compounds 4a and 5a in the central neurons isolated from the third instar larvae of Spodoptera exigua was studied by whole-cell patch-clamp technique.In addition,compound 5a inhibits the recorded calcium currents reversible on washout.Experimental results also indicate that compound 5a did not release stored calcium from the Endoplasmic Reticulum.The present work demonstrates that N-glycosyl-l-pyridyl-lH-pyrazole-5-carboxamides cannot be used as possible inhibitors of calcium channels for developing novel pesticides.

  18. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    resonator and improve its electrical equivalent modeling, C x/Co, and Q. Once we craft the resonator that meets the challenging design requirements of RF channel-select filters, the last method presents a design hierarchy that achieves the desired filter response with a specific center frequency, bandwidth, and filter termination resistance. The design procedure culminates in specific values for all mechanical geometry variables necessary for the filter layout, such as disk radii, and beam widths; and process design variables such as resonator material thickness and capacitive actuation gap spacing. Finally, the experimental results introduce a 39nm-gap capacitive transducer, voltage-controlled frequency tuning, and a stress relieving coupled array design that enable a 0.09% bandwidth 223.4 MHz channel-select filter with only 2.7dB of in-band insertion loss and 50dB rejection of out-of-band interferers. This amount of rejection is more than 23dB better than previous capacitive-gap transduced filter designs that did not benefit from sub-50nm gaps. It also comes in tandem with a 20dB shape factor of 2.7 realized by a hierarchical mechanical circuit design utilizing 206 micromechanical circuit elements, all contained in an area footprint of only 600mumx420mum. The key to such low insertion loss for this tiny percent bandwidth is Q's>8,800 supplied by polysilicon disk resonators employing for the first time capacitive transducer gaps small enough to generate coupling strengths of C x/Co ˜0.1%, which is a 6.1x improvement over previous efforts. The filter structure utilizes electrical tuning to correct frequency mismatches due to process variations, where a dc tuning voltage of 12.1 V improves the filter insertion loss by 1.8 dB and yields the desired equiripple passband shape. An electrical equivalent circuit is presented that captures not only the ideal filter response, but also parasitic non-idealities that create electrical feed-through, where simulation of the derived

  19. Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference.

    Science.gov (United States)

    Slowik, Daria; Henderson, Richard

    2015-07-01

    With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.

  20. Synthesis, Structural Characterization, and Field-Effect Transistor Properties of n-Channel Semiconducting Polymers Containing Five-Membered Heterocyclic Acceptors: Superiority of Thiadiazole Compared with Oxadiazole.

    Science.gov (United States)

    Chen, Huajie; Liu, Zhaoxia; Zhao, Zhiyuan; Zheng, Liping; Tan, Songting; Yin, Zhihong; Zhu, Chunguang; Liu, Yunqi

    2016-12-07

    Five-membered 1,3,4-oxadiazole (OZ) and 1,3,4-thiadiazole (TZ) heterocycle-based copolymers as active layer have long been ignored in solution-processable n-channel polymer field-effect transistors (PFETs) despite the long history of using OZ or TZ derivatives as the electron-injecting materials in organic light-emitting devices and their favorable electron affinities. Herein, we first report the synthesis and PFETs performance of two n-channel conjugated polymers bearing OZ- or TZ-based acceptor moieties, i.e., PNOZ and PNTZ, where simple thiophene units are utilized as the weak donors and additional alkylated-naphthalenediimides units are used as the second acceptors. A comparative study has been performed to reveal the effect of different heterocyclic acceptors on thermal properties, electronic properties, ordering structures, and carrier transport performance of the target polymers. It is found that both polymers possess low-lying LUMO values below -4.0 eV, indicating high electron affinity for both heterocycle-based polymers. Because of strong polarizable ability of sulfur atom in TZ heterocycle, PNTZ exhibits a red shift in maximal absorption and stronger molecular aggregation even in the diluted chlorobenzene solution as compared to the OZ-containing PNOZ. Surface morphological study reveals that a nodule-like surface with a rough surface morphology is observed clearly for PNOZ films, whereas PNTZ films display highly uniform surface morphology with well interconnected fiber-like polycrystalline grains. Investigation of PFETs performance indicates that both polymers afford air-stable n-channel transport characteristics. The uniform morphological structure and compact π-π stacking endow PNTZ with a high electron mobility of 0.36 cm(2) V(-1) s(-1), much higher than that of PNOZ (0.026 cm(2) V(-1) s(-1)). These results manifest the feasibility in improving electron-transporting property simply by tuning heteroatom substitutes in n-channel polymers; further

  1. Ion Channels in Neurological Disorders.

    Science.gov (United States)

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  2. Power transmission in combined compressors comprising a radial and side channel stage. Final report and appendices; Untersuchungen ueber die Energieuebertragung in kombinierten Verdichtern aus Radial- und Seitenkanalstufe. Abschlussbericht und Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Surek, D.

    2001-07-30

    In the field of turbo-compressors, the following problems must be solved in order to extend the range of operation: (a) Prevention of rotating stall at part load; (b) Extension of the permissible operating range at part load; (c) Extension of the operation range of radial and side channel compressors in higher vacuum below p{sub s}=50kPa. (c) can be achieved by changing the flow pattern in the rotor and in the region of interaction between the blade wheel and guide wheel of radial compressors or by actively influencing transient flow, e.g. by coupling radial compressor stages with a side channel compressor stage as final stage. The contribution goes into detail about the latter solution. [German] Fuer den Turboverdichterbau sind gegenwaertig folgende Probleme zur Erweiterung der Betriebsbereiche dringend zu loesen: (a) Vermeiden oder beseitigen von Rotating Stall im Teillastbereich,(b) Erweiterung des zulaessigen Arbeitsbereiches im Teillastgebiet, (c) Erschliessung des Arbeitsbereichs von Radial- und Seitenkanalverdichtern im hoeheren Vakuumbereich unterhalb von p{sub s}=50 kPa. Die Erweiterung des zulaessigen Arbeitsbereichs im Teillastgebiet kann durch Veraenderung der Stroemungsstruktur im Laufrad und im Interaktionsbereich zwischen Lauf- und Leitrad von Radialverdichtern oder durch die aktive Beeinflussung der instationaeren Stroemung z.B. durch Kopplung von Radialverdichterstufen mit einer Seitenkanalverdichterstufe als Endstufe erfolgen. Seitenkanalverdichter verfuegen ueber stabile Kennlinien im gesamten Betriebsbereich. Im Kombinationsbetrieb einer Radialverdichterstufe mit nach- oder vorgeschalteter Seitenkanalverdichterstufe praegte die Seitenkanalverdichterstufe dem Kombinationsverdichter ihr stabiles Kennlinienverhalten auf, so dass sich eine stabile Gesamtkennlinie ergibt. Eine Pumpgrenze tritt nicht mehr auf, so dass der Betrieb von Verdichterkombinationen aus Radial- und Seitenkanalstufe im gesamten Kennlinienbereich moeglich ist. Die

  3. Solution structure of Pi4, a short four-disulfide-bridged scorpion toxin specific of potassium channels.

    OpenAIRE

    Guijarro, J. Iñaki; M'Barek, Sarrah; Gómez-Lagunas, Froylan; Garnier, Damien; Rochat, Hervé; Sabatier, Jean-Marc; Possani, Lourival; Delepierre, Muriel; Possani, Lourrival

    2003-01-01

    Pi4 is a short toxin found at very low abundance in the venom of Pandinus imperator scorpions. It is a potent blocker of K(+) channels. Like the other members of the alpha-KTX6 subfamily to which it belongs, it is cross-linked by four disulfide bonds. The synthetic analog (sPi4) and the natural toxin (nPi4) have been obtained by solid-phase synthesis or from scorpion venom, respectively. Analysis of two-dimensional (1)H NMR spectra of nPi4 and sPi4 indicates that both peptides have the same s...

  4. Final « pop-up » structural reactivation of the internal part of an orogenic wedge: west-central Pyrenees

    Science.gov (United States)

    Meresse, F.; Jolivet, M.; Labaume, P.; Teixell, A.

    2009-04-01

    late exhumation stage associated with the tectonic (re)activation of north-vergent thrusts in the northern part of the Axial Zone. Similarly, results from the southern flank of the Axial Zone and the northern part of the Jaca basin suggest a denudation age around 18 Ma (Meresse et al., this volume), which may be linked to out-of-sequence tectonic movements on a south-vergent basement thrust (Bielsa thrust, Jolivet et al., 2007). In conclusion, thermochronological data reveal an Early Miocene "pop-up" exhumation of the internal parts of the Pyrenean wedge, which also shows that the Pyrenean compressional deformation ended later than the generally accepted Aquitanian age deduced from tectonics-sedimentation relationships. This late exhumation was achieved through out-of-sequence (re)activation of hinterland structures linked to a final internal thickening stage in the orogenic prism.

  5. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  6. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  7. Carbon monoxide: an emerging regulator of ion channels.

    Science.gov (United States)

    Wilkinson, William J; Kemp, Paul J

    2011-07-01

    Carbon monoxide is rapidly emerging as an important cellular messenger, regulating a wide range of physiological processes. Crucial to its role in both physiology and disease is its ability differentially to regulate several classes of ion channels, including examples from calcium-activated K(+) (BK(Ca)), voltage-activated K(+) (K(v)) and Ca(2+) channel (L-type) families, ligand-gated P2X receptors (P2X2 and P2X4), tandem P domain K(+) channels (TREK1) and the epithelial Na(+) channel (ENaC). The mechanisms by which CO regulates these ion channels are still unclear and remain somewhat controversial. However, available structure-function studies suggest that a limited range of amino acid residues confer CO sensitivity, either directly or indirectly, to particular ion channels and that cellular redox state appears to be important to the final integrated response. Whatever the molecular mechanism by which CO regulates ion channels, endogenous production of this gasotransmitter has physiologically important roles and is currently being explored as a potential therapeutic.

  8. Mechanosensitive Channels

    Science.gov (United States)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  9. Hillslope-channel coupling in the Nepal Himalayas and threat to man-made structures: The middle Kali Gandaki valley

    Science.gov (United States)

    Fort, M.; Cossart, E.; Arnaud-Fassetta, G.

    2010-12-01

    In mountain areas, the confinement of valleys favours landslide interaction with rivers, causing channel changes or short-lived dams and lakes that may threaten trails, roads and human settlements. Their impacts may occur successively in space and time, and they affect randomly the functioning of the sediment fluxes. The present study focuses on the interaction patterns between unstable mountain slopes and the Kali Gandaki River, in the Nepal Himalayas. In this valley, the deepest on earth, a road linking the Myagdi and Mustang districts has been under construction for the past 5 years, either cutting into the bedrock or crossing areas affected episodically by debris slides, earth flows, debris flows and rock slides. On the basis of the geomorphic evolution observed over the last three decades, we assess the potential threats that now arise following completion of the road. We mapped three areas of recurrent mass wasting features characteristic of the most frequent situations encountered in this valley. We analyzed the combination of the hydro-geomorphic processes involved. With the use of a DEM, we assessed the volume and spatial impact of temporary river dams on infrastructure located along the valley floor. We estimated hydraulic parameters to document the geomorphic efficiency of river flooding after dam breaching. We reconstructed the spatial extent of (1) areas threatened by backwater flooding upstream of the dams and (2) areas threatened by the collapse of the dams. We describe the current geomorphic and sedimentary adjustments still at work along the valley sides. Our findings confirm that in the High Himalaya, medium scale landslides (10 5-6 m 3) play a major role in the overall process of denudation and sediment transfer. They highly influence the transient nature of bedload transport in the channel. In reducing the residence time of sediments in temporary, spatially limited traps of the valley bottom, they enhance the vulnerability of land and people

  10. HCN Channels and Heart Rate

    Directory of Open Access Journals (Sweden)

    Ilaria Dentamaro

    2012-04-01

    Full Text Available Hyperpolarization and Cyclic Nucleotide (HCN -gated channels represent the molecular correlates of the “funny” pacemaker current (If, a current activated by hyperpolarization and considered able to influence the sinus node function in generating cardiac impulses. HCN channels are a family of six transmembrane domain, single pore-loop, hyperpolarization activated, non-selective cation channels. This channel family comprises four members: HCN1-4, but there is a general agreement to consider HCN4 as the main isoform able to control heart rate. This review aims to summarize advanced insights into the structure, function and cellular regulation of HCN channels in order to better understand the role of such channels in regulating heart rate and heart function in normal and pathological conditions. Therefore, we evaluated the possible therapeutic application of the selective HCN channels blockers in heart rate control.

  11. Secrecy in Cooperative Relay Broadcast Channels

    CERN Document Server

    Ekrem, E

    2008-01-01

    We investigate the effects of user cooperation on the secrecy of broadcast channels by considering a cooperative relay broadcast channel. We show that user cooperation can increase the achievable secrecy region. We propose an achievable scheme that combines Marton's coding scheme for broadcast channels and Cover and El Gamal's compress-and-forward scheme for relay channels. We derive outer bounds for the rate-equivocation region using auxiliary random variables for single-letterization. Finally, we consider a Gaussian channel and show that both users can have positive secrecy rates, which is not possible for scalar Gaussian broadcast channels without cooperation.

  12. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  13. Degenerate RFID Channel Modeling for Positioning Applications

    Directory of Open Access Journals (Sweden)

    A. Povalac

    2012-12-01

    Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.

  14. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther Sans [Stony Brook University; Takeuchi, Kenneth James [Stony Brook University; Marschilok, Amy Catherine [Stony Brook University

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  15. Structural model of the voltage-gated potassium channel Kv1.1 and molecular docking of Tc1 toxin from Tityus cambridgei to KcsA and Kv1.1

    Science.gov (United States)

    Liu, Hsuan-Liang; Lin, Jin-Chung

    2003-11-01

    In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 was constructed based on the crystallographic structure of KcsA. Subsequently, molecular docking experiments of Tc1 towards KcsA as well as Kv1.1 were performed. Tc1 forms the most stable complexes with these two channels when the side chain of K14 occupies the first K + binding site. Tc1 binds preferentially towards Kv1.1 than KcsA due to the stronger electrostatic and hydrophobic interactions. Furthermore, surface complementarity of the outer vestibules of the channel to the Tc1 spatial conformations also plays an important role in stabilizing these Tc1/channel complexes.

  16. Organization of the rabbit vitreous body : Lamellae, Cloquet's channel and a novel structure, the 'alae canalis Cloqueti'

    NARCIS (Netherlands)

    Los, LI; van Luyn, MJA; Nieuwenhuis, P

    1999-01-01

    Even though the rabbit is a frequently used animal model for studies on Vitreous function and pathobiology, data on the structural organization of the rabbit Vitreous are scarce. The aim of the present study is to give a detailed description of rabbit vitreous structure in order to provide a basis f

  17. Study of cell migration in microfabricated channels.

    Science.gov (United States)

    Vargas, Pablo; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2014-02-21

    The method described here allows the study of cell migration under confinement in one dimension. It is based on the use of microfabricated channels, which impose a polarized phenotype to cells by physical constraints. Once inside channels, cells have only two possibilities: move forward or backward. This simplified migration in which directionality is restricted facilitates the automatic tracking of cells and the extraction of quantitative parameters to describe cell movement. These parameters include cell velocity, changes in direction, and pauses during motion. Microchannels are also compatible with the use of fluorescent markers and are therefore suitable to study localization of intracellular organelles and structures during cell migration at high resolution. Finally, the surface of the channels can be functionalized with different substrates, allowing the control of the adhesive properties of the channels or the study of haptotaxis. In summary, the system here described is intended to analyze the migration of large cell numbers in conditions in which both the geometry and the biochemical nature of the environment are controlled, facilitating the normalization and reproducibility of independent experiments.

  18. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    . In addition, once the free energy profile becomes available the full current-voltage dependence can be readily obtained. For both channels we carried out calculations using both approaches. We also tested the main assumptions underlying the diffusive model, such as uncorrelated nature of individual crossing events and Fickian diffusion. The accuracy and consistency of different methods will be discussed. Finally we will discuss how comparisons between calculated and measured ionic conductance and selectivity of transport can be used for determining structural models of the channels.

  19. Quantum channels with a finite memory

    CERN Document Server

    Bowen, G; Bowen, Garry; Mancini, Stefano

    2004-01-01

    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, the channel is asymptotically noiseless.

  20. Ion channels in development and cancer.

    Science.gov (United States)

    Bates, Emily

    2015-01-01

    Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.

  1. A Triple-Probe Channel NO{sub 2}S{sub 2}-Macrocycle: Synthesis, Sensing Characteristics and Crystal Structure of Mercury(II) Nitrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Seo, Moo Lyong; Lee, Shim Sung [Gyeongsang National University, Jinju (Korea, Republic of); Choi, Kyu Seong [Kyungnam University, Masan (Korea, Republic of)

    2010-07-15

    A triple-probe channel type chemosensor based on an NO{sub 2}S{sub 2}-macrocycle functionalized with phenyltricyanovinyl group was synthesized and its sensing characteristics were examined. The pink-red solution of L changed selectively to pale yellow upon addition of Hg{sup 2+}. The selective fluorometric response of L to all the tested metal ions was studied. The results showed that a large enhancement of the fluorescence of L was observed only in the case of Hg{sup 2+}. In addition, L showed large anodic shift ({approx} 0.3 V) for the addition of excess Hg{sup 2+}. Through above three observed results by the different techniques, we confirmed that the proposed chemosensor acts as the multiple-probe channel sensing material. The crystal structure of mercury(II) nitrate complexes of L which shows a 1-D polymer network with a formula [Hg{sub 2}(L){sub 2}(NO{sub 3}){sub 2}({mu}-NO{sub 3}){sub 2}]{sub n} was also reported.

  2. Phosphorylation mediated structural and functional changes in pentameric ligand-gated ion channels: implications for drug discovery.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2014-08-01

    Pentameric ligand-gated ion channels (pLGICs) mediate numerous physiological processes, including fast neurotransmission in the brain. They are targeted by a large number of clinically-important drugs and disruptions to their function are associated with many neurological disorders. The phosphorylation of pLGICs can result in a wide range of functional consequences. Indeed, many neurological disorders result from pLGIC phosphorylation. For example, chronic pain is caused by the protein kinase A-mediated phosphorylation of α3 glycine receptors and nicotine addiction is mediated by the phosphorylation of α4- or α7-containing nicotinic receptors. A recent study demonstrated that phosphorylation can induce a global conformational change in a pLGIC that propagates to the neurotransmitter-binding site. Here we present evidence that phosphorylation-induced global conformational changes may be a universal phenomenon in pLGICs. This raises the possibility of designing drugs to specifically treat disease-modified pLGICs. This review summarizes some of the opportunities available in this area.

  3. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Nobuhiro [Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Yamazaki, Yasuo [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Brown, R. Lane [Neurological Science Institute, Oregon Health and Science University, Beaverton, Oregon 97006 (United States); Fujimoto, Zui [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Morita, Takashi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Mizuno, Hiroshi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); VALWAY Technology Center, NEC Soft Ltd, Koto-ku, Tokyo 136-8627 (Japan); Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki 305-8566 (Japan); Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan)

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.

  4. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  5. Na2.9KMo12S14: a novel quaternary reduced molybdenum sulfide containing Mo12 clusters with a channel structure

    Directory of Open Access Journals (Sweden)

    Patrick Gougeon

    2013-06-01

    Full Text Available The crystal structure of trisodium potassium dodecamolybdenum tetradecasulfide, Na2.9 (2KMo12S14, consists of Mo12S14S6 cluster units interconnected through interunit Mo—S bonds and delimiting channels in which the Na+ cations are disordered. The cluster units are centered at Wyckoff positions 2d and have point-group symmetry 3.2. The K atom lies on sites with 3.2 symmetry (Wyckoff site 2c between two consecutive Mo12S14S6 units. One of the three independent S atoms and one Na atom lie on sites with 3.. symmetry (Wyckoff sites 4e and 4f. The other Na atom occupies a 2b position with -3.. symmetry. The crystal studied was a merohedral twin with refined components of 0.4951 (13 and 0.5049 (13.

  6. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect

    Science.gov (United States)

    Wang, Shun; Lu, Ping; Zhao, Shui; Liu, Deming; Yang, Wei; Zhang, Jiangshan

    2014-06-01

    We demonstrated a 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect. Few-mode fiber-embedded Sagnac ring configuration and a Mach-Zehnder interferometer are cascaded to form a multiwavelength filter for our previous 2-μm fiber laser. By adopting suitable fiber length and adjusting the polarization controller, we obtained a 2-μm dual-wavelength fiber laser with switchable wavelength interval. Experimental results revealed that the proposed laser shows higher quality and better stability compared with our previous work and it has potential applications in the fields of atmospheric propagation and microwave photonics.

  7. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family.

    Science.gov (United States)

    Arenas-Salinas, Mauricio; Townsend, Philip D; Brito, Christian; Marquez, Valeria; Marabolli, Vanessa; Gonzalez-Nilo, Fernando; Matias, Cata; Watt, Richard K; López-Castro, Juan D; Domínguez-Vera, José; Pohl, Ehmke; Yévenes, Alejandro

    2014-11-01

    Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues. We show that the macromolecular assembly of rCtFtn exhibits a cage-like hollow shell consisting of 24 monomers that are related by 4-3-2 symmetry; similar to the assembly of other ferritins. In all ferritins of known structure the short fifth α-helix adopts an acute angle with respect to the four-helix bundle. However, the crystal structure of the rCtFtn presented here shows that this helix adopts a new conformation defining a new assembly of the 4-fold channel of rCtFtn. This conformation allows the arrangement of the C-terminal region into the inner cavity of the protein shell. Furthermore, two Fe(III) ions were found in each ferroxidase center of rCtFtn, with an average FeA-FeB distance of 3 Å; corresponding to a diferric μ-oxo/hydroxo species. This is the first ferritin crystal structure with an isolated di-iron center in an iron-storage ferritin. The crystal structure of rCtFtn and the biochemical results presented here, suggests that rCtFtn presents similar biochemical properties reported for other members of this protein family albeit with distinct structural plasticity.

  8. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ). Final Report No. 9.

    Science.gov (United States)

    McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a job analysis instrument consisting of 187 job elements organized into six divisions. The PAQ was used in the eight studies summarized in this final report. The studies were: (1) ratings of the attribute requirements of PAQ job elements, (2) a series of principal components analyses of these attribute…

  9. Focused-ion-beam nano-structured rib channel waveguides in $KY(WO_4)_2$ for laser applications

    NARCIS (Netherlands)

    Gardillou, F.; Romanyuk, Y.E.; Pavius, M.; Borca, C.N.; Salathé, R.P.; Pollnau, M.

    2006-01-01

    Bulk $KY(WO_4)_2$ (hereafter KYW) laser crystals doped with rare-earth ions are recognized to be among the most promising host materials for obtaining novel solid-state lasers. The rare-earth ions $RE^{3+}$ are easily incorporated in the KYW structure by replacing the $Y{3+}$ ions, resulting in a st

  10. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  11. Elastic and Muscular Arteries Differ in Structure, Basal NO Production and Voltage-Gated Ca(2+)-Channels.

    Science.gov (United States)

    Leloup, Arthur J A; Van Hove, Cor E; Heykers, Annick; Schrijvers, Dorien M; De Meyer, Guido R Y; Fransen, Paul

    2015-01-01

    In the last decades, the search for mechanisms underlying progressive arterial stiffening and for interventions to avoid or reverse this process has gained much attention. In general, arterial stiffening displays regional variation and is, for example, during aging more prominent in elastic than in muscular arteries. We hypothesize that besides passive also active regulators of arterial compliance [i.e., endothelial and vascular smooth muscle cell (VSMC) function] differ between these arteries. Hence, it is conceivable that these vessel types will display different time frames of stiffening. To investigate this hypothesis segments of muscular arteries such as femoral and mesenteric arteries and elastic arteries such as the aorta and carotid artery were isolated from female C57Bl6 mice (5-6 months of age, n = 8). Both microscopy and passive stretching of the segments in a myograph confirmed that passive mechanical properties (elastin, collagen) of elastic and muscular arteries were significantly different. Endothelial function, more specifically basal nitric oxide (NO) efficacy, and VSMC function, more specifically L-type voltage-gated Ca(2+) channel (VGCC)-mediated contractions, were determined by α1-adrenoceptor stimulation with phenylephrine (PE) and by gradual depolarization with elevated extracellular K(+) in the absence and presence of eNOS inhibition with L-NAME. PE-mediated isometric contractions significantly increased after inhibition of NO release with L-NAME in elastic, but not in muscular vessel segments. This high basal eNOS activity in elastic vessels was also responsible for shifts of K(+) concentration-contraction curves to higher external K(+). VGCC-mediated contractions were similarly affected by depolarization with elevated K(+) in muscular artery segments or in elastic artery segments in the absence of basal NO. However, K(+)-induced contractions were inhibited by the VGCC blocker diltiazem with significantly higher sensitivity in the muscular

  12. Elastic and muscular arteries differ in structure, basal NO production and voltage-gated Ca2+-channels

    Directory of Open Access Journals (Sweden)

    Arthur J.A. Leloup

    2015-12-01

    Full Text Available In the last decades, the search for mechanisms underlying progressive arterial stiffening and for interventions to avoid or reverse this process has gained much attention. In general, arterial stiffening displays regional variation and is, for example, during aging more prominent in elastic than in muscular arteries. We hypothesize that besides passive also active regulators of arterial compliance (i.e. endothelial and vascular smooth muscle cell (VSMC function differ between these arteries. Hence, it is conceivable that these vessel types will display different time frames of stiffening. To investigate this hypothesis segments of muscular arteries such as femoral and mesenteric arteries and elastic arteries such as the aorta and carotid artery were isolated from female C57Bl6 mice (5-6 months of age, n=8. Both microscopy and passive stretching of the segments in a myograph confirmed that passive mechanical properties (elastin, collagen of elastic and muscular arteries were significantly different. Endothelial function, more specifically basal nitric oxide (NO efficacy, and VSMC function, more specifically L-type voltage-gated Ca2+ channel (VGCC-mediated contractions, were determined by α1-adrenoceptor stimulation with phenylephrine (PE and by gradual depolarization with elevated extracellular K+ in the absence and presence of eNOS inhibition with L-NAME. PE-mediated isometric contractions significantly increased after inhibition of NO release with L-NAME in elastic, but not in muscular vessel segments. This high basal eNOS activity in elastic vessels was also responsible for shifts of K+ concentration-contraction curves to higher external K+. VGCC-mediated contractions were similarly affected by depolarization with elevated K+ in muscular artery segments or in elastic artery segments in the absence of basal NO. However, K+-induced contractions were inhibited by the VGCC blocker diltiazem with significantly higher sensitivity in the muscular

  13. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  14. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  15. Assessment of the effects of microbially influenced degradation on a massive concrete structure. Final report, Report 5

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D. [Biodegradation Systems, Inc., Idaho Falls, ID (United States)

    1995-07-08

    There is a need to estimate the effect of environmental conditions on construction materials to be used in the repository at Yucca Mountain. Previous reports from this project have demonstrated that it is important to develop an understanding of microbially influenced degradation (MID) development and its influence on massive concrete structures. Further, it has been shown that the most effective way to obtain quantitative data on the effects of MID on the structural integrity of repository concrete is to study manmade, analog structures known to be susceptible to MID. The cooling tower shell located at the Ohaaki Power Station near Wairakei, New Zealand is such a structure.

  16. Hyperspherical coupled channel calculations of energy and structure of 4He-4He-Li+ and its isotopic combinations

    Science.gov (United States)

    Liu, Min-min; Wu, Meng-Shan; Han, Hui-li; Shi, Ting-yun

    2016-07-01

    The ground state vibrational energy and spatial features of 4He-4He-Li+ and its triatomic isotopic complexes are studied using the slow variable discretization (SVD) method in the hyperspherical coordinates for the zero total angular momentum. Our results show that the dominant structure of the system is an isosceles triangle with the shorter side associated with the two Li+-He distances using the sum-of-potential approximation. Corrections caused by the induced dipole-induced dipole interactions on the He atoms are also investigated. The effects are seen to be small and have a minor influence on the binding energy and the structure of present system. The results are also compared with the full ab initio calculations including all the three-body interactions and information of three-body corrections is obtained.

  17. Structural definition of the lysine swing in Arabidopsis thaliana PDX1: Intermediate channeling facilitating vitamin B6 biosynthesis.

    Science.gov (United States)

    Robinson, Graham C; Kaufmann, Markus; Roux, Céline; Fitzpatrick, Teresa B

    2016-10-04

    Vitamin B6 is indispensible for all organisms, notably as the coenzyme form pyridoxal 5'-phosphate. Plants make the compound de novo using a relatively simple pathway comprising pyridoxine synthase (PDX1) and pyridoxine glutaminase (PDX2). PDX1 is remarkable given its multifaceted synthetic ability to carry out isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, all in the absence of coenzymes or recruitment of specialized domains. Two active sites (P1 and P2) facilitate the plethora of reactions, but it is not known how the two are coordinated and, moreover, if intermediates are tunneled between active sites. Here we present X-ray structures of PDX1.3 from Arabidopsis thaliana, the overall architecture of which is a dodecamer of (β/α)8 barrels, similar to the majority of its homologs. An apoenzyme structure revealed that features around the P1 active site in PDX1.3 have adopted inward conformations consistent with a catalytically primed state and delineated a substrate accessible cavity above this active site, not noted in other reported structures. Comparison with the structure of PDX1.3 with an intermediate along the catalytic trajectory demonstrated that a lysine residue swings from the distinct P2 site to the P1 site at this stage of catalysis and is held in place by a molecular catch and pin, positioning it for transfer of serviced substrate back to P2. The study shows that a simple lysine swinging arm coordinates use of chemically disparate sites, dispensing with the need for additional factors, and provides an elegant example of solving complex chemistry to generate an essential metabolite.

  18. Optimization and Convergence of Observation Channels in Stochastic Control

    CERN Document Server

    Yüksel, Serdar

    2010-01-01

    This paper studies the optimization of observation channels (stochastic kernels) in partially observed stochastic control problems. In particular, existence, continuity, and convexity properties are investigated. Continuity properties of the optimal cost in channels are explored under total variation, setwise convergence and weak convergence. Sufficient conditions for sequential compactness under total variation and setwise convergence are presented. It is shown that the optimization is concave in observation channels. This implies that the optimization problem is non-convex in quantization/coding policies for a class of networked control problems. Applications in optimal quantizer/coder design and robust control are presented, where new results on the existence of optimal quantizers are obtained. Furthermore, the paper explains why a class of decentralized control problems, under the non-classical information structure, is non-convex when {\\em signaling} is present. Finally, empirical con sistency of a class...

  19. Dequantization Via Quantum Channels

    Science.gov (United States)

    Andersson, Andreas

    2016-10-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  20. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis.

    Science.gov (United States)

    Liu, Jiye; Ye, Jia; Zou, Xiaolong; Xu, Zhenghao; Feng, Yan; Zou, Xianxian; Chen, Zhong; Li, Yuezhou; Cang, Yong

    2014-05-21

    Ion channels regulate membrane excitation, and mutations of ion channels often cause serious neurological disorders including epilepsy. Compared with extensive analyses of channel protein structure and function, much less is known about the fine tuning of channel activity by post-translational modification. Here we report that the large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are targeted by the E3 ubiquitin ligase CRL4A(CRBN) for polyubiquitination and retained in the endoplasmic reticulum (ER). Inactivation of CRL4A(CRBN) releases deubiquitinated BK channels from the ER to the plasma membrane, leading to markedly enhanced channel activity. Mice with CRL4A(CRBN) mutation in the brain or treated with a CRL4A(CRBN) inhibitor are very sensitive to seizure induction, which can be attenuated by blocking BK channels. Finally, the mutant mice develop spontaneous epilepsy when aged. Therefore, ubiquitination of BK channels before their cell surface expression is an important step to prevent systemic neuronal excitability and epileptogenesis.

  1. Final Technical Report-Grant # DE-FG02-97ER45628 ?Structural Diorder in Materials?

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Edward A

    2009-02-23

    Since the grant was renewed in 2000 and 2003 final technical reports of the grant have been previously submitted for those years. For that reason this final technical report covers the last four years of the grant. We had an exceptionally successful and productive last four years under the support of the grant. Our progress takes three different aspects, described in more detail below: 1.1 instrumentation, infrastructure, and other research support at Sector 20 of the Advanced Photon Source (APS); 1.2 research on which Profs. Stern or Seidler were PI?s; and 1.3 research on which Profs. Stern or Seidler were co-PI?s or where Drs. Dale Brewe or Julie Cross were authors or co-authors. Drs. Brewe and Cross are the two research scientists (permanently stationed at sector 20) who are supported by the grant. They provide support to the scientific goals of the grant and more broadly provide research support for many general users at Sector 20. Finally, in section 1.4 we provide a complete list of publications resulting from funding in the grant on which at least one of Stern, Seidler, Cross, or Brewe were co-authors. Given the inclusion of operations funding in the grant, this is of course a subset of the full scientific impact of the grant.

  2. Corrosion protection of Arctic offshore structures: Final report. [Effects of temperature and salinity on required cathodic protection current

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Rogers, J.C.; Feyk, C.; Theuveny, B.

    1985-10-01

    Results are presented for a research program on corrosion prevention for Arctic offshore structures which are in contact with sea ice for a significant portion of the year. The electrical method most adaptable for structure protection involves the injection of impressed current from several remote anodes buried just beneath the sea floor. The electrical resistivity of annual sea ice as a function of temperature and salinity is presented. Details of the interface layers formed between sea ice and steel in the presence of current injection are shown. A computer program was developed to enable the calculation of protective current density into the structure, in the presence of ice rubble and ridges around the structure. The program and the results of an example calculation are given for a caisson- retained island structure. 81 refs., 103 figs., 3 tabs.

  3. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system.

    Science.gov (United States)

    Zoltner, Martin; Ng, Wui M A V; Money, Jillian J; Fyfe, Paul K; Kneuper, Holger; Palmer, Tracy; Hunter, William N

    2016-07-01

    The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1-D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein.

  4. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system

    Science.gov (United States)

    Zoltner, Martin; Ng, Wui M.A.V.; Money, Jillian J.; Fyfe, Paul K.; Kneuper, Holger; Palmer, Tracy; Hunter, William N.

    2016-01-01

    The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1–D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus. The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein. PMID:27130157

  5. CaSeO4-0.625H2O - Water Channel Occupation in a bassanite Related Structure

    Energy Technology Data Exchange (ETDEWEB)

    S Fritz; H Schmidt; I Paschke; O Magdysyuk; R Dinnebier; D Freyer; W Voigt

    2011-12-31

    Calcium selenate subhydrate, CaSeO{sub 4} {center_dot} 0.625H{sub 2}O, was prepared by hydrothermal conversion of CaSeO{sub 4} {center_dot} 2H{sub 2}O at 463 K. From the single crystals obtained in the shape of hexagonal needles, 50-300 {micro}m in length, the crystal structure could be solved in a trigonal unit cell with space group P3{sub 2}21. The cell was confirmed and refined by high-resolution synchrotron powder diffraction. The subhydrate was characterized by thermal analysis and Raman spectroscopy.

  6. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  7. Population structure and maturity stages of Fritillaria borealis (Appendicularia, Tunicata: seasonal cycle in Ushuaia Bay (Beagle Channel

    Directory of Open Access Journals (Sweden)

    María Laura Presta

    2015-09-01

    Full Text Available AbstractFritillaria borealis is a cosmopolitan species, very frequent in sub-antarctic and antarctic waters. The objective of this paper was to analyze its size structure and maturity stages at two sites in Ushuaia Bay: a coastal site exposed to anthropogenic pressure (E1 and a reference site (E2 located in the external zone of the bay. Zooplankton was collected during the 2012 seasonal cycle. The sampling method involved the use of a 67 µm-mesh net. Appendicularians were classified in four maturity stages: I undifferentiated gonads, II testis and ovary differentiated, III expanded testis, IV discharged testis, expanded ovary. Our results showed that the highest densities of F. borealisoccurred in spring and summer at both sites; coinciding with high values of chlorophyll-a. The percentage of juveniles (I and II exhibited a spatial and temporal pattern similar to that observed for chlorophyll-a values. During spring-summer, juveniles and mature specimens (III and IV showed a greater gonadal development than those individuals found in autumn-winter. In conclusion, the mismatching in the population structure and the pattern of densities of F. borealis between coastal and external zones would suggest the existence of two sub-populations susceptible to the influence of the anthropogenic impact in the bay.

  8. CHANNEL WIDENING DURING DEGRADATION OF ALLUVIAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    Guangqian WANG; Junqiang XIA

    2001-01-01

    This paper first describes the phenomenon of channel widening during degradation of alluvial rivers,explains the mechanisms of channel widening, and analyzes the stability of cohesive riverbank. Then a one-dimensional mathematical model is developed to simulate the transport of non-uniform suspended sediments, with a sub-model for the simulation of channel widening, and is used to study the process of channel widening during degradation. The effects of different incident flow and sediment conditions and different riverbank material characteristics on channel widening and bed degradation are compared.Finally, main factors that control the deformation processes are identified.

  9. Box model for channels of human migration

    CERN Document Server

    Vitanov, Nikolay K

    2016-01-01

    We discuss a mathematical model of migration channel based on the truncated Waring distribution. The truncated Waring distribution is obtained for a more general model of motion of substance through a channel containing finite number of boxes. The model is applied then for case of migrants moving through a channel consisting of finite number of countries or cities. The number of migrants in the channel strongly depends on the number of migrants that enter the channel through the country of entrance. It is shown that if the final destination country is very popular then large percentage of migrants may concentrate there.

  10. Association of potassium channel Kv3.4 subunits with pre- and post-synaptic structures in brainstem and spinal cord.

    Science.gov (United States)

    Brooke, R E; Atkinson, L; Batten, T F C; Deuchars, S A; Deuchars, J

    2004-01-01

    Voltage-gated K+ channels (Kv) are divided into eight subfamilies (Kv1-8) and play a major role in determining the excitability of neurones. Members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique pattern of expression, although single neurones can express more than one subtype. Of the Kv3 subunits relatively little is known of the Kv3.4 subunit distribution in the nervous system, particularly in the brainstem and spinal cord of the rat. We performed immunohistochemistry to determine both the cellular and sub-cellular distribution of the Kv3.4 subunit in these areas. Kv3.4 subunit immunoreactivity (Kv3.4-IR) was widespread, with dense, punctate staining in many regions including the intermediolateral cell column (IML) and the dorsal vagal nucleus (DVN), nucleus ambiguus (NA) and nucleus tractus solitarius (NTS). In the ventral horn a presynaptic location was confirmed by co-localization of Kv3.4-IR with the synaptic vesicle protein, SV2 and also with the glutamate vesicle markers vesicular glutamate transporter (VGluT) 1, VGluT2 or the glycine transporter GlyT2, suggesting a role for the channel in both excitatory and inhibitory neurotransmission. Electron microscopy confirmed a presynaptic terminal location of Kv3.4-IR in the VH, IML, DVN, NA and NTS. Interestingly however, patches of Kv3.4-IR were also revealed postsynaptically in dendritic and somatic structures throughout these areas. This staining was striking due to its localization at synaptic junctions at terminals with morphological features consistent with excitatory functions, suggesting an association with the postsynaptic density. Therefore the pre and postsynaptic localization of Kv3.4-IR suggests a role both in the control of transmitter release and in regulating neuronal excitability.

  11. Low-temperature conducting channel switching in hybrid Fe{sub 3}O{sub 4}/SiO{sub 2}/n-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Vikulov, V.A., E-mail: vikulov@iacp.dvo.ru [Institute of Automation and Control Processes, FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Dimitriev, A.A.; Balashev, V.V.; Pisarenko, T.A.; Korobtsov, V.V. [Institute of Automation and Control Processes, FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2016-09-15

    Highlights: • Conducting channel switching between the polycrystalline Fe{sub 3}O{sub 4} film and the n-Si substrate takes place in the Fe{sub 3}O{sub 4}/SiO{sub 2}/n-Si structure at temperature below 125 K. • This effect occurs via the field-assisted tunneling through the composite insulating layer that consists of the highly resistive Fe{sub 3}O{sub 4} and the tunnel SiO{sub 2}. • The switching is attended by a change in the shape of the current-voltage characteristics from the linear at 300 K to the S-type at 80 K. - Abstract: The carrier transport properties of the polycrystalline magnetite (Fe{sub 3}O{sub 4}) films grown on an n-type Si substrate with 5 nm-thick SiO{sub 2} have been investigated between 80 and 300 K in current-in-plane geometry. It was established that at temperature decrease to about 120 K, the resistivity of thin Fe{sub 3}O{sub 4} films increases up to a peak value and then abruptly drops. This process is attended by a change in the shape of the current-voltage characteristics from the linear at 300 K to the S-type at 80 K. The observed peculiarities are explained by conducting channel switching from the Fe{sub 3}O{sub 4} film to the Si substrate via the field-assisted tunneling of carriers through the composite insulating layer consisting of highly resistive Fe{sub 3}O{sub 4} and tunnel SiO{sub 2}.

  12. Experimental evidence of planar channeling in a periodically bent crystal

    CERN Document Server

    Bagli, E; Bellucci, V; Berra, E; Camattari, R; De Salvador, D; Germogli, G; Guidi, V; Lanzoni, L; Lietti, D; Mazzolari, A; Prest, M; Tikhomirov, V V; Vallazza, E

    2014-01-01

    The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $\\gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities.

  13. Host islands within the California Northern Channel Islands create fine-scale genetic structure in two sympatric species of the symbiotic ectomycorrhizal fungus Rhizopogon.

    Science.gov (United States)

    Grubisha, Lisa C; Bergemann, Sarah E; Bruns, Thomas D

    2007-05-01

    We have examined fine-scale genetic structure of the symbiotic ectomycorrhizal fungi Rhizopogon occidentalis and R. vulgaris on two of the California Channel Islands using five and six microsatellite loci, respectively. Both Rhizopogon species are sympatric on Santa Cruz and Santa Rosa Islands and are ectomycorrhizal with bishop pine (Pinus muricata) on both islands or Santa Rosa Island Torrey pine (P. torreyana ssp. insularis) on Santa Rosa. The combination of disjunct pine host distributions and geographic barriers within and among the islands have created highly structured Rhizopogon populations over very short distances (8.5 km on Santa Cruz Island; F(ST) = 0.258, F(ST) = 0.056, R. occidentalis and R. vulgaris, respectively). Both species show similar patterns of genetic differentiation as a result of limited dispersal between host populations as revealed by a significant isolation by distance relationship (r = 0.69, P analyses, and is most likely a function of the small foraging range of the few mammals that disperse Rhizopogon on these islands and the enormous spore bank characteristic of Rhizopogon species.

  14. Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition

    Science.gov (United States)

    Cui, Guodong; Han, Dedong; Dong, Junchen; Cong, Yingying; Zhang, Xiaomi; Li, Huijin; Yu, Wen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-04-01

    By applying a novel active layer comprising ZnO/Al2O3 multilayers, we have successfully fabricated fully transparent high-performance thin-film transistors (TFTs) with a bottom gate structure by atomic layer deposition (ALD) at low temperature. The effects of various ZnO/Al2O3 multilayers were studied to improve the morphological and electrical properties of the devices. We found that the ZnO/Al2O3 multilayers have a significant impact on the performance of the TFTs, and that the TFTs with the ZnO/15-cycle Al2O3/ZnO structure exhibit superior performance with a low threshold voltage (V TH) of 0.9 V, a high saturation mobility (μsat) of 145 cm2 V‑1 s‑1, a steep subthreshold swing (SS) of 162 mV/decade, and a high I on/I off ratio of 3.15 × 108. The enhanced electrical properties were explained by the improved crystalline nature of the channel layer and the passivation effect of the Al2O3 layer.

  15. A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES)

    Science.gov (United States)

    Best, Jim; Simmons, Stephen; Parsons, Daniel; Oberg, Kevin; Czuba, Jonathan; Malzone, Chris

    2010-01-01

    In order to investigate the interactions between turbulence and suspended sediment transport in natural aqueous environments, we ideally require a technique that allows simultaneous measurement of fluid velocity and sediment concentration for the whole flow field. Here, we report on development of a methodology using the water column acoustic backscatter signal from a multibeam echo sounder to simultaneously quantify flow velocities and sediment concentrations. The application of this new technique is illustrated with reference to flow over the leeside of an alluvial sand dune, which allows, for the first time in a field study, quantitative visualization of large-scale, whole flow field, turbulent coherent flow structures associated with the dune leeside that are responsible for suspending bed sediment. This methodology holds great potential for use in a wide range of aqueous geophysical flows.

  16. A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding (MBES)

    Science.gov (United States)

    Best, Jim; Simmons, Stephen; Parsons, Daniel; Oberg, Kevin; Czuba, Jonathan; Malzone, Chris

    2010-03-01

    In order to investigate the interactions between turbulence and suspended sediment transport in natural aqueous environments, we ideally require a technique that allows simultaneous measurement of fluid velocity and sediment concentration for the whole flow field. Here, we report on development of a methodology using the water column acoustic backscatter signal from a multibeam echo sounder to simultaneously quantify flow velocities and sediment concentrations. The application of this new technique is illustrated with reference to flow over the leeside of an alluvial sand dune, which allows, for the first time in a field study, quantitative visualization of large-scale, whole flow field, turbulent coherent flow structures associated with the dune leeside that are responsible for suspending bed sediment. This methodology holds great potential for use in a wide range of aqueous geophysical flows.

  17. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  18. Spectral representation for u- and t-channel exchange processes in a partial-wave decomposition

    CERN Document Server

    Lutz, M F M; Korpa, C L

    2015-01-01

    We study the analytic structure of partial-wave amplitudes derived from u- and t-channel exchange processes. The latter plays a crucial role in dispersion-theory approaches to coupled-channel systems that model final state interactions in QCD. A general spectral representation is established that is valid in the presence of anomalous thresholds, decaying particles or overlapping left-hand and right-hand cut structures as it occurs frequently in hadron physics. The results are exemplified at hand of ten specific processes.

  19. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  20. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    Science.gov (United States)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  1. Synthesis and processing of intelligent cost-effective structures: a final review of the ARPA SPICES program

    Science.gov (United States)

    Jacobs, Jack H.

    1996-05-01

    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) program is comprised of a consortium of industrial, academic and government labs working to develop cost effective material processing and synthesis technologies to enable new products using active vibration suppression and control devices to be brought to market. Since smart structures involve the integration of multiple engineering disciplines, it has been the objective of the consortium to establish cost effective design processes between this multi-organizational team for future incorporating of this new technology into each members respective product lines. Over the twenty-four month program many new improvements in sensors, actuators, modeling, manufacturing/integration and controls have been realized. The paper outlines the four phases of development in the program and the impact some of the key technologies will have on the smart structure development process in the future.

  2. Final report WP 4.2: Support Structure Concepts for Deep Water Sites: Deliverable D4.2.8 (WP4: offshore foundations and support structures)

    NARCIS (Netherlands)

    De Vries, W.E.; Vemula, N.K.; Passon, P.; Fischer, T.; Kaufer, D.; Matha, D.; Schmidt, B.; Vorpahl, F.

    2011-01-01

    With the number of offshore wind farms rapidly increasing, in a wide variety of site conditions and using different turbine sizes, the need for alternative support structures other than the conventional monopile structure is apparent and several projects have been realised using other support struct

  3. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  4. Structural Basis for Ether-a-go-go-Related Gene K+ Channel Subtype-Dependent Activation by Niflumic Acid[S

    OpenAIRE

    Fernandez, David; Sargent, John; Frank B Sachse; Sanguinetti, Michael C.

    2008-01-01

    Niflumic acid [2-((3-(trifluoromethyl)phenyl)amino)-3-pyridin-ecarboxylic acid, NFA] is a nonsteroidal anti-inflammatory drug that also blocks or modulates the gating of a wide spectrum of ion channels. Here we investigated the mechanism of channel activation by NFA on ether-a-go-go-related gene (ERG) K+ channel subtypes expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. NFA acted from the extracellular side of the membrane to differentially enhance ERG channel ...

  5. Objective structured clinical examinations (OSCEs) as a summative evaluation tool in a ruminant health management rotation for final-year DVM students.

    Science.gov (United States)

    Bateman, Ken; Menzies, Paula; Sandals, David; Duffield, Todd; LeBlanc, Stephen; Leslie, Ken; Lissemore, Kerry; Swackhammer, Rob

    2008-01-01

    The objective structured clinical examination (OSCE) has been used for 10 years at the Ontario Veterinary College, University of Guelph, to evaluate the clinical competencies in ruminant health management of final-year DVM students. The performance of these students in the summative assessment, which includes the use of OSCEs, was compared to their formative assessment, given at the end of the rotation. Specifically, classification of students' performance as poor (bottom 10% of the grade range versus "serious deficits") or superior ("A grade" versus "exceeds expectations") was compared. Agreement between the two types of assessment is slight, regardless of whether assessing diagnostic process skills or technical skills--and regardless of whether all students were assessed or only those enrolled in food-animal or mixed streams in their final year--which suggests that the two assess different types of skills. OSCEs are a useful and viable tool for objectively assessing clinical skills in ruminant health management.

  6. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 1: Europe, July 1980. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, F.A.

    1980-07-01

    The development and implementation of aircraft noise control regulations in various European states are described. The countries include the United Kingdom, France, Switzerland, Federal Republic of Germany, Sweden, Denmark, and the Netherlands. Topics discussed include noise monitoring, airport curfews, land use planning, and the government structure for noise regulation.

  7. Subsurface stratigraphy and structure of A/M area at the Savannah River Site, Aiken County, South Carolina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fallaw, W.C.; Sims, W.R.; Haselow, J.S.

    1991-08-01

    This report is a study of the stratigraphy and structure of the A/M Area Hazardous Waste Management Facility Post-Closure Care Permit process on the Savannah River Site. The data from the lithologic and geophysical logs of 93 wells is the basis of this analysis.

  8. Development of Optimal CZTS Device Structure: Cooperative Research and Development Final Report, CRADA Number CRD-12-476

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Maikel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Suntricity Corporation and NREL will develop an optimal CZTS device structure. In this process absorber materials provided by Suntricity Corporation will be used for testing. For this purpose Suntricity Corporation will provide dried film precursors or ink precursors. NREL will process these into PV material and complete cells with buffer, window and contacts.

  9. MC carbide structures in M(lc2)ar-M247. M.S. Thesis - Final Report

    Science.gov (United States)

    Wawro, S. W.

    1982-01-01

    The morphologies and distribution of the MC carbides in Mar-M247 ingot stock and castings were investigated using metallographic, X-ray diffraction and energy-dispersive X-ray analysis techniques. The MC carbides were found to form script structures during solidification. The script structures were composed of three distinct parts. The central cores and elongated arms of the MC carbide script structures had compositions (Ti, Cr, Hf, Ta, W)C and lattice parameters of 4.39 A. The elongated script arms terminated in enlarged, angular "heads". The heads had compositions (Ti, Hf, Ta, W)C and lattice parameters of approximately 4.50 A. The heads had a higher Hf content than the cores and arms. The size of the script structures, as well as the relative amount of head-type to core and arm-type MC carbide, was found to be determined by solidification conditions. No carryover of the MC carbides from the ingot stock to the remelted and cast material was observed.

  10. BK channel modulators: a comprehensive overview

    DEFF Research Database (Denmark)

    Nardi, Antonio; Olesen, Søren-Peter

    2008-01-01

    channels as a potentially attractive target, the design and synthesis of potent and selective BK modulators continue based on novel chemical ideas. A comprehensive overview of BK channel modulators is therefore timely and important to the current medicinal chemist for review, summary, and classification...... and blockers 4) Marketed and/or investigational drugs with BK-modulating side properties and structural analogues 5) Naturally-occurring BK channel openers and structural analogues 6) Synthetic BK channel openers. This review is intended to provide readers with current opinion on the BK channel as a drug...

  11. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  12. EPICS: Channel Access security design

    Energy Technology Data Exchange (ETDEWEB)

    Kraimer, M.; Hill, J.

    1994-05-01

    This document presents the design for implementing the requirements specified in: EPICS -- Channel Access Security -- functional requirements, Ned. D. Arnold, 03/09/92. Use of the access security system is described along with a summary of the functional requirements. The programmer`s interface is given. Security protocol is described and finally aids for reading the access security code are provided.

  13. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  14. FMCG companies specific distribution channels

    Directory of Open Access Journals (Sweden)

    Ioana Barin

    2009-12-01

    Full Text Available Distribution includes all activities undertaken by the producer, alone or in cooperation, since the end of the final finished products or services until they are in possession of consumers. The distribution consists of the following major components: distribution channels or marketing channels, which together form a distribution network; logistics o rphysical distribution. In order to effective achieve, distribution of goods requires an amount of activities and operational processes related to transit of goods from producer to consumer, the best conditions, using existing distribution channels and logistics system. One of the essential functions of a distribution is performing acts of sale, through which, with the actual movement of goods, their change of ownership takes place, that the successive transfer of ownership from producer to consumer. This is an itinerary in the economic cycle of goods, called the distribution channel.

  15. Weathering effects on the structure and reactivity of US coals: Final report, July 15, 1984-July 14, 1987. [Many data

    Energy Technology Data Exchange (ETDEWEB)

    Meuzelaar, H.L.C.; Hill, G.R.; Yun, Yongseung; Jakab, E.; Windig, W.; Urban, D.; Yon, Kyung Yol; Oestreich, J.; East, J.

    1987-01-01

    This report covers the work performed from July 1984 to July 1987 under the project entitled ''Weathering Effects on Structure and Reactivity of US Coals'' (grant number FG22-84PC70798). The main objectives of the study were to investigate the structural changes in coal during the weathering process as well as to develop a simple, reliable weathering index, which can monitor indirectly the weathering-induced changes in physical and chemical properties. Although there have been numerous publications on structure and reactivity of coal, most data reported in the literature thus far have been obtained on coal samples of uncertain weathering status and therefore need to be interpreted with great caution. Weathering has a profound effect on many important coal properties such as heating value, caking characteristics, acidity, flotability and reactivity in liquefaction, combustion and gasification processes. The objective of developing a weathering index is to predict these coal property changes due to weathering without resorting to real-time measurements or pilot plant runs. This report is comprised of four main chapters: I. Structural Changes due to Weathering; II. Material Balance in Weathering Process; III. Development of a Reliable Weathering Index; and IV. Proposed Weathering Mechanisms. A battery of sophisticated analytical tools and techniques was employed during this study. Pyrolysis mass spectrometry in time-integrated, as well as in time-resolved modes with computer-aided data analysis techniques (such as factor and discriminant analysis), gas chromatography, thermogravimetry/mass spectrometry and solvent extraction were used for determining the role of oxygen during the weathering process. Pyrolysis mass spectrometry, Free Swelling Index and a novel slurry pH technique were employed as weathering indicators. 170 refs.

  16. The change of sowing structure as a strategy for improving competitiveness of family farms directed at the final production of fattened beef cattle

    Directory of Open Access Journals (Sweden)

    Todorović Saša Z.

    2010-01-01

    Full Text Available The aim of this paper is to examine the impact of sowing structure on family farm competiveness using the model of family farm directed at the final production of fattened beef cattle in the conditions of unchanged estate size. Applying a partial budget analysis, it was examined whether the decision on buying alfalfa hay or mercantile maize on the market and changing the sowing structure was economically justified and under what conditions using additional procedure of sensitive analysis. Applying this approach, it was investigated to what extent that decision contributed to improving the family farm profitability. The results of the conducted research show that the decision on buying mercantile maize mainly contributes to improving competitiveness of family farms directed at the final production of fattened beef cattle compared with the decision on buying alfalfa hay. It is the consequence of the fact that buying mercantile maize on the market will enable sowing structure changes, that is, buying mercantile maize will make the area free, which according to some conservative estimations, can be used for the production of sufficient amounts of alfalfa and silage maize for fattening of additional 19 head, whereas buying alfalfa hay will make the area free, which can be used for production of sufficient amounts of mercantile and silage maize for fattening of additional 6 head. In addition, it is shown that more rational way of organizing family farms directed at the final production of fattened beef cattle can additionally use available land resources and in that way increase profitability and improve competitiveness.

  17. Optimization of bandwidth of communication channels of corporate networks

    Directory of Open Access Journals (Sweden)

    G. I. Bondarenko

    2014-09-01

    Full Text Available Introduction. This article contains overview of the organization of communication between applications on the corporate network. It is stated that the main digital channel (channel B - 64 kbit/s and the primary digital channel (channel E1 the digital stream - 2048 kbit/s are used as the main channels in corporate networks. Problem areas of the functioning of the corporate network are identified. There are the rent of communication channels, which is growing rapidly with increasing the quality and speed of data transmission, and optimal use of bandwidth of communication channels. Setting of task. Optimal use of transmission channels bandwidth and minimizing the rent cost of channels is possible in two ways - the use of compression techniques of voice and video information and the application of variable structure of channels by using various-speed transmission channels. Differential pulse code modulation, adaptive differential pulse code modulation are the modern methods of speech signals processing. Organization of various-speed channels is performed in the structure of the BCC (for speech signals or PCR (for video. Suggestions for optimizing the structure of the channel signals. Proposed method of various-speed channels formation by using the channel intervals appropriate BCC (octets in the structure of signals E1 as envelopes containing various-speed channels. Channels can be selected for synchronization procedure CRC to simplify recognition of channels in the structure of E1. In this case, the minimal speed in the channel is 4 kbit/s. Conclusions. The proposed structure of envelopes is based on octet channel intervals of standard group signal of the primary group plesiochronous hierarchy E1 when transferring various-speed digital signals maximum allows to use the bandwidth at a fixed structure of channel interval, it makes possible to agree on the structure of the various-speed signals with the existing in communication networks.

  18. Achievement of low parasitic resistance in Ge n-channel metal-oxide-semiconductor field-effect transistor using an embedded TiN-source/drain structure

    Science.gov (United States)

    Nagatomi, Y.; Tateyama, T.; Tanaka, S.; Yamamoto, K.; Wang, D.; Nakashima, H.

    2017-03-01

    We investigated the source/drain (S/D) parasitic resistance (R P) of a Ge n-channel metal-oxide-semiconductor field-effect transistor (n-MOSFET) with TiN-S/D. The R P was as high as ∼1400 Ω, which is attributed to a very thin amorphous interlayer (a-IL) at a TiN/Ge interface. To solve this problem, n-MOSFETs with an embedded S/D structure were fabricated, of which the S/D was formed by the etching of a Ge layer using 0.03%-H2O2 solution followed by TiN sputter deposition. The electrical performances were investigated for devices with etching depths in the range of 2–22 nm. The devices with etching depths of 2–5 nm did not work. The devices with etching depths of 12–15 nm showed a quite normal transistor operation, and the R P was as low as ∼130 Ω, which is comparable to that of a p-MOSFET with PtGe-S/D. However, R Ps of the devices with etching depths of ∼22 nm was considerably high. The reason for these results is discussed on the basis of an a-IL formation at the sidewall of the engraved S/D region.

  19. Design, synthesis, insecticidal activity, and structure-activity relationship (SAR): studies of novel triazone derivatives containing a urea bridge group based on transient receptor potential (TRP) channels.

    Science.gov (United States)

    Yang, Yan; Liu, Yuxiu; Song, Hongjian; Li, Yongqiang; Wang, Qingmin

    2016-11-01

    Numerous compounds containing urea bridge and biurea moieties are used in a variety of fields, especially as drugs and pesticides. To search for novel, environmentally benign and ecologically safe pesticides with unique modes of action, four series of novel triazone analogues containing urea, thiourea, biurea, and thiobiurea bridge, respectively, were designed and synthesized, according to various calcium ion channel inhibitors which act on transient receptor potential protein. Their structures were characterized by [Formula: see text] NMR, [Formula: see text] NMR, and HRMS. The insecticidal activities of the new compounds were obtained. The bioassay results indicated that compounds containing a thiourea bridge and a thiobiurea bridge exhibited excellent insecticidal activities against bean aphid. Specifically, compounds [Formula: see text], [Formula: see text], and [Formula: see text] exhibited 85, 90, and 95 % activities, respectively, at 10 mg/kg. Compounds [Formula: see text] (30 %), [Formula: see text] (35 %), [Formula: see text] (30 %), and [Formula: see text] (40 %) exhibited the approximate aphicidal activity of pymetrozine (30 %) at 5 mg/kg. In addition, some target compounds exhibited insecticidal activities against lepidopteran pests. From a molecular design standpoint, the information obtained in this study could help in the further design of new derivatives with improved insecticidal activities.

  20. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  1. Fundamental channeling questions at ultra relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2006-08-01

    TeV-range bent crystal channeling has interesting advantages for several applications at high energy accelerators. Observations of enhanced deflection over the whole arc of a bent crystal at RHIC and recently at the Tevatron may be due to a process called ''volume reflection''. More investigations of volume reflection and of the complimentary process, volume capture, are needed. So-called quasimosaic bending processes also deserve additional study. Negative particle channeling may be relevant to channeling collimation for electron machines. Electron and positron channeling and channeling radiation are interwoven so that the impact of channeling radiation on applications needs to be better understood. Beams in the 0.1 to 1 GeV range may be useful for some of these investigations. Finally there has been little or no study of positive and negative muon channeling. The current understanding of these topics and the desirability of further work is reviewed.

  2. Band structure and decay channels of thorium-229 low-lying isomeric state for ensemble of thorium atoms adsorbed on calcium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, Petr V.; Vasilyev, Oleg S.; Krasavin, Andrey V.; Troyan, Victor I. [National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Kashirskoye shosse 31, 115409 Moscow (Russian Federation); Lebedinskii, Yury Yu. [National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Kashirskoye shosse 31, 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, 141700 Dolgoprudny, Moscow region (Russian Federation); Tkalya, Eugene V. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, 119991 Moscow (Russian Federation); Nuclear Safety Institute of Russian Academy of Science, Bol' shaya Tulskaya 52, 115191 Moscow (Russian Federation)

    2015-12-15

    The results are presented on the study of the electronic structure of thorium atoms adsorbed by the liquid atomic layer deposition from aqueous solution of thorium nitrate on the surface of CaF{sub 2}. The chemical state of the atoms and the change of the band structure in the surface layers of Th/CaF{sub 2} system on CaF{sub 2} substrate were investigated by XPS and REELS techniques. It was found that REELS spectra for Th/CaF{sub 2} system include peaks in the region of low energy losses (3-7 eV) which are missing in the similar spectra for pure CaF{sub 2}. It is concluded that the presence of the observed features in the REELS spectra is associated with the chemical state of thorium atoms and is caused by the presence of uncompensated chemical bonds at the Th/CaF{sub 2} interface, and, therefore, by the presence of unbound 6d- and 7s-electrons of thorium atoms. Assuming the equivalence of the electronic configuration of thorium-229 and thorium-232 atoms, an estimate was made on the time decay of the excited state of thorium-229 nuclei through the channel of the electron conversion. It was found that the relaxation time is about 40 μs for 6d-electrons, and about 1 μs for 7s-electrons. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Transport jet aircraft noise abatement in foreign countries: Growth, structure, impact. Volume 2: Pacific Basin, August 1980. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, F.A.

    1980-08-01

    Noise control measures at the international airports of Hawaii, New Zealand, Australia, Hong Kong, Japan, and Singapore were studied. Factors in noise control, such as government structure are examined. The increasing power of environmental agencies vis-a-vis aviation departments is noted. The following methods of dealing with aircraft noise are examined by type of control: noise at the source control noise emmission controls, zoning, building codes, subsidies for relocation, insulation, loss in property values, and for TV, radio and telephone interference and noise-related landing charges.

  4. Final report for LDRD project {open_quotes}A new approach to protein function and structure prediction{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A.

    1997-03-01

    This report describes the research performed under the laboratory-Directed Research and Development (LDRD) grant {open_quotes}A new approach to protein function and structure prediction{close_quotes}, funded FY94-6. We describe the goals of the research, motivate and list our improvements to the state of the art in multiple sequence alignment and phylogeny (evolutionary tree) construction, but leave technical details to the six publications resulting from this work. At least three algorithms for phylogeny construction or tree consensus have been implemented and used by researchers outside of Sandia.

  5. Performance Analysis of the 3GPP-LTE Physical Control Channels

    Directory of Open Access Journals (Sweden)

    Jalloul LouayMA

    2010-01-01

    Full Text Available Maximum likelihood-based (ML receiver structures are derived for the decoding of the downlink control channels in the new long-term evolution (LTE standard based on multiple-input and multiple-output (MIMO antennas and orthogonal frequency division multiplexing (OFDM. The performance of the proposed receiver structures for the physical control format indicator channel (PCFICH and the physical hybrid-ARQ indicator channel (PHICH is analyzed for various fading-channel models and MIMO schemes including space frequency block codes (SFBC. Analytical expressions for the average probability of error are derived for each of these physical channels. The impact of channel-estimation error on the orthogonality of the spreading codes applied to users in a PHICH group is investigated, and an expression for the signal-to-self interference plus noise ratio is derived for Single Input Multiple Output (SIMO systems. Finally, a matched filter bound on the probability of error for the PHICH in a multipath fading channel is derived. The analytical results are validated against computer simulations.

  6. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  7. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures

    Directory of Open Access Journals (Sweden)

    T. Faug

    2002-01-01

    Full Text Available An experimental investigation with dry granular flows passing over an obstacle down a rough inclined channel has been performed. The aim is to improve our understanding of the interaction between dense snow avalanches and defence structures. Specific attention was directed to the study of the zone of influence upstream from the obstacle, linked to the formation of a dead zone. The dead zone length L was systematically measured as a function of the obstacle height H and the channel inclination θ, for several discharges. In a whole range of channel inclinations, all the data are shown to collapse into a single curve when properly scaled. The scaling is based on the introduction of a theoretical deposit length (depending on H, θ and the internal friction angle of the material, φ and a Froude number of the flow depending on the obstacle height.

  8. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  9. Structure-property characterization of rheocast and VADER processed IN-100 superalloy. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Cheng, J. J. A.; Apelian, D.

    1985-01-01

    Two recent solidification processes have been applied in the production of IN-100 nickel-base superalloy: rheocasting and vacuum arc double electrode remelting (VADER). A detailed microstructural examination has been made of the products of these two processes; associated tensile strength and fatigue crack propagation (FCP) rate at an elevated temperature were evaluated. In rheocasting, processing variables that have been evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp., New Hartford, NY. As-cast ingots were subjected to hot isostatic pressing (HIP) and heat treatment. Both rheocasting and VADER processed materials yield fine and equiaxed spherical structures, with reduced macrosegregation in comparison to ingot materials. The rheocast structures are discussed on the basis of the Vogel-Doherty-Cantor model of dendrite arm fragmentation. The rheocast ingots evaluated were superior in yield strength to both VADER and commercially cast IN-100 alloy. Rheocast and VADER ingots may have higher crack propagation resistance than P/M processed material.

  10. Comparative analysis of structural concrete quality assurance practices on three fossil fuel power plant construction projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to criteria similar to those which apply on nuclear power plant projects. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  11. Ion channels in neuronal survival

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The study of ion channels represents one of the most active fields in neuroscience research in China.In the last 10 years,active research in various Chinese neuroscience institutions has sought to understand the mechanisms responsible for sensory processing,neural development and neurogenesis,neural plasticity,as well as pathogenesis.In addition,extensive studies have been directed to measure ion channel activity,structure-function relationships,as well as many other biophysical and biochemical properties.This review focuses on the progress achieved in the investigation of ion channels in neuronal survival during the past 10 years in China.

  12. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  13. Functional architecture of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2014-02-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.

  14. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft. Final report, 1 December 1991-31 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Starke, E.A. Jr.

    1996-05-01

    This is the final report of the study `Aluminum-Based Materials for high Speed Aircraft` which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX with Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  15. Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sunggyun; Han, Solyi; Kim, Wookbae [Korea Polytechnic Univ., Siheung (Korea, Republic of); Sung, Inha [Hannam Univ., Daejeon (Korea, Republic of)

    2013-12-15

    Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

  16. N-type calcium channel blockers: novel therapeutics for the treatment of pain.

    Science.gov (United States)

    Schroeder, C I; Doering, C J; Zamponi, G W; Lewis, R J

    2006-09-01

    Highly selective Ca(v)2.2 voltage-gated calcium channel (VGCC) inhibitors have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Cone snail venoms provided the first drug in class with FDA approval granted in 2005 to Prialt (omega-conotoxin MVIIA, Elan) for the treatment of neuropathic pain. Since this pioneering work, major efforts underway to develop alternative small molecule inhibitors of Ca(v)2.2 calcium channel have met with varied success. This review focuses on the properties of the Ca(v)2.2 calcium channel in different pain states, the action of omega-conotoxins GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved Ca(v)2.2 calcium channel therapeutics, and finally the development of small molecules for the treatment of chronic pain.

  17. Umbrella structure and channel-wall stoping in the Cambrian St. Roch Formation, Quebec Appalachians: significance for particle support mechanisms and turbulence development in hyper-concentrated sediment gravity flows

    Science.gov (United States)

    Hesse, Reinhard; Fong, Christopher

    2014-03-01

    Umbrella structure is a newly recognized sedimentary structure associated with large platy clasts in resedimented boulder-bearing pebble conglomerate with a sandy matrix. It consists of a sand rim that lacks pebbles on parts or the entire underside of platy boulders, whereas on the upper side, pebbles are in direct contact with the boulders. The depositing processes were high- to hyper-concentrated sediment gravity flows in a submarine channel or canyon on the Cambrian continental slope of North America bordering the Iapetus Ocean. The structure occurs predominantly where clasts dip moderately in the down-current direction. Based on the association of the structure with slightly forward dipping slabs, it is proposed that these down-current dipping slabs may have been in the process of counter-clockwise rotation that was aborted and may have generated a pressure shadow on the underside enabling the inrush of fluid and the infiltration of sand into the anomalous low-pressure zone. The structure has implications for particle support mechanisms in high- to hyper-concentrated sedimentary gravity flows, in that it redirects attention to the much debated mechanism of dispersive pressure and alternatives. It provides an observable sediment structure that supports dispersive pressure which so far depended on experimental evidence and theoretical arguments alone. Vrolijk and Southard's (1997) concept of a `laminar sheared layer' is here for the first time interpreted as having an upward-moving `free-surface' layer effect during deposition from hyper-concentrated flows. Channel-wall stoping involves unlithified turbiditic spillover sand in the levee sediment of the canyon wall that was washed out by the upper diluted parts of the high-concentration flows coming down the channel and leaving a niche in the wall that was filled with coarser channel-axis facies by the same flow (or later flows) when its aggradation reached the level of the niche. The contact between turbidite and

  18. Influence of changing particle structure on the rate of gas-solid gasification reactions. Final report, July 1981-March 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-04

    The objetive of this work is to determine the changes in the particle structure of coal as it undergoes the carbon/carbon dioxide reaction (C + CO/sub 2/ ..-->.. 2CO). Char was produced by heating the coal at a rate of 25/sup 0/C/min to the reaction temperatures of 800/sup 0/C, 900/sup 0/C, 1000/sup 0/C and 1100/sup 0/C. The changes in surface area and effective diffusivity as a result of devolitization were determined. Changes in effective diffusivity and surface area as a function of conversion have been measured for reactions conducted at 800, 900, 1000 and 1100/sup 0/C for Wyodak coal char. The surface areas exhibit a maximum as a function of conversion in all cases. For the reaction at 1000/sup 0/C the maximum in surface area is greater than the maxima determined at all other reaction temperatures. Thermogravimetric rate data were obtained for five coal chars; Wyodak, Wilcox, Cimmeron, Illinois number 6 and Pittsburgh number 6 over the temperature range 800-1100/sup 0/C. All coal chars exhibit a maximum in reaction rate. Five different models for gas-solid reactions were evaluated. The Bhatia/Perlmutter model seems to best represent the data. 129 references, 67 figures, 37 tables.

  19. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  20. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  1. 心滩砂体内部构型及其剩余油分布特征研究%Internal Architecture Structure and Remained Oil of the Channel Bar

    Institute of Scientific and Technical Information of China (English)

    卢亚涛

    2011-01-01

    喇嘛甸油田PI23沉积单元为辫状河沉积,主要发育辫状河道、心滩、河漫滩三种沉积微相,其中心滩砂体内部构型相对复杂,控制的剩余油较多.以4-4#站高浓度试验区储层为例,运用Mail提出的储层建筑结构界面分析方法,通过小井距井之间的连井剖面和测井曲线对比定义了6级界面.在沉积模式指导下得出了平面相组合模式,印平面以河道充填和心滩沉积为主.在明确心滩砂体沉积环境及形成机理基础上得出了沉积特征及识别方法,并对心滩内部构型进行了解剖,实现了垂积体追踪与预测.利用试验区内新钻井的测井解释结果,一方面完善了心滩砂体内部构型,另一方面新井解释的含油饱和度,水淹特征等信息直接揭示了高浓度聚合物对辫状河心滩的动用规律,位于心滩内部的新井解释结果表明,心滩中部水淹以高、中为主,而心滩两翼岩性夹层多、渗透性差,低、未水淹比例大,剩余油多.%The type of sedimentation unit P123 in Lamadian Oil field is the braided fluvial river sedimentary environment which concludes three sedimentary microfacies: braided channel, channel bar,flood plain. The inner structure of the channel bar which contains more remaining oil is far more complicated than others. Taking the stratum of 4-4 station in the pilot site of high concentration for example, this paper divided the stratum of Lamadian oil field into six stratifications based on the principle of architecture-element analysis which is put forward by Mail and comparison of the correlation of cross sections and well logs. Based on the model of sedimentary, we have the composite pattern of planar phasing, which is the channel fill and channel bar mainly. Based on the cognition of the sedimentary environment of channel bar and the forming mechanism,this paper also discusses the characteristics of sedimentary and identification method. And it realizes the tracking and

  2. Ultra-large number of transmission channels in space division multiplexing using few-mode multi-core fiber with optimized air-hole-assisted double-cladding structure.

    Science.gov (United States)

    Watanabe, Tatsuhiko; Kokubun, Yasuo

    2014-04-07

    The ultimate number of transmission channels in a fiber for the space division multiplexing (SDM) is shown by designing an air-hole-assisted double-cladding few-mode multi-core fiber. The propagation characteristics such as the dispersion and the mode field diameter are almost equalized for all cores owing to the double cladding structure, and the crosstalk between adjacent cores is extremely suppressed by the heterogeneous arrangement of cores and the air holes surrounding the cores. Optimizing the structure of the air-hole-assisted double-cladding, ultra dense core arrangements, e.g. 129 cores in a core accommodated area with 200 μm diameter, can be realized with low crosstalk of less than -34.3 dB at 100km transmission. In this design, each core supports 3 modes i.e. LP(01), LP(11a), and LP(11b) as the transmission channels, so that the number of transmission channels can be 3-hold greater than the number of cores. Therefore, 387 transmission channels can be realized.

  3. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  4. Quantum Markov Channels for Qubits

    CERN Document Server

    Daffer, S; McIver, J K; Daffer, Sonja; Wodkiewicz, Krzysztof; Iver, John K. Mc

    2003-01-01

    We examine stochastic maps in the context of quantum optics. Making use of the master equation, the damping basis, and the Bloch picture we calculate a non-unital, completely positive, trace-preserving map with unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study the capacity of the squeezed vacuum channel to transmit quantum information and to distribute EPR states.

  5. In-depth study of the interaction, sensitivity and gating modulation by PUFAs on K+ channels; interaction and new targets

    Directory of Open Access Journals (Sweden)

    Cristina Moreno

    2016-11-01

    Full Text Available Voltage gated potassium channels (Kv are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs enhance or decrease the activity of several cardiac Kv channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the Kv channel modulation by PUFAs: i the exact residues involved in PUFAs-Kv channels interaction; ii the structural PUFAs determinants important for their effects on Kv channels; iii the mechanism of the gating modulation of KV channels and, finally, iv the PUFAs modulation of a few new targets present in smooth muscle cells, KCa1.1, K2P and KATP channels, involved in vascular relaxation.

  6. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets

    Science.gov (United States)

    Moreno, Cristina; de la Cruz, Alicia; Valenzuela, Carmen

    2016-01-01

    Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation. PMID:27933000

  7. Two-dimensional appraisal of geomorphic control on braidplain and in-channel structural connectivity of a braided-wandering river from aerial photos (case study the Belá River, Slovakia)

    Science.gov (United States)

    Kidová, Anna; Lehotský, Milan

    2014-05-01

    Throughout the Europe, reductions in the extent of braided river reaches have occurred since the end of the 19th century and throughout the 20th century. This is a particular study priority of present braided rivers, because they are unique natural entities and rich ecosystems. Understanding the temporal and spatial connectivity that has characterised braidplain and channel behaviour will give crucial information about the evolution and management decisions of this type of rivers. The aim of the contribution is to understand how the spatial connectivity has developed on the Belá River (23.6 km, average annual discharge 6.8 m3 s-1 at mouth, Strahler ord. 5, as a laterally unconfined, gravel-bed river with braided-wandering pattern situated in the North of Slovakia); evaluate how time-spatial linkages of channel and floodplain landforms have been affected by recent large flood events and local factors. Four geomorphological coupling levels of the structural connectivity for seven time periods, using aerial photography (1949-2009) have been investigated: i. valley slope/low terraces-braidplain; ii. channel-channel level; iii. channel-bank level; iiii. bar-channel bed level. Each time horizon has been selected to be representative for estimation linkages changes after large flood event. The development of geomorphological structural connectivity is examined by documenting sequential changes in braidplain width, channel planform (braided and wandering indices), bar and bank attached erosion/accretion areas as parameters reflecting four types of connectivity. The changes in the structural connectivity is expressed in the three-point ordinal scale (1. increasing; 2. unchanging; 3. decreasing) as well as in the map expression of river reaches zonation. Generally, the width of braidplain with decreasing trend refers to long term decoupling valley slope/terraces-braidplain linkages. This trend is prove also by decreasing of the braidplain area. The values of braided indices

  8. Effect of variable winds on current structure and Reynolds stresses in a tidal flow: analysis of experimental data in the eastern English Channel

    Directory of Open Access Journals (Sweden)

    K. A. Korotenko

    2012-11-01

    Full Text Available Wind and wave effects on tidal current structure and turbulence throughout the water column are examined using an upward-looking acoustic Doppler current profiler (ADCP. The instrument has been deployed on the seafloor of 18-m mean depth, off the north-eastern French coast in the eastern English Channel, over 12 tidal cycles, and covered the period of the transition from mean spring to neap tide, and forcing regimes varied from calm to moderate storm conditions. During storms, we observed gusty winds with magnitudes reaching 15 m s−1 and wave heights reaching up to 1.3 m. Analysis of velocity spectra revealed a noticeable contribution of wind-induced waves to spectral structure of velocity fluctuations within the subsurface layer. Near the surface, stormy winds and waves produced a significant intensification of velocity fluctuations, particularly when the sustained wind blew against the ebb tide flow. As during wavy periods, the variance-derived Reynolds stress estimates might include a wave-induced contamination, we applied the Variance Fit method to obtain unbiased stresses and other turbulent quantities. Over calm periods, the turbulent quantities usually decreased with height above the seabed. The stresses were found to vary regularly with the predominantly semidiurnal tidal flow. The along-shore stress being generally greater during the flood flow (~2.7 Pa than during the ebb flow (~−0.6 Pa. The turbulent kinetic energy production rate, P, and eddy viscosity, Az, followed a nearly regular cycle with close to a quarter-diurnal period. As for the stresses, near the seabed, we found the maximum values of estimated quantities of P and Az to be 0.1 Wm−3 and 0.5 m2 s−1, respectively, during the flood flow. Over the storm periods, we found the highest unbiased stress values (~−2.6 Pa during ebb when tidal currents were opposite to the

  9. Effect of variable winds on current structure and Reynolds stresses in a tidal flow: analysis of experimental data in the Eastern English Channel

    Directory of Open Access Journals (Sweden)

    K. A. Korotenko

    2012-06-01

    Full Text Available Wind and wave effects on tidal current structure and turbulence throughout the water column are examined using an upward-looking acoustic Doppler current profiler (ADCP. The instrument has been deployed on the seafloor of 20-m depth, off the North-Eastern French coast in the Eastern English Channel over 12 tidal cycles and covered the period of the transition from mean spring to neap tide and forcing regimes varied from calm to moderate storm conditions. During storms, we observed gusty winds with magnitude reached 15 m s−1 and wave height reached up to 1.3 m. Analysis of velocity spectra revealed a noticeable contribution of wind-induced waves to spectral structure of velocity fluctuations within the upper 10-m layer. Near the surface, stormy winds and waves produced a significant intensification of velocity fluctuations, particularly when the sustained wind blew against the ebb tide flow. As during wavy periods the variance-derived Reynolds stress estimates might include a wave-induced contamination, we applied the Variance Fit method to obtain unbiased stresses and other turbulent quantities. Over calm periods, the turbulent quantities usually decreased with height above the seabed. The stresses were found to vary regularly with the predominantly semidiurnal tidal flow, with the along-shore stress being generally greater during the flood flow (~2.7 Pa than during the ebb flow (~−0.6 Pa. The turbulent kinetic energy production rate, P, and eddy viscosity, Az}, followed a nearly regular cycle with close to a quarter-diurnal period. As for the stresses, near the seabed, we found the maximum values of estimated quantities of P and Az to be 0.1 W m−3 and 0.5 m2 s−1, respectively, during the flood flow. Over the storm periods, we found the highest stress values (~−2 Pa during ebb when tidal currents were opposite to the southwesterly winds while

  10. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  11. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  12. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes

    Science.gov (United States)

    Sukharev, Sergei

    2002-01-01

    The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic downshift. It has been identified in Escherichia coli as a product of the orphan yggB gene, now called mscS (Levina et al., 1999, EMBO J. 18:1730). Here I show that that the isolated 31-kDa MscS protein is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. MscS-6His complexes purified in the presence of octylglucoside and lipids migrate in a high-resolution gel-filtration column as particles of approximately 200 kDa. Consistent with that, the protein cross-linking patterns predict a hexamer. The channel reconstituted in soybean asolectin liposomes was activated by pressures of 20-60 mm Hg and displayed the same asymmetric I-V curve and slight anionic preference as in situ. At the same time, the single-channel conductance is proportional to the buffer conductivity in a wide range of salt concentrations. The rate of channel activation in response to increasing pressure gradient across the patch was slower than the rate of closure in response to decreasing steps of pressure gradient. Therefore, the open probability curves were recorded with descending series of pressures. Determination of the curvature of patches by video imaging permitted measurements of the channel activity as a function of membrane tension (gamma). Po(gamma) curves had the midpoint at 5.5 +/- 0.1 dyne/cm and gave estimates for the energy of opening DeltaG = 11.4 +/- 0.5 kT, and the transition-related area change DeltaA = 8.4 +/- 0.4 nm(2) when fitted with a two-state Boltzmann model. The correspondence between channel properties in the native and reconstituted systems is discussed.

  13. Robust Lattice Alignment for K-user MIMO Interference Channels with Imperfect Channel Knowledge

    CERN Document Server

    Huang, Huang; Du, Yinggang; Liu, Sheng

    2011-01-01

    In this paper, we consider a robust lattice alignment design for K-user quasi-static MIMO interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite SNR or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode th...

  14. Observation of a Structure in $pp \\to pp\\gamma\\gamma$ near the $\\pi\\pi$ Threshold and its Possible Interpretation by $\\gamma\\gamma$ Radiation from Chiral Loops in the Mesonic $\\sigma$ Channel

    CERN Document Server

    Bashkanov, M; Calén, H; Cappellaro, F; Clement, H; Demiroers, L; Doroshkevich, E; Ekström, C; Fransson, K; Greiff, J; Gustafsson, L; Höistad, Bo; Ivanov, G; Jacewicz, M; Jiganov, E; Johansson, T; Kaskulov, M M; Keleta, S; Koch, I; Kullander, Sven; Kupsc, A; Kuznetsov, A; Marciniewski, P; Meier, R; Morosov, B; Oelert, W; Pauly, C; Petukhov, Yu P; Povtorejko, A; Ruber, Roger J M Y; Scobel, W; Shwartz, B; Skorodko, T Yu; Sopov, V; Stepaniak, J; Chernyshov, V; Thörngren-Engblom, P; Tikhomirov, V; Turowiecki, A; Wagner, G J; Wiedner, U; Wolke, M; Yamamoto, A; Zabierowski, J; Zlomanczuk, Yu

    2004-01-01

    The $pp \\to pp\\gamma\\gamma$ reaction has been measured at CELSIUS using the WASA $4\\pi$-detector with hydrogen pellet target. At $T_p = 1.20$ and 1.36 GeV, where most of the statistics has been accumulated, the $\\gamma\\gamma$ invariant mass spectrum exhibits a narrow structure around the $\\pi\\pi$ threshold, which possibly may be associated with two-photon radiation of $\\pi^+\\pi^-$ loops in the mesonic $\\sigma$ channel.

  15. Crystallographic Studies of Xe And Kr Binding Within the Large Internal Cavity of Cytochrome Ba(3) From Thermus Thermophilus: Structural Analysis And Role of Oxygen Transport Channels in the Heme-Cu Oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Luna, V.M.; Chen, Y.; Fee, J.A.; Stout, C.D.

    2009-05-26

    Cytochrome ba{sub 3} is a cytochrome c oxidase from the plasma membrane of Thermus thermophilus and is the preferred terminal enzyme of cellular respiration at low dioxygen tensions. Using cytochrome ba{sub 3} crystals pressurized at varying conditions under Xe or Kr gas, and X-ray data for six crystals, we identify the relative affinities of Xe and Kr atoms for as many as seven distinct binding sites. These sites track a continuous, Y-shaped channel, 18--20 {angstrom} in length, lined by hydrophobic residues, which leads from the surface of the protein where two entrance holes, representing the top of the Y, connect the bilayer to the {alpha}{sub 3}-Cu{sub B} center at the base of the Y. Considering the increased affinity of O{sub 2} for hydrophobic environments, the hydrophobic nature of the channel, its orientation within the bilayer, its connection to the active site, its uniform diameter, its virtually complete occupation by Xe, and its isomorphous presence in the native enzyme, we infer that the channel is a diffusion pathway for O{sub 2} into the dinuclear center of cytochrome ba{sub 3}. These observations provide a basis for analyzing similar channels in other oxidases of known structure, and these structures are discussed in terms of mechanisms of O{sub 2} transport in biological systems, details of CO binding to and egress from the dinuclear center, the bifurcation of the oxygen-in and water-out pathways, and the possible role of the oxygen channel in aerobic thermophily.

  16. Structural and functional changes in a synthetic S5 segment of KvLQT1 channel as a result of a conserved amino acid substitution that occurs in LQT1 syndrome of human.

    Science.gov (United States)

    Verma, Richa; Ghosh, Jimut Kanti

    2010-03-01

    Mutations in various voltage gated cardiac ion channels are the cause of different forms of long QT syndrome (LQTS), which is an inherited arrhythmic disorder marked as a prolonged QT interval on electrocardiogram. Of these LQTS1 is associated with mutations in the gene encoding KCNQ1 (KvLQT1) channel. One responsible mutation, G269S, in the S5 segment of KvLQT1, that affects the proper expression and function of channel protein leads to LQTS1. Our objective was to study how G269S mutation interferes with the structure and function of a synthetic S5 segment of KvLQT1 channel. One wild type 22-residue peptide and another mutant peptide of the same length with G269S mutation, derived from the S5 segment were synthesized and labeled with fluorescent probes. The mutant peptide exhibited lower affinity towards phospholipid vesicles as compared to the wild type peptide and showed impaired assembly and localization onto the lipid vesicles as evidenced by membrane-binding, energy transfer and proteolytic cleavage experiments. Loss in the helical content of S5 mutant peptide in membrane-mimetic environments was observed. Furthermore, it was observed that G269S mutation significantly inhibited the ability of S5 peptide to permeabilize the lipid vesicles. The present studies show the basis of change in function of the selected S5 segment as a result of G269S mutation which is associated with LQT1 syndrome. We speculate that the structural and functional changes related to the glycine to serine amino acid substitution in the S5 segment may also influence the activity of the whole KvLQT1 channel.

  17. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Ravn, Anders P.;

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact ...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way.......Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...

  18. The Degraded Poisson Wiretap Channel

    CERN Document Server

    Laourine, Amine

    2010-01-01

    Providing security guarantees for wireless communication is critically important for today's applications. While previous work in this area has concentrated on radio frequency (RF) channels, providing security guarantees for RF channels is inherently difficult because they are prone to rapid variations due small scale fading. Wireless optical communication, on the other hand, is inherently more secure than RF communication due to the intrinsic aspects of the signal propagation in the optical and near-optical frequency range. In this paper, secure communication over wireless optical links is examined by studying the secrecy capacity of a direct detection system. For the degraded Poisson wiretap channel, a closed-form expression of the secrecy capacity is given. A complete characterization of the general rate-equivocation region is also presented. For achievability, an optimal code is explicitly constructed by using the structured code designed by Wyner for the Poisson channel. The converse is proved in two dif...

  19. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention.

    Science.gov (United States)

    Owen, Jason E; Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-06-01

    Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56-0.89, ps communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08-1.84, ps communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement.

  20. Can erosion control structures in large dryland arroyo channels lead to resilient riparian and cienega restoration? Observations from LiDAR, monitoring and modeling at Rancho San Bernardino, Sonora, MX

    Science.gov (United States)

    DeLong, S.; Henderson, W. M.

    2012-12-01

    The use of erosion control structures to mitigate or even reverse erosion and to restore ecological function along dryland channels (arroyos and gullies) has led to a long list of both successful and failed restoration efforts. We propose that successful implementation of "engineering" approaches to fluvial restoration that include in-channel control structures require either a quantitative approach to design (by scientists and engineers), or intimate on-the-ground knowledge, local observation, and a commitment to adapt and maintain restoration efforts in response to landscape change (by local land managers), or both. We further propose that the biophysical interactions among engineering, sedimentation, flood hydrology and vegetation reestablishment are what determine resilience to destructive extreme events that commonly cause erosion control structure failure. Our insights come from comprehensive monitoring of a remarkable experiment underway at Ranch San Bernardino, Sonora, MX. At this site, private landowners are working to restore ecosystem function to riparian corridors and former cieñega wetlands using cessation of grazing; vegetation planting; upland grass restoration; large scale rock gabions (up to 100 m wide) to encourage local sediment deposition and water storage; and large earthen berms (up to 900 m wide) with cement spillways that form reservoirs that fill rapidly with water and sediment. Well-planned and managed erosion control structures have been used elsewhere successfully in smaller gully networks, but we are unaware of a comparable attempt to use gabions and berms for the sole purpose of ecological restoration along >10 km of arroyo channels draining watersheds on the order of ~400 km2 and larger. We present an approach to monitoring the efficacy of arroyo channel restoration using terrestrial and airborne LiDAR, remote sensing, streamflow monitoring, shallow groundwater monitoring, hydrological modeling and field observation. Our methods

  1. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique

    2015-10-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  2. Quantum channels with a finite memory

    Science.gov (United States)

    Bowen, Garry; Mancini, Stefano

    2004-01-01

    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless.

  3. Molecular dynamics insights into human aquaporin 2 water channel.

    Science.gov (United States)

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney.

  4. Structure and variability of the Yucatan and loop currents along the slope and shelf break of the Yucatan channel and Campeche bank

    Science.gov (United States)

    Sheinbaum, Julio; Athié, Gabriela; Candela, Julio; Ochoa, José; Romero-Arteaga, Angélica

    2016-12-01

    Three years (2008-2011) of direct current measurements from a mooring array deployed at the western Yucatan Channel (defined west of 85.6°W) and along the eastern Campeche Bank captured the main characteristics of the Yucatan and Loop Currents and the eddies associated with them. The array was deployed to provide upstream conditions in support of the Loop Current Dynamics Experiment. A substantial portion (60-80%) of the variance at the mooring sections is related to horizontal shifts of the currents due to meanders and eddies. Time-frequency analysis indicates that the velocity time-series are "event dominated", with higher variability at low-frequencies (40-100 days or longer periods) but with a substantial contribution at higher frequencies (5-25 days periods) particularly strong from October to March. The vertical structure and time evolution of the eddy kinetic energy in a developing Campeche Bank cyclone suggest baroclinic instability dynamics are relevant for its development. Four Loop Current eddies (Cameron, Darwin, Ekman and Franklin) separated during 2008-2011. Ekman and Franklin were particularly dominated by a cyclone associated with a meander trough of the southward flowing branch of the Loop Current (Donohue et al., 2016a,b) and weaker Campeche Bank cyclones. For Cameron and Darwin, Campeche Bank cyclonic anomalies appear to be nearly as strong as the ones coming from the eastern side of the Loop Current. Eastward shifts of the Yucatan and Loop Currents observed over the sections appear to be linked to vorticity perturbations propagating from the Caribbean and precede several eddy detachments; their significance for the generation of Campeche Bank cyclones and eddy shedding remains to be determined. Time-series of Yucatan Current transport, vorticity fluctuations and Loop Current northward extension during the 3 deployment periods only depict positive correlation in two of them. Given the wide spectrum of variability, much more data are required to

  5. Chemical synthesis and 1H-NMR 3D structure determination of AgTx2-MTX chimera, a new potential blocker for Kv1.2 channel, derived from MTX and AgTx2 scorpion toxins.

    Science.gov (United States)

    Pimentel, Cyril; M'Barek, Sarrah; Visan, Violetta; Grissmer, Stephan; Sampieri, François; Sabatier, Jean-Marc; Darbon, Hervé; Fajloun, Ziad

    2008-01-01

    Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.

  6. Chemical synthesis and 1H-NMR 3D structure determination of AgTx2-MTX chimera, a new potential blocker for Kv1.2 channel, derived from MTX and AgTx2 scorpion toxins

    Science.gov (United States)

    Pimentel, Cyril; M'Barek, Sarrah; Visan, Violetta; Grissmer, Stephan; Sampieri, François; Sabatier, Jean-Marc; Darbon, Hervé; Fajloun, Ziad

    2008-01-01

    Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K+ (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca2+-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1–5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1–C5, C2–C6, C3–C7, and C4–C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by 1H-NMR, revealed both α-helical and β-sheet structures, consistent with a common α/β scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel. PMID:18042681

  7. Downlink and Uplink Physical Channels in Long Term Evolution

    Directory of Open Access Journals (Sweden)

    A. Z. Yonis

    2012-10-01

    Full Text Available Long Term Evolution (LTE defines a number of physical channels to carry information blocks received from the MAC and higher layers. This paper presents two types of Physical channels: the first type is downlink physical channels which consist of Physical Broadcast Channel (PBCH, Physical Downlink Shared Channel (PDSCH, Physical Multicast Channel (PMCH, Physical Downlink Control Channel (PDCCH, Physical Control Format Indicator Channel (PCFICH and Physical Hybrid ARQ Indicator Channel (PHICH. The second type of Physical channels is uplink physical channels which consist of Physical Uplink Shared Channel (PUSCH, Physical Uplink Control Channel (PUCCH and Physical Random Access Channel (PRACH. This paper also highlights the structure of PDSCH and PUSCH, discuss the algorithms of the two types of physical channel and each of its features. The aim of this paper is to discuss the well-designed PHY Channels which provide high cell-edge performance with specific features, such as dynamic bandwidth allocation to users, the design of reference signals and control channels. These channels take into account a more challenging path loss and interference environment at the cell edge.

  8. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  9. NIR luminescent Er{sup 3+}/Yb{sup 3+} co-doped SiO{sub 2}-ZrO{sub 2} nanostructured planar and channel waveguides: Optical and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Cesar dos Santos [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto/SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Quimica de Materiais - (GPQM), Departamento de Ciencias Naturais, Universidade Federal de Sao Joao Del Rei, Campus Dom Bosco, Praca Dom Helvecio, 74, 36301-160, Sao Joao Del Rei, MG (Brazil); Oliveira, Drielly Cristina de [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirao Preto/SP (Brazil); Maia, Lauro June Queiroz [Grupo Fisica de Materiais, Instituto de Fisica, UFG, Campus Samambaia, Caixa Postal 131, 74001-970, Goiania/GO (Brazil); Gomes, Anderson Stevens Leonidas [Departamento de Fisica, Universidade Federal de Pernambuco, Cidade Universitaria, Recife/PE, 50670-901 (Brazil); Ribeiro, Sidney Jose Lima [Laboratorio de Materiais Fotonicos, Instituto de Quimica, UNESP, Caixa Postal 355, 14801-970, Araraquara/SP (Brazil); and others

    2012-09-14

    Optical and structural properties of planar and channel waveguides based on sol-gel Er{sup 3+} and Yb{sup 3+} co-doped SiO{sub 2}-ZrO{sub 2} are reported. Microstructured channels with high homogeneous surface profile were written onto the surface of multilayered densified films deposited on SiO{sub 2}/Si substrates by a femtosecond laser etching technique. The densification of the planar waveguides was evaluated from changes in the refractive index and thickness, with full densification being achieved at 900 Degree-Sign C after annealing from 23 up to 500 min, depending on the ZrO{sub 2} content. Crystal nucleation and growth took place together with densification, thereby producing transparent glass ceramic planar waveguides containing rare earth-doped ZrO{sub 2} nanocrystals dispersed in a silica-based glassy host. Low roughness and crack-free surface as well as high confinement coefficient were achieved for all the compositions. Enhanced NIR luminescence of the Er{sup 3+} ions was observed for the Yb{sup 3+}-codoped planar waveguides, denoting an efficient energy transfer from the Yb{sup 3+} to the Er{sup 3+} ion. Highlights: Black-Right-Pointing-Pointer Sol-gel high NIR luminescent nanostructured planar and channel waveguides. Black-Right-Pointing-Pointer Microstructured channels written by a femtosecond laser etching technique. Black-Right-Pointing-Pointer Transparent glass ceramic with rare earth-doped ZrO{sub 2} nanocrystals in a silica host. Black-Right-Pointing-Pointer Enhanced NIR luminescence, efficient energy transfer from the Yb{sup 3+} to the Er{sup 3+} ion. Black-Right-Pointing-Pointer New planar channel waveguides to be applied as EDWA in the C telecommunication band.

  10. Attitudes towards a final repository for the spent nuclear fuel. Structure and causes; Attityd till slutfoervar av anvaent kaernbraensle. Struktur och orsaker

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Lennart (Stockholm School of Economics (Sweden). Center for Risk Research)

    2008-09-15

    This report presents the results of a questionnaire survey of attitudes towards a final repository for the spent nuclear fuel. The questionnaire was mailed to 3,000 persons. Participants were young and older people in Oskarshamn municipality and Oesthammar municipality as well as in the rest of the country. Fifty-one percent responded. The questionnaire included a large number of questions of possible relevance for understanding the structure of and reasons for the person's attitude towards a final repository. Questions concerning nuclear power were dealt with in a special section. Men were more positively disposed towards a repository than women, older people more than young. The gender differences are mainly attributable to the variation in attitude towards nuclear power and concern about nuclear accidents. In the case of older people, interest was also a factor. Young people were not as interested in the issue. The most important factor in determining the attitude towards a final repository was the benefit it was expected to bring to the municipality. Moral and emotional aspects were also important. Risk played a relatively subordinate role. Social aspects were very important: those who frequently spoke with people who were positively disposed tended to be positive themselves, and vice versa for those who were negative. This factor could explain some of the gender differences in attitude. Attitudes in Oskarshamn were slightly more positive than in Oesthammar, probably due to the fact that the residents in Oskarshamn had a greater sense of participation in the municipality's decision in the matter. Information from SKB was also found to be an important factor for the differences in attitude between the municipalities. Eight percentage points more people had received information in Oskarshamn than in Oesthammar. The difference may be small, but it exists and does appear to be of some importance. Attitudes in Oskarshamn and Oesthammar continued to be much

  11. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study

    Science.gov (United States)

    Jiang, D.; Zhu, M.

    2016-12-01

    Coupling macroscale heat transfer and fluid flow with microscale grain nucleation and crystal growth, a mixed columnar-equiaxed solidification model was established to study the SWRT82B steel solidification structure and macrosegregation in 160 mm × 160 mm billet continuous casting with dual electromagnetic stirrings in mold and final stage of solidification (M-EMS and F-EMS). In the model, the phases of liquid, columnar, and equiaxed were treated separately and the initial growing equiaxed phase, which could move freely with liquid, was regarded as slurry. To obtain the equiaxed grains nucleation and columnar front evolution, the unit tracking method and the columnar front tracking model were built. The model was validated by magnetic induction intensity of stirrer, billet surface temperature, and carbon segregation. The equiaxed phase evolution and the solute transport with effect of fluid flow and grains transport were described in this article. The results show that the equiaxed phase ratio will not increase obviously with higher current intensity of M-EMS, while the negative segregation near the strand surface becomes more serious. The negative segregation zone near the billet center and the center positive segregation come into being with the effect of equiaxed grains sedimentation and liquid thermosolutal flow. It is also found that the liquid solute transport in the F-EMS zone becomes the main factor with higher current intensity rather than the solidification rate, and therefore, the final billet center segregation decreases first and then turns to rise with the current intensity. The optimal current intensities of M-EMS and F-EMS proposed for SWRT82B billet continuous casting are 200 and 400 A, respectively.

  12. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study

    Science.gov (United States)

    Jiang, D.; Zhu, M.

    2016-08-01

    Coupling macroscale heat transfer and fluid flow with microscale grain nucleation and crystal growth, a mixed columnar-equiaxed solidification model was established to study the SWRT82B steel solidification structure and macrosegregation in 160 mm × 160 mm billet continuous casting with dual electromagnetic stirrings in mold and final stage of solidification (M-EMS and F-EMS). In the model, the phases of liquid, columnar, and equiaxed were treated separately and the initial growing equiaxed phase, which could move freely with liquid, was regarded as slurry. To obtain the equiaxed grains nucleation and columnar front evolution, the unit tracking method and the columnar front tracking model were built. The model was validated by magnetic induction intensity of stirrer, billet surface temperature, and carbon segregation. The equiaxed phase evolution and the solute transport with effect of fluid flow and grains transport were described in this article. The results show that the equiaxed phase ratio will not increase obviously with higher current intensity of M-EMS, while the negative segregation near the strand surface becomes more serious. The negative segregation zone near the billet center and the center positive segregation come into being with the effect of equiaxed grains sedimentation and liquid thermosolutal flow. It is also found that the liquid solute transport in the F-EMS zone becomes the main factor with higher current intensity rather than the solidification rate, and therefore, the final billet center segregation decreases first and then turns to rise with the current intensity. The optimal current intensities of M-EMS and F-EMS proposed for SWRT82B billet continuous casting are 200 and 400 A, respectively.

  13. The Origins of Transmembrane Ion Channels

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  14. Discovery, characterization and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir channels with preference for Kir2.3, Kir3.X and Kir7.1

    Directory of Open Access Journals (Sweden)

    Jerod S Denton

    2011-11-01

    Full Text Available The inward rectifier family of potassium (Kir channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that GIRK (G protein-regulated inward rectifier K channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+ flux-based high-throughput screen (HTS of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 M and 19 M, respectively and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK and Kir3.1/3.4 (cardiac GIRK channels with equal potency and preferentially inhibited GIRK, Kir2.3 and Kir7.1 over Kir1.1 and Kir2.1. Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.

  15. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  16. Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains III and IV of human brain sodium channels in SDS micelles.

    Science.gov (United States)

    Miyamoto, K; Nakagawa, T; Kuroda, Y

    2001-09-01

    The two cytoplasmic linkers connecting segment S4 and segment S5 (S4-S5 linker) of both domain III (III/S4-S5) and IV (IV/S4-S5) of the sodium channel alpha-subunit are considered to work as a hydrophobic receptor for the inactivation particle because of the three hydrophobic amino acids of Ile-Phe-Met (IFM motif) in the III-IV linker of the sodium channel alpha-subunit. To date, the solution structures of the peptides related to III/S4-S5 (MP-D3: A1325-M1338) and IV/S4-S5 (MP-D4: T1648-L1666) of human brain sodium channels have been investigated using CD and (1)H NMR spectroscopies. SDS micelles were employed as a solvent. The micelles mimic either biological membranes or the interior of a protein and can be a relevant environment at the inactivated state of the channels. It was found that the secondary structures of both MP-D3 and MP-D4 assume alpha-helical conformations around the N-terminal half-side of the sequences, i.e. the residues between V1326 and L1331 in MP-D3 and between L1650 and S1656 in MP-D4. Residue A1329 in MP-D3, which is considered to interact with F1489 of the IFM motif, was found to be located within the alpha-helix. Residues F1651, M1654, M1655, L1657 and A1669 in MP-D4, which also play an important role in inactivation, formed a hydrophobic cluster on one side of the helix. This cluster was concluded to interact with the hydrophobic cluster due to the III-IV linker before the inactivation gate closes.

  17. Interactions of H562 in the S5 helix with T618 and S621 in the pore helix are important determinants of hERG1 potassium channel structure and function.

    Science.gov (United States)

    Lees-Miller, James P; Subbotina, Julia O; Guo, Jiqing; Yarov-Yarovoy, Vladimir; Noskov, Sergei Y; Duff, Henry J

    2009-05-06

    hERG1 is a member of the cyclic nucleotide binding domain family of K(+) channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role. To explore this role, we created in silica models of the hERG1 pore domain based on the KvAP crystal structure with Rosetta-membrane modeling and molecular-dynamics simulations. Simulations indicate that the H562 residue in the S5 helix spans the gap between the S5 helix and the pore helix, stabilizing the pore domain, and that mutation at the H562 residue leads to a disruption of the hydrogen bonding to T618 and S621, resulting in distortion of the selectivity filter. Analysis of the simulated point mutations at positions 562/618/621 showed that the reciprocal double mutations H562W/T618I would partially restore the orientation of the 562 residue. Matching hydrophobic interactions between mutated W562 residue and I618 partially compensate for the disrupted hydrogen bonding. Complementary in vitro electrophysiological studies confirmed the results of the molecular-dynamics simulations on single mutations at positions 562, 618, and 621. Experimentally, mutations of the H562 to tryptophan produced a functional channel, but with slowed deactivation and shifted V(1/2) of activation. Furthermore, the double mutation T618I/H562W rescued the defects seen in activation, deactivation, and potassium selectivity seen with the H562W mutation. In conclusion, interactions between H562 in the S5 helix and amino acids in the pore helix are important determinants of hERG1 potassium channel function, as confirmed by theory and experiment.

  18. Research on Cost Information Sharing and Channel Choice in a Dual-Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    Huihui Liu

    2016-01-01

    Full Text Available Many studies examine information sharing in an uncertain demand environment in a supply chain. However there is little literature on cost information sharing in a dual-channel structure consisting of a retail channel and a direct sales channel. Assuming that the retail sale cost and direct sale cost are random variables with a general distribution, the paper investigates the retailer’s choice on cost information sharing in a Bertrand competition model. Based on the equilibrium outcome of information sharing, the manufacturer’s channel choice is discussed in detail. Our paper provides several interesting conclusions. In both single- and dual-channel structures, the retailer has little motivation to share its private cost information which is verified to be valuable for the manufacturer. When the cost correlation between the two channels increases, our analyses show that the manufacturer’s profit improves. However, when channel choice is involved, the value of information could play a different role. The paper finds that a dual-channel structure can benefit the manufacturer only when the cost correlation is sufficiently low. In addition, if the cost correlation is weak, the cost fluctuation will bring out the advantage of a dual-channel structure and adding a new direct channel will help in risk pooling.

  19. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  20. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.

    Science.gov (United States)

    Ali, Syed R; Singh, Aditya K; Laezza, Fernanda

    2016-05-20

    The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.

  1. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  2. Ion Channels and Their Roles on The Pathogenesis of Epilepsy

    OpenAIRE

    Ahmet Akay; N.Ceren Sumer-Turanligil,Yigit Uyanikgil

    2010-01-01

    Ion channels especially nicotinic acethylcholine receptor channels, potassium and sodium channels play roles in the physiopathology of various types of epilepsies. They play vital roles in either providing membrane potential and in neuronal signaling. In this review, first, information about the structure and function of ion channels and then how the structure and functions of subunits of them change within a neurological disease like epilepsy will be given. [Archives Medical Review Journal 2...

  3. Ergodic Capacity for the SIMO Nakagami- Channel

    Directory of Open Access Journals (Sweden)

    Vagenas EfstathiosD

    2009-01-01

    Full Text Available This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output wireless systems operating in a Nakagami- fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC, equal gain combining (EGC, selection combining (SC, and switch and stay (SSC diversity systems operating in Nakagami- fading channels. Also, the ergodic capacity of a SIMO system in a Nakagami- fading channel without any diversity technique is derived. The latter scenario is further investigated for a large amount of receive antennas. Finally, numerical results are presented for illustration.

  4. Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure.

    Science.gov (United States)

    Kim, Ran; Kang, Boseok; Sin, Dong Hun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-01-28

    Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains, serving as solubilizing groups, are designed and introduced into naphthalene-diimide-based n-channel copolymers. The synthesized polymers exhibit unipolar n-type operation with an electron mobility of up to 1.64 cm(2) V(-1) s(-1), which demonstrates the usefulness of the hybrid side chains in polymer electronics applications.

  5. Market Structure and Price Transmission of Eggs Commodity

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2016-10-01

    Full Text Available Purposes of this research are to determine some characteristics of distribution channel, market structure, and price maker transmission in purebred chicken egg commodity in Banyumas District, Central Java Province. Primary data applied on this research is from all channel distribution levels; from producers to final consumers. Meanwhile secondary data is collected from government official sources, such as BPS-Statistic of Banyumas Disrict, Banyumas Department of Industry, Trading and Cooperation, and previous researches which has been made by researcher team. Sample determining is directed by proportional random sampling methods. Some measurements are applied to this research, including to; Herfindahl Index (HI, Concentration Ratio (CF, and Minimum Efficiency Scale (MES to investigate market structure; and Asymmetric Price Transmission (APT to determine price transmission mechanism model. This research finds that (1 the distribution channel of egg commodity is spitted to different channel, the first channel: egg producer – retail traders – final consumers, and second channel: egg producers – whole seller – retail traders – final consumers; (2 market structure which is created to this farming specific commodity is perfect market; (3 price transmission mechanism analysis statistically shows that there is almost no existence of dominant power in price formation.

  6. Lubiprostone: a chloride channel activator.

    Science.gov (United States)

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  7. Structure of covert channel based on RTT code%基于 RTT 编码的不可恢复隐蔽信道的构造

    Institute of Scientific and Technical Information of China (English)

    邵婧婕; 兰少华; 季芸; 刘光杰

    2015-01-01

    To improve the security of the covert data,a new way of constructing covert channel was pro-posed,and the real-time network characteristics of round-trip time(RTT)embedded into the time inter-vals.By this method,the covert channel is unrecoverable.In the experiment,current covert channels and new covert channel were built.The transmission rate and correct rate were compared in different network conditions.The experimental results show that the new covert channel ensures high correct rate of deco-ding,and at the same time,the transmission rate can change with the different network conditions.In ad-dition,the real-time network characteristics of RTT are embedded into the time intervals,which enhances the data security and unrecoverable.%为了提高隐秘信息的安全性,提出了一种具有不可恢复性的网络时间隐蔽信道。将实时获取的网络特征往返时延(RTT)的值嵌入包间间隔中,使隐蔽信道的时间特征随着网络状况实时变化,并在发送方和接收方采用前向纠错编码(Tornado)对隐蔽信道进行前向纠错。实验分别搭建了现有隐蔽信道与新型隐蔽信道的发生器,根据不同网络状况,对传输速率和传输正确率进行对比实验。实验结果显示,在保证较高的解码正确率的同时,新型隐蔽信道的传输速率随着网络状况的不同而变化,对网络情况有一定的适应性,并且通过将实时网络特征编码到新型隐蔽信道中,提升了隐蔽信道整体的数据安全性和不可恢复性。

  8. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TIbased electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  9. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  10. Insight into the modulation of Shaw2 Kv channels by general anesthetics: structural and functional studies of S4-S5 linker and S6 C-terminal peptides in micelles by NMR.

    Science.gov (United States)

    Zhang, Jin; Qu, Xiaoguang; Covarrubias, Manuel; Germann, Markus W

    2013-02-01

    The modulation of the Drosophila Shaw2 Kv channel by 1-alkanols and inhaled anesthetics is correlated with the involvement of the S4-S5 linker and C-terminus of S6, and consistent with stabilization of the channel's closed state. Structural analysis of peptides from S4-S5 (L45) and S6 (S6c), by nuclear magnetic resonance and circular dichroism spectroscopy supports that an α-helical conformation was adopted by L45, while S6c was only in an unstable/dynamic partially folded α-helix in dodecylphosphocholine micelles. Solvent accessibility and paramagnetic probing of L45 revealed that L45 lies parallel to the surface of micelles with charged and polar residues pointing towards the solution while hydrophobic residues are buried inside the micelles. Chemical shift perturbation introduced by 1-butanol on residues Gln320, Thr321, Phe322 and Arg323 of L45, as well as Thr423 and Gln424 of S6c indicates possible anesthetic binding sites on these two important components in the channel activation apparatus. Diffusion measurements confirmed the association of L45, S6c and 1-butanol with micelles which suggests the capability of 1-butanol to influence a possible interaction of L45 and S6c in the micelle environment.

  11. Improvement of performance of gas flow channel in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Graduate Institute of Greenergy Technology, National University of Tainan, 700 Taiwan (China); Yen, Tzu-Shuang; Chen, Cha' o-Kuang [Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2008-10-15

    This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of the gas flow channel design to enhance the performance of proton exchange membrane fuel cells (PEMFCs). To restrict the current simulations to two-dimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that an increased interruption within the fluid flow reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid flow is induced by different type of obstacles: wave like, trapezoid like and ladder like forms and the straight form of the gas flow channel. The numerical results show that, compared to a conventional straight gas flow channel, the wave like, trapezoid like and ladder like geometry of the proposed gas flow channel increases the mean Nusselt number by a factor of approximately two. Furthermore, the periodic three patterns (wave like, trapezoid like and ladder like) structure increases the gas flow velocity in the channel and, hence, improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. (author)

  12. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  13. Structure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes.

    Science.gov (United States)

    Araujo, Gabriela C; Silva, Ricardo H T; Scott, Luis P B; Araujo, Alexandre S; Souza, Fatima P; de Oliveira, Ronaldo Junio

    2016-12-01

    The human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infection in children and elderly people worldwide. Its genome encodes 11 proteins including SH protein, whose functions are not well known. Studies show that SH protein increases RSV virulence degree and permeability to small compounds, suggesting it is involved in the formation of ion channels. The knowledge of SH structure and function is fundamental for a better understanding of its infection mechanism. The aim of this study was to model, characterize, and analyze the structural behavior of SH protein in the phospholipids bilayer environment. Molecular modeling of SH pentameric structure was performed, followed by traditional molecular dynamics (MD) simulations of the protein immersed in the lipid bilayer. Molecular dynamics with excited normal modes (MDeNM) was applied in the resulting system in order to investigate long time scale pore dynamics. MD simulations support that SH protein is stable in its pentameric form. Simulations also showed the presence of water molecules within the bilayer by density distribution, thus confirming that SH protein is a viroporin. This water transport was also observed in MDeNM studies with histidine residues of five chains (His22 and His51), playing a key role in pore permeability. The combination of traditional MD and MDeNM was a very efficient protocol to investigate functional conformational changes of transmembrane proteins that act as molecular channels. This protocol can support future investigations of drug candidates by acting on SH protein to inhibit viral infection. Graphical Abstract The ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domainᅟ.

  14. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, Jill [Univ. of Utah, Salt Lake City, UT (United States)

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set of researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently

  15. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  16. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Søndergaard, Hans

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way....

  17. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  18. Cassini's Grand Finale: The Final Orbits

    Science.gov (United States)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the outer layers of Saturn's atmosphere, and the mass distribution in the rings. Probing the magnetic field will give insight into the nature of the magnetic dynamo, telling us: why the

  19. Identity Authentication over Noisy Channels

    Directory of Open Access Journals (Sweden)

    Fanfan Zheng

    2015-07-01

    Full Text Available Identity authentication is the process of verifying users’ validity. Unlike classical key-based authentications, which are built on noiseless channels, this paper introduces a general analysis and design framework for identity authentication over noisy channels. Specifically, the authentication scenarios of single time and multiple times are investigated. For each scenario, the lower bound on the opponent’s success probability is derived, and it is smaller than the classical identity authentication’s. In addition, it can remain the same, even if the secret key is reused. Remarkably, the Cartesian authentication code proves to be helpful for hiding the secret key to maximize the secrecy performance. Finally, we show a potential application of this authentication technique.

  20. CNG and HCN channels: two peas, one pod.

    Science.gov (United States)

    Craven, Kimberley B; Zagotta, William N

    2006-01-01

    Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mech