WorldWideScience

Sample records for channel peak sensing

  1. High precision 16K, 16 channel peak sensing CAMAC ADC

    International Nuclear Information System (INIS)

    Jain, Mamta; Subramaniam, E.T

    2013-01-01

    A high density, peak sensing, analog to digital converter (ADC) double width module with CAMAC back plane has been developed for nuclear physics experiments with a large number of detectors. This module has sixteen independent channels in plug-in daughter card mother board mode

  2. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  3. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.

    2013-04-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  4. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2013-01-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  5. Cooperative Spectrum Sensing over Non-Identical Nakagami Fading Channels

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Previous works in cooperative spectrum sensing assumed that the channels for sensing and reporting are independent identical distributed (i.i.d). A more practical and appropriate assumption, however, should be that the sensing channels and reporting channels are independent but not necessarily identically distributed (i.n.i.d). In this paper, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with energy fusion over i.n.i.d Nakagami fading channels. Selected numerical results show that cooperative spectrum sensing still gives considerably better performance results even over i.n.i.d fading channels.

  6. Assessment of long-term channel changes in the Mekong River using remote sensing and a channel-evolution model

    Science.gov (United States)

    Miyazawa, N.

    2011-12-01

    River-channel changes are a key factor affecting physical, ecological and management issues in the fluvial environment. In this study, long-term channel changes in the Mekong River were assessed using remote sensing and a channel-evolution model. A channel-evolution model for calculating long-term channel changes of a measndering river was developed using a previous fluid-dynamic model [Zolezzi and Seminara, 2001], and was applied in order to quantify channel changes of two meandering reaches in the Mekong River. Quite few attempts have been made so far to combine remote sensing observation of meandering planform change with the application of channel evolution models within relatively small-scale gravel-bed systems in humid temperate regions. The novel point of the present work is to link state-of-art meandering planform evolution model with observed morphological changes within large-scale sand-bed rivers with higher bank height in tropical monsoonal climate regions, which are the highly dynamic system, and assess the performance. Unstable extents of the reaches could be historically identified using remote-sensing technique. The instability caused i) bank erosion and accretion of meander bends and ii) movement or development of bars and changes in the flow around the bars. The remote sensing measurements indicate that maximum erosion occurred downstream of the maximum curvature of the river-center line in both reaches. The model simulations indicates that under the mean annual peak discharge the maximum of excess longitudinal velocity near the banks occurs downstream of the maximum curvature in both reaches. The channel migration coefficients of the reaches were calibrated by comparing remote-sensing measurements and model simulations. The diffrence in the migration coefficients between both reaches depends on the diffrence in bank height rather than the geotechnical properties of floodplain sediments. Possible eroded floodplain areas and accreted floodplain

  7. Modeling of Lightning Strokes Using Two-Peaked Channel-Base Currents

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-01-01

    Full Text Available Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay, transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.

  8. Global versus local mechanisms of temperature sensing in ion channels.

    Science.gov (United States)

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  9. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  10. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2015-02-01

    Cooperation among cognitive radio users improves the spectrum sensing performance by combining local decisions measured over independent sensing channels, allowing reduction of miss-detection and false alarm probabilities. While most of the works in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false-alarm probabilities are derived for a general scheme of imperfect reporting channels under non necessarily identical sensing and reporting channels. Numerical simulations show that imperfect reporting channels should be considered to optimize the cooperative sensing in terms of consumed energy and probability of error.

  11. A channel-by-channel method of reducing the errors associated with peak area integration

    International Nuclear Information System (INIS)

    Luedeke, T.P.; Tripard, G.E.

    1996-01-01

    A new method of reducing the errors associated with peak area integration has been developed. This method utilizes the signal content of each channel as an estimate of the overall peak area. These individual estimates can then be weighted according to the precision with which each estimate is known, producing an overall area estimate. Experimental measurements were performed on a small peak sitting on a large background, and the results compared to those obtained from a commercial software program. Results showed a marked decrease in the spread of results around the true value (obtained by counting for a long period of time), and a reduction in the statistical uncertainty associated with the peak area. (orig.)

  12. Channel Storage change: a new remote sensed surface water measurement

    Science.gov (United States)

    Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.

    2017-12-01

    Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.

  13. Enhancing Sensing and Channel Access in Cognitive Radio Networks

    KAUST Repository

    Hamza, Doha R.

    2014-06-18

    Cognitive radio technology is a promising technology to solve the wireless spectrum scarcity problem by intelligently allowing secondary, or unlicensed, users access to the primary, licensed, users\\' frequency bands. Cognitive technology involves two main tasks: 1) sensing the wireless medium to assess the presence of the primary users and 2) designing secondary spectrum access techniques that maximize the secondary users\\' benefits while maintaining the primary users\\' privileged status. On the spectrum sensing side, we make two contributions. First, we maximize a utility function representing the secondary throughput while constraining the collision probability with the primary below a certain value. We optimize therein the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order for wideband primary channels. Second, we design a cooperative spectrum sensing technique termed sensing with equal gain combining whereby cognitive radios simultaneously transmit their sensing results to the fusion center over multipath fading reporting channels. The proposed scheme is shown to outperform orthogonal reporting systems in terms of achievable secondary throughput and to be robust against phase and synchronization errors. On the spectrum access side, we make four contributions. First, we design a secondary scheduling scheme with the goal of minimizing the secondary queueing delay under constraints on the average secondary transmit power and the maximum tolerable primary outage probability. Second, we design another secondary scheduling scheme based on the spectrum sensing results and the primary automatic repeat request feedback. The optimal medium access probabilities are obtained via maximizing the secondary throughput subject to constraints that guarantee quality of service parameters for the primary. Third, we propose a three-message superposition coding scheme to maximize the secondary throughput without

  14. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2015-01-01

    in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false

  15. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    Science.gov (United States)

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  16. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks.

    Science.gov (United States)

    Qian, Xiaomin; Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-02-06

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.

  17. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    Directory of Open Access Journals (Sweden)

    Cao Hui

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ, to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA, lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.

  18. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle; Austin, H. Robert; Benisty, Henri; Hsing, I-Ming; Kodzius, Rimantas; Li, Shunbo; Wen, Weijia; Zhang, Yinghua

    2013-01-01

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  19. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-10-20

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  20. Acid-sensing ion channels: trafficking and synaptic function

    Directory of Open Access Journals (Sweden)

    Zha Xiang-ming

    2013-01-01

    Full Text Available Abstract Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs, to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  1. Acid-sensing ion channels: trafficking and synaptic function.

    Science.gov (United States)

    Zha, Xiang-ming

    2013-01-02

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  2. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  3. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  4. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    Science.gov (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P. [Univ. of Wisconsin, Madison, WI (United States)

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  6. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  7. Transient sensing of liquid films in microfluidic channels with optofluidic microresonators

    International Nuclear Information System (INIS)

    Grad, M; Attinger, D; Tsai, C C; Wong, C W; Yu, M; Kwong, D-L

    2010-01-01

    We demonstrate that optical ring resonators can be used as time-resolved refractive index sensors embedded in microfluidic channels. The nanophotonic structures are integrated into soft silicone microchannels interfaced with a transparent hard polymer manifold and standard microfluidic connections. The steady-state sensitivity, resolution and detection limit of the sensors are characterized using aqueous saline solutions at various concentrations. Time-resolved measurements are performed by sensing thin liquid films (0–400 nm) associated with oil/water segmented flow in microfluidic channels. The influence of the interrogation wavelength is investigated, and the optimal wavelength is determined. Millisecond resolution is demonstrated by sensing the shape of a single drop as it flows past the sensor. Finally, the film thickness between the droplet and the resonator is measured for different capillary numbers and channel diameters, and compared with existing theoretical and experimental results

  8. Acid-sensing ion channels and migraine

    Directory of Open Access Journals (Sweden)

    Yu-qi KANG

    2015-09-01

    Full Text Available Acid-sensing ion channels (ASICs are ligand-gated ion channels that are activated by extracellular protons (H+, which belong to epithelial sodium channels/degenerin (ENaC/DEG superfamily. ASICs are widely distributed in central nervous system, peripheral nervous system, digestive system and some tumor tissues. Different ASIC subunits play important roles in various pathophysiological processes such as touch, sour taste, learning and memory, including inflammation, ischemic stroke, pain, learning and memory decline, epilepsy, multiple sclerosis (MS, migraine, irritable bowel syndrome and tumor. Research over the last 2 decades has achieved substantial advances in migraine pathophysiology. It is now largely accepted that inflammatory pathways play a key role and three main events seem to take place: cortical spreading depression (CSD, activation of the trigeminovascular system (i.e. dural nociceptors, peripheral and central sensitization of this pain pathway. However, the exact mechanisms that link these three events to each other and to inflammation have so far remained to be studied. This article takes an overview of newly research advances in structure, distribution and the relationship with migraine of ASICs.  DOI: 10.3969/j.issn.1672-6731.2015.09.013

  9. The orientation and molecular movement of a k(+) channel voltage-sensing domain.

    Science.gov (United States)

    Gandhi, Chris S; Clark, Eliana; Loots, Eli; Pralle, Arnd; Isacoff, Ehud Y

    2003-10-30

    Voltage-gated channels operate through the action of a voltage-sensing domain (membrane segments S1-S4) that controls the conformation of gates located in the pore domain (membrane segments S5-S6). Recent structural studies on the bacterial K(v)AP potassium channel have led to a new model of voltage sensing in which S4 lies in the lipid at the channel periphery and moves through the membrane as a unit with a portion of S3. Here we describe accessibility probing and disulfide scanning experiments aimed at determining how well the K(v)AP model describes the Drosophila Shaker potassium channel. We find that the S1-S3 helices have one end that is externally exposed, S3 does not undergo a transmembrane motion, and S4 lies in close apposition to the pore domain in the resting and activated state.

  10. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    Science.gov (United States)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  11. Compressive sensing for feedback reduction in MIMO broadcast channels

    KAUST Repository

    Eltayeb, Mohammed E.

    2014-09-01

    In multi-antenna broadcast networks, the base stations (BSs) rely on the channel state information (CSI) of the users to perform user scheduling and downlink transmission. However, in networks with large number of users, obtaining CSI from all users is arduous, if not impossible, in practice. This paper proposes channel feedback reduction techniques based on the theory of compressive sensing (CS), which permits the BS to obtain CSI with acceptable recovery guarantees under substantially reduced feedback overhead. Additionally, assuming noisy CS measurements at the BS, inexpensive ways for improving post-CS detection are explored. The proposed techniques are shown to reduce the feedback overhead, improve CS detection at the BS, and achieve a sum-rate close to that obtained by noiseless dedicated feedback channels.

  12. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    Science.gov (United States)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  13. Application of a Channel Estimation Algorithm to Spectrum Sensing in a Cognitive Radio Context

    Directory of Open Access Journals (Sweden)

    Vincent Savaux

    2014-01-01

    Full Text Available This paper deals with spectrum sensing in an orthogonal frequency division multiplexing (OFDM context, allowing an opportunistic user to detect a vacant spectrum resource in a licensed band. The proposed method is based on an iterative algorithm used for the joint estimation of noise variance and frequency selective channel. It can be seen as a second-order detector, since it is performed by means of the minimum mean square error criterion. The main advantage of the proposed algorithm is its capability to perform spectrum sensing, noise variance estimation, and channel estimation in the presence of a signal. Furthermore, the sensing duration is limited to only one OFDM symbol. We theoretically show the convergence of the algorithm, and we derive its analytical detection and false alarm probabilities. Furthermore, we show that the detector is very efficient, even for low SNR values, and is robust against a channel uncertainty.

  14. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-01-01

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  15. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.

    Science.gov (United States)

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi

    2018-04-21

    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  16. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.

    Science.gov (United States)

    Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas

    2016-02-25

    Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Tiit Kutser

    2016-06-01

    Full Text Available Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter. Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400–700 nm due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks—near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass—chlorophyll-a (R2 = 0.77, total suspended matter (R2 = 0.70, and suspended particulate organic matter (R2 = 0.68. There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak

  18. Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes

    Science.gov (United States)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.

    2018-04-01

    Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.

  19. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  20. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains

    Science.gov (United States)

    Lörinczi, Éva; Gómez-Posada, Juan Camilo; de La Peña, Pilar; Tomczak, Adam P.; Fernández-Trillo, Jorge; Leipscher, Ulrike; Stühmer, Walter; Barros, Francisco; Pardo, Luis A.

    2015-03-01

    Voltage-gated channels open paths for ion permeation upon changes in membrane potential, but how voltage changes are coupled to gating is not entirely understood. Two modules can be recognized in voltage-gated potassium channels, one responsible for voltage sensing (transmembrane segments S1 to S4), the other for permeation (S5 and S6). It is generally assumed that the conversion of a conformational change in the voltage sensor into channel gating occurs through the intracellular S4-S5 linker that provides physical continuity between the two regions. Using the pathophysiologically relevant KCNH family, we show that truncated proteins interrupted at, or lacking the S4-S5 linker produce voltage-gated channels in a heterologous model that recapitulate both the voltage-sensing and permeation properties of the complete protein. These observations indicate that voltage sensing by the S4 segment is transduced to the channel gate in the absence of physical continuity between the modules.

  1. Efficient Bayesian Compressed Sensing-based Channel Estimation Techniques for Massive MIMO-OFDM Systems

    OpenAIRE

    Al-Salihi, Hayder Qahtan Kshash; Nakhai, Mohammad Reza

    2017-01-01

    Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel estimation requires prior knowledge of channel sp...

  2. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-02-01

    Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.

  3. Remote sensing information acquisition of paleo-channel sandstone-type uranium deposit in Nuheting area

    International Nuclear Information System (INIS)

    Liu Jianjun

    2000-01-01

    The author briefly describes the genesis and ore-formation mechanism of paleo-channel sandstone-type uranium deposit in Nuheting area. Techniques such as remote sensing digital image data processing and data enhancement, as well as 3-dimension quantitative analysis of drill hole data are applied to extract information on metallogenic environment of paleo-channel sandstone-type uranium deposit and the distribution of paleo-channel

  4. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Science.gov (United States)

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  5. Peak reduction and clipping mitigation in OFDM by augmented compressive sensing

    KAUST Repository

    Al-Safadi, Ebrahim B.

    2012-07-01

    This work establishes the design, analysis, and fine-tuning of a peak-to-average-power-ratio (PAPR) reducing system, based on compressed sensing (CS) at the receiver of a peak-reducing sparse clipper applied to an orthogonal frequency-division multiplexing (OFDM) signal at the transmitter. By exploiting the sparsity of clipping events in the time domain relative to a predefined clipping threshold, the method depends on partially observing the frequency content of the clipping distortion over reserved tones to estimate the remaining distortion. The approach has the advantage of eliminating the computational complexity at the transmitter and reducing the overall complexity of the system compared to previous methods which incorporate pilots to cancel nonlinear distortion. Data-based augmented CS methods are also proposed that draw upon available phase and support information from data tones for enhanced estimation and cancelation of clipping noise. This enables signal recovery under more severe clipping scenarios and hence lower PAPR can be achieved compared to conventional CS techniques. © 2012 IEEE.

  6. Peak reduction and clipping mitigation in OFDM by augmented compressive sensing

    KAUST Repository

    Al-Safadi, Ebrahim B.; Al-Naffouri, Tareq Y.

    2012-01-01

    This work establishes the design, analysis, and fine-tuning of a peak-to-average-power-ratio (PAPR) reducing system, based on compressed sensing (CS) at the receiver of a peak-reducing sparse clipper applied to an orthogonal frequency-division multiplexing (OFDM) signal at the transmitter. By exploiting the sparsity of clipping events in the time domain relative to a predefined clipping threshold, the method depends on partially observing the frequency content of the clipping distortion over reserved tones to estimate the remaining distortion. The approach has the advantage of eliminating the computational complexity at the transmitter and reducing the overall complexity of the system compared to previous methods which incorporate pilots to cancel nonlinear distortion. Data-based augmented CS methods are also proposed that draw upon available phase and support information from data tones for enhanced estimation and cancelation of clipping noise. This enables signal recovery under more severe clipping scenarios and hence lower PAPR can be achieved compared to conventional CS techniques. © 2012 IEEE.

  7. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-09-01

    Spectrum sensing is the first and main step for cognitive radio systems to achieve an efficient use of the spectrum. Cooperation among cognitive radio users is a technique employed to improve the sensing performance by exploiting the diversity between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information to the full soft information. Quantized information has shown its efficiency as a trade-off between binary hard and full soft for other cooperative schemes, in this paper, we investigate the use of quantized information between cooperating cognitive users. We derive closed-form expressions of the cooperative average false alarm and detection probabilities over fading channels for a generalized system model with not necessarily identical average sensing Signal-to-Noise Ratio (SNR) and imperfect reporting channels. Numerical simulations allow us to conclude a tradeoff between the quantization size and the reporting energy in order to achieve the optimal cooperative error probability. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  8. Voltage and pH sensing by the voltage-gated proton channel, HV1.

    Science.gov (United States)

    DeCoursey, Thomas E

    2018-04-01

    Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high p K a ) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their p K a needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. © 2018 The Author.

  9. Voltage and pH sensing by the voltage-gated proton channel, HV1

    Science.gov (United States)

    2018-01-01

    Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a ‘counter-charge’ model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. PMID:29643227

  10. Sparse Channel Estimation for MIMO-OFDM Two-Way Relay Network with Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Aihua Zhang

    2013-01-01

    Full Text Available Accurate channel impulse response (CIR is required for equalization and can help improve communication service quality in next-generation wireless communication systems. An example of an advanced system is amplify-and-forward multiple-input multiple-output two-way relay network, which is modulated by orthogonal frequency-division multiplexing. Linear channel estimation methods, for example, least squares and expectation conditional maximization, have been proposed previously for the system. However, these methods do not take advantage of channel sparsity, and they decrease estimation performance. We propose a sparse channel estimation scheme, which is different from linear methods, at end users under the relay channel to enable us to exploit sparsity. First, we formulate the sparse channel estimation problem as a compressed sensing problem by using sparse decomposition theory. Second, the CIR is reconstructed by CoSaMP and OMP algorithms. Finally, computer simulations are conducted to confirm the superiority of the proposed methods over traditional linear channel estimation methods.

  11. Analog CMOS peak detect and hold circuits. Part 2. The two-phase offset-free and derandomizing configuration

    CERN Document Server

    De Geronimo, G; Kandasamy, A

    2002-01-01

    An analog CMOS peak detect and hold (PDH) circuit, which combines high speed and accuracy, rail-to-rail sensing and driving, low power, and buffering is presented. It is based on a configuration that cancels the major error sources of the classical CMOS PDH, including offset and common mode gain, by re-using the same amplifier for tracking, peak sensing, and output buffering. By virtue of its high absolute accuracy, two or more PDHs can be used in parallel to serve as a data-driven analog memory for derandomization. The first experimental results on the new peak detector and derandomizer (PDD) circuit, fabricated in 0.35 mu m CMOS technology, include a 0.2% absolute accuracy for pulses with 500 ns peaking time, 2.7 V linear input range, 3.3 mW power dissipation, 250 mV/s droop rate, and negligible dead time. The use of such a high performance analog PDD can greatly relax the requirements on the digitization in multi-channel systems.

  12. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Science.gov (United States)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  13. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    International Nuclear Information System (INIS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-01-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection

  14. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A.; Osinsky, Andrei; Miller, Ross [Agnitron Technology Incorporated, Eden Prairie, Minnesota 55346 (United States)

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  15. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  16. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi

    2012-04-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  17. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2012-01-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  18. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor.

    Science.gov (United States)

    Haque, Farzin; Lunn, Jennifer; Fang, Huaming; Smithrud, David; Guo, Peixuan

    2012-04-24

    A highly sensitive and reliable method to sense and identify a single chemical at extremely low concentrations and high contamination is important for environmental surveillance, homeland security, athlete drug monitoring, toxin/drug screening, and earlier disease diagnosis. This article reports a method for precise detection of single chemicals. The hub of the bacteriophage phi29 DNA packaging motor is a connector consisting of 12 protein subunits encircled into a 3.6 nm channel as a path for dsDNA to enter during packaging and to exit during infection. The connector has previously been inserted into a lipid bilayer to serve as a membrane-embedded channel. Herein we report the modification of the phi29 channel to develop a class of sensors to detect single chemicals. The lysine-234 of each protein subunit was mutated to cysteine, generating 12-SH ring lining the channel wall. Chemicals passing through this robust channel and interactions with the SH group generated extremely reliable, precise, and sensitive current signatures as revealed by single channel conductance assays. Ethane (57 Da), thymine (167 Da), and benzene (105 Da) with reactive thioester moieties were clearly discriminated upon interaction with the available set of cysteine residues. The covalent attachment of each analyte induced discrete stepwise blockage in current signature with a corresponding decrease in conductance due to the physical blocking of the channel. Transient binding of the chemicals also produced characteristic fingerprints that were deduced from the unique blockage amplitude and pattern of the signals. This study shows that the phi29 connector can be used to sense chemicals with reactive thioesters or maleimide using single channel conduction assays based on their distinct fingerprints. The results demonstrated that this channel system could be further developed into very sensitive sensing devices.

  19. Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry

    Science.gov (United States)

    Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini

    We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.

  20. A selectivity filter at the intracellular end of the acid-sensing ion channel pore

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Flood, Emelie; Boiteux, Céline

    2017-01-01

    Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verificatio...... at the "GAS belt" in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction....

  1. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3

    DEFF Research Database (Denmark)

    Tian, Yuemin; Bresenitz, Pia; Reska, Anna

    2017-01-01

    Acidic microenvironment is commonly observed in tumour tissues, including glioblastoma (GBM), the most aggressive and lethal brain tumour in adults. Acid sensing ion channels (ASICs) are neuronal voltage-insensitive sodium channels, which are sensors of extracellular protons. Here we studied...

  2. Subtype-specific Modulation of Acid-sensing Ion Channel (ASIC) Function by 2-Guanidine-4-methylquinazoline*

    Science.gov (United States)

    Alijevic, Omar; Kellenberger, Stephan

    2012-01-01

    Acid-sensing ion channels (ASICs) are neuronal Na+-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH. PMID:22948146

  3. Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline.

    Science.gov (United States)

    Alijevic, Omar; Kellenberger, Stephan

    2012-10-19

    Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mM, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.

  4. Acidosis counteracts itch tachyphylaxis to consecutive pruritogen exposure dependent on acid-sensing ion channel 3.

    Science.gov (United States)

    Jiang, Yi-Ming; Huang, Chen; Peng, Zhong; Han, Shao-Ling; Li, Wei-Guang; Zhu, Michael Xi; Xu, Tian-Le

    2017-01-01

    Tachyphylaxis of itch refers to a markedly reduced scratching response to consecutive exposures of a pruritogen, a process thought to protect against tissue damage by incessant scratching and to become disrupted in chronic itch. Here, we report that a strong stimulation of the Mas-related G-protein-coupled receptor C11 by its agonist, Ser-Leu-Ile-Gly-Arg-Leu-NH 2 (SL-NH 2 ) or bovine adrenal medulla 8-22 peptide, via subcutaneous injection in mice induces tachyphylaxis to the subsequent application of SL-NH 2 to the same site. Notably, co-application of acid and SL-NH 2 following the initial injection of the pruritogen alone counteracted itch tachyphylaxis by augmenting the scratching behaviors in wild-type but not in acid-sensing ion channel 3-null, animals. Using an activity-dependent silencing strategy, we identified that acid-sensing ion channel 3-mediated itch enhancement mainly occurred via the Mas-related G-protein-coupled receptor C11-responsive sensory neurons. Together, our results indicate that acid-sensing ion channel 3, activated by concomitant acid and certain pruritogens, constitute a novel signaling pathway that counteracts itch tachyphylaxis to successive pruritogenic stimulation, which likely contributes to chronic itch associated with tissue acidosis.

  5. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases.

    Science.gov (United States)

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu

    2016-08-01

    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H(+)-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson's disease, Huntington's disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases.

  6. Multi-Objective Clustering Optimization for Multi-Channel Cooperative Spectrum Sensing in Heterogeneous Green CRNs

    KAUST Repository

    Celik, Abdulkadir; Kamal, Ahmed E.

    2016-01-01

    ) with heterogeneous sensing and reporting channel qualities. We approach this issue from macro and micro perspectives. Macro perspective groups SUs into clusters with the objectives: 1) total energy consumption minimization; 2) total throughput maximization; and 3

  7. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  8. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    Science.gov (United States)

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  10. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    Science.gov (United States)

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  11. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    Science.gov (United States)

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  13. Endogenous Isoquinoline Alkaloids Agonists of Acid-Sensing Ion Channel Type 3

    Directory of Open Access Journals (Sweden)

    Dmitry I. Osmakov

    2017-09-01

    Full Text Available Acid-sensing ion channels (ASICs ASIC3 expressed mainly in peripheral sensory neurons play an important role in pain perception and inflammation development. In response to acidic stimuli, they can generate a unique biphasic current. At physiological pH 7.4, human ASIC3 isoform (hASIC3 is desensitized and able to generate only a sustained current. We found endogenous isoquinoline alkaloids (EIAs, which restore hASIC3 from desensitization and recover the transient component of the current. Similarly, rat ASIC3 isoform (rASIC3 can also be restored from desensitization (at pH < 7.0 by EIAs with the same potency. At physiological pH and above, EIAs at high concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found first endogenous agonists of ASIC3 channels that could both activate and prevent or reverse desensitization of the channel. The decrease of EIA levels could be suggested as a novel therapeutic strategy for treatment of pain and inflammation.

  14. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG

    Science.gov (United States)

    Trumpis, Michael; Insanally, Michele; Zou, Jialin; Elsharif, Ashraf; Ghomashchi, Ali; Sertac Artan, N.; Froemke, Robert C.; Viventi, Jonathan

    2017-04-01

    Objective. High channel count electrode arrays allow for the monitoring of large-scale neural activity at high spatial resolution. Implantable arrays featuring many recording sites require compact, high bandwidth front-end electronics. In the present study, we investigated the use of a small, light weight, and low cost digital current-sensing integrated circuit for acquiring cortical surface signals from a 61-channel micro-electrocorticographic (μECoG) array. Approach. We recorded both acute and chronic μECoG signal from rat auditory cortex using our novel digital current-sensing headstage. For direct comparison, separate recordings were made in the same anesthetized preparations using an analog voltage headstage. A model of electrode impedance explained the transformation between current- and voltage-sensed signals, and was used to reconstruct cortical potential. We evaluated the digital headstage using several metrics of the baseline and response signals. Main results. The digital current headstage recorded neural signal with similar spatiotemporal statistics and auditory frequency tuning compared to the voltage signal. The signal-to-noise ratio of auditory evoked responses (AERs) was significantly stronger in the current signal. Stimulus decoding based on true and reconstructed voltage signals were not significantly different. Recordings from an implanted system showed AERs that were detectable and decodable for 52 d. The reconstruction filter mitigated the thermal current noise of the electrode impedance and enhanced overall SNR. Significance. We developed and validated a novel approach to headstage acquisition that used current-input circuits to independently digitize 61 channels of μECoG measurements of the cortical field. These low-cost circuits, intended to measure photo-currents in digital imaging, not only provided a signal representing the local cortical field with virtually the same sensitivity and specificity as a traditional voltage headstage but

  15. The voltage-sensing domain of a phosphatase gates the pore of a potassium channel.

    Science.gov (United States)

    Arrigoni, Cristina; Schroeder, Indra; Romani, Giulia; Van Etten, James L; Thiel, Gerhard; Moroni, Anna

    2013-03-01

    The modular architecture of voltage-gated K(+) (Kv) channels suggests that they resulted from the fusion of a voltage-sensing domain (VSD) to a pore module. Here, we show that the VSD of Ciona intestinalis phosphatase (Ci-VSP) fused to the viral channel Kcv creates Kv(Synth1), a functional voltage-gated, outwardly rectifying K(+) channel. Kv(Synth1) displays the summed features of its individual components: pore properties of Kcv (selectivity and filter gating) and voltage dependence of Ci-VSP (V(1/2) = +56 mV; z of ~1), including the depolarization-induced mode shift. The degree of outward rectification of the channel is critically dependent on the length of the linker more than on its amino acid composition. This highlights a mechanistic role of the linker in transmitting the movement of the sensor to the pore and shows that electromechanical coupling can occur without coevolution of the two domains.

  16. A new automatic fixed peak technology of microcontroller

    International Nuclear Information System (INIS)

    Huang Liguo; Wang Dequan; Zhang Damin; Li Jun; Liu Yuwen; Guo Qingxue; Wang Guifeng

    1999-01-01

    The microcontroller automatic fixed peak technology which differs from fashion half channel fixed peak is described. It bases on the principles of selecting double single channel and readjusting the voltage of power source. This technology is suitable to the industrial isotope instruments with various radioactive sources

  17. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2013-01-01

    between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information

  18. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.

    Science.gov (United States)

    Clapham, David E; Miller, Christopher

    2011-12-06

    The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.

  19. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio

    2015-01-01

    Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins

  20. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  1. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    Science.gov (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  2. Supercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Sherkheli

    2012-01-01

    Full Text Available Transient receptor potential vanilloid subtype 3 (TRPV3 is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C, and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8 to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3 are shut off.

  3. Massive-MIMO Sparse Uplink Channel Estimation Using Implicit Training and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Babar Mansoor

    2017-01-01

    Full Text Available Massive multiple-input multiple-output (massive-MIMO is foreseen as a potential technology for future 5G cellular communication networks due to its substantial benefits in terms of increased spectral and energy efficiency. These advantages of massive-MIMO are a consequence of equipping the base station (BS with quite a large number of antenna elements, thus resulting in an aggressive spatial multiplexing. In order to effectively reap the benefits of massive-MIMO, an adequate estimate of the channel impulse response (CIR between each transmit–receive link is of utmost importance. It has been established in the literature that certain specific multipath propagation environments lead to a sparse structured CIR in spatial and/or delay domains. In this paper, implicit training and compressed sensing based CIR estimation techniques are proposed for the case of massive-MIMO sparse uplink channels. In the proposed superimposed training (SiT based techniques, a periodic and low power training sequence is superimposed (arithmetically added over the information sequence, thus avoiding any dedicated time/frequency slots for the training sequence. For the estimation of such massive-MIMO sparse uplink channels, two greedy pursuits based compressed sensing approaches are proposed, viz: SiT based stage-wise orthogonal matching pursuit (SiT-StOMP and gradient pursuit (SiT-GP. In order to demonstrate the validity of proposed techniques, a performance comparison in terms of normalized mean square error (NCMSE and bit error rate (BER is performed with a notable SiT based least squares (SiT-LS channel estimation technique. The effect of channels’ sparsity, training-to-information power ratio (TIR and signal-to-noise ratio (SNR on BER and NCMSE performance of proposed schemes is thoroughly studied. For a simulation scenario of: 4 × 64 massive-MIMO with a channel sparsity level of 80 % and signal-to-noise ratio (SNR of 10 dB , a performance gain of 18 dB and 13 d

  4. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Directory of Open Access Journals (Sweden)

    Tzilhav Shem-Ad

    Full Text Available The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  5. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Science.gov (United States)

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  6. MOLECULAR PATHOPHYSIOLOGY AND PHARMACOLOGY OF THE VOLTAGE-SENSING DOMAIN OF NEURONAL ION CHANNELS

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2015-07-01

    Full Text Available Voltage-gated ion channels (VGIC are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGIC in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided in two main regions: the Pore Module (PM and the Voltage-Sensing Module (VSM. The PM (helices S5 and S6 and intervening linker is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4, undergoes the first conformational changes in response to membrane voltage. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters, to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively

  7. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    Science.gov (United States)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  8. The Voltage-Sensing Domain of Kv7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2010-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2–Kv7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability. PMID:21687499

  9. The voltage-sensing domain of kv7.2 channels as a molecular target for epilepsy-causing mutations and anticonvulsants

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2011-02-01

    Full Text Available Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically-determined channelopathies affecting heart rhythm (arrhythmias, neuronal excitability (epilepsy, pain or skeletal muscle contraction (periodic paralysis. Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function.In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2-5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically-determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  10. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel.

    Science.gov (United States)

    Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J

    2006-11-22

    Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.

  11. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  12. Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.

    Science.gov (United States)

    Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir

    2010-05-19

    Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  14. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    Science.gov (United States)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  15. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    OpenAIRE

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitu...

  16. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-01-01

    Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.

  17. A new ion sensing deep atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  18. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain.

    Science.gov (United States)

    Nakajo, Koichi; Kubo, Yoshihiro

    2015-06-15

    The gating of the KCNQ1 potassium channel is drastically regulated by auxiliary subunit KCNE proteins. KCNE1, for example, slows the activation kinetics of KCNQ1 by two orders of magnitude. Like other voltage-gated ion channels, the opening of KCNQ1 is regulated by the voltage-sensing domain (VSD; S1-S4 segments). Although it has been known that KCNE proteins interact with KCNQ1 via the pore domain, some recent reports suggest that the VSD movement may be altered by KCNE. The altered VSD movement of KCNQ1 by KCNE proteins has been examined by site-directed mutagenesis, the scanning cysteine accessibility method (SCAM), voltage clamp fluorometry (VCF) and gating charge measurements. These accumulated data support the idea that KCNE proteins interact with the VSDs of KCNQ1 and modulate the gating of the KCNQ1 channel. In this review, we will summarize recent findings and current views of the KCNQ1 modulation by KCNE via the VSD. In this context, we discuss our recent findings that KCNE1 may alter physical interactions between the S4 segment (VSD) and the S5 segment (pore domain) of KCNQ1. Based on these findings from ourselves and others, we propose a hypothetical mechanism for how KCNE1 binding alters the VSD movement and the gating of the channel. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    Science.gov (United States)

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Swartz, Kenton J.

    2000-01-01

    Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1–S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20–25 Å away from the central pore axis. PMID:10828242

  1. Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.

    Science.gov (United States)

    Hong, Liang; Pathak, Medha M; Kim, Iris H; Ta, Dennis; Tombola, Francesco

    2013-01-23

    Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2011-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  3. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Science.gov (United States)

    Lyu, Letian; Jaswal, Perveshwer; Xu, Guangyu

    2018-03-01

    Graphene field-effect transistors (GFET) hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR) and graphene sheets (GS) show comparable sensing signals to each other when gated at 1011 - 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  4. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Directory of Open Access Journals (Sweden)

    Letian Lyu

    2018-03-01

    Full Text Available Graphene field-effect transistors (GFET hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR and graphene sheets (GS show comparable sensing signals to each other when gated at 1011 – 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  5. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  6. Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Tsuchimochi, Hirotsugu; Kaufman, Marc P.

    2009-01-01

    The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arteri...

  7. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  8. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.

    Science.gov (United States)

    Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu

    2007-12-28

    Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.

  9. Multi-Objective Clustering Optimization for Multi-Channel Cooperative Spectrum Sensing in Heterogeneous Green CRNs

    KAUST Repository

    Celik, Abdulkadir

    2016-06-27

    In this paper, we address energy efficient (EE) cooperative spectrum sensing policies for large scale heterogeneous cognitive radio networks (CRNs) which consist of multiple primary channels and large number of secondary users (SUs) with heterogeneous sensing and reporting channel qualities. We approach this issue from macro and micro perspectives. Macro perspective groups SUs into clusters with the objectives: 1) total energy consumption minimization; 2) total throughput maximization; and 3) inter-cluster energy and throughput fairness. We adopt and demonstrate how to solve these using the nondominated sorting genetic algorithm-II. The micro perspective, on the other hand, operates as a sub-procedure on cluster formations decided by the macro perspective. For the micro perspectives, we first propose a procedure to select the cluster head (CH) which yields: 1) the best CH which gives the minimum total multi-hop error rate and 2) the optimal routing paths from SUs to the CH. Exploiting Poisson-Binomial distribution, a novel and generalized K-out-of-N voting rule is developed for heterogeneous CRNs to allow SUs to have different local detection performances. Then, a convex optimization framework is established to minimize the intra-cluster energy cost by jointly obtaining the optimal sensing durations and thresholds of feature detectors for the proposed voting rule. Likewise, instead of a common fixed sample size test, we developed a weighted sample size test for quantized soft decision fusion to obtain a more EE regime under heterogeneity. We have shown that the combination of proposed CH selection and cooperation schemes gives a superior performance in terms of energy efficiency and robustness against reporting error wall.

  10. Acid-sensing ion and epithelial sodium channels do not contribute to the mechanoreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Hayes, Shawn G.; Kaufman, Marc P.

    2008-01-01

    Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because...

  11. α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.

    2000-01-01

    Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917

  12. Optimality of Multichannel Myopic Sensing in the Presence of Sensing Error for Opportunistic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Xiaofeng Jiang

    2013-01-01

    Full Text Available The optimization problem for the performance of opportunistic spectrum access is considered in this study. A user, with the limited sensing capacity, has opportunistic access to a communication system with multiple channels. The user can only choose several channels to sense and decides whether to access these channels based on the sensing information in each time slot. Meanwhile, the presence of sensing error is considered. A reward is obtained when the user accesses a channel. The objective is to maximize the expected (discounted or average reward accrued over an infinite horizon. This problem can be formulated as a partially observable Markov decision process. This study shows the optimality of the simple and robust myopic policy which focuses on maximizing the immediate reward. The results show that the myopic policy is optimal in the case of practical interest.

  13. JADSPE, Multi-Channel Gamma Spectra Unfolding Program

    International Nuclear Information System (INIS)

    Rikovska, J.; Stejskalova, E.

    2005-01-01

    1 - Description of program or function: JADSPE is a package of eight programs to process multi-channel gamma-ray spectra. The programs can be used to: - locate automatically spectral peaks and calculate their positions, areas, and full widths at half maximum (FWHM); - plot the spectra on a CALCOMP plotter, TEKTRONIX terminal or a line printer; - add or subtract several spectra with the possibility of adjusting either their start and end channels or the maxima of the chosen corresponding peaks. The JADSPE package comprises the following programs: - SPECTF: automatic location of peaks and calculation of their positions, areas and FWHMS. The standard deviations of peak parameters are also determined, and each evaluated region is plotted on the line printer. - SPECT1: The areas and FWHMs are calculated for peaks whose positions are known beforehand. The standard deviations of calculated parameters are also determined, and each evaluated region is plotted on the line printer. - PLOCHA: The peak net area is calculated by summing the channel contents in specified regions and by subtracting a linear background. - GRAPH: Spectrum plotting on the line printer. - PLTNEW: Spectrum plotting on CALCOMP plotter or on TEKTRONIX terminal. - SUMDIF: The channel contents of several gamma-ray spectra are added or subtracted. - SSPFP: The channel contents of several gamma-ray spectra are added with adjustment of the maxima of specified peaks. - SOUCET: The channel contents of several gamma-ray spectra are added with the adjustment of start and end channels of the spectra. 2 - Method of solution: Non-linear least-square fit. 3 - Restrictions on the complexity of the problem: The full energy peaks are approximated by a symmetrical Gaussian function and the underlying background is approximated by a first-order polynomial. A fixed spectrum length of 4096 channels is assumed. Maxima of: - number of peaks in one multiplet: 9; - number of peaks identified by the automatic search procedure

  14. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  15. Chronic exposure to KATP channel openers results in attenuated glucose sensing in hypothalamic GT1-7 neurons.

    Science.gov (United States)

    Haythorne, Elizabeth; Hamilton, D Lee; Findlay, John A; Beall, Craig; McCrimmon, Rory J; Ashford, Michael L J

    2016-12-01

    Individuals with Type 1 diabetes (T1D) are often exposed to recurrent episodes of hypoglycaemia. This reduces hormonal and behavioural responses that normally counteract low glucose in order to maintain glucose homeostasis, with altered responsiveness of glucose sensing hypothalamic neurons implicated. Although the molecular mechanisms are unknown, pharmacological studies implicate hypothalamic ATP-sensitive potassium channel (K ATP ) activity, with K ATP openers (KCOs) amplifying, through cell hyperpolarization, the response to hypoglycaemia. Although initial findings, using acute hypothalamic KCO delivery, in rats were promising, chronic exposure to the KCO NN414 worsened the responses to subsequent hypoglycaemic challenge. To investigate this further we used GT1-7 cells to explore how NN414 affected glucose-sensing behaviour, the metabolic response of cells to hypoglycaemia and K ATP activity. GT1-7 cells exposed to 3 or 24 h NN414 exhibited an attenuated hyperpolarization to subsequent hypoglycaemic challenge or NN414, which correlated with diminished K ATP activity. The reduced sensitivity to hypoglycaemia was apparent 24 h after NN414 removal, even though intrinsic K ATP activity recovered. The NN414-modified glucose responsiveness was not associated with adaptations in glucose uptake, metabolism or oxidation. K ATP inactivation by NN414 was prevented by the concurrent presence of tolbutamide, which maintains K ATP closure. Single channel recordings indicate that NN414 alters K ATP intrinsic gating inducing a stable closed or inactivated state. These data indicate that exposure of hypothalamic glucose sensing cells to chronic NN414 drives a sustained conformational change to K ATP , probably by binding to SUR1, that results in loss of channel sensitivity to intrinsic metabolic factors such as MgADP and small molecule agonists. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Upper limit of peak area

    International Nuclear Information System (INIS)

    Helene, O.A.M.

    1982-08-01

    The determination of the upper limit of peak area in a multi-channel spectra, with a known significance level is discussed. This problem is specially important when the peak area is masked by the background statistical fluctuations. The problem is exactly solved and, thus, the results are valid in experiments with small number of events. The results are submitted to a Monte Carlo test and applied to the 92 Nb beta decay. (Author) [pt

  17. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly

    OpenAIRE

    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang

    2016-01-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this d...

  18. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  19. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. NMR investigation of the isolated second voltage-sensing domain of human Nav1.4 channel.

    Science.gov (United States)

    Paramonov, A S; Lyukmanova, E N; Myshkin, M Yu; Shulepko, M A; Kulbatskii, D S; Petrosian, N S; Chugunov, A O; Dolgikh, D A; Kirpichnikov, M P; Arseniev, A S; Shenkarev, Z O

    2017-03-01

    Voltage-gated Na + channels are essential for the functioning of cardiovascular, muscular, and nervous systems. The α-subunit of eukaryotic Na + channel consists of ~2000 amino acid residues and encloses 24 transmembrane (TM) helices, which form five membrane domains: four voltage-sensing (VSD) and one pore domain. The structural complexity significantly impedes recombinant production and structural studies of full-sized Na + channels. Modular organization of voltage-gated channels gives an idea for studying of the isolated second VSD of human skeletal muscle Nav1.4 channel (VSD-II). Several variants of VSD-II (~150a.a., four TM helices) with different N- and C-termini were produced by cell-free expression. Screening of membrane mimetics revealed low stability of VSD-II samples in media containing phospholipids (bicelles, nanodiscs) associated with the aggregation of electrically neutral domain molecules. The almost complete resonance assignment of 13 C, 15 N-labeled VSD-II was obtained in LPPG micelles. The secondary structure of VSD-II showed similarity with the structures of bacterial Na + channels. The fragment of S4 TM helix between the first and second conserved Arg residues probably adopts 3 10 -helical conformation. Water accessibility of S3 helix, observed by the Mn 2+ titration, pointed to the formation of water-filled crevices in the micelle embedded VSD-II. 15 N relaxation data revealed characteristic pattern of μs-ms time scale motions in the VSD-II regions sharing expected interhelical contacts. VSD-II demonstrated enhanced mobility at ps-ns time scale as compared to isolated VSDs of K + channels. These results validate structural studies of isolated VSDs of Na + channels and show possible pitfalls in application of this 'divide and conquer' approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fingerprinting of Peptides with a Large Channel of Bacteriophage Phi29 DNA Packaging Motor.

    Science.gov (United States)

    Ji, Zhouxiang; Wang, Shaoying; Zhao, Zhengyi; Zhou, Zhi; Haque, Farzin; Guo, Peixuan

    2016-09-01

    Nanopore technology has become a highly sensitive and powerful tool for single molecule sensing of chemicals and biopolymers. Protein pores have the advantages of size amenability, channel homogeneity, and fabrication reproducibility. But most well-studied protein pores for sensing are too small for passage of peptide analytes that are typically a few nanometers in dimension. The funnel-shaped channel of bacteriophage phi29 DNA packaging motor has previously been inserted into a lipid membrane to serve as a larger pore with a narrowest N-terminal constriction of 3.6 nm and a wider C-terminal end of 6 nm. Here, the utility of phi29 motor channel for fingerprinting of various peptides using single molecule electrophysiological assays is reported. The translocation of peptides is proved unequivocally by single molecule fluorescence imaging. Current blockage percentage and distinctive current signatures are used to distinguish peptides with high confidence. Each peptide generated one or two distinct current blockage peaks, serving as typical fingerprint for each peptide. The oligomeric states of peptides can also be studied in real time at single molecule level. The results demonstrate the potential for further development of phi29 motor channel for detection of disease-associated peptide biomarkers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification of acid-sensing ion channels in adenoid cystic carcinomas

    International Nuclear Information System (INIS)

    Ye Jinhai; Gao Jun; Wu Yunong; Hu Yongjie; Zhang Chenping; Xu Tianle

    2007-01-01

    Tissue acidosis is an important feature of tumor. The response of adenoid cystic carcinoma (ACC) cells to acidic solution was studied using whole-cell patch-clamp recording in the current study. An inward, amiloride-sensitive Na + current was identified in cultured ACC-2 cells while not in normal human salivary gland epithelial cells. Electrophysiological and pharmacological properties of the currents suggest that heteromeric acid-sensing ion channels (ASICs) containing 2a and 3 may be responsible for the proton-induced currents in the majority of ACC-2 cells. Consistent with it, analyses of RT-PCR and Western blotting demonstrated the presences of ASIC2a and 3 in ACC-2 cells. Furthermore, we observed the enhanced expression of ASIC2a and 3 in the sample of ACC tissues. These results indicate that the functional expression of ASICs is characteristic feature of ACC cells

  3. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.

    Science.gov (United States)

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris

    2018-03-31

    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  4. "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.

    Science.gov (United States)

    Bougot-Robin, Kristelle; Li, Shunbo; Zhang, Yinghua; Hsing, I-Ming; Benisty, Henri; Wen, Weijia

    2012-10-21

    A novel imaging method for bulk refractive index sensing or label-free bio-molecular interaction sensing is presented. This method is based on specially designed "Peak tracking chip" (PTC) involving "tracks" of adjacent resonant waveguide gratings (RWG) "micropads" with slowly evolving resonance position. Using a simple camera the spatial information robustly retrieves the diffraction efficiency, which in turn transduces either the refractive index of the liquids on the tracks or the effective thickness of an immobilized biological layer. Our intrinsically multiplex chip combines tunability and versatility advantages of dielectric guided wave biochips without the need of costly hyperspectral instrumentation. The current success of surface plasmon imaging techniques suggests that our chip proposal could leverage an untapped potential to routinely extend such techniques in a convenient and sturdy optical configuration toward, for instance for large analytes detection. PTC design and fabrication are discussed with challenging process to control micropads properties by varying their period (step of 2 nm) or their duty cycle through the groove width (steps of 4 nm). Through monochromatic imaging of our PTC, we present experimental demonstration of bulk index sensing on the range [1.33-1.47] and of surface biomolecule detection of molecular weight 30 kDa in aqueous solution using different surface densities. A sensitivity of the order of 10(-5) RIU for bulk detection and a sensitivity of the order of ∼10 pg mm(-2) for label-free surface detection are expected, therefore opening a large range of application of our chip based imaging technique. Exploiting and chip design, we expect as well our chip to open new direction for multispectral studies through imaging.

  5. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms.

    Science.gov (United States)

    Cristofori-Armstrong, Ben; Rash, Lachlan D

    2017-12-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  7. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  8. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  9. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    Science.gov (United States)

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-16

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH 100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception. © 2011 Macmillan Publishers Limited. All rights reserved

  10. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  11. Nuclear spectroscopy - maximum attainable accuracy in the calculation of peak area

    International Nuclear Information System (INIS)

    Supian Samat; Evans, C.J.

    1989-01-01

    The general principles are discussed for the analysis of a peak of arbitrary shape (including the case of multiple peaks) superimposed on a background of arbitrary shape. Application of these principles to the case of a small Gaussian peak on a flat background gives a rule for determining how many channels should be included in the analysis so that accuracy should not be lost, and how many channels in the background should be included in estimating the standard error in the peak area. It is shown that the use of an approximate method of analysis may lead to a significant loss of accuracy, and to a significant over-estimation of the standard error. (author)

  12. Trade Union Channels for Influencing European Union Policies

    Directory of Open Access Journals (Sweden)

    Bengt Larsson

    2015-10-01

    Full Text Available This paper analyzes what channels trade unions in Europe use when trying to influence European Union (EU policies. It compares and contrasts trade unions in different industrial relations regimes with regard to the degree to which they cooperate with different actors to influence EU policies, while also touching on the importance of sector differences and organizational resources. The study is based on survey data collected in 2010–2011 from unions affiliated with the European Trade Union Confederation and from below peak unions in 14 European countries. Results of the survey show that the ‘national route’ is generally the most important for trade unions in influencing EU policies in the sense that this channel is, on average, used to the highest degree. In addition, the survey delineates some important differences between trade unions in different industrial relations regimes with regard to the balance between the national route and different access points in the ‘Brussels route’.

  13. Redox signaling in acute oxygen sensing

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2017-08-01

    Full Text Available Acute oxygen (O2 sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB is the main peripheral chemoreceptor, which contains excitable and O2-sensitive glomus cells with O2-regulated ion channels. Upon exposure to acute hypoxia, inhibition of K+ channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K+ channels. We propose that the structural substrates for acute O2 sensing in CB glomus cells are “O2-sensing microdomains” formed by mitochondria and neighboring K+ channels in the plasma membrane. Keywords: Hypoxia, Acute oxygen sensing, Peripheral chemoreceptors, Carotid body, Adrenal medulla, Mitochondrial complex I, Reactive oxygen species (ROS, Pyridine nucleotides

  14. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    Science.gov (United States)

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  15. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  16. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real

  17. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    International Nuclear Information System (INIS)

    Lyu, Hong-Kun; Kim, Dong-Sun; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun; Park, Hey-Jung; Park, Chin-Sung; Lim, Geun-Bae

    2004-01-01

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At V DS = -5 V and V GS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  18. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures

    Directory of Open Access Journals (Sweden)

    Tomaž Podobnikar

    2012-03-01

    Full Text Available The detection of peaks (summits as the upper parts of mountains and the delineation of their shape is commonly confirmed by inspections carried out by mountaineers. In this study the complex task of peak detection and shape delineation is solved by autometric methodological procedures, more precisely, by developing relatively simple but innovative image-processing and spatial-analysis techniques (e.g., developing inventive variables using an annular moving window in remote sensing and GIS domains. The techniques have been integrated into automated morphometric methodological procedures. The concepts of peaks and their shapes (sharp, blunt, oblong, circular and conical were parameterized based on topographic and morphologic criteria. A geomorphologically high quality DEM was used as a fundamental dataset. The results, detected peaks with delineated shapes, have been integratively enriched with numerous independent datasets (e.g., with triangulated spot heights and information (e.g., etymological information, and mountaineering criteria have been implemented to improve the judgments. This holistic approach has proved the applicability of both highly standardized and universal parameters for the geomorphologically diverse Kamnik Alps case study area. Possible applications of this research are numerous, e.g., a comprehensive quality control of DEM or significantly improved models for the spatial planning proposes.

  19. The importance of visitors' knowledge of the cultural and natural history of the Adirondacks in influencing sense of place in the high peaks region

    Science.gov (United States)

    Laura Fredrickson

    2002-01-01

    This study examined various dimensions of the sense of place experience felt by visitors to the High Peaks of the Adirondack Park. More specifically, a 6-page questionnaire (mail-back postage-paid) was distributed to 803 people over a three-month period (June, July & August, 1999). The two primary objectives of this study were to: 1) explore the various...

  20. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  1. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  2. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells.

    Science.gov (United States)

    Gunthorpe, M J; Smith, G D; Davis, J B; Randall, A D

    2001-08-01

    Acid-sensing ion channels (ASICs) are a new and expanding family of proton-gated cation (Na+/Ca2+) channels that are widely expressed in sensory neurons and the central nervous system. Their distribution suggests that they may play a critical role in the sensation of the pain that accompanies tissue acidosis and may also be important in detecting the subtle pH variations that occur during neuronal signalling. Here, using whole-cell patch-clamp electrophysiology and reverse transcriptase-polymerase chain reaction (RT-PCR), we show that HEK293 cells, a commonly used cell line for the expression and characterisation of many ion channels, functionally express an endogenous proton-gated conductance attributable to the activity of human ASIC1a. These data therefore represent the first functional characterisation of hASIC1 and have many important implications for the use of HEK293 cells as a host cell system for the study of ASICs, vanilloid receptor-1 and any other proton-gated channel. With this latter point in mind we have devised a simple desensitisation strategy to selectively remove the contribution of hASIC1a from proton-gated currents recorded from HEK293 cells expressing vanilloid receptor-1.

  3. Optical timing receiver for the NASA Spaceborne Ranging System. Part I. Dual peak-sensing timing discriminator

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.; Zizka, G.

    1978-01-01

    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the time-resolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to their time-resolution capabilities, to design a very low time walk timing discriminator and to develop a high-resolution event-timing digitizer which will be used in the high-resolution spaceborne laser ranging system receiver. The development of a new dual-peak sensing timing discriminator is described. The amplitude dependent time walk is less than +-150 psec for a 100:1 dynamic range of Gaussian-shaped input signals having pulse widths between 11 and 17 nsec. The unit produces 800 mV negative output pulses, each 10 nsec wide, and 3V positive pulses with widths of 15 nsec. The time delay through the discriminator is approximately 37 nsec. In this discriminator the input signal is processed by a peak-crossing circuit which produces a bipolar pulse having its zero-crossing point at the peak of the input signal. All essential functions in the discriminator are performed by means of tunnel diodes with backward diodes as nonlinear loads. The discriminator is designed to be CAMAC compatible to a conventional time-interval unit or a high-precision event timing digitizer. The adjustment procedure for obtaining minimum time walk is also given

  4. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    Science.gov (United States)

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  5. Naked mole-rat acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers.

    Science.gov (United States)

    Schuhmacher, Laura-Nadine; Callejo, Gerard; Srivats, Shyam; Smith, Ewan St John

    2018-02-02

    Acid-sensing ion channels (ASICs) form both homotrimeric and heterotrimeric ion channels that are activated by extracellular protons and are involved in a wide range of physiological and pathophysiological processes, including pain and anxiety. ASIC proteins can form both homotrimeric and heterotrimeric ion channels. The ASIC3 subunit has been shown to be of particular importance in the peripheral nervous system with pharmacological and genetic manipulations demonstrating a role in pain. Naked mole-rats, despite having functional ASICs, are insensitive to acid as a noxious stimulus and show diminished avoidance of acidic fumes, ammonia, and carbon dioxide. Here we cloned naked mole-rat ASIC3 (nmrASIC3) and used a cell-surface biotinylation assay to demonstrate that it traffics to the plasma membrane, but using whole-cell patch clamp electrophysiology we observed that nmrASIC3 is insensitive to both protons and the non-proton ASIC3 agonist 2-guanidine-4-methylquinazoline. However, in line with previous reports of ASIC3 mRNA expression in dorsal root ganglia neurons, we found that the ASIC3 antagonist APETx2 reversibly inhibits ASIC-like currents in naked mole-rat dorsal root ganglia neurons. We further show that like the proton-insensitive ASIC2b and ASIC4, nmrASIC3 forms functional, proton-sensitive heteromers with other ASIC subunits. An amino acid alignment of ASIC3s between 9 relevant rodent species and human identified unique sequence differences that might underlie the proton insensitivity of nmrASIC3. However, introducing nmrASIC3 differences into rat ASIC3 (rASIC3) produced only minor differences in channel function, and replacing the nmrASIC3 sequence with that of rASIC3 did not produce a proton-sensitive ion channel. Our observation that nmrASIC3 forms nonfunctional homomers may reflect a further adaptation of the naked mole-rat to living in an environment with high-carbon dioxide levels. © 2018 by The American Society for Biochemistry and Molecular

  6. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  7. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho; Han, Hyemi; Seo, Jooyeok; Song, Myeonghun; Kim, Hwajeong; Anthopoulos, Thomas D.; McCulloch, Iain; Bradley, Donal D C; Kim, Youngkyoo

    2016-01-01

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  8. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  9. Analysis for reflection peaks of multiple-phase-shift based sampled fiber Bragg gratings and application in high channel-count filter design.

    Science.gov (United States)

    Wen, Kun Hua; Yan, Lian Shan; Pan, Wei; Luo, Bin; Zou, Xi Hua; Ye, Jia; Ma, Ya Nan

    2009-10-10

    An analytical expression for calculating the reflection-peak wavelengths (RPWs) of a uniform sampled fiber Bragg grating (SFBG) with the multiple-phase-shift (MPS) technique is derived through Fourier transform of the index modulation. The new expression can accurately depict the RPWs incorporating various parameters such as the duty cycle and the DC index change. The effectiveness of the derived expression is further confirmed by comparing the RPWs estimated from the expression with the simulated reflective spectra using the piecewise uniform method. And the reflective spectrum has been well optimized by introducing the Gaussian apodization function to suppress the sidelobes without any wavelength shift on the RPWs. Then, a high-channel-count comb filter based on MPS is proposed by cascading two or more SFBGs with different Bragg periods but with the same RPWs. Noticeably, the RPWs of the new structured SFBG can also be accurately calculated through the expression. Furthermore, the number of spectral channels can be controlled by choosing gratings with specified difference Bragg periods.

  10. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.

    2013-05-22

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.; Li, S.; Yue, W.; Chen, L. Q.; Zhang, Xixiang; Wen, W. J.; Benisty, H.

    2013-01-01

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  12. Tests of peak flow scaling in simulated self-similar river networks

    Science.gov (United States)

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  13. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene.

    Directory of Open Access Journals (Sweden)

    Aram J Krauson

    Full Text Available Acid-sensing ion channels (ASICs are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50 of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.

  14. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  15. The use of compressive sensing and peak detection in the reconstruction of microtubules length time series in the process of dynamic instability.

    Science.gov (United States)

    Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A

    2015-10-01

    Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Multi-channel integrated circuits for the detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Engel, G.L.; Duggireddi, N.; Vangapally, V.; Elson, J.M.; Sobotka, L.G.; Charity, R.J.

    2011-01-01

    The Integrated Circuits (IC) Design Research Laboratory at Southern Illinois University Edwardsville (SIUE) has collaborated with the Nuclear Reactions Group at Washington University (WU) to develop a family of multi-channel integrated circuits. To date, the collaboration has successfully produced two micro-chips. The first was an analog shaped and peak sensing chip with on-board constant-fraction discriminators and sparsified readout. This chip is known as Heavy-Ion Nuclear Physics-16 Channel (HINP16C). The second chip, christened PSD8C, was designed to logically complement (in terms of detector types) the HINP16C chip. Pulse Shape Discrimination-8 Channel (PSD8C), featuring three settable charge integration windows per channel, performs pulse shape discrimination (PSD). This paper summarizes the design, capabilities, and features of the HINP16C and PSD8C ICs. It proceeds to discuss the modifications, made to the ICs and their associated systems, which have attempted to improve ease of use, increase performance, and extend capabilities. The paper concludes with a brief discussion of what may be the next chip (employing a multi-sampling scheme) to be added to our CMOS ASIC 'tool box' for radiation detection instrumentation.

  17. Resource-Efficient Fusion with Pre-Compensated Transmissions for Cooperative Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Dayan Adionel Guimarães

    2015-05-01

    Full Text Available Recently, a novel fusion scheme for cooperative spectrum sensing was proposed for saving resources in the control channel. Secondary users (SUs simultaneously report their decisions using binary modulations with the same carrier frequencies. The transmitted symbols add incoherently at the fusion centre (FC, leading to a larger set of symbols in which a subset is associated with the presence of the primary user (PU signal, and another subset is associated with the absence of such a signal. The decision criterion applied for discriminating these subsets works under the assumption that the channel gains are known at the FC. In this paper, we propose a new simultaneous transmission and decision scheme in which the task of channel estimation is shifted from the FC to the SUs, without the need for feeding-back of the estimates to the FC. The estimates are used at the SUs to pre-compensate for the reporting channel phase rotations and to partially compensate for the channel gains. This partial compensation is the result of signal clipping for peak-to-average power ratio (PAPR control. We show, analytically and with simulations, that this new scheme can produce large performance improvements, yet reduces the implementation complexity when compared with the original one.

  18. Advanced carrier sensing to resolve local channel congestion

    NARCIS (Netherlands)

    Schmidt, Robert K.; Brakemeier, Achim; Leinmüller, Tim; Kargl, Frank; Schäfer, Günther

    Communication performance in VANETs under high channel load is significantly degraded due to packet collisions and messages drops, also referred to as local channel congestion. So far, research was focused on the control of transmit power and the limitation of the messages rate to mitigate the

  19. Emerging Use of Dual Channel Infrared for Remote Sensing of Sea Ice

    Science.gov (United States)

    Lewis, N. S.; Serreze, M. C.; Gallaher, D. W.; Koenig, L.; Schaefer, K. M.; Campbell, G. G.; Thompson, J. A.; Grant, G.; Fetterer, F. M.

    2017-12-01

    Using GOES-16 data as a proxy for overhead persistent infrared, we examine the feasibility of using a dual channel shortwave / midwave infrared (SWIR/MWIR) approach to detect and chart sea ice in Hudson Bay through a series of images with a temporal scale of less than fifteen minutes. While not traditionally exploited for sea ice remote sensing, the availability of near continuous shortwave and midwave infrared data streams over the Arctic from overhead persistent infrared (OPIR) satellites could provide an invaluable source of information regarding the changing Arctic climate. Traditionally used for the purpose of missile warning and strategic defense, characteristics of OPIR make it an attractive source for Arctic remote sensing as the temporal resolution can provide insight into ice edge melt and motion processes. Fundamentally, the time series based algorithm will discern water/ice/clouds using a SWIR/MWIR normalized difference index. Cloud filtering is accomplished through removing pixels categorized as clouds while retaining a cache of previous ice/water pixels to replace any cloud obscured (and therefore omitted) pixels. Demonstration of the sensitivity of GOES-16 SWIR/MWIR to detect and discern water/ice/clouds provides a justification for exploring the utility of military OPIR sensors for civil and commercial applications. Potential users include the scientific community as well as emergency responders, the fishing industry, oil and gas industries, and transportation industries that are seeking to exploit changing conditions in the Arctic but require more accurate and timely ice charting products.

  20. Well-Defined Microapertures for Ion Channel Biosensors

    NARCIS (Netherlands)

    Halza, Erik; Bro, Tobias Hedegaard; Bilenberg, Brian; Kocer, Armagan

    2013-01-01

    Gated ion channels are excitable nanopores in biological membranes. They sense and respond to different triggers in nature. The sensory characteristics of these channels can be modified by protein engineering tools and the channels can be functionally reconstituted into synthetic lipid bilayer

  1. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    Science.gov (United States)

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  2. The environmental impacts of peaking at hydropower plants

    International Nuclear Information System (INIS)

    Halleraker, Jo Halvard

    2001-01-01

    A recent energy act in Norway allows hydropower plants to be operated so that hydro peaking is permitted. However, it is uncertain how fish react to the variations in discharge and depth that follow hydro peaking. SINTEF Energy Research is cooperating with other research institutions to investigate the consequences of these variations on the biota. Among the research tools is an aqua channel which is an indoor laboratory flume where fish behaviour can be studied in detail. It has been constructed to provide the hydropower industry and public authorities with means of better determining the effects of hydro peaking. (author)

  3. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    Science.gov (United States)

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  4. Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.

    Science.gov (United States)

    Zhang, M; Liu, J; Jiang, M; Wu, D-M; Sonawane, K; Guy, H R; Tseng, G-N

    2005-10-01

    Studies on voltage-gated K channels such as Shaker have shown that positive charges in the voltage-sensor (S4) can form salt bridges with negative charges in the surrounding transmembrane segments in a state-dependent manner, and different charge pairings can stabilize the channels in closed or open states. The goal of this study is to identify such charge interactions in the hERG channel. This knowledge can provide constraints on the spatial relationship among transmembrane segments in the channel's voltage-sensing domain, which are necessary for modeling its structure. We first study the effects of reversing S4's positive charges on channel activation. Reversing positive charges at the outer (K525D) and inner (K538D) ends of S4 markedly accelerates hERG activation, whereas reversing the 4 positive charges in between either has no effect or slows activation. We then use the 'mutant cycle analysis' to test whether D456 (outer end of S2) and D411 (inner end of S1) can pair with K525 and K538, respectively. Other positive charges predicted to be able, or unable, to interact with D456 or D411 are also included in the analysis. The results are consistent with predictions based on the distribution of these charged residues, and confirm that there is functional coupling between D456 and K525 and between D411 and K538.

  5. ASIC2 Subunits Target Acid-Sensing Ion Channels to the Synapse via an Association with PSD-95

    OpenAIRE

    Zha, Xiang-ming; Costa, Vivian; Harding, Anne Marie S.; Reznikov, Leah; Benson, Christopher J.; Welsh, Michael J.

    2009-01-01

    Acid-sensing ion channel-1a (ASIC1a) mediates H+-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not co-immunoprecipitate with PSD-95. We found that ASIC2...

  6. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo

    2005-11-01

    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  7. KCNQ1 channels sense small changes in cell volume

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; MacAulay, Nanna

    2003-01-01

    Many important physiological processes involve changes in cell volume, e.g. the transport of salt and water in epithelial cells and the contraction of cardiomyocytes. In this study, we show that voltage-gated KCNQ1 channels, which are strongly expressed in epithelial cells or cardiomyocytes......, and KCNQ4 channels, expressed in hair cells and the auditory tract, are tightly regulated by small cell volume changes when co-expressed with aquaporin 1 water-channels (AQP1) in Xenopus oocytes. The KCNQ1 and KCNQ4 current amplitudes precisely reflect the volume of the oocytes. By contrast, the related...... KCNQ2 and KCNQ3 channels, which are prominently expressed in neurons, are insensitive to cell volume changes. The sensitivity of the KCNQ1 and KCNQ4 channels to cell volume changes is independent of the presence of the auxiliary KCNE1-3 subunits, although modulated by KCNE1 in the case of KCNQ1...

  8. A common pathway for charge transport through voltage-sensing domains.

    Science.gov (United States)

    Chanda, Baron; Bezanilla, Francisco

    2008-02-07

    Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

  9. Coherent radiation from atoms and a channeled particle

    International Nuclear Information System (INIS)

    Epp, V.; Sosedova, M.A.

    2013-01-01

    Highlights: ► Impact of coherent atoms vibrations on radiation of a channeled particle is studied. ► Resonant amplification of atomic radiation is possible under certain conditions. ► Radiation of vibrating atoms forms an intense narrow peak in angular distribution. ► Radiation of atoms on resonance conditions is higher than that of channeled particle. -- Abstract: A new mechanism of radiation emitted at channeling of a relativistic charged particle in a crystal is studied. The superposition of coherent radiation from atoms, which are excited to vibrate in the crystal lattice by a channeled charged particle, with the ordinary channeling radiation is considered. It is shown that the coherent radiation from a chain of oscillating atoms forms a resonance peak on the tail of radiation emitted by the channeled particle

  10. Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing.

    Science.gov (United States)

    Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad

    2015-03-07

    Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.

  11. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  12. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  13. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir

    2016-02-23

    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  14. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Hussain, Aftab M.; Hussain, Aftab M.; Omran, Hesham; Alsharif, Sarah M.; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2016-01-01

    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  15. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  16. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas

    2017-09-18

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  17. Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes.

    Science.gov (United States)

    Fischer, Cornelia; DeFalco, Thomas A; Karia, Purva; Snedden, Wayne A; Moeder, Wolfgang; Yoshioka, Keiko; Dietrich, Petra

    2017-07-01

    Ca2+ serves as a universal second messenger in eukaryotic signaling pathways, and the spatial and temporal patterns of Ca2+ concentration changes are determined by feedback and feed-forward regulation of the involved transport proteins. Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable channels that interact with the ubiquitous Ca2+ sensor calmodulin (CaM). CNGCs interact with CaMs via diverse CaM-binding sites, including an IQ-motif, which has been identified in the C-termini of CNGC20 and CNGC12. Here we present a family-wide analysis of the IQ-motif from all 20 Arabidopsis CNGC isoforms. While most of their IQ-peptides interacted with conserved CaMs in yeast, some were unable to do so, despite high sequence conservation across the family. We showed that the CaM binding ability of the IQ-motif is highly dependent on its proximal and distal vicinity. We determined that two alanine residues positioned N-terminal to the core IQ-sequence play a significant role in CaM binding, and identified a polymorphism at this site that promoted or inhibited CaM binding in yeast. Through detailed biophysical analysis of the CNGC2 IQ-motif, we found that this polymorphism specifically affected the Ca2+-independent interactions with the C-lobe of CaM. This same polymorphism partially suppressed the induction of programmed cell death by CNGC11/12 in planta. Our work expands the model of CNGC regulation, and posits that the C-lobe of apo-CaM is permanently associated with the channel at the N-terminal part of the IQ-domain. This mode allows CaM to function as a Ca2+-sensing regulatory subunit of the channel complex, providing a mechanism by which Ca2+ signals may be fine-tuned. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  19. Square root approximation to the poisson channel

    NARCIS (Netherlands)

    Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.

    2013-01-01

    Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding

  20. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei; Alouini, Mohamed-Slim

    2012-01-01

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  1. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  2. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  3. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry.

    Science.gov (United States)

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H

    2014-06-03

    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na(+) channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers.

  4. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  5. Gamma-Ray Peak Integration: Accuracy and Precision

    International Nuclear Information System (INIS)

    Richard M. Lindstrom

    2000-01-01

    The accuracy of singlet gamma-ray peak areas obtained by a peak analysis program is immaterial. If the same algorithm is used for sample measurement as for calibration and if the peak shapes are similar, then biases in the integration method cancel. Reproducibility is the only important issue. Even the uncertainty of the areas computed by the program is trivial because the true standard uncertainty can be experimentally assessed by repeated measurements of the same source. Reproducible peak integration was important in a recent standard reference material certification task. The primary tool used for spectrum analysis was SUM, a National Institute of Standards and Technology interactive program to sum peaks and subtract a linear background, using the same channels to integrate all 20 spectra. For comparison, this work examines other peak integration programs. Unlike some published comparisons of peak performance in which synthetic spectra were used, this experiment used spectra collected for a real (though exacting) analytical project, analyzed by conventional software used in routine ways. Because both components of the 559- to 564-keV doublet are from 76 As, they were integrated together with SUM. The other programs, however, deconvoluted the peaks. A sensitive test of the fitting algorithm is the ratio of reported peak areas. In almost all the cases, this ratio was much more variable than expected from the reported uncertainties reported by the program. Other comparisons to be reported indicate that peak integration is still an imperfect tool in the analysis of gamma-ray spectra

  6. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  7. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  8. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    International Nuclear Information System (INIS)

    Barrera, Nelson P.; Shaifta, Yasin; McFadzean, Ian; Ward, Jeremy P.T.; Henderson, Robert M.; Edwardson, J. Michael

    2007-01-01

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm 3 , corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88 o and 178 o . This result again indicates that the channel assembles as a tetramer

  9. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  10. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.

    Science.gov (United States)

    Cheng, Lan; Sanguinetti, Michael C

    2009-05-01

    Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.

  11. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  12. SLAC divertor channel entrance thermal stress analysis

    International Nuclear Information System (INIS)

    Johnson, G.L.; Stein, W.; Lu, S.C.; Riddle, R.A.

    1985-01-01

    X-ray beams emerging from the new SLAC electron-positron storage ring (PEP) impinge on the entrance to tangential divertor channels causing highly localized heating in the channel structure. Analyses were completed to determine the temperatures and thermally-induced stresses due to this heating. These parts are cooled with water flowing axially over them at 30 0 C. The current design and operating conditions should result in the entrance to the new divertor channel operating at a peak temperature of 123 0 C with a peak thermal stress at 91% of yield. Any micro-cracks that form due to thermally-induced stresses should not propagate to the coolant wall nor form a path for the coolant to leak into the storage ring vacuum. 34 figs., 4 tabs

  13. Rank-defective millimeter-wave channel estimation based on subspace-compressive sensing

    Directory of Open Access Journals (Sweden)

    Majid Shakhsi Dastgahian

    2016-11-01

    Full Text Available Millimeter-wave communication (mmWC is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS and mobile sets (MS. Unlike the conventional MIMO systems, Millimeter-wave (mmW systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level.

  14. Potential of energy-oriented network optimisation: Switching off over-capacity in off-peak hours

    NARCIS (Netherlands)

    Litjens, R.; Jorguseski, L.

    2010-01-01

    Mobile communication networks are usually planned to provide some minimum service quality level during peak traffic hours. Consequently, in off-peak hours, when traffic loads are lower, the network is characterised by over-capacity, in the sense that same service quality targets can typically be

  15. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Zhenfeng; Li, Jie

    2016-11-01

    Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS. © 2016 The Protein Society.

  16. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.

    Science.gov (United States)

    Doherty, Tim; Su, Yongchao; Hong, Mei

    2010-08-27

    The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional (15)N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40 degrees and two possible rotation angles differing by 180 degrees around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. (13)C-(31)P distances between the S4 backbone and the lipid (31)P indicate a approximately 9 A local thinning and 2 A average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 A from the guanidinium C(zeta) of the second Arg to (31)P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Low-SNR Capacity of Parallel IM-DD Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas

    2016-11-29

    The capacity of parallel intensity-modulation and direct-detection (IM-DD) optical wireless channels with total average intensity and per-channel peak intensity constraints is studied. The optimal intensity allocation at low signal-to-noise ratio (SNR) is derived, leading to the capacity-achieving onoff keying (OOK) distribution. Interestingly, while activating the strongest channel is optimal if (i) the peak intensity is fixed, this is not the case if (ii) the peak intensity is proportional to the average intensity. The minimum average optical intensity per bit is also studied, and is characterized for case (i) where it is achievable at low SNR. However, in case (ii), the average optical intensity per bit grows indefinitely as SNR decreases, indicating that lower optical intensity per bit can be achieved at moderate SNR than at low SNR.

  18. PERFORMANCE OF OPPORTUNISTIC SPECTRUM ACCESS WITH SENSING ERROR IN COGNITIVE RADIO AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    N. ARMI

    2012-04-01

    Full Text Available Sensing in opportunistic spectrum access (OSA has a responsibility to detect the available channel by performing binary hypothesis as busy or idle states. If channel is busy, secondary user (SU cannot access and refrain from data transmission. SU is allowed to access when primary user (PU does not use it (idle states. However, channel is sensed on imperfect communication link. Fading, noise and any obstacles existed can cause sensing errors in PU signal detection. False alarm detects idle states as a busy channel while miss-identification detects busy states as an idle channel. False detection makes SU refrain from transmission and reduces number of bits transmitted. On the other hand, miss-identification causes SU collide to PU transmission. This paper study the performance of OSA based on the greedy approach with sensing errors by the restriction of maximum collision probability allowed (collision threshold by PU network. The throughput of SU and spectrum capacity metric is used to evaluate OSA performance and make comparisons to those ones without sensing error as function of number of slot based on the greedy approach. The relations between throughput and signal to noise ratio (SNR with different collision probability as well as false detection with different SNR are presented. According to the obtained results show that CR users can gain the reward from the previous slot for both of with and without sensing errors. It is indicated by the throughput improvement as slot number increases. However, sensing on imperfect channel with sensing errors can degrade the throughput performance. Subsequently, the throughput of SU and spectrum capacity improves by increasing maximum collision probability allowed by PU network as well. Due to frequent collision with PU, the throughput of SU and spectrum capacity decreases at certain value of collision threshold. Computer simulation is used to evaluate and validate these works.

  19. Peak experiences of psilocybin users and non-users.

    Science.gov (United States)

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users.

  20. Spatial Stationarity of Ultrawideband and Millimeter Wave Radio Channels

    DEFF Research Database (Denmark)

    Yi, Tan; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    For radio channels with broad bandwidth resource, such as those often used for ultrawideband (UWB) and millimeter wave (mmwave) systems, the Wide-Sense Stationary Uncorrelated Scattering (WSSUS) and spatial stationary assumptions are more critical than typical cellular channels with very limited ...

  1. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  2. Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats.

    Science.gov (United States)

    Hayes, Shawn G; Kindig, Angela E; Kaufman, Marc P

    2007-06-15

    Although thin fibre muscle afferents possess acid sensing ion channels (ASICs), their contribution to the exercise pressor reflex is not known. This lack of information is partly attributable to the fact that there is no known selective in vivo antagonist for ASICs. Although amiloride has been shown to antagonize ASICs, it also has been shown to antagonize voltage-gated sodium channels, thereby impairing impulse conduction in sensory nerves. Our aim was to test the hypothesis that lactic acid accumulation in exercising muscle acted on ASICs located on thin fibre muscle afferents to evoke the metabolic component of the exercise pressor reflex. To test this hypothesis, we determined in decerebrate cats if amiloride attenuated the pressor and cardioaccelerator responses to static contraction, to tendon stretch and to arterial injections of lactic acid and capsaicin. We found a dose of amiloride (0.5 microg kg(-1); i.a.) that attenuated the pressor and cardioaccelerator responses to both contraction and lactic acid injection, but had no effect on the responses to stretch and capsaicin. A higher dose of amiloride (5 microg kg(-1), i.a.) not only blocked the pressor and cardioaccelerator responses to lactic acid and contraction, but also attenuated the responses to stretch and to capsaicin, manoeuvers in which ASICs probably play no significant role. In addition, we found that the low dose of amiloride (0.5 microg kg(-1)) had no effect on the responses of muscle spindles to tendon stretch and to succinylcholine, whereas the high dose (5 microg kg(-1)) attenuated the responses to both. Our data suggest the low dose of amiloride used in our experiments selectively blocked ASICs, whereas the high dose blocked ASICs and impulse conduction in muscle afferents. We conclude that ASICs play a role in the metabolic component of the exercise pressor reflex.

  3. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    Directory of Open Access Journals (Sweden)

    Janin Riedelsberger

    Full Text Available Voltage-gated potassium (K+ channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD, this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin and depolarization-activated, outward-rectifying (Kout channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  4. The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface.

    Directory of Open Access Journals (Sweden)

    Miguel Xavier van Bemmelen

    Full Text Available The chicken acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. We address here the oligomeric state of the functional ASIC1 in situ at the cell surface. The oligomeric states of functional ASIC1a and mutants with additional cysteines introduced in the extracellular pore vestibule were resolved on SDS-PAGE. The functional ASIC1 complexes were stabilized at the cell surface of Xenopus laevis oocytes or CHO cells either using the sulfhydryl crosslinker BMOE, or sodium tetrathionate (NaTT. Under these different crosslinking conditions ASIC1a migrates as four distinct oligomeric states that correspond by mass to multiples of a single ASIC1a subunit. The relative importance of each of the four ASIC1a oligomers was critically dependent on the availability of cysteines in the transmembrane domain for crosslinking, consistent with the presence of ASIC1a homo-oligomers. The expression of ASIC1a monomers, trimeric or tetrameric concatemeric cDNA constructs resulted in functional channels. The resulting ASIC1a complexes are resolved as a predominant tetramer over the other oligomeric forms, after stabilization with BMOE or NaTT and SDS-PAGE/western blot analysis. Our data identify a major ASIC1a homotetramer at the surface membrane of the cell expressing functional ASIC1a channel.

  5. An acid-sensing ion channel from shark (Squalus acanthias) mediates transient and sustained responses to protons.

    Science.gov (United States)

    Springauf, Andreas; Gründer, Stefan

    2010-03-01

    Acid-sensing ion channels (ASICs) are proton-gated Na(+) channels. They are implicated in synaptic transmission, detection of painful acidosis, and possibly sour taste. The typical ASIC current is a transient, completely desensitizing current that can be blocked by the diuretic amiloride. ASICs are present in chordates but are absent in other animals. They have been cloned from urochordates, jawless vertebrates, cartilaginous shark and bony fish, from chicken and different mammals. Strikingly, all ASICs that have so far been characterized from urochordates, jawless vertebrates and shark are not gated by protons, suggesting that proton gating evolved relatively late in bony fish and that primitive ASICs had a different and unknown gating mechanism. Recently, amino acids that are crucial for the proton gating of rat ASIC1a have been identified. These residues are completely conserved in shark ASIC1b (sASIC1b), prompting us to re-evaluate the proton sensitivity of sASIC1b. Here we show that, contrary to previous findings, sASIC1b is indeed gated by protons with half-maximal activation at pH 6.0. sASIC1b desensitizes quickly but incompletely, efficiently encoding transient as well as sustained proton signals. Our results show that the conservation of the amino acids crucial for proton gating can predict proton sensitivity of an ASIC and increase our understanding of the evolution of ASICs.

  6. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  7. TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers.

    Science.gov (United States)

    Rohollahnejad, Jalal; Xia, Li; Cheng, Rui; Ran, Yanli; Rahubadde, Udaya; Zhou, Jiaao; Zhu, Lin

    2017-01-23

    We report a large-scale multi-channel fiber sensing network, where ultra-short FBGs (USFBGs) instead of conventional narrow-band ultra-weak FBGs are used as the sensors. In the time division multiplexing scheme of the network, each grating response is resolved as three adjacent discrete peaks. The central wavelengths of USFBGs are tracked with the differential detection, which is achieved by calculating the peak-to-peak ratio of two maximum peaks. Compared with previous large-scale hybrid multiplexing sensing networks (e.g., WDM/TDM) which typically have relatively low interrogation speed and very high complexity, the proposed system can achieve interrogation of all channel sensors through very fast and simple intensity measurements with a broad dynamic range. A proof-of-concept experiment with twenty USFBGs, at two wavelength channels, was performed and a fast static strain measurements were demonstrated, with a high average sensitivity of ~0.54dB/µƐ and wide dynamic range of over ~3000µƐ. The channel to channel switching time was 10ms and total network interrogation time was 50ms.

  8. Green Cooperative Spectrum Sensing and Scheduling in Heterogeneous Cognitive Radio Networks

    KAUST Repository

    Celik, Abdulkadir

    2016-09-12

    In this paper, we consider heterogeneous cognitive radio networks (CRNs) comprising primary channels (PCs) with heterogeneous characteristics and secondary users (SUs) with various sensing and reporting qualities for different PCs. We first define the opportunity as the achievable total data rate and its cost as the energy consumption caused from sensing, reporting, and channel switching operations and formulate a joint spectrum discovery and energy efficiency objective to minimize the energy spent per unit of data rate. Then, a mixed integer nonlinear programming problem is formulated to determine: 1) the optimal subset of PCs to be scheduled for sensing; 2) the SU assignment set for each scheduled PC; and 3) sensing durations and detection thresholds of each SU on PCs it is assigned to sense. Thereafter, an equivalent convex framework is developed for specific instances of the above combinatorial problem. For comparison, optimal detection and sensing thresholds are also derived analytically under the homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order channels under the spectrum, energy, and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic is proposed and is shown to perform very close to the exhaustive optimal solution. Finally, the behavior of the CRN is numerically analyzed under these regimes with respect to different numbers of SUs, PCs, and sensing qualities.

  9. Control system design for concrete irrigation channels

    OpenAIRE

    Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael

    2017-01-01

    Concrete channels find use at the periphery of irrigation networks, for expansion and to replace small earthen channels given the relative ease of maintenance and elimination of seepage losses. In design, it is important to account for control system performance when dimensioning the channel infrastructure. In this paper, the design of a distributed controller is investigated in terms managing water-levels, and thereby the depth profile (i.e., amount of concrete) needed to support peak flow l...

  10. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  11. Compressed sensing in imaging mass spectrometry

    International Nuclear Information System (INIS)

    Bartels, Andreas; Dülk, Patrick; Trede, Dennis; Alexandrov, Theodore; Maaß, Peter

    2013-01-01

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section. (paper)

  12. Study of multi-channel readout ASIC and its discrete module for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Fan Lei; Zhang Shengjun; Li Xian

    2013-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout systems, it is the key part for the whole system. This project designed a multi-channel readout ASIC for general detectors. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured and tested. The discrete modules work well, and the 6-channel chip NPRE 6 is ready for test in some particle detection system. (authors)

  13. Universal parametric correlations of conductance peaks in quantum dots

    International Nuclear Information System (INIS)

    Alhassid, Y.; Attias, H.

    1996-01-01

    We compute the parametric correlation function of the conductance peaks in chaotic and weakly disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an appropriate scaling of the parameter. For a symmetric dot we show that this correlation function is affected by breaking time-reversal symmetry but is independent of the details of the channels in the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be extracted directly from the conductance peak heights. Our results are in excellent agreement with model simulations of a disordered quantum dot. copyright 1996 The American Physical Society

  14. Detection of Mg spinel lithologies on central peak of crater ...

    Indian Academy of Sciences (India)

    identified Fe bearing Mg-spinel-rich rock types are defined by their strong 2-μm ... The Modified Gaussian Modeling (MGM) analysis ... study the deep crustal and/or upper mantle composition and may lead to a fresh ... Lunar surface; Mg-spinel; central peak; Theophilus; remote sensing. .... The explanation of these spec-.

  15. Fluorescent sensing with Fresnel microlenses for optofluidic systems

    Science.gov (United States)

    Siudzińska, Anna; Miszczuk, Andrzej; Marczak, Jacek; Komorowska, Katarzyna

    2017-05-01

    The concept of fluorescent sensing in a microchannel equipped with focusing light Fresnel lenses has been demonstrated. The concept employs a line or array of Fresnel lenses generating a line or array of focused light spots within a microfluidic channel, to increase the sensitivity of fluorescent signal detection in the system. We have presented efficient methods of master mold fabrication based on the lithography method and focused ion beam milling. The flexible microchannel was fabricated by an imprint process with new thiolene-epoxy resin with a good ability to replicate even submicron-size features. For final imprinted lenses, the measured background to peak signal level shows more than nine times the increase in brightness at the center of the focal spot for the green part of the spectrum (532 nm). The effectiveness of the microlenses in fluorescent-marked Escherichia coli bacteria was confirmed in a basic fluoroscope experiment, showing the increase of the sensitivity of the detection by the order of magnitude.

  16. Low-SNR Capacity of Parallel IM-DD Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    The capacity of parallel intensity-modulation and direct-detection (IM-DD) optical wireless channels with total average intensity and per-channel peak intensity constraints is studied. The optimal intensity allocation at low signal-to-noise ratio

  17. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  18. Proposal and Implementation of a Robust Sensing Method for DVB-T Signal

    Science.gov (United States)

    Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi

    This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.

  19. Contributions of counter-charge in a potassium channel voltage-sensor domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2011-01-01

    Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly coevolved acidic and aromatic side chains assist the transfer of cationic side chains across the transmembrane electric field during voltage sensing. We investigated...... the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side chains...

  20. Worst configurations (instantons) for compressed sensing over reals: a channel coding approach

    International Nuclear Information System (INIS)

    Chertkov, Michael; Chilappagari, Shashi K.; Vasic, Bane

    2010-01-01

    We consider Linear Programming (LP) solution of a Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees the error-free reconstruction over reals for properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop a technique to discover sparse vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns, so called instantons, degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design CS-Instanton Search Algorithm (ISA) generating a sparse vector, called CS-instanton, such that the BasP fails on the instanton, while its action on any modification of the CS-instanton decreasing a properly defined norm is successful. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. Performance of the CS-ISA is tested on example of a randomly generated 512 * 120 matrix, that outputs the shortest instanton (error vector) pattern of length 11.

  1. Integrated pressure sensing using capacitive Coriolis mass flow sensors

    NARCIS (Netherlands)

    Alveringh, Dennis; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    The cross-sectional shape of microchannels is, dependent on the fabrication method, never perfectly circular. Consequently, the channels deform with the pressure, which is a non-ideal effect in flow sensors, but may be used for pressure sensing. Multiple suspended channels with different lengths

  2. Channeled-ion implantation of group-III and group-V ions into silicon

    International Nuclear Information System (INIS)

    Furuya, T.; Nishi, H.; Inada, T.; Sakurai, T.

    1978-01-01

    Implantation of group-III and group-V ions along [111] and [110] axes of silicon have been performed using a backscattering technique, and the depth profiles of implanted ions have been measured by the C-V method. The range of channeled Ga ions is the largest among the present data, and a p-type layer of about 6 μm is obtained by implantation at only 150 keV. The carrier profiles of channeled Al and Ga ions with deep ranges do not show any distinguishable channeled peak contrasting with the B, P, and As channeling which gives a well-defined peak. The electronic stopping cross section (S/sub e/) of channeled P ions agree well with the results of Eisen and Reddi, but in B channeling, the discrepancies of 10--20% are observed among S/sub e/ values obtained experimentally by three different groups

  3. Boosting the signal: Endothelial inward rectifier K+ channels.

    Science.gov (United States)

    Jackson, William F

    2017-04-01

    Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.

  4. Improved Sparse Channel Estimation for Cooperative Communication Systems

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2012-01-01

    Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.

  5. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Science.gov (United States)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  6. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  7. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models.

    Science.gov (United States)

    Dwyer, Jason M; Rizzo, Stacey J Sukoff; Neal, Sarah J; Lin, Qian; Jow, Flora; Arias, Robert L; Rosenzweig-Lipson, Sharon; Dunlop, John; Beyer, Chad E

    2009-03-01

    Acid sensing ion channels (ASICs) are proton-gated ion channels located in the central and peripheral nervous systems. Of particular interest is ASIC1a, which is located in areas associated with fear and anxiety behaviors. Recent reports suggest a role for ASIC1a in preclinical models of fear conditioning and anxiety. The present experiments evaluated various ASIC inhibitors in preclinical models of autonomic and behavioral parameters of anxiety. In addition, neurochemical studies evaluated the effects of an ASIC inhibitor (A-317567) on neurotransmitter levels in the amygdala. In electrophysiological studies using hippocampal primary neuronal cultures, three ASIC inhibitors (PcTX-1, A-317567, and amiloride) produced concentration-dependent inhibition of acid-evoked currents. In the stress-induced hyperthermia model, acute administration of psalmotoxin 1 (PcTX-1; 10-56 ng, i.c.v.), A-317567 (0.1-1.0 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) prevented stress-induced elevations in core body temperature. In the four-plate test, acute treatment with PcTX-1 (10-56 ng, i.c.v.) and A-317567 (0.01-0.1 mg/kg, i.p.), but not amiloride (3-100 mg/kg, i.p.), produced dose-dependent and significant increases in the number of punished crossings relative to vehicle-treated animals. Additionally, PcTX-1 (56-178 ng, i.c.v.), A-317567 (0.1-10 mg/kg, i.p.), and amiloride (10-100 mg/kg, i.p.) lacked significant anxiolytic-like activity in the elevated zero maze. In neurochemical studies, an infusion of A-317567 (100 microM) into the amygdala significantly elevated the extracellular levels of GABA, but not glutamate, in this brain region. These findings demonstrate that ASIC inhibition produces anxiolytic-like effects in some behavioral models and indicate a potential role for GABAergic mechanisms to underlie these anxiolytic-like effects.

  8. Grafting voltage and pharmacological sensitivity in potassium channels.

    Science.gov (United States)

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  9. Channel Selection Policy in Multi-SU and Multi-PU Cognitive Radio Networks with Energy Harvesting for Internet of Everything

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2016-01-01

    Full Text Available Cognitive radio, which will become a fundamental part of the Internet of Everything (IoE, has been identified as a promising solution for the spectrum scarcity. In a multi-SU and multi-PU cognitive radio network, selecting channels is a fundamental problem due to the channel competition among secondary users (SUs and packet collision between SUs and primary users (PUs. In this paper, we adopt cooperative sensing method to avoid the packet collision between SUs and PUs and focus on how to collect the spectrum sensing data of SUs for cooperative sensing. In order to reduce the channel competition among SUs, we first consider the hybrid transmission model for single SU where a SU can opportunistically access both idle channels operating either the Overlay or the Underlay model and the busy channels by using the energy harvesting technology. Then we propose a competitive set based channel selection policy for multi-SU where all SUs competing for data transmission or energy harvesting in the same channel will form a competitive set. Extensive simulations show that the proposed cooperative sensing method and the channel selection policy outperform previous solutions in terms of false alarm, average throughput, average waiting time, and energy harvesting efficiency of SUs.

  10. Combined effect of storm movement and drainage network configuration on flood peaks

    Science.gov (United States)

    Seo, Yongwon; Son, Kwang Ik; Choi, Hyun Il

    2016-04-01

    This presentation reports the combined effect of storm movement and drainage network layout on resulting hydrographs and its implication to flood process and also flood mitigation. First, we investigate, in general terms, the effects of storm movement on the resulting flood peaks, and the underlying process controls. For this purpose, we utilize a broad theoretical framework that uses characteristic time and space scales associated with stationary rainstorms as well as moving rainstorms. For a stationary rainstorm the characteristic timescales that govern the peak response include two intrinsic timescales of a catchment and one extrinsic timescale of a rainstorm. On the other hand, for a moving rainstorm, two additional extrinsic scales are required; the storm travel time and storm size. We show that the relationship between the peak response and the timescales appropriate for a stationary rainstorm can be extended in a straightforward manner to describe the peak response for a moving rainstorm. For moving rainstorms, we show that the augmentation of peak response arises from both effect of overlaying the responses from subcatchments (resonance condition) and effect of increased responses from subcatchments due to increased duration (interdependence), which results in maximum peak response when the moving rainstorm is slower than the channel flow velocity. Second, we show the relation between channel network configurations and hydrograph sensitivity to storm kinematics. For this purpose, Gibbs' model is used to evaluate the network characteristics. The results show that the storm kinematics that produces the maximum peak discharge depends on the network configuration because the resonance condition changes with the network configuration. We show that an "efficient" network layout is more sensitive and results in higher increase in peak response compared to "inefficient" one. These results imply different flood potential risks for river networks depending on network

  11. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3

    International Nuclear Information System (INIS)

    Rahman, Taufiq; Smith, Ewan St. John

    2014-01-01

    Highlights: • We have made a reasonable model of rat ASIC3 using published structure of chicken ASIC1. • We have docked sea anemone toxin APETx2 on the model. • We have identified two putative sites for toxin binding. • We have argued for plausibility one site over the other. • We have identified the residues that are likely to be critical for APETx2–ASIC3 interaction. - Abstract: Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein–protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the ‘hot-spots’ that are likely to be critical for ASIC3–APETx2 interaction

  12. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Taufiq, E-mail: mtur2@cam.ac.uk; Smith, Ewan St. John

    2014-07-18

    Highlights: • We have made a reasonable model of rat ASIC3 using published structure of chicken ASIC1. • We have docked sea anemone toxin APETx2 on the model. • We have identified two putative sites for toxin binding. • We have argued for plausibility one site over the other. • We have identified the residues that are likely to be critical for APETx2–ASIC3 interaction. - Abstract: Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein–protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the ‘hot-spots’ that are likely to be critical for ASIC3–APETx2 interaction.

  13. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  14. Radiation from planar channeled 5-55 GeV/c positrons and electrons

    International Nuclear Information System (INIS)

    Atkinson, M.; Sharp, P.H.; Giddings, D.; Bussey, P.J.

    1982-01-01

    The emission of radiation from 5 to 55 GeV/c planar channeled positrons and electrons passing through a 135 μ thick silicon-crystal has been investigated. The intensity of the channeling-radiation is found to be 10 to 30 times the intensity of normal bremsstrahlung. For channeled electrons no structure is found in the spectrum, whereas strong and sharp peaks are found for positrons. This peak structure is extremely sharp at 5 GeV/c and for momenta above 20 GeV/c the structure disappears. For a classical description of channeling, but using an anharmonic potential, certain energies are found for which the maximum energy of the channeling radiation is practically independent of transverse energy. The possibility of making a monoenergetic γ-source in the range of 10-100 MeV is mentioned. (orig.)

  15. A peak value searching method of the MCA based on digital logic devices

    International Nuclear Information System (INIS)

    Sang Ziru; Huang Shanshan; Chen Lian; Jin Ge

    2010-01-01

    Digital multi-channel analyzers play a more important role in multi-channel pulse height analysis technique. The direction of digitalization are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper introduces a method of searching peak value of waveform based on digital logic with FPGA. This method reduce the dead time. Then data correction offline can improvement the non-linearity of MCA. It gives the α energy spectrum of 241 Am. (authors)

  16. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    Science.gov (United States)

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  17. Inline pressure sensing mechanisms enabling scalable range and sensitivity

    NARCIS (Netherlands)

    Alveringh, Dennis; Groenesteijn, Jarno; Wiegerink, Remco J.; Lötters, Joost Conrad

    2015-01-01

    We report on two novel capacitive pressure sensing mechanisms that allow measurements inline with other fluidic devices on one chip, without introducing a large internal volume to the fluid path. The first sensing mechanism is based on out-of-plane bending of a U-shaped channel and the same

  18. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    Science.gov (United States)

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  19. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  20. The Importance of the Dissociation Rate in Ion Channel Blocking

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg

    2018-02-01

    Full Text Available Understanding the relationships between the rates and dynamics of current wave forms under voltage clamp conditions is essential for understanding phenomena such as state-dependence and use-dependence, which are fundamental for the action of drugs used as anti-epileptics, anti-arrhythmics, and anesthetics. In the present study, we mathematically analyze models of blocking mechanisms. In previous experimental studies of potassium channels we have shown that the effect of local anesthetics can be explained by binding to channels in the open state. We therefore here examine models that describe the effect of a blocking drug that binds to a non-inactivating channel in its open state. Such binding induces an inactivation-like current decay at higher potential steps. The amplitude of the induced peak depends on voltage and concentration of blocking drug. In the present study, using analytical methods, we (i derive a criterion for the existence of a peak in the open probability time evolution for a model with an arbitrary number of closed states, (ii derive formula for the relative height of the peak amplitude, and (iii determine the voltage dependence of the relative peak height. Two findings are apparent: (1 the dissociation (unbinding rate constant is important for the existence of a peak in the current waveform, while the association (binding rate constant is not, and (2 for a peak to exist it suffices that the dissociation rate must be smaller than the absolute value of all eigenvalues to the kinetic matrix describing the model.

  1. Characteristic of local parameter of bubbly flow in rectangular channel under inclined and rolling conditions

    International Nuclear Information System (INIS)

    Yan Changqi; Jin Guangyuan; Sun Licheng; Wang Yang

    2015-01-01

    Characteristics of local parameters of bubbly flow were investigated in rectangular channel (40 mm × 3 mm) under inclined and rolling conditions. Under vertical condition, the distribution type 'wall peak' and 'core peak' are observed, and 'core peak' exists when the liquid superficial velocity is low and the gas superficial velocity is high. Under inclined condition, the peaks of two distribution types get strengthened at the top of the channel, and weakened at the bottom. Under rolling condition, the peaks of two distribution types get strengthened compared with the same angle under inclined condition when the angle is getting larger. The influence from rolling motion gets stronger on the peak of two distribution types when the rolling movement is more violent. (authors)

  2. Remote sensing using MIMO systems

    Science.gov (United States)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  3. Operator-sum representation for bosonic Gaussian channels

    International Nuclear Information System (INIS)

    Ivan, J. Solomon; Sabapathy, Krishna Kumar; Simon, R.

    2011-01-01

    Operator-sum or Kraus representations for single-mode bosonic Gaussian channels are developed, and several of their consequences explored. The fact that the two-mode metaplectic operators acting as unitary purification of these channels do not, in their canonical form, mix the position and momentum variables is exploited to present a procedure which applies uniformly to all families in the Holevo classification. In this procedure the Kraus operators of every quantum-limited Gaussian channel can be simply read off from the matrix elements of a corresponding metaplectic operator. Kraus operators are employed to bring out, in the Fock basis, the manner in which the antilinear, unphysical matrix transposition map when accompanied by injection of a threshold classical noise becomes a physical channel, denoted D(κ) in the Holevo classification. The matrix transposition channels D(κ), D(κ -1 ) turn out to be a dual pair in the sense that their Kraus operators are related by the adjoint operation. The amplifier channel with amplification factor κ and the beam-splitter channel with attenuation factor κ -1 turn out to be mutually dual in the same sense. The action of the quantum-limited attenuator and amplifier channels as simply scaling maps on suitable quasiprobabilities in phase space is examined in the Kraus picture. Consideration of cumulants is used to examine the issue of fixed points. The semigroup property of the amplifier and attenuator families leads in both cases to a Zeno-like effect arising as a consequence of interrupted evolution. In the cases of entanglement-breaking channels a description in terms of rank 1 Kraus operators is shown to emerge quite simply. In contradistinction, it is shown that there is not even one finite rank operator in the entire linear span of Kraus operators of the quantum-limited amplifier or attenuator families, an assertion far stronger than the statement that these are not entanglement breaking channels. A characterization of

  4. Bandwidth efficient channel estimation method for airborne hyperspectral data transmission in sparse doubly selective communication channels

    Science.gov (United States)

    Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.

    2017-10-01

    A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.

  5. Compressive sensing for feedback reduction in MIMO broadcast channels

    KAUST Repository

    Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.; Bahrami, Hamid Reza Talesh

    2014-01-01

    In multi-antenna broadcast networks, the base stations (BSs) rely on the channel state information (CSI) of the users to perform user scheduling and downlink transmission. However, in networks with large number of users, obtaining CSI from all users

  6. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels.

    Science.gov (United States)

    Gupta, Kanchan; Zamanian, Maryam; Bae, Chanhyung; Milescu, Mirela; Krepkiy, Dmitriy; Tilley, Drew C; Sack, Jon T; Yarov-Yarovoy, Vladimir; Kim, Jae Il; Swartz, Kenton J

    2015-05-07

    Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.

  7. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  8. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  9. Precipitated nickel doped ZnO nanoparticles with enhanced low temperature ethanol sensing properties

    Directory of Open Access Journals (Sweden)

    Umadevi Godavarti

    2017-12-01

    Full Text Available The Zn1-xNixO nanoparticles have been synthesized by novel co-precipitation method and systematically characterized by XRD, SEM, TEM and photo luminescence. The XRD patterns confirm the hexagonal wurzite structure without secondary phases in Ni substituted ZnO samples. SEM and TEM are used for the estimation of particle shape and size. In PL study there is a peak in the range of 380–390 nm in all samples that is attributed to the oxygen vacancies. Gas sensing tests reveal that Ni doped ZnO sensor has remarkably enhanced performance compared to pure ZnO detected at an optimum temperature 100 °C. It could detect ethanol gas in a wide concentration range with very high response, fast response–recovery time, good selectivity and stable repeatability. The possible sensing mechanism is discussed. The high response of ZnO Nanoparticles was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion. The superior sensing features indicate the present Ni doped ZnO as a promising nanomaterial for gas sensors. The response time and recovery time of undoped is 75 s and 60 s and 0.25 at% Ni are found to be 60 s and 45 s at 100 °C respectively.

  10. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  11. Studies of alpha-helicity and intersegmental interactions in voltage-gated Na+ channels: S2D4.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    2009-11-01

    Full Text Available Much data, including crystallographic, support structural models of sodium and potassium channels consisting of S1-S4 transmembrane segments (the "voltage-sensing domain" clustered around a central pore-forming region (S5-S6 segments and the intervening loop. Voltage gated sodium channels have four non-identical domains which differentiates them from the homotetrameric potassium channels that form the basis for current structural models. Since potassium and sodium channels also exhibit many different functional characteristics and the fourth domain (D4 of sodium channels differs in function from other domains (D1-D3, we have explored its structure in order to determine whether segments in D4 of sodium channels differ significantly from that determined for potassium channels. We have probed the secondary and tertiary structure and the role of the individual amino acid residues of the S2D4 of Na(v1.4 by employing cysteine-scanning mutagenesis (with tryptophan and glutamine substituted for native cysteine. A Fourier transform power spectrum of perturbations in free energy of steady-state inactivation gating (using midpoint potentials and slopes of Boltzmann equation fits of channel availability, h(infinity-V plots indicates a substantial amount of alpha-helical structure in S2D4 (peak at 106 degrees, alpha-Periodicity Index (alpha-PI of 3.10, This conclusion is supported by alpha-PI values of 3.28 and 2.84 for the perturbations in rate constants of entry into (beta and exit from (alpha fast inactivation at 0 mV for mutant channels relative to WT channels assuming a simple two-state model for transition from the open to inactivated state. The results of cysteine substitution at the two most sensitive sites of the S2D4 alpha-helix (N1382 and E1392C support the existence of electrostatic network interactions between S2 and other transmembrane segments within Na(v1.4D4 similar to but not identical to those proposed for K+ channels.

  12. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  13. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  14. Equal gain combining for cooperative spectrum sensing in cognitive radio networks

    KAUST Repository

    Hamza, Doha R.

    2014-08-01

    Sensing with equal gain combining (SEGC), a novel cooperative spectrum sensing technique for cognitive radio networks, is proposed. Cognitive radios simultaneously transmit their sensing results to the fusion center (FC) over multipath fading reporting channels. The cognitive radios estimate the phases of the reporting channels and use those estimates for coherent combining of the sensing results at the FC. A global decision is made at the FC by comparing the received signal with a threshold. We obtain the global detection probabilities and secondary throughput exactly through a moment generating function approach. We verify our solution via system simulation and demonstrate that the Chernoff bound and central limit theory approximation are not tight. The cases of hard sensing and soft sensing are considered and we provide examples in which hard sensing is advantageous to soft sensing. We contrast the performance of SEGC with maximum ratio combining of the sensors\\' results and provide examples where the former is superior. Furthermore, we evaluate the performance of SEGC against existing orthogonal reporting techniques such as time division multiple access (TDMA). SEGC performance always dominates that of TDMA in terms of secondary throughput. We also study the impact of phase and synchronization errors and demonstrate the robustness of the SEGC technique against such imperfections. © 2002-2012 IEEE.

  15. On the capacity of cognitive radio under limited channel state information over fading channels

    KAUST Repository

    Rezki, Zouheir

    2011-06-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics and an estimated version of the secondary transmitter-primary receiver (ST-PR) link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference (SI) outage constraint. When applied to Rayleigh fading channels, our results show, for instance, that the interference constraint is harmful at high-power regime, whereas at low-power regime, it has a marginal impact and no-interference performance may be achieved. © 2011 IEEE.

  16. Study on Additional Carrier Sensing for IEEE 802.15.4 Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bih-Hwang Lee

    2010-06-01

    Full Text Available Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs. The slotted carrier sense multiple access with collision avoidance (CSMA/CA is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC delay and power consumption of CCA detection.

  17. Study on additional carrier sensing for IEEE 802.15.4 wireless sensor networks.

    Science.gov (United States)

    Lee, Bih-Hwang; Lai, Ruei-Lung; Wu, Huai-Kuei; Wong, Chi-Ming

    2010-01-01

    Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs). The slotted carrier sense multiple access with collision avoidance (CSMA/CA) is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA) detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS) algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC) delay and power consumption of CCA detection.

  18. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  19. Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses.

    Directory of Open Access Journals (Sweden)

    Neil D Detweiler

    Full Text Available Previous reports indicate roles for acid-sensing ion channels (ASICs in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instrumented with femoral artery catheters were used to assess arterial O2, CO2, and pH levels during exposure to inspired gas mixtures designed to cause isocapnic hypoxemia or hypercapnia. Whole-body plethysmography was used to monitor ventilatory parameters in conscious, unrestrained ASIC1, ASIC2, or ASIC3 knockout (-/- and wild-type (WT mice at baseline, during isocapnic hypoxemia and during hypercapnia. Hypercapnia increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice, but there were no differences between ASIC1-/-, ASIC2-/-, or ASIC3-/- and WT. Isocapnic hypoxemia also increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice. Minute ventilation in ASIC2-/- mice during isocapnic hypoxemia was significantly lower compared to WT, but there were no differences in the responses to isocapnic hypoxemia between ASIC1-/- or ASIC3-/- compared to WT. Surprisingly, these findings show that loss of individual ASIC subunits does not substantially alter hypercapnic or hypoxic ventilatory responses.

  20. Shifting of the electron-capture-to-the-continuum peak in proton-helium collisions at 10 and 20 keV

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Deb, N.C.; Roy, K.; Sahoo, S.; Crothers, D.S.F.

    2005-01-01

    A refined theoretical approach has been developed to study the double-differential cross sections (DDCS's) in proton-helium collisions as a function of the ratio of ionized electron velocity to the incident proton velocity. The refinement is done in the present coupled-channel calculation by introducing a continuum distorted wave in the final state coupled with discrete states including direct as well as charge transfer channels. It is confirmed that the electron-capture-to-the-continuum (ECC) peak is slightly shifted to a lower electron velocity than the equivelocity position. Comparing measurements and classical trajectory Monte Carlo (CTMC) calculations at 10 and 20 keV proton energies, excellent agreement of the ECC peak heights is achieved at both energies. However, a minor disagreement in the peak positions between the present calculation and the CTMC results is noted. A smooth behavior of the DDCS is found in the present calculation on both sides of the peak whereas the CTMC results show some oscillatory behavior particularly to the left of the peak, associated with the statistical nature of CTMC calculations

  1. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  2. Evaluation and selection of hot channel (peaking) factors for research reactor applications

    International Nuclear Information System (INIS)

    Woodruff, W.L.

    1987-01-01

    A proposed method for selecting and applying hot channel factors is presented along with some justification for these selections. The method is illustrated by example, and the sensitivity to some of the choices is examined. The uncertainty in the heat transfer coefficient is a major contributor to the reduction in thermal-hydraulic safety margins. The uncertainty introduced by the heterogeneity in the fuel is another important contributor and an area where more information may be useful in reducing this uncertainty. (Author)

  3. Pricing Model for Dual Sales Channel with Promotion Effect Consideration

    OpenAIRE

    Chuiri Zhou

    2016-01-01

    We focus on the pricing strategy of a dual sales channel member when his/her online retailer faces an upcoming overloaded express delivery service due to the sales peak of online shopping, especially referring to the occurring affairs in China. We characterize the pricing problem of the dual selling channel system as a two-period game. When the price discount is only provided by the online seller, we find that the prices of the traditional channel and the online channel in the two periods are...

  4. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems.

    Science.gov (United States)

    Leem, Juyoung; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2014-03-07

    We present a microfluidic patterning system for fabricating nanostructured Ag thin films via a polyol method. The fabricated Ag thin films can be used immediately in a real-time SERS sensing system. The Ag thin films are formed on the inner surfaces of a microfluidic channel so that a Ag-patterned Si wafer and a Ag-patterned PDMS channel are produced by the fabrication. The optimum sensing region and fabrication duration for effective SERS detection were determined. As SERS active substrates, the patterned Ag thin films exhibit an enhancement factor (EF) of 4.25 × 10(10). The Ag-patterned polymer channel was attached to a glass substrate and used as a microfluidic sensing system for the real-time monitoring of biomolecule concentrations. This microfluidic patterning system provides a low-cost process for the fabrication of materials that are useful in medical and pharmaceutical detection and can be employed in mass production.

  5. User Classification in Crowdsourcing-Based Cooperative Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-07-01

    Full Text Available This paper studies cooperative spectrum sensing based on crowdsourcing in cognitive radio networks. Since intelligent mobile users such as smartphones and tablets can sense the wireless spectrum, channel sensing tasks can be assigned to these mobile users. This is referred to as the crowdsourcing method. However, there may be some malicious mobile users that send false sensing reports deliberately, for their own purposes. False sensing reports will influence decisions about channel state. Therefore, it is necessary to classify mobile users in order to distinguish malicious users. According to the sensing reports, mobile users should not just be divided into two classes (honest and malicious. There are two reasons for this: on the one hand, honest users in different positions may have different sensing outcomes, as shadowing, multi-path fading, and other issues may influence the sensing results; on the other hand, there may be more than one type of malicious users, acting differently in the network. Therefore, it is necessary to classify mobile users into more than two classes. Due to the lack of prior information of the number of user classes, this paper casts the problem of mobile user classification as a dynamic clustering problem that is NP-hard. The paper uses the interdistance-to-intradistance ratio of clusters as the fitness function, and aims to maximize the fitness function. To cast this optimization problem, this paper proposes a distributed algorithm for user classification in order to obtain bounded close-to-optimal solutions, and analyzes the approximation ratio of the proposed algorithm. Simulations show the distributed algorithm achieves higher performance than other algorithms.

  6. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  7. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc.

    Science.gov (United States)

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A

    2015-01-01

    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity.

  8. Improving quality of arterial spin labeling MR imaging at 3 Tesla with a 32-channel coil and parallel imaging.

    Science.gov (United States)

    Ferré, Jean-Christophe; Petr, Jan; Bannier, Elise; Barillot, Christian; Gauvrit, Jean-Yves

    2012-05-01

    To compare 12-channel and 32-channel phased-array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T). Twenty-seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12-channel and 32-channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32-channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast-to-noise and signal-to-noise ratios (CNR, SNR). Compared with 12-channel acquisition, the scores for 32-channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32-channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI. For PASL at 3T, the 32-channel coil at 3T provided better quality than the 12-channel coil. With the 32-channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. Copyright © 2012 Wiley Periodicals, Inc.

  9. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  10. A computer simulation of the surface channeling of MeV heavy charged particles

    International Nuclear Information System (INIS)

    Morita, K.

    1980-01-01

    The surface channeling of 1.5 MeV N + ions incident near the [011] direction on the (100) surface and near the [001] direction on the (110) surface of Ge crystals has been studied using computer simulation. The trajectories of ions incident at angles near the critical angle for axial channeling were traced. The energy spectra, the angular distributions and the reflection-depth distributions of scattered ions were obtained. The calculated energy spectra for both directions are found to be composed of a surface peak and a broad peak, the latter being at the low energy side of the surface peak. The height of the surface peak and the energy position of the broad peak are found to depend on the azimuthal component and the tilt component of the incident angle, respectively. This result is explained to be due to the focusing effect of channeled ions deflected by the atomic rows at the surface. It is shown that the calculated angular distributions of scattered ions form a half-ring pattern and clear dips appear in the scattering intensity curve along the half-ring. The dips are found to be caused by the blocking for scattered ions by the atomic rows arrayed in the major planar directions. (author)

  11. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    International Nuclear Information System (INIS)

    Wang, Huan; Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming; Huang, Yan

    2015-01-01

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  12. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan, E-mail: wanghuan7@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Wang, Ying-hong; Yang, Feng; Li, Xiao-feng; Tian, Yuan-yao; Ni, Ming-ming; Zuo, Long-quan; Meng, Xiao-Ming [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China); Huang, Yan, E-mail: aydhy@126.com [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, 230032 (China)

    2015-12-25

    Metabolic syndrome characterized by hyperglycemia contributes to nonalcoholic steatohepatitis-associated liver fibrosis. This study was to investigate the effects of Acid-sensing ion Channel 1a (ASIC1a) on the process of liver fibrosis under hyperglycemia. Results showed that high glucose significantly worsen the pathology of liver fibrosis in vivo. In vitro, high glucose stimulated proliferation, activation and extracellular matrix (ECM) production in HSCs, and enhanced the effect of PDGF-BB on the activation and proliferation of HSCs. These effects could be attenuated by ASIC1a specific inhibitor Psalmotoxin-1(PcTx1) or specific ShRNA for ASIC1a through Notch1/Hes-1 pathways. These data indicate that ASIC1a plays an important role in diabetes complication liver fibrosis. - Highlights: • Hyperglycemia is a risk factor for the process of liver fibrosis. • ASIC1a may be a key factor linking between high glucose and liver fibrosis. • Notch1/Hes-1 may involve to the process of liver fibrosis under hyperglycemia.

  13. Multi-resonance peaks fiber Bragg gratings based on largely-chirped structure

    Science.gov (United States)

    Chen, Chao; Zhang, Xuan-Yu; Wei, Wei-Hua; Chen, Yong-Yi; Qin, Li; Ning, Yong-Qiang; Yu, Yong-Sen

    2018-04-01

    A composite fiber Bragg grating (FBG) with multi-resonance peaks (MRPs) has been realized by using femtosecond (fs) laser point-by-point inscription in single-mode fiber. This device contains a segment of largely-chirped gratings with the ultrahigh chirp coefficients and a segment of uniform high-order gratings. The observed MRPs are distributed in an ultra-broadband wavelength range from 1200 nm to 1700 nm in the form of quasi-period or multi-peak-group. For the 8th-order MRPs-FBG, we studied the axial strain and high-temperature sensing characteristics of different resonance peaks experimentally. Moreover, we have demonstrated a multi-wavelength fiber lasers with three-wavelength stable output by using a 9th-order MRPs-FBG as the wavelength selector. This work is significant for the fabrication and functionalization of FBGs with complicated spectra characteristics.

  14. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.

    Science.gov (United States)

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W

    2014-03-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  15. Investigation of silicon width (p, p') resonance scattering in left angle 110 right angle channeling direction

    International Nuclear Information System (INIS)

    Ditroi, F.; Meyer, J.D.; Michelmann, R.; Kislat, D.; Bethge, K.

    1994-01-01

    Crystalline silicon samples were investigated both in channeling and random directions by using the (p, p') resonance scattering at 2.3 MeV bombarding energy. The samples were positioned in the scattering chamber of a VdG accelerator after 2 m collimating path. The peaks due to the resonance at 2.1 MeV were measured at different angles in the vicinity of the channeling and random directions. A peak shift and broadening was seen at the channeling and near channeling directions compared with the random one. The spectra were also simulated using our modified Monte Carlo calculation method for stopping, range and energy distribution in highly ordered materials. The energy shift and the broadening between the random and the channeling spectra were compared and explained. (orig.)

  16. Drag reduction in a turbulent channel flow using a passivity-based approach

    Science.gov (United States)

    Heins, Peter; Jones, Bryn; Sharma, Atul

    2013-11-01

    A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.

  17. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  18. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption......This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... of the conversion channel in comparison to a static A/D conversion channel; this at the cost of a reduced peak signal-to-noise ratio (SNR). The adaptive A/D conversion channel compensates for the change in analog gain by a digital gain, thus achieving a constant channel gain in the full dynamic range. However...

  19. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  20. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  1. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  2. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  3. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  4. pH Sensing and Regulation in Cancer

    OpenAIRE

    Mehdi eDamaghi; Jonathan W. Wojtkowiak; Robert J. Gillies

    2013-01-01

    Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs...

  5. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    Science.gov (United States)

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  6. Exploring and Describing the Spatial & Temporal Dynamics of Medushead in the Channeled Scablands of Eastern Washington Using Remote Sensing Techniques

    Science.gov (United States)

    Bateman, Timothy M.

    Medusahead is a harmful weed that is invading public lands in the West. The invasion is a serious concern to the public because it can reduce forage for livestock and wildlife, increase fire frequency, alter important ecosystem cycles (like water), reduce recreational activities, and produce landscapes that are aesthetically unpleasing. Invasions can drive up costs that generally require taxpayer's dollars. Medusahead seedlings typically spread to new areas by attaching itself to passing objects (e.g. vehicles, animals, clothing) where it can quickly begin to affect plants communities. To be effective, management plans need to be sustainable, informed, and considerate to invasion levels across large landscapes. Ecological remote sensing analysis is a method that uses airborne imagery, taken from drones, aircrafts, or satellites, to gather information about ecological systems. This Thesis strived to use remote sensing techniques to identify medusahead in the landscape and its changes through time. This was done for an extensive area of rangelands in the Channel Scabland region of eastern ashington. This Thesis provided results that would benefit land managers that include: 1) a dispersal map of medusahead, 2) a time line of medusahead cover through time, 3) 'high risk' dispersal areas, 4) climatic factors showing an influence on the time line of medusahead, 5) a strategy map that can be utilized by land managers to direct management needs. This Thesis shows how remote sensing applications can be used to detect medusahead in the landscape and understand its invasiveness through time. This information can help create sustainable and effective management plans so land managers can continue to protect and improve western public lands threatened by the invasion of medusahead.

  7. In Touch With the Mechanosensitive Piezo Channels: Structure, Ion Permeation, and Mechanotransduction.

    Science.gov (United States)

    Geng, J; Zhao, Q; Zhang, T; Xiao, B

    2017-01-01

    Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals. Despite the awareness of their functional significance, the molecular identities of MS cation channels in mammals had remained elusive for decades till the groundbreaking finding that the Piezo family of genes, including Piezo1 and Piezo2, constitutes their essential components. Since their identification about 6years ago, tremendous progress has been made in understanding their physiological and pathophysiological importance in mechanotransduction and their structure-function relationships of being the prototypic class of mammalian MS cation channels. On the one hand, Piezo proteins have been demonstrated to serve as physiologically and pathophysiologically important mechanotransducers for most, if not all, mechanotransduction processes. On the other hand, they have been shown to form a remarkable three-bladed, propeller-shaped homotrimeric channel complex comprising a separable ion-conducting pore module and mechanotransduction modules. In this chapter, we review the major advancements, with a particular focus on the structural and biophysical features that enable Piezo proteins to serve as sophisticated MS cation channels for force sensing, transduction, and ion conduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    Science.gov (United States)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  9. pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs

    Science.gov (United States)

    Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.

    2008-03-01

    We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.

  10. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    Science.gov (United States)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  11. Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels

    Science.gov (United States)

    Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero

    2018-04-01

    Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide

  12. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.

    Science.gov (United States)

    Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E

    2011-11-22

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

  13. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.

    Science.gov (United States)

    Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang

    2017-01-01

    Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.

  14. A cognitive mobile BTS solution with software-defined radioelectric sensing.

    Science.gov (United States)

    Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Sergio; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel García; Valcarce, Roberto López; Bravo, Cristina López

    2013-02-05

    Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals.

  15. Theoretical investigations on two-phase flow instability in parallel channels under axial non-uniform heating

    International Nuclear Information System (INIS)

    Lu, Xiaodong; Wu, Yingwei; Zhou, Linglan; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Zhang, Hong

    2014-01-01

    Highlights: • We developed a model based on homogeneous flow model to analyze two-phase flow instability in parallel channels. • The influence of axial non-uniform heating on the system stability has been investigated. • Influences of various factors on system instability under cosine heat flux have been studied. • The system under top-peaked heat flux is the most stable system. - Abstract: Two-phase flow instability in parallel channels heated by axial non-uniform heat flux has been theoretically studied in this paper. The system control equations of parallel channels were established based on the homogeneous flow model in two-phase region. Semi-implicit finite-difference scheme and staggered mesh method were used to discretize the equations, and the difference equations were solved by chasing method. Cosine, bottom-peaked and top-peaked heat fluxes were used to study the influence of non-uniform heating on two-phase flow instability of the parallel channels system. The marginal stability boundaries (MSB) of parallel channels and three-dimensional instability spaces (or instability reefs) under different heat flux conditions have been obtained. Compared with axial uniform heating, axial non-uniform heating will affect the system stability. Cosine and bottom-peaked heat fluxes can destabilize the system stability in high inlet subcooling region, while the opposite effect can be found in low inlet subcooling region. However, top-peaked heat flux can enhance the system stability in the whole region. In addition, for cosine heat flux, increasing the system pressure or inlet resistance coefficient can strengthen the system stability, and increasing the heating power will destabilize the system stability. The influence of inlet subcooling number on the system stability is multi-valued under cosine heat flux

  16. Channel changes following headwater reforestation: The Ganaraska river, Ontario, Canada

    International Nuclear Information System (INIS)

    Buttle, J.M.

    1995-01-01

    Reforestation of headwater slopes of the Ganaraska River basin in southern Ontario following World War II has resulted in decreased peak flows and has likely reduced sediment yields. Changes in channel morphology produced by these modifications to the hydrologic regime were examined for a 6.7 km section of river in the context of Schumm's (1977) qualitative model of channel response to reforestation. Flood channel width (measured from air photographs) has decreased since 1928, while cross-sectional measurements during stream gauging in the study section revealed a decrease in the channel's width/depth ratio between 1960 and 1975. Both of these trends agree with Schumm's model. Changes in channel planform were dominated by downstream translation of meander bends and by meander cutoffs. The model predicted an increase in channel sinuosity in response to decreased peak flows and bed-material yield from the basin. However, sinuosity for the entire river section decreased significantly between 1928 and 1988, and only one reach experienced an increase in sinuosity following reforestation. A possible explanation for the model's failure to describe temporal changes in the Ganaraska's sinuosity involves a negative feedback whereby the increased sinuosity produced by decreased flow and sediment yield enhances potential for ice jams and meander cutoffs, which in turn reduce sinuosity. This limited test of Schumm's model suggests that caution be used when applying the model and its variants to reconstructions of basin palaeohydrology, and predictions of channel response to anthropogenic and natural changes to the hydrologic regime. 31 refs, 11 figs, 1 tab

  17. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  18. Potential information and stopping power from channeling in diamond

    International Nuclear Information System (INIS)

    Edge, R.D.; Derry, J.E.; Fearick, R.W.; Sellschop, J.P.F.

    1983-01-01

    When a carefully cleaned diamond crystal was bombarded with helium nuclei parallel to a low index plane, up to seven peaks in the energy spectrum of backscattered ions were seen. These arose from particles oscillating to and fro across the channel as they progressed along it. Spectra taken with ions incident in different directions in the same plane allowed both the wavelengths of the oscillations in the channel, lambda, and the stopping power within the channel to be obtained. The character of the oscillations changed as the beam deviated from exact alignment with the channel, giving the highest maximum at an angle /psi/ /SUB m/ to the channel. Calculations based on those of Barrett employing lambda, /psi/ /SUB m/, and the stopping power showed a smoother potential for the (111) planar channel, which has a larger spacing, than (100) and (110). The energy dependence of the stopping power and oscillation wavelength was also determined from 0.2 to 1.2 MeV for the (110) planar channel

  19. A design technique of low cost but high quality peak stretcher

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H Y; Su, C S; Hsu, J Y; Wang, L

    1981-03-01

    This paper presents the design of low cost but high quality pulse peak stretcher incorporated with a LSI of 12 bit ADC and SKD-85 microcomputer. The conflict between the capacitor high charging speed and longer holding time for realizing a high quality stretcher is discussed and solved. For a lager number of channels available in a dual ramp Wilkinson-type ADC, two-stage stretchers connected in series are designed. The first stage is a fast-discharge to keep the output stretched pulse follow-up the input quickly and the second-stage (main stretcher) is a slow-discharge to keep the transient of the circuit minimum. Both of these two peak stretchers are described and the experiment results are photographically recorded.

  20. Emitter signal separation method based on multi-level digital channelization

    Science.gov (United States)

    Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan

    2018-02-01

    To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.

  1. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  2. Secure Cooperative Spectrum Sensing for the Cognitive Radio Network Using Nonuniform Reliability

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2014-01-01

    Full Text Available Both reliable detection of the primary signal in a noisy and fading environment and nullifying the effect of unauthorized users are important tasks in cognitive radio networks. To address these issues, we consider a cooperative spectrum sensing approach where each user is assigned nonuniform reliability based on the sensing performance. Users with poor channel or faulty sensor are assigned low reliability. The nonuniform reliabilities serve as identification tags and are used to isolate users with malicious behavior. We consider a link layer attack similar to the Byzantine attack, which falsifies the spectrum sensing data. Three different strategies are presented in this paper to ignore unreliable and malicious users in the network. Considering only reliable users for global decision improves sensing time and decreases collisions in the control channel. The fusion center uses the degree of reliability as a weighting factor to determine the global decision in scheme I. Schemes II and III consider the unreliability of users, which makes the computations even simpler. The proposed schemes reduce the number of sensing reports and increase the inference accuracy. The advantages of our proposed schemes over conventional cooperative spectrum sensing and the Chair-Varshney optimum rule are demonstrated through simulations.

  3. Remotely Sensed Predictions and In Situ Observations of Lower Congo River Dynamics in Support of Fish Evolutionary Biology

    Science.gov (United States)

    Gardiner, N.; Bjerklie, D. M.

    2011-12-01

    Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used

  4. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    Science.gov (United States)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  5. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  6. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  7. Coupled channels in the different models

    International Nuclear Information System (INIS)

    Badalyan, A.M.; Polikarpov, M.I.; Simonov, Yu.A.

    1980-01-01

    Description of the multichannel phenomena due to channel coupling is considered. The different methods: the relativistic Logunov-Tavkhelidze-Blankenbecler-Sugar equations, the Schroedinger equation with the separable potentials and the many-channel N-D method are discussed. The particular emphasis is made on the dependence of pole trajectories and cross sections on the parameters of the coupled channel (CC) pole interaction. In detail the properties of the N anti N interaction with annihilation are taken into account. Elastic, charge exchange and annihilation cross sections are calculated in the 0-100 MeV energy range. The peaks in all cross sections at the threshold are due to the CC poles in the L=0 waves. The position of the 16 poles in different states for the case of no CC interaction and the standard CC interaction is presented

  8. Piezo proteins are pore-forming subunits of mechanically activated channels.

    Science.gov (United States)

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  9. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    Science.gov (United States)

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Asynchronous Channel-Hopping Scheme under Jamming Attacks

    Directory of Open Access Journals (Sweden)

    Yongchul Kim

    2018-01-01

    Full Text Available Cognitive radio networks (CRNs are considered an attractive technology to mitigate inefficiency in the usage of licensed spectrum. CRNs allow the secondary users (SUs to access the unused licensed spectrum and use a blind rendezvous process to establish communication links between SUs. In particular, quorum-based channel-hopping (CH schemes have been studied recently to provide guaranteed blind rendezvous in decentralized CRNs without using global time synchronization. However, these schemes remain vulnerable to jamming attacks. In this paper, we first analyze the limitations of quorum-based rendezvous schemes called asynchronous channel hopping (ACH. Then, we introduce a novel sequence sensing jamming attack (SSJA model in which a sophisticated jammer can dramatically reduce the rendezvous success rates of ACH schemes. In addition, we propose a fast and robust asynchronous rendezvous scheme (FRARS that can significantly enhance robustness under jamming attacks. Our numerical results demonstrate that the performance of the proposed scheme vastly outperforms the ACH scheme when there are security concerns about a sequence sensing jammer.

  11. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  12. A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Eshkalak, Maedeh [Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Anvarifard, Mohammad K., E-mail: m.anvarifard@guilan.ac.ir [Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah (Iran, Islamic Republic of)

    2017-04-25

    This work has provided an efficient technique to improve the electrical performance for the Graphene Nanoribbon Field Effect Transistors (GNRFETs) successfully. The physical gate length is divided into two gates named as the original gate and the other one as the virtual gate. We have applied a voltage source between these gates to control the channel of the GNRFETs. This technique has created an extra peak electric field in the middle of the channel resulting in the redistribution of surface potential profile. The proposed structure named as EFP-GNRFET has been compared with a simple GNRFET and has shown many improvements in terms of the critical parameters such as short channel effects, leakage current, subthreshold swing, ON-state to OFF-state current ratio, transconductance, output conductance and voltage gain. The structures under the study in this paper benefits from the Non-Equilibrium Green Function (NEGF) approach for solving Schrödinger equation coupled with the two-dimensional (2D) Poisson equation in a self-consistent manner. - Highlights: • Proposal of a novel graphene nanoribbon FET. • Creation of an extra peak in electric field. • Modification of the channel potential with the help of virtual gate. • Considerable improvement on electrical performances.

  13. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat.

    Science.gov (United States)

    Schuhmacher, Laura-Nadine; Smith, Ewan St John

    2016-12-13

    Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and β-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.

  14. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  15. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  16. Ergodic Capacity of Cognitive Radio Under Imperfect Channel-State Information

    KAUST Repository

    Rezki, Zouheir; Alouini, Mohamed-Slim

    2012-01-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel-state information (CSI) of the secondary link but knows only the statistics and an estimated version of the secondary transmitter-primary receiver link is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels [with a continuous probability density function (pdf)] under the average and peak transmit power constraints and with respect to the following two different interference constraints: 1) an interference outage constraint and 2) a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for example, that the interference constraint is harmful at the high-power regime, because the capacity does not increase with the power, whereas at the low-power regime, it has a marginal impact and no-interference performance, which corresponds to the ergodic capacity under average or peak transmit power constraint in the absence of the primary user, may be achieved. © 2012 IEEE.

  17. Ergodic Capacity of Cognitive Radio Under Imperfect Channel-State Information

    KAUST Repository

    Rezki, Zouheir

    2012-09-08

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel-state information (CSI) of the secondary link but knows only the statistics and an estimated version of the secondary transmitter-primary receiver link is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels [with a continuous probability density function (pdf)] under the average and peak transmit power constraints and with respect to the following two different interference constraints: 1) an interference outage constraint and 2) a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for example, that the interference constraint is harmful at the high-power regime, because the capacity does not increase with the power, whereas at the low-power regime, it has a marginal impact and no-interference performance, which corresponds to the ergodic capacity under average or peak transmit power constraint in the absence of the primary user, may be achieved. © 2012 IEEE.

  18. Relativistically Self-Channeled Femtosecond Terawatt Lasers for High-Field Physics and X-Ray Generation

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A.B.; Boyer, K.; Cameron, S.M.; Luk, T.S.; McPherson, A.; Nelson, T.; Rhodes, C.K.

    1999-01-01

    Optical channeling or refractive guiding processes involving the nonlinear interaction of intense femtosecond optical pulses with matter in the self-focussing regime has created exciting opportunities for next-generation laser plasma-based x-ray sources and directed energy applications. This fundamentally new form of extended paraxial electromagnetic propagation in nonlinear dispersive media such as underdense plasma is attributed to the interplay between normal optical diffraction and intensity-dependent nonlinear focussing and refraction contributions in the dielectric response. Superposition of these mechanisms on the intrinsic index profile acts to confine the propagating energy in a dynamic self-guiding longitudinal waveguide structure which is stable for power transmission and robust compression. The laser-driven channels are hypothesized to support a degree of solitonic transport behavior, simultaneously stable in the space and time domains (group velocity dispersion balances self-phase modulation), and are believed to be self-compensating for diffraction and dispersion over many Rayleigh lengths in contrast with the defining characteristics of conventional diffractive imaging and beamforming. By combining concentrated power deposition with well-ordered spatial localization, this phenomena will also create new possibilities for production and regulation of physical interactions, including electron beams, enhanced material coupling, and self-modulated plasma wakefields, over extended gain distances with unprecedented energy densities. Harmonious combination of short-pulse x-ray production with plasma channeling resulting from a relativistic charge displacement nonlinearity mechanism in the terawatt regime (10{sup 18} W/cm{sup 2}) has been shown to generate high-field conditions conducive to efficient multi-kilovolt x-ray amplification and peak spectral brightness. Channeled optical propagation with intense short-pulse lasers is expected to impact several

  19. Capacity limits introduced by data fusion on cooperative spectrum sensing under correlated environments

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Rodrigues, Antonio

    2010-01-01

    spectrum sensing scheme, by measuring the perceived capacity limits introduced by the use of data fusion on cooperative sensing schemes. The analysis is supported by evaluation metrics which account for the perceived capacity limits. The analysis is performed along the data fusion chain, comparing several...... scenarios encompassing different degree of environment correlation between the cluster nodes, number of cluster nodes and sensed channel occupation statistics. Through this study we motivate that to maximize the perceived capacity by the cooperative spectrum sensing, the use of data fusion needs...

  20. Fabrication and Characterization of Silicon Micro-Funnels and Tapered Micro-Channels for Stochastic Sensing Applications

    Directory of Open Access Journals (Sweden)

    Frances S. Ligler

    2008-06-01

    Full Text Available We present a simplified, highly reproducible process to fabricate arrays of tapered silicon micro-funnels and micro-channels using a single lithographic step with a silicon oxide (SiO2 hard mask on at a wafer scale. Two approaches were used for the fabrication. The first one involves a single wet anisotropic etch step in concentrated potassium hydroxide (KOH and the second one is a combined approach comprising Deep Reactive Ion Etch (DRIE followed by wet anisotropic etching. The etching is performed through a 500 mm thick silicon wafer, and the resulting structures are characterized by sharp tapered ends with a sub-micron cross-sectional area at the tip. We discuss the influence of various parameters involved in the fabrication such as the size and thickness variability of the substrate, dry and wet anisotropic etching conditions, the etchant composition, temperature, diffusion and micro-masking effects, the quality of the hard mask in the uniformity and reproducibility of the structures, and the importance of a complete removal of debris and precipitates. The presence of apertures at the tip of the structures is corroborated through current voltage measurements and by the translocation of DNA through the apertures. The relevance of the results obtained in this report is discussed in terms of the potential use of these structures for stochastic sensing.

  1. Automatically sweeping dual-channel boxcar integrator

    International Nuclear Information System (INIS)

    Keefe, D.J.; Patterson, D.R.

    1978-01-01

    An automatically sweeping dual-channel boxcar integrator has been developed to automate the search for a signal that repeatedly follows a trigger pulse by a constant or slowly varying time delay when that signal is completely hidden in random electrical noise and dc-offset drifts. The automatically sweeping dual-channel boxcar integrator improves the signal-to-noise ratio and eliminates dc-drift errors in the same way that a conventional dual-channel boxcar integrator does, but, in addition, automatically locates the hidden signal. When the signal is found, its time delay is displayed with 100-ns resolution, and its peak value is automatically measured and displayed. This relieves the operator of the tedious, time-consuming, and error-prone search for the signal whenever the time delay changes. The automatically sweeping boxcar integrator can also be used as a conventional dual-channel boxcar integrator. In either mode, it can repeatedly integrate a signal up to 990 times and thus make accurate measurements of the signal pulse height in the presence of random noise, dc offsets, and unsynchronized interfering signals

  2. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    Directory of Open Access Journals (Sweden)

    Michela Riz

    2015-12-01

    Full Text Available Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1, peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT and ATP-sensitive K+-channels (K(ATP-channels to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release.

  3. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  4. Semi-blind identification of wideband MIMO channels via stochastic sampling

    OpenAIRE

    Andrieu, Christophe; Piechocki, Robert J.; McGeehan, Joe P.; Armour, Simon M.

    2003-01-01

    In this paper we address the problem of wide-band multiple-input multiple-output (MIMO) channel (multidimensional time invariant FIR filter) identification using Markov chains Monte Carlo methods. Towards this end we develop a novel stochastic sampling technique that produces a sequence of multidimensional channel samples. The method is semi-blind in the sense that it uses a very short training sequence. In such a framework the problem is no longer analytically tractable; hence we resort to s...

  5. An Easy to Manufacture Micro Gas Preconcentrator for Chemical Sensing Applications.

    Science.gov (United States)

    McCartney, Mitchell M; Zrodnikov, Yuriy; Fung, Alexander G; LeVasseur, Michael K; Pedersen, Josephine M; Zamuruyev, Konstantin O; Aksenov, Alexander A; Kenyon, Nicholas J; Davis, Cristina E

    2017-08-25

    We have developed a simple-to-manufacture microfabricated gas preconcentrator for MEMS-based chemical sensing applications. Cavities and microfluidic channels were created using a wet etch process with hydrofluoric acid, portions of which can be performed outside of a cleanroom, instead of the more common deep reactive ion etch process. The integrated heater and resistance temperature detectors (RTDs) were created with a photolithography-free technique enabled by laser etching. With only 28 V DC (0.1 A), a maximum heating rate of 17.6 °C/s was observed. Adsorption and desorption flow parameters were optimized to be 90 SCCM and 25 SCCM, respectively, for a multicomponent gas mixture. Under testing conditions using Tenax TA sorbent, the device was capable of measuring analytes down to 22 ppb with only a 2 min sample loading time using a gas chromatograph with a flame ionization detector. Two separate devices were compared by measuring the same chemical mixture; both devices yielded similar peak areas and widths (fwhm: 0.032-0.033 min), suggesting reproducibility between devices.

  6. On the Impact of User Distribution on Cooperative Spectrum Sensing and Data Transmission with Multiuser Diversity

    KAUST Repository

    Rao, Anlei

    2011-07-01

    In this thesis, we investigate the independent but not identically distributed (i.n.i.d.) situations for spectrum sensing and data transmission. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Nakagami fading channels. Then, the performance of adaptive modulation with single-cell multiuser scheduling over i.n.i.d. Nakagami fading channels is analyzed. Closed-form expressions are derived for the average channel capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded M- ary quadrature amplitude modulation (M-QAM) schemes. In addition, we study the impact of time delay on the average BER of adaptive M-QAM. From the selected numerical results, we can see that cooperative spectrum sensing and multiuser diversity brings considerably better performance even over i.n.i.d. fading environments.

  7. Optimal census by quorum sensing

    Science.gov (United States)

    Taillefumier, Thibaud

    Bacteria regulate their gene expression in response to changes in local cell density in a process called quorum sensing. To synchronize their gene-expression programs, these bacteria need to glean as much information as possible about local density. Our study is the first to physically model the flow of information in a quorum-sensing microbial community, wherein the internal regulator of the individual's response tracks the external cell density via an endogenously generated shared signal. Combining information theory and Lagrangian optimization, we find that quorum-sensing systems can improve their information capabilities by tuning circuit feedbacks. At the population level, external feedback adjusts the dynamic range of the shared input to individuals' detection channels. At the individual level, internal feedback adjusts the regulator's response time to dynamically balance output noise reduction and signal tracking ability. Our analysis suggests that achieving information benefit via feedback requires dedicated systems to control gene expression noise, such as sRNA-based regulation.

  8. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    Science.gov (United States)

    Kang, Bok Eum; Baker, Bradley J

    2016-04-04

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

  9. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  10. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP

    DEFF Research Database (Denmark)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-01-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane...... as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy....... Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing...

  11. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    Science.gov (United States)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  12. Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.

    Science.gov (United States)

    Freites, J Alfredo; Tobias, Douglas J

    2015-06-01

    Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.

  13. Reduced channel conveyance on the Wichita River at Wichita Falls, Texas, 1900-2009

    Science.gov (United States)

    Winters, Karl; Baldys, Stanley; Schreiber, Russell

    2010-01-01

    Recent floods on the Wichita River at Wichita Falls, Texas, have reached higher stages compared to historical floods of similar magnitude discharges. The U.S. Geological Survey (USGS) has operated streamflow-gaging station 07312500 Wichita River at Wichita Falls, Tex., since 1938 and flood measurements near the location of the present gage were first made in 1900. Floods recorded in 2007 and 2008 at this gaging station, including the record flood of June 30, 2007, reached higher stages compared to historical floods before 1972 of similar peak discharges. For flood measurements made at stages of more than 18 feet, peak stages were about 1 to 3 feet higher compared to peak stages of similar peak discharges measured before 1972. Flood measurements made at stages of more than 18 feet also indicate a decrease in the measured mean velocity from about 3.5 to about 2.0 feet per second from 1941 to 2008. The increase in stage and decrease in streamflow velocity for similar magnitude floods indicates channel conveyance has decreased over time. A study to investigate the causes of reduced channel conveyance in the Wichita River reach from Loop 11 downstream to River Road in Wichita Falls was done by the USGS in cooperation with the City of Wichita Falls. Historical photographs indicate substantial growth of riparian vegetation downstream from Loop 11 between 1950 and 2009. Aerial photographs taken between 1950 and 2008 also indicate an increase in riparian vegetation. Twenty-five channel cross sections were surveyed by the USGS in this reach in 2009. These cross sections were located at bridge crossings or collocated with channel cross sections previously surveyed in 1986 for use in a floodplain mapping study by the Federal Emergency Management Agency. Four channel cross sections 3,400 to 11,900 feet downstream from Martin Luther King Jr. Boulevard indicate narrowing of the channel. The remaining channel cross sections surveyed in 2009 by the USGS compared favorably with

  14. A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Yonghong Zeng

    2010-01-01

    Full Text Available Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

  15. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.

    Science.gov (United States)

    Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni

    2017-11-08

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  16. An evolutionarily conserved gene family encodes proton-selective ion channels.

    Science.gov (United States)

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  18. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    Science.gov (United States)

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A fast high-voltage current-peak detection system for the ALICE transition radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Verclas, Robert [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    During LHC operation in run 1, the gaseous detectors of ALICE occasionally experienced simultaneous trips in their high voltage which affected the majority of the high voltage channels. These trips are caused by large anode currents in the detector and are potentially related to LHC machine operations. We developed and installed a fast current-peak detection system for the ALICE Transition Radiation Detector. This system is based on FPGA technology and monitors 144 out 522 high voltage channels minimally invasively at a maximum readout rate of 2 MHz. It is an integral part of the LHC beam monitoring system. We report on the latest status.

  20. NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.

    Science.gov (United States)

    Shenkarev, Zakhar O; Paramonov, Alexander S; Lyukmanova, Ekaterina N; Shingarova, Lyudmila N; Yakimov, Sergei A; Dubinnyi, Maxim A; Chupin, Vladimir V; Kirpichnikov, Mikhail P; Blommers, Marcel J J; Arseniev, Alexander S

    2010-04-28

    The structure and dynamics of the isolated voltage-sensing domain (VSD) of the archaeal potassium channel KvAP was studied by high-resolution NMR. The almost complete backbone resonance assignment and partial side-chain assignment of the (2)H,(13)C,(15)N-labeled VSD were obtained for the protein domain solubilized in DPC/LDAO (2:1) mixed micelles. Secondary and tertiary structures of the VSD were characterized using secondary chemical shifts and NOE contacts. These data indicate that the spatial structure of the VSD solubilized in micelles corresponds to the structure of the domain in an open state of the channel. NOE contacts and secondary chemical shifts of amide protons indicate the presence of tightly bound water molecule as well as hydrogen bond formation involving an interhelical salt bridge (Asp62-R133) that stabilizes the overall structure of the domain. The backbone dynamics of the VSD was studied using (15)N relaxation measurements. The loop regions S1-S2 and S2-S3 were found mobile, while the S3-S4 loop (voltage-sensor paddle) was found stable at the ps-ns time scale. The moieties of S1, S2, S3, and S4 helices sharing interhelical contacts (at the level of the Asp62-R133 salt bridge) were observed in conformational exchange on the micros-ms time scale. Similar exchange-induced broadening of characteristic resonances was observed for the VSD solubilized in the membrane of lipid-protein nanodiscs composed of DMPC, DMPG, and POPC/DOPG lipids. Apparently, the observed interhelical motions represent an inherent property of the VSD of the KvAP channel and can play an important role in the voltage gating.

  1. Multi- and hyperspectral geologic remote sensing: A review

    Science.gov (United States)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  2. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  3. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    Science.gov (United States)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  4. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements

    DEFF Research Database (Denmark)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar

    2008-01-01

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development...

  5. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  6. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  7. Role of TRP channels in the cardiovascular system.

    Science.gov (United States)

    Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia

    2015-02-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  8. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication

    International Nuclear Information System (INIS)

    Hu, Huan; Cunningham, Brian T; King, William P; Zhuo, Yue; Oruc, Muhammed E

    2014-01-01

    Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels using a heated atomic force microscopy (AFM) tip. The heated AFM tip deposits polymer nanowires where needed to serve as etch mask to fabricate silicon molds through one step of etching. PDMS nanofluidic channels are easily fabricated through replicate molding using the silicon molds. Various shapes of nanofluidic channels with either straight or curvilinear features are demonstrated. The width of the nanofluidic channels is 500 nm, and is determined by the deposited polymer nanowire width. The height of the channel is 400 nm determined by the silicon etching time. Ion conductance measurement on one single curvy shaped nanofluidic channel exhibits the typical ion conductance saturation phenomenon as the ion concentration decreases. Moreover, fluorescence imaging of fluid flowing through a fabricated nanofluidic channel demonstrates the channel integrity. This TBN process is seamlessly compatible with existing nanofabrication processes and can be used to achieve new types of nanofluidic devices. (paper)

  9. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  10. Hydraulic Geometry, GIS and Remote Sensing, Techniques against Rainfall-Runoff Models for Estimating Flood Magnitude in Ephemeral Fluvial Systems

    Directory of Open Access Journals (Sweden)

    Rafael Garcia-Lorenzo

    2010-11-01

    Full Text Available This paper shows the combined use of remotely sensed data and hydraulic geometry methods as an alternative to rainfall-runoff models. Hydraulic geometric data and boolean images of water sheets obtained from satellite images after storm events were integrated in a Geographical Information System. Channel cross-sections were extracted from a high resolution Digital Terrain Model (DTM and superimposed on the image cover to estimate the peak flow using HEC-RAS. The proposed methodology has been tested in ephemeral channels (ramblas on the coastal zone in south-eastern Spain. These fluvial systems constitute an important natural hazard due to their high discharges and sediment loads. In particular, different areas affected by floods during the period 1997 to 2009 were delimited through HEC-GeoRAs from hydraulic geometry data and Landsat images of these floods (Landsat‑TM5 and Landsat-ETM+7. Such an approach has been validated against rainfall-surface runoff models (SCS Dimensionless Unit Hydrograph, SCSD, Témez gamma HU Tγ and the Modified Rational method, MRM comparing their results with flood hydrographs of the Automatic Hydrologic Information System (AHIS in several ephemeral channels in the Murcia Region. The results obtained from the method providing a better fit were used to calculate different hydraulic geometry parameters, especially in residual flood areas.

  11. Dynamic-range reduction by peak clipping or compression and its effects on phoneme perception in hearing-impaired listeners

    NARCIS (Netherlands)

    Dreschler, W. A.

    1988-01-01

    In this study, differences between dynamic-range reduction by peak clipping and single-channel compression for phoneme perception through conventional hearing aids have been investigated. The results from 16 hearing-impaired listeners show that compression limiting yields significantly better

  12. Uncertainty analysis for hot channel

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2006-01-01

    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  13. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera.

    Directory of Open Access Journals (Sweden)

    Andrew Wang

    Full Text Available We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.

  14. Stochastic Analysis of Natural Convection in Vertical Channels with Random Wall Temperature

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2017-01-01

    Full Text Available This study attempts to derive the statistics of temperature and velocity fields of laminar natural convection in a heated vertical channel with random wall temperature. The wall temperature is expressed as a random function with respect to time, or a random process. First, analytical solutions of the transient temperature and flow velocity fields for an arbitrary temporal variation in the channel wall temperature are obtained by the integral transform and convolution theorem. Second, the autocorrelations of the temperature and velocity are formed from the solutions, assuming a stationarity in time. The mean square values of temperature and velocity are computed under the condition that the fluctuation in the channel wall temperature can be considered as white noise or a stationary Markov process. Numerical results demonstrate that a decrease in the Prandtl number or an increase in the correlation time of the random process increases the level of mean square velocity but does not change its spatial distribution tendency, which is a bell-shaped profile with a peak at a certain horizontal distance from the channel wall. The peak position is not substantially affected by the Prandtl number or the correlation time.

  15. Pricing Model for Dual Sales Channel with Promotion Effect Consideration

    Directory of Open Access Journals (Sweden)

    Chuiri Zhou

    2016-01-01

    Full Text Available We focus on the pricing strategy of a dual sales channel member when his/her online retailer faces an upcoming overloaded express delivery service due to the sales peak of online shopping, especially referring to the occurring affairs in China. We characterize the pricing problem of the dual selling channel system as a two-period game. When the price discount is only provided by the online seller, we find that the prices of the traditional channel and the online channel in the two periods are higher while the overloaded degree of express delivery is lower and the overloaded delivery services can decrease the profits of both channels. When the price discounts are provided by both traditional and online sellers, we find that the derived Nash price equilibrium of both channels includes five possible combinations of prices. Both traditional and online sellers will choose their price strategies, respectively, according to their cost advantages which are affected by the overloaded degree of express delivery.

  16. Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity

    Science.gov (United States)

    Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott

    2008-01-01

    The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic

  17. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  18. Sexy DEG/ENaC channels involved in gustatory detection of fruit fly pheromones.

    Science.gov (United States)

    Pikielny, Claudio W

    2012-11-06

    Hydrocarbon pheromones on the cuticle of Drosophila melanogaster modulate the complex courtship behavior of males. Recently, three members of the degenerin/epithelial Na+ channel (DEG/ENaC) family of sodium channel subunits, Ppk25, Ppk23, and Ppk29 (also known as Nope), have been shown to function in gustatory perception of courtship-modulating contact pheromones. All three proteins are required for the activation of male courtship by female pheromones. Specific interactions between two of them have been demonstrated in cultured cells, suggesting that, in a subset of cells where they are coexpressed, these three subunits function within a common heterotrimeric DEG/ENaC channel. Such a DEG/ENaC channel may be gated by pheromones, either directly or indirectly, or alternatively may control the excitability of pheromone-sensing cells. In addition, these studies identify taste neurons that respond specifically to courtship-modulating pheromones and mediate their effects on male behavior. Two types of pheromone-sensing taste neurons, F and M cells, have been defined on the basis of their specific response to either female or male pheromones. These reports set the stage for the dissection of the molecular and cellular mechanisms that mediate gustatory detection of contact pheromones.

  19. A Detection Algorithm for the BOC Signal Based on Quadrature Channel Correlation

    Directory of Open Access Journals (Sweden)

    Bo Qian

    2018-01-01

    Full Text Available In order to solve the problem of detecting a BOC signal, which uses a long-period pseudo random sequence, an algorithm is presented based on quadrature channel correlation. The quadrature channel correlation method eliminates the autocorrelation component of the carrier wave, allowing for the extraction of the absolute autocorrelation peaks of the BOC sequence. If the same lag difference and height difference exist for the adjacent peaks, the BOC signal can be detected effectively using a statistical analysis of the multiple autocorrelation peaks. The simulation results show that the interference of the carrier wave component is eliminated and the autocorrelation peaks of the BOC sequence are obtained effectively without demodulation. The BOC signal can be detected effectively when the SNR is greater than −12 dB. The detection ability can be improved further by increasing the number of sampling points. The higher the ratio of the square wave subcarrier speed to the pseudo random sequence speed is, the greater the detection ability is with a lower SNR. The algorithm presented in this paper is superior to the algorithm based on the spectral correlation.

  20. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  1. A measuring generator for testing spectrometric channels

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Kalinkin, A.I.

    1984-01-01

    A measuring generator for testing and tuning an amplitude spectrometric channel is described. The device consists of a pseudo random pulse generator, constructed on shifters, a sawtooth wave generator and a shaper of stable amplitude pulses with exponential decay times. The device is made as CAMAC unit width modules and has the following specifications: average pulse repetition rate of pseudo random pulses is 3.1; 25; 50; 100; 200 kHz; peak amplitude of 2 Hz pulse repetition of saw tooth pulses is 6 V; peak amplitude of exponential shape pulses is 5 V. The block-diagram and basic circuits of the device are given

  2. Modulation of Acid-sensing Ion Channel 1a by Intracellular pH and Its Role in Ischemic Stroke.

    Science.gov (United States)

    Li, Ming-Hua; Leng, Tian-Dong; Feng, Xue-Chao; Yang, Tao; Simon, Roger P; Xiong, Zhi-Gang

    2016-08-26

    An important contributor to brain ischemia is known to be extracellular acidosis, which activates acid-sensing ion channels (ASICs), a family of proton-gated sodium channels. Lines of evidence suggest that targeting ASICs may lead to novel therapeutic strategies for stroke. Investigations of the role of ASICs in ischemic brain injury have naturally focused on the role of extracellular pH in ASIC activation. By contrast, intracellular pH (pHi) has received little attention. This is a significant gap in our understanding because the ASIC response to extracellular pH is modulated by pHi, and activation of ASICs by extracellular protons is paradoxically enhanced by intracellular alkalosis. Our previous studies show that acidosis-induced cell injury in in vitro models is attenuated by intracellular acidification. However, whether pHi affects ischemic brain injury in vivo is completely unknown. Furthermore, whereas ASICs in native neurons are composed of different subunits characterized by distinct electrophysiological/pharmacological properties, the subunit-dependent modulation of ASIC activity by pHi has not been investigated. Using a combination of in vitro and in vivo ischemic brain injury models, electrophysiological, biochemical, and molecular biological approaches, we show that the intracellular alkalizing agent quinine potentiates, whereas the intracellular acidifying agent propionate inhibits, oxygen-glucose deprivation-induced cell injury in vitro and brain ischemia-induced infarct volume in vivo Moreover, we find that the potentiation of ASICs by quinine depends on the presence of the ASIC1a, ASIC2a subunits, but not ASIC1b, ASIC3 subunits. Furthermore, we have determined the amino acids in ASIC1a that are involved in the modulation of ASICs by pHi. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structure of the cold- and menthol-sensing ion channel TRPM8.

    Science.gov (United States)

    Yin, Ying; Wu, Mengyu; Zubcevic, Lejla; Borschel, William F; Lander, Gabriel C; Lee, Seok-Yong

    2018-01-12

    Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo-electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment

    Science.gov (United States)

    Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.

    2008-02-01

    This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.

  5. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers

    Directory of Open Access Journals (Sweden)

    Yong Wei

    2017-12-01

    Full Text Available By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  6. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers.

    Science.gov (United States)

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-12-09

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  7. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  8. Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Altmann, Joseph B; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-08-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca(2+) concentration by promoting Ca(2+) influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.

  9. Simultaneous estimation of vitamin K1 and heparin with low limit of detection using cascaded channels fiber optic surface plasmon resonance.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2016-12-15

    We report an approach for the simultaneous estimation of vitamin K1 (VK1) and heparin via cascaded channel multianalyte sensing probe employing fiber optic surface plasmon resonance technique. Cladding from two well separated portions of the fiber is removed and are respectively coated with thin films of silver (channel-1) and copper (channel-2). The nanohybrid of multiwalled carbon nanotube in chitosan is fabricated over silver layer for the sensing of VK1 whereas core shell nanostructure of polybrene@ZnO is coated over copper layer for the sensing of heparin. Spectral interrogation method is used for the characterization of the sensor. Analyte selectivity of both the channels is performed by carrying out experiments using independent solutions of VK1 and heparin. Experiments performed on the solution of the mixture of VK1 and heparin show red shifts in both the channels on changing the concentration of both the analytes in the mixture. The operating range of both VK1 and heparin is from 0 to 10(-3)g/l. The limit of detection of the sensor is 2.66×10(-4)µg/l and 2.88×10(-4)µg/l for VK1 and heparin respectively which are lower than the reported ones. The additional advantages of the present sensor are low cost, possibility of online monitoring and remote sensing. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography

    DEFF Research Database (Denmark)

    Kazantsev, Daniil; Jørgensen, Jakob Sauer; Andersen, Martin S

    2018-01-01

    peaks. The acquired energy-binned data, however, suffer from low signal-to-noise ratio, acquisition artifacts, and frequently angular undersampled conditions. New regularized iterative reconstruction methods have the potential to produce higher quality images and since energy channels are mutually...... to encourage joint smoothing directions. In particular, the method selects reference channels from which to propagate structure in an adaptive and stochastic way while preferring channels with a high data signal-to-noise ratio. The method is compared with current state-of-the-art multi-channel reconstruction...

  11. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...... fokuspersonen ønsker at tage op (nye mål eller nye processer). Nærværende workingpaper beskriver, hvad der menes med et peak-interview, peakinterviwets teoretiske fundament samt metodikken til at foretage et tillidsfuldt og effektiv peak-interview....

  12. 'Peak oil' or 'peak demand'?

    International Nuclear Information System (INIS)

    Chevallier, Bruno; Moncomble, Jean-Eudes; Sigonney, Pierre; Vially, Rolland; Bosseboeuf, Didier; Chateau, Bertrand

    2012-01-01

    This article reports a workshop which addressed several energy issues like the objectives and constraints of energy mix scenarios, the differences between the approaches in different countries, the cost of new technologies implemented for this purposes, how these technologies will be developed and marketed, which will be the environmental and societal acceptability of these technical choices. Different aspects and issues have been more precisely presented and discussed: the peak oil, development of shale gases and their cost (will non conventional hydrocarbons modify the peak oil and be socially accepted?), energy efficiency (its benefits, its reality in France and other countries, its position in front of the challenge of energy transition), and strategies in the transport sector (challenges for mobility, evolution towards a model of sustainable mobility)

  13. Decentralized cooperative spectrum sensing for ad-hoc disaster relief network clusters

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    cooperative schemes becomes essential. A cluster based decentralized orchestration cooperative sensing scheme is proposed, where each node in the cluster decides which spectrum it should monitor, according to the past sensing decisions of all the cluster nodes. The proposed scheme performance is evaluated...... through a framework, which allows gauging the accuracy of multi narrow-band spectrum sensing cooperative schemes as well as to gauge the error in the estimation of each of the channels un-occupancy. Through that evaluation it is shown that the proposed decentralized scheme performance reaches...... the performance of the correspondent centralized scheme while outperforming the Round Robin scheme....

  14. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  15. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    Science.gov (United States)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  16. Optimal power allocation of a single transmitter-multiple receivers channel in a cognitive sensor network

    KAUST Repository

    Ayala Solares, Jose Roberto

    2012-08-01

    The optimal transmit power of a wireless sensor network with one transmitter and multiple receivers in a cognitive radio environment while satisfying independent peak, independent average, sum of peak and sum of average transmission rate constraints is derived. A suboptimal scheme is proposed to overcome the frequency of outages for the independent peak transmission rate constraint. In all cases, numerical results are provided for Rayleigh fading channels. © 2012 IEEE.

  17. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    Science.gov (United States)

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  18. Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY

    Science.gov (United States)

    Koradi, Reto; Billeter, Martin; Engeli, Max; Güntert, Peter; Wüthrich, Kurt

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automatedpeak picking for NMRspectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking.

  19. Relationship between SEP Peak intensity and CME Acceleration, Speed and Width

    Science.gov (United States)

    Xie, H.; St Cyr, O. C.; Makela, P. A.; Gopalswamy, N.

    2017-12-01

    We study the large solar energetic particle (SEP) events that were detected by GOES in the >10 MeV energy channel during December 2006 to January 2016. Data used in this study includes the Solar Electron Proton Telescope (SEPT) and High Energy Telescopes (HET) on STEREO A and B, the Electron, Proton, and Alpha Monitor (EPAM) on ACE, and the Energetic and Relativistic Nuclei and Electron instrument (ERNE) on SOHO. By choosing the smallest connection angles between SEP solar locations and magnetic foot-points of each spacecraft, we divide SEP events as SOHO SEPs or STEREO SEPs. We then compute the SEP peak intensity I0 at the center of the Gausssian using the Gausssian expression from Richardson et al. (2014) and study the relationship between SEP electron and proton peak intensity and CME acceleration, speed and width. By using I0 derived from multi-spacecraft observations we found that the correlations between SEP peak intensity and CME acceleration and speed improved. We also found that this correlation can be further improved by taking into account the effects of CME width and its solar source latitude. The implication for the SEP forecast of our obtained results will be discussed.

  20. A single amino acid gates the KcsA channel

    International Nuclear Information System (INIS)

    Hirano, Minako; Okuno, Daichi; Onishi, Yukiko; Ide, Toru

    2014-01-01

    Highlights: • pH-dependent gating of the KcsA channel is regulated by the CPD. • E146 is the most essential amino acid for pH sensing by the KcsA. • The protonated-mimicking mutant, E146Q, is constitutively open independent of pH. • Minimal rearrangement of the CPD is sufficient for opening of the KcsA. - Abstract: The KcsA channel is a proton-activated potassium channel. We have previously shown that the cytoplasmic domain (CPD) acts as a pH-sensor, and the charged states of certain negatively charged amino acids in the CPD play an important role in regulating the pH-dependent gating. Here, we demonstrate the KcsA channel is constitutively open independent of pH upon mutating E146 to a neutrally charged amino acid. In addition, we found that rearrangement of the CPD following this mutation was not large. Our results indicate that minimal rearrangement of the CPD, particularly around E146, is sufficient for opening of the KcsA channel

  1. A single amino acid gates the KcsA channel

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Minako, E-mail: hirano37@gpi.ac.jp [Bio Photonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu Nishi-ku Hamamatsu, Shizuoka 431-1202 (Japan); Laboratory for Cell Dynamics Observation, Quantitative Biology Center, RIKEN, 6-2-3 Furue-dai Suita, Osaka 565-0874 (Japan); Okuno, Daichi, E-mail: dokuno@riken.jp [Laboratory for Cell Dynamics Observation, Quantitative Biology Center, RIKEN, 6-2-3 Furue-dai Suita, Osaka 565-0874 (Japan); Onishi, Yukiko, E-mail: yonishi@riken.jp [Laboratory for Cell Dynamics Observation, Quantitative Biology Center, RIKEN, 6-2-3 Furue-dai Suita, Osaka 565-0874 (Japan); Ide, Toru, E-mail: ide@okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku Okayama-shi, Okayama 700-8530 (Japan)

    2014-08-08

    Highlights: • pH-dependent gating of the KcsA channel is regulated by the CPD. • E146 is the most essential amino acid for pH sensing by the KcsA. • The protonated-mimicking mutant, E146Q, is constitutively open independent of pH. • Minimal rearrangement of the CPD is sufficient for opening of the KcsA. - Abstract: The KcsA channel is a proton-activated potassium channel. We have previously shown that the cytoplasmic domain (CPD) acts as a pH-sensor, and the charged states of certain negatively charged amino acids in the CPD play an important role in regulating the pH-dependent gating. Here, we demonstrate the KcsA channel is constitutively open independent of pH upon mutating E146 to a neutrally charged amino acid. In addition, we found that rearrangement of the CPD following this mutation was not large. Our results indicate that minimal rearrangement of the CPD, particularly around E146, is sufficient for opening of the KcsA channel.

  2. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kyle F. Flynn

    2014-12-01

    Full Text Available A passive method for remote sensing of the nuisance green algae Cladophora glomerata in rivers is presented using an unmanned aerial vehicle (UAV. Included are methods for UAV operation, lens distortion correction, image georeferencing, and spectral analysis to support algal cover mapping. Eighteen aerial photography missions were conducted over the summer of 2013 using an off-the-shelf UAV and three-band, wide-angle, red, green, and blue (RGB digital camera sensor. Images were post-processed, mosaicked, and georeferenced so automated classification and mapping could be completed. An adaptive cosine estimator (ACE and spectral angle mapper (SAM algorithm were used to complete the algal identification. Digital analysis of optical imagery correctly identified filamentous algae and background coverage 90% and 92% of the time, and tau coefficients were 0.82 and 0.84 for ACE and SAM, respectively. Thereafter, algal cover was characterized for a one-kilometer channel segment during each of the 18 UAV flights. Percent cover ranged from <5% to >50%, and increased immediately after vernal freshet, peaked in midsummer, and declined in the fall. Results indicate that optical remote sensing with UAV holds promise for completing spatially precise, and multi-temporal measurements of algae or submerged aquatic vegetation in shallow rivers with low turbidity and good optical transmission.

  3. Position difference regularity of corresponding R-wave peaks for maternal ECG components from different abdominal points

    International Nuclear Information System (INIS)

    Zhang Jie-Min; Liu Hong-Xing; Huang Xiao-Lin; Si Jun-Feng; Guan Qun; Tang Li-Ming; Liu Tie-Bing

    2014-01-01

    We collected 343 groups of abdominal electrocardiogram (ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between different abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT—BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT—BIH PhysioBank, achieving the successful separation of the maternal ECGs. (interdisciplinary physics and related areas of science and technology)

  4. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  5. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu

    2018-04-01

    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  6. Tunable dual-channel filter based on the photonic crystal with air defects.

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  7. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  8. Colloid-Colloid Hydrodynamic Interaction Around a Bend in a Quasi-One-Dimensional Channel

    Science.gov (United States)

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Lin, Binhua; Rice, Stuart

    We report a study of the correlation between a pair of particles in a colloid suspension in a bent quasi-one-dimensional (q1d) channel as a function of bend angle. As the bend angle becomes more acute, we observe an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. Further, we observe that the peak value of D12, the coupling term in the pair diffusion tensor that characterizes the effect of the motion of particle 1 on particle 2, coincides with the first peak in the pair correlation function, and that the pair separation dependence of D12 mimics that of the pair correlation function. We show that the observed behavior is a consequence of the geometric constraints imposed by the single-file requirement that the particle centers lie on the centerline of the channel and the requirement that the hydrodynamic flow must follow the channel around the bend. We find that the correlation between a pair of particles in a colloidal suspension in a bent q1D channel has the same functional dependence on the pair correlation function as in a straight q1D channel when measured in a coordinate system that follows the centerline of the bent channel. NSF MRSEC (DMR-1420709), Dreyfus Foundation (SI-14-014).

  9. Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore–quencher pairing

    Science.gov (United States)

    Pantazis, Antonios

    2012-01-01

    Voltage-activated proteins can sense, and respond to, changes in the electric field pervading the cell membrane by virtue of a transmembrane helix bundle, the voltage-sensing domain (VSD). Canonical VSDs consist of four transmembrane helices (S1–S4) of which S4 is considered a principal component because it possesses charged residues immersed in the electric field. Membrane depolarization compels the charges, and by extension S4, to rearrange with respect to the field. The VSD of large-conductance voltage- and Ca-activated K+ (BK) channels exhibits two salient inconsistencies from the canonical VSD model: (1) the BK channel VSD possesses an additional nonconserved transmembrane helix (S0); and (2) it exhibits a “decentralized” distribution of voltage-sensing charges, in helices S2 and S3, in addition to S4. Considering these unique features, the voltage-dependent rearrangements of the BK VSD could differ significantly from the standard model of VSD operation. To understand the mode of operation of this unique VSD, we have optically tracked the relative motions of the BK VSD transmembrane helices during activation, by manipulating the quenching environment of site-directed fluorescent labels with native and introduced Trp residues. Having previously reported that S0 and S4 diverge during activation, in this work we demonstrate that S4 also diverges from S1 and S2, whereas S2, compelled by its voltage-sensing charged residues, moves closer to S1. This information contributes spatial constraints for understanding the BK channel voltage-sensing process, revealing the structural rearrangements in a non-canonical VSD. PMID:22802360

  10. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  11. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    Science.gov (United States)

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    Science.gov (United States)

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  13. Gas sensing with AlGaN/GaN 2DEG channels

    NARCIS (Netherlands)

    Offermans, P.; Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    AlGaN/GaN shows great promise as a generic platform for (bio-)chemical sensing because of its robustness and intrinsic sensitivity to surface charge or dipoles. Here, we employ the two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN layers grown on Si substrates for the

  14. In search of a consensus model of the resting state of a voltage-sensing domain.

    Science.gov (United States)

    Vargas, Ernesto; Bezanilla, Francisco; Roux, Benoît

    2011-12-08

    Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    International Nuclear Information System (INIS)

    Danilkin, I. V.; Simonov, Yu. A.

    2010-01-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2 3 P 1 (cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J PC =1 ++ is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  16. Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

    Science.gov (United States)

    Chen, Rong; Chung, Shin-Ho

    2012-10-02

    Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8-18). Here with atomistic molecular dynamics simulations, we examine the binding modes between two α-toxins, the anti-mammalian AahII and the anti-insect LqhαIT, and the voltage-sensing domain of rat Na(V)1.2, a subtype of Na(V) channels expressed in nerve cells. Both toxins are docked to the extracellular side of the voltage-sensing domain of Na(V)1.2 using molecular dynamics simulations, with the linker-domain assumed to wedge into the binding pocket. Several salt bridges and hydrophobic clusters are observed to form between the NC- and core-domains of the toxins and Na(V)1.2 and stabilize the toxin-channel complexes. The binding modes predicted are consistent with available mutagenesis data and can readily explain the relative affinities of AahII and LqhαIT for Na(V)1.2. The dissociation constants for the two toxin-channel complexes are derived, which compare favorably with experiment. Our models demonstrate that the functional surface of anti-mammalian scorpion α-toxins is centered on the linker-domain, similar to that of β-toxins.

  17. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  18. Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks.

    Science.gov (United States)

    Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin

    2016-06-03

    This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method.

  19. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides.

    Science.gov (United States)

    Lingueglia, Eric; Deval, Emmanuel; Lazdunski, Michel

    2006-05-01

    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.

  20. Sliding-MOMP Based Channel Estimation Scheme for ISDB-T Systems

    Directory of Open Access Journals (Sweden)

    Ziji Ma

    2016-01-01

    Full Text Available Compressive sensing based channel estimation has shown its advantage of accurate reconstruction for sparse signal with less pilots for OFDM systems. However, high computational cost requirement of CS method, due to linear programming, significantly restricts its implementation in practical applications. In this paper, we propose a reduced complexity channel estimation scheme of modified orthogonal matching pursuit with sliding windows for ISDB-T (Integrated Services Digital Broadcasting for Terrestrial system. The proposed scheme can reduce the computational cost by limiting the searching region as well as making effective use of the last estimation result. In addition, adaptive tracking strategy with sliding sampling window can improve the robustness of CS based methods to guarantee its accuracy of channel matrix reconstruction, even for fast time-variant channels. The computer simulation demonstrates its impact on improving bit error rate and computational complexity for ISDB-T system.

  1. Pinning potentials of the vortex lattice in YBCO crystals in the peak effect region

    International Nuclear Information System (INIS)

    Pasquini, G.; Bekeris, V.

    2004-01-01

    Memory effects in the dynamic response of the vortex lattice (VL) in type II superconductors and its relationship with the controversial peak effect, have attracted great interest for a long time. In the last years, these features have been observed in YBCO single crystals, with the DC magnetic field tilted away from the twin planes and were related with robust dynamical states characterized by different degrees of mobility. Recently, we reported that the previous dynamical history of the VL can modify not only its dynamic response, but can even modify its static properties as well. In the present work, we try to understand the nature of the peak effect in YBCO crystals by sensing the effective AC penetration depth in the linear Campbell regime. We report history dependent effective pinning potential well curvatures and study the stability of the different static configurations. Interestingly, we observe that the more pinned VL configuration is not the more stable. Results agree with a dynamic scenario undergoing the Peak Effect

  2. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  3. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  4. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  5. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    Science.gov (United States)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  6. Efficient Error Detection in Soft Data Fusion for Cooperative Spectrum Sensing

    KAUST Repository

    Saqib Bhatti, Dost Muhammad; Ahmed, Saleem; Saeed, Nasir; Shaikh, Bushra

    2018-01-01

    . For CSS, all SUs report their sensing information through reporting channel to the central base station called fusion center (FC). During transmission, some of the SUs are subjected to fading and shadowing, due to which the overall performance of CSS

  7. The Improved Adaptive Silence Period Algorithm over Time-Variant Channels in the Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2018-01-01

    Full Text Available In the field of cognitive radio spectrum sensing, the adaptive silence period management mechanism (ASPM has improved the problem of the low time-resource utilization rate of the traditional silence period management mechanism (TSPM. However, in the case of the low signal-to-noise ratio (SNR, the ASPM algorithm will increase the probability of missed detection for the primary user (PU. Focusing on this problem, this paper proposes an improved adaptive silence period management (IA-SPM algorithm which can adaptively adjust the sensing parameters of the current period in combination with the feedback information from the data communication with the sensing results of the previous period. The feedback information in the channel is achieved with frequency resources rather than time resources in order to adapt to the parameter change in the time-varying channel. The Monte Carlo simulation results show that the detection probability of the IA-SPM is 10–15% higher than that of the ASPM under low SNR conditions.

  8. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system.

    Science.gov (United States)

    Zimmermann, Katharina; Lennerz, Jochen K; Hein, Alexander; Link, Andrea S; Kaczmarek, J Stefan; Delling, Markus; Uysal, Serdar; Pfeifer, John D; Riccio, Antonio; Clapham, David E

    2011-11-01

    Detection and adaptation to cold temperature is crucial to survival. Cold sensing in the innocuous range of cold (>10-15 °C) in the mammalian peripheral nervous system is thought to rely primarily on transient receptor potential (TRP) ion channels, most notably the menthol receptor, TRPM8. Here we report that TRP cation channel, subfamily C member 5 (TRPC5), but not TRPC1/TRPC5 heteromeric channels, are highly cold sensitive in the temperature range 37-25 °C. We found that TRPC5 is present in mouse and human sensory neurons of dorsal root ganglia, a substantial number of peripheral nerves including intraepithelial endings, and in the dorsal lamina of the spinal cord that receives sensory input from the skin, consistent with a potential TRPC5 function as an innocuous cold transducer in nociceptive and thermosensory nerve endings. Although deletion of TRPC5 in 129S1/SvImJ mice resulted in no temperature-sensitive behavioral changes, TRPM8 and/or other menthol-sensitive channels appear to underpin a much larger component of noxious cold sensing after TRPC5 deletion and a shift in mechanosensitive C-fiber subtypes. These findings demonstrate that highly cold-sensitive TRPC5 channels are a molecular component for detection and regional adaptation to cold temperatures in the peripheral nervous system that is distinct from noxious cold sensing.

  9. Energy/bandwidth-Saving Cooperative Spectrum Sensing for Two-hopWRAN

    Directory of Open Access Journals (Sweden)

    Ming-Tuo Zhou

    2014-07-01

    Full Text Available A two-hop wireless regional area network (WRAN providing monitoring services operating in Television White Space (TVWS, i.e., IEEE P802.22b, may employ a great number of subscriber customer-premises equipments (S-CPEs possibly without mains power supply, leading to requirement of cost-effective and power-saving design. This paper proposes a framework of cooperative spectrum sensing (CSS and an energy/bandwidth saving CSS scheme to P802.22b. In each round of sensing, S-CPEs with SNRs lower than a predefined threshold are excluded from reporting sensing results. Numerical results show that the fused missed-detection probability and false alarmprobability could remainmeeting sensing requirements, and the overall fused error probability changes very little. With 10 S-CPEs, it is possible to save more than 40% of the energy/bandwidth on a Rayleigh channel. The principle proposed can apply to other advanced sensing technologies capable of detecting primary signals with low average SNR.

  10. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  11. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Czech Academy of Sciences Publication Activity Database

    Armstrong, C. T.; Mason, Philip E.; Anderson, J. L. R.; Dempsey, Ch. E.

    2016-01-01

    Roč. 6, Feb 22 (2016), č. článku 21759. ISSN 2045-2322 Institutional support: RVO:61388963 Keywords : K+ channel * potassium channels * sensing domain Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep21759

  12. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  13. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2015-12-01

    Full Text Available Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT, Machine-to-Machine (M2M communications, Vehicular-to-Vehicular (V2V communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  14. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2017-04-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  15. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2016-07-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  16. Monte Carlo calculations of channeling radiation

    International Nuclear Information System (INIS)

    Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.

    1981-01-01

    Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of γ 1 5 , γ 1 7 , and γ 2 5 respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on γ does not yet exist

  17. Molecular interactions involved in proton-dependent gating in KcsA potassium channels

    Science.gov (United States)

    Posson, David J.; Thompson, Ameer N.; McCoy, Jason G.

    2013-01-01

    The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel’s response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod–Wyman–Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a “strong” sensor displaying a large shift in pKa between closed and open states, and E118 is a “weak” pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations. PMID:24218397

  18. Integrated synchronous receiver channel for optical instrumentation applications

    Science.gov (United States)

    Benten, Harold G. P. H.; Ruotsalainen, Tarmo; Maekynen, Anssi J.; Rahkonen, Timo E.; Kopola, Harri K.

    1997-09-01

    A two-channel synchronous receiver circuit for optical instrumentation applications has been designed and implemented. Each receiver channel comprises a.o. transimpedance preamplifier, voltage amplifiers, programmable feedback networks, and a synchronous detector. The function of the channel is to extract the slowly varying information carrying signal from a modulated carrier which is accompanied by relatively high levels of noise. As a whole, the channel can be characterized as a narrow band filter around the frequency of interest. Medical applications include arterial oxygen saturation (SaO2) measurement and dental pulp vitality measurement. In both cases, two optical signals with different frequencies are received by a single photodiode. The measured performance of the optical receiver shows its suitability for the above mentioned applications. Therefore the circuit will be used in a small sized, battery-operated sensor prototype to test the sensing method in a clinical environment. Other applications include the signal processing of optical position-sensitive detectors. A summary of measured receiver channel performance: input reduced noise current spectral density between 0.20 and 0.30 pA/(root)Hz at all relevant frequencies, total programmable channel transimpedance between 7 M(Omega) and 500 M(Omega) , lower -3 dB frequency of at least 50 Hz, upper -3 dB frequency of 40 kHz, maximum voltage swing at the demodulator output of 2.4 V.

  19. Frequency-Selective Signal Sensing with Sub-Nyquist Uniform Sampling Scheme

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek; Arildsen, Thomas

    2015-01-01

    In this paper the authors discuss a problem of acquisition and reconstruction of a signal polluted by adjacent- channel interference. The authors propose a method to find a sub-Nyquist uniform sampling pattern which allows for correct reconstruction of selected frequencies. The method is inspired...... by the Restricted Isometry Property, which is known from the field of compressed sensing. Then, compressed sensing is used to successfully reconstruct a wanted signal even if some of the uniform samples were randomly lost, e. g. due to ADC saturation. An experiment which tests the proposed method in practice...

  20. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang; Khan, Fahdahmed

    2012-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  1. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei

    2012-09-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  2. Acid-sensing ion channels expression, identity and role in the excitability of the cochlear afferent neurons

    Directory of Open Access Journals (Sweden)

    Antonia eGonzález-Garrido

    2015-12-01

    Full Text Available Acid-sensing ion channels (ASICs are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4 that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs. These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations and N,N,N’,N’–tetrakis-(2-piridilmetil-etilendiamina (TPEN increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2 and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.

  3. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons

    Science.gov (United States)

    González-Garrido, Antonia; Vega, Rosario; Mercado, Francisco; López, Iván A.; Soto, Enrique

    2015-01-01

    Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na+, exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N’,N’–tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs. PMID:26733809

  4. Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing

    Science.gov (United States)

    Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu

    Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.

  5. Service time analysis of secondary packet transmission with opportunistic channel access

    KAUST Repository

    Usman, Muneer; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    Cognitive radio transceiver can opportunistically access the underutilized channels of primary systems for new wireless services. The secondary transmission may be interrupted by the primary user's transmission. To facilitate the delay analysis of such secondary packet transmission, we study the resulting extended delivery time for a fixed-size secondary packet that includes both transmission time and waiting time. In particular we derive the exact distribution functions of extended delivery time of secondary transmission for both continuous sensing and periodic sensing cases. Selected numerical results are presented for illustrating the mathematical formulation.

  6. Service time analysis of secondary packet transmission with opportunistic channel access

    KAUST Repository

    Usman, Muneer

    2014-09-01

    Cognitive radio transceiver can opportunistically access the underutilized channels of primary systems for new wireless services. The secondary transmission may be interrupted by the primary user\\'s transmission. To facilitate the delay analysis of such secondary packet transmission, we study the resulting extended delivery time for a fixed-size secondary packet that includes both transmission time and waiting time. In particular we derive the exact distribution functions of extended delivery time of secondary transmission for both continuous sensing and periodic sensing cases. Selected numerical results are presented for illustrating the mathematical formulation.

  7. The Hv1 proton channel responds to mechanical stimuli.

    Science.gov (United States)

    Pathak, Medha M; Tran, Truc; Hong, Liang; Joós, Béla; Morris, Catherine E; Tombola, Francesco

    2016-11-01

    The voltage-gated proton channel, Hv1, is expressed in tissues throughout the body and plays important roles in pH homeostasis and regulation of NADPH oxidase. Hv1 operates in membrane compartments that experience strong mechanical forces under physiological or pathological conditions. In microglia, for example, Hv1 activity is potentiated by cell swelling and causes an increase in brain damage after stroke. The channel complex consists of two proton-permeable voltage-sensing domains (VSDs) linked by a cytoplasmic coiled-coil domain. Here, we report that these VSDs directly respond to mechanical stimuli. We find that membrane stretch facilitates Hv1 channel opening by increasing the rate of activation and shifting the steady-state activation curve to less depolarized potentials. In the presence of a transmembrane pH gradient, membrane stretch alone opens the channel without the need for strong depolarizations. The effect of membrane stretch persists for several minutes after the mechanical stimulus is turned off, suggesting that the channel switches to a "facilitated" mode in which opening occurs more readily and then slowly reverts to the normal mode observed in the absence of membrane stretch. Conductance simulations with a six-state model recapitulate all the features of the channel's response to mechanical stimulation. Hv1 mechanosensitivity thus provides a mechanistic link between channel activation in microglia and brain damage after stroke. © 2016 Pathak et al.

  8. Low-cost interferometric TDM technology for dynamic sensing applications

    Science.gov (United States)

    Bush, Jeff; Cekorich, Allen

    2004-12-01

    A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.

  9. Quasi-spherical compression of a spark-channel plasma

    International Nuclear Information System (INIS)

    Panarella, E.

    1980-01-01

    An axial spark channel in deuterium has been used as a target for implosive shock waves created with a conventional cylindrical theta-pinch device. The compression of the channel by the implosive waves raised the plasma electron temperature to approximately 120 eV for approximately 6 kJ of condenser bank energy and 1 Torr initial gas pressure. In order to improve the efficiency of compression of the channel plasma and to reduce the end losses inherent in the cylindrical configuration, the theta-pinch geometry was then converted from cylindrical into spherical. Under identical conditions of gas pressure and condenser bank energy, the electron temperature now peaked at approximately 400 eV. When the bank energy was increased to approximately 10 kJ, neutron production was observed. The total neutron output per shot ranged from 10 5 to 10 6 and increased inversely with the pinch discharge volume

  10. Progressive transmission of images over fading channels using rate-compatible LDPC codes.

    Science.gov (United States)

    Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul

    2006-12-01

    In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.

  11. The Kinetics and the Permeation Properties of Piezo Channels.

    Science.gov (United States)

    Gnanasambandam, R; Gottlieb, P A; Sachs, F

    2017-01-01

    Piezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported. They are homotrimers and each ∼300kD monomer has an N-terminal propeller blade-like mechanosensing module, which can confer mechanosensing capabilities on ASIC-1 (the trimeric non-MSC, acid-sensing ion channel-1) and a C-terminal pore module, which influences conductance, selectivity, and channel inactivation. Repeated stimulation can cause domain fracture and diffusion of these channels leading to synchronous loss of inactivation. The reconstituted channels spontaneously open only in asymmetric bilayers but lack inactivation. Mutations that cause hereditary xerocytosis alter PIEZO1 kinetics. The kinetics of the wild-type PIEZO1 and alterations thereof in mutants (M2225R, R2456K, and DhPIEZO1) are summarized in the form of a quantitative model and hosted online. The pore is permeable to alkali ions although Li + permeates poorly. Divalent cations, notably Ca 2+ , traverse the channel and inhibit the flux of monovalents. The large monovalent organic cations such as tetramethyl ammonium and tetraethyl ammonium can traverse the channel, but slowly, suggesting a pore diameter of ∼8Å, and the estimated in-plane area change upon opening is around 6-20nm 2 . Ruthenium red can enter the channel only from the extracellular side and seems to bind in a pocket close to residue 2496. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    Science.gov (United States)

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  13. Sensing small changes in a wave chaotic scattering system

    International Nuclear Information System (INIS)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward; Anlage, Steven M.

    2010-01-01

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acoustic resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.

  14. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K+ channels

    International Nuclear Information System (INIS)

    Inanobe, Atsushi; Matsuura, Takanori; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2011-01-01

    Highlights: → We examined allosteric control of K + channel gating. → We identified a high-affinity site for Cd 2+ to inhibit Kir3.2 activity. → The 6-coordination geometry supports the binding. → Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd 2+ as a probe, we examined the structural elements responsible for gating in an inward-rectifier K + channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd 2+ . Crystal structure of its cytoplasmic domain in complex with Cd 2+ reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.

  15. Light sensing in a photoresponsive, organic-based complementary inverter.

    Science.gov (United States)

    Kim, Sungyoung; Lim, Taehoon; Sim, Kyoseung; Kim, Hyojoong; Choi, Youngill; Park, Keechan; Pyo, Seungmoon

    2011-05-01

    A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.

  16. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    Science.gov (United States)

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Design and fabrication of a 100 GHz channel-drop filter

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Evgenya I [Los Alamos National Laboratory; Earley, Lawrence M [Los Alamos National Laboratory; Heath, Cynthia E [Los Alamos National Laboratory; Shchegolkov, Dmitry Y [Los Alamos National Laboratory

    2008-01-01

    We have designed and are fabricating a novel passive mm-wave spectrometer based on a Photonic Band Gap (PBG) channel-drop filter (CDF). There is a need for a compact wide-band versatile and configurable mm-wave spectrometer for applications in mm-wave communications, radio astronomy, and radar receivers for remote sensing and nonproliferation.

  18. Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho

    International Nuclear Information System (INIS)

    Berenbrock, C.; Kjelstrom, L.C.

    1997-01-01

    Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to develop and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed

  19. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP.

    Science.gov (United States)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-11-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy transfer) signal. Here we report sensing current measurements from VSFP2.3, and show that VSFP2.3 carries 1.2 e sensing charges, which are displaced within 1.5 ms. The sensing currents become faster at higher temperatures, and the voltage dependence of the decay time constants is temperature dependent. Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing mechanism of Ci-VSP, which will allow us to further improve the sensitivity and kinetics of the family of VSFP proteins.

  20. Operation manual for EDXRDDA - a software package for Bragg peak analysis of energy dispersive powder X-ray diffraction data

    International Nuclear Information System (INIS)

    Jayaswal, Balhans; Vijaykumar, V.; Momin, S.N.; Sikka, S.K.

    1992-01-01

    EDXRDDA is a software package for analysis of raw data for energy dispersive x-ray diffraction from powder samples. It resolves the spectra into individual peaks by a constrained non-linear least squares method (Hughes and Sexton, 1988). The profile function adopted is the Gaussian/Lorentzian product with the mixing ratio refinable in the program. The program is implemented on an IBM PC and is highly interactive with extensive plotting facilities. This report is a user's guide for running the program. In the first step after inputting the spectra, the full spectra is plotted on the screen. The user then chooses a portion of this for peak resolution. The initial guess for the peak intensity, peak position are input with the help of a cursor or a mouse. Upto twenty peaks can be fitted at a time in an interval of 500 channels. For overlapping peaks, various constraints can be applied. Bragg peaks and fluorescence peaks with different half widths can be handled simultaneously. The program on execution produces a look up table which contains the refined values of the peak position, half width, peak intensity, integrated intensity, and their error estimates of each peak. The program is very general and can also be used for curve fitting of data from many other experiments. (author). 2 refs., 7 figs., 2 appendices

  1. Turning the tide: estuarine bars and mutually evasive ebb- and flood-dominated channels

    Science.gov (United States)

    Kleinhans, M. G.; Leuven, J.; van der Vegt, M.; Baar, A. W.; Braat, L.; Bergsma, L.; Weisscher, S.

    2015-12-01

    Estuaries have perpetually changing and interacting channels and shoals formed by ebb and flood currents, but we lack a descriptive taxonomy and forecasting model. We explore the hypotheses that the great variation of bar and shoal morphologies are explained by similar factors as river bars, namely channel aspect ratio, sediment mobility and limits on bar erosion and chute cutoff caused by cohesive sediment. Here we use remote sensing data and a novel tidal flume setup, the Metronome, to create estuaries or short estuarine reaches from idealized initial conditions, with and without mud supply at the fluvial boundary. Bar width-depth ratios in estuaries are similar to those in braided rivers. In unconfined (cohesionless) experimental estuaries, bar- and channel dynamics increase with increasing river discharge. Ebb- and flood-dominated channels are ubiquitous even in entirely straight sections. The apparent stability of ebb- and flood channels is partly explained by the inherent instability of symmetrical channel bifurcations as in rivers.

  2. Integrated microfluidic capillary in a waveguide resonator for chemical and biomedical sensing

    International Nuclear Information System (INIS)

    Pavuluri, S K; Lopez-Villarroya, R; McKeever, E; Goussetis, G; Desmulliez, M P Y; Kavanagh, D

    2009-01-01

    A novel microfluidic sensing device based on waveguide cavity filters is proposed for the characterisation, detection of cells in solution and chemical substances in micro-litre volumes. The sensor consists of a micromachined microfluidic channel within a waveguide-based resonator localised increased near-fields and could potentially be designed for different frequency regimes to improve the sensitivity. The present sensor has been proposed for fabrication in different manufacturing platforms and an initial prototype with a 100μm micromachined channel that is embedded within an X-band E-plane waveguide has been fabricated and tested. The design methodology for the microfluidic channel and the E-plane filter is also presented.

  3. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  4. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    OpenAIRE

    Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...

  5. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  6. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  7. Proton and non-proton activation of ASIC channels.

    Directory of Open Access Journals (Sweden)

    Ivan Gautschi

    Full Text Available The Acid-Sensing Ion Channels (ASIC exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  8. Proton and non-proton activation of ASIC channels.

    Science.gov (United States)

    Gautschi, Ivan; van Bemmelen, Miguel Xavier; Schild, Laurent

    2017-01-01

    The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  9. Coherent bremsstrahlung and channeling radiation from electrons of one to three MeV in silicon and gold

    International Nuclear Information System (INIS)

    Watson, J.E.

    1981-01-01

    The observation of sharp peaks in the x-ray spectrum from 1 to 3 MeV electrons striking thin single crystals of silicon and gold is reported. These peaks were observed in the range 1 to 25 keV. The peaks are of two different origins, both direct results of the periodic nature of the target crystals. The first kind of radiation is caused by the interference of incoming and scattered electron wave functions. Because of the periodicity of the target material there is a coherence effect for certain bremsstrahlung wave vectors. This coherent bremsstrahlung, though well known at very high electron energies, has never been adequately studied at electron energies below several hundred MeV. Detailed agreement between theoretical prediction and observation in silicon is shown. The second kind of radiation is caused by electrons channeled along major crystal axes. The electrons enter certain quantized orbits as they channel and may emit photons as a consequence of transitions between the various orbits. Observations of channeling radiation for various crystal axes in silicon are presented. Both phenomena were observed in gold, the first such observation for any metallic target

  10. On-line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on T-channel chips.

    Science.gov (United States)

    Kitagawa, Fumihiko; Kinami, Saeko; Takegawa, Yuuki; Nukatsuka, Isoshi; Sueyoshi, Kenji; Kawai, Takayuki; Otsuka, Koji

    2017-01-01

    To achieve an on-line coupling of the sample preconcentration by a large-volume sample stacking with an electroosmotic flow pump (LVSEP) with microchip gel electrophoresis (MCGE), a sample solution, a background solution for LVSEP and a sieving solution for MCGE were loaded in a T-form channel and three reservoirs on PDMS microchips. By utilizing the difference in the flow resistance of the two channels, a low-viscosity sample and a viscous polymer solution were easily introduced into the LVSEP and MCGE channels, respectively. Fluorescence imaging of the sequential LVSEP-MCGE processes clearly demonstrated that a faster stacking of anionic fluorescein and successive introduction into the MCGE channel can be carried out on the T-channel chip. To evaluate the preconcentration performance, a conventional MCZE analysis of fluorescein on the cross-channel chip was compared with LVSEP-MCGE on the short T-channel chip, and as a result that the value of sensitive enhancement factor (SEF) was estimated to be 370. The repeatability of the peak height was good with the RSD value of 3.2%, indicating the robustness of the enrichment performance. In the successive LVSEP-MCGE analysis of φX174/HaeIII digest, the DNA fragments were well enriched to a sharp peak in the LVSEP channel, and they were separated in the MCGE channel, whose electropherogram was well-resembled with that in the conventional MCGE. The values of SEF for the DNA fragments were calculated to be ranging from 74 to 108. Thus, the successive LVSEP-MCGE analysis was effective for both preconcentrating and separating DNA fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Peak regulation right

    International Nuclear Information System (INIS)

    Gao, Z. |; Ren, Z.; Li, Z.; Zhu, R.

    2005-01-01

    A peak regulation right concept and corresponding transaction mechanism for an electricity market was presented. The market was based on a power pool and independent system operator (ISO) model. Peak regulation right (PRR) was defined as a downward regulation capacity purchase option which allowed PRR owners to buy certain quantities of peak regulation capacity (PRC) at a specific price during a specified period from suppliers. The PRR owner also had the right to decide whether or not they would buy PRC from suppliers. It was the power pool's responsibility to provide competitive and fair peak regulation trading markets to participants. The introduction of PRR allowed for unit capacity regulation. The PRR and PRC were rated by the supplier, and transactions proceeded through a bidding process. PRR suppliers obtained profits by selling PRR and PRC, and obtained downward regulation fees regardless of whether purchases are made. It was concluded that the peak regulation mechanism reduced the total cost of the generating system and increased the social surplus. 6 refs., 1 tab., 3 figs

  12. Deep ultraviolet semiconductor light sources for sensing and security

    Science.gov (United States)

    Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis

    2009-09-01

    III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.

  13. Efficient Error Detection in Soft Data Fusion for Cooperative Spectrum Sensing

    KAUST Repository

    Saqib Bhatti, Dost Muhammad

    2018-03-18

    The primary objective of cooperative spectrum sensing (CSS) is to determine whether a particular spectrum is occupied by a licensed user or not, so that unlicensed users called secondary users (SUs) can utilize that spectrum, if it is not occupied. For CSS, all SUs report their sensing information through reporting channel to the central base station called fusion center (FC). During transmission, some of the SUs are subjected to fading and shadowing, due to which the overall performance of CSS is degraded. We have proposed an algorithm which uses error detection technique on sensing measurement of all SUs. Each SU is required to re-transmit the sensing data to the FC, if error is detected on it. Our proposed algorithm combines the sensing measurement of limited number of SUs. Using Proposed algorithm, we have achieved the improved probability of detection (PD) and throughput. The simulation results compare the proposed algorithm with conventional scheme.

  14. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts.

    Directory of Open Access Journals (Sweden)

    Maki Tsumura

    Full Text Available Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP melastatin subfamily member 8 (TRPM8 and ankyrin subfamily member 1 (TRPA1 channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+ concentration ([Ca(2+]i. Icilin-, WS3-, or WS12-induced [Ca(2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+]i elicited by allyl isothiocyanate (AITC was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+]i increase. Low-temperature stimuli elicited [Ca(2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.

  15. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  16. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  17. Calculating the electron temperature in the lightning channel by continuous spectrum

    Science.gov (United States)

    Xiangcheng, DONG; Jianhong, CHEN; Xiufang, WEI; Ping, YUAN

    2017-12-01

    Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.

  18. Adaptive noise canceling of electrocardiogram artifacts in single channel electroencephalogram.

    Science.gov (United States)

    Cho, Sung Pil; Song, Mi Hye; Park, Young Cheol; Choi, Ho Seon; Lee, Kyoung Joung

    2007-01-01

    A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.

  19. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception

    Directory of Open Access Journals (Sweden)

    Julie A. Bierer

    2016-06-01

    Full Text Available Speech perception among cochlear implant (CI listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a focused stimulation will improve phoneme recognition and (b speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects’ threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a 14-channel partial tripolar (pTP and (b 14-channel monopolar (MP, and four variable-channel programs, derived from these two base programs, (c pTP with high- and (d low-threshold channels deactivated, and (e MP with high- and (f low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring  2. These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6. Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners.

  20. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  1. Year-round School Makes Good Business Sense, Says This Boardman-Businessman

    Science.gov (United States)

    Howe, Paul H.

    1973-01-01

    Argues that year-round schools make good business sense by providing (1) a more efficient use of capital investments, (2) an alleviation of uneconomical and undesirable peaks in working and recreation, and (3) a more sensible way of looking at teacher salaries. (JF)

  2. An efficient and fast detection algorithm for multimode FBG sensing

    DEFF Research Database (Denmark)

    Ganziy, Denis; Jespersen, O.; Rose, B.

    2015-01-01

    We propose a novel dynamic gate algorithm (DGA) for fast and accurate peak detection. The algorithm uses threshold determined detection window and Center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of signal to noise ratio...... and different typical peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with higher stability and accuracy compared to conventional algorithms. This makes it very attractive for future implementation in sensing systems especially based on multimode fiber Bragg...

  3. Optical registration of spaceborne low light remote sensing camera

    Science.gov (United States)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  4. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background

    Science.gov (United States)

    Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de; hide

    2001-01-01

    This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.

  5. On the capacity of cognitive radio under limited channel state information

    KAUST Repository

    Rezki, Zouheir

    2010-09-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics of the secondary transmitter-primary receiver link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference (SI) outage constraint. When applied to Rayleigh fading channels, our results show that the interference constraint is harmful at high-power regime, whereas at lowpower regime, it has a marginal impact and no-interference performance may be achieved. © 2010 IEEE.

  6. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    Science.gov (United States)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  7. EFFECT OF DIFFERENT LEVELS OF LOCALIZED MUSCLE FATIGUE ON KNEE POSITION SENSE

    Directory of Open Access Journals (Sweden)

    William S. Gear

    2011-12-01

    Full Text Available There is little information available regarding how proprioceptive abilities decline as the amount of exertion increases during exercise. The purpose of this study was to determine the role of different levels of fatigue on knee joint position sense. A repeated measures design was used to examine changes in active joint reposition sense (AJRS prior to and following three levels of fatigue. Eighteen participants performed knee extension and flexion isokinetic exercise until torque output was 90%, 70%, or 50% of the peak hamstring torque for three consecutive repetitions. Active joint reposition sense at 15, 30, or 45 degrees was tested following the isokinetic exercise session. Following testing of the first independent measure, participants were given a 20 minute rest period. Testing procedures were repeated for two more exercise sessions following the other levels of fatigue. Testing of each AJRS test angle was conducted on three separate days with 48 hours between test days. Significant main effect for fatigue was indicated (p = 0.001. Pairwise comparisons indicated a significant difference between the pre-test and following 90% of peak hamstring torque (p = 0.02 and between the pre-test and following 50% of peak hamstring torque (p = 0.02. Fatigue has long been theorized to be a contributing factor in decreased proprioceptive acuity, and therefore a contributing factor to joint injury. The findings of the present study indicate that fatigue may have an effect on proprioception following mild and maximum fatigue.

  8. Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy

    Science.gov (United States)

    Knoblock, Eric J.

    2018-01-01

    The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.

  9. Mechanosensitive channels: feeling tension in a world under pressure

    Directory of Open Access Journals (Sweden)

    Peyronnet eRemi

    2014-10-01

    Full Text Available Plants, like other organisms, are facing multiple mechanical constraints generated both in their tissues and by the surrounding environment. They need to sense and adapt to these forces throughout their lifetime. To do so, different mechanisms devoted to force transduction have emerged. Here we focus on fascinating proteins: the mechanosenstive (MS channels. Mechanosensing in plants has been described for centuries but the molecular identification of MS channels occurred only recently. This review is aimed at plant biologists and plant biomechanists who want to be introduced to MS channel identity, how do they work and what they might do in planta? In this review, electrophysiological properties, regulations and functions of well characterized MS channels belonging to bacteria and animals are compared with those of plant . Common and specific properties are discussed. We deduce which tools and concepts from animal and bacterial fields could be helpful for improving our understanding of plant mechanotransduction. MS channel embedded in its plasma membrane is sandwiched between the cell wall and the cytoskeleton. The consequences of this peculiar situation are analyzed and discussed. We also stress how important it is to probe mechanical forces at cellular and subcellular levels in planta in order to reveal the intimate relationship linking the membrane with MS channel activity. Finally we will propose new tracks to help to reveal their physiological functions at tissue and plant levels.

  10. In-situ Blockage Monitoring of Sensing Line

    Directory of Open Access Journals (Sweden)

    Aijaz Ahmed Mangi

    2016-02-01

    Full Text Available A reactor vessel level monitoring system measures the water level in a reactor during normal operation and abnormal conditions. A drop in the water level can expose nuclear fuel, which may lead to fuel meltdown and radiation spread in accident conditions. A level monitoring system mainly consists of a sensing line and pressure transmitter. Over a period of time boron sediments or other impurities can clog the line which may degrade the accuracy of the monitoring system. The aim of this study is to determine blockage in a sensing line using the energy of the composite signal. An equivalent Pi circuit model is used to simulate blockages in the sensing line and the system's response is examined under different blockage levels. Composite signals obtained from the model and plant's unblocked and blocked channels are decomposed into six levels of details and approximations using a wavelet filter bank. The percentage of energy is calculated at each level for approximations. It is observed that the percentage of energy reduces as the blockage level in the sensing line increases. The results of the model and operational data are well correlated. Thus, in our opinion variation in the energy levels of approximations can be used as an index to determine the presence and degree of blockage in a sensing line.

  11. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  12. Quasi-distributed sol-gel coated fiber optic oxygen sensing probe

    Science.gov (United States)

    Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim

    2018-03-01

    In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.

  13. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    peak discharge are based on post-flood surveys of the river channel (observed high-water marks, cross sections, and hydraulic properties) and model computation of peak discharge. Determination of the flood peaks associated with Hurricane Mitch will help scientists understand the magnitude of this devastating hurricane. Peak-discharge information also is critical for the proper design of hydraulic structures (such as bridges and levees), delineation of theoretical flood boundaries, and development of stage-discharge relations at streamflow-monitoring sites.

  14. Limitation of peak fitting and peak shape methods for determination of activation energy of thermoluminescence glow peaks

    CERN Document Server

    Sunta, C M; Piters, T M; Watanabe, S

    1999-01-01

    This paper shows the limitation of general order peak fitting and peak shape methods for determining the activation energy of the thermoluminescence glow peaks in the cases in which retrapping probability is much higher than the recombination probability and the traps are filled up to near saturation level. Right values can be obtained when the trap occupancy is reduced by using small doses or by post-irradiation partial bleaching. This limitation in the application of these methods has not been indicated earlier. In view of the unknown nature of kinetics in the experimental samples, it is recommended that these methods of activation energy determination should be applied only at doses well below the saturation dose.

  15. Adjusting Sensing Range to Maximize Throughput on Ad-Hoc Multi-Hop Wireless Networks

    National Research Council Canada - National Science Library

    Roberts, Christopher

    2003-01-01

    .... Such a network is referred to as a multi-hop ad-hoc network, or simply a multi-hop network. Most multi-hop network protocols use some form of carrier sensing to determine if the wireless channel is in use...

  16. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose

    DEFF Research Database (Denmark)

    Burdakov, Denis; Jensen, Lise T; Alexopoulos, Haris

    2006-01-01

    Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism...... and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose...... levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself...

  17. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  18. Measurements of Channelling Radiation and its Polarization, X-Ray Excitation, together with Deviations from Landau Distributions

    CERN Multimedia

    2002-01-01

    This experiment is a continuation of the channelling experiments PS164 and WA64. The following points are investigated : \\item a)~Radiation from channelled 1 to 10 GeV/c positrons and electrons. The results clearly show that the region of 1-10 GeV/c is a very important and interesting momentum range where the onset of relativistic effects in connection with the unharmonicity of the channelling potential can give rise to very sharp pea photon spectra which could be used as a radiation source. With a detector opening angle which is large compared to 1/@g, these peaks appear sharp only on the high energy side. If, on the other hand, only forward emitted channelling radiation is detected, nearly symmetric peaks are expected to emerge. This is measured by means of a position sentitive @g-detector, consisting of an CdTe-array. Here each detector is 0.8~x~0.8~x~3~mm|3 and act as an active converter with the final shower absorbed in a large scintillator. Hereby an angular resolution of 1/3~@g around 40~@mrad is obtai...

  19. Heteromeric ASIC channels composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death

    Science.gov (United States)

    Sherwood, Thomas W.; Lee, Kirsten G.; Gormley, Matthew G.; Askwith, Candice C.

    2011-01-01

    Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the central nervous system and activation of ASIC1a homomeric channels induces neuronal death following local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that co-expression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the non-selective potassium channel blockers tetraethylammonium (TEA) and barium. In addition, steady-state desensitization is induced at more basic pH values and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Further, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury following stroke. PMID:21715637

  20. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  1. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Riet, Wilma van der; Crelier, Gerard; Salomonowitz, Erich

    2010-01-01

    Purpose: To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Materials and methods: Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R = 2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Results: Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. Conclusion: We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.

  2. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    Science.gov (United States)

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  3. The role of transient receptor potential channels in joint diseases.

    Science.gov (United States)

    Krupkova, O; Zvick, J; Wuertz-Kozak, K

    2017-10-10

    Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  4. The role of transient receptor potential channels in joint diseases

    Directory of Open Access Journals (Sweden)

    O Krupkova

    2017-10-01

    Full Text Available ransient receptor potential channels (TRP channels are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD cells is largely unexplored. Osteoarthritis (OA and degenerative disc disease (DDD are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  5. Extraction of Multithread Channel Networks With a Reduced-Complexity Flow Model

    Science.gov (United States)

    Limaye, Ajay B.

    2017-10-01

    Quantitative measures of channel network geometry inform diverse applications in hydrology, sediment transport, ecology, hazard assessment, and stratigraphic prediction. These uses require a clear, objectively defined channel network. Automated techniques for extracting channels from topography are well developed for convergent channel networks and identify flow paths based on land-surface gradients. These techniques—even when they allow multiple flow paths—do not consistently capture channel networks with frequent bifurcations (e.g., in rivers, deltas, and alluvial fans). This paper uses multithread rivers as a template to develop a new approach for channel extraction suitable for channel networks with divergences. Multithread channels are commonly mapped using observed inundation extent, and I generalize this approach using a depth-resolving, reduced-complexity flow model to map inundation patterns for fixed topography across an arbitrary range of discharge. A case study for the Platte River, Nebraska, reveals that (1) the number of bars exposed above the water surface, bar area, and the number of wetted channel threads (i.e., braiding index) peak at intermediate discharge; (2) the anisotropic scaling of bar dimensions occurs for a range of discharge; and (3) the maximum braiding index occurs at a corresponding reference discharge that provides an objective basis for comparing the planform geometry of multithread rivers. Mapping by flow depth overestimates braiding index by a factor of 2. The new approach extends channel network extraction from topography to the full spectrum of channel patterns, with the potential for comparing diverse channel patterns at scales from laboratory experiments to natural landscapes.

  6. A multi-channel integrated circuit for the readout of a microstrip gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, F.; Enz, C. (Smart Silicon Systems S.A., Lausanne (Switzerland)); Bellazzini, R. (Dipt. di Fisica, Pisa (Italy) INFN, Pisa (Italy))

    1992-03-15

    The design and test of an 8 channel integrated circuit for the readout of the microstrip gas chamber and other multielectrode detectors are described. The circuit is composed of 8 identical channels, each providing the amplification and the shaping of the signal delivered by the detector. The peaking time of the shaper is 25 ns and the overall amplifier gain is 8 mV/1000 e{sup -}. In addition to the analog output, each channel provides a TTL compatible digital output. The equivalent input noise is less than 700 e{sup -} rms and the total dc power consumption is about 5 mW/channel. To avoid a baseline shift due to the tail of the current issued from the detector, an adjustable pole-zero cancellation circuit has been included. (orig.).

  7. Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing

    KAUST Repository

    Zhang, Yu

    2017-10-17

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid–liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the “sensing channel” can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  8. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  9. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  10. Glucose Sensing Using Functionalized Amorphous In-Ga-Zn-O Field-Effect Transistors.

    Science.gov (United States)

    Du, Xiaosong; Li, Yajuan; Motley, Joshua R; Stickle, William F; Herman, Gregory S

    2016-03-01

    Recent advances in glucose sensing have focused on the integration of sensors into contact lenses to allow noninvasive continuous glucose monitoring. Current technologies focus primarily on enzyme-based electrochemical sensing which requires multiple nontransparent electrodes to be integrated. Herein, we leverage amorphous indium gallium zinc oxide (IGZO) field-effect transistors (FETs), which have found use in a wide range of display applications and can be made fully transparent. Bottom-gated IGZO-FETs can have significant changes in electrical characteristics when the back-channel is exposed to different environments. We have functionalized the back-channel of IGZO-FETs with aminosilane groups that are cross-linked to glucose oxidase and have demonstrated that these devices have high sensitivity to changes in glucose concentrations. Glucose sensing occurs through the decrease in pH during glucose oxidation, which modulates the positive charge of the aminosilane groups attached to the IGZO surface. The change in charge affects the number of acceptor-like surface states which can deplete electron density in the n-type IGZO semiconductor. Increasing glucose concentrations leads to an increase in acceptor states and a decrease in drain-source conductance due to a positive shift in the turn-on voltage. The functionalized IGZO-FET devices are effective in minimizing detection of interfering compounds including acetaminophen and ascorbic acid. These studies suggest that IGZO FETs can be effective for monitoring glucose concentrations in a variety of environments, including those where fully transparent sensing elements may be of interest.

  11. Weighted OFDM for wireless multipath channels

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Nikookar, H.

    2000-01-01

    In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...

  12. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensi