WorldWideScience

Sample records for channel interacting protein

  1. Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER.

    Science.gov (United States)

    Khanna, Rajesh; Lee, Eun Jeon; Papazian, Diane M

    2004-06-15

    We recently showed that an unglycosylated form of the Shaker potassium channel protein is retained in the endoplasmic reticulum (ER) and degraded by proteasomes in mammalian cells despite apparently normal folding and assembly. These results suggest that channel proteins with a native structure can be substrates for ER-associated degradation. We have now tested this hypothesis using the wild-type Shaker protein. Wild-type Shaker is degraded by cytoplasmic proteasomes when it is trapped in the ER and prevented from interacting with calnexin. Neither condition alone is sufficient to destabilize the protein. Proteasomal degradation of the wild-type protein is abolished when ER mannosidase I trimming of the core glycan is inhibited. Our results indicate that transient interaction with calnexin provides long-term protection from ER-associated degradation. PMID:15161937

  2. The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ

    Directory of Open Access Journals (Sweden)

    Brann Jessica H

    2010-05-01

    Full Text Available Abstract Background The signal transduction cascade operational in the vomeronasal organ (VNO of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an in vitro expression system for the transient receptor potential 2 channel (TRPC2, which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO. Results Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1 and receptor expression enhancing protein 1 (REEP1 were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in in vitro assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an in vitro patch-clamp electrophysiological assay. Conclusions TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed in vitro expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.

  3. Development of heart failure is independent of K+ channel-interacting protein 2 expression

    DEFF Research Database (Denmark)

    Speerschneider, Tobias; Grubb, Søren; Metoska, Artina;

    2013-01-01

    Abstract  Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K(+) channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the...... before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2...

  4. Interaction of Human Chloride Intracellular Channel Protein 1 (CLIC1) with Lipid Bilayers: A Fluorescence Study.

    Science.gov (United States)

    Hare, Joanna E; Goodchild, Sophia C; Breit, Samuel N; Curmi, Paul M G; Brown, Louise J

    2016-07-12

    Chloride intracellular channel protein 1 (CLIC1) is very unusual as it adopts a soluble glutathione S-transferase-like canonical fold but can also autoinsert into lipid bilayers to form an ion channel. The conversion between these forms involves a large, but reversible, structural rearrangement of the CLIC1 module. The only identified environmental triggers controlling the metamorphic transition of CLIC1 are pH and oxidation. Until now, there have been no high-resolution structural data available for the CLIC1 integral membrane state, and consequently, a limited understanding of how CLIC1 unfolds and refolds across the bilayer to form a membrane protein with ion channel activity exists. Here we show that fluorescence spectroscopy can be used to establish the interaction and position of CLIC1 in a lipid bilayer. Our method employs a fluorescence energy transfer (FRET) approach between CLIC1 and a dansyl-labeled lipid analogue to probe the CLIC1-lipid interface. Under oxidizing conditions, a strong FRET signal between the single tryptophan residue of CLIC1 (Trp35) and the dansyl-lipid analogue was detected. When considering the proportion of CLIC1 interacting with the lipid bilayer, as estimated by fluorescence quenching experiments, the FRET distance between Trp35 and the dansyl moiety on the membrane surface was determined to be ∼15 Å. This FRET-detected interaction provides direct structural evidence that CLIC1 associates with membranes. The results presented support the current model of an oxidation-driven interaction of CLIC1 with lipid bilayers and also propose a membrane anchoring role for Trp35. PMID:27299171

  5. Interaction of the chloride intracellular ion channel protein CLIC1 with different sterols in model membranes

    International Nuclear Information System (INIS)

    Background and Aims: Sterols have been reported to modulate conformation and hence the function of several membrane proteins. One such group is the Chloride Intracellular Ion Channel (CLIC) family of proteins. The CLIC protein family consists of six evolutionarily conserved protein members in vertebrates. These proteins are unusual, existing as both monomeric soluble proteins and as membrane bound proteins. We now for the first time demonstrate that the spontaneous membrane insertion of CLIC1 is dependent on the presence of cholesterol in membranes. Our novel findings also extend to the identification of a cholesterol-binding domain within CLIC1 that facilitates the spontaneous membrane insertion of the protein into membranes containing cholesterol. Methods: CLIC1 wild type (WT) and mutant proteins were purified by Ni-NTA followed by size‐exclusion chromatography. Langmuir monolayer film balance experiments were carried out using 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC) alone, or in a 5:1 mole ratio combination with either one of the following sterols: Cholesterol (CHOL), β-Sitosterol (SITO), Ergosterol (ERG), Hydroxyecdysone (HYD) or Cholestane (CHOS). WT CLIC1 or mutant versions of CLIC1 were then injected into the aqueous subphase under the lipid film. Results: In lipid monolayers lacking sterols, CLIC1 did not insert. However significant membrane insertion occurred when CLIC1 was added to membranes containing cholesterol. Substitution of membrane cholesterol with either HYD, SITO or ERG, not only increased CLIC1’s membrane interaction but also increased its rate of insertion. Conversely, CLIC1 showed no insertion into monolayers containing CHOS, which lacked the intact sterol 3β-OH group. CLIC1 mutants G18A and G22A, did not insert in POPC:CHOL monolayers whereas the C24A mutant showed membrane insertion equivalent to WT CLIC1. X-ray and Neutron reflectivity, along with Small Angle X-ray Scattering techniques were subsequently used to probe

  6. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X; Cordonier, Sophie; Thomas, Marc A; Staub, Olivier; Abriel, Hugues

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-d...

  7. ABA Signaling in Guard Cells Entails a Dynamic Protein-Protein Interaction Relay from the PYL-RCAR Family Receptors to Ion Channels

    Institute of Scientific and Technical Information of China (English)

    Sung Chul Lee; Chae Woo Lim; Wenzhi Lan; Kai He; Sheng Luan

    2013-01-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells.We previously reported that SLACl,an outward anion channel required for stomatal closure,was regulated via reversible protein phosphorylation events involving ABA signaling components,including protein phosphatase 2C members and a SnRK2-type kinase (OST1).In this study,we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors,to the PP2C-SnRK2 phosphatase-kinase pairs,to the ion channel SLACl.The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase,releasing active SnRK2 kinase to phosphorylate,and activate the SLACl channel,leading to reduced guard cell turgor and stomatal closure.Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway.These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners.The SLACl channel activity was used as an endpoint readout for the strength of the signaling pathway,depending on the presence of different combinations of signaling components.Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  8. Aplysia synapse associated protein (APSAP): identification, characterization, and selective interactions with Shaker-type potassium channels

    OpenAIRE

    Reissner, Kathryn J.; Boyle, Heather D.; Ye, Xiaojing; Carew, Thomas J.

    2007-01-01

    The vertebrate post-synaptic density (PSD) is a region of high molecular complexity in which dynamic protein interactions modulate receptor localization and synaptic function. Members of the membrane-associated guanylate kinase (MAGUK) family of proteins represent a major structural and functional component of the vertebrate PSD. In order to investigate the expression and significance of orthologous PSD components associated with the Aplysia sensory neuron-motor neuron synapse, we have cloned...

  9. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    Directory of Open Access Journals (Sweden)

    Piotr Koprowski

    Full Text Available Bacterial mechano-sensitive (MS channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  10. Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions.

    Science.gov (United States)

    Liu, Wu; Chen, Qiushui; Lin, Xuexia; Lin, Jin-Ming

    2015-03-01

    To establish an automatic and online microfluidic chip-mass spectrometry (chip-MS) system, a device was designed and fabricated for microsampling by a hybrid capillary. The movement of the capillary was programmed by a computer to aspirate samples from different microfluidic channels in the form of microdroplets (typically tens of nanoliters in volume), which were separated by air plugs. The droplets were then directly analyzed by MS via paper spray ionization without any pretreatment. The feasibility and performance were demonstrated by a concentration gradient experiment. Furthermore, after eliminating the effect of nonuniform response factors by an internal standard method, determination of the association constant within a noncovalent protein-protein complex was successfully accomplished with the MS-based titration indicating the versatility and the potential of this novel platform for widespread applications. PMID:25597452

  11. Trafficking and gating of hyperpolarization-activated cyclic nucleotide-gated channels are regulated by interaction with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) and cyclic AMP at distinct sites

    NARCIS (Netherlands)

    Y. Han; Y. Noam; A.S. Lewis; J.J. Gallagher; W.J. Wadman; T.Z. Baram; D.M. Chetkovich

    2011-01-01

    Ion channel trafficking and gating are often influenced by interactions with auxiliary subunits. Tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) is an auxiliary subunit for neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. TRIP8b interacts directly w

  12. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  13. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers. The...

  14. Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling.

    Science.gov (United States)

    Winther, Sine V; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B

    2016-01-01

    The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca(2+) dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca(2+) ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca(2+) concentration. Neither increasing nor decreasing intracellular Ca(2+) concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2(-/-) heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca(2+). Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185

  15. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain.

    Science.gov (United States)

    Singh, H; Li, M; Hall, L; Chen, S; Sukur, S; Lu, R; Caputo, A; Meredith, A L; Stefani, E; Toro, L

    2016-03-11

    Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish

  16. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1.

    Science.gov (United States)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X; Cordonier, Sophie; Thomas, Marc A; Staub, Olivier; Abriel, Hugues

    2006-10-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5. PMID:16930557

  17. The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site.

    Directory of Open Access Journals (Sweden)

    Yanina D Álvarez

    Full Text Available It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca(2+ channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca(2+ current. Accordingly, in the present work we found that the Ca(2+ current flowing through P/Q-type Ca(2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca(2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K(+ stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca(2+ channels.

  18. PIC: Protein Interactions Calculator

    OpenAIRE

    Tina, KG; Bhadra, R.; Srinivasan, N.

    2007-01-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bo...

  19. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware...

  20. PREFACE: Protein protein interactions: principles and predictions

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  1. Channel simulation via interactive communications

    CERN Document Server

    Yassaee, Mohammad Hossein; Aref, Mohammad Reza

    2012-01-01

    In this paper, we study the problem of channel simulation via interactive communication, known as the coordination capacity, in a two-terminal network. We assume that two terminals observe i.i.d.\\ copies of two random variables and would like to generate i.i.d.\\ copies of two other random variables jointly distributed with the observed random variables. The terminals are provided with two-way communication links, and shared common randomness, all at limited rates. Two special cases of this problem are the interactive function computation studied by Ma and Ishwar, and the tradeoff curve between one-way communication and shared randomness studied by Cuff. The latter work had inspired Gohari and Anantharam to study the general problem of channel simulation via interactive communication stated above. However only inner and outer bounds for the special case of no shared randomness were obtained in their work. In this paper we settle this problem by providing an exact computable characterization of the multi-round ...

  2. TRIP Database 2.0: A Manually Curated Information Hub for Accessing TRP Channel Interaction Network

    OpenAIRE

    Young-Cheul Shin; Soo-Yong Shin; Jung Nyeo Chun; Hyeon Sung Cho; Jin Muk Lim; Hong-Gee Kim; Insuk So; Dongseop Kwon; Ju-Hong Jeon

    2012-01-01

    Transient receptor potential (TRP) channels are a family of Ca(2+)-permeable cation channels that play a crucial role in biological and disease processes. To advance TRP channel research, we previously created the TRIP (TRansient receptor potential channel-Interacting Protein) Database, a manually curated database that compiles scattered information on TRP channel protein-protein interactions (PPIs). However, the database needs to be improved for information accessibility and data utilization...

  3. Drugging Membrane Protein Interactions.

    Science.gov (United States)

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  4. Tarantula toxins interacting with voltage sensors in potassium channels

    OpenAIRE

    Swartz, Kenton J.

    2006-01-01

    Voltage-activated ion channels open and close in response to changes in membrane voltage, a process that is crucial for electrical signaling in the nervous system. The venom from many poisonous creatures contains a diverse array of small protein toxins that bind to voltage-activated channels and modify the gating mechanism. Hanatoxin and a growing number of related tarantula toxins have been shown to inhibit activation of voltage-activated potassium (Kv) channels by interacting with their vol...

  5. Study of the interaction of unaggregated and aggregated amyloid β protein (10-21) with outward potassium channel

    Institute of Scientific and Technical Information of China (English)

    ZHANG; ChaoFeng; FAN; Li; YANG; Pin

    2007-01-01

    Metal ion-induced aggregation of Aβinto insoluble plaques is a central factor in Alzheimer's disease. Zn2+ is the only physiologically available transition metal ion responsible for aggregating Aβ at pH 7.4. To make it clear that the neurotoxicity of Zn2+-induced aggregation of Aβ on neurons is the key to understand Aβ mechanism of action further. In this paper, we choose Aβ (10-21) as the model fragment to research hippocampal CA1 pyramidal neurons. For the first time, we adopt the combination of spectral analysis with patch-clamp technique for the preliminary study of the mutual relations of Zn2+, Aβ and ion channel from the cell level. The following expounds upon the effects and mode of action of two forms (unaggregated and aggregated) of Aβ (10-21) on hippocampus outward potassium channel three processes (activation, inactivation and reactivation). It also shows the molecular mechanics of AD from the channel level. These results are significant for the further study of Aβ nosogenesis and the development of new types of target drugs for the treatment of AD.

  6. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    Science.gov (United States)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  7. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    OpenAIRE

    AlanNeely

    2014-01-01

    Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of...

  8. Protein-surfactant interactions

    OpenAIRE

    Valstar, Ank

    2000-01-01

    Protein-surfactant interactions in aqueous media have been investigated. The globular proteins lysozyme and bovine serum albumin (BSA) served as model proteins. Several ionic and non-ionic surfactants were used. Fluorescence probe measurements showed that at low sodium dodecyl sulfate (SDS) concentration (< 0.1 M) one micelle-like SDS cluster is bound to lysozyme. From dynamic light scattering (DLS) results it was observed that lysozyme in the complex does not correspond to the fully unfol...

  9. Principles of protein-protein interactions.

    OpenAIRE

    Jones, S; Thornton, J. M.

    1996-01-01

    This review examines protein complexes in the Brookhaven Protein Databank to gain a better understanding of the principles governing the interactions involved in protein-protein recognition. The factors that influence the formation of protein-protein complexes are explored in four different types of protein-protein complexes--homodimeric proteins, heterodimeric proteins, enzyme-inhibitor complexes, and antibody-protein complexes. The comparison between the complexes highlights differences tha...

  10. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide-gated channels

    OpenAIRE

    Santoro, Bina; Grant, Seth G.N.; Bartsch, Dusan; Kandel, Eric R.

    1997-01-01

    We have isolated a novel cDNA, that appears to represent a new class of ion channels, by using the yeast two-hybrid system and the SH3 domain of the neural form of Src (N-src) as a bait. The encoded polypeptide, BCNG-1, is distantly related to cyclic nucleotide-gated channels and the voltage-gated channels, Eag and H-erg. BCNG-1 is expressed exclusively in the brain, as a glycosylated protein of ≈132 kDa. Immunohistochemical analysis indicates that BCNG-1 is preferentially expressed in specif...

  11. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  12. Interactive protein manipulation

    International Nuclear Information System (INIS)

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures

  13. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    OpenAIRE

    Peng Liu; Lei Yang; Daming Shi; Xianglong Tang

    2015-01-01

    A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction net...

  14. The open-close mechanism of M2 channel protein in influenza A virus: A computational study on the hydrogen bonds and cation-π interactions among His37 and Trp41

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; ZHU WeiLiang; WANG YanLi; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang

    2008-01-01

    The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interactions between His37 and Trp41. In the present study, the hydrogen bonding network of 4-methyl-imidazoles was built to mimic the hydrogen bonds between His37 residues, and the cation-π interactions between 4-methyl-imidazolium and indole systems were selected to represent the interac-tions between His37 and Trp41. Then, quantum chemistry calculations at the MP2/6-311G** level were carried out to explore the properties of the hydrogen bonds and the cation-π interactions. The calculation results indicate that the binding strength of the N--H…N hydrogen bond between imidazole rings is up to -6.22 kcal·mol-1, and the binding strength of the strongest cation-π interaction is up to -18.8 kcal·mol-1 (T-shaped interaction) or -12.3 kcal·mol-1 (parallel stacking interaction). Thus, the calculated binding energies indicate that it is possible to control the permeation of the M2 ion channel through the hydrogen bond network and the cation-π interactions by altering the pH values.

  15. The open-close mechanism of M2 channel protein in influenza A virus:A computational study on the hydrogen bonds and cation-π interactions among His37 and Trp41

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interactions between His37 and Trp41. In the present study,the hydrogen bonding network of 4-methyl-imidazoles was built to mimic the hydrogen bonds between His37 residues,and the cation-π interactions between 4-methyl-imidazolium and indole systems were selected to represent the interac-tions between His37 and Trp41. Then,quantum chemistry calculations at the MP2/6-311G level were carried out to explore the properties of the hydrogen bonds and the cation-π interactions. The calcula-tion results indicate that the binding strength of the N-H···N hydrogen bond between imidazole rings is up to -6.22 kcal·mol-1,and the binding strength of the strongest cation-π interaction is up to -18.8 kcal·mol-1(T-shaped interaction) or -12.3 kcal·mol-1(parallel stacking interaction). Thus,the calcu-lated binding energies indicate that it is possible to control the permeation of the M2 ion channel through the hydrogen bond network and the cation-π interactions by altering the pH values.

  16. Functional Interaction of the SNARE Protein NtSyp121 in Ca2+ Channel Gating,Ca2+ Transients and ABA Signalling of Stomatal Guard Cells

    Institute of Scientific and Technical Information of China (English)

    Sergei Sokolovski; Adrian Hills; Robert A.Gay; Michael R.Blatt

    2008-01-01

    There is now growing evidence that membrane vesicle trafficking proteins,especially of the superfamily of SNAREs,are critical for cellular signalling in plants.Work from this laboratory first demonstrated that a soluble,inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K+ and Cl- channel responses to the stress-related hormone abscisic acid (ABA),but left open a question about functional impacts on signal intermediates,especially on Ca2+-mediated signalling events.Here,we report one mode of action for the SNARE mediated directly through alterations in Caz+ channel gating and its consequent effects on cytosolic-free [Ca2+] ([Ca2+]i) elevation.We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure,but only partially suppresses stomatal closure in the presence of the NO donor,SNAP,which promotes [Ca2+]i elevation independently of the plasma membrane Ca2+ channels.Consistent with these observations,Ca2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca2+]i,and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca2+]i transients.These observations offer primary evidence for the functional coupling of the SNARE with Ca2+ channels at the plant cell plasma membrane and,because [Ca2+]i plays a key role in the control of K+ and Cl- channel currents in guard cells,they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure.

  17. Protein–protein interactions

    NARCIS (Netherlands)

    Janin, J.; Bonvin, A.M.J.J.

    2013-01-01

    We are proud to present the first edition of the Protein–protein interactions Section of Current Opinion in Structural Biology. The Section is new, but the topic has been present in the journal from the very start. Volume 1, Issue 1, dated February 1991, had a review by Janin entitled Protein–protei

  18. [Interaction of melittin with ion channels of excitable membranes].

    Science.gov (United States)

    Zherelova, O M; Kabanova, N V; Kazachenko, V N; Chaĭlakhian, L M

    2007-01-01

    The effect of the neurotoxin melittin on the activation of ion channels of excitable membrane, the plasmalemma of Characeae algae cells, isolated membrane patches of neurons of mollusc L. stagnalis and Vero cells was studied by the method of intracellular perfusion and the patch-clamp technique in inside-out configuration. It was shown that melittin disturbs the conductivity of plasmalemma and modifieds Ca(2+)-channels of plant membrane. The leakage current that appears by the action of melittin can be restored by substituting calmodulin for melittin. Melittin modifies K(+)-channels of animal cell membrane by disrupting the phospholipid matrix and forms conductive structures in the membrane by interacting with channel proteins, which is evidenced by the appearance of additional ion channels. PMID:17477057

  19. Convergence of multi-channel effective interactions

    Science.gov (United States)

    Wagner, M.; Schaefer, B.-J.; Wambach, J.; Kuo, T. T. S.; Brown, G. E.

    2006-11-01

    A detailed analysis of the convergence properties of the Andreozzi-Lee-Suzuki iteration method, which is used for the calculation of low-momentum effective potentials Vlowk, is presented. After summarizing different modifications of the iteration method for one-flavor channels we introduce a simple model to study the generalization of the iteration method to multi-flavor channels. The failure of a straightforward generalization is discussed. The introduction of a channel-dependent cutoff cures the conceptual and technical problems. This novel method has already been applied successfully for realistic hyperon-nucleon interactions.

  20. Spatial channel interactions in cochlear implants

    Science.gov (United States)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  1. SPIDer: Saccharomyces protein-protein interaction database

    Directory of Open Access Journals (Sweden)

    Li Zhenbo

    2006-12-01

    Full Text Available Abstract Background Since proteins perform their functions by interacting with one another and with other biomolecules, reconstructing a map of the protein-protein interactions of a cell, experimentally or computationally, is an important first step toward understanding cellular function and machinery of a proteome. Solely derived from the Gene Ontology (GO, we have defined an effective method of reconstructing a yeast protein interaction network by measuring relative specificity similarity (RSS between two GO terms. Description Based on the RSS method, here, we introduce a predicted Saccharomyces protein-protein interaction database called SPIDer. It houses a gold standard positive dataset (GSP with high confidence level that covered 79.2% of the high-quality interaction dataset. Our predicted protein-protein interaction network reconstructed from the GSPs consists of 92 257 interactions among 3600 proteins, and forms 23 connected components. It also provides general links to connect predicted protein-protein interactions with three other databases, DIP, BIND and MIPS. An Internet-based interface provides users with fast and convenient access to protein-protein interactions based on various search features (searching by protein information, GO term information or sequence similarity. In addition, the RSS value of two GO terms in the same ontology, and the inter-member interactions in a list of proteins of interest or in a protein complex could be retrieved. Furthermore, the database presents a user-friendly graphical interface which is created dynamically for visualizing an interaction sub-network. The database is accessible at http://cmb.bnu.edu.cn/SPIDer/index.html. Conclusion SPIDer is a public database server for protein-protein interactions based on the yeast genome. It provides a variety of search options and graphical visualization of an interaction network. In particular, it will be very useful for the study of inter-member interactions

  2. Anisotropic Contributions to Protein-Protein Interactions.

    Science.gov (United States)

    Quang, Leigh J; Sandler, Stanley I; Lenhoff, Abraham M

    2014-02-11

    The anisotropy of shape and functionality of proteins complicates the prediction of protein-protein interactions. We examine the distribution of electrostatic and nonelectrostatic contributions to these interactions for two globular proteins, lysozyme and chymosin B, which differ in molecular weight by about a factor of 2. The interaction trends for these proteins are computed in terms of contributions to the osmotic second virial coefficient that are evaluated using atomistic models of the proteins. Our emphasis is on identifying the orientational configurations that contribute most strongly to the overall interactions due to high-complementarity interactions, and on calculating the effect of ionic strength on such interactions. The results emphasize the quantitative importance of several features of protein interactions, notably that despite differences in their frequency of occurrence, configurations differing appreciably in interaction energy can contribute meaningfully to overall interactions. However, relatively small effects due to charge anisotropy or specific hydration can affect the overall interaction significantly only if they contribute to strongly attractive configurations. The results emphasize the necessity of accounting for detailed anisotropy to capture actual experimental trends, and the sensitivity of even very detailed atomistic models to subtle solution contributions. PMID:26580057

  3. Inhibition of Voltage-Gated Calcium Channels by RGK Proteins.

    Science.gov (United States)

    Buraei, Zafir; Yang, Jian

    2015-01-01

    Due to their essential biological roles, voltage-gated calcium channels (VGCCs) are regulated by a myriad of molecules and mechanisms. Fifteen years ago, RGK proteins were discovered to bind the VGCC β subunit (Cavβ) and potently inhibit high-voltage activated Ca(2+) channels. RGKs (Rad, Rem, Rem2 and Gem/Kir) are a family of monomeric small GTPases belonging to the superfamily of Ras GTPases. They exert dual inhibitory effects on VGCCs, decreasing surface expression and suppressing surface channels through immobilization of the voltage sensor or reduction of channel open probability. While Cavβ is required for all forms of RGK inhibition, not all inhibition is mediated by the RGK-Cavβ interaction. Some RGK proteins also interact directly with the pore-forming α1 subunit of some types of VGCCs (Cavα1). Importantly, RGK proteins tonically inhibit VGCCs in native cells, regulating cardiac and neural functions. This minireview summarizes the mechanisms, molecular determinants, and physiological impact of RGK inhibition of VGCCs. PMID:25966691

  4. Transient interactions between photosynthetic proteins

    NARCIS (Netherlands)

    Hulsker, Rinske

    2008-01-01

    The biological processes that are the basis of all life forms are mediated largely by protein-protein interactions. The protein complexes involved in these interactions can be categorised by their affinity, which results in a range from static to transient complexes. Electron transfer complexes, whi

  5. The effective interaction of two channeling particles

    International Nuclear Information System (INIS)

    Full text: The accelerated particles interaction in single crystals by its channeling was considered. Some calculations were provided for the simplest case of two ions. Approximation model was used for account axial channeling of interrelated particle couple with continuous crystal potential [1]. The oscillating approximation approach was also proved [2]. The quantum-mechanical problem can be simplified in the case of using the transverse -oscillating potential {H0+U12(r)+U(r1)+U(r2) } Ψ=EΨ , where U(r) is the interaction potential of the i-th channeling particle and the crystals atoms; and U12 is an interaction potential of the considered particles. Last one can be leaded to the two potentials field Schroedinger's equation for the single particle with reduced mass V=U12(r)+ U(rT). The solution for two channeling particles system wave functions was found for case when volumes of m/Z- ratio of mass and particles change are equal. It was showed that the wave functions of states which determinate by interparticle Coulomb forces successfully differ from its form without a single crystal, for example, in vacuum. This different determinate deformation of Coulomb field in single crystal; the three-dimension Coulomb potential is compresses by the crystal and stands one- or two-dimension along the axis of particles movement as function of type of the crystal symmetry. The states with bigger projection of the corner moment lz stand energy-wise uneconomic by action of the transverse potential which creates effective attracting between particles. In this case stases are more advantageous with lz which is equal zero or not much

  6. Protein-Protein Interaction Analysis by Docking

    OpenAIRE

    Stephan Ederer; Florian Fink; Wolfram Gronwald

    2009-01-01

    Based on a protein-protein docking approach we have developed a procedure to verify or falsify protein-protein interactions that were proposed by other methods such as yeast-2-hybrid assays. Our method currently utilizes intermolecular energies but can be expanded to incorporate additional terms such as amino acid based pair-potentials. We show some early results that demonstrate the general applicability of our approach.

  7. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sánchez Claros, Carmen

    2012-06-08

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  8. A nanoplasmonic probe as a triple channel colorimetric sensor array for protein discrimination.

    Science.gov (United States)

    Mao, Jinpeng; Lu, Yuexiang; Chang, Ning; Yang, Jiaoe; Yang, Jiacheng; Zhang, Sichun; Liu, Yueying

    2016-06-20

    The salt-induced aggregation, nanoparticle regrowth and self-assembly behaviors of gold nanoparticles (AuNPs) and DNA conjugates could be changed after interaction with different proteins, generating various color changes and a unique fingerprint pattern for each protein. The triple-channel colorimetric signals have been employed for protein discrimination with the naked eye. PMID:27228956

  9. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  10. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  11. Effective Mining of Protein Interactions

    OpenAIRE

    Rinaldi, F; Schneider, G; Kaljurand, K.; Clematide, S

    2009-01-01

    The detection of mentions of protein-protein interactions in the scientific literature has recently emerged as a core task in biomedical text mining. We present effective techniques for this task, which have been developed using the IntAct database as a gold standard, and have been evaluated in two text mining competitions.

  12. Fluctuation driven active molecular transport in passive channel proteins

    Science.gov (United States)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  13. Detecting overlapping protein complexes in protein-protein interaction networks

    OpenAIRE

    Nepusz, Tamás; Yu, Haiyuan; Paccanaro, Alberto

    2012-01-01

    We introduce clustering with overlapping neighborhood expansion (ClusterONE), a method for detecting potentially overlapping protein complexes from protein-protein interaction data. ClusterONE-derived complexes for several yeast data sets showed better correspondence with reference complexes in the Munich Information Center for Protein Sequence (MIPS) catalog and complexes derived from the Saccharomyces Genome Database (SGD) than the results of seven popular methods. The results also showed a...

  14. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.;

    2010-01-01

    Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical enti...... use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  15. Yeast Interacting Proteins Database: YJL199C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...cies; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey (4) Ro...n; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies... species; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey Ro

  16. Gap junction channel gating modulated through protein phosphorylation

    OpenAIRE

    Moreno, Alonso P.; LAU, ALAN F.

    2007-01-01

    As a ubiquitous post-translation modification process, protein phosphorylation has proven to be a key mechanism in regulating the function of several membrane proteins, including transporters and channels. Connexins, pannexins, and innexins are protein families that form gap junction channels essential for intercellular communication. Connexins have been intensely studied, and most of their isoforms are known to be phosphorylated by protein kinases that lead to modifications in tyrosine, seri...

  17. Protein-protein interaction databases: keeping up with growing interactomes

    OpenAIRE

    Lehne Benjamin; Schlitt Thomas

    2009-01-01

    Abstract Over the past few years, the number of known protein-protein interactions has increased substantially. To make this information more readily available, a number of publicly available databases have set out to collect and store protein-protein interaction data. Protein-protein interactions have been retrieved from six major databases, integrated and the results compared. The six databases (the Biological General Repository for Interaction Datasets [BioGRID], the Molecular INTeraction ...

  18. Prediction of Protein-Protein Interactions Using Protein Signature Profiling

    Institute of Scientific and Technical Information of China (English)

    Mahmood; A.; Mahdavi; Yen-Han; Lin

    2007-01-01

    Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain inter- actions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as "interacting". In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele- gans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area un- der the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs in- creased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on aver- age 4 times better than those predicted by either phylogenetic profiling or gene expression profiling.

  19. Hydrodynamic Interactions in Protein Folding

    OpenAIRE

    Cieplak, Marek; Niewieczerzał, Szymon

    2008-01-01

    We incorporate hydrodynamic interactions (HI) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HI facilitate folding. We also study HIV-1 protease and show that HI make the flap closing dynamics faster. The HI are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations ...

  20. Automatic Extraction of Protein Interaction in Literature

    OpenAIRE

    Liu, Peilei; Wang, Ting

    2014-01-01

    Protein-protein interaction extraction is the key precondition of the construction of protein knowledge network, and it is very important for the research in the biomedicine. This paper extracted directional protein-protein interaction from the biological text, using the SVM-based method. Experiments were evaluated on the LLL05 corpus with good results. The results show that dependency features are import for the protein-protein interaction extraction and features related to the interaction w...

  1. Interaction of Two Filament Channels of Different Chiralities

    CERN Document Server

    Joshi, Navin Chandra; Schmieder, Brigitte; Magara, Tetsuya; Moon, Young-Jae; Uddin, Wahab

    2016-01-01

    We present observations of interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18 -- 20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at the first glance show that the heated plasma is moving from one filament channel to the other. The SDO/AIA 171 A observations and the PFSS magnetic field extrapolation reveal the presence of fan-spine magnetic configuration over the filament channels with a null point located above them. Three different events of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighbour filament channel. We believe that the activation and partial eruption of the filaments bring the field lines of flux ropes containing them closer to the null point and trigger the m...

  2. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception: Current Focusing and Channel Deactivation.

    Science.gov (United States)

    Bierer, Julie A; Litvak, Leonid

    2016-01-01

    Speech perception among cochlear implant (CI) listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a) focused stimulation will improve phoneme recognition and (b) speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects' threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a) 14-channel partial tripolar (pTP) and (b) 14-channel monopolar (MP), and four variable-channel programs, derived from these two base programs, (c) pTP with high- and (d) low-threshold channels deactivated, and (e) MP with high- and (f) low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring correct on vowel identification) tended to perform better with the all-channel pTP than with the MP program (1 > 2). These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6). Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners. PMID:27317668

  3. DIP: the Database of Interacting Proteins

    OpenAIRE

    Xenarios, Ioannis; Rice, Danny W.; Salwinski, Lukasz; Baron, Marisa K.; Edward M. Marcotte; Eisenberg, David

    2000-01-01

    The Database of Interacting Proteins (DIP; http://dip.doe-mbi.ucla.edu ) is a database that documents experimentally determined protein–protein interactions. This database is intended to provide the scientific community with a comprehensive and integrated tool for browsing and efficiently extracting information about protein interactions and interaction networks in biological processes. Beyond cataloging details of protein–protein interactions, the DIP is useful for understanding protein func...

  4. Lipid ion channels and the role of proteins

    CERN Document Server

    Mosgaard, Lars D

    2013-01-01

    Synthetic lipid membranes in the absence of proteins can display quantized conduction events for ions that are virtually indistinguishable from those of protein channel. By indistinguishable we mean that one cannot decide based on the current trace alone whether conductance events originate from a membrane, which does or does not contain channel proteins. Additional evidence is required to distinguish between the two cases, and it is not always certain that such evidence can be provided. The phenomenological similarities are striking and span a wide range of phenomena: The typical conductances are of equal order and both lifetime distributions and current histograms are similar. One finds conduction bursts, flickering, and multistep-conductance. Lipid channels can be gated by voltage, and can be blocked by drugs. They respond to changes in lateral membrane tension and temperature. Thus, they behave like voltage-gated, temperature-gated and mechano-sensitive protein channels, or like receptors. Lipid channels ...

  5. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  6. Direct Probing of Protein-Protein Interactions

    International Nuclear Information System (INIS)

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case

  7. Direct Probing of Protein-Protein Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  8. Discover protein sequence signatures from protein-protein interaction data

    Directory of Open Access Journals (Sweden)

    Haasl Ryan J

    2005-11-01

    Full Text Available Abstract Background The development of high-throughput technologies such as yeast two-hybrid systems and mass spectrometry technologies has made it possible to generate large protein-protein interaction (PPI datasets. Mining these datasets for underlying biological knowledge has, however, remained a challenge. Results A total of 3108 sequence signatures were found, each of which was shared by a set of guest proteins interacting with one of 944 host proteins in Saccharomyces cerevisiae genome. Approximately 94% of these sequence signatures matched entries in InterPro member databases. We identified 84 distinct sequence signatures from the remaining 172 unknown signatures. The signature sharing information was then applied in predicting sub-cellular localization of yeast proteins and the novel signatures were used in identifying possible interacting sites. Conclusion We reported a method of PPI data mining that facilitated the discovery of novel sequence signatures using a large PPI dataset from S. cerevisiae genome as input. The fact that 94% of discovered signatures were known validated the ability of the approach to identify large numbers of signatures from PPI data. The significance of these discovered signatures was demonstrated by their application in predicting sub-cellular localizations and identifying potential interaction binding sites of yeast proteins.

  9. Hydrodynamic interactions in protein folding

    Science.gov (United States)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  10. Small Terminal MIMO Channels with User Interaction

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund; Andersen, Jørgen Bach; Eggers, Patrick Claus F.;

    2007-01-01

    This paper gives an overview of results obtained from measurements of different types of multiple-input multiple-output (MIMO) channels. For the indoor case measurements were made at 5.8 GHz from access points (APs) to mobile stations (MSs) at different places in a large open office type room...

  11. Non-decaying hydrodynamic interactions along narrow channels

    CERN Document Server

    Misiunas, Karolis; Lauga, Eric; Lister, John R; Keyser, Ulrich F

    2015-01-01

    Particle-particle interactions are of paramount importance in every multi-body system as they determine the collective behaviour and coupling strength. Many well-known interactions like electro-static, van der Waals or screened Coulomb, decay exponentially or with negative powers of the particle spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as 1/r in bulk, and are assumed to decay quickly in small channels. Such interactions are ubiquitous in biological and technological systems. Here we confine two particles undergoing Brownian motion in narrow, microfluidic channels and study their coupling through hydrodynamic interactions. Our experiments show that, in contrast to expectations from current theoretical understanding, the hydrodynamic particle-particle interactions are long-range and non-decaying in these channels. This new effect is of fundamental importance for the interpretation of experiments where dense mixtures of particles or molecules diffuse thro...

  12. Coevolution of gene expression among interacting proteins

    OpenAIRE

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen, Michael B.

    2004-01-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically inter...

  13. TRIP database 2.0: a manually curated information hub for accessing TRP channel interaction network.

    Directory of Open Access Journals (Sweden)

    Young-Cheul Shin

    Full Text Available Transient receptor potential (TRP channels are a family of Ca(2+-permeable cation channels that play a crucial role in biological and disease processes. To advance TRP channel research, we previously created the TRIP (TRansient receptor potential channel-Interacting Protein Database, a manually curated database that compiles scattered information on TRP channel protein-protein interactions (PPIs. However, the database needs to be improved for information accessibility and data utilization. Here, we present the TRIP Database 2.0 (http://www.trpchannel.org in which many helpful, user-friendly web interfaces have been developed to facilitate knowledge acquisition and inspire new approaches to studying TRP channel functions: 1 the PPI information found in the supplementary data of referred articles was curated; 2 the PPI summary matrix enables users to intuitively grasp overall PPI information; 3 the search capability has been expanded to retrieve information from 'PubMed' and 'PIE the search' (a specialized search engine for PPI-related articles; and 4 the PPI data are available as sif files for network visualization and analysis using 'Cytoscape'. Therefore, our TRIP Database 2.0 is an information hub that works toward advancing data-driven TRP channel research.

  14. Photon-photon interaction in axial channeling

    OpenAIRE

    Klenner, J.; Augustin, Jürgen; Schäfer, Andreas; Greiner, Walter

    2006-01-01

    We investigate the possibility that high-energy photons are channeled, when passing through an oriented single crystal, due to Delbrück scattering. For this purpose the exact electron propagator for the single-string model is constructed. Starting from a separation of variables, we solve the Dirac equation for a cylindrical electrostatic potential. The propagator for such external fields is constructed from solutions of the radial Dirac equation. This propagator is applied to a calculation of...

  15. How Many Protein-Protein Interactions Types Exist in Nature?

    OpenAIRE

    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang

    2012-01-01

    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the pro...

  16. How Many Protein-Protein Interactions Types Exist in Nature?

    OpenAIRE

    Leonardo Garma; Srayanta Mukherjee; Pralay Mitra; Yang Zhang

    2012-01-01

    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the pro...

  17. Pharmacokinetic interactions with calcium channel antagonists (Part I).

    Science.gov (United States)

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-11-01

    Calcium channel antagonists are a diverse class of drugs widely used in combination with other therapeutic agents. The potential exists for many clinically significant pharmacokinetic interactions between these and other concurrently administered drugs. The mechanisms of calcium channel antagonist-induced changes in drug metabolism include altered hepatic blood flow and impaired hepatic enzyme metabolising activity. Increases in serum concentrations and/or reductions in clearance have been reported for several drugs used with a number of calcium channel antagonists. A number of reports and studies of calcium channel antagonist interactions have yielded contradictory results and the clinical significance of pharmacokinetic changes seen with these agents is ill-defined. The first part of this article deals with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. PMID:1773549

  18. Protein-protein interaction databases: keeping up with growing interactomes

    Directory of Open Access Journals (Sweden)

    Lehne Benjamin

    2009-04-01

    Full Text Available Abstract Over the past few years, the number of known protein-protein interactions has increased substantially. To make this information more readily available, a number of publicly available databases have set out to collect and store protein-protein interaction data. Protein-protein interactions have been retrieved from six major databases, integrated and the results compared. The six databases (the Biological General Repository for Interaction Datasets [BioGRID], the Molecular INTeraction database [MINT], the Biomolecular Interaction Network Database [BIND], the Database of Interacting Proteins [DIP], the IntAct molecular interaction database [IntAct] and the Human Protein Reference Database [HPRD] differ in scope and content; integration of all datasets is non-trivial owing to differences in data annotation. With respect to human protein-protein interaction data, HPRD seems to be the most comprehensive. To obtain a complete dataset, however, interactions from all six databases have to be combined. To overcome this limitation, meta-databases such as the Agile Protein Interaction Database (APID offer access to integrated protein-protein interaction datasets, although these also currently have certain restrictions.

  19. Ontology integration to identify protein complex in protein interaction networks

    OpenAIRE

    Yang Zhihao; Lin Hongfei; Xu Bo

    2011-01-01

    Abstract Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity metho...

  20. New approach for predicting protein-protein interactions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Protein-protein interactions (PPIs) are of vital importance for virtually all processes of a living cell. The study of these associations of protein molecules could improve people's understanding of diseases and provide basis for therapeutic approaches.

  1. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  2. Interaction of C-70 fullerene with the Kv1.2 potassium channel

    DEFF Research Database (Denmark)

    Monticelli, L.; Barnoud, J.; Orlowskid, A.;

    2012-01-01

    understood, though. Meanwhile, fullerene is also known to interfere with the activity of potassium channel proteins, but the mechanisms of protein inhibition are not known. Here we consider the possibility that membrane protein function would be inhibited by C-70 and/or GA through direct contact or through...... lipid-mediated interactions. To this end, we use microsecond time scale atomistic simulations to explore (a) modifications of membrane properties in the presence of C-70 and/or GA, and (b) the possible conformational changes in Kv1.2, a voltage-gated potassium channel, upon exposure to C-70, or GA, or...... both. C-70 is found to have an observable effect on structural and elastic properties of protein-free membranes, while the effects of GA on the membrane are less evident. Fullerene-GA interaction is strong and affects significantly the partitioning of C-70 in the membrane, stabilizing C-70 in the...

  3. Inhibition of g protein-activated inwardly rectifying k channels by phencyclidine.

    Science.gov (United States)

    Kobayashi, Toru; Nishizawa, Daisuke; Ikeda, Kazutaka

    2011-03-01

    Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K(+) (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid and CB(1) cannabinoid receptors. Furthermore, the channels are directly activated by ethanol and inhibited by cocaine at toxic levels, but not affected by methylphenidate, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) at toxic levels. The primary pharmacological action of PCP is blockade of N-methyl-D-aspartate (NMDA) receptor channels that are associated with its psychotomimetic effects. PCP also interacts with several receptors and channels at relatively high concentrations. However, the molecular mechanisms underlying the various effects of PCP remain to be clarified. Here, we investigated the effects of PCP on GIRK channels using the Xenopus oocyte expression system. PCP weakly but significantly inhibited GIRK channels at micromolar concentrations, but not Kir1.1 and Kir2.1 channels. The PCP concentrations effective in inhibiting GIRK channels overlap clinically relevant brain concentrations in severe intoxication. The results suggest that partial inhibition of GIRK channels by PCP may contribute to some of the toxic effects after overdose. PMID:21886598

  4. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  5. Effect of entrance channel in 16O + 51V interactions

    International Nuclear Information System (INIS)

    The incomplete fusion reactions is a dynamic area of investigation due to complex nature of incomplete mass transfer and its dependence on various entrance channel parameters like type of projectile, energy of projectile, transfer of input angular momentum (ℓ), deformations of the interacting nuclides, mass-asymmetry and α-break up energy (Qα). The aim of this work is to investigate the dependence of ICF on different entrance channel parameters

  6. On the convergence of multi-channel effective interactions

    CERN Document Server

    Wagner, M; Kuo, T T S; Schaefer, B J; Wambach, J

    2006-01-01

    A detailed analysis of convergence properties of the Andreozzi-Lee-Suzuki iteration method, which is used for the calculation of low-momentum effective potentials Vlowk is presented. After summarizing different modifications of the iteration method for one-flavor channel we introduce a simple model in order to study the generalization of the iteration method to multi-flavor channels. The failure of a straightforward generalization is discussed. The introduction of a channel-dependent cutoff cures the conceptual and technical problems. This novel method has already been applied successfully for realistic hyperon-nucleon interactions.

  7. Yeast Interacting Proteins Database: YEL043W, YOR164C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available on quantitative analysis of protein-protein interaction maps; may interact with ribosomes, based on co-purification studies...ing based on quantitative analysis of protein-protein interaction maps; may interact with ribosomes, based on co-purification studies

  8. Hub Promiscuity in Protein-Protein Interaction Networks

    OpenAIRE

    Haruki Nakamura; Kengo Kinoshita; Ashwini Patil

    2010-01-01

    Hubs are proteins with a large number of interactions in a protein-protein interaction network. They are the principal agents in the interaction network and affect its function and stability. Their specific recognition of many different protein partners is of great interest from the structural viewpoint. Over the last few years, the structural properties of hubs have been extensively studied. We review the currently known features that are particular to hubs, possibly affecting their binding ...

  9. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...

  10. Protein kinase A modulation of CaV1.4 calcium channels

    Science.gov (United States)

    Sang, Lingjie; Dick, Ivy E.; Yue, David T.

    2016-07-01

    The regulation of L-type Ca2+ channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca2+ channels, relatively little is known about the closely related CaV1.4 L-type Ca2+ channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca2+-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca2+-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family.

  11. Protein kinase A modulation of CaV1.4 calcium channels.

    Science.gov (United States)

    Sang, Lingjie; Dick, Ivy E; Yue, David T

    2016-01-01

    The regulation of L-type Ca(2+) channels by protein kinase A (PKA) represents a crucial element within cardiac, skeletal muscle and neurological systems. Although much work has been done to understand this regulation in cardiac CaV1.2 Ca(2+) channels, relatively little is known about the closely related CaV1.4 L-type Ca(2+) channels, which feature prominently in the visual system. Here we find that CaV1.4 channels are indeed modulated by PKA phosphorylation within the inhibitor of Ca(2+)-dependent inactivation (ICDI) motif. Phosphorylation of this region promotes the occupancy of calmodulin on the channel, thus increasing channel open probability (PO) and Ca(2+)-dependent inactivation. Although this interaction seems specific to CaV1.4 channels, introduction of ICDI1.4 to CaV1.3 or CaV1.2 channels endows these channels with a form of PKA modulation, previously unobserved in heterologous systems. Thus, this mechanism may not only play an important role in the visual system but may be generalizable across the L-type channel family. PMID:27456671

  12. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  13. Protein-Protein Interaction Detection: Methods and Analysis

    OpenAIRE

    V. Srinivasa Rao; Srinivas, K.; Sujini, G. N.; G. N. Sunand Kumar

    2014-01-01

    Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. The majority of genes and proteins realize resulting phenotype functions as a set of interactions. The in vitro and in vivo methods like affinity purification, Y2H (yeast 2 hybrid), TAP (tandem affinity purification), and so forth have their own limitations like cost, time, and so forth, and the resultant data sets are noisy and have more false positives to annotate t...

  14. Yeast Interacting Proteins Database: YNL189W, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...myces species; protein detected in large-scale protein-protein interaction studies Rows with this prey as pr

  15. PSAIA – Protein Structure and Interaction Analyzer

    Directory of Open Access Journals (Sweden)

    Vlahoviček Kristian

    2008-04-01

    Full Text Available Abstract Background PSAIA (Protein Structure and Interaction Analyzer was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites.

  16. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  17. Protein-protein interactions in DNA mismatch repair.

    Science.gov (United States)

    Friedhoff, Peter; Li, Pingping; Gotthardt, Julia

    2016-02-01

    The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction. PMID:26725162

  18. Protein complex analysis of native brain potassium channels by proteomics.

    Science.gov (United States)

    Sandoz, Guillaume; Lesage, Florian

    2008-01-01

    TREK potassium channels belong to a family of channel subunits with two-pore domains (K(2P)). TREK1 knockout mice display impaired polyunsaturated fatty acid-mediated protection against brain ischemia, reduced sensitivity to volatile anesthetics, resistance to depression and altered perception of pain. Recently, we isolated native TREK1 channels from mouse brain and identified their specific components by mass spectrometry. Among the identified partners, the A-Kinase Anchoring Protein AKAP150 binds to a regulatory domain of TREK1 and acts as a molecular switch. It transforms low activity, outwardly rectifying TREK1 currents into robust leak conductances resistant to stimulation by arachidonic acid, membrane stretch and acidification. Inhibition of the TREK1/AKAP150 channel by Gs-coupled receptors is as extensive as for TREK1 alone (but faster) whereas inhibition of TREK1/AKAP150 by Gq-coupled receptors is reduced. Furthermore, the association of AKAP150 with TREK1 channels integrates them into postsynaptic scaffolds where G protein-coupled membrane receptors and channels dock simultaneously. This chapter describes the proteomic approach used to study the composition of native TREK1 channels and point out its advantages and limitations over more classical methods (two-hybrid screenings in the yeast and bacteria or GST-pull down). PMID:18998088

  19. Inferring interaction partners from protein sequences

    CERN Document Server

    Bitbol, Anne-Florence; Colwell, Lucy J; Wingreen, Ned S

    2016-01-01

    Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multi-protein complexes, and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners. Hence, the sequences of interacting partners are correlated. Here we exploit these correlations to accurately identify which proteins are specific interaction partners from sequence data alone. Our general approach, which employs a pairwise maximum entropy model to infer direct couplings between residues, has been successfully used to predict the three-dimensional structures of proteins from sequences. Building on this approach, we introduce an iterative algorithm to predict specific interaction partners from among the members of two protein families. We assess the algorithm's performance on histidine kinases and response regulators from bacterial two-component signaling systems. The algorithm proves successful without any a pri...

  20. Pharmacokinetic interactions with calcium channel antagonists (Part II).

    Science.gov (United States)

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-12-01

    Since calcium channel antagonists are a diverse class of drugs frequently administered in combination with other agents, the potential for clinically significant pharmacokinetic drug interactions exists. These interactions occur most frequently via altered hepatic blood flow and impaired hepatic enzyme activity. Part I of the article, which appeared in the previous issue of the Journal, dealt with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. Part II examines interactions with cyclosporin, anaesthetics, carbamazepine and cardiovascular agents. PMID:1782739

  1. The protein interaction map of bacteriophage lambda

    Directory of Open Access Journals (Sweden)

    Uetz Peter

    2011-09-01

    Full Text Available Abstract Background Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find out how many protein-protein interactions remain to be found in this phage. Results In order to map lambda's interactions, we have cloned 68 out of 73 lambda open reading frames (the "ORFeome" into Gateway vectors and systematically tested all proteins for interactions using exhaustive array-based yeast two-hybrid screens. These screens identified 97 interactions. We found 16 out of 30 previously published interactions (53%. We have also found at least 18 new plausible interactions among functionally related proteins. All previously found and new interactions are combined into structural and network models of phage lambda. Conclusions Phage lambda serves as a benchmark for future studies of protein interactions among phage, viruses in general, or large protein assemblies. We conclude that we could not find all the known interactions because they require chaperones, post-translational modifications, or multiple proteins for their interactions. The lambda protein network connects 12 proteins of unknown function with well characterized proteins, which should shed light on the functional associations of these uncharacterized proteins.

  2. Transient protein-protein interactions visualized by solution NMR.

    Science.gov (United States)

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun

    2016-01-01

    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  3. How do oncoprotein mutations rewire protein-protein interaction networks?

    Science.gov (United States)

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  4. Geometric De-noising of Protein-Protein Interaction Networks

    OpenAIRE

    Kuchaiev, Oleksii; Rasajski, Marija; Higham, Desmond J.; Przul, Natasa; Przytycka, Teresa Maria

    2009-01-01

    Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, i...

  5. Yeast Interacting Proteins Database: YLR291C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...in large-scale protein-protein interaction studies Rows with this prey as prey Rows with this prey as prey (

  6. Yeast Interacting Proteins Database: YML064C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available y related Saccharomyces species; protein detected in large-scale protein-protein interaction studies Rows wi...in-protein interaction studies Rows with this prey as prey (4) Rows with this prey as bait (1) 28 6 3 4 0 0 ...d in closely related Saccharomyces species; protein detected in large-scale prote

  7. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    OpenAIRE

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-whit...

  8. Quantification of protein interaction kinetics in a micro droplet

    Science.gov (United States)

    Yin, L. L.; Wang, S. P.; Shan, X. N.; Zhang, S. T.; Tao, N. J.

    2015-11-01

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  9. Quantification of protein interaction kinetics in a micro droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L. L. [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wang, S. P., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J., E-mail: shaopeng.wang@asu.edu, E-mail: njtao@asu.edu [Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, S. T. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  10. Quantification of protein interaction kinetics in a micro droplet

    International Nuclear Information System (INIS)

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip

  11. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier;

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation of this...... classification suggests that the balance between favoring and disfavoring structural features determines if a pair of proteins interacts or not. Our results are in agreement with previous works and support the funnel-like intermolecular energy landscape theory that explains PPIs. We have used these features to...

  12. Coupled channel effects in pion pion S-wave interaction

    OpenAIRE

    Wu, F. Q.; Zou, B. S.

    2004-01-01

    We study coupled channel effects upon isospin I=2 and I=0 $\\pi\\pi$ S-wave interaction. With introduction of the $\\pi\\pi\\to\\rho\\rho\\to\\pi\\pi$ coupled channel box diagram contribution into $\\pi\\pi$ amplitude in addition to $\\rho$ and $f_2 (1270)$ exchange, we reproduce the $\\pi \\pi$ I=2 S-wave and D-wave scattering phase shifts and inelasticities up to 2 GeV quite well in a K-matrix formalism. For I=0 case, the same $\\pi\\pi\\to\\rho\\rho\\to\\pi\\pi$ box diagram is found to give the largest contribut...

  13. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  14. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.

    Science.gov (United States)

    Fang, Yi; Sun, Mengtian; Dai, Guoxian; Ramain, Karthik

    2016-01-01

    Recent developments in high-throughput technologies for measuring protein-protein interaction (PPI) have profoundly advanced our ability to systematically infer protein function and regulation. However, inherently high false positive and false negative rates in measurement have posed great challenges in computational approaches for the prediction of PPI. A good PPI predictor should be 1) resistant to high rate of missing and spurious PPIs, and 2) robust against incompleteness of observed PPI networks. To predict PPI in a network, we developed an intrinsic geometry structure (IGS) for network, which exploits the intrinsic and hidden relationship among proteins in network through a heat diffusion process. In this process, all explicit PPIs participate simultaneously to glue local infinitesimal and noisy experimental interaction data to generate a global macroscopic descriptions about relationships among proteins. The revealed implicit relationship can be interpreted as the probability of two proteins interacting with each other. The revealed relationship is intrinsic and robust against individual, local and explicit protein interactions in the original network. We apply our approach to publicly available PPI network data for the evaluation of the performance of PPI prediction. Experimental results indicate that, under different levels of the missing and spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relationship for PPI prediction with a higher sensitivity and specificity compared to that of recently proposed methods. PMID:26886733

  15. Building blocks for protein interaction devices

    OpenAIRE

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors contro...

  16. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    Youn Kyoung Son; Hongzoo Park; Amy L Firth; Won Sun Park

    2013-12-01

    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies have been used to develop specific and selective protein kinase modulators, primarily via inhibition of phosphorylation and down-regulation of kinase gene expression. These strategies are effective at regulating intracellular signalling pathways, but are unfortunately associated with several undesirable effects, particularly those that modulate ion channel function. In fact, the side-effects have precluded these inhibitors from being both useful experimental tools and therapeutically viable. This review focuses on the ion channel side-effects of several protein kinase inhibitors and specifically on those modulating K+, Na+ and Ca2+ ion channels. It is hoped that the information provided with a detailed summary in this review will assist the future development of novel specific and selective compounds targeting protein kinases both for experimental tools and for therapeutic approaches.

  17. Protein interaction networks from literature mining

    Science.gov (United States)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  18. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with......-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to...... 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL...

  19. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45Ca2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45Ca2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd2+, Ni2+, and Mg2+. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  20. Targeting protein-protein interactions as an anticancer strategy

    OpenAIRE

    Ivanov, Andrei A.; Khuri, Fadlo R.; Fu, Haian

    2013-01-01

    The emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintaining characteristics of cancer essential for cell transformation. Such cancer enabling PPIs have become promising ...

  1. An Interactive Introduction to Protein Structure

    Science.gov (United States)

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  2. Degradation of gap junction connexins is regulated by the interaction with Cx43-interacting protein of 75 kDa (CIP75)

    OpenAIRE

    Kopanic, Jennifer L.; Schlingmann, Barbara; Koval, Michael; LAU, ALAN F.; Sorgen, Paul L.; Su, Vivian F

    2015-01-01

    Connexins are a family of transmembrane proteins that form gap junction channels. These proteins undergo both proteasomal and lysosomal degradation, mechanisms that serve to regulate connexin levels. Our previous work described CIP75 [connexin43 (Cx43)-interacting protein of 75 kDa], a protein involved in proteasomal degradation, as a novel Cx43-interacting protein. We have discovered two additional connexins, connexin40 (Cx40) and connexin45 (Cx45), that interact with CIP75. Nuclear magnetic...

  3. Tide-surge interaction in the English Channel

    Directory of Open Access Journals (Sweden)

    D. Idier

    2012-12-01

    Full Text Available The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS. The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms, it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (<0.05 m over a large portion of the English Channel, although reaching several tens of centimetres in some locations (e.g. the Isle of Wight and Dover Strait.

  4. Particle-Interaction Effects in Turbulent Channel Flow

    OpenAIRE

    M Afkhami; A. Hassanpour; Fairweather, M.; Njobuenwu, DO

    2013-01-01

    Large eddy simulation and a discrete element method are applied to study the flow, particle dispersion and agglomeration in a horizontal channel. The particle-particle interaction model is based on the Hertz-Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different particle surface energies on agglomeration, and the impact of fluid turbulence, are investigated. The agglomeration rate is found to be stro...

  5. Protein-protein interaction based on pairwise similarity

    Directory of Open Access Journals (Sweden)

    Zaki Nazar

    2009-05-01

    Full Text Available Abstract Background Protein-protein interaction (PPI is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. Results To assess the ability of the proposed method to recognize the difference between "interacted" and "non-interacted" proteins pairs, we applied it on different datasets from the available yeast saccharomyces cerevisiae protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction. Conclusion Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.

  6. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  7. Evolutionarily conserved herpesviral protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Even Fossum

    2009-09-01

    Full Text Available Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV and Kaposi's sarcoma-associated herpesvirus (KSHV. In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1, murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H, and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.

  8. Michigan molecular interactions r2: from interacting proteins to pathways

    OpenAIRE

    Tarcea, V. Glenn; Weymouth, Terry; Ade, Alex; Bookvich, Aaron; Gao, Jing; Mahavisno, Vasudeva; Wright, Zach; Chapman, Adriane; Jayapandian, Magesh; Özgür, Arzucan; Tian, Yuanyuan; Cavalcoli, Jim; Mirel, Barbara; Patel, Jignesh; Radev, Dragomir

    2008-01-01

    Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance. Based on the feedback received from users, MiMI has been completely redesigne...

  9. Protein-protein interaction as a predictor of subcellular location

    Directory of Open Access Journals (Sweden)

    Davis Melissa J

    2009-02-01

    Full Text Available Abstract Background Many biological processes are mediated by dynamic interactions between and among proteins. In order to interact, two proteins must co-occur spatially and temporally. As protein-protein interactions (PPIs and subcellular location (SCL are discovered via separate empirical approaches, PPI and SCL annotations are independent and might complement each other in helping us to understand the role of individual proteins in cellular networks. We expect reliable PPI annotations to show that proteins interacting in vivo are co-located in the same cellular compartment. Our goal here is to evaluate the potential of using PPI annotation in determining SCL of proteins in human, mouse, fly and yeast, and to identify and quantify the factors that contribute to this complementarity. Results Using publicly available data, we evaluate the hypothesis that interacting proteins must be co-located within the same subcellular compartment. Based on a large, manually curated PPI dataset, we demonstrate that a substantial proportion of interacting proteins are in fact co-located. We develop an approach to predict the SCL of a protein based on the SCL of its interaction partners, given sufficient confidence in the interaction itself. The frequency of false positive PPIs can be reduced by use of six lines of supporting evidence, three based on type of recorded evidence (empirical approach, multiplicity of databases, and multiplicity of literature citations and three based on type of biological evidence (inferred biological process, domain-domain interactions, and orthology relationships, with biological evidence more-effective than recorded evidence. Our approach performs better than four existing prediction methods in identifying the SCL of membrane proteins, and as well as or better for soluble proteins. Conclusion Understanding cellular systems requires knowledge of the SCL of interacting proteins. We show how PPI data can be used more effectively to

  10. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  11. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...... spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used to...... characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions....

  12. Quantitative interaction proteomics of neurodegenerative disease proteins.

    Science.gov (United States)

    Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias

    2015-05-19

    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. PMID:25959826

  13. Analysis of correlations between protein complex and protein-protein interaction and mRNA expression

    Institute of Scientific and Technical Information of China (English)

    CAI Lun; XUE Hong; LU Hongchao; ZHAO Yi; ZHU Xiaopeng; BU Dongbo; LING Lunjiang; CHEN Runsheng

    2003-01-01

    Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-scale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indicates that comprehensive integration and analysis of public large-scale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.

  14. Structural similarity of genetically interacting proteins

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2008-07-01

    Full Text Available Abstract Background The study of gene mutants and their interactions is fundamental to understanding gene function and backup mechanisms within the cell. The recent availability of large scale genetic interaction networks in yeast and worm allows the investigation of the biological mechanisms underlying these interactions at a global scale. To date, less than 2% of the known genetic interactions in yeast or worm can be accounted for by sequence similarity. Results Here, we perform a genome-scale structural comparison among protein pairs in the two species. We show that significant fractions of genetic interactions involve structurally similar proteins, spanning 7–10% and 14% of all known interactions in yeast and worm, respectively. We identify several structural features that are predictive of genetic interactions and show their superiority over sequence-based features. Conclusion Structural similarity is an important property that can explain and predict genetic interactions. According to the available data, the most abundant mechanism for genetic interactions among structurally similar proteins is a common interacting partner shared by two genetically interacting proteins.

  15. ThermoTRP channels as modular proteins with allosteric gating.

    Science.gov (United States)

    Latorre, Ramon; Brauchi, Sebastian; Orta, Gerardo; Zaelzer, Cristián; Vargas, Guillermo

    2007-01-01

    Ion channels activate by sensing stimuli such as membrane voltage, ligand binding or temperature and transduce this information into conformational changes that open the channel pore. Thus, a key question in understanding ion channel function is how do the protein domains involved in sensing stimuli (sensors) and opening the pore (gates) communicate. In this regard, transient receptor potential (TRP) channels that confer thermosensation [A. Dhaka, V. Viswanath, A. Patapoutian, TRP ion channels and temperature sensation, Annu. Rev. Neurosci. 29 (2006) 135-161; I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to TRP channels, Annu. Rev. Physiol. 68 (2006) 619-647] (thermoTRP; Q(10)>10) are unique to the extent that they integrate a variety of physical and chemical stimuli. In some cases such as, for example, the vanilloid receptor TRPV1 [M.J. Caterina, M.A. Schumacher, M. Tominaga, T.A. Rosen, J.D. Levine, D. Julius, The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature 389 (1997) 816-824] and TRPA1 [G.M. Story, A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, A. Patapoutian, ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures, Cell 112 (2003) 819-829; S. Jordt, D. Julius, Molecular basis for species-specific sensitivity to "hot" chilli peppers, Cell 108 (2002) 421-430] the integration of these stimuli elicit pain [M. Tominaga, M.J. Caterina, A.B. Malmberg, T.A. Rosen, H. Gilbert, K. Skinner, B.E. Raumann, A.I. Basbaum, D. Julius, The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 21 (1998) 531-543; M. Bandell, A. Dubin, M. Petrus, A. Orth, J. Mathur, S. Hwang, A. Patapoutian, High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol, Nat. Neurosci. 9 (2006) 466-468; S. Zurborg, B. Yurgionas, JA. Jira, O

  16. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  17. RNA-protein interactions: an overview

    DEFF Research Database (Denmark)

    Re, Angela; Joshi, Tejal; Kulberkyte, Eleonora;

    2014-01-01

    RNAs bound by individual RBPs, or vice versa, for both in vitro and in vivo methodologies. To help highlight the biological significance of RBP mediated regulation, online resources on experimentally verified protein-RNA interactions are briefly presented. Finally, we present the major tools to...... sequence and structural features uniquely characterizing protein-RNA interactions.......RNA binding proteins (RBPs) are key players in the regulation of gene expression. In this chapter we discuss the main protein-RNA recognition modes used by RBPs in order to regulate multiple steps of RNA processing. We discuss traditional and state-of-the-art technologies that can be used to study...

  18. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  19. Modeling of the DNA-Protein interaction

    International Nuclear Information System (INIS)

    The structure of DNA Binding Proteins enables a strong interaction with their specific target site on DNA. However, recent single molecule experiment reported that proteins can diffuse on DNA. This suggests that the interactions between proteins and DNA play a role during the target search even far from the specific site. It is unclear how these non-specific interactions optimize the search process, and how the protein structure comes into play. Each nucleotide being negatively charged, one may think that the positive surface of DNA-BPs should electrostatically collapse onto DNA. Here we show by means of Monte Carlo simulations and analytical calculations that a counter-intuitive repulsion between the two oppositely charged macromolecules exists at a nanometer range. We also show that this repulsion is due to a local increase of the osmotic pressure exerted by the ions which are trapped at the interface. For the concave shape of DNA-BPs, and for realistic protein charge densities, we find that the repulsion pushes the protein in a free energy minimum at a distance from DNA. As a consequence, a favourable path exists along which proteins can slide without interacting with the DNA bases. When a protein encounters its target, the osmotic barrier is completely counter-balanced by the H-bond interaction, thus enabling the sequence recognition. (authors)

  20. Interaction with Dopamine D2 Receptor Enhances Expression of Transient Receptor Potential Channel 1 at the Cell Surface

    OpenAIRE

    Hannan, Meredith A.; Kabbani, Nadine; Paspalas, Constantinos D.; Levenson, Robert

    2008-01-01

    Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further ...

  1. Bigraphical models for protein and membrane interactions

    CERN Document Server

    Bacci, Giorgio; Miculan, Marino; 10.4204/EPTCS.11.1

    2009-01-01

    We present a bigraphical framework suited for modeling biological systems both at protein level and at membrane level. We characterize formally bigraphs corresponding to biologically meaningful systems, and bigraphic rewriting rules representing biologically admissible interactions. At the protein level, these bigraphic reactive systems correspond exactly to systems of kappa-calculus. Membrane-level interactions are represented by just two general rules, whose application can be triggered by protein-level interactions in a well-de\\"ined and precise way. This framework can be used to compare and merge models at different abstraction levels; in particular, higher-level (e.g. mobility) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. As examples, we formalize in our framework the vesiculation and the phagocytosis processes.

  2. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes.

    Science.gov (United States)

    Angerer, Heike

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria. PMID:25686363

  3. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  4. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche;

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  5. Website on Protein Interaction and Protein Structure Related Work

    Science.gov (United States)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  6. Multifunctional proteins revealed by overlapping clustering in protein interaction network

    OpenAIRE

    Becker, Emmanuelle; Robisson, Benoît; Chapple, Charles E.; Guénoche, Alain; Brun, Christine

    2011-01-01

    Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overla...

  7. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    OpenAIRE

    Heike Angerer

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have bee...

  8. Water-protein interactions from high-resolution protein crystallography.

    OpenAIRE

    Nakasako, Masayoshi

    2004-01-01

    To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the ...

  9. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  10. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. © 2011 Elsevier B.V.

  11. Eta-nuclear interaction: optical vs. coupled channels

    CERN Document Server

    Niskanen, J A

    2015-01-01

    The existence of etamesic nuclei has been speculated for a long time without firm experimental evidence. Much of the effort has taken place in final state interactions on production. One crucial factor in seeing a quasibound state is its width, which should be related to the imaginary part of the scattering length. Comparing two models for eta-N scattering giving the same elementary scattering length, a simple optical potential and an explicit coupling to the pionic channel, it is seen that the latter yields a much smaller imaginary part for eta-nucleus scattering. This decrease of absorption may also mean a possibility for narrow eta-nuclear states.

  12. Ionic channels and nerve membrane lipids. Cholesterol-tetrodotoxin interaction.

    Science.gov (United States)

    Villegas, R; Barnola, F V; Camejo, G

    1970-04-01

    Experiments were carried out to investigate possible interactions of tetrodotoxin (TTX) with lipid molecules isolated from nerve fiber plasma membranes of the squid Dosidicus gigas. TTX has a highly selective ability to block the channel normally used by Na(+) to cross the axolemma during nervous impulse conduction. In order to investigate the interaction each lipid sample was spread on 5 x 10(-7)M TTX and TTX-free 0.15 M NaCl solutions adjusted to pH 7.4 with 7 x 10(-3)M phosphate buffer. The surface pressure-area diagrams of the lipid monolayers revealed that TTX interacts only with cholesterol. The expansion of the cholesterol monolayers at 5 x 10(-7)M TTX was 2 A(2)/molecule at zero pressure for the experiments at 20 degrees C and 2.5 A(2)/molecule for those at 25 degrees C. Similar results were obtained in KCl subphases. The apparent dissociation constant of the cholesterol-TTX complex calculated from dose-response experiments is 2.6 x 10(-7)M. Experiments at pH 10.1 revealed that the zwitter ionic form of TTX is less active. Experiments with cholesterol derivatives (cholesteryl acetate, cholesterol methyl ether, cholestanol, and cholestanyl acetate) indicate that for the interaction with TTX a partial negatively charged group at C-3 and a double bond between C-5 and C-6 on the steroid nucleus are required. Tetrodonic acid, a biologically inactive derivative of TTX, does not interact with cholesterol. The results lead us to propose that cholesterol is part of the Na(+) channel. PMID:5435784

  13. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension

    Science.gov (United States)

    Betanzos, Monica; Chiang, Chien-Sung; Guy, H. Robert; Sukharev, Sergei

    2002-01-01

    MscL, a bacterial mechanosensitive channel of large conductance, is the first structurally characterized mechanosensor protein. Molecular models of its gating mechanisms are tested here. Disulfide crosslinking shows that M1 transmembrane alpha-helices in MscL of resting Escherichia coli are arranged similarly to those in the crystal structure of MscL from Mycobacterium tuberculosis. An expanded conformation was trapped in osmotically shocked cells by the specific bridging between Cys 20 and Cys 36 of adjacent M1 helices. These bridges stabilized the open channel. Disulfide bonds engineered between the M1 and M2 helices of adjacent subunits (Cys 32-Cys 81) do not prevent channel gating. These findings support gating models in which interactions between M1 and M2 of adjacent subunits remain unaltered while their tilts simultaneously increase. The MscL barrel, therefore, undergoes a large concerted iris-like expansion and flattening when perturbed by membrane tension.

  14. Systematic computational prediction of protein interaction networks

    International Nuclear Information System (INIS)

    Determining the network of physical protein associations is an important first step in developing mechanistic evidence for elucidating biological pathways. Despite rapid advances in the field of high throughput experiments to determine protein interactions, the majority of associations remain unknown. Here we describe computational methods for significantly expanding protein association networks. We describe methods for integrating multiple independent sources of evidence to obtain higher quality predictions and we compare the major publicly available resources available for experimentalists to use

  15. Systematic computational prediction of protein interaction networks.

    Science.gov (United States)

    Lees, J G; Heriche, J K; Morilla, I; Ranea, J A; Orengo, C A

    2011-06-01

    Determining the network of physical protein associations is an important first step in developing mechanistic evidence for elucidating biological pathways. Despite rapid advances in the field of high throughput experiments to determine protein interactions, the majority of associations remain unknown. Here we describe computational methods for significantly expanding protein association networks. We describe methods for integrating multiple independent sources of evidence to obtain higher quality predictions and we compare the major publicly available resources available for experimentalists to use. PMID:21572181

  16. Physical Mobile Interaction in Omni-Channel Retailing : Using the customers’ smartphone to interact with smart objects in a store

    OpenAIRE

    Falk, Johan

    2014-01-01

    While shopping in a retail store today the customers are often interacting with multiple sale channels when making a purchase. These channels can include in‑store terminals, the customers’ smartphone etc. This thesis looks at how physical mobile interaction can be implemented to enhance the experience when using different channels for a purchase. Physical mobile interaction is a way for a user to interact with real world objects using a mobile device. This thesis examines how some of these te...

  17. Teaching Noncovalent Interactions Using Protein Molecular Evolution

    Science.gov (United States)

    Fornasari, Maria Silvina; Parisi, Gustavo; Echave, Julian

    2008-01-01

    Noncovalent interactions and physicochemical properties of amino acids are important topics in biochemistry courses. Here, we present a computational laboratory where the capacity of each of the 20 amino acids to maintain different noncovalent interactions are used to investigate the stabilizing forces in a set of proteins coming from organisms…

  18. Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study

    OpenAIRE

    Jiang Jonathan Q; Wu Maoying

    2012-01-01

    Abstract Background Proteins that interact in vivo tend to reside within the same or "adjacent" subcellular compartments. This observation provides opportunities to reveal protein subcellular localization in the context of the protein-protein interaction (PPI) network. However, so far, only a few efforts based on heuristic rules have been made in this regard. Results We systematically and quantitatively validate the hypothesis that proteins physically interacting with each other probably shar...

  19. Evolving new protein-protein interaction specificity through promiscuous intermediates.

    Science.gov (United States)

    Aakre, Christopher D; Herrou, Julien; Phung, Tuyen N; Perchuk, Barrett S; Crosson, Sean; Laub, Michael T

    2015-10-22

    Interacting proteins typically coevolve, and the identification of coevolving amino acids can pinpoint residues required for interaction specificity. This approach often assumes that an interface-disrupting mutation in one protein drives selection of a compensatory mutation in its partner during evolution. However, this model requires a non-functional intermediate state prior to the compensatory change. Alternatively, a mutation in one protein could first broaden its specificity, allowing changes in its partner, followed by a specificity-restricting mutation. Using bacterial toxin-antitoxin systems, we demonstrate the plausibility of this second, promiscuity-based model. By screening large libraries of interface mutants, we show that toxins and antitoxins with high specificity are frequently connected in sequence space to more promiscuous variants that can serve as intermediates during a reprogramming of interaction specificity. We propose that the abundance of promiscuous variants promotes the expansion and diversification of toxin-antitoxin systems and other paralogous protein families during evolution. PMID:26478181

  20. Domain-Domain Interactions Underlying Herpesvirus-Human Protein-Protein Interaction Networks

    OpenAIRE

    Zohar Itzhaki

    2011-01-01

    Protein-domains play an important role in mediating protein-protein interactions. Furthermore, the same domain-pairs mediate different interactions in different contexts and in various organisms, and therefore domain-pairs are considered as the building blocks of interactome networks. Here we extend these principles to the host-virus interface and find the domain-pairs that potentially mediate human-herpesvirus interactions. Notably, we find that the same domain-pairs used by other organisms ...

  1. Coevolution study of mitochondria respiratory chain proteins:Toward the understanding of protein-protein interaction

    Institute of Scientific and Technical Information of China (English)

    Ming Yang; Yan Ge; Jiayan Wu; Jingfa Xiao; Jun Yu

    2011-01-01

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein-protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein-protein interaction in intra-complex and the binary protein-protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 x 10-6). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein-protein interaction.Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study.

  2. Geometric de-noising of protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Oleksii Kuchaiev

    2009-08-01

    Full Text Available Understanding complex networks of protein-protein interactions (PPIs is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H, tandem affinity purification (TAP and other high-throughput methods for protein-protein interaction (PPI detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.

  3. Interacting tilt and kink instabilities in repelling current channels

    International Nuclear Information System (INIS)

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.

  4. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases

    OpenAIRE

    Nazar Zaki; Elfadil A. Mohamed; Antonio Mora

    2015-01-01

    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concep...

  5. A Protein Interaction Map of Drosophila melanogaster

    Science.gov (United States)

    Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y.; Hao, Y. L.; Ooi, C. E.; Godwin, B.; Vitols, E.; Vijayadamodar, G.; Pochart, P.; Machineni, H.; Welsh, M.; Kong, Y.; Zerhusen, B.; Malcolm, R.; Varrone, Z.; Collis, A.; Minto, M.; Burgess, S.; McDaniel, L.; Stimpson, E.; Spriggs, F.; Williams, J.; Neurath, K.; Ioime, N.; Agee, M.; Voss, E.; Furtak, K.; Renzulli, R.; Aanensen, N.; Carrolla, S.; Bickelhaupt, E.; Lazovatsky, Y.; DaSilva, A.; Zhong, J.; Stanyon, C. A.; Finley, R. L.; White, K. P.; Braverman, M.; Jarvie, T.; Gold, S.; Leach, M.; Knight, J.; Shimkets, R. A.; McKenna, M. P.; Chant, J.; Rothberg, J. M.

    2003-12-01

    Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

  6. Yeast Interacting Proteins Database: YDR026C, YDL030W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR026C - Protein of unknown function that may interact with ribosomes, based on co-purification...ein of unknown function that may interact with ribosomes, based on co-purification

  7. Inferring protein function by domain context similarities in protein-protein interaction networks

    OpenAIRE

    Sun Zhirong; Liu Ke; Chen Hu; Zhang Song

    2009-01-01

    Abstract Background Genome sequencing projects generate massive amounts of sequence data but there are still many proteins whose functions remain unknown. The availability of large scale protein-protein interaction data sets makes it possible to develop new function prediction methods based on protein-protein interaction (PPI) networks. Although several existing methods combine multiple information resources, there is no study that integrates protein domain information and PPI networks to pre...

  8. Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel

    Science.gov (United States)

    Sun, Jianxin; Liao, James K.

    2002-01-01

    Endothelium-derived nitric oxide (NO) is an important regulator of vascular function. NO is produced by endothelial NO synthase (eNOS) whose function is modulated, in part, by specific protein interactions. By coimmunoprecipitation experiments followed by MS analyses, we identified a human voltage-dependent anion/cation channel or porin as a binding partner of eNOS. The interaction between porin and eNOS was demonstrated by coimmunoprecipitation studies in nontransfected human endothelial cells and Cos-7 cells transiently transfected with eNOS and porin cDNAs. In vitro binding studies with glutathione S-transferase–porin indicated that porin binds directly to eNOS and that this interaction augmented eNOS activity. The calcium ionophore, A23187, and bradykinin, which are known to activate eNOS, markedly increased porin–eNOS interaction, suggesting a potential role of intracellular Ca2+ in mediating this interaction. Theses results indicate that the interaction between a voltage-dependent membrane channel and eNOS may be important for regulating eNOS activity. PMID:12228731

  9. Water-protein interactions from high-resolution protein crystallography.

    Science.gov (United States)

    Nakasako, Masayoshi

    2004-08-29

    To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level. PMID:15306376

  10. Predicting protein-peptide interactions from scratch

    Science.gov (United States)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  11. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  12. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  13. KFC Server: interactive forecasting of protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611

  14. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities.

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-04-01

    Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications. PMID:26728152

  15. Sentence Simplification Aids Protein-Protein Interaction Extraction

    OpenAIRE

    Jonnalagadda, Siddhartha; Gonzalez, Graciela

    2010-01-01

    Accurate systems for extracting Protein-Protein Interactions (PPIs) automatically from biomedical articles can help accelerate biomedical research. Biomedical Informatics researchers are collaborating to provide metaservices and advance the state-of-art in PPI extraction. One problem often neglected by current Natural Language Processing systems is the characteristic complexity of the sentences in biomedical literature. In this paper, we report on the impact that automatic simplification of s...

  16. Yeast Interacting Proteins Database: YOR097C, YML008C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOR097C - Putative protein of unknown function; identified as interacting with Hsp82p in a high-throughput... description Putative protein of unknown function; identified as interacting with Hsp82p in a high-through...put two-hybrid screen; YOR097C is not an essential gene Rows with this bait as bait

  17. Potential disruption of protein-protein interactions by graphene oxide

    Science.gov (United States)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  18. Studying protein-protein interactions: progress, pitfalls and solutions.

    Science.gov (United States)

    Hayes, Sheri; Malacrida, Beatrice; Kiely, Maeve; Kiely, Patrick A

    2016-08-15

    Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success. PMID:27528744

  19. An Algorithm for Finding Functional Modules and Protein Complexes in Protein-Protein Interaction Networks

    OpenAIRE

    Guangyu Cui; Yu Chen; De-Shuang Huang; Kyungsook Han

    2008-01-01

    Biological processes are often performed by a group of proteins rather than by individual proteins, and proteins in a same biological group form a densely connected subgraph in a protein-protein interaction network. Therefore, finding a densely connected subgraph provides useful information to predict the function or protein complex of uncharacterized proteins in the highly connected subgraph. We have developed an efficient algorithm and program for finding cliques and near-cliques in a prote...

  20. Polyester Modification of the Mammalian TRPM8 Channel Protein: Implications for Structure and Function

    Directory of Open Access Journals (Sweden)

    Chike Cao

    2013-07-01

    Full Text Available The TRPM8 ion channel is expressed in sensory neurons and is responsible for sensing environmental cues, such as cold temperatures and chemical compounds, including menthol and icilin. The channel functional activity is regulated by various physical and chemical factors and is likely to be preconditioned by its molecular composition. Our studies indicate that the TRPM8 channel forms a structural-functional complex with the polyester poly-(R-3-hydroxybutyrate (PHB. We identified by mass spectrometry a number of PHB-modified peptides in the N terminus of the TRPM8 protein and in its extracellular S3-S4 linker. Removal of PHB by enzymatic hydrolysis and site-directed mutagenesis of both the serine residues that serve as covalent anchors for PHB and adjacent hydrophobic residues that interact with the methyl groups of the polymer resulted in significant inhibition of TRPM8 channel activity. We conclude that the TRPM8 channel undergoes posttranslational modification by PHB and that this modification is required for its normal function.

  1. Toxicological Significance of Silicon-protein Interaction

    OpenAIRE

    Farhat N. Jaffery; Viswanathan, P N

    1987-01-01

    In order to understand the molecular mechanism of the toxicity of Si containing particulate air pollutants, the interaction between silicate anion and proteins was studied. On the basis of molecular sieving profile, the presence of a protein fraction capable of binding silicic acid was detected in rat lung and serum. The binding is firm being able to withstand dialysis, Si-binding by Bovine Serum Albumin (BSA) follows stoichiometric principles indicating true chemical reaction in terms of eff...

  2. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  3. Quantitative Interaction Proteomics of Neurodegenerative Disease Proteins

    Directory of Open Access Journals (Sweden)

    Fabian Hosp

    2015-05-01

    Full Text Available Several proteins have been linked to neurodegenerative disorders (NDDs, but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP and Presenilin-1 (PSEN1 for Alzheimer’s disease (AD, Huntingtin (HTT for Huntington’s disease, Parkin (PARK2 for Parkinson’s disease, and Ataxin-1 (ATXN1 for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.

  4. The protein interaction map of bacteriophage lambda

    OpenAIRE

    Uetz Peter; Casjens Sherwood; Rajagopala Seesandra V

    2011-01-01

    Abstract Background Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find ou...

  5. Yeast Interacting Proteins Database: YGR048W, YBR170C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGR048W UFD1 Protein that interacts with Cdc48p and Npl4p, involved in recognition of polyubiqui ... tinated proteins and their presentation ... to the 26S proteasome for degradation; involved in ... ecognition of polyubiquitinated proteins and their presentation ... to the 26S proteasome for degradation; involved in ...

  6. Yeast Interacting Proteins Database: YPR040W, YNR032W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available cally and genetically with Tap42p, which regulates protein phosphatase 2A; compo...phatase 2A; component of the TOR (target of rapamycin) signaling pathway Rows with this bait as bait...rnative path with 2 intervening proteins (YPD) 0 IST hit 3 IST hit in the opposite bait/prey orientation - ... ...YPR040W TIP41 Protein that interacts physically and genetically with Tap42p, which regulates protein phos...gen accumulation; interacts with Tap42p, which binds to and regulates other protein phosphatases Rows wit

  7. Prediction and redesign of protein-protein interactions.

    Science.gov (United States)

    Lua, Rhonald C; Marciano, David C; Katsonis, Panagiotis; Adikesavan, Anbu K; Wilkins, Angela D; Lichtarge, Olivier

    2014-01-01

    Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function - those mediated by protein-protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI. PMID:24878423

  8. Interaction of protein with DNA in vitro

    International Nuclear Information System (INIS)

    One of the important means to control eukaryotic gene expression involves the binding of proteins to specific sites in the promoter and other regulatory regions of the gene. This chapter is devoted to methodology for identifying DNA sequences that are bound in vitro by proteins in crude nuclear extracts. The authors present four methods of detection: nitrocellulose filter binding, mobility shift, exonuclease III protection, and DNAse I protection. In addition to providing assay conditions, they discuss some applications of the different methods. Very often data from protein-DNA interaction studies permit ambiguous interpretations. They there discuss control experiments designed to help the researcher to evaluate data

  9. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  10. Ionic interactions of Ba2+ blockades in the MthK K+ channel

    OpenAIRE

    GUO Rui; Zeng, Weizhong; Cui, Hengjun; Chen, Liping; Ye, Sheng

    2014-01-01

    The movement and interaction of multiple ions passing through in single file underlie various fundamental K+ channel properties, from the effective conduction of K+ ions to channel blockade by Ba2+ ions. In this study, we used single-channel electrophysiology and x-ray crystallography to probe the interactions of Ba2+ with permeant ions within the ion conduction pathway of the MthK K+ channel. We found that, as typical of K+ channels, the MthK channel was blocked by Ba2+ at the internal side,...

  11. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  12. Motif mediated protein-protein interactions as drug targets.

    Science.gov (United States)

    Corbi-Verge, Carles; Kim, Philip M

    2016-01-01

    Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery. PMID:26936767

  13. Modulation of opioid receptor function by protein-protein interactions.

    Science.gov (United States)

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization. PMID:19273296

  14. Development of a multiplexed microfluidic proteomic reactor and its application for studying protein-protein interactions.

    Science.gov (United States)

    Tian, Ruijun; Hoa, Xuyen Dai; Lambert, Jean-Philippe; Pezacki, John Paul; Veres, Teodor; Figeys, Daniel

    2011-06-01

    Mass spectrometry-based proteomics techniques have been very successful for the identification and study of protein-protein interactions. Typically, immunopurification of protein complexes is conducted, followed by protein separation by gel electrophoresis and in-gel protein digestion, and finally, mass spectrometry is performed to identify the interacting partners. However, the manual processing of the samples is time-consuming and error-prone. Here, we developed a polymer-based microfluidic proteomic reactor aimed at the parallel analysis of minute amounts of protein samples obtained from immunoprecipitation. The design of the proteomic reactor allows for the simultaneous processing of multiple samples on the same devices. Each proteomic reactor on the device consists of SCX beads packed and restricted into a 1 cm microchannel by two integrated pillar frits. The device is fabricated using a combination of low-cost hard cyclic olefin copolymer thermoplastic and elastomeric thermoplastic materials (styrene/(ethylene/butylenes)/styrene) using rapid hot-embossing replication techniques with a polymer-based stamp. Three immunopurified protein samples are simultaneously captured, reduced, alkylated, and digested on the device within 2-3 h instead of the days required for the conventional protein-protein interaction studies. The limit of detection of the microfluidic proteomic reactor was shown to be lower than 2 ng of protein. Furthermore, the application of the microfluidic proteomic reactor was demonstrated for the simultaneous processing of the interactome of the histone variant Htz1 in wild-type yeast and in a swr1Δ yeast strain compared to an untagged control using a novel three-channel microfluidic proteomic reactor. PMID:21520965

  15. A framework for protein and membrane interactions

    CERN Document Server

    Bacci, Giorgio; Miculan, Marino; 10.4204/EPTCS.11.2

    2009-01-01

    We introduce the BioBeta Framework, a meta-model for both protein-level and membrane-level interactions of living cells. This formalism aims to provide a formal setting where to encode, compare and merge models at different abstraction levels; in particular, higher-level (e.g. membrane) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. A BioBeta specification provides a protein signature together a set of protein reactions, in the spirit of the kappa-calculus. Moreover, the specification describes when a protein configuration triggers one of the only two membrane interaction allowed, that is "pinch" and "fuse". In this paper we define the syntax and semantics of BioBeta, analyse its properties, give it an interpretation as biobigraphical reactive systems, and discuss its expressivity by comparing with kappa-calculus and modelling significant examples. Notably, BioBeta has been designed after a bigraphical metamodel for the same purposes. Hence, each ...

  16. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  17. Connecting the dots in Huntington's disease with protein interaction networks

    OpenAIRE

    Giorgini, Flaviano; Muchowski, Paul J.

    2005-01-01

    Analysis of protein-protein interaction networks is becoming important for inferring the function of uncharacterized proteins. A recent study using this approach has identified new proteins and interactions that might be involved in the pathogenesis of the neurodegenerative disorder Huntington's disease, including a GTPase-activating protein that co-localizes with protein aggregates in Huntington's disease patients.

  18. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    Science.gov (United States)

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  19. Yeast Interacting Proteins Database: YPL002C, YLR417W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available interactions with ESCRT-I and ubiquitin-dependent sorting of proteins into the endoso...ing in EAP45) domain which is involved in interactions with ESCRT-I and ubiquitin-dependent sortin...YPL002C SNF8 Component of the ESCRT-II complex, which is involved in ubiquitin-dependent sorting of protein...s into the endosome; appears to be functionally related to SNF7; involved in glucose der...ESCRT-II complex, which is involved in ubiquitin-dependent sorting of proteins into the endosome; appears to be functi

  20. Yeast Interacting Proteins Database: YNL044W, YNL044W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL044W YIP3 Protein localized to COPII vesicles, proposed to be involved in ER to Golgi transpo ... rt; interacts with members of the Rab GTPase family ... and Yip1p; also interacts with Rtn1p Rows with thi ... ransport; interacts with members of the Rab GTPase family ... and Yip1p; also interacts with Rtn1p Rows with thi ...

  1. Novel protein-protein interactions between Entamoeba histolyticad-phosphoglycerate dehydrogenase and phosphoserine aminotransferase.

    Science.gov (United States)

    Mishra, Vibhor; Kumar, Ashutosh; Ali, Vahab; Nozaki, Tomoyoshi; Zhang, Kam Y J; Bhakuni, Vinod

    2012-08-01

    Physical interactions between d-phosphoglycerate dehydrogenase (EhPGDH) and phosphoserine aminotransferase (EhPSAT) from an enteric human parasite Entamoeba histolytica was observed by pull-down assay, gel filtration chromatography, chemical cross-linking, emission anisotropy, molecular docking and molecular dynamic simulations. The protein-protein complex had a 1:1 stochiometry with a dissociation constant of 3.453 × 10(-7) M. Ionic interactions play a significant role in complex formation and stability. Analysis of the energy minimized average simulated model of the protein complex show that the nucleotide binding domain of EhPGDH specifically interacts with EhPSAT. Denaturation studies suggest that the nucleotide binding domain (Nbd) and substrate binding domain (Sbd) of EhPGDH are independent folding/unfolding units. Thus the Nbd-EhPGDH was separately cloned over-expressed and purified to homogeneity. Fluorescence anisotropy study show that the purified Nbd interacts with EhPSAT. Forward enzyme catalyzed reaction for the EhPGDH-PSAT complex showed efficient Km values for 3-phosphoglyceric acid as compared to only EhPGDH suggesting a possibility of substrate channelling in the protein complex. PMID:22386871

  2. Discover Protein Complexes in Protein-Protein Interaction Networks Using Parametric Local Modularity

    OpenAIRE

    Tan Kai; Kim Jongkwang

    2010-01-01

    Abstract Background Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in multiple species and in both normal and diseased cells. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively distil network models from large-scale interactome data. Results We present an algorithm, miPALM (Module Inference by Parametric Local Modularity), to infer protein complexes in a protein-pr...

  3. Probabilistic methods for predicting protein functions in protein-protein interaction networks

    OpenAIRE

    Best, Christoph; Zimmer, Ralf; Apostolakis, Joannis

    2005-01-01

    We discuss probabilistic methods for predicting protein functions from protein-protein interaction networks. Previous work based on Markov Randon Fields is extended and compared to a general machine-learning theoretic approach. Using actual protein interaction networks for yeast from the MIPS database and GO-SLIM function assignments, we compare the predictions of the different probabilistic methods and of a standard support vector machine. It turns out that, with the currently available netw...

  4. SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity

    Directory of Open Access Journals (Sweden)

    Carrasquillo Robert

    2012-11-01

    Full Text Available Abstract Background Transient receptor potential canonical (TRPC channels are non-selective cation channels involved in receptor-mediated calcium signaling in diverse cells and tissues. The canonical transient receptor potential 6 (TRPC6 has been implicated in several pathological processes, including focal segmental glomerulosclerosis (FSGS, cardiac hypertrophy, and pulmonary hypertension. The two large cytoplasmic segments of the cation channel play a critical role in the proper regulation of channel activity, and are involved in several protein-protein interactions. Results Here we report that SNF8, a component of the endosomal sorting complex for transport-II (ESCRT-II complex, interacts with TRPC6. The interaction was initially observed in a yeast two-hybrid screen using the amino-terminal cytoplasmic domain of TRPC6 as bait, and confirmed by co-immunoprecipitation from eukaryotic cell extracts. The amino-terminal 107 amino acids are necessary and sufficient for the interaction. Overexpression of SNF8 enhances both wild-type and gain-of-function mutant TRPC6-mediated whole-cell currents in HEK293T cells. Furthermore, activation of NFAT-mediated transcription by gain-of-function mutants is enhanced by overexpression of SNF8, and partially inhibited by RNAi mediated knockdown of SNF8. Although the ESCRT-II complex functions in the endocytosis and lysosomal degradation of transmembrane proteins, SNF8 overexpression does not alter the amount of TRPC6 present on the cell surface. Conclusion SNF8 is novel binding partner of TRPC6, binding to the amino-terminal cytoplasmic domain of the channel. Modulating SNF8 expression levels alters the TRPC6 channel current and can modulate activation of NFAT-mediated transcription downstream of gain-of-function mutant TRPC6. Taken together, these results identify SNF8 as a novel regulator of TRPC6.

  5. Sentence Simplification Aids Protein-Protein Interaction Extraction

    CERN Document Server

    Jonnalagadda, Siddhartha

    2010-01-01

    Accurate systems for extracting Protein-Protein Interactions (PPIs) automatically from biomedical articles can help accelerate biomedical research. Biomedical Informatics researchers are collaborating to provide metaservices and advance the state-of-art in PPI extraction. One problem often neglected by current Natural Language Processing systems is the characteristic complexity of the sentences in biomedical literature. In this paper, we report on the impact that automatic simplification of sentences has on the performance of a state-of-art PPI extraction system, showing a substantial improvement in recall (8%) when the sentence simplification method is applied, without significant impact to precision.

  6. Toxicological Significance of Silicon-protein Interaction

    Directory of Open Access Journals (Sweden)

    Farhat N. Jaffery

    1987-04-01

    Full Text Available In order to understand the molecular mechanism of the toxicity of Si containing particulate air pollutants, the interaction between silicate anion and proteins was studied. On the basis of molecular sieving profile, the presence of a protein fraction capable of binding silicic acid was detected in rat lung and serum. The binding is firm being able to withstand dialysis, Si-binding by Bovine Serum Albumin (BSA follows stoichiometric principles indicating true chemical reaction in terms of effects of pH, temperature and period of incubation. Fluorescence spectrum of the BSA-Si complex decreased with an increase in Si concentration. Effect of Si-binding on trypsin activity against albumin showed that proteins other than albumin could also interact with Si-trypsin containing silica showed distinctly low, catalytic activity against native BSA. When both the substrate and enzyme contained bound Si, the activity further reduced by 36 per cent as compared to both pure trypsin and pure BSA, clearly indicating that binding of Si with substrate or enzyme proteins can adversely effect the biological activity. Complexing with proteins is likely to play a role in pathogenesis of pneumoconiosis, elimination of dusts, formation of silicate stones in plants and animals, and possibly in the reported role of Si in nutrition, cardiovascular diseases and ageing.

  7. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  8. Ribo-Proteomics Approach to Profile RNA-Protein and Protein-Protein Interaction Networks.

    Science.gov (United States)

    Yeh, Hsin-Sung; Chang, Jae-Woong; Yong, Jeongsik

    2016-01-01

    Characterizing protein-protein and protein-RNA interaction networks is a fundamental step to understanding the function of an RNA-binding protein. In many cases, these interactions are transient and highly dynamic. Therefore, capturing stable as well as transient interactions in living cells for the identification of protein-binding partners and the mapping of RNA-binding sequences is key to a successful establishment of the molecular interaction network. In this chapter, we will describe a method for capturing the molecular interactions in living cells using formaldehyde as a crosslinker and enriching a specific RNA-protein complex from cell extracts followed by mass spectrometry and Next-Gen sequencing analyses. PMID:26965265

  9. Michigan molecular interactions r2: from interacting proteins to pathways.

    Science.gov (United States)

    Tarcea, V Glenn; Weymouth, Terry; Ade, Alex; Bookvich, Aaron; Gao, Jing; Mahavisno, Vasudeva; Wright, Zach; Chapman, Adriane; Jayapandian, Magesh; Ozgür, Arzucan; Tian, Yuanyuan; Cavalcoli, Jim; Mirel, Barbara; Patel, Jignesh; Radev, Dragomir; Athey, Brian; States, David; Jagadish, H V

    2009-01-01

    Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance. Based on the feedback received from users, MiMI has been completely redesigned. This article describes the resulting MiMI Release 2 (MiMIr2). New functionality includes extension from proteins to genes and to pathways; identification of highlighted sentences in source publications; seamless two-way linkage with Cytoscape; query facilities based on MeSH/GO terms and other concepts; approximate graph matching to find relevant pathways; support for querying in bulk; and a user focus-group driven interface design. MiMI is part of the NIH's; National Center for Integrative Biomedical Informatics (NCIBI) and is publicly available at: http://mimi.ncibi.org. PMID:18978014

  10. Photolytic Crosslinking to Probe Protein-Protein and Protein-Matrix Interactions In Lyophilized Powders

    OpenAIRE

    Iyer, Lavanya K.; Moorthy, Balakrishnan S.; Topp, Elizabeth M.

    2015-01-01

    Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic crosslinking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4’-azipentanoate (SDA) and the structural integrity of the l...

  11. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    Science.gov (United States)

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  12. CPL:Detecting Protein Complexes by Propagating Labels on Protein-Protein Interaction Network

    Institute of Scientific and Technical Information of China (English)

    代启国; 郭茂祖; 刘晓燕; 滕志霞; 王春宇

    2014-01-01

    Proteins usually bind together to form complexes, which play an important role in cellular activities. Many graph clustering methods have been proposed to identify protein complexes by finding dense regions in protein-protein interaction networks. We present a novel framework (CPL) that detects protein complexes by propagating labels through interactions in a network, in which labels denote complex identifiers. With proper propagation in CPL, proteins in the same complex will be assigned with the same labels. CPL does not make any strong assumptions about the topological structures of the complexes, as in previous methods. The CPL algorithm is tested on several publicly available yeast protein-protein interaction networks and compared with several state-of-the-art methods. The results suggest that CPL performs better than the existing methods. An analysis of the functional homogeneity based on a gene ontology analysis shows that the detected complexes of CPL are highly biologically relevant.

  13. Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry*

    OpenAIRE

    Kaake, Robyn M; Wang, Xiaorong; Huang, Lan

    2010-01-01

    Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand ho...

  14. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618. ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  15. Yeast Interacting Proteins Database: YJR091C, YKL076C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR091C JSN1 Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding mem ... th this bait as prey (0) YKL076C PSY1 Dubious open reading ... frame, unlikely to encode a protein; not conserved ... Prey gene name PSY1 Prey description Dubious open reading ... frame, unlikely to encode a protein; not conserved ...

  16. Notable Aspects of Glycan-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Miriam Cohen

    2015-09-01

    Full Text Available This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry. Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells, stick and roll (bacteria or surfacing (viruses.

  17. On the convergence of multi-channel effective interactions

    OpenAIRE

    Wagner, M.; Schaefer, B. -J.; Wambach, J.; Kuo, T. T. S.; Brown, G. E.

    2006-01-01

    A detailed analysis of convergence properties of the Andreozzi-Lee-Suzuki iteration method, which is used for the calculation of low-momentum effective potentials Vlowk is presented. After summarizing different modifications of the iteration method for one-flavor channel we introduce a simple model in order to study the generalization of the iteration method to multi-flavor channels. The failure of a straightforward generalization is discussed. The introduction of a channel-dependent cutoff c...

  18. Yeast Interacting Proteins Database: YMR032W, YER144C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YMR032W HOF1 Bud neck-localized, SH3 domain-containing protein required for cytokinesis; regulat ... es actomyosin ring dynamics ... and septin localization; interacts with the formin ... equired for cytokinesis; regulates actomyosin ring dynamics ... and septin localization; interacts with the formin ...

  19. Yeast Interacting Proteins Database: YBR260C, YMR032W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR260C RGD1 GTPase-activating protein (RhoGAP) for Rho3p and Rho4p, possibly involved in contro ... equired for cytokinesis; regulates actomyosin ring dynamics ... and septin localization; interacts with the formin ... equired for cytokinesis; regulates actomyosin ring dynamics ... and septin localization; interacts with the formin ...

  20. Yeast Interacting Proteins Database: YLR423C, YMR124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available phery, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay; YMR124W is not an essential g...fusion protein localizes to the cell periphery, cytoplasm, bud, and bud neck; interacts with Crm1p in two-hybrid assay

  1. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users.

    Directory of Open Access Journals (Sweden)

    John J Galvin

    Full Text Available Previous cochlear implant (CI studies have shown that single-channel amplitude modulation frequency discrimination (AMFD can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined.In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?". For the reference stimulus, the reference AM (100 Hz was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz was delivered to 1 of 3 channels, and the reference AM (100 Hz delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction.Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz, there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes.Besides the increased loudness, the present results also suggest that multiple

  2. Yeast Interacting Proteins Database: YCR036W, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ein import machinery; interacts with both PTS1 (Pex5p) and PTS2 (Pex7p), peroxisomal matrix protein signal r... gene name PEX14 Prey description Peroxisomal membrane peroxin that is a central component of the peroxisoma...l protein import machinery; interacts with both PTS1 (Pex5p) and PTS2 (Pex7p), peroxisomal matrix protein si...ure on prey (YPD) 12 Literature shared by bait and prey 2 Literature sharing score 2 Cura...t as prey (0) YGL153W PEX14 Peroxisomal membrane peroxin that is a central component of the peroxisomal prot

  3. Yeast Interacting Proteins Database: YLR347C, YBR176W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesi...h nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates...in (YPD) 0 Alternative path with 2 intervening proteins (YPD) 0 IST hit 6 IST hit in the opposite bait/prey orientation - ... ...YLR347C KAP95 Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate...cription Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts wit

  4. Yeast Interacting Proteins Database: YLR347C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesi...h nucleoporins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates...in (YPD) 0 Alternative path with 2 intervening proteins (YPD) 0 IST hit 3 IST hit in the opposite bait/prey orientation - ... ...YLR347C KAP95 Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate... ORF YLR347C Bait gene name KAP95 Bait description Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts wit

  5. Yeast Interacting Proteins Database: YLR347C, YKL067W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesi...rins to mediate nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthes... gene name KAP95 Bait description Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts with nucleopo...h 2 intervening proteins (YPD) 0 IST hit 3 IST hit in the opposite bait/prey orientation - ... ...YLR347C KAP95 Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate

  6. The β1-subunit of Na(v1.5 cardiac sodium channel is required for a dominant negative effect through α-α interaction.

    Directory of Open Access Journals (Sweden)

    Aurélie Mercier

    Full Text Available Brugada syndrome (BrS is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Na(v1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT Na(v1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Na(v1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β(1-subunit was essential for this dominant negative effect. Indeed, the absence of the β(1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β(1-subunit was present. Our findings reveal a new role for β(1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.

  7. Protein kinase C is involved in regulation of Ca2+ channels in plasmalemma of Nitella syncarpa.

    Science.gov (United States)

    Zherelova, O M

    1989-01-01

    Ca2+ current recordings have been made on Nitella syncarpa cells using the intracellular perfusion and the voltage-clamp technique. TPA (12-O-tetradecanoylphorbol-13-acetate), a substance capable of activating protein kinase C from plasmalemma of Nitella cells, modulates voltage-dependent Ca2+ channels. Polymixin B, inhibitor of protein kinase C, blocks the Nitella plasmalemma Ca2+ channels; the rate of channel blockage depends on the concentration and exposure time of the substance. PMID:2536617

  8. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. PMID:26721627

  9. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    Science.gov (United States)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    Physics approaches focus on uncovering, modeling and quantitating the general principles governing the micro and macro universe. This has always been an important component of biological research, however recent advances in experimental techniques and the accumulation of unprecedented genome-scale experimental data produced by these novel technologies now allow for addressing fundamental questions on a large scale. These relate to molecular interactions, principles of bimolecular recognition, and mechanisms of signal propagation. The functioning of a cell requires a variety of intermolecular interactions including protein-protein, protein-DNA, protein-RNA, hormones, peptides, small molecules, lipids and more. Biomolecules work together to provide specific functions and perturbations in intermolecular communication channels often lead to cellular malfunction and disease. A full understanding of the interactome requires an in-depth grasp of the biophysical principles underlying individual interactions as well as their organization in cellular networks. Phenomena can be described at different levels of abstraction. Computational and systems biology strive to model cellular processes by integrating and analyzing complex data from multiple experimental sources using interdisciplinary tools. As a result, both the causal relationships between the variables and the general features of the system can be discovered, which even without knowing the details of the underlying mechanisms allow for putting forth hypotheses and predicting the behavior of the systems in response to perturbation. And here lies the strength of in silico models which provide control and predictive power. At the same time, the complexity of individual elements and molecules can be addressed by the fields of molecular biophysics, physical biology and structural biology, which focus on the underlying physico-chemical principles and may explain the molecular mechanisms of cellular function. In this issue

  10. Reuse of structural domain–domain interactions in protein networks

    OpenAIRE

    Bateman Alex; Schuster-Böckler Benjamin

    2007-01-01

    Abstract Background Protein interactions are thought to be largely mediated by interactions between structural domains. Databases such as iPfam relate interactions in protein structures to known domain families. Here, we investigate how the domain interactions from the iPfam database are distributed in protein interactions taken from the HPRD, MPact, BioGRID, DIP and IntAct databases. Results We find that known structural domain interactions can only explain a subset of 4–19% of the available...

  11. Discover Protein Complexes in Protein-Protein Interaction Networks Using Parametric Local Modularity

    Directory of Open Access Journals (Sweden)

    Tan Kai

    2010-10-01

    Full Text Available Abstract Background Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in multiple species and in both normal and diseased cells. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively distil network models from large-scale interactome data. Results We present an algorithm, miPALM (Module Inference by Parametric Local Modularity, to infer protein complexes in a protein-protein interaction network. The algorithm uses a novel graph theoretic measure, parametric local modularity, to identify highly connected sub-networks as candidate protein complexes. Using gold standard sets of protein complexes and protein function and localization annotations, we show our algorithm achieved an overall improvement over previous algorithms in terms of precision, recall, and biological relevance of the predicted complexes. We applied our algorithm to predict and characterize a set of 138 novel protein complexes in S. cerevisiae. Conclusions miPALM is a novel algorithm for detecting protein complexes from large protein-protein interaction networks with improved accuracy than previous methods. The software is implemented in Matlab and is freely available at http://www.medicine.uiowa.edu/Labs/tan/software.html.

  12. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  13. Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots

    Science.gov (United States)

    Li, Chenghui; Wu, Peng; Hou, Xiandeng

    2016-02-01

    Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn2+ dopant, and Rayleigh light scattering from the QDs), to dramatically improve the protein recognition and discrimination resolution. To further increase the cross-reactivity of the multidimensional optosensing device, plasma modification of proteins was explored to enhance the IF difference as well as their interactions with Mn-doped ZnS QDs. Such a sensor device was demonstrated for highly discriminative and precise identification of proteins in human serum and urine samples, and for cancer and normal cells as well.Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn2

  14. Parallel force assay for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Daniela Aschenbrenner

    Full Text Available Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.

  15. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  16. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    International Nuclear Information System (INIS)

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target

  17. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Quistgaard, Esben M. [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Nordlund, Par [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Thanabalu, Thirumaran [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Torres, Jaume, E-mail: jtorres@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore)

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  18. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    OpenAIRE

    Xiaomin Wang; Zhengzhi Wang; Jun Ye

    2011-01-01

    With the availability of more and more genome-scale protein-protein interaction (PPI) networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly use...

  19. Support vector machine for predicting protein interactions using domain scores

    Institute of Scientific and Technical Information of China (English)

    PENG Xin-jun; WANG Yi-fei

    2009-01-01

    Protein-protein interactions play a crucial role in the cellular process such as metabolic pathways and immunological recognition. This paper presents a new domain score-based support vector machine (SVM) to infer protein interactions, which can be used not only to explore all possible domain interactions by the kernel method, but also to reflect the evolutionary conservation of domains in proteins by using the domain scores of proteins. The experimental result on the Saccharomyces cerevisiae dataset demonstrates that this approach can predict protein-protein interactions with higher performances compared to the existing approaches.

  20. Modularity in the evolution of yeast protein interaction network

    OpenAIRE

    Ogishima, Soichi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction netw...

  1. A Cell-Based Protein-Protein Interaction Method Using a Permuted Luciferase Reporter

    OpenAIRE

    Eishingdrelo, Haifeng; Cai, Jidong; Weissensee, Paul; Sharma, Praveen; Tocci, Michael J; Wright, Paul S

    2011-01-01

    We have developed a novel cell-based protein-protein interaction assay method. The method relies on conversion of an inactive permuted luciferase containing a Tobacco Etch Virus protease (TEV) cleavage sequence fused onto protein (A) to an active luciferase upon interaction and cleavage by another protein (B) fused with the TEV protease. We demonstrate assay applicability for ligand-induced protein-protein interactions including G-protein coupled receptors, receptor tyrosine kinases and nucle...

  2. A novel in vivo assay for the analysis of protein-protein interaction.

    OpenAIRE

    Maroun, M; Aronheim, A

    1999-01-01

    The Ras Recruitment System (RRS) is a method for identification and isolation of protein-protein interaction. The method is based on translocation of cytoplasmic mammalian Ras protein to the inner leaflet of the plasma membrane through protein-protein interaction. The system is studied in a temperature-sensitive yeast strain where the yeast Ras guanyl nucleotide exchange factor is inactive at 36 degrees C. Protein-protein interaction results in cell growth at the restrictive temperature. We d...

  3. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    Science.gov (United States)

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. PMID:26691180

  4. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  5. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    Science.gov (United States)

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  6. Yeast Interacting Proteins Database: YBR108W, YDR388W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR108W AIM3 Protein interacting with Rvs167p; null mutant is viable and displays e...0) YDR388W RVS167 Actin-associated protein, interacts with Rvs161p to regulate actin cytoskeleton, endocytosis, and via...8 - Show YBR108W Bait ORF YBR108W Bait gene name AIM3 Bait description Protein interacting with Rvs167p; null mutant is viable and...Rvs161p to regulate actin cytoskeleton, endocytosis, and viability following star... on prey (YPD) 34 Literature shared by bait and prey 4 Literature sharing score 11 CuraGen (0 or 1) 0 S. Fields (0 or 1) 0 Associa

  7. Interaction of heavy metals with membrane Ca2+ channels

    Institute of Scientific and Technical Information of China (English)

    PengSQ; HajelRK

    2002-01-01

    The objective of our study was to determine if specific types of high voltage-activated Ca2+ channels,typically found in neurons were affected differentially by MeHg,Hg2+ and Pb2+.Expression cDNA clones of α1C,α1B or α1E subunits coding for neuronal L-,N- and R- subtypes respectively,were combined with α2b δ and β3 Ca2+ channel subunits of human neuronal origin to transfect HEK293 cells.Current was measured using whole cell voltage clamp recording techniques.It the present studies,we conclude: (1)neurotoxic heavy metals such as MeHg,Hg2+ and Pb impair the function of voltage-gated Ca2+ channels at low μmolar to sub-μmolar concentrations-concentrations in the range of which are pathologically and environmentally relevant; (2)a particular metal,i.e.Pb2+,may inhibit function of phenotypically distince Ca2+ channels with variable potency; (3)different metals have differing “orders of potency” at inhibiting defined populations of Ca2+ channels; (4)for “susceptible populations” of patients with either underlying diseases or genetic alter ations of Ca2+ channel function,these metals may have heightened effectiveness.As such,for these populations,environmental toxic metals could produce a more dominant neurotoxicity.

  8. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation

    Energy Technology Data Exchange (ETDEWEB)

    Rokitskaya, Tatyana I; Kotova, Elena A; Antonenko, Yuri N [Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991 (Russian Federation); Macrae, Michael X; Blake, Steven; Yang, Jerry [Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA 92093-0358 (United States); Egorova, Natalya S, E-mail: jerryyang@ucsd.ed, E-mail: antonen@genebee.msu.s [Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow (Russian Federation)

    2010-11-17

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.

  9. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation

    Science.gov (United States)

    Rokitskaya, Tatyana I.; Macrae, Michael X.; Blake, Steven; Egorova, Natalya S.; Kotova, Elena A.; Yang, Jerry; Antonenko, Yuri N.

    2010-11-01

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.

  10. Analysis and application of large-scale protein-protein interaction data sets

    Institute of Scientific and Technical Information of China (English)

    SUN Jingchun; XU Jinlin; LI Yixue; SHI Tieliu

    2005-01-01

    Protein-protein interactions play key roles in cells. Lots of experimental approaches and in silico methods have been developed to identify and predict large-scale protein-protein interactions. However, compared with the traditionally experimental results, the high-throughput protein-protein interaction data often contain the false positives in high probability. In order to fully utilize the large-scale data, it is necessary to develop bioinformatic methods for systematically evaluating those data in order to further improve the data reliability and mine biological information. This review summarizes the methodologies of analysis and application of high-throughput protein-protein interaction data, including the evaluation methods, the relationship between protein-protein interaction data and other protein biological information, and their applications in biological study. In addition, this paper also suggests some interesting topics on mining high-throughput protein-protein interaction data.

  11. Fluorescence Studies of Protein Crystallization Interactions

    Science.gov (United States)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  12. The evolution of protein complexes by duplication of homomeric interactions

    OpenAIRE

    Pereira Leal, J.B.; Levy, E.D.; van de Kamp, C.; Teichmann, S.A.

    2007-01-01

    BACKGROUND: Cellular functions are accomplished by the concerted actions of functional modules. The mechanisms driving the emergence and evolution of these modules are still unclear. Here we investigate the evolutionary origins of protein complexes, modules in physical protein-protein interaction networks. RESULTS: We studied protein complexes in Saccharomyces cerevisiae, complexes of known three-dimensional structure in the Protein Data Bank and clusters of pairwise protein interactions in t...

  13. Evolution of protein complexes by duplication of homomeric interactions

    OpenAIRE

    Pereira-Leal, Jose B; Levy, Emmanuel D; Kamp, Christel; Teichmann, Sarah A.

    2007-01-01

    Background Cellular functions are accomplished by the concerted actions of functional modules. The mechanisms driving the emergence and evolution of these modules are still unclear. Here we investigate the evolutionary origins of protein complexes, modules in physical protein-protein interaction networks. Results We studied protein complexes in Saccharomyces cerevisiae, complexes of known three-dimensional structure in the Protein Data Bank and clusters of pairwise protein interactions in the...

  14. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels

    OpenAIRE

    Zamanian, M; Bae, C.; Gupta, K.; Milescu, M; Krepkiy, D; Tilley, D.; Sack, J.; Yarov-Yarovoy, V; Kim, JII; Swartz, K

    2015-01-01

    eLife digest Venomous animals like tarantulas or scorpions inject their prey with toxins to disable them. Some of these toxins work by altering the activity of proteins called ion channels, which are found within membranes in cells. These channels can allow potassium ions and/or other ions to pass through the membrane and have many important roles. For example, ion channels are involved in heart muscle contraction and allow information to travel between brain cells. Researchers have used some...

  15. Yeast Interacting Proteins Database: YDL044C, YLR386W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL044C MTF2 Mitochondrial matrix protein that interacts with an N-terminal region of mitochondri...L044C Bait ORF YDL044C Bait gene name MTF2 Bait description Mitochondrial matrix protein that...ure on prey (YPD) 5 Literature shared by bait and prey 0 Literature sharing score 0 CuraGen (0 or 1) 0 S...al RNA polymerase (Rpo41p) and couples RNA processing and translation to transcription Rows wi... interacts with an N-terminal region of mitochondrial RNA polymerase (Rpo41p) and couples RNA processing and translat

  16. Yeast Interacting Proteins Database: YDL139C, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL139C SCM3 Nonhistone component of centromeric chromatin that binds stoichiometri... YDL139C Bait gene name SCM3 Bait description Nonhistone component of centromeric chromatin that binds stoichiometri...e peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2 (Pex7p), peroxisomal matri...153W Prey gene name PEX14 Prey description Peroxisomal membrane peroxin that is a central component of the p...eroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2 (Pex7p), peroxisomal matrix p

  17. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.

    Science.gov (United States)

    Harmar, Anthony J; Hills, Rebecca A; Rosser, Edward M; Jones, Martin; Buneman, O Peter; Dunbar, Donald R; Greenhill, Stuart D; Hale, Valerie A; Sharman, Joanna L; Bonner, Tom I; Catterall, William A; Davenport, Anthony P; Delagrange, Philippe; Dollery, Colin T; Foord, Steven M; Gutman, George A; Laudet, Vincent; Neubig, Richard R; Ohlstein, Eliot H; Olsen, Richard W; Peters, John; Pin, Jean-Philippe; Ruffolo, Robert R; Searls, David B; Wright, Mathew W; Spedding, Michael

    2009-01-01

    The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. PMID:18948278

  18. Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs.

    Directory of Open Access Journals (Sweden)

    Runzhen Zhao

    Full Text Available Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC, cystic fibrosis transmembrane conductance regulator (CFTR, and aquaporin 5 (AQP5 proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI and II (ATII-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3 was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.

  19. G-protein-coupled Receptor Kinase-interacting Proteins Inhibit Apoptosis by Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Signal Regulation*

    OpenAIRE

    Zhang, Songbai; Hisatsune, Chihiro; Matsu-ura, Toru; Mikoshiba, Katsuhiko

    2009-01-01

    The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is an intracellular IP3-gated calcium (Ca2+) release channel and plays important roles in regulation of numerous Ca2+-dependent cellular responses. Many intracellular modulators and IP3R-binding proteins regulate the IP3R channel function. Here we identified G-protein-coupled receptor kinase-interacting proteins (GIT), GIT1 and GIT2, as novel IP3R-binding proteins. We found that both GIT1 and GIT2 directly bind to all three subtypes of IP...

  20. Predicting protein-protein interactions in unbalanced data using the primary structure of proteins

    Directory of Open Access Journals (Sweden)

    Chou Lih-Ching

    2010-04-01

    Full Text Available Abstract Background Elucidating protein-protein interactions (PPIs is essential to constructing protein interaction networks and facilitating our understanding of the general principles of biological systems. Previous studies have revealed that interacting protein pairs can be predicted by their primary structure. Most of these approaches have achieved satisfactory performance on datasets comprising equal number of interacting and non-interacting protein pairs. However, this ratio is highly unbalanced in nature, and these techniques have not been comprehensively evaluated with respect to the effect of the large number of non-interacting pairs in realistic datasets. Moreover, since highly unbalanced distributions usually lead to large datasets, more efficient predictors are desired when handling such challenging tasks. Results This study presents a method for PPI prediction based only on sequence information, which contributes in three aspects. First, we propose a probability-based mechanism for transforming protein sequences into feature vectors. Second, the proposed predictor is designed with an efficient classification algorithm, where the efficiency is essential for handling highly unbalanced datasets. Third, the proposed PPI predictor is assessed with several unbalanced datasets with different positive-to-negative ratios (from 1:1 to 1:15. This analysis provides solid evidence that the degree of dataset imbalance is important to PPI predictors. Conclusions Dealing with data imbalance is a key issue in PPI prediction since there are far fewer interacting protein pairs than non-interacting ones. This article provides a comprehensive study on this issue and develops a practical tool that achieves both good prediction performance and efficiency using only protein sequence information.

  1. DockAnalyse: an application for the analysis of protein-protein interactions

    OpenAIRE

    Cedano Juan; Querol Enrique; Bonàs Sílvia; Gómez Antonio; Delicado Pedro; Amela Isaac

    2010-01-01

    Abstract Background Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic pro...

  2. Simulated Evolution of Protein-Protein Interaction Networks with Realistic Topology

    OpenAIRE

    G Jack Peterson; Steve Pressé; Peterson, Kristin S.; Dill, Ken A.

    2012-01-01

    We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the t...

  3. Reuse of structural domain–domain interactions in protein networks

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2007-07-01

    Full Text Available Abstract Background Protein interactions are thought to be largely mediated by interactions between structural domains. Databases such as iPfam relate interactions in protein structures to known domain families. Here, we investigate how the domain interactions from the iPfam database are distributed in protein interactions taken from the HPRD, MPact, BioGRID, DIP and IntAct databases. Results We find that known structural domain interactions can only explain a subset of 4–19% of the available protein interactions, nevertheless this fraction is still significantly bigger than expected by chance. There is a correlation between the frequency of a domain interaction and the connectivity of the proteins it occurs in. Furthermore, a large proportion of protein interactions can be attributed to a small number of domain interactions. We conclude that many, but not all, domain interactions constitute reusable modules of molecular recognition. A substantial proportion of domain interactions are conserved between E. coli, S. cerevisiae and H. sapiens. These domains are related to essential cellular functions, suggesting that many domain interactions were already present in the last universal common ancestor. Conclusion Our results support the concept of domain interactions as reusable, conserved building blocks of protein interactions, but also highlight the limitations currently imposed by the small number of available protein structures.

  4. Quantifying the Molecular Origins of Opposite Solvent Effects on Protein-Protein Interactions

    OpenAIRE

    Vincent Vagenende; Han, Alvin X.; Han B Pek; Bernard L W Loo

    2013-01-01

    Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on th...

  5. Yeast Interacting Proteins Database: YNL078W, YMR139W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL078W NIS1 Protein localized in the bud neck at G2/M phase; physically interacts with septins; ... possibly involved in a mitotic signaling network ... Rows with this bait as bait (2) Rows with this bai ... septins; possibly involved in a mitotic signaling network ... Rows with this bait as bait Rows with this bait as ...

  6. Yeast Interacting Proteins Database: YIL007C, YOR117W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YIL007C NAS2 Proteasome-interacting protein involved in the assembly of the base su... - - - - - 0 0 3 4 Show YIL007C Bait ORF YIL007C Bait gene name NAS2 Bait description Proteasome-interacti

  7. Yeast Interacting Proteins Database: YNL078W, YKR048C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL078W NIS1 Protein localized in the bud neck at G2/M phase; physically interacts with septins; ... Clb2p; required for the regulation of microtubule dynamics ... during mitosis; controls bud morphogenesis; involv ... Clb2p; required for the regulation of microtubule dynamics ... during mitosis; controls bud morphogenesis; involv ...

  8. Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value.

    Science.gov (United States)

    Klussmann, Enno

    2016-07-01

    The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed. PMID:26498857

  9. Yeast Interacting Proteins Database: YJR091C, YNR048W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR091C JSN1 Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding mem ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait (22) Rows w ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait Rows with t ...

  10. Yeast Interacting Proteins Database: YJR091C, YOR014W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR091C JSN1 Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding mem ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait (22) Rows w ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait Rows with t ...

  11. Yeast Interacting Proteins Database: YJR091C, YDR389W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR091C JSN1 Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding mem ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait (22) Rows w ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait Rows with t ...

  12. Yeast Interacting Proteins Database: YJR091C, YDL147W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR091C JSN1 Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding mem ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait (22) Rows w ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait Rows with t ...

  13. Yeast Interacting Proteins Database: YJR091C, YLR156W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR091C JSN1 Member of the Puf family of RNA-binding proteins, interacts with mRNAs encoding mem ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait (22) Rows w ... x to mitochondria; overexpression causes increased sensitivity ... to benomyl Rows with this bait as bait Rows with t ...

  14. Yeast Interacting Proteins Database: YPR028W, YLR324W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR028W YOP1 Membrane protein that interacts with Yip1p to mediate membrane traffic; overexpress ... ion results in cell death ... and accumulation of internal cell membranes; regul ... e membrane traffic; overexpression results in cell death ... and accumulation of internal cell membranes; regul ...

  15. Yeast Interacting Proteins Database: YDL089W, YPR028W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDL089W NUR1 Protein of unknown function; interacts with Csm1p, Lrs4p; required for rDNA repeat ... e membrane traffic; overexpression results in cell death ... and accumulation of internal cell membranes; regul ... e membrane traffic; overexpression results in cell death ... and accumulation of internal cell membranes; regul ...

  16. Modularity detection in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Narayanan Tejaswini

    2011-12-01

    Full Text Available Abstract Background Many recent studies have investigated modularity in biological networks, and its role in functional and structural characterization of constituent biomolecules. A technique that has shown considerable promise in the domain of modularity detection is the Newman and Girvan (NG algorithm, which relies on the number of shortest-paths across pairs of vertices in the network traversing a given edge, referred to as the betweenness of that edge. The edge with the highest betweenness is iteratively eliminated from the network, with the betweenness of the remaining edges recalculated in every iteration. This generates a complete dendrogram, from which modules are extracted by applying a quality metric called modularity denoted by Q. This exhaustive computation can be prohibitively expensive for large networks such as Protein-Protein Interaction Networks. In this paper, we present a novel optimization to the modularity detection algorithm, in terms of an efficient termination criterion based on a target edge betweenness value, using which the process of iterative edge removal may be terminated. Results We validate the robustness of our approach by applying our algorithm on real-world protein-protein interaction networks of Yeast, C.Elegans and Drosophila, and demonstrate that our algorithm consistently has significant computational gains in terms of reduced runtime, when compared to the NG algorithm. Furthermore, our algorithm produces modules comparable to those from the NG algorithm, qualitatively and quantitatively. We illustrate this using comparison metrics such as module distribution, module membership cardinality, modularity Q, and Jaccard Similarity Coefficient. Conclusions We have presented an optimized approach for efficient modularity detection in networks. The intuition driving our approach is the extraction of holistic measures of centrality from graphs, which are representative of inherent modular structure of the

  17. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  18. Strategies for Investigating G-Protein Modulation of Voltage-Gated Ca2+ Channels.

    Science.gov (United States)

    Lu, Van B; Ikeda, Stephen R

    2016-01-01

    G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors. PMID:27140924

  19. Roles of Intrinsic Disorder in Protein-Nucleic Acid Interactions

    OpenAIRE

    Dyson, H. Jane

    2011-01-01

    Interactions between proteins and nucleic acids typify the role of disordered segments, linkers, tails and other entities in the function of complexes that must form with high affinity and specificity but which must be capable of dissociating when no longer needed. While much of the emphasis in the literature has been on the interactions of disordered proteins with other proteins, disorder is also frequently observed in nucleic acids (particularly RNA) and in the proteins that interact with t...

  20. Investigation of TRPC channel-modulating progestins and proteins

    OpenAIRE

    Miehe, Susanne

    2008-01-01

    In the first part of this study, we have identified the two steroid hormones progesterone and norgestimate as novel TRPC channel blockers. Both substances blocked TRPC-mediated Ca2+ influx with micromolar activities in fluorometric measurements. TRPC channel inhibition did not seem to be a general steroid effect since another progestin, the norgestimate metabolite levonorgestrel, was not effective. Norgestimate was 4- to 5-fold more active on the TRPC3/6/7 subfamily compared to TRPC4/5, where...

  1. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  2. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    OpenAIRE

    Autoosa Salari; Benjamin S. Vega; Milescu, Lorin S.; Mirela Milescu

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple t...

  3. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    Science.gov (United States)

    Hamacher, Kay; Greiner, Timo; Ogata, Hiroyuki; Van Etten, James L; Gebhardt, Manuela; Villarreal, Luis P; Cosentino, Cristian; Moroni, Anna; Thiel, Gerhard

    2012-01-01

    Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms. PMID:22685610

  4. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    Directory of Open Access Journals (Sweden)

    Kay Hamacher

    Full Text Available Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+ channels. To determine if these viral K(+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+ channel pore modules from seven phycodnaviruses to the K(+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+ channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+ channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+ channels in algae and perhaps even all cellular organisms.

  5. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    International Nuclear Information System (INIS)

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors

  6. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaokun; Han, Min; Ming, Dengming, E-mail: dming@fudan.edu.cn [Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai (China)

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  7. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    Science.gov (United States)

    Wu, Xiaokun; Han, Min; Ming, Dengming

    2015-10-01

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  8. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  9. A novel method for protein-protein interaction site prediction using phylogenetic substitution models

    OpenAIRE

    La, David; Kihara, Daisuke

    2011-01-01

    Protein-protein binding events mediate many critical biological functions in the cell. Typically, functionally important sites in proteins can be well identified by considering sequence conservation. However, protein-protein interaction sites exhibit higher sequence variation than other functional regions, such as catalytic sites of enzymes. Consequently, the mutational behavior leading to weak sequence conservation poses significant challenges to the protein-protein interaction site predicti...

  10. The Role of Shape Complementarity in the Protein-Protein Interactions

    OpenAIRE

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid mol...

  11. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  12. Electrostatic interactions in concentrated protein solutions

    CERN Document Server

    Mishra, Shradha

    2013-01-01

    We present an approximate method for calculating the electrostatic free energy of concentrated protein solutions. Our method uses a cell model and accounts for both the coulomb energy and the entropic cost of Donnan salt partitioning. The former term is calculated by linearizing the Poisson-Boltzmann equation around a nonzero average potential, while the second term is calculated using a jellium approximation that is empirically modified to reproduce the dilute solution limit. When combined with a short-ranged binding interaction, calculated using the mean spherical approximation, our model reproduces osmotic pressure measurements of bovine serum albumin solutions. We also use our free energy to calculate the salt-dependent shift in the critical temperature of lysozyme solutions and show why the predicted salt partitioning between the dilute and dense phases has proven experimentally elusive.

  13. Co- and post-translational translocation through the protein-conducting channel : analogous mechanisms at work?

    NARCIS (Netherlands)

    Mitra, Kakoli; Frank, Joachim; Driessen, Arnold

    2006-01-01

    Many proteins are translocated across, or integrated into, membranes. Both functions are fulfilled by the 'translocon/translocase', which contains a membrane-embedded proteinconducting channel (PCC) and associated soluble factors that drive translocation and insertion reactions using nucleotide trip

  14. The role of shape complementarity in the protein-protein interactions.

    Science.gov (United States)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  15. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    Science.gov (United States)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  16. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    Science.gov (United States)

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  17. Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Phencyclidine

    OpenAIRE

    Kobayashi, Toru; Nishizawa, Daisuke; Ikeda, Kazutaka

    2011-01-01

    Addictive drugs, such as opioids, ethanol, cocaine, amphetamine, and phencyclidine (PCP), affect many functions of the nervous system and peripheral organs, resulting in severe health problems. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability through activation of various Gi/o protein-coupled receptors including opioid and CB1 cannabinoid receptors. Furthermore, the channels are directly activated by ethanol and inhibi...

  18. Interacting tilt and kink instabilities in repelling current channels

    CERN Document Server

    Keppens, Rony; Xia, Chun

    2014-01-01

    We present a numerical study in resistive magnetohydrodynamics where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or fluxropes, which on Alfvenic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to 2.5D and full 3D scenarios. As long as the third dimension remains ignorable, pure tilt evolutions result which are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular cur...

  19. Evidence of probabilistic behaviour in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2008-01-01

    Full Text Available Abstract Background Data from high-throughput experiments of protein-protein interactions are commonly used to probe the nature of biological organization and extract functional relationships between sets of proteins. What has not been appreciated is that the underlying mechanisms involved in assembling these networks may exhibit considerable probabilistic behaviour. Results We find that the probability of an interaction between two proteins is generally proportional to the numerical product of their individual interacting partners, or degrees. The degree-weighted behaviour is manifested throughout the protein-protein interaction networks studied here, except for the high-degree, or hub, interaction areas. However, we find that the probabilities of interaction between the hubs are still high. Further evidence is provided by path length analyses, which show that these hubs are separated by very few links. Conclusion The results suggest that protein-protein interaction networks incorporate probabilistic elements that lead to scale-rich hierarchical architectures. These observations seem to be at odds with a biologically-guided organization. One interpretation of the findings is that we are witnessing the ability of proteins to indiscriminately bind rather than the protein-protein interactions that are actually utilized by the cell in biological processes. Therefore, the topological study of a degree-weighted network requires a more refined methodology to extract biological information about pathways, modules, or other inferred relationships among proteins.

  20. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  1. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    GAO Lei; LI Xia; GUO Zheng; ZHU MingZhu; LI YanHui; RAO ShaoQi

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to "biology process" by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  2. Fluorometric functional assay for ion channel proteins in lipid nanovesicle membranes

    Energy Technology Data Exchange (ETDEWEB)

    Patti, J T [Department of Bioengineering, University of California, Los Angeles (United States); Montemagno, C D [College of Engineering, University of Cincinnati, Cincinnati (United States)

    2007-08-15

    Voltage-gated membrane proteins function as biomolecular transistors, making them attractive components for biologically based nanodevices. A functional assay for purified channel proteins is described and demonstrated with sodium selective, voltage-gated NaChBac ion channels. Purified NaChBac proteins were incorporated into a nanovesicle system utilizing oxonol VI, a fluorescent indicator of trans-membrane voltage. The ionophore valinomycin was used to trigger a change in membrane potential, allowing the observation of sodium permeability using a fluorometer. This method is suitable for concurrently testing a large population of purified proteins prior to incorporation in nanodevices.

  3. Fluorometric functional assay for ion channel proteins in lipid nanovesicle membranes

    Science.gov (United States)

    Patti, J. T.; Montemagno, C. D.

    2007-08-01

    Voltage-gated membrane proteins function as biomolecular transistors, making them attractive components for biologically based nanodevices. A functional assay for purified channel proteins is described and demonstrated with sodium selective, voltage-gated NaChBac ion channels. Purified NaChBac proteins were incorporated into a nanovesicle system utilizing oxonol VI, a fluorescent indicator of trans-membrane voltage. The ionophore valinomycin was used to trigger a change in membrane potential, allowing the observation of sodium permeability using a fluorometer. This method is suitable for concurrently testing a large population of purified proteins prior to incorporation in nanodevices.

  4. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  5. Pin-Align: A New Dynamic Programming Approach to Align Protein-Protein Interaction Networks

    OpenAIRE

    Farid Amir-Ghiasvand; Abbas Nowzari-Dalini; Vida Momenzadeh

    2014-01-01

    To date, few tools for aligning protein-protein interaction networks have been suggested. These tools typically find conserved interaction patterns using various local or global alignment algorithms. However, the improvement of the speed, scalability, simplification, and accuracy of network alignment tools is still the target of new researches. In this paper, we introduce Pin-Align, a new tool for local alignment of protein-protein interaction networks. Pin-Align accuracy is tested on protein...

  6. Yeast Interacting Proteins Database: YML064C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available L064C Bait gene name TEM1 Bait description GTP-binding protein of the ras superfamily involved in termin...atase, key regulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either...YML064C TEM1 GTP-binding protein of the ras superfamily involved in termination of ...sis pathway, required for glucose metabolism; undergoes either proteasome-mediate...d or autophagy-mediated degradation depending on growth conditions; interacts with Vid30p Rows with this pre

  7. Yeast Interacting Proteins Database: YDR256C, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR256C CTA1 Catalase A, breaks down hydrogen peroxide in the peroxisomal matrix fo...mal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2 (Pex7p), peroxisomal matri... Bait gene name CTA1 Bait description Catalase A, breaks down hydrogen peroxide in the peroxisomal matri...y ORF YGL153W Prey gene name PEX14 Prey description Peroxisomal membrane peroxin that is a centr...d PTS2 (Pex7p), peroxisomal matrix protein signal recognition factors and membrane receptor Pex13p Rows with

  8. Interaction of droplet and sidewalls with modified surfaces in a PEMFC gas flow channel

    Science.gov (United States)

    Shah, Mihir M.

    A Proton Exchange Membrane Fuel Cell (PEMFC) is a clean and highly efficient way of power generation used primarily for transportation applications. Hydrogen and air are supplied to the fuel cell through gas channels, which also remove liquid water generated in the fuel cell. The clogged channels prevent reactant transport to the electrochemically active sites which comprise one of the channel walls and thus, degrading the performance of the cell. Proper management of the product water is a current topic of research interest in commercialization of fuel cell vehicles. Liquid water, produced as by-product of the fuel cell reaction, can clog the gas channels easily since surface tension of water is significant at this length scale. In a PEMFC channel cross-section, water is assumed to be produced in the channel at the center along the flow axis. This assumption is primarily valid and extensively used for experimental purposes. However in a real PEMFC, the water entry is not constrained at the channel center. Hence, more investigations are made using water entry at channel corner (land region) which resulted in contradicting prior results for the water feature behavior for all relevant PEMFC operating conditions, leading to adverse two-phase flow behavior- including slug blockage and fluctuations at channel end. Very limited research is available to study the effect of gas channel surface modifications on the two-phase flow behavior and local PEMFC performance. In this study, the droplet--sidewall dynamic interactions and two--phase local pressure drop across the water droplet present in a PEMFC channel with trapezoidal geometries with surface modifications are studied. These surface modifications include micro-grooves that possess a hybrid wetting regime that will initiate and guide the water feature at channel ends to eject with general ease. Slugs are reduced to films after ejection and thus channel blockage is avoided overcoming the problems caused by water influx

  9. Ensemble learning prediction of protein-protein interactions using proteins functional annotations.

    Science.gov (United States)

    Saha, Indrajit; Zubek, Julian; Klingström, Tomas; Forsberg, Simon; Wikander, Johan; Kierczak, Marcin; Maulik, Ujjwal; Plewczynski, Dariusz

    2014-04-01

    Protein-protein interactions are important for the majority of biological processes. A significant number of computational methods have been developed to predict protein-protein interactions using protein sequence, structural and genomic data. Vast experimental data is publicly available on the Internet, but it is scattered across numerous databases. This fact motivated us to create and evaluate new high-throughput datasets of interacting proteins. We extracted interaction data from DIP, MINT, BioGRID and IntAct databases. Then we constructed descriptive features for machine learning purposes based on data from Gene Ontology and DOMINE. Thereafter, four well-established machine learning methods: Support Vector Machine, Random Forest, Decision Tree and Naïve Bayes, were used on these datasets to build an Ensemble Learning method based on majority voting. In cross-validation experiment, sensitivity exceeded 80% and classification/prediction accuracy reached 90% for the Ensemble Learning method. We extended the experiment to a bigger and more realistic dataset maintaining sensitivity over 70%. These results confirmed that our datasets are suitable for performing PPI prediction and Ensemble Learning method is well suited for this task. Both the processed PPI datasets and the software are available at . PMID:24469380

  10. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.

    Science.gov (United States)

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-12-26

    G protein-gated inwardly rectifying K(+) (Girk/K(IR)3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABA(B) receptor and Girk1/Girk2 heteromer as a model system. Girk1 did not increase the protein levels or alter the trafficking of Girk2-containing channels to the cell surface in transfected cells or hippocampal neurons, indicating that its potentiating influence involves enhancement of channel activity. Structural elements in both the distal carboxyl-terminal domain and channel core were identified as key determinants of robust channel activity. In the distal carboxyl-terminal domain, residue Q404 was identified as a key determinant of receptor-induced channel activity. In the Girk1 core, three unique residues in the pore (P) loop (F137, A142, Y150) were identified as a collective potentiating influence on both receptor-dependent and receptor-independent channel activity, exerting their influence, at least in part, by enhancing mean open time and single-channel conductance. Interestingly, the potentiating influence of the Girk1 P-loop is tempered by residue F162 in the second membrane-spanning domain. Thus, discontinuous and sometime opposing elements in Girk1 underlie the Girk1-dependent potentiation of receptor-dependent and receptor-independent heteromeric channel activity. PMID:23236146

  11. Yeast Interacting Proteins Database: YDL160C, YGR178C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ps in mRNA function and decay, interacts with both the decapping and deadenylase complexes, ma...rvening proteins (YPD) 0 IST hit 3 IST hit in the opposite bait/prey orientation - ... ...ps in mRNA function and decay, interacts with both the decapping and deadenylase complexes, m...cription Component of glucose deprivation induced stress granules, involved in P-body-...y have a role in mRNA export and translation Rows with this bait as bait (2) Rows with this bait as prey (0) YGR178C PBP1 Compo

  12. Measuring the evolutionary rate of protein–protein interaction

    OpenAIRE

    Qian, Wenfeng; He, Xionglei; Chan, Edwin; Xu, Huailiang; Zhang, Jianzhi

    2011-01-01

    Despite our extensive knowledge about the rate of protein sequence evolution for thousands of genes in hundreds of species, the corresponding rate of protein function evolution is virtually unknown, especially at the genomic scale. This lack of knowledge is primarily because of the huge diversity in protein function and the consequent difficulty in gauging and comparing rates of protein function evolution. Nevertheless, most proteins function through interacting with other proteins, and prote...

  13. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    OpenAIRE

    Lin, Tien-ho; Bar-Joseph, Ziv; Murphy, Robert F.

    2011-01-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to m...

  14. A Laboratory-Intensive Course on the Experimental Study of Protein-Protein Interactions

    Science.gov (United States)

    Witherow, D. Scott; Carson, Sue

    2011-01-01

    The study of protein-protein interactions is important to scientists in a wide range of disciplines. We present here the assessment of a lab-intensive course that teaches students techniques used to identify and further study protein-protein interactions. One of the unique elements of the course is that students perform a yeast two-hybrid screen…

  15. Dynamics of protein-protein interactions studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Somireddy Venkata, Bharat Kumar Reddy

    2012-01-01

    Protein-protein interactions play an important role in all cellular processes such as signal transduction, electron transfer, gene regulation, transcription, and translation. Understanding these protein-protein interactions at the molecular level, is an important aim in structural biology. The prote

  16. G protein-coupled inwardly rectifying potassium channels in dorsal root ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao-fei GAO; Hai-lin ZHANG; Zhen-dong YOU; Chang-lin LU; Cheng HE

    2007-01-01

    Aim: G protein-coupled inwardly rectifying potassium channels (GIRK) are important for neuronal signaling and membrane excitability. In the present study, we intend to find whether GIRK channels express functionally in adult rat dorsal root ganglion (DRG) neurons. Methods: We used RT-PCR to detect mRNA for4 subunits of GIRK in the adult DRG. The whole-cell patch clamp recording was used to confirm GIRK channels functionally expressed. Results: The mRNA for the 4 subunits of GIRK were detected in the adult DRG. GTPγS enhanced inwardly rectifying potassium (K+) currents of the DRG neurons, while Ba2+inhibited such currents. Furthermore, the GIRK channels were shown to be coupled to the GABAB receptor, a member of the G protein-coupled receptor family, as baclofen increased the inwardly rectifying K+ currents. Conclusion: GIRK channels are expressed and functionally coupled with GABAB receptors in adult rat DRG neurons.

  17. Yeast Interacting Proteins Database: YMR077C, YLR417W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available 0 or 1,YPD) 0 Co-induced by (YPD) - Co-repressed by (YPD) - Not affected by(YPD) - Interologs - Expression si...E (GRAM Like Ubiquitin binding in EAP45) domain which is involved in interactions with ESCRT-I and ubiquitin-dependent sorting of pr...n binding in EAP45) domain which is involved in interactions with ESCRT-I and ubiquitin-dependent sorting of pr...milarity (BRITE) - Alternative path with 1 intervening protein (YPD) 0 Alternative path with 2 intervening proteins (YPD) 0 IST hit 9 IST hit in the opposite bait/prey orientation - ... ... shared by bait and prey 2 Literature sharing score 5 CuraGen (0 or 1) 0 S. Fields (0 or 1) 0 Association

  18. Neutral evolution of Protein-protein interactions: a computational study using simple models

    OpenAIRE

    Simonson Thomas; Noirel Josselin

    2007-01-01

    Abstract Background Protein-protein interactions are central to cellular organization, and must have appeared at an early stage of evolution. To understand better their role, we consider a simple model of protein evolution and determine the effect of an explicit selection for Protein-protein interactions. Results In the model, viable sequences all have the same fitness, following the neutral evolution theory. A very simple, two-dimensional lattice representation of the protein structures is u...

  19. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding to ...

  20. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins

    OpenAIRE

    1994-01-01

    Gap junctions are collections of intercellular channels composed of structural proteins called connexins (Cx). We have examined the functional interactions of the three rodent connexins present in the lens, Cx43, Cx46, and Cx50, by expressing them in paired Xenopus oocytes. Homotypic channels containing Cx43, Cx46, or Cx50 all developed high conductance. heterotypic channels composed of Cx46 paired with either Cx43 or Cx50 were also well coupled, whereas Cx50 did not form functional channels ...

  1. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Silva-Filho Marcio C

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

  2. Computational analysis of promoters and DNA-protein interactions

    OpenAIRE

    Tomovic, Andrija

    2009-01-01

    The investigation of promoter activity and DNA-protein interactions is very important for understanding many crucial cellular processes, including transcription, recombination and replication. Promoter activity and DNA-protein interactions can be studied in the lab (in vitro or in vivo) or using computational methods (in silico). Computational approaches for analysing promoters and DNA-protein interactions have become more powerful as more and more complete genome sequences, 3D...

  3. Yeast Interacting Proteins Database: YOR180C, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available x5p) and PTS2 (Pex7p), peroxisomal matrix protein signal recognition factors and membrane receptor Pex13p Ro...chinery; interacts with both PTS1 (Pex5p) and PTS2 (Pex7p), peroxisomal matrix protein signal recognition fa...ure on prey (YPD) 12 Literature shared by bait and prey 3 Literature sharing score 5 CuraGen (0 or 1) 0 S. ... as bait (1) Rows with this bait as prey (0) YGL153W PEX14 Peroxisomal membrane peroxin that is a central co...ption Peroxisomal membrane peroxin that is a central component of the peroxisomal protein import ma

  4. Identifying Protein-Protein Interaction Sites Using Covering Algorithm

    OpenAIRE

    Jie Song; Jiaxing Cheng; Xiuquan Du

    2009-01-01

    Identification of protein-protein interface residues is crucial for structural biology. This paper proposes a covering algorithm for predicting protein-protein interface residues with features including protein sequence profile and residue accessible area. This method adequately utilizes the characters of a covering algorithm which have simple, lower complexity and high accuracy for high dimension data. The covering algorithm can achieve a comparable performance (69.62%, Complete dataset; 60....

  5. Utilizing shared interacting domain patterns and Gene Ontology information to improve protein-protein interaction prediction.

    Science.gov (United States)

    Roslan, Rosfuzah; Othman, Razib M; Shah, Zuraini A; Kasim, Shahreen; Asmuni, Hishammuddin; Taliba, Jumail; Hassan, Rohayanti; Zakaria, Zalmiyah

    2010-06-01

    Protein-protein interactions (PPIs) play a significant role in many crucial cellular operations such as metabolism, signaling and regulations. The computational methods for predicting PPIs have shown tremendous growth in recent years, but problem such as huge false positive rates has contributed to the lack of solid PPI information. We aimed at enhancing the overlap between computational predictions and experimental results in an effort to partially remove PPIs falsely predicted. The use of protein function predictor named PFP() that are based on shared interacting domain patterns is introduced in this study with the purpose of aiding the Gene Ontology Annotations (GOA). We used GOA and PFP() as agents in a filtering process to reduce false positive pairs in the computationally predicted PPI datasets. The functions predicted by PFP() were extracted from cross-species PPI data in order to assign novel functional annotations for the uncharacterized proteins and also as additional functions for those that are already characterized by the GO (Gene Ontology). The implementation of PFP() managed to increase the chances of finding matching function annotation for the first rule in the filtration process as much as 20%. To assess the capability of the proposed framework in filtering false PPIs, we applied it on the available S. cerevisiae PPIs and measured the performance in two aspects, the improvement made indicated as Signal-to-Noise Ratio (SNR) and the strength of improvement, respectively. The proposed filtering framework significantly achieved better performance than without it in both metrics. PMID:20417930

  6. The Origins of Specificity in Polyketide Synthase Protein Interactions

    OpenAIRE

    Thattai, Mukund; Burak, Yoram; Shraiman , Boris I.

    2007-01-01

    Polyketides, a diverse group of heteropolymers with antibiotic and antitumor properties, are assembled in bacteria by multiprotein chains of modular polyketide synthase (PKS) proteins. Specific protein–protein interactions determine the order of proteins within a multiprotein chain, and thereby the order in which chemically distinct monomers are added to the growing polyketide product. Here we investigate the evolutionary and molecular origins of protein interaction specificity. We focus on t...

  7. Visualization and targeted disruption of protein interactions in living cells

    OpenAIRE

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visual...

  8. Evidence for functional interaction of plasma membrane electron transport, voltage-dependent anion channel and volume-regulated anion channel in frog aorta

    Indian Academy of Sciences (India)

    Rashmi P Rao; J Prakasa Rao

    2010-12-01

    Frog aortic tissue exhibits plasma membrane electron transport (PMET) owing to its ability to reduce ferricyanide even in the presence of mitochondrial poisons, such as cyanide and azide. Exposure to hypotonic solution (108 mOsmol/kg H2O) enhanced the reduction of ferricyanide in excised aortic tissue of frog. Increment in ferricyanide reductase activity was also brought about by the presence of homocysteine (100 M dissolved in isotonic frog Ringer solution), a redox active compound and a potent modulator of PMET. Two plasma-membrane-bound channels, the volume regulated anion channel (VRAC) and the voltage-dependent anion channel (VDAC), are involved in the response to hypotonic stress. The presence of VRAC and VDAC antagonists–tamoxifen, glibenclamide, fluoxetine and verapamil, and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS), respectively–inhibited this enhanced activity brought about by either hypotonic stress or homocysteine. The blockers do not affect the ferricyanide reductase activity under isotonic conditions. Taken together, these findings indicate a functional interaction of the three plasma membrane proteins, namely, ferricyanide reductase (PMET), VDAC and VRAC.

  9. Yeast Interacting Proteins Database: YHR102W, YKL189W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available bly through regulating 1,6-beta-glucan levels in the wall; physically interacts with Cdc31p (centrin), which is a compo...bly through regulating 1,6-beta-glucan levels in the wall; physically interacts with Cdc31p (centrin), which is a comp...rvening proteins (YPD) 0 IST hit 12 IST hit in the opposite bait/prey orientation - ... ...gulation of Ace2p activity and cellular morphogenesis, interacts with Kic1p and Sog2p, localizes to sites of po...89W Prey gene name HYM1 Prey description Component of the RAM signaling network that is involved in regulation of Ace2p activit

  10. Biophysical Methods to Analyze Direct G-Protein Regulation of Neuronal Voltage-Gated Calcium Channels

    Czech Academy of Sciences Publication Activity Database

    Weiss, Norbert; De Waard, M.

    New York: Humana Press, 2016 - (Luján, R.; Ciruela, F.), s. 357-368. (Neuromethods. 110). ISBN 978-1-4939-3063-0 Institutional support: RVO:61388963 Keywords : calciumchannel * Ca(v)2 channel * G-protein-coupled receptor * G-proteins * G beta gamma-dimer Subject RIV: CE - Biochemistry

  11. Protein interaction network related to Helicobacter pylori infection response

    Institute of Scientific and Technical Information of China (English)

    Kyu Kwang Kim; Han Bok Kim

    2009-01-01

    AIM: To understand the complex reaction of gastric inflammation induced by Helicobacter pylori (H pylori ) in a systematic manner using a protein interaction network. METHODS: The expression of genes significantly changed on microarray during H pylori infection was scanned from the web literary database and translated into proteins. A network of protein interactions was constructed by searching the primary interactions of selected proteins. The constructed network was mathematically analyzed and its biological function was examined. In addition, the nodes on the network were checked to determine if they had any further functional importance or relation to other proteins by extending them.RESULTS: The scale-free network showing the relationship between inflammation and carcinogenesis was constructed. Mathematical analysis showed hub and bottleneck proteins, and these proteins were mostly related to immune response. The network contained pathways and proteins related to H pylori infection, such as the JAK-STAT pathway triggered by interleukins. Activation of nuclear factor (NF)-kB, TLR4, and other proteins known to function as core proteins of immune response were also found.These immune-related proteins interacted on the network with pathways and proteins related to the cell cycle, cell maintenance and proliferation, and transcription regulators such as BRCA1, FOS, REL, and zinc finger proteins. The extension of nodes showed interactions of the immune proteins with cancerrelated proteins. One extended network, the core network, a summarized form of the extended network, and cell pathway model were constructed. CONCLUSION: Immune-related proteins activated by H pylori infection interact with proto-oncogene proteins. The hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer.

  12. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    Science.gov (United States)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  13. Topological Predictions for Integral Membrane Channel and Carrier Proteins /

    OpenAIRE

    Reddy, Abhinay Boddu

    2013-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT, and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS>MEMSAT> HMMTOP>TOPCONS>PHOBIUS>TMHMM>SVMTOP>DAS>SOSUI. Some...

  14. Topological Predictions for Integral Membrane Channel and Carrier Proteins

    OpenAIRE

    Abhinay, Reddy; Jaehoon, Cho; Sam, Ling; Vamsee, Reddy; Maksim, Shlykov; Milton, Saier

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS>M...

  15. Effects of ethanol on the proteasome interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  16. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  17. Course 1: Physics of Protein-DNA Interaction

    Science.gov (United States)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  18. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    徐进平; 叶林柏

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  19. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen as a str...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  20. Critical assessment of sequence-based protein-protein interaction prediction methods that do not require homologous protein sequences

    OpenAIRE

    Park Yungki

    2009-01-01

    Abstract Background Protein-protein interactions underlie many important biological processes. Computational prediction methods can nicely complement experimental approaches for identifying protein-protein interactions. Recently, a unique category of sequence-based prediction methods has been put forward - unique in the sense that it does not require homologous protein sequences. This enables it to be universally applicable to all protein sequences unlike many of previous sequence-based predi...

  1. Preferential interactions and the effect of protein PEGylation

    DEFF Research Database (Denmark)

    Holm, Louise Stenstrup; Thulstrup, Peter Waaben; Kasimova, Marina Robertovna;

    2015-01-01

    BACKGROUND: PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by formulation...... excipients that preferentially interact with the protein. METHODOLOGY/PRINCIPAL FINDINGS: The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl valerate, MW 5000) and studied in the absence and presence of preferentially excluded sucrose and...... excipients. This suggests that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins....

  2. Proteins interacting with the 26S proteasome

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Gordon, C

    2004-01-01

    The 26S proteasome is the multi-protein protease that recognizes and degrades ubiquitinylated substrates targeted for destruction by the ubiquitin pathway. In addition to the well-documented subunit organization of the 26S holoenzyme, it is clear that a number of other proteins transiently...... associate with the 26S complex. These transiently associated proteins confer a number of different roles such as substrate presentation, cleavage of the multi-ubiquitin chain from the protein substrate and turnover of misfolded proteins. Such activities are essential for the 26S proteasome to efficiently...... fulfill its intracellular function in protein degradation....

  3. Globular and disordered-the non-identical twins in protein-protein interactions.

    Science.gov (United States)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1). PMID:26217672

  4. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen as a...... strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  5. Globular and disordered – the non-identical twins in protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Kaare eTeilum

    2015-07-01

    Full Text Available In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP’s bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol-1.

  6. Channeling studies of impurity-defect interactions in silicon

    International Nuclear Information System (INIS)

    This thesis deals with the mechanism of defect production and interaction of introduced defects with impurity atoms in silicon single crystals. Defects are created by irradiation with energetic light particles (.2 - 3 MeV H+ or He+ ions). Mostly simple defects like vacancies and interstitials are produced during bombardment. (Auth.)

  7. Alternative splicing tends to avoid partial removals of protein-protein interaction sites

    OpenAIRE

    Colantoni, Alessio; Bianchi, Valerio; Gherardini, Pier Federico; Scalia Tomba, Gianpaolo; Ausiello, Gabriele; Helmer-Citterich, Manuela; Ferrè, Fabrizio

    2013-01-01

    Background Anecdotal evidence of the involvement of alternative splicing (AS) in the regulation of protein-protein interactions has been reported by several studies. AS events have been shown to significantly occur in regions where a protein interaction domain or a short linear motif is present. Several AS variants show partial or complete loss of interface residues, suggesting that AS can play a major role in the interaction regulation by selectively targeting the protein binding sites. In t...

  8. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    OpenAIRE

    Haijiang Geng; Tao Lu; Xiao Lin; Yu Liu; Fangrong Yan

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on develo...

  9. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria.

    Science.gov (United States)

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and "interologs" in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  10. Interaction profile-based protein classification of death domain

    Directory of Open Access Journals (Sweden)

    Pio Frederic

    2004-06-01

    Full Text Available Abstract Background The increasing number of protein sequences and 3D structure obtained from genomic initiatives is leading many of us to focus on proteomics, and to dedicate our experimental and computational efforts on the creation and analysis of information derived from 3D structure. In particular, the high-throughput generation of protein-protein interaction data from a few organisms makes such an approach very important towards understanding the molecular recognition that make-up the entire protein-protein interaction network. Since the generation of sequences, and experimental protein-protein interactions increases faster than the 3D structure determination of protein complexes, there is tremendous interest in developing in silico methods that generate such structure for prediction and classification purposes. In this study we focused on classifying protein family members based on their protein-protein interaction distinctiveness. Structure-based classification of protein-protein interfaces has been described initially by Ponstingl et al. 1 and more recently by Valdar et al. 2 and Mintseris et al. 3, from complex structures that have been solved experimentally. However, little has been done on protein classification based on the prediction of protein-protein complexes obtained from homology modeling and docking simulation. Results We have developed an in silico classification system entitled HODOCO (Homology modeling, Docking and Classification Oracle, in which protein Residue Potential Interaction Profiles (RPIPS are used to summarize protein-protein interaction characteristics. This system applied to a dataset of 64 proteins of the death domain superfamily was used to classify each member into its proper subfamily. Two classification methods were attempted, heuristic and support vector machine learning. Both methods were tested with a 5-fold cross-validation. The heuristic approach yielded a 61% average accuracy, while the machine

  11. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    OpenAIRE

    Morrell-Falvey, J. L.; Qi, H.; Doktycz, M. J.; Venkatraman, S.

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features ...

  12. From networks of protein interactions to networks of functional dependencies

    Directory of Open Access Journals (Sweden)

    Luciani Davide

    2012-05-01

    Full Text Available Abstract Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation. However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations, based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud or biological processes (e.g., cell budding of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.

  13. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    OpenAIRE

    Ko, Seung Hwan; Lee, Daeho; Pan, Heng; Ryu, Sang-Gil; Grigoropoulos, Costas P.; Kladias, Nick; Panides, Elias; Domoto, Gerald A.

    2010-01-01

    Short pulsed laser-induced single acoustic wave generation, propagation, interaction within a water-filled internal channel are experimentally and numerically studied. A large-area, short-duration, single-plane acoustic wave was generated by the thermoelastic interaction of a homogenized nanosecond pulsed laser beam with a liquid–solid interface and propagated at the speed of sound in water. Laser flash Schlieren photography was used to visualize the transient interaction of the plane acousti...

  14. Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

    International Nuclear Information System (INIS)

    The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations

  15. Yeast Interacting Proteins Database: YNL086W, YKL061W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YNL086W - Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein l ... 2) YKL061W - Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ... description Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ...

  16. Yeast Interacting Proteins Database: YLR108C, YLR108C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YLR108C - Protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ... as prey (1) YLR108C - Protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ... me - Bait description Protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ...

  17. Yeast Interacting Proteins Database: YJR056C, YJR056C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YJR056C - Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein l ... 2) YJR056C - Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ... description Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ...

  18. Globular and disordered-the non-identical twins in protein-protein interactions

    OpenAIRE

    Teilum, Kaare; Olsen, Johan G.; Kragelund, Birthe B.

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein...

  19. Accuracy improvement in protein complex prediction from protein interaction networks by refining cluster overlaps

    OpenAIRE

    Chiam Tak; Cho Young-Rae

    2012-01-01

    Abstract Background Recent computational techniques have facilitated analyzing genome-wide protein-protein interaction data for several model organisms. Various graph-clustering algorithms have been applied to protein interaction networks on the genomic scale for predicting the entire set of potential protein complexes. In particular, the density-based clustering algorithms which are able to generate overlapping clusters, i.e. the clusters sharing a set of nodes, are well-suited to protein co...

  20. Interaction of milk proteins and Binder of Sperm (BSP) proteins from boar, stallion and ram semen

    OpenAIRE

    Plante, Geneviève; Lusignan, Marie-France; Lafleur, Michel; Manjunath, Puttaswamy

    2015-01-01

    Background Mammalian semen contains a family of closely related proteins known as Binder of SPerm (BSP proteins) that are added to sperm at ejaculation. BSP proteins extract lipids from the sperm membrane thereby extensively modifying its composition. These changes can ultimately be detrimental to sperm storage. We have demonstrated that bovine BSP proteins interact with major milk proteins and proposed that this interaction could be the basis of sperm protection by milk extenders. In the pre...

  1. Visualization and targeted disruption of protein interactions in living cells.

    Science.gov (United States)

    Herce, Henry D; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M Cristina

    2013-01-01

    Protein-protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein-protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53-HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein-protein interactions in practically any cell type and species. PMID:24154492

  2. Contribution of TRPV1-TRPA1 Interaction to the Single Channel Properties of the TRPA1 Channel*

    OpenAIRE

    Staruschenko, Alexander; Jeske, Nathaniel A.; Akopian, Armen N.

    2010-01-01

    Several lines of evidence suggest that TRPA1 and TRPV1 mutually control the transduction of inflammation-induced noxious stimuli in sensory neurons. It was recently shown that certain TRPA1 properties are modulated by TRPV1. However, direct interaction between TRPA1 and TRPV1 as well as regulation of TRPA1 intrinsic characteristics by the TRPV1 channel have not been examined. To address these questions, we have studied a complex formation between TRPA1 and TRPV1 and characterized the influenc...

  3. Protein Complex Discovery by Interaction Filtering from Protein Interaction Networks Using Mutual Rank Coexpression and Sequence Similarity

    Directory of Open Access Journals (Sweden)

    Ali Kazemi-Pour

    2015-01-01

    Full Text Available The evaluation of the biological networks is considered the essential key to understanding the complex biological systems. Meanwhile, the graph clustering algorithms are mostly used in the protein-protein interaction (PPI network analysis. The complexes introduced by the clustering algorithms include noise proteins. The error rate of the noise proteins in the PPI network researches is about 40–90%. However, only 30–40% of the existing interactions in the PPI databases depend on the specific biological function. It is essential to eliminate the noise proteins and the interactions from the complexes created via clustering methods. We have introduced new methods of weighting interactions in protein clusters and the splicing of noise interactions and proteins-based interactions on their weights. The coexpression and the sequence similarity of each pair of proteins are considered the edge weight of the proteins in the network. The results showed that the edge filtering based on the amount of coexpression acts similar to the node filtering via graph-based characteristics. Regarding the removal of the noise edges, the edge filtering has a significant advantage over the graph-based method. The edge filtering based on the amount of sequence similarity has the ability to remove the noise proteins and the noise interactions.

  4. Analyzing Protein-Phosphoinositide Interactions with Liposome Flotation Assays.

    Science.gov (United States)

    Busse, Ricarda A; Scacioc, Andreea; Schalk, Amanda M; Krick, Roswitha; Thumm, Michael; Kühnel, Karin

    2016-01-01

    Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method. PMID:26552682

  5. Modeling interactions between blocking and permeant cations in the NavMs channel.

    Science.gov (United States)

    Korkosh, Vyacheslav S; Zhorov, Boris S; Tikhonov, Denis B

    2016-06-01

    Mechanisms of sodium channel block by local anesthetics (LAs) are still a matter of intensive studies. In the absence of high-resolution structures of eukaryotic channels, atomic details of LA-channel interactions are analyzed using homology modeling. LAs are predicted to access the closed channel through a sidewalk (fenestration) between the channel repeats, bind in a horizontal orientation, and leave its aromatic moiety in the interface. Recent X-ray structure of a bacterial sodium channel NavMs with a cationic molecule Pl1, which is structurally similar to LAs, has confirmed this theoretical prediction and demonstrated a reduced selectivity filter occupancy by the permeant ions in the Pl1-bound channel. However, the nature of the antagonism between LAs and permeant ions is still unclear. Here we used the NavMs structure and Monte Carlo energy minimizations to model Pl1 binding. Our computations predict that Pl1 can displace permeant ion(s) from the selectivity filter by both steric and electrostatic mechanisms. We hypothesize that the electrostatic mechanism is more general, because it is applicable to many LAs and related drugs, which lack a moiety capable to enter the selectivity filter and sterically displace the permeant ion. The electrostatic mechanism is also consistent with the data that various cationic blockers of potassium channels bind in the inner pore without entering the selectivity filter. PMID:27020546

  6. Interactive multimedia systems as communication channels in color workshops

    Science.gov (United States)

    Gaudio, Alejandra; De Ponti, Javier

    2002-06-01

    Great technological advances can help us to recover communication areas that might otherwise be lost. Media competition and visual contamination frequently appear in daily communication. A notable anonymity in human relationship has emerged as a consequence of this. Educational establishments receive an overflowing number of students. Schools and students are overwhelmed by this situation. Teachers don't know their students and students usually don't know their own classmates, with all the consequences that this implies. In front of this inadequate structure of educational institutions, technology has improved the possibilities of instant answers and the dialogue between teachers and students; the unilateral exposition pronounced by teachers in front of the anonymous mass finds an alternative in multimedia systems. The present work describes Interactive Multimedia System's utilization for teaching the chromatic circle as a system of color organization. The proposed method intends to devise a theoretical and conceptual frame and its production for multimedia systems oriented to elaborate, represent, store, interact with and access to knowledge Its relevance comes from the potential contribution to build up knowledge systems that value cultural codes and at the same time make creative and motivating interactive experiences. This work concerns the realization and understanding of the chromatic circle, selection of different color systems, logical strategies for playing and studying theory and multimedia. Levels of visualization: theory, practice, developing skills, works and evaluation. Levels to study: teaching chromatic circle, multimedia supports, quality, application and linking screens, help, theory, etc; without losing the interdisciplinary nature of the work, specialist participation, and Multimedia Systems in the steps of its realization.

  7. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

    Science.gov (United States)

    Yang, Xinping; Coulombe-Huntington, Jasmin; Kang, Shuli; Sheynkman, Gloria M; Hao, Tong; Richardson, Aaron; Sun, Song; Yang, Fan; Shen, Yun A; Murray, Ryan R; Spirohn, Kerstin; Begg, Bridget E; Duran-Frigola, Miquel; MacWilliams, Andrew; Pevzner, Samuel J; Zhong, Quan; Trigg, Shelly A; Tam, Stanley; Ghamsari, Lila; Sahni, Nidhi; Yi, Song; Rodriguez, Maria D; Balcha, Dawit; Tan, Guihong; Costanzo, Michael; Andrews, Brenda; Boone, Charles; Zhou, Xianghong J; Salehi-Ashtiani, Kourosh; Charloteaux, Benoit; Chen, Alyce A; Calderwood, Michael A; Aloy, Patrick; Roth, Frederick P; Hill, David E; Iakoucheva, Lilia M; Xia, Yu; Vidal, Marc

    2016-02-11

    While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms"). PMID:26871637

  8. Yeast Interacting Proteins Database: YLR347C, YPL124W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available nuclear import of NLS-containing cargo proteins via the nuclear pore complex; regulates PC biosynthesi...ins via the nuclear pore complex; regulates PC biosynthesis; GDP-to-GTP exchange factor for Gsp1p Rows with this bait as bait...ins (YPD) 0 IST hit 3 IST hit in the opposite bait/prey orientation - ... ...YLR347C KAP95 Karyopherin beta, forms a complex with Srp1p/Kap60p; interacts with nucleoporins to mediate...nent Spc42p to the inner plaque component Spc110p; required for SPB duplication Rows wit

  9. Protein-Protein Interactions at the Adrenergic Receptors

    OpenAIRE

    Cotecchia, Susanna; Stanasila, Laura; Diviani, Dario

    2012-01-01

    The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effect...

  10. Template-based structure modeling of protein-protein interactions

    OpenAIRE

    Szilagyi, Andras; Zhang, Yang

    2013-01-01

    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been wit...

  11. Structural study of surfactant-dependent interaction with protein

    International Nuclear Information System (INIS)

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes

  12. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  13. Large-scale prediction of drug–target interactions using protein sequences and drug topological structures

    International Nuclear Information System (INIS)

    Highlights: ► Drug–target interactions are predicted using an extended SAR methodology. ► A drug–target interaction is regarded as an event triggered by many factors. ► Molecular fingerprint and CTD descriptors are used to represent drugs and proteins. ► Our approach shows compatibility between the new scheme and current SAR methodology. - Abstract: The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug–target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug–target interactions in a timely manner. In this article, we aim at extending current structure–activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug–target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%, 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug–target interactions, and show a general compatibility between the new scheme and current SAR

  14. Interaction graph mining for protein complexes using local clique merging.

    Science.gov (United States)

    Li, Xiao-Li; Tan, Soon-Heng; Foo, Chuan-Sheng; Ng, See-Kiong

    2005-01-01

    While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper proposes a novel graph mining algorithm to detect the dense neighborhoods (highly connected regions) in an interaction graph which may correspond to protein complexes. Our algorithm first locates local cliques for each graph vertex (protein) and then merge the detected local cliques according to their affinity to form maximal dense regions. We present experimental results with yeast protein interaction data to demonstrate the effectiveness of our proposed method. Compared with other existing techniques, our predicted complexes can match or overlap significantly better with the known protein complexes in the MIPS benchmark database. Novel protein complexes were also predicted to help biologists in their search for new protein complexes. PMID:16901108

  15. Protein lethality investigated in terms of long range dynamical interactions.

    Science.gov (United States)

    Rodrigues, Francisco A; Costa, Luciano da Fontoura

    2009-04-01

    The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality. PMID:19396375

  16. Protein interactions in enzymatic processes in textiles

    OpenAIRE

    Tzanov, Tzanko; Andreaus, Juergen; Gübitz, Georg M.; Paulo, Artur Cavaco

    2003-01-01

    Enzymes are the catalysts of all reactions in living systems. These reactions are catalysed in the active sites of globular proteins. The proteins are composed by amino acids with a variety of side chains ranging from non-polar aliphatic and aromatic to acidic, basic and neutral polar. This fact allows to a globular 3D protein to create in the active site all ranges of microenvironments for catalysis. Major advances in microbial technology and genetics allow recently the broad range of ...

  17. Casein - whey protein interactions in heated milk

    OpenAIRE

    Vasbinder, Astrid Jolanda

    2003-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of enzymatic fractionation and capillary electrophoresis we were able to quantitatively determine the distribution of denatured whey proteins after heat treatment. This thesis describes the relation between...

  18. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    DEFF Research Database (Denmark)

    Nissen, Klaus B; Kedström, Linda Maria Haugaard; Wilbek, Theis S;

    2015-01-01

    related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of...... trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG...... linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic...

  19. Mining the characteristic interaction patterns on protein-protein binding interfaces.

    Science.gov (United States)

    Li, Yan; Liu, Zhihai; Han, Li; Li, Chengke; Wang, Renxiao

    2013-09-23

    Protein-protein interactions are observed in various biological processes. They are important for understanding the underlying molecular mechanisms and can be potential targets for developing small-molecule regulators of such processes. Previous studies suggest that certain residues on protein-protein binding interfaces are "hot spots". As an extension to this concept, we have developed a residue-based method to identify the characteristic interaction patterns (CIPs) on protein-protein binding interfaces, in which each pattern is a cluster of four contacting residues. Systematic analysis was conducted on a nonredundant set of 1,222 protein-protein binding interfaces selected out of the entire Protein Data Bank. Favored interaction patterns across different protein-protein binding interfaces were retrieved by considering both geometrical and chemical conservations. As demonstrated on two test tests, our method was able to predict hot spot residues on protein-protein binding interfaces with good recall scores and acceptable precision scores. By analyzing the function annotations and the evolutionary tree of the protein-protein complexes in our data set, we also observed that protein-protein interfaces sharing common characteristic interaction patterns are normally associated with identical or similar biological functions. PMID:23930922

  20. Interactome Data and Databases: Different Types of Protein Interaction

    Directory of Open Access Journals (Sweden)

    Alberto de Luis

    2006-04-01

    Full Text Available In recent years, the biomolecular sciences have been driven forward by overwhelming advances in new biotechnological high-throughput experimental methods and bioinformatic genome-wide computational methods. Such breakthroughs are producing huge amounts of new data that need to be carefully analysed to obtain correct and useful scientific knowledge. One of the fields where this advance has become more intense is the study of the network of ‘protein–protein interactions’, i.e. the ‘interactome’. In this short review we comment on the main data and databases produced in this field in last 5 years. We also present a rationalized scheme of biological definitions that will be useful for a better understanding and interpretation of ‘what a protein–protein interaction is’ and ‘which types of protein–protein interactions are found in a living cell’. Finally, we comment on some assignments of interactome data to defined types of protein interaction and we present a new bioinformatic tool called APIN (Agile Protein Interaction Network browser, which is in development and will be applied to browsing protein interaction databases.

  1. Molecular interactions of graphene oxide with human blood plasma proteins

    Science.gov (United States)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  2. PROTEIN-PROTEIN INTERACTIONS IN CASEIN MICELLE STRUCTURE

    Science.gov (United States)

    Historically, the central dogma of structural biology is the Anfinsen hypothesis: the linear primary sequence of amino acids of a protein codes for specific secondary structural elements which in turn lead to tertiary structural elements through protein folding and complex higher order systems throu...

  3. Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Mikkelsen, Morten Bo Lindholm; Larsen, Niels Bent

    2014-01-01

    Definable surface chemistry is essential for many applications of microfluidic polymer systems. However, small cross-section channels with a high surface to volume ratio enhance passive adsorption of molecules that depletes active molecules in solution and contaminates the channel surface. Here, we...... present a one-step photochemical process to coat the inner surfaces of closed microfluidic channels with a nanometer thick layer of poly(ethylene glycol) (PEG), well known to strongly reduce non-specific adsorption, using only commercially available reagents in an aqueous environment. The coating consists...... shown to greatly improve cell adhesion compared to unexposed areas. This method opens for easy surface modification of closed microfluidic systems through combining a low protein binding PEG-based coating with spatially defined protein patterns of interest....

  4. Hydraulic interactions between a meandering river channel and its floodplain during an overbank flood

    Science.gov (United States)

    Harrison, L.; Dunne, T.; Fisher, B.

    2012-12-01

    River channel and floodplain complexity is generated by the lateral migration of meandering river channels across the floodplain surface. The main driver of meander migration is the flow field which erodes the outer bank of river bends, scours pools, creates topographic variability on the floodplain and interacts with riparian vegetation. Flows between channels and floodplains are generally thought to be highly three-dimensional due to the presence of secondary circulation cells and helical flow patterns observed in laboratory experiments, yet few field datasets exist to test or validate existing conceptual models. Flow over and through floodplain vegetation has also been difficult to characterize at the field scale. We took advantage of a remarkably long and stable 5-year flood discharge to measure flow fields across the floodplain and in curved reaches of the gravel-bed Merced River In California to document the hydraulic interactions between the channel and floodplain. We then developed, calibrated and validated a quasi-3D hydrodynamic model of the flows in order to expand the interpretation of the results. Due to the spatial variability in both topography and flow resistance, the modeling required detailed mapping of the channel-floodplain surface and vegetation with a terrestrial LiDAR scanner and RTK GPS units. The results highlight several general aspects of the channel-floodplain flow during an overbank flow event: (1) the flow field in the channel was largely two-dimensional with only weak helical flow patterns; (2) the highest channel velocities and boundary shear stresses occurred at the local maxima in bend curvature where lateral migration has been documented via repeat topographic surveys; (3) flow velocities rapidly decelerated as water was decanted from the channel onto the floodplain where the velocity magnitude was roughly 20-30% of the average channel velocity; (4) dense vegetation along the channel margins enhanced channel velocities but reduced

  5. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins.

    Science.gov (United States)

    Siroy, Axel; Mailaender, Claudia; Harder, Daniel; Koerber, Stephanie; Wolschendorf, Frank; Danilchanka, Olga; Wang, Ying; Heinz, Christian; Niederweis, Michael

    2008-06-27

    Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be an outer membrane protein of unknown function. Expression of rv1698 restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698 partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. These results indicated that Rv1698 provides an unspecific pore that can partially substitute for MspA. Lipid bilayer experiments demonstrated that purified Rv1698 is an integral membrane protein that indeed produces channels. The main single channel conductance is 4.5 +/- 0.3 nanosiemens in 1 M KCl. Zero current potential measurements revealed a weak preference for cations. Whole cell digestion of recombinant M. smegmatis with proteinase K showed that Rv1698 is surface-accessible. Taken together, these experiments demonstrated that Rv1698 is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Rv1698 has single homologs of unknown functions in Corynebacterineae and thus represents the first member of a new class of channel proteins specific for mycolic acid-containing outer membranes. PMID:18434314

  6. iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence

    OpenAIRE

    Turner, Brian; Razick, Sabry; Turinsky, Andrei L.; Vlasblom, James; Crowdy, Edgard K.; Cho, Emerson; Morrison, Kyle; Donaldson, Ian M; Wodak, Shoshana J.

    2010-01-01

    We present iRefWeb, a web interface to protein interaction data consolidated from 10 public databases: BIND, BioGRID, CORUM, DIP, IntAct, HPRD, MINT, MPact, MPPI and OPHID. iRefWeb enables users to examine aggregated interactions for a protein of interest, and presents various statistical summaries of the data across databases, such as the number of organism-specific interactions, proteins and cited publications. Through links to source databases and supporting evidence, researchers may gauge...

  7. Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer

    Science.gov (United States)

    Estruch, Sara B.; Fisher, Simon E.

    2014-01-01

    Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA. PMID:24893771

  8. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda

    2003-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of enzyma

  9. Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins

    Science.gov (United States)

    Fromont-Racine, Micheline; Mayes, Andrew E.; Brunet-Simon, Adeline; Rain, Jean-Christophe; Colley, Alan; Dix, Ian; Decourty, Laurence; Joly, Nicolas; Ricard, Florence; Beggs, Jean D.

    2000-01-01

    A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two-hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two-hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome-wide scale. PMID:10900456

  10. The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin.

    Science.gov (United States)

    De, Swastik; Bubnys, Adele; Alonzo, Francis; Hyun, Jinsol; Lary, Jeffrey W; Cole, James L; Torres, Victor J; Olson, Rich

    2015-11-20

    Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. Although it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell lines, we show that VCC is unlikely to utilize high affinity protein receptors as do structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding interactions. PMID:26416894

  11. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  12. Biochemical and computational analysis of LNX1 interacting proteins.

    Directory of Open Access Journals (Sweden)

    Cheryl D Wolting

    Full Text Available PDZ (Post-synaptic density, 95 kDa, Discs large, Zona Occludens-1 domains are protein interaction domains that bind to the carboxy-terminal amino acids of binding partners, heterodimerize with other PDZ domains, and also bind phosphoinositides. PDZ domain containing proteins are frequently involved in the assembly of multi-protein complexes and clustering of transmembrane proteins. LNX1 (Ligand of Numb, protein X 1 is a RING (Really Interesting New Gene domain-containing E3 ubiquitin ligase that also includes four PDZ domains suggesting it functions as a scaffold for a multi-protein complex. Here we use a human protein array to identify direct LNX1 PDZ domain binding partners. Screening of 8,000 human proteins with isolated PDZ domains identified 53 potential LNX1 binding partners. We combined this set with LNX1 interacting proteins identified by other methods to assemble a list of 220 LNX1 interacting proteins. Bioinformatic analysis of this protein list was used to select interactions of interest for future studies. Using this approach we identify and confirm six novel LNX1 binding partners: KCNA4, PAK6, PLEKHG5, PKC-alpha1, TYK2 and PBK, and suggest that LNX1 functions as a signalling scaffold.

  13. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  14. Protein-material interactions: From micro-to-nano scale

    Energy Technology Data Exchange (ETDEWEB)

    Tsapikouni, Theodora S. [Laboratory of Biomechanics and Biomedical Engineering, Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26504 (Greece); Missirlis, Yannis F. [Laboratory of Biomechanics and Biomedical Engineering, Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26504 (Greece)], E-mail: misirlis@mech.upatras.gr

    2008-08-25

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force.

  15. Versatile screening for binary protein-protein interactions by yeast two-hybrid mating

    NARCIS (Netherlands)

    Letteboer, S.J.F.; Roepman, R.

    2008-01-01

    Identification of binary protein-protein interactions is a crucial step in determining the molecular context and functional pathways of proteins. State-of-the-art proteomics techniques provide high-throughput information on the content of proteomes and protein complexes, but give little information

  16. Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA.

    Directory of Open Access Journals (Sweden)

    Luise H Brand

    Full Text Available DNA-binding proteins (DBPs, such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI-ELISA screen of an optimized double-stranded DNA (dsDNA probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a

  17. Fractionation and recovery of whey proteins by hydrophobic interaction chromatography

    OpenAIRE

    Santos, Maria João; Teixeira, J. A.; Rodrigues, L. R.

    2011-01-01

    A method for the recovery and fractionation of whey proteins from a whey protein concentrate (80%, w/w) by hydrophobic interaction chromatography is proposed. Standard proteins and WPC 80 dissolved in phosphate buffer with ammonium sulfate 1M were loaded in a HiPrep Octyl Sepharose FF column coupled to a fast protein liquid chromatography (FPLC) system and eluted by decreasing the ionic strength of the buffer using a salt gradient. The results showed that the most hydrophobic prot...

  18. Comparative interactomics analysis of protein family interaction networks using PSIMAP (protein structural interactome map

    OpenAIRE

    Park, D; Lee, S; Bolser, D.; Schroeder, M.; Lappe, M.; Oh, D.; Bhak, J.

    2005-01-01

    Motivation: Many genomes have been completely sequenced. However, detecting and analyzing their protein–protein interactions by experimental methods such as co-immunoprecipitation, tandem affinity purification and Y2H is not as fast as genome sequencing. Therefore, a computational prediction method based on the known protein structural interactions will be useful to analyze large-scale protein–protein interaction rules within and among complete genomes. Results: We confirmed that all the pred...

  19. The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods

    OpenAIRE

    Panstruga Ralph; Lahaye Thomas; Bhat Riyaz A

    2006-01-01

    Abstract Non-invasive fluorophore-based protein interaction assays like fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC, also referred to as "split YFP") have been proven invaluable tools to study protein-protein interactions in living cells. Both methods are now frequently used in the plant sciences and are likely to develop into standard techniques for the identification, verification and in-depth analysis of polypeptide interactions. In this...

  20. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available BACKGROUND: Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners. METHODOLOGY: Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques. CONCLUSIONS: Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions. AVAILABILITY: We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  1. PIMA: Protein-Protein interactions in Macromolecular Assembly - a web server for its Analysis and Visualization

    OpenAIRE

    Kaleeckal Mathew, Oommen; Sowdhamini, Ramanathan

    2016-01-01

    Protein-protein interactions are essential for the basic biological machinery of the cell. This is important for processes like protein synthesis, enzyme kinetics, molecular assembly and signal transduction. A high number of macromolecular structural complexes are known due to recent advances in structure determination techniques. Therefore, it is of interest to develop an interactive tool to objectively analyze large protein complexes. Hence, we describe the development and utility of a web ...

  2. 3D-interologs: an evolution database of physical protein- protein interactions across multiple genomes

    OpenAIRE

    Chen Yung-Chiang; Lo Yu-Shu; Yang Jinn-Moon

    2010-01-01

    Abstract Background Comprehensive exploration of protein-protein interactions is a challenging route to understand biological processes. For efficiently enlarging protein interactions annotated with residue-based binding models, we proposed a new concept "3D-domain interolog mapping" with a scoring system to explore all possible protein pairs between the two homolog families, derived from a known 3D-structure dimmer (template), across multiple species. Each family consists of homologous prote...

  3. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Sitaraman Sujatha; Dipankar Chatterji

    2000-01-01

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and remote interplay between two subunits of a protein or between two proteins in a complex may govern the fate of a particular biochemical pathway. In a bacterial system where the complete genome sequence is available, it is an arduous task to assign function to a large number of proteins. It is possible that many of them are peripherally associated with a cellular event and it is very difficult to probe such interaction. However, mutations in the genes that encode such proteins (primary mutations) are useful in these studies. Isolation of a suppressor or a second-site mutation that restores the phenotype abolished by the primary mutation could be an elegant yet simple way to follow a set of interacting proteins. Such a reversion site need not necessarily be geometrically close to the primary mutation site.

  4. KFC Server: interactive forecasting of protein interaction hot spots

    OpenAIRE

    Darnell, Steven J.; LeGault, Laura; Mitchell, Julie C.

    2008-01-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model—a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein–protein or protein–DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local str...

  5. TPPII, MYBBP1A and CDK2 form a protein-protein interaction network.

    Science.gov (United States)

    Nahálková, Jarmila; Tomkinson, Birgitta

    2014-12-15

    Tripeptidyl-peptidase II (TPPII) is an aminopeptidase with suggested regulatory effects on cell cycle, apoptosis and senescence. A protein-protein interaction study revealed that TPPII physically interacts with the tumor suppressor MYBBP1A and the cell cycle regulator protein CDK2. Mutual protein-protein interaction was detected between MYBBP1A and CDK2 as well. In situ Proximity Ligation Assay (PLA) using HEK293 cells overexpressing TPPII forming highly enzymatically active oligomeric complexes showed that the cytoplasmic interaction frequency of TPPII with MYBBP1A increased with the protein expression of TPPII and using serum-free cell growth conditions. A specific reversible inhibitor of TPPII, butabindide, suppressed the cytoplasmic interactions of TPPII and MYBBP1A both in control HEK293 and the cells overexpressing murine TPPII. The interaction of MYBBP1A with CDK2 was confirmed by in situ PLA in two different mammalian cell lines. Functional link between TPPII and MYBBP1A has been verified by gene expression study during anoikis, where overexpression of TPP II decreased mRNA expression level of MYBBP1A at the cell detachment conditions. All three interacting proteins TPPII, MYBBP1A and CDK2 have been previously implicated in the research for development of tumor-suppressing agents. This is the first report presenting mutual protein-protein interaction network of these proteins. PMID:25303791

  6. Systematic investigation of protein-small molecule interactions.

    Science.gov (United States)

    Li, Xiyan; Wang, Xin; Snyder, Michael

    2013-01-01

    Cell signaling is extensively wired between cellular components to sustain cell proliferation, differentiation, and adaptation. The interaction network is often manifested in how protein function is regulated through interacting with other cellular components including small molecule metabolites. While many biochemical interactions have been established as reactions between protein enzymes and their substrates and products, much less is known at the system level about how small metabolites regulate protein functions through allosteric binding. In the past decade, study of protein-small molecule interactions has been lagging behind other types of interactions. Recent technological advances have explored several high-throughput platforms to reveal many "unexpected" protein-small molecule interactions that could have profound impact on our understanding of cell signaling. These interactions will help bridge gaps in existing regulatory loops of cell signaling and serve as new targets for medical intervention. In this review, we summarize recent advances of systematic investigation of protein-metabolite/small molecule interactions, and discuss the impact of such studies and their potential impact on both biological researches and medicine. PMID:23225626

  7. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.

    Science.gov (United States)

    Jiang, Liuwei; Marcus, R Kenneth

    2016-02-01

    Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation. PMID:26345444

  8. The origins of specificity in polyketide synthase protein interactions.

    Directory of Open Access Journals (Sweden)

    Mukund Thattai

    2007-09-01

    Full Text Available Polyketides, a diverse group of heteropolymers with antibiotic and antitumor properties, are assembled in bacteria by multiprotein chains of modular polyketide synthase (PKS proteins. Specific protein-protein interactions determine the order of proteins within a multiprotein chain, and thereby the order in which chemically distinct monomers are added to the growing polyketide product. Here we investigate the evolutionary and molecular origins of protein interaction specificity. We focus on the short, conserved N- and C-terminal docking domains that mediate interactions between modular PKS proteins. Our computational analysis, which combines protein sequence data with experimental protein interaction data, reveals a hierarchical interaction specificity code. PKS docking domains are descended from a single ancestral interacting pair, but have split into three phylogenetic classes that are mutually noninteracting. Specificity within one such compatibility class is determined by a few key residues, which can be used to define compatibility subclasses. We identify these residues using a novel, highly sensitive co-evolution detection algorithm called CRoSS (correlated residues of statistical significance. The residue pairs selected by CRoSS are involved in direct physical interactions in a docked-domain NMR structure. A single PKS system can use docking domain pairs from multiple classes, as well as domain pairs from multiple subclasses of any given class. The termini of individual proteins are frequently shuffled, but docking domain pairs straddling two interacting proteins are linked as an evolutionary module. The hierarchical and modular organization of the specificity code is intimately related to the processes by which bacteria generate new PKS pathways.

  9. A modified resonant recognition model to predict protein-protein interaction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang; WANG Yifei

    2007-01-01

    Proteins are fundamental components of all living cells and the protein-protein interaction plays an important role in vital movement.This paper briefly introduced the original Resonant Recognition Model (RRM),and then modified it by using the wavelet transform to acquire the Modified Resonant Recognition Model (MRRM).The key characteristic of the new model is that it can predict directly the proteinprotein interaction from the primary sequence,and the MRRM is more suitable than the RRM for this prediction.The results of numerical experiments show that the MRRM is effective for predicting the protein-protein interaction.

  10. The system of indicators to measure the effectiveness of interaction between enterprises in marketing channels

    OpenAIRE

    Yu.B. Dobroskok

    2013-01-01

    The aim of the article. The aim of the article is to systematize the use of marketing approaches to interaction in modern management techniques, which allowed the detailed characterization of network, competitive and innovative approaches to consolidate network main role in sales policy formation of the enterprises in the consumer sector of economics. The theory of marketing channels management does not sufficiently reflect the role of marketing interaction, strategic marketing, forming the i...

  11. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  12. The origins of the evolutionary signal used to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Swapna Lakshmipuram S

    2012-12-01

    Full Text Available Abstract Background The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods, many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.

  13. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  14. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  15. Redundancies in Large-scale Protein Interaction Networks

    CERN Document Server

    Samanta, M P; Samanta, Manoj Pratim; Liang, Shoudan

    2003-01-01

    Understanding functional associations among genes discovered in sequencing projects is a key issue in post-genomic biology. However, reliable interpretation of the protein interaction data has been difficult. In this work, we show that if two proteins share significantly larger number of common interaction partners than random, they have close functional associations. Analysis of publicly available data from Saccharomyces cerevisiae reveals more than 2800 reliable functional associations, 29% of which involve at least one unannotated protein. By further analyzing these associations, we derive tentative functions for 81 unannotated proteins with high certainty.

  16. The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions.

    OpenAIRE

    Spassov, V. Z.; Karshikoff, A. D.; Ladenstein, R

    1995-01-01

    Protein-solvent interactions were analyzed using an optimization parameter based on the ratio of the solvent-accessible area in the native and the unfolded protein structure. The calculations were performed for a set of 183 nonhomologous proteins with known three-dimensional structure available in the Protein Data Bank. The dependence of the total solvent-accessible surface area on the protein molecular mass was analyzed. It was shown that there is no difference between the monomeric and olig...

  17. The multiple roles of histidine in protein interactions

    OpenAIRE

    Liao, Si-Ming; Du, Qi-Shi; Meng, Jian-Zong; Pang, Zong-Wen; Huang, Ri-Bo

    2013-01-01

    Background Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. Results Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in ...

  18. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3

    International Nuclear Information System (INIS)

    Highlights: • We have made a reasonable model of rat ASIC3 using published structure of chicken ASIC1. • We have docked sea anemone toxin APETx2 on the model. • We have identified two putative sites for toxin binding. • We have argued for plausibility one site over the other. • We have identified the residues that are likely to be critical for APETx2–ASIC3 interaction. - Abstract: Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein–protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the ‘hot-spots’ that are likely to be critical for ASIC3–APETx2 interaction

  19. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Taufiq, E-mail: mtur2@cam.ac.uk; Smith, Ewan St. John

    2014-07-18

    Highlights: • We have made a reasonable model of rat ASIC3 using published structure of chicken ASIC1. • We have docked sea anemone toxin APETx2 on the model. • We have identified two putative sites for toxin binding. • We have argued for plausibility one site over the other. • We have identified the residues that are likely to be critical for APETx2–ASIC3 interaction. - Abstract: Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein–protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the ‘hot-spots’ that are likely to be critical for ASIC3–APETx2 interaction.

  20. Yeast Interacting Proteins Database: YEL005C, YNL086W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YEL005C VAB2 Protein with a potential role in vacuolar function, as suggested by its ability to ... bind Vac8p; green ... fluorescent protein (GFP)-fusion protein localizes ... 0) YNL086W - Putative protein of unknown function; green ... fluorescent protein (GFP)-fusion protein localizes ...

  1. Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins

    OpenAIRE

    1994-01-01

    Connexins, the proteins that form gap junction channels, are polytopic plasma membrane (PM) proteins that traverse the plasma membrane bilayer four times. The insertion of five different connexins into the membrane of the ER was studied by synthesizing connexins in translation- competent cell lysates supplemented with pancreatic ER-derived microsomes, and by expressing connexins in vivo in several eucaryotic cell types. In addition, the subcellular distribution of the connexins was determined...

  2. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  3. Bilayer-thickness-mediated interactions between integral membrane proteins

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  4. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod.

    Directory of Open Access Journals (Sweden)

    Sylvain Lacomble

    Full Text Available We have conducted a protein interaction study of components within a specific sub-compartment of a eukaryotic flagellum. The trypanosome flagellum contains a para-crystalline extra-axonemal structure termed the paraflagellar rod (PFR with around forty identified components. We have used a Gateway cloning approach coupled with yeast two-hybrid, RNAi and 2D DiGE to define a protein-protein interaction network taking place in this structure. We define two clusters of interactions; the first being characterised by two proteins with a shared domain which is not sufficient for maintaining the interaction. The other cohort is populated by eight proteins, a number of which possess a PFR domain and sub-populations of this network exhibit dependency relationships. Finally, we provide clues as to the structural organisation of the PFR at the molecular level. This multi-strand approach shows that protein interactome data can be generated for insoluble protein complexes.

  5. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev; Bender, Julia; Bach, Anders; Jacky, Birgitte P S; Strømgaard, Kristian; Deussing, Jan M; Schwartz, Thue W; Martinez, Karen L

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present a...... colocalization of the full-length proteins in cells and with previous studies, we suggest that the range of relevant interactions might extend to interactions with K i = 450 µM in the in vitro assays. Within this range, we identify novel PSD-95 interactions with the chemokine receptor CXCR2, the neuropeptide Y...... receptor Y2, and four of the somatostatin receptors (SSTRs). The interaction with SSTR1 was further investigated in mouse hippocampal neurons, where we found a clear colocalization between the endogenously expressed proteins, indicating a potential for further investigation of the role of this interaction...

  6. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Saiful M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yoon, Hyunjin [Dartmouth College, Hanover, NH (United States); Ansong, Charles [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rommereim, Leah M. [Dartmouth College, Hanover, NH (United States); Norbeck, Angela D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Auberry, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, R. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Joshua N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heffron, Fred [Oregon Health and Science Univ., Portland, OR (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  7. Yeast Interacting Proteins Database: YNL189W, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available sed by (YPD) - Not affected by(YPD) - Interologs - Expression similarity (BRITE) - Alternative path with 1 intervening pr...gradation depending on growth conditions; interacts with Vid30p Rows with this prey as prey (4) Rows with this pre... may also play a role in regulation of protein degradation Rows with this bait as bait (55) Rows with this bait as pre...s pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated de... (0 or 1,YPD) 0 Complex (0 or 1,YPD) 0 Synthetic lethality (0 or 1,YPD) 0 Co-induced by (YPD) - Co-repres

  8. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels.

    Science.gov (United States)

    Salari, Autoosa; Vega, Benjamin S; Milescu, Lorin S; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b-S4 "paddle motif," which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3-S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  9. Engineering of an E. coli outer membrane protein FhuA with increased channel diameter

    Directory of Open Access Journals (Sweden)

    Dworeck Tamara

    2011-08-01

    Full Text Available Abstract Background Channel proteins like FhuA can be an alternative to artificial chemically synthesized nanopores. To reach such goals, channel proteins must be flexible enough to be modified in their geometry, i.e. length and diameter. As continuation of a previous study in which we addressed the lengthening of the channel, here we report the increasing of the channel diameter by genetic engineering. Results The FhuA Δ1-159 diameter increase has been obtained by doubling the amino acid sequence of the first two N-terminal β-strands, resulting in variant FhuA Δ1-159 Exp. The total number of β-strands increased from 22 to 24 and the channel surface area is expected to increase by ~16%. The secondary structure analysis by circular dichroism (CD spectroscopy shows a high β-sheet content, suggesting the correct folding of FhuA Δ1-159 Exp. To further prove the FhuA Δ1-159 Exp channel functionality, kinetic measurement using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine were conducted. The results indicated a 17% faster diffusion kinetic for FhuA Δ1-159 Exp as compared to FhuA Δ1-159, well correlated to the expected channel surface area increase of ~16%. Conclusion In this study using a simple "semi rational" approach the FhuA Δ1-159 diameter was enlarged. By combining the actual results with the previous ones on the FhuA Δ1-159 lengthening a new set of synthetic nanochannels with desired lengths and diameters can be produced, broadening the FhuA Δ1-159 applications. As large scale protein production is possible our approach can give a contribution to nanochannel industrial applications.

  10. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    International Nuclear Information System (INIS)

    Highlights: → Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. → BAI2 interaction with GIP was revealed by yeast two-hybrid assay. → Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. → BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, β-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  11. G Protein Regulation of Neuronal Calcium Channels: Back to the Future

    Czech Academy of Sciences Publication Activity Database

    Proft, Juliane; Weiss, Norbert

    2015-01-01

    Roč. 87, č. 6 (2015), s. 890-906. ISSN 0026-895X R&D Projects: GA ČR GA15-13556S Institutional support: RVO:61388963 Keywords : voltage gated calcium channels Cav * G proteins * GPCR Subject RIV: CE - Biochemistry Impact factor: 4.128, year: 2014

  12. Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition

    Directory of Open Access Journals (Sweden)

    Tedford Hugo W

    2010-02-01

    Full Text Available Abstract Direct interaction with the β subunit of the heterotrimeric G protein complex causes voltage-dependent inhibition of N-type calcium channels. To further characterize the molecular determinants of this interaction, we performed scanning mutagenesis of residues 372-387 and 410-428 of the N-type channel α1 subunit, in which individual residues were replaced by either alanine or cysteine. We coexpressed wild type Gβ1γ2 subunits with either wild type or point mutant N-type calcium channels, and voltage-dependent, G protein-mediated inhibition of the channels (VDI was assessed using patch clamp recordings. The resulting data indicate that Arg376 and Val416 of the α1 subunit, residues which are surface-exposed in the presence of the calcium channel β subunit, contribute significantly to the functional inhibition by Gβ1. To further characterize the roles of Arg376 and Val416 in this interaction, we performed secondary mutagenesis of these residues, coexpressing the resulting mutants with wild type Gβ1γ2 subunits and with several isoforms of the auxiliary β subunit of the N-type channel, again assessing VDI using patch clamp recordings. The results confirm the importance of Arg376 for G protein-mediated inhibition and show that a single amino acid substitution to phenylalanine drastically alters the abilities of auxiliary calcium channel subunits to regulate G protein inhibition of the channel.

  13. Single Bead Affinity Detection (SINBAD) for the Analysis of Protein-Protein Interactions

    OpenAIRE

    Schulte, Roberta; Talamas, Jessica; Doucet, Christine; Hetzer, Martin W.

    2008-01-01

    We present a miniaturized pull-down method for the detection of protein-protein interactions using standard affinity chromatography reagents. Binding events between different proteins, which are color-coded with quantum dots (QDs), are visualized on single affinity chromatography beads by fluorescence microscopy. The use of QDs for single molecule detection allows the simultaneous analysis of multiple protein-protein binding events and reduces the amount of time and material needed to perform...

  14. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    OpenAIRE

    Claudio Peri; Giulia Morra; Giorgio Colombo

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifi...

  15. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    Science.gov (United States)

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  16. Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors

    DEFF Research Database (Denmark)

    Bornert, Olivier; Møller, Thor Christian; Boeuf, Julien;

    2013-01-01

    degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction...... GPCRs and highlight the presence within GASPs of a novel protein-protein interaction motif that might represent a new target to investigate the involvement of GASPs in the modulation of the activity of GPCRs.......GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the...

  17. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy.

    Science.gov (United States)

    Chen, Bolin; Shi, Jinhong; Zhang, Shenggui; Wu, Fang-Xiang

    2013-01-01

    The identification of protein complexes plays a key role in understanding major cellular processes and biological functions. Various computational algorithms have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. In this paper, we first introduce a new seed-selection strategy for seed-growth style algorithms. Cliques rather than individual vertices are employed as initial seeds. After that, a result-modification approach is proposed based on this seed-selection strategy. Predictions generated by higher order clique seeds are employed to modify results that are generated by lower order ones. The performance of this seed-selection strategy and the result-modification approach are tested by using the entropy-based algorithm, which is currently the best seed-growth style algorithm to detect protein complexes from PPI networks. In addition, we investigate four pairs of strategies for this algorithm in order to improve its accuracy. The numerical experiments are conducted on a Saccharomyces cerevisiae PPI network. The group of best predictions consists of 1711 clusters, with the average f-score at 0.68 after removing all similar and redundant clusters. We conclude that higher order clique seeds can generate predictions with higher accuracy and that our improved entropy-based algorithm outputs more reasonable predictions than the original one. PMID:23112006

  18. Water-mediated ionic interactions in protein structures

    Indian Academy of Sciences (India)

    R Sabarinathan; K Aishwarya; R Sarani; M Kirti Vaishnavi; K Sekar

    2011-06-01

    It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.

  19. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    Science.gov (United States)

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction. PMID:23264567

  20. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    International Nuclear Information System (INIS)

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-ΔE-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-ΔE virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-ΔE virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm

  1. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    International Nuclear Information System (INIS)

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density

  2. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  3. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available In this paper, we present a novel rough-fuzzy clustering (RFC method to detect overlapping protein complexes in protein-protein interaction (PPI networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  4. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    Science.gov (United States)

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks. PMID:24642838

  5. Prediction of protein motions from amino acid sequence and its application to protein-protein interaction

    Directory of Open Access Journals (Sweden)

    Wako Hiroshi

    2010-07-01

    Full Text Available Abstract Background Structural flexibility is an important characteristic of proteins because it is often associated with their function. The movement of a polypeptide segment in a protein can be broken down into two types of motions: internal and external ones. The former is deformation of the segment itself, but the latter involves only rotational and translational motions as a rigid body. Normal Model Analysis (NMA can derive these two motions, but its application remains limited because it necessitates the gathering of complete structural information. Results In this work, we present a novel method for predicting two kinds of protein motions in ordered structures. The prediction uses only information from the amino acid sequence. We prepared a dataset of the internal and external motions of segments in many proteins by application of NMA. Subsequently, we analyzed the relation between thermal motion assessed from X-ray crystallographic B-factor and internal/external motions calculated by NMA. Results show that attributes of amino acids related to the internal motion have different features from those related to the B-factors, although those related to the external motion are correlated strongly with the B-factors. Next, we developed a method to predict internal and external motions from amino acid sequences based on the Random Forest algorithm. The proposed method uses information associated with adjacent amino acid residues and secondary structures predicted from the amino acid sequence. The proposed method exhibited moderate correlation between predicted internal and external motions with those calculated by NMA. It has the highest prediction accuracy compared to a naïve model and three published predictors. Conclusions Finally, we applied the proposed method predicting the internal motion to a set of 20 proteins that undergo large conformational change upon protein-protein interaction. Results show significant overlaps between the

  6. Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations.

    Science.gov (United States)

    Hedger, George; Sansom, Mark S P

    2016-10-01

    Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterization of these sites are of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26946244

  7. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  8. Confirmation of human protein interaction data by human expression data

    OpenAIRE

    Talwar Priti; Rahnenführer Jörg; Hahn Andreas; Lengauer Thomas

    2005-01-01

    Abstract Background With microarray technology the expression of thousands of genes can be measured simultaneously. It is well known that the expression levels of genes of interacting proteins are correlated significantly more strongly in Saccharomyces cerevisiae than those of proteins that are not interacting. The objective of this work is to investigate whether this observation extends to the human genome. Results We investigated the quantitative relationship between expression levels of ge...

  9. Protein Interaction Networks—More Than Mere Modules

    OpenAIRE

    Stefan Pinkert; Jörg Schultz; Jörg Reichardt

    2010-01-01

    It is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular networks. A common view is that a ‘‘module’’ in a network is a cohesively linked group of nodes, densely connected internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in protein-interaction networks (PIN) by searching for such cohesive groups of proteins. Here, we present an alternative approach independent o...

  10. Biophysics of protein-DNA interactions and chromosome organization

    OpenAIRE

    Marko, John F.

    2015-01-01

    The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed.

  11. Description and control of dissociation channels in gas-phase protein complexes

    Science.gov (United States)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  13. The Ca2+ channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy

    International Nuclear Information System (INIS)

    Highlights: •Split-ubiquitin MY2H screen identified GATE16 as an interacting protein of TRPML3. •TRPML3 specifically binds to a mammalian ATG8 homologue GATE16, not to LC3B. •The interaction of TRPML3 with GATE16 facilitates autophagosome formation. •GATE16 is expressed in both autophagosome and extra-autophagosomal compartments. -- Abstract: TRPML3 is a Ca2+ permeable cation channel expressed in multiple intracellular compartments. Although TRPML3 is implicated in autophagy, how TRPML3 can regulate autophagy is not understood. To search interacting proteins with TRPML3 in autophagy, we performed split-ubiquitin membrane yeast two-hybrid (MY2H) screening with TRPML3-loop as a bait and identified GATE16, a mammalian ATG8 homologue. GST pull-down assay revealed that TRPML3 and TRPML3-loop specifically bind to GATE16, not to LC3B. Co-immunoprecipitation (co-IP) experiments showed that TRPML3 and TRPML3-loop pull down only the lipidated form of GATE16, indicating that the interaction occurs exclusively at the organellar membrane. The interaction of TRPML3 with GATE16 and GATE16-positive vesicle formation were increased in starvation induced autophagy, suggesting that the interaction facilitates the function of GATE16 in autophagosome formation. However, GATE16 was not required for TRPML3 trafficking to autophagosomes. Experiments using dominant-negative (DN) TRPML3(D458K) showed that GATE16 is localized not only in autophagosomes but also in extra-autophagosomal compartments, by contrast with LC3B. Since GATE16 acts at a later stage of the autophagosome biogenesis, our results suggest that TRPML3 plays a role in autophagosome maturation through the interaction with GATE16, by providing Ca2+ in the fusion process

  14. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  15. DockAnalyse: an application for the analysis of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Cedano Juan

    2010-10-01

    Full Text Available Abstract Background Is it possible to identify what the best solution of a docking program is? The usual answer to this question is the highest score solution, but interactions between proteins are dynamic processes, and many times the interaction regions are wide enough to permit protein-protein interactions with different orientations and/or interaction energies. In some cases, as in a multimeric protein complex, several interaction regions are possible among the monomers. These dynamic processes involve interactions with surface displacements between the proteins to finally achieve the functional configuration of the protein complex. Consequently, there is not a static and single solution for the interaction between proteins, but there are several important configurations that also have to be analyzed. Results To extract those representative solutions from the docking output datafile, we have developed an unsupervised and automatic clustering application, named DockAnalyse. This application is based on the already existing DBscan clustering method, which searches for continuities among the clusters generated by the docking output data representation. The DBscan clustering method is very robust and, moreover, solves some of the inconsistency problems of the classical clustering methods like, for example, the treatment of outliers and the dependence of the previously defined number of clusters. Conclusions DockAnalyse makes the interpretation of the docking solutions through graphical and visual representations easier by guiding the user to find the representative solutions. We have applied our new approach to analyze several protein interactions and model the dynamic protein interaction behavior of a protein complex. DockAnalyse might also be used to describe interaction regions between proteins and, therefore, guide future flexible dockings. The application (implemented in the R package is accessible.

  16. Transient interactions studied by NMR : iron sulfur proteins and their interaction partners

    NARCIS (Netherlands)

    Xu, Xingfu

    2009-01-01

    The interactions between proteins are of central importance for virtually every process in a living cell. It has long been a mystery how two proteins associate to form a complex in a complicated cellular context. Recently, it was found that an intermediate state called encounter state, of a protein

  17. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.;

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  18. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  19. Study of anomalous top quark FCNC interactions via $tW$-channel of single top

    OpenAIRE

    Etesami, S. M.; Najafabadi, M. Mohammadi

    2010-01-01

    The potential of the LHC for investigation of anomalous top quark interactions with gluon ($tug,tcg$) through the production of $tW$-channel of single top quark is studied. In the Standard Model, the single top quarks in the $tW$-channel mode are charge symmetric meaning that $\\sigma(pp\\to t+W^{-}) = \\sigma(pp\\to \\bar{t}+W^{+})$. However, the presence of anomalous FCNC couplings leads to charge asymmetry. In this paper a method is proposed in which this charge asymmetry may be used to constra...

  20. Modulation of opioid receptor function by protein-protein interactions

    OpenAIRE

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi,

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified pr...

  1. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui

    2008-01-01

    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  2. Protein-Protein Interactions in the Regulation of WRKY Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    Yingjun Chi; Yan Yang; Yuan Zhou; Jie Zhou; Baofang Fan; Jing-Quan Yu; Zhixiang Chen

    2013-01-01

    It has been almost 20 years since the first report of a WRKY transcription factor,SPF1,from sweet potato.Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth,development,and responses to biotic and abiotic stress.Despite the functional diversity,almost all analyzed WRKY proteins recognize the TrGACC/T W-box sequences and,therefore,mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors.Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling,transcription,and chromatin remodeling.Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors.It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes.In this review,we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute,at different levels,to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  3. Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Meilin Wu

    Full Text Available Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS, which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K channels and downregulating nicotinic acetylcholine receptors (nAChRs in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function.

  4. Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.

    Science.gov (United States)

    Zhang, Xinyue; Xu, Xiaojun; Yang, Zhiyu; Burcke, Andrew J; Gates, Kent S; Chen, Shi-Jie; Gu, Li-Qun

    2015-12-23

    Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation and proceeds from the 5' to 3' end. Here we developed a ribosome-mimicking, nanopore pulling assay for dissecting the vectorial unfolding mechanism of pseudoknots. The pseudoknot unfolding pathway in the nanopore, either from the 5' to 3' end or in the reverse direction, can be controlled by a DNA leader that is attached to the pseudoknot at the 5' or 3' ends. The different nanopore conductance between DNA and RNA translocation serves as a marker for the position and structure of the unfolding RNA in the pore. With this design, we provided evidence that the pseudoknot unfolding is a two-step, multistate, metal ion-regulated process depending on the pulling direction. Most notably, unfolding in both directions is rate-limited by the unzipping of the first helix domain (first step), which is Helix-1 in the 5' → 3' direction and Helix-2 in the 3' → 5' direction, suggesting that the initial unfolding step in either pulling direction needs to overcome an energy barrier contributed by the noncanonical triplex base-pairs and coaxial stacking interactions for the tertiary structure stabilization. These findings provide new insights into RNA vectorial unfolding mechanisms, which play an important role in biological functions including frameshifting. PMID:26595106

  5. Interacting domains of the HN and F Proteins of paramyxovirus

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaojia; ZHANG Guozhong; ZHAO Jixun; WANG Ming

    2005-01-01

    Binding sialates to hemagglutinin-neuramini- dase (HN) activates (triggers) the fusion protein (F) to start the membrane fusion process of paramyxovirus, but the mechanism by which the HN and F associate with each other to induce membrane fusion is still unclear. It is noteworthy to study the interaction domains of HN and F of paramyxovirus. To screen interacting domains of the HN and F proteins of Avian parainfluenza virus-2 (APIV-2) and identify the structure of binding proteins, the GST pull-down assay and mass spectroscopy (MS) and circular dichroism (CD) experiments were performed in this study. The study revealed that the globular head region of HN protein tends to form a complex with either the heptad repeat 1 (HR1) or the heptad repeat 2 (HR2) of F protein respectively. This paper discusses the novel fusion mechanism induced by paramyxovirus HN and F proteins.

  6. Filtering high-throughput protein-protein interaction data using a combination of genomic features

    Directory of Open Access Journals (Sweden)

    Patil Ashwini

    2005-04-01

    Full Text Available Abstract Background Protein-protein interaction data used in the creation or prediction of molecular networks is usually obtained from large scale or high-throughput experiments. This experimental data is liable to contain a large number of spurious interactions. Hence, there is a need to validate the interactions and filter out the incorrect data before using them in prediction studies. Results In this study, we use a combination of 3 genomic features – structurally known interacting Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-throughput experiments. Using Bayesian network approaches, we show that protein-protein interactions from high-throughput data supported by one or more genomic features have a higher likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity (90% and good specificity (63%. We show that 56% of the interactions from high-throughput experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the number of true interactions in the high-throughput protein-protein interaction data sets in Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68% respectively. Our results are available for searching and downloading at http://helix.protein.osaka-u.ac.jp/htp/. Conclusion A combination of genomic features that include sequence, structure and annotation information is a good predictor of true interactions in large and noisy high-throughput data sets. The method has a very high sensitivity and good specificity and can be used to assign a likelihood ratio, corresponding to the reliability, to each interaction.

  7. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA in the...

  8. Prediction of localization and interactions of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Matula Pavel

    2009-07-01

    Full Text Available Abstract During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF and endonuclease G (endoG. Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID. We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.

  9. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    Science.gov (United States)

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  10. Gas Channels for NH3: Proteins from Hyperthermophiles Complement an Escherichia coli Mutant

    OpenAIRE

    Soupene, Eric; Chu, Tony; Corbin, Rebecca W.; Hunt, Donald F.; Kustu, Sydney

    2002-01-01

    Ammonium transport (Amt) proteins appear to be bidirectional channels for NH3. The amt genes of the hyperthermophiles Aquifex aeolicus and Methanococcus jannaschii complement enteric amtB mutants for growth at 25 nM NH3 at 37°C. To our knowledge, Amt proteins are the first hyperthermophilic membrane transport proteins shown to be active in a mesophilic bacterium. Despite low expression levels, His-tagged Aquifex Amt could be purified by heating and nickel chelate affinity chromatography. It c...

  11. A Protein Interaction Map of the Mitotic Spindle

    OpenAIRE

    Wong, Jonathan; Nakajima, Yuko; Westermann, Stefan; Shang, Ching; Kang, Jung-seog; Goodner, Crystal; Houshmand, Pantea; Fields, Stanley; Chan, Clarence S.M.; Drubin, David; Barnes, Georjana; Hazbun, Tony

    2007-01-01

    The mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins. We uncovered a pattern of extens...

  12. Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-10-01

    Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.

  13. Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions Using a Fragment Linking Approach

    OpenAIRE

    Frank, Andreas O.; Feldkamp, Michael D.; Kennedy, J. Phillip; Waterson, Alex G.; Pelz, Nicholas F.; Patrone, James D.; Vangamudi, Bhavatarini; Camper, DeMarco V.; Rossanese, Olivia W.; Chazin, Walter J.; Fesik, Stephen W.

    2013-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is involved in nearly all cellular DNA transactions. The RPA N-terminal domain (RPA70N) is a recruitment site for proteins involved in DNA damage response and repair. Selective inhibition of these protein-protein interactions has the potential to inhibit the DNA damage response and sensitize cancer cells to DNA-damaging agents without affecting other functions of RPA. To discover a potent, selective...

  14. ProteinShop: A tool for interactive protein manipulation and steering

    Energy Technology Data Exchange (ETDEWEB)

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  15. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization

    OpenAIRE

    Hui LI; Liu, Chunmei

    2014-01-01

    3DProIN is a computational tool to visualize protein–protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The interne...

  16. Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering

    OpenAIRE

    Lei Yang; Xianglong Tang

    2014-01-01

    Cliques (maximal complete subnets) in protein-protein interaction (PPI) network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based m...

  17. Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells.

    Science.gov (United States)

    Duncan, R R

    2006-11-01

    Recent developments in cellular imaging spectroscopy now permit the minimally invasive study of protein dynamics inside living cells. These advances are of interest to cell biologists, as proteins rarely act in isolation, but rather in concert with others in forming cellular machinery. Until recently, all protein interactions had to be determined in vitro using biochemical approaches: this biochemical legacy has provided cell biologists with the basis to test defined protein-protein interactions not only inside cells, but now also with high spatial resolution. These techniques can detect and quantify protein behaviours down to the single-molecule level, all inside living cells. More recent developments in TCSPC (time-correlated single-photon counting) imaging are now also driving towards being able to determine protein interaction rates with similar spatial resolution, and together, these experimental advances allow investigators to perform biochemical experiments inside living cells. PMID:17052173

  18. Influence of hydrodynamic interactions on mechanical unfolding of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Szymczak, P [Institute of Theoretical Physics, Warsaw University, ulica Hoza 69, 00-681 Warsaw (Poland); Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)

    2007-07-18

    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.

  19. Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins

    OpenAIRE

    Szymczak, P.; Cieplak, Marek

    2007-01-01

    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.

  20. Influence of hydrodynamic interactions on mechanical unfolding of proteins

    Science.gov (United States)

    Szymczak, P.; Cieplak, Marek

    2007-07-01

    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.

  1. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Sony Malhotra

    Full Text Available Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  2. Evolution of a protein domain interaction network

    International Nuclear Information System (INIS)

    In this paper, we attempt to understand complex network evolution from the underlying evolutionary relationship between biological organisms. Firstly, we construct a Pfam domain interaction network for each of the 470 completely sequenced organisms, and therefore each organism is correlated with a specific Pfam domain interaction network; secondly, we infer the evolutionary relationship of these organisms with the nearest neighbour joining method; thirdly, we use the evolutionary relationship between organisms constructed in the second step as the evolutionary course of the Pfam domain interaction network constructed in the first step. This analysis of the evolutionary course shows: (i) there is a conserved sub-network structure in network evolution; in this sub-network, nodes with lower degree prefer to maintain their connectivity invariant, and hubs tend to maintain their role as a hub is attached preferentially to new added nodes; (ii) few nodes are conserved as hubs; most of the other nodes are conserved as one with very low degree; (iii) in the course of network evolution, new nodes are added to the network either individually in most cases or as clusters with relative high clustering coefficients in a very few cases. (general)

  3. Structural basis for KV7.1/KCNEx interactions in the IKs channel complex

    DEFF Research Database (Denmark)

    Lundby, Alicia; Tseng, Gea-Ny; Schmitt, Nicole

    2010-01-01

    KCNE1 solution structure by NMR spectroscopy in conjunction with biochemical assays addressing K(V)7.1/KCNE1 residue interactions has provided new insights into the structural basis for K(V)7.1 modulation by KCNE1. Recent evidence further suggests that KCNE2 may associate with the K(V)7.1/KCNE1 channel......The cardiac I(Ks) current is involved in action potential repolarization, where its primary function is to limit action potential prolongation during sympathetic stimulation. The I(Ks) channel is mainly composed of K(V)7.1 ion channels associated with KCNE1 auxiliary subunits. The availability of...

  4. Interactions of cryptosin with mammalian cardiac dihydropyridine-specific calcium channels

    International Nuclear Information System (INIS)

    Cryptosin, a new cardenolide, was found to be a potent inhibitor of cardiac Na+ and K+ dependent Adenosinetri-phosphatase. In experiments with dog heart ex vivo, development of inotropic and toxic effect correlated with changes in the cardiac dihydropyridine-specific calcium channels as measured by the binding of 3[H]PN 200-110. A significant change in the PN 200-110 binding was observed when guinea pig and dog heart sarcolemmal membranes were pre-incubated with cryptosin in vitro. Binding analysis of 3[H]PN 200-110 (Isradipine), a 1,4-dihydropyridine analog with very specific calcium channel binding properties, in both in vitro and ex vivo studies were consistent and indicated a non-specific type of interaction of cryptosin with mammalian cardiac 1,4-dihydropyridine-specific calcium channels

  5. Foot-printing of Protein Interactions by Tritium Labeling

    International Nuclear Information System (INIS)

    A new foot-printing method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this foot-printing method to the complex formed by the histone H3 fragment H3122-135 and the protein hAsflA1-156 afforded data in good agreement with NMR results. (authors)

  6. Interaction of Protein and Cell with Different Chitosan Membranes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Interaction between proteins, cells and biomaterial surfaces is commonly observed and often used to measure biocompatibility of biomaterials.In this investigation, three kinds of biomaterials derived from chitosan were prepared.The surface wettability of these polymers, interaction of protein with material surface, and their effects on cell adhesion and growth were studied.The results show that the surface contact angle and surface charge of biomaterials have a close bearing on protein adsorption as well as cell adhesion and growth, indicating that through different chemical modifications, chitosan can be made into different kinds of biomedical materials to satisfy various needs.

  7. On the ion-mediated interaction between protein and DNA

    CERN Document Server

    Barbi, Maria

    2013-01-01

    The mechanism allowing a protein to search of a target sequence on DNA is currently described as an intermittent process composed of 3D diffusion in bulk and 1D diffusion along the DNA molecule. Due to the relevant charge of protein and DNA, electrostatic interaction should play a crucial role during this search. In this paper, we explicitly derive the mean field theory allowing for a description of the protein-DNA electrostatics in solution. This approach leads to a unified model of the search process, where 1D and 3D diffusion appear as a natural consequence of the diffusion on an extended interaction energy profile.

  8. Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier.

    Science.gov (United States)

    Dhole, Kaustubh; Singh, Gurdeep; Pai, Priyadarshini P; Mondal, Sukanta

    2014-05-01

    Protein-protein interactions are of central importance for virtually every process in a living cell. Information about the interaction sites in proteins improves our understanding of disease mechanisms and can provide the basis for new therapeutic approaches. Since a multitude of unique residue-residue contacts facilitate the interactions, protein-protein interaction sites prediction has become one of the most important and challenging problems of computational biology. Although much progress in this field has been reported, this problem is yet to be satisfactorily solved. Here, a novel method (LORIS: L1-regularized LOgistic Regression based protein-protein Interaction Sites predictor) is proposed, that identifies interaction residues, using sequence features and is implemented via the L1-logreg classifier. Results show that LORIS is not only quite effective, but also, performs better than existing state-of-the art methods. LORIS, available as standalone package, can be useful for facilitating drug-design and targeted mutation related studies, which require a deeper knowledge of protein interactions sites. PMID:24486250

  9. The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications.

    Science.gov (United States)

    Benga, Gheorghe

    2012-01-01

    After a decade of work on the water permeability of red blood cells (RBC) Benga group in Cluj-Napoca, Romania, discovered in 1985 the first water channel protein in the RBC membrane. The discovery was reported in publications in 1986 and reviewed in subsequent years. The same protein was purified by chance by Agre group in Baltimore, USA, in 1988, who called in 1991 the protein CHIP28 (CHannel forming Integral membrane Protein of 28 kDa), suggesting that it may play a role in linkage of the membrane skeleton to the lipid bilayer. In 1992 the Agre group identified CHIP28's water transport property. One year later CHIP28 was named aquaporin 1, abbreviated as AQP1. In this review the molecular structure-function relationships of AQP1 are presented. In the natural or model membranes AQP1 is in the form of a homotetramer, however, each monomer has an independent water channel (pore). The three-dimensional structure of AQP1 is described, with a detailed description of the channel (pore), the molecular mechanisms of permeation through the channel of water molecules and exclusion of protons. The permeability of the pore to gases (CO(2), NH(3), NO, O(2)) and ions is also mentioned. I have also reviewed the functional roles and medical implications of AQP1 expressed in various organs and cells (microvascular endothelial cells, kidney, central nervous system, eye, lacrimal and salivary glands, respiratory apparatus, gastrointestinal tract, hepatobiliary compartments, female and male reproductive system, inner ear, skin). The role of AQP1 in cell migration and angiogenesis in relation with cancer, the genetics of AQP1 and mutations in human subjects are also mentioned. The role of AQP1 in red blood cells is discussed based on our comparative studies of water permeability in over 30 species. PMID:22705445

  10. GRIP: A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction

    OpenAIRE

    Zheng Huiru; Wang Haiying; Browne Fiona; Azuaje Francisco

    2009-01-01

    Abstract Background Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases) and non-interacting proteins (negativ...

  11. Pooled‐matrix protein interaction screens using Barcode Fusion Genetics

    OpenAIRE

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C.; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B.; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi

    2016-01-01

    Abstract High‐throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome‐scale interaction mapping. Here, we report Barcode Fusion Genetics‐Yeast Tw...

  12. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    Science.gov (United States)

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. PMID:27117309

  13. Protein-lipid interactions: paparazzi hunting for snap-shots.

    Science.gov (United States)

    Haberkant, Per; van Meer, Gerrit

    2009-08-01

    Photoactivatable groups meeting the criterion of minimal perturbance allow the investigation of interactions in biological samples. Here, we review the application of photoactivatable groups in lipids enabling the study of protein-lipid interactions in (biological) membranes. The chemistry of various photoactivatable groups is summarized and the specificity of the interactions detected is discussed. The recent introduction of 'click chemistry' in photocrosslinking of membrane proteins by photo-activatable lipids opens new possibilities for the analysis of crosslinked products and will help to close the gap between proteomics and lipidomics. PMID:19426134

  14. A simple probabilistic model of multibody interactions in proteins

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe; Hamelryck, Thomas

    2013-01-01

    predictions. Our coarse-grained model is compared to state-of-art methods that use full atomic detail. This article illustrates how the use of simple probabilistic models can lead to new opportunities in the treatment of nonlocal interactions in knowledge-based protein structure prediction and design.......Protein structure prediction methods typically use statistical potentials, which rely on statistics derived from a database of know protein structures. In the vast majority of cases, these potentials involve pairwise distances or contacts between amino acids or atoms. Although some potentials...... beyond pairwise interactions have been described, the formulation of a general multibody potential is seen as intractable due to the perceived limited amount of data. In this article, we show that it is possible to formulate a probabilistic model of higher order interactions in proteins, without...

  15. Multiphasic interactions between nucleotides and target proteins

    CERN Document Server

    Nissen, Per

    2016-01-01

    The nucleotides guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) bind to target proteins to promote bacterial survival (Corrigan et al. 2016). Thus, the binding of the nucleotides to RsgA, a GTPase, inhibits the hydrolysis of GTP. The dose response, taken to be curvilinear with respect to the logarithm of the inhibitor concentration, is instead much better (P<0.001 when the 6 experiments are combined) represented as multiphasic, with high to exceedingly high absolute r values for the straight lines, and with transitions in the form of non-contiguities (jumps). Profiles for the binding of radiolabeled nucleotides to HprT and Gmk, GTP synthesis enzymes, were, similarly, taken to be curvilinear with respect to the logarithm of the protein concentration. However, the profiles are again much better represented as multiphasic than as curvilinear (the P values range from 0.047 to <0.001 for each of the 8 experiments for binding of ppGpp and pppGpp to HprT). The binding of GTP to HprT and ...

  16. Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins

    International Nuclear Information System (INIS)

    Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could be confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro

  17. Yeast Interacting Proteins Database: YIL092W, YGL122C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YIL092W - Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein l ... t (1) Rows with this bait as prey (0) YGL122C NAB2 Nuclear ... polyadenylated RNA-binding protein required for nu ... mRNA export and poly(A) tail length control; binds nuclear ... pore protein Mlp1p; autoregulates mRNA levels; rel ...

  18. Studies of Dynamic Protein-Protein Interactions in Bacteria Using Renilla Luciferase Complementation Are Undermined by Nonspecific Enzyme Inhibition

    OpenAIRE

    Hatzios, Stavroula-Artemis K.; Ringgaard, Simon; Davis, Brigid; Waldor, Matthew K.

    2012-01-01

    The luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein inte...

  19. The importance of consistency in service interactions across multiple channels : an investigation of online and offline service channels

    OpenAIRE

    Ewart, Marissa

    2013-01-01

    This thesis investigates the importance of offering consistent services between service channels. In particular, one offline and more traditional channel, a call centre, is compared to one online and more modern channel, Facebook, for the banking industry. This thesis first conceptualizes and determines what the dimensions are of cross-channel service consistency. The dimensions are found to be process and content consistency, according to the multichannel integration quality f...

  20. Identification of novel CBP interacting proteins in embryonic orofacial tissue

    International Nuclear Information System (INIS)

    cAMP response element-binding protein (CREB)-binding protein (CBP) plays an important role as a general co-integrator of multiple signaling pathways and interacts with a large number of transcription factors and co-factors, through its numerous protein-binding domains. To identify nuclear factors associated with CBP in developing orofacial tissue, a yeast two-hybrid screen of a cDNA library derived from orofacial tissue from gestational day 11 to 13 mouse embryos was conducted. Using the carboxy terminus (amino acid residues 1676-2441) of CBP as bait, several novel proteins that bind CBP were identified, including an Msx-interacting-zinc finger protein, CDC42 interaction protein 4/thyroid hormone receptor interactor 10, SH3-domain GRB2-like 1, CCR4-NOT transcription complex subunit 3, adaptor protein complex AP-1 β1 subunit, eukaryotic translation initiation factor 2B subunit 1 (α), and cyclin G-associated kinase. Results of the yeast two-hybrid screen were confirmed by glutathione S-transferase pull-down assays. The identification of these proteins as novel CBP-binding partners allows exploration of new mechanisms by which CBP regulates and integrates diverse cell signaling pathways