Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding
Energy Technology Data Exchange (ETDEWEB)
McCready, M.J.; Uphold, D.D.; Gifford, K.A. [Univ. of Notre Dame, IN (United States)
1997-12-31
Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.
Potential flow through channel constriction.
Lee, J.K.
1984-01-01
Potential flow through an eccentric, normal constriction of zero thickness in an infinitely long, straight channel of constant width and unit depth is studied by use of a Schwarz-Christoffel transformation. The transformation is integrated by a direct approach. Parametric equations for streamlines are obtained and used to compute an average streamline length for a potential-flow field. -from ASCE Publications Information
Catalytic reaction in confined flow channel
Energy Technology Data Exchange (ETDEWEB)
Van Hassel, Bart A.
2016-03-29
A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.
Precipitation patterns during channel flow
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Continental Lower-crustal Flow: Channel Flow and Laminar Flow
LI, Dewei
Numerous geological, geophysical and geochemical investigations and finite element modeling indicate that crustal flow layers exist in the continental crust. Both channel flow model and laminar flow model have been created to explain the flow laws and flow mechanisms. As revealed by the channel flow model, a low-viscosity channel in middle to lower crust in orogen or plateau with thick crust and high elevation would flow outward from mountain root in response to lateral pressure gradient resulted from topographic loading or to denudation. However, according to the laminar flow model proposed based on investigation of the Qinghai-Tibet plateau, circulative movement of crustal lithologies with different rheological properties between basin and orogen would occur, under the driving forces resulted from dehydration and melting of subduction plate on active continental margin and from thermal energy related to upwelling and diapiring of intercontinental mantle plume or its gravitational interactions. Similarly, when driven by gravity, the softened or melted substances of the lower crust in a basin would flow laterally toward adjacent mountain root, which would result in a thinned basin crust and a thickened orogenic crust. Partially melted magma within the thickened orogenic lower crust would cause vertical movement of metamorphic rocks of lower to middle crust due to density inversion, and the vertical main stress induced by thermal underplating of lower crust would in turn lead to formation of metamorphic core complexes and low-angle detachment fault systems. Lateral spreading of uplifting mountain due to gravitation potential would result in thrust fault systems on the border between mountain and basin. Meanwhile, detritus produced synchronously by intense erosion of uplifting mountain would be transported and deposited along the marginal deep depression in the foreland basin dragged by lower crust flow. Channel flow is similar to laminar flow in a variety of aspects
TRANSITIONAL FLOW IN CHANNEL JUNCTIONS
Institute of Scientific and Technical Information of China (English)
NI Han-gen; LIU Ya-kun
2004-01-01
On the basis of energy and continuity equations a simple one-dimensional formulation was proposed to predict the transitional flow at an open-channel junction. An empilical relation between the junction losses, the junction angle, and the discharge ratio was suggested which agrees well with the experimental results. The results calculated by the present formulation for the depth ratio were compared with the results of earlier one-dimensional formulations and experiments. It is found that the present results coincide better with experiments than those of others.
Flow and sediment transport across oblique channels
DEFF Research Database (Denmark)
Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen
1998-01-01
A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...
Anisotropic flow in striped superhydrophobic channels
Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I
2012-01-01
We report results of dissipative particle dynamics simulations and develop a semi-analytical theory and of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.
Inertial (non-Darcian) channeled seepage flow
Foda, Mostafa A.
1994-10-01
A slow wave solution is identified for an infinite elastic medium intersected by a two-dimensional fluid channel. Because the wave speed is much slower than the medium's elastic shear wave, the response in the elastic medium is governed by elastostatics. The inertia of the wave is essentially focused in the fluid channel. Furthermore, wave damping is caused by fluid viscous friction on the channel in an elastic solid. It is proposed that these solutions may also be used in the case of a granular porous medium. The seepage channels would then represent a network of preferential flow paths. Therefore we would allow, in this case, the channel porosity to be different from the average granular porosity. For a strongly channel seepage flow or for a low channel porosity the solution is shown to approach that of a single-channel solution, giving rise to a slow propagating wave mode. On the other hand, for weak channeling or nearly `homogeneous' seepage flow the solution is shown to reproduce Biot's (1956) critically damped wave of the second kind. It is proposed that the resonance observed by Foda and Tzang (1994) are in the form of these strongly channeled wave modes.
Stability of flowing open fluidic channels
Directory of Open Access Journals (Sweden)
Jue Nee Tan
2013-02-01
Full Text Available Open fluidic systems have a distinct advantage over enclosed channels in that the fluids exposed nature makes for easy external interaction, this finds uses in introduction of samples by adding liquid droplets or from the surrounding gaseous medium. This work investigates flowing open channels and films, which can potentially make use of the open section of the system as an external interface, before bringing the sample into an enclosed channel. Clearly, in this scenario a key factor is the stability of the flowing open fluid. The open channels investigated include a straight open channel defined by a narrow strip of solid surface, the edges of which allow large contact angle hysteresis, and a wider structure allowing for multiple inputs and outputs. A model is developed for fluid flow, and the findings used to describe the process of failure in both cases.
Slow flow in channels with porous walls
Jensen, Kaare H
2012-01-01
We consider the slow flow of a viscous incompressible liquid in a channel of constant but arbitrary cross section shape, driven by non-uniform suction or injection through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a set of coupled equations for the velocity potential in two dimensions. When the channel aspect ratio and Reynolds number are both small, the problem reduces to solving the biharmonic equation with constant forcing in two dimensions. With the relevant boundary conditions, determining the velocity field in a porous channels is thus equivalent to solving for the vertical displacement of a simply suspended thin plate under uniform load. This allows us to provide analytic solutions for flow in porous channels whose cross-section is e.g. a rectangle or an equilateral triangle, and provides a general framework for the extension of Berman flow (Journal of Applied Physics 24(9), p. 1232, 1953) to three dimensions.
Parameter estimation in channel network flow simulation
Institute of Scientific and Technical Information of China (English)
Han Longxi
2008-01-01
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
Parameter estimation in channel network flow simulation
Directory of Open Access Journals (Sweden)
Han Longxi
2008-03-01
Full Text Available Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
The technological prospective of non nuclear channels
International Nuclear Information System (INIS)
This prospective study concerns the electric power demand in 2050. It examines the three non nuclear sectors of production: the natural gas combined cycle power plants, the wind turbines among the renewable energies and the cogeneration electric power - heat in the ternary and building sector. The necessity of the network adaptation to the european competition and the decentralized production of electric power will suppose new investments of transport and storage. (A.L.B.)
Bulk flow scaling for turbulent channel and pipe flows
Chen, Xi; She, Zhen-Su
2016-01-01
We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.
Flow rate limitation in open capillary channel flows.
Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E
2006-09-01
This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed.
NUMERICAL MODELING OF COMPOUND CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A numerical model capable of predicting flow characteristics in a compound channel was established with the 3-D steady continuity and momentum equations along with the transport equations for turbulence kinetic energy and dissipation rate. Closure was achieved with the aid of algebraic relations for turbulent shear stresses. The above equations were discretized with implicit difference approach and solved with a step method along the flow direction. The computational results showing the lateral distribution of vertical average velocities and the latio of total flow in the compound channel agree well with the available experimental data.
Secondary Flow Effects in Relatively Narrow Channels
Institute of Scientific and Technical Information of China (English)
Rudolf Dvo(r)ák
2003-01-01
Secondary flow effects were discussed in numerous papers at the past ISAIF Symposia, mainly in connection with turbine or compressor cascades[1]. This paper will complement these papers by looking at the problem from the channel (or blade passages) geometry point of view. If we describe as secondary flows any flows in planes perpendicular to the main flow direction, then there are at least three kinds of secondary flows in a typical turbine rotor cascade: - secondary flows of the 1st kind, generated by centrifugal forces in closed curved channels, - secondary flows of the 2nd kind, generated by interacting boundary layers, mainly in corners (this will include even the horseshoe vortices), - secondary flows due to mass inflow through the tip clearance. Quite often all the secondary flow vortices merge downstream into a passage vortex with a non-negligible contribution to the channel (cascade) losses, and it is worth investigating the individual contributions to these losses to take them into account in the design procedure.
Critical Velocity in Open Capillary Channel Flows
Rosendahl, Uwe; Dreyer, Michael E.; Rath, Hans J.; Motil, Brian; Singh, Bhim S. (Technical Monitor)
2001-01-01
We investigate forced liquid flows through open capillary channels with free surfaces experimentally. The experiments were performed under low gravity conditions in the Bremen Drop Tower and on board the sounding rocket TEXUS-37. Open capillary channels (vanes) are used in surface tension tanks to transport the propellant and to provide a flow path for the bubble-free liquid supply to the thrusters. Since the free surfaces can only withstand a certain pressure differential between the liquid and ambient, the flow rate in the channel is limited. The maximum flow rate is achieved when the surfaces collapse and gas is ingested into the outlet. Since experimental and theoretical data of this flow rate limitation is lacking, the safety factors for the application of vanes in surface tension tanks must be unnecessary high. The aim of the investigation is to determine the maximum liquid flow rate and the corresponding critical flow velocity. The characteristic nondimensional parameters, OHNESORGE number, and gap ratio, cover a wide range of usual vanes. For the theoretical approach a one-dimensional momentum balance was set up. The numerical solution yields the maximum volume flux and the position of the free surface in good agreement with the experiments.
Stability in channel flow with fiber suspensions
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The constitutive equation of fiber suspensions is established on the basis of fiber orientation tensors. The modified Orr-Sommerfeld stability equation is obtained further and numerically solved by aid of spectral method and finite difference method. The computational results of channel flow without fibers agree well with the experimental data with a higher degree of accuracy than previous numerical results. The results of the channel flow with fiber suspensions indicate that the presence of fibers attenuates the instability of flow, increases the critical Reynolds number, reduces the growth rate of perturbations and narrows the range of unstable waves. The extent of the effect of fibers on the flow stability is in direct proportion to the volume fraction and aspect-ratio of the fibers.
Acquisition Study On Cawthorne Channel Prospect For SPDC
International Nuclear Information System (INIS)
The Cawthorne Channel prospect area lies in the Niger River Delta of South Central Nigeria. During 1987 to 1988, 3D seismic was conducted by Western Geophysical Company. According to SPDC's project plan, 4D seismic or 3D re-shoot program will be carried out in the year of 2002, in order to improve seismic data quality, monitor the variations of reservoir, and further to locate the infill wells for improvement of oil output in Cawthorne Channel prospect. From the knowledge of previous 3D, medium to deeper layer reflections show the lower resolution with poor S/N ratio due to lower coverage and limited maximum offset. The purpose of this paper is to introduce one way of optimizing the acquisition parameters such as trace interval, maximum offset, source array pattern and receiver pattern according to the requirement of vertical resolution, horizontal resolution, target depth and maximum frequency components to be protected. Finally the 4D/3D geometries are proposed from the geophysical parameters for Cawthorne Channel prospect
Flag flutter in inviscid channel flow
Alben, Silas
2014-01-01
Using nonlinear vortex-sheet simulations, we determine the region in parameter space in which a straight flag in a channel-bounded inviscid flow is unstable to flapping motions. We find that for heavier flags, greater confinement increases the size of the region of instability. For lighter flags, confinement has little influence. We then compute the stability boundaries analytically for an infinite flag, and find similar results. For the finite flag we also consider the effect of channel walls on the large-amplitude periodic flapping dynamics. We find that multiple flapping states are possible but rare at a given set of parameters, when periodic flapping occurs. As the channel walls approach the flag, its flapping amplitude decreases roughly in proportion to the near-wall distance, for both symmetric and asymmetric channels. Meanwhile, its dominant flapping frequency and mean number of deflection extrema (or "wavenumber") increase in a nearly stepwise fashion. That is, they remain nearly unchanged over a wide...
Liquid infused surfaces in turbulent channel flow
Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus
2014-11-01
A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).
Blade manipulators in turbulent channel flow
Vasudevan, B.; Prabhu, A.; Narasimha, R.
1992-01-01
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.
Topology optimization of Channel flow problems
DEFF Research Database (Denmark)
Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.
2005-01-01
This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002...... function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...
Interannual variability in the Yucatan Channel flow
Athié, Gabriela; Sheinbaum, Julio; Leben, Robert; Ochoa, José; Shannon, Michael R.; Candela, Julio
2015-03-01
Mooring measurements in the Yucatan Channel, from May 2010 to May 2011 and from July 2012 to June 2013 yield a mean transport of 27 and 25 Sv, respectively, with a subinertial standard deviation of 3.5 Sv. These mean transport values are higher than the 23 Sv reported from 21 months of similar measurements (1999-2001). Analysis of low-frequency variations of a transport proxy based on 20 years of altimetry data indicates that during 1999-2001, the flow through Yucatan Channel was anomalously low. This suggests that a sizable compensation through other channels off the Gulf of Mexico is required to match the transport cable measurements of the Florida Current at 27°N.
Flow in channels with superhydrophobic trapezoidal textures
Nizkaya, Tatiana V; Vinogradova, Olga I
2013-01-01
Superhydrophobic one-dimensional surfaces reduce drag and generate transverse hydrodynamic phenomena by combining hydrophobicity and roughness to trap gas bubbles in a microscopic textures. Recent work in this area has focused on specific cases of superhydrophobic stripes. Here we study theoretically and numerically the hydrodynamic flow in a channel with a superhydrophobic trapezoidal texture. These allow us to evaluate the drag reduction and anisotropy of the flow for various trapezoidal reliefs. Our results provide a framework for the rational design of superhydrophobic surfaces for microfluidic applications.
TVD schemes for open channel flow
Delis, A. I.; Skeels, C. P.
1998-04-01
The Saint Venant equations for modelling flow in open channels are solved in this paper, using a variety of total variation diminishing (TVD) schemes. The performance of second- and third-order-accurate TVD schemes is investigated for the computation of free-surface flows, in predicting dam-breaks and extreme flow conditions created by the river bed topography. Convergence of the schemes is quantified by comparing error norms between subsequent iterations. Automatically calculated time steps and entropy corrections allow high CFL numbers and smooth transition between different conditions. In order to compare different approaches with TVD schemes, the most accurate of each type was chosen. All four schemes chosen proved acceptably accurate. However, there are important differences between the schemes in the occurrence of clipping, overshooting and oscillating behaviour and in the highest CFL numbers allowed by a scheme. These variations in behaviour stem from the different orders and inherent properties of the four schemes.
Modelling debris flows down general channels
Directory of Open Access Journals (Sweden)
S. P. Pudasaini
2005-01-01
Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to
Flow of foam through a convergent channel.
Dollet, Benjamin; Bocher, Claire
2015-11-01
We study experimentally the flow of a foam confined as a bubble monolayer between two plates through a convergent channel. We quantify the velocity, the distribution and orientation of plastic events, and the elastic stress, using image analysis. We use two different soap solutions: a sodium dodecyl sulfate (SDS) solution, with a negligible wall friction between the bubbles and the confining plates, and a mixture containing a fatty acid, giving a large wall friction. We show that for SDS solutions, the velocity profile obeys a self-similar form which results from the superposition of plastic events, and the elastic deformation is uniform. For the other solution, the velocity field differs and the elastic deformation increases towards the exit of the channel. We discuss and quantify the role of wall friction on the velocity profile, the elastic deformation, and the rate of plastic events. PMID:26607260
NUMERICAL SIMULATION OF SKIMMING FLOW OVER MILD STEPPED CHANNEL
Institute of Scientific and Technical Information of China (English)
DONG Zhi-yong; LEE Joseph Hun-wei
2006-01-01
Numerical simulation of stepped channel flow was conducted using turbulence models based on the VOF technique. Stepped channel flow is a complicated air-water two-phase flow with free surface, which can be divided into three flow regimes: skimming flow, nappe flow and transition flow. The characteristics of skimming flow over mild stepped channel was investigated, including friction factors, air concentration profiles velocity field, clear-water and bulked depths, static pressure, etc. Smooth channel flow was also simulated to compare the hydraulic characteristics of the stepped channel flow with the smooth one. Comparisons between the computed and the measured were made. Furthermore, comparison of the computed air concentration with Straub and Anderson's data was also performed. The Fluent 6.1 software was employed to conduct this numerical simulation work.
Static flow instability in subcooled flow boiling in parallel channels
Energy Technology Data Exchange (ETDEWEB)
Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.
1995-04-01
A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime.
Free-Molecular Gas Flow in Narrow (Nanoscale) Channel
Levdansky, V.V.; Roldugin, V.I.; Žďanov, V.M.; Ždímal, V. (Vladimír)
2014-01-01
Free-molecular gas flow in cylindrical channels (capillaries) in various schemes of molecule scattering by channel walls in view of surface diffusion is considered. The problem of separation of gas mixtures in their flow through membranes with nanopores is studied. The problem of uniform deposition of thin films on the inner surface of the fine cylindrical channel is discussed.
Experiments on Unsteady Seperating Flow in an Open Channel
Koppel, T.
1981-01-01
Experiments on unsteady separating flow past a sudden expansion in an open channel are described. To simulate tidal flow the flow rate in the approach channel varied as a half-sine with time. Different visualization techniques to obtain an insight into the behaviour of the separating vortex in time
VELOCITY PROFILES OF TURBULENT OPEN CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
WANG Dianchang; WANG Xingkui; YU Mingzhong; LI Danxun
2001-01-01
The log-law and the wake law of velocity profile for open channel flows are discussed and compared in this paper. Experimental data from eight sources are used to verify the velocity distribution models.The effect of bed level on the velocity profile is analyzed. A formula to calculate the maximum velocity is proposed. In the region of y ＜δm , the velocity profile approximately follows the log-law. For the region of y ＞δm , the effect of the aspect ratio is considered. A new velocity profile model on the basis of log-law that can unify all of the hydraulic bed roughness is presented.
Magnetohydrodynamic channel flows with weak transverse magnetic fields.
Rothmayer, A P
2014-07-28
Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large.
Optimization of Meridional Flow Channel Design of Pump Impeller
Miyauchi Sunao; Horiguchi Hironori; Fukutomi Jun-ichirou; Takahashi Akihiro
2004-01-01
The meridional flow channel design of a pump impeller affects its performance. However, since so many design parameters exist, a new design method is proposed in which a meridional and blade-to-blade flow channel is designed by the parallel use of the circulation distribution provided by the designer. Thus, an optimization method was used to design an axis-symmetrical meridional flow channel from the circulation distribution. In addition, the inverse design method proposed by Zangeneh et al. ...
Magnetohydrodynamic channel flows with weak transverse magnetic fields.
Rothmayer, A P
2014-07-28
Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large. PMID:24936018
Covert Flow Graph Approach to Identifying Covert Channels
Directory of Open Access Journals (Sweden)
XiangMei Song
2011-12-01
Full Text Available In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of Shared Resource Matrix and Covert Flow Tree method. Finally, the comparison between Covert Flow Graph approach and other two methods is discussed. Different from previous methods, Covert Flow Graph approach provides a deep insight for system’s information flows, and gives an effective algorithm for covert channel identification.
Hydraulic flow through a channel contraction: multiple steady states
Akers, B.; Bokhove, O.
2008-01-01
We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width $b_0$ ending in a linear contraction of minimum width $b_c$. Experimentally, we observe upst
Stationary flow solution for water levels in open channels
Opheusden, van J.H.J.; Molenaar, J.; Beltman, W.H.J.; Adriaanse, P.I.
2010-01-01
We study stationary flow in open discharge channels. A model is derived from basic principles, which is solved numerically for the water level and discharge as a function of position along the channel. The model describes the effect of external inflow from fields adjacent to the channel. Several sce
Container terminals in Europe : their position in marketing channel flows
Wiegmans, B.W.; Nijkamp, P.; Rietveld, P.
2001-01-01
This paper aims to address the linkage between logistics (in particular, the management of marketing channel flows) and transport markets, while also the interaction between these two markets and inter-modal container terminals is analysed. The marketing channel theory is used to describe all relevant actors and flows that run through marketing channels, starting with customer needs and ending with customer satisfaction. Porter’s theory of competitive advantages is used to review competitive ...
Modeling two-phase flow in PEM fuel cell channels
Wang, Yun; Basu, Suman; Wang, Chao-Yang
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels
Allen, Jeffrey S.
2005-01-01
Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.
Energy Technology Data Exchange (ETDEWEB)
Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering
2005-07-01
Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.
Experiments on Unsteady Seperating Flow in an Open Channel
Koppel, T
1981-01-01
Experiments on unsteady separating flow past a sudden expansion in an open channel are described. To simulate tidal flow the flow rate in the approach channel varied as a half-sine with time. Different visualization techniques to obtain an insight into the behaviour of the separating vortex in time and space were used. Laser-Doppler velocimetry (LDV) was employed to measure velocities and turbulence characteristics. The data obtained from the LDV-measurements was processed on a computer using...
Inertia-Dominated Capillary Channel Flow in Microgravity
Klatte, Joerg; Grah, Aleksander; Dreyer, Michael
2009-01-01
The fluid dynamics video shows three-dimensional experimental and numerical investigations of open channel flows in microgravity. The dynamic reorientation of the free surface from 1g to 0g environment can be observed in a wedge-shaped channel for subcritical and for supercritical flow rate with a collapse of the interface. In addition three-dimensional computations determine important characteristics of the flow, such as the free surface shape, the velocity field, the dynamics of the reorien...
Numerical computation of pulsatile flow through a locally constricted channel
Bandyopadhyay, S.; Layek, G. C.
2011-01-01
This paper deals with the numerical solution of a pulsatile laminar flow through a locally constricted channel. A finite difference technique has been employed to solve the governing equations. The effects of the flow parameters such as Reynolds number, flow pulsation in terms of Strouhal number, constriction height and length on the flow behaviour have been studied. It is found that the peak value of the wall shear stress has significantly changed with the variation of Reynolds numbers and constriction heights. It is also noted that the Strouhal number and constriction length have little effect on the peak value of the wall shear stress. The flow computation reveals that the peak value of the wall shear stress at maximum flow rate time in pulsatile flow situation is much larger than that due to steady flow. The constriction and the flow pulsation produce flow disturbances at the vicinity of the constriction of the channel in the downstream direction.
LONGITUDINAL DISPERSION IN SEDIMENT-LADEN OPEN CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
Z.AHMAD; U.C.KOTHYARI; K.G.RANGA RAJU
2004-01-01
Laboratory experiments on longitudinal dispersion in clear-water and sediment-laden open channel flows are reported. Data from these experiments and those available from previous studies indicate that the suspended sediment present in the flow affects the longitudinal dispersion process. The observed velocity distributions over the depth of sediment-laden flows indicate that the velocity deviates from the mean velocity more in sediment-laden flows than in clear-water flows. The velocity distributions over the cross section and secondary flow in the channel are also expected to be altered due to the presence of suspended sediments in the flow. For these reasons, more dispersion is found in sediment-laden flows than in corresponding clear-water flows. A predictor for the dispersion coefficient in sediment-laden flows is proposed.
Curved open-channel flows - a numerical study
Van Balen, W.
2010-01-01
The flow of water through a river bend can be characterized as a turbulent open-channel flow that is dominated by streamline curvature. In order to adequately manage the planimetry of meandering rivers and the according safety aspects, the features of the flow and the associated turbulence have to b
Computation of gradually varied flow in compound open channel networks
Indian Academy of Sciences (India)
H Prashanth Reddy; M Hanif Chaudhry; Jasim Imran
2014-12-01
Although, natural channels are rarely rectangular or trapezoidal in cross section, these cross sections are assumed for the computation of steady, gradually varied flow in open channel networks. The accuracy of the computed results, therefore, becomes questionable due to differences in the hydraulic and geometric characteristics of the main channel and floodplains. To overcome these limitations, an algorithm is presented in this paper to compute steady, gradually varied flow in an open-channel network with compound cross sections. As compared to the presently available methods, the methodology is more general and suitable for application to compound and trapezoidal channel cross sections in series channels, tree-type or looped networks. In this method, the energy and continuity equations are solved for steady, gradually varied flow by the Newton–Raphson method and the proposed methodology is applied to tree-type and looped-channel networks. An algorithm is presented to determine multiple critical depths in a compound channel. Modifications in channel geometry are presented to avoid the occurrence of multiple critical depths. The occurrence of only one critical depth in a compound cross section with modified geometry is demonstrated for a tree-type channel network.
Experimental study on flow behavior at open channel confluences
Institute of Scientific and Technical Information of China (English)
WANG Xiekang; WANG Xianye; LU Weizhen; LIU Tonghuan
2007-01-01
Channel confluences are common in natural rivers and hydraulic engineering, and the flow behavior at confluences becomes very complex because of the interactionbetween the tributary and the main river. In this study, the experiments were performed in a combined flume with a 30~ angle between the main and tributary flume located at Sichuan University. The velocity was measured by using a three-component acoustic Doppler velocimeter (ADV) over a grid defined throughout the junction region. Based on the analysis of the velocity at the confluence, the distinctive char- acteristics of a channel confluence flow may be divided into several zones including a zone of separation immediately downstream of the junction branch channel, the maximum and minimum velocity regions at the upstream and down- stream in the confluent channel, and a shear plane developed between the two combining flows downstream of the conflu- ent channel. In addition, secondary circulations in different directions at the higher and lower velocity zones are observed as well.
Flow boiling in microgap channels experiment, visualization and analysis
Alam, Tamanna; Jin, Li-Wen
2013-01-01
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c
Channel morphology and flow structure of an abandoned channel under varying stages
Costigan, Katie H.; Gerken, Joseph E.
2016-07-01
Abandoned channels are those channels left behind as meandering rivers migrate over their floodplains and remain among the most enigmatic features of the riverscape, especially related to their hydraulics and geomorphology. Abandoned channels are being considered and implemented as restoration and rehabilitation strategies for large rivers but we do not yet have a sound understanding of their hydromorphodynamics. The overall objectives of this work were to assess the bed morphology and flow structure of a large, dynamically connected abandoned channel (e.g., the channel is inundated during annual or decadal floods through bank overflow) under varying stages. Here we document the hydromorphodynamics of an abandoned channel during 3.4, 9.2, and 37.9 return interval discharges using an acoustic Doppler current profiler. Flow separation was observed along the channel entrance during the lowest flow surveying campaign but was not seen during the higher flow campaign. Width to depth ratio and channel width at the exit both progressively decreased from the first surveying campaign, despite the final campaign having the highest measured discharge. Large zones of flow stagnation and recirculation were observed, with depth-averaged velocity vectors not aligning in one direction, in the abandoned channel where water from the entrance was meeting water coming up from the exit during moderate discharges. The abandoned channel has been maintained for at least 25 years due to its low diversion angle and it being perched above the Kansas River. Results of this study provide insights of how flow hydraulics and physical characteristics of abandoned channel change under varying stages.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Inertia-Dominated Capillary Channel Flow in Microgravity
Klatte, Joerg; Dreyer, Michael
2009-01-01
The fluid dynamics video shows three-dimensional experimental and numerical investigations of open channel flows in microgravity. The dynamic reorientation of the free surface from 1g to 0g environment can be observed in a wedge-shaped channel for subcritical and for supercritical flow rate with a collapse of the interface. In addition three-dimensional computations determine important characteristics of the flow, such as the free surface shape, the velocity field, the dynamics of the reorientation and the flow rate depended collapse of the free surface. The good agreement validates the capabilities of the numerical solver.
NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS
Institute of Scientific and Technical Information of China (English)
Subhasish DEY
2003-01-01
The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.
Flow resistance in open channels with fixed movable bed
Simoes, Francisco J.
2010-01-01
In spite of an increasingly large body of research by many investigators, accurate quantitative prediction of open channel flow resistance remains a challenge. In general, the relations between the elements influencing resistance (turbulence, boundary roughness, and channel shape features, such as discrete obstacles, bars, channel curvature, recirculation areas, secondary circulation, etc.) and mean flow variables are complex and poorly understood. This has resulted in numerous approaches to compute friction using many and diverse variables and equally diverse prescriptions for their use. In this paper, a new resistance law for surface (grain) resistance, the resistance due to the flow viscous effects on the channel boundary roughness elements, is presented for the cases of flow in the transition (5 flow regimes, where Re* is the Reynolds number based on shear velocity and sediment particle mean diameter. It is shown that the new law is sensitive to bed movement without requiring previous knowledge of sediment transport conditions. Comparisons between computation and measurements, as well as comparisons with other well-known existing roughness predictors, are presented to demonstrate its accuracy and range of application. It is shown that the method accurately predicts total friction losses in channels and natural rivers with plane beds, regardless of sediment transport conditions. This work is useful to hydraulic engineers involved with the derivation of depth-discharge relations in open channel flow and with the estimation of sediment transport rates for the case of bedload transport.
Numerical Investigation of Developing Velocity Distributions in Open Channel Flows
Directory of Open Access Journals (Sweden)
Usman Ghani
2014-04-01
Full Text Available The velocity profiles in open channel flows start developing after entering into the channel for quite some length. All types of laboratory experiments for open channel flows are carried out in the fully developed flow regions which exist at some length downstream the inlet. In this research work an attempt has been made to investigate the impact of roughness and slope of the channel bed on the length required for establishment of fully developed flow in an open channel. A range of different roughness values along with various slopes were considered for this purpose. It was observed that an increase in roughness results in reduction of development length; and development length reduces drastically when roughness reaches to the range normally encountered in open channel flows with emergent vegetation or natural river flows. However, it was observed that the change of slope did not have any noticeable effect on development length. This work suggests that CFD (Computational Fluid Dynamics technique can be used for getting a reliable development length before performing an experimental work
LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW
Institute of Scientific and Technical Information of China (English)
ZOU Li-yong; LIU Nan-sheng; LU Xi-yun
2004-01-01
Pulsating turbulent open channel flow has been investigated by the use of Large Eddy Simulation (LES) technique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulent SGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equations are numerically solved by a fractional-step method. The objective of this study is to deal with the behavior of the pulsating turbulent open channel flow and to examine the reliability of the LES approach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Reτ ) is chosen as 180 based on the friction velocity and the channel depth. The frequency of the driving pressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statistical turbulence quantities as well as the flow structures are analyzed.
Stability of stratified two-phase flows in inclined channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima
2016-01-01
Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...
Pulsating laminar fully developed channel and pipe flows.
Haddad, Kais; Ertunç, Ozgür; Mishra, Manoranjan; Delgado, Antonio
2010-01-01
Analytical investigations are carried out on pulsating laminar incompressible fully developed channel and pipe flows. An analytical solution of the velocity profile for arbitrary time-periodic pulsations is derived by approximating the pulsating flow variables by a Fourier series. The explicit interdependence between pulsations of velocity, mass-flow rate, pressure gradient, and wall shear stress are shown by using the proper dimensionless parameters that govern the flow. Utilizing the analytical results, the scaling laws for dimensionless pulsation amplitudes of the velocity, mass-flow rate, pressure gradient, and wall shear stress are analyzed as functions of the dimensionless pulsation frequency. Special attention has been given to the scaling laws describing the flow reversal phenomenon occurring in pulsating flows, such as the condition for flow reversal, the dependency of the reversal duration, and the amplitude. It is shown that two reversal locations away from the wall can occur in pulsating flows in pipes and channels and the reversed amount of mass per period reaches a maximum at a certain dimensionless frequency for a given amplitude of mass-flow rate fluctuations. These analyses are numerically conducted for pipe and channel flows over a large frequency range in a comparative manner. PMID:20365456
An Experimental Study on Alcohol Flow in Micro-Channels
Directory of Open Access Journals (Sweden)
R. Rathnasamy
2012-09-01
Full Text Available Experiments were performed to study the flow characteristics of ethanol and methanol flow in rectangular micro-channels using test models 1 and 2 (TM1, TM2. The TM1 and TM2 used were of 47 and 50 micro-channels in rectangular cross-section of equivalent diameters of 387 and 327 m respectively. The channel length of 192 mm were fabricated on a 304 stainless steel substrate (230 mm x 160 mm x 1.6 mm by photo chemical etching process. Covering the top with another plate of 0.5 mm thickness formed the channels by vacuum brazing. The pressure drop and flow rate data were measured and used as raw data to evaluate friction factors in micro-channel. Analysis of friction factor vs Reynolds number relation indicates that friction factor for liquid flow is same as that of normal channels in the laminar region. Transition region lies in Re > 500 and transition set off at lower Re ~ 500 in comparison to normal channel. Further it may be possible to identify transition as the deviation of NDPD values from laminar region.
FLOW FIELD IN SCOURED ZONE OF CHANNEL CONTRACTIONS
Institute of Scientific and Technical Information of China (English)
Rajkumar V. RAIKAR; Subhasish DEY
2004-01-01
Experiments were conducted in a laboratory flume to measure the two-dimensional turbulent flow field in the scoured zone of channel contractions under a clear-water scour condition. The Acoustic Doppler Velocimeter (ADV) was used to detect the flow field at different vertical lines along the centerline of uncontracted (main channel) and contracted zones of the channel. The distributions of time-averaged velocity components, turbulent intensity, turbulent kinetic energy, and Reynolds stresses are presented in nondimensional graphical form. The bed shear stresses are computed from the measured Reynolds stresses being in threshold condition within the zone of contraction where bed was scoured. The data presented in this paper would be useful to the investigators for the development of kinematic flow model and morphological model of scour at a channel or river contraction.
ABSORBING BOUNDARY TECHNIQUE FOR OPEN CHANNEL FLOWS. (R825200)
An absorbing boundary condition is formulated and applied to the one-dimensional open channel flow equations in conjunction with an explicit MacCormack scheme. The physical flow domain has been truncated by introducing an artificial pseudo-boundary. By using an appropriate bounda...
Long wavelength flow analysis in a curved channel
Energy Technology Data Exchange (ETDEWEB)
Ali, Nasir [Dept. of Mathematics, International Islamic Univ., Islamabad (Pakistan); Sajid, Muhammad [Theoretical Plasma Physics Div., PINSTECH, P.O. Nilore, Islamabad (Pakistan); Hayat, Tasawar [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan)
2010-03-15
This study is concerned with the peristaltic flow of a viscous fluid in a curved channel. Mathematically the problem is governed by two partial differential equations. Closed form solutions of the stream function, axial velocity, and pressure gradient are developed under long wavelength and low Reynolds number assumptions. The influence of curvature is analyzed on various flow quantities of interest. (orig.)
Vortex structures in turbulent channel flow behind an orifice
Makino, Soichiro; Iwamoto, Kaoru; Kawamura, Hiroshi
2006-11-01
Direct numerical simulation of a channel flow with an orifice has been performed for Reτ0=10 - 600, where uτ0 is the friction velocity calculated from the mean pressure gradient, δ the channel half width and ν the kinematic viscosity. In the wake region, the mean flow becomes asymmetric by the Coanda effect. The degree of asymmetry increases with increasing the Reynolds number for the laminar flow at Reτ0effect upon the reattachment locations and streamwise vortices near the wall in the wake region.
2-D SIMULATION OF CHANNEL FLOWS WITH MOVEABLE BED
Institute of Scientific and Technical Information of China (English)
Wilhelm BECHTELER; Davood FARSHI
2001-01-01
This paper presents some preliminary results of 2-D numerical simulation of open channel flow with moveable bed. The unsteady two dimensional channel flow and sediment transport are simulated by solving shallow water equations and sediment continuity equation in conservation form based on unstructured finite volume method. Redefining longitudinal and transverse slopes of the bed is implemented in order to consider them in the bedload equation. A simple modeling treatment dealing with secondary flow effect on sediment movement is also discussed. Finally, two examples of numerical simulation are presented.
NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS
Institute of Scientific and Technical Information of China (English)
Xu Jie; Gu Chuangang; Wang Tong
2004-01-01
The algorithm of gaseous flow in bi-dimensional micro-channels is set up and the corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels is numerically analyzed and the pressure drop along the duct as well as the velocity profile in the micro-channels is obtained. The numerical results agreed well with the experimental results in the references. Moreover, the effects of Kn, (σv and Re on the velocity profiles are analyzed. It is found that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundary increases; the tangential momentum coefficient (σv affects the slip velocity greatly. The slip velocity increases with decreasing (σv In the slip flow regime and for low Re numbers, the slip velocity is little influenced by the Re number.
Flows and mixing in channels with misaligned superhydrophobic walls
Nizkaya, Tatiana V; Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I
2014-01-01
Aligned superhydrophobic surfaces with the same texture orientation reduce drag in the channel and generate secondary flows transverse to the direction of the applied pressure gradient. Here we show that a transverse shear, superimposed with the conventional Poiseuille and slip-driven plug flows, can be easily generated by using superhydrophobic channels with misaligned textured surfaces. We propose a general theoretical approach to quantify this transverse flow by introducing the concept of an effective shear tensor. To illustrate its use, we present approximate theoretical solutions and Dissipative Particle Dynamics simulations for striped superhydrophobic channels. Our results demonstrate that the transverse shear leads to complex flow patterns on the length scale of the texture period, which leads to a new mechanism of a passive mixing at low Reynolds number. This vertical mixing occurs at the texture period scale and does not require the contribution of side walls. Our results provide a basis for design ...
Flows and mixing in channels with misaligned superhydrophobic walls
Nizkaya, Tatiana V.; Asmolov, Evgeny S.; Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I.
2015-03-01
Aligned superhydrophobic surfaces with the same texture orientation reduce drag in the channel and generate secondary flows transverse to the direction of the applied pressure gradient. Here we show that a transverse shear can be easily generated by using superhydrophobic channels with misaligned textured surfaces. We propose a general theoretical approach to quantify this transverse flow by introducing the concept of an effective shear tensor. To illustrate its use, we present approximate theoretical solutions and Dissipative Particle Dynamics simulations for striped superhydrophobic channels. Our results demonstrate that the transverse shear leads to complex flow patterns, which provide a new mechanism of a passive vertical mixing at the scale of a texture period. Depending on the value of Reynolds number two different scenarios occur. At relatively low Reynolds number the flow represents a transverse shear superimposed with two corotating vortices. For larger Reynolds number these vortices become isolated, by suppressing fluid transport in the transverse direction.
Flow-induced channelization in a porous medium
Mahadevan, Amala
2010-01-01
We propose a theory for erosional channelization induced by fluid flow in a saturated granular porous medium. When the local fluid flow-induced stress is larger than a critical threshold, grains are dislodged and carried away so that the porosity of the medium is altered by erosion. This in turn affects the local hydraulic conductivity and pressure in the medium and results in the growth and development of channels that preferentially conduct the flow. Our multiphase model involves a dynamical porosity field that evolves along with the volume fraction of the mobile and immobile grains in response to fluid flow that couples the spatiotemporal dynamics of the three phases. Numerical solutions of the resulting initial boundary value problem show how channels form in porous media and highlights how heterogeneity in the erosion threshold dictates the form of the patterns and thus the ability to control them.
Reynolds number effects on particle agglomeration in turbulent channel flow
M Afkhami; A. Hassanpour; Fairweather, M.; Njobuenwu, DO
2014-01-01
The work described in this paper employs large eddy simulation and a discrete element method to study particle-laden flows, including particle dispersion and agglomeration, in a horizontal channel. The particle-particle interaction model is based on the Hertz- Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different flow Reynolds numbers, and therefore the impact of turbulence, on particle agglomeratio...
Predictions for particle deposition from LES of ribbed channel flow
International Nuclear Information System (INIS)
Predictions for the deposition of spherical and cylindrical particles from a ribbed channel flow onto adjacent flow boundaries are obtained using large eddy simulation (LES) under the assumption of one-way coupling. Results indicate that spherical particles tend to accumulate on the vertical rib wall facing the mean-flow direction with little particle deposition onto surfaces immediately downstream of the rib. This preferential deposition is not predicted for cylindrical particles
Logtenberg, Hella; Lopez-Martinez, Maria J.; Feringa, Ben L.; Browne, Wesley R.; Verpoorte, Elisabeth
2011-01-01
An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by
An experimental study of rip channel flow
DEFF Research Database (Denmark)
Drønen, Nils Kjetil; Karunarathna, H.; Fredsøe, Jørgen;
2002-01-01
the flow in the near bed region. Particle-tracking experiments illustrate the near bed flow pattern over the entire area. These demonstrate how the overall trajectory pattern changes as a function of the distance of wave breaking from the bar crest: For some conditions, the rip current is fed from...... for different wave climate and water level conditions reveal a strong correlation between the rip current intensity and the wave height (both normalized). (C) 2002 Elsevier Science B.V. All rights reserved....
Micro-channel convective boiling heat transfer with flow instabilities
International Nuclear Information System (INIS)
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
The mechanical energy equation for total flow in open channels
Institute of Scientific and Technical Information of China (English)
刘士和; 范敏; 薛娇
2014-01-01
The mechanical energy equation is a fundamental equation of a 1-D mathematical model in Hydraulics and Engineering Fluid Mechanics. This equation for the total flow used to be deduced by extending the Bernoulli’s equation for the ideal fluid in the streamline to a stream tube, and then revised by considering the viscous effect and integrated on the cross section. This derivation is not rigorous and the effect of turbulence is not considered. In this paper, the energy equation for the total flow is derived by using the Navier-Stokes equations in Fluid Mechanics, the results are as follows:(1) A new energy equation for steady channel flows of in-compressible homogeneous liquid is obtained, which includes the variation of the turbulent kinetic energy along the channel, the for-mula for the mechanical energy loss of the total flow can be determined directly in the deduction process. (2) The theoretical solution of the velocity field for laminar flows in a rectangular open channel is obtained and the mechanical energy loss in the energy equa-tion is calculated. The variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are obtained. (3) The turbulent flow in a rectangular open channel is simulated using 3-D Reynolds averaged equations closed by the Reynolds stress model (RSM), and the variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are discussed.
Separation of Particles in Swirling Flow in Coaxial Channel
Directory of Open Access Journals (Sweden)
Vasilevsky Michail
2016-01-01
Full Text Available Cyclones are widely used devices to separate a dispersed phase (e.g. particles or droplets from a continuous phase. The separation of particles in coaxial channels with different length is considered in paper. In this study we show that as coaxial channels length grows, the efficiency increases. In addition we demonstrate that as a gap between cylinder components is reduced, the aerosol spray efficiency is reduced also in turbulent flow.
COMPUTATIONAL ANALYSIS OF PARTICULATE FLOW IN EXPANSION CHANNEL
Directory of Open Access Journals (Sweden)
Nor Azwadi Che Sidik
2013-01-01
Full Text Available Computational prediction of fluid-solid particle interaction in an expansion horizontal channel with wide range of Reynolds numbers. Lagrangian-Lagrangian numerical technique to predict the movement of solid particle. The method is based on mesocale scheme of lattice Boltzmann method for prediction of fluid dynamics and second Newtonâs law for the dynamics of solid particles. The flow behaviour at the downstream of the expansion channel is critically dependence on the Reynolds number of the flow. The removal percentage of the contaminant critically dependence on the flow structure donwstream of the expansion channel. The strength of recirculation region plays significant role due to the step in the cavity.
Numerical study on flow rate limitation of open capillary channel flow through a wedge
Directory of Open Access Journals (Sweden)
Ting-Ting Zhang
2016-04-01
Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.
Stability of stratified two-phase flows in inclined channels
Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.
2016-08-01
Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.
Ultrasound Doppler Velocimetry Measurements in Turbulent Liquid Metal Channel Flow
Rivero, Michel; Jian, Dandan; Karcher, Christian; Cuevas, Sergio
2010-11-01
Control of molten metal flow using magnetic fields is important in industrial applications. The Electromagnetic Flow Control Channel (EFCO) is an experimental test facility, located at Ilmenau University of Technology, for the development of such kind of control systems. The working fluid is the low-melting liquid metal alloy GaInSn in eutectic composition. In this channel, flow control is realized by combining and coupling the non-contact flow driving technology of electromagnetic pumps based on rotating permanent magnets and the non-contact flow rate measurement technology termed Lorentz Force Velocimetry (LFV). The flow rate is adjusted by controlling the rotation rate of the permanent magnet system. Physically, LFV is based on measuring the force acting on a magnet system. This force is induced by the melt flow passing through the static magnetic field generated by the system and is proportional to the flow. To calibrate such flow meters, we apply UDV technique to measure and analyse both turbulent hydrodynamic and MHD flow profiles in EFCO at various Reynolds numbers.
Behaviour of organised disturbances in fully developed turbulent channel flow
Indian Academy of Sciences (India)
P K Sen; Srinivas V Veeravali
2000-10-01
In our earlier work we have shown the relevance of stability theory in understanding the sustenance of turbulence in turbulent boundary layers. Here we adopt the same model to study the evolution of organised disturbances in turbulent channel flow. Since the dominant modes are wall modes we find that the stability characteristics in the two flows are nearly identical although the boundary conditions (at the edge of the boundary layer and at the centre of the channel) are different. Comparisons with the experiments of Hussain and Reynolds are also presented.
Bijlard, M.J.; Oliemans, R.V.A.; Portela, L.M.; Ooms, G.
2010-01-01
The results of point-particle Eulerian–Lagrangian direct numerical simulation (DNS) calculations of dilute particle-laden turbulent channel flow are used to study the effect of the particles on the local flow topology. It is found that in the viscous sublayer, the flow becomes increasingly more two-dimensional as the two-way coupling effect (due to interaction between particles and fluid flow) increases with increasing particle load. Beyond the viscous sublayer the modifications in flow topol...
Yield Hardening of Electrorheological Fluids in Channel Flow
Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.
2016-06-01
Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.
LARGE EDDY SIMULATION OF OPEN CHANNEL FLOWS WITH NONSUBMERGED VEGETATION*
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; WU Zhen-lei; QIAN Zhong-dong; GENG Chuan
2011-01-01
Results of several Large Eddy Simulations (LES) of open channel flows with non-submerged vegetation are presented in this article. It is shown that the vegetation can make the flow structure in the mainstream direction uniform for both supercritical and subcritical flows. For subcritical flows, the LES results of the ensemble-average of time-averaged velocity distributions at four vertical sections around a single plant are in good agreement with measurements. The velocity sees double peaks at the upper and lower positions of flows. For supercritical flows, the ensemble-average velocities see some discrepancy between LES and measurement results. Some secondary flow eddies appear near the single plant, and they just locate in the positions of the double peaks in stream-wise velocity profiles. It is also found that the vegetation drag coefficient deceases as the Froude number increases.
Turbulent channel without boundaries: the periodic Kolmogorov flow.
Musacchio, S; Boffetta, G
2014-02-01
The Kolmogorov flow provides an ideal instance of a virtual channel flow: It has no boundaries, but it possesses well defined mean flow in each half wavelength. We exploit this remarkable feature for the purpose of investigating the interplay between the mean flow and the turbulent drag of the bulk flow. By means of a set of direct numerical simulations at increasing Reynolds number, we show the dependence of the bulk turbulent drag on the amplitude of the mean flow. Further, we present a detailed analysis of the scale-by-scale energy balance, which describes how kinetic energy is redistributed among different regions of the flow while being transported toward small dissipative scales. Our results allow us to obtain an accurate prediction for the spatial energy transport at large scales.
Flow bifurcations, Eulerian chaos and flow mixing in open block tandem channels
International Nuclear Information System (INIS)
Heat transfer enhancement in open channels with geometrical inhomogeneities may occur when the flow evolves from a laminar to a turbulent regime through a transition scenario by increasing a critical flow parameter as the Reynolds number. In converging-diverging wavy channels for example, flow regimes of Lagrangian chaos -that enhances the flow mixing- and Eulerian chaos are the responsible for the enhancement of heat transfer from a hot surface to a mean flow. Chips attached to a motherboard generate a high amount of heat that needs to be removed. The chip performance depends on the chip temperature, which must remain in a low (reasonable) value. One way of removing heat is through a forced flow that extracts the heat from the chip surface. The heat transport rate depends strongly on the flow characteristics, which vary with the Reynolds number. A set of chips can be seen as a block tandem channel, where each block generates heat that needs to be extracted through the chip surface by a flow that circulates between the block and upper surfaces. This paper reports flow characteristics numerical investigations in a block tandem channel. The flow characteristics are obtained from direct numerical simulations of the Navier-Stokes and continuity equations using spectral element methods for laminar and transitional Reynolds numbers flow regimes. Extended and reduced 2D computational models are used to determine the appropriated computational domain for the simulations, which are meshed to capture and describe flow characteristics, such as velocity gradients, vortex dynamics, and flow mixing that develops for transitional flows. The flow characteristics, obtained in terms of vortex dynamics, Fourier spectra, and pseudo-phase spaces, show a transition scenario characterized by a first Hopf bifurcation as the flow evolves from a laminar to a periodic flow, and a second Hopf bifurcation as the flow evolves to quasi-periodic flow for higher Reynolds numbers. The first flow
Elastic Turbulence in Channel Flows at Low Reynolds number
Qin, Boyang
2016-01-01
We experimentally demonstrate the existence of elastic turbulence in straight channel flow at low Reynolds numbers. Velocimetry measurements show non-periodic fluctuations in the wake of curved cylinders as well as in a parallel shear flow region. The flow in these two locations of the channel is excited over a broad range of frequencies and wavelengths, consistent with the main features of elastic turbulence. However, the decay of the initial elastic turbulence around the cylinders is followed by a growth downstream in the straight region. The emergence of distinct flow characteristics both in time and space suggests a new type of elastic turbulence, markedly different from that near the curved cylinders. We propose a self-sustaining mechanism to explain the sustained fluctuations in the parallel shear region.
DNS of turbulent channel flow at very low Reynolds numbers
Tsukahara, Takahiro
2014-01-01
Direct numerical simulations (DNS) of fully-developed turbulent channel flows for very low Reynolds numbers have been performed with a larger computational box sizes than those of existing DNS. The friction Reynolds number was decreased down to 60, where the friction Reynolds number is based on the friction velocity and the channel half width. When the Reynolds number was decreased to 60 with small computational box size, the flow became laminar. Using a large box, we found that a localized turbulence was observed to sustain in the form of periodic oblique band. This type of locally disordered flow is similar to a equilibrium turbulent puff in a transitional pipe flow. Various turbulence statistics such as turbulence intensities, vorticity fluctuations and Reynolds stresses are provided. Especially, their near-wall asymptotic behavior and budget terms of turbulence kinetic energy were discussed with respect to the Reynolds-number dependence and an influence of the computational box size. Other detailed charac...
Flow of MHD Carreau Fluid in a Curved Channel
Directory of Open Access Journals (Sweden)
Saima Noreen
2013-01-01
Full Text Available Analysis has been made for the curvature effects on the MHD peristaltic flow of an incompressible Carreau fluid in a channel. The flow problem is first reduced in the wave frame of reference and then solved after employing the long wavelength and low Reynolds number approximations. Expressions of stream function, pressure gradient, magnetic force function, induced magnetic field and current density are derived and then examined for various parameters of interest.
Numerical Study of Polymers in Turbulent Channel Flow
Bagheri, Faranggis
2010-01-01
The phenomenon of drag reduction by polymers in turbulent flow has beenstudied over the last 60 years. New insight have been recently gained by meansof numerical simulation of dilute polymer solution at moderate values of theturbulent Reynolds number and elasticity. In this thesis, we track elastic parti-cles in Lagrangian frame in turbulent channel flow at Reτ = 180, by tracking,where the single particle obeys the FENE (finite extendible nonlinear elastic)formulation for dumbbel model. The f...
Flows of granular material in two-dimensional channels
Bain, Oliver; Billingham, John; Houston, Paul; Lowndes, Ian
2015-01-01
Secondary cone-type crushing machines are an important part of the aggregate production process. These devices process roughly crushed material into aggregate of greater consistency and homogeneity. We apply a continuum model for granular materials (`A Constitutive Law For Dense Granular Flows', Nature 441, p727-730, 2006) to flows of granular material in representative two-dimensional channels, applying a cyclic applied crushing stress in lieu of a moving boundary. Using finite element metho...
Numerical Simulation of slug flow in a micro-channel
Carlson, Andreas
2007-01-01
Multiphase dynamics and characteristics of slug flow in micro channels are investigated computationally by means of advanced numerical simulation methods. Although, due to its importance in many engineering and biomedical applications, the topic has been studied previously, methods for robust and accurate simulation of slug flow remain elusive. Evaluation of current state-of-the-art Computational Multi Fluid Dynamics (CMFD) technology depicts deficiency with advanced computational methods (Vo...
Particle-Interaction Effects in Turbulent Channel Flow
M Afkhami; A. Hassanpour; Fairweather, M.; Njobuenwu, DO
2013-01-01
Large eddy simulation and a discrete element method are applied to study the flow, particle dispersion and agglomeration in a horizontal channel. The particle-particle interaction model is based on the Hertz-Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different particle surface energies on agglomeration, and the impact of fluid turbulence, are investigated. The agglomeration rate is found to be stro...
Dry microfoams: Formation and flow in a confined channel
Raven, J P; Marmottant, Philippe; Raven, Jan-Paul
2005-01-01
We present an experimental investigation of the assembly of microbubbles into a 2D foam and its flow in a rectangular microchannel. Using a flow-focusing method, we produce a foam in situ on a microfluidic chip for a large range of liquid fractions, down to a few percent in liquid. The channel height is 250 μm, resulting in bubbles whose height to diameter aspect ratio ranges between 0.3 and 1. We can monitor the transition from separated bubbles to the desired microfoam, in which bubbles are closely packed and separated by thin films. We find that bubble formation frequency is limited by the liquid flow rate, and that it creates a modulation of the foam flow, rapidly damped along the channel. The average foam flow rate depends non-linearly on the applied pressure, displaying a threshold pressure due to capillarity. Strong discontinuities in the flow rate appear when the number of bubbles in the channel width changes, reflecting the discrete nature of the foam topology. For a given foam structure the...
Basic hydraulic principles of open-channel flow
Jobson, Harvey E.; Froehlich, David C.
1988-01-01
The three basic principles of open-channel-flow analysis--the conservation of mass, energy, and momentum--are derived, explained, and applied to solve problems of open-channel flow. These principles are introduced at a level that can be comprehended by a person with an understanding of the principles of physics and mechanics equivalent to that presented in the first college level course of the subject. The reader is assumed to have a working knowledge of algebra and plane geometry as well as some knowledge of calculus. Once the principles have been derived, a number of example applications are presented that illustrate the computation of flow through culverts and bridges, and over structures, such as dams and weirs. Because resistance to flow is a major obstacle to the successful application of the energy principle to open-channel flow, procedures are outlined for the rational selection of flow resistance coefficients. The principle of specific energy is shown to be useful in the prediction of water-surface profiles both in the qualitative and quantitative sense. (USGS)
DNS of turbulent channel flow subject to oscillatory heat flux
Directory of Open Access Journals (Sweden)
Bukhvostova Anastasia
2014-01-01
Full Text Available In this paper we study the heat transfer in a turbulent channel flow, which is periodically heated through its walls. We consider the flow of air and water vapor using direct numerical simulation. We consider the fluid as a compressible Newtonian gas. We focus on the heat transfer properties of the system, e.g., the temperature difference between the walls and the Nusselt number. We consider the dependence of these quantities on the frequency of the applied heat flux. We observe that the mean temperature difference is quite insensitive to the frequency and that the amplitude of its oscillations is such that its value multiplied by the square root of frequency is approximately constant. Next we add droplets to the channel, which can undergo phase transitions. The heat transfer properties of the channel in the case with droplets are found to increase by more than a factor of two, compared to the situation without droplets.
Secondary flow in sharp open-channel bends
Blanckaert, K.; De Vriend, H.J.
2004-01-01
Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in ban
Decelerating open-channel flow in a gradual expansion
Hoan, N.T.; Booij, R.; Stive, M.J.F.; Verhagen, H.J.
2007-01-01
The velocity and turbulence distributions of decelerating open-channel flow in a gradual expansion were measured using LDV equipment. The results show that the logarithmic law can describe the mean velocity in the bottom region well while the Coles’ law can be applied to the outer region. The shear
Two-fluid oscillatory flow in a channel
Institute of Scientific and Technical Information of China (English)
C.Y.Wang
2011-01-01
The validity of Navier's partial slip condition is investigated by studying the oscillatory flow in a coated channel.The two-fluid model is used to solve the unsteady viscous equations exactly.Partial slip is experienced by the core fluid.It is found that Naviers condition does not hold for an unsteady core fluid.
Urban Infrastructure, Channel-Floodplain Morphology and Flood Flow Patterns
Miller, A. J.; Smith, J. A.; Nelson, C. B.
2006-12-01
The relationship between the channel and the floodplain in urban settings is heavily influenced by (1) altered watershed hydrologic response and frequency distribution of flows, (2) channel enlargement resulting from altered hydrology under conditions of limited sediment supply, (3) direct modification of channels and floodplains for purposes of erosion mitigation, flood protection, commercial development and creation of public amenities, (4) valley constrictions and flow obstructions associated with bridges, culverts, road embankments and other types of floodplain encroachment causing fragmentation or longitudinal segmentation of the riparian corridor. Field observation of inundation patterns associated with recurring floods in the Baltimore metropolitan area is used in combination with 2-dimensional hydraulic modeling to simulate patterns of floodplain inundation and to explore the relationships between magnitude and shape of the flood hydrograph, morphology of the urban channel-floodplain system, and the frequency and extent of floodplain inundation. Case studies include a July 2004 flood associated with a 300-year 2-hour rainfall in a small (14.2 km2) urban watershed, as well as several other events caused by summer thunderstorms with shorter recurrence intervals that generated an extraordinary flood response. The influence of urban infrastructure on flood inundation and flow patterns is expressed in terms of altered (and hysteretic) stage-discharge relationships, stepped flood profiles, rapid longitudinal attenuation of flood waves, and transient flow reversals at confluences and constrictions. Given the current level of interest in restoration measures these patterns merit consideration in planning future development and mitigation efforts.
Numerical simulation of particle-laden turbulent channel flow
Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.
2001-01-01
This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio, mas
Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres
Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.
2016-04-01
Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the
A reciprocal theorem for boundary-driven channel flows
Michelin, Sebastien
2015-01-01
In a variety of physical situations, a bulk viscous flow is induced by a distribution of surface velocities, for example in diffusiophoresis (as a result of chemical gradients) and above carpets of cilia (as a result of biological activity). When such boundary-driven flows are used to pump fluids, the primary quantity of interest is the induced flow rate. In this letter we propose a method, based on the reciprocal theorem of Stokes flows, to compute the net flow rate for arbitrary flow distribution and periodic pump geometry using solely stress information from a dual Poiseuille-like problem. After deriving the general result we apply it to straight channels of triangular, elliptic and rectangular geometries and quantify the relationship between bulk motion and surface forcing.
Granular flow over inclined channels with linear contraction
Tunuguntla, D R; Thornton, A R; Bokhove, O
2015-01-01
We consider dry granular flow down an inclined chute with a localised contraction theoretically and numerically. The flow regimes are predicted through a novel extended one-dimensional hydraulic theory. A discrete particle method validated empirical constitutive law is used to close this one-dimensional asymptotic model. The one-dimensional model is verified by solving the two-dimensional shallow granular equations through discontinuous Galerkin finite element method (DGFEM). For supercritical flows, the one-dimensional asymptotic theory surprisingly holds although the two-dimensional oblique granular jumps largely vary across the converging channel.
Institute of Scientific and Technical Information of China (English)
Ling Li; Ming-Shun Yuan
2011-01-01
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.
Algebraic disturbances and their consequences in rotating channel flow transition
Jose, Sharath; Pier, Benoît; Govindarajan, Rama
2016-01-01
It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of non-rotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behaviour are found: the transient growth leading to nonlinearity at low rotation rates $Ro$, a highly chaotic intermediate $Ro$ regime, a localised weak chaos at higher $Ro$, and complete stabilization of transient disturbances at very high $Ro$. At very low $Ro$, the transient growth amplitudes are close to those for non-rotating flow, but Coriolis forces already assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high $Ro$ regimes do not show these signatures, here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to redu...
Capillary channel flow experiments aboard the International Space Station.
Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A
2013-12-01
In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.
History dependent vortex flow dynamics in mesoscopic channels
International Nuclear Information System (INIS)
Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have studied the flow properties of such confined vortices as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field down situation, in field up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements unveil the dynamic change in the flow configurations around this anomaly: n moving rows of vortex array at low velocity changes suddenly to n + 2 rows at high velocity around the anomaly
Ferrofluid magnetoviscous control of wall flow channeling in porous media
Institute of Scientific and Technical Information of China (English)
Fa(ic)al Larachi; Damien Desvigne
2007-01-01
We analyzed the phenomenon of ferrofluid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind.After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.
The influence on performance of co-flow and counter-flow PEM fuel cell channels
International Nuclear Information System (INIS)
Full text: A three-dimensional computational fluid dynamics model of a PEM fuel cell with serpentine flow field channels that combines co-flow and counter-flow configurations is presented in this paper. The PEM fuel cell performance is significantly influenced by the direction of fuel and oxidant flow. Therefore, the CFD model used in this paper accounts for the major transport phenomena that occur in PEM fuel cells with co-flow and counter-flow configuration. The results will highlight the convective and diffusive heat and mass transfer, the electrode kinetics, and the potential fields. (authors)
Computation of Internal Fluid Flows in Channels Using the CFD Software Tool FlowVision
Kochevsky, A N
2004-01-01
The article describes the CFD software tool FlowVision (OOO "Tesis", Moscow). The model equations used for this research are the set of Reynolds and continuity equations and equations of the standard k - e turbulence model. The aim of the paper was testing of FlowVision by comparing the computational results for a number of simple internal channel fluid flows with known experimental data. The test cases are non-swirling and swirling flows in pipes and diffusers, flows in stationary and rotating bends. Satisfactory correspondence of results was obtained both for flow patterns and respective quantitative values.
Energy Technology Data Exchange (ETDEWEB)
Claverie, M.; Clement, D.; Girard, C
2000-07-15
This prospective study concerns the electric power demand in 2050. It examines the three non nuclear sectors of production: the natural gas combined cycle power plants, the wind turbines among the renewable energies and the cogeneration electric power - heat in the ternary and building sector. The necessity of the network adaptation to the european competition and the decentralized production of electric power will suppose new investments of transport and storage. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)
2012-07-01
In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.
Directory of Open Access Journals (Sweden)
I. Khazaee, M. Mohammadiun
2012-01-01
Full Text Available In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.
Modelling of flow and heat transfer in PV cooling channels
Energy Technology Data Exchange (ETDEWEB)
Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering
2005-07-01
Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.
Rivulet Flow In Vertical Parallel-Wall Channel
Energy Technology Data Exchange (ETDEWEB)
D. M. McEligot; G. E. Mc Creery; P. Meakin
2006-04-01
In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.
Simulation of main flow and secondary flow in a curved open channel
Booij, R.; Pennekamp, J.G.C.
1983-01-01
Knowledge of the secondary flow is essential for predictions about the morphology of alluvial bottoms in tidal channels. In this research the determination of the secondary flow is based on a known depth averaged velocity field. The depth averaged velocities must be computed with a high accuracy in
Flow resistance and its prediction methods in compound channels
Institute of Scientific and Technical Information of China (English)
Kejun Yang; Shuyou Cao; Xingnian Liu
2007-01-01
A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows.The effective Manning,Darcy-Weisbach,Chezy coefficients and the relative Nikuradse roughness height were analyzed.Many different representative methods for predicting the composite roughness were systemat-ically summarized.Besides the measured data,a vast number of laboratory data and field data for compoundchannels were collected and used to check the valid-ity of these methods for different subsection divisionsincluding the vertical,horizontal,diagonal and bisec-tional divisions.The computation showed that thesemethods resulted in big errors in assessing the compos-ite roughness in compound channels,and the reasonswere analyzed in detail.The error magnitude is relatedto the subsection divisions.
TVD scheme for computing open channel wave flows
Buntina, M. V.; Ostapenko, V. V.
2008-12-01
For the shallow water equations in the first approximation (Saint-Venant equations), a TVD scheme is developed for shock-capturing computations of open channel flows with discontinuous waves. The scheme is based on a special nondivergence approximation of the total momentum equation that does not involve integrals related to the cross-section pressure force and the channel wall reaction. In standard divergence difference schemes, most of the CPU time is spent on the computation of these integrals. Test computations demonstrate that the discontinuity relations reproduced by the scheme are accurate enough for actual discontinuous wave propagation to be numerically simulated. All the qualitatively distinct solutions for a dam collapsing in a trapezoidal channel with a contraction in the tailwater area are constructed as an example.
Ke, Xinyou; Prahl, Joseph M; Savinell, Robert F
2016-01-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ~400 mA cm-2.
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2015-08-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.
Thermally stratified sodium channel flow: turbulence and modeling
International Nuclear Information System (INIS)
Numerical simulation of sodium stratification in open channel flow has been studied with Computational Fluid Dynamics (CFD) employing an Algebraic Heat Flux Model (AHFM) closure for the turbulent heat flux. The results are validated against experimental data and the AHFM is compared with the simplified Reynolds analogy employing a constant turbulent Pr number. Influence of buoyancy on turbulence created in the mixing layer has been evaluated and its influence on the momentum and energy transport in the vertical direction assessed. It has been found that the choice of turbulent heat flux model influences the achieved results for temperature and velocity field which might affect the flow developing and persistence of stratification in the channel. Moreover both experiment and validation show the possibility of creation of a strong stratification also for low Pr number fluids, warning the stratification problem as an existing phenomenon likely to occur in liquid metal nuclear power plants. (author)
Analysis of flow blockage of a single RBMK channel
Energy Technology Data Exchange (ETDEWEB)
Franco Pierro; Iljiana Ivekovic; Parisi Carlo; Francesco D' Auria [University of Pisa, Department of Mechanical, Nuclear and Production Engineering - DMNP, Via Diotisalvi 2, 56122 Pisa (Italy)
2005-07-01
Full text of publication follows: The main aim of the following study is to perform an evaluation of a single RBMK reactor core channel and of its surrounding graphite structures in case of flow blockage. The paper presents an evaluation of the event with RELAP5 and FRAP code. The RBMK channel, the graphite stack and the He-N gap is modelled with the RELAP code and the thermo-mechanical fuel rod behaviour is studied by FRAP code. Two cases are analysed in order to demonstrate if the propagation of the break occurs: in the first case a single break in the pressure tube is postulated, in the second, a modelling of the pressure tube break propagation is studied. A blockage of 100% of the total flow area is considered. The paper concludes that the Pressure tube is broken and the propagation occurs, the ballooning does not appear. (authors)
ABRUPT DEFLECTED SUPERCRITICAL WATER FLOW IN SLOPED CHANNELS
Institute of Scientific and Technical Information of China (English)
LIU Ya-kun; NI Han-gen
2008-01-01
The effect of the bottom slope on abrupt deflected supercritical water flow was experimentally and theoretically studied. Model tests were conducted in a flume of 1.2 m wide and 2.6 m long with sloped bottom at an angle 35.54o, its length of deflector was 0.2 m and the deflection angles were 15o and 30o. An approximate method for calculatjng the shock wave angle and depth ratio of the abrupt deflected supercritical water flow was suggested, and a correction coefficient for the hydrodynamic pressure was introduced to generalize the momentum equation in the direction perpendicular to the shock front. It must be noticed that in the sloped channel the shock wave angle and the depth ratio are no longer constant as those in the horizontal channels, but slowly change along the shock front. The calculated results are in good agreement with measured data.
Longitudinal dispersion in open channel flow with suspended canopies.
Huai, Wenxin; Li, Chengguang
2016-01-01
Suspended canopies can cause flow disturbances such as reducing velocities within the canopy, and increasing flow beneath the canopy. Flow modifications by canopies dramatically affect the fate and transport of sediment, nutrients, contaminants, dissolved oxygen, and fauna in aquatic systems. A three-zone model is presented here to predict the longitudinal dispersion coefficient by simplifying Chikwendu's N-zone model. To validate the model, both flow field and tracer experiments were conducted using a straight rectangular Plexiglas flume, with rigid circular rods as the modeled suspended canopies. The result shows that velocities increased above the flume bed and maximized at a point between the canopies and flume bed. Above that point, streamwise velocities decreased into and within the canopies. Reynolds shear stresses were largest at the canopy interface and smallest (zero) at the velocity maximum point. Good agreement between the modeled results and experimental data shows that the model can effectively predict the longitudinal dispersion coefficient in open channels with suspended canopies.
Coherent vorticity extraction in turbulent channel flow using anisotropic wavelets
Yoshimatsu, Katsunori; Sakurai, Teluo; Schneider, Kai; Farge, Marie; Morishita, Koji; Ishihara, Takashi
2014-11-01
We examine the role of coherent vorticity in a turbulent channel flow. DNS data computed at friction-velocity based Reynolds number 320 is analyzed. The vorticity is decomposed using three-dimensional anisotropic orthogonal wavelets. Thresholding of the wavelet coefficients allows to extract the coherent vorticity, corresponding to few strong wavelet coefficients. It retains the vortex tubes of the turbulent flow. Turbulent statistics, e.g., energy, enstrophy and energy spectra, are close to those of the total flow. The nonlinear energy budgets are also found to be well preserved. The remaining incoherent part, represented by the large majority of the weak coefficients, corresponds to a structureless, i.e., a noise-like background flow.
Nonlinear dispersion of a pollutant ejected into a channel flow
Gorder, Robert; Vajravelu, Kuppalapalle
2011-10-01
In this paper, we study the nonlinear coupled boundary value problem arising from the nonlinear dispersion of a pollutant ejected by an external source into a channel flow. We obtain exact solutions for the steady flow for some special cases and an implicit exact solution for the unsteady flow. Additionally, we obtain analytical solutions for the transient flow. From the obtained solutions, we are able to deduce the qualitative influence of the model parameters on the solutions. Furthermore, we are able to give both exact and analytical expressions for the skin friction and wall mass transfer rate as functions of the model parameters. The model considered can be useful for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water bodies.
NUMERICAL SIMULATIONS OF VISCOELASTIC FLOWS THROUGH ONE SLOT CHANNEL
Institute of Scientific and Technical Information of China (English)
YIN Hong-jun; ZHONG Hui-ying; FU Chun-quan; WANG Lei
2007-01-01
In this article, the Modified Upper-Convected Maxwell equation (MUCM) is proposed. The viscoelastic polymer solution flow characteristics are described by the numerical method. The stream function contour, velocity contour and stress modulus contour of fluid in slot channel are drawn. The non-Newtonian power law property and viscoelasticity of MUCM fluid influence on the stream function are analyzed. The velocity contour move towards dead oil area with the viscoelasticity increase, flow area increase and the sweep area enlarges, so the sweep efficiency is enhanced.
Processes of Turbulent Liquid Flows in Pipelines and Channels
Directory of Open Access Journals (Sweden)
R. I. Yesman
2011-01-01
Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.
The effect of wall heating on instability of channel flow
Sameen, A; Govindarajan, Rama
2006-01-01
A comprehensive study of the effect of wall heating or cooling on the linear, transient and secondary growth of instability in channel flow is conducted. The effect of viscosity stratification, heat diffusivity and of buoyancy are estimated separately, with some unexpected results. From linear stability results, it has been accepted that heat diffusivity does not affect stability. However, we show that realistic Prandtl numbers cause a transient growth of disturbances that is an order of magn...
Communication flow, channels, content and climate in downsizing
Illia, Laura; Lurati, Francesco; La Rocca, Antonella
2006-01-01
Effective internal communication contributes to the overall organizational communication that aims to maintain a sustainable reputation during times of change. Arising from this belief, this paper aims to develop a theoretical framework in which the type of communication content, flows, channels, and climate better fits into the planning, implementation, and revitalization phases within the downsizing process. To this end, a literature review on downsizing studies has been conducted, resultin...
3-D NUMERICAL SIMULATIONS OF FLOW LOSS IN HELICAL CHANNEL
Institute of Scientific and Technical Information of China (English)
ZHAO Ling-zhi; PENG Yan; LU Fang; LI Jian; LI Ran; LIU Bao-lin
2012-01-01
The flow loss of a helical channel Magnetohydrodynamic (MHD) thruster without MHD effect was numerically studied with 3-D simulations,and a flow loss coefficient ξ was defined to quantify the flow loss and its influencing factors were studied.The results show that ξ decreases in a first-order exponential manner with the pitch of a helical wall and the Reynolds number,and it declines slowly when t / T ＞ 0.2 and Re ＞ 105,a flow guide makes the flow more smooth and uniform,especially in the flow guide and helical wall sub-regions and thus reduces the flow loss greatly,by about 30％ with the averaged value of ξ from 0.0385to 0.027,a rectifier weakens the helical flow and strengthens the axial one in the rectifier and outlet sub-regions,thus reduces the rotational kinetic pressure with the averaged value of ξ declining about 4％ from 0.0385 to 0.037,and ξ decreases with a rectifier's axial length when Re ＞ 105.
Gap instability of laminar flows in eccentric annular channels
Energy Technology Data Exchange (ETDEWEB)
Piot, Estelle [Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada)
2011-11-15
Research highlights: Black-Right-Pointing-Triangle The critical Reynolds number for flow instability in the narrow gap of an eccentric annular channel with a diameter ratio of 0.28 was determined experimentally. Black-Right-Pointing-Triangle The critical Reynolds number increases with increasing eccentricity in the range 0.5 to 0.8. Black-Right-Pointing-Triangle The 'gap instability' is attributed to the instability of the two shear layers forming on either side of the gap, as the basic flow has an azimuthal variation that contains two inflection points, thus being potentially linearly unstable. - Abstract: Flow visualization has demonstrated that the critical Reynolds number for flow instability in the narrow gap of an annular channel with a diameter ratio of about 0.28 increases with increasing eccentricity e in the range 0.5 < e < 0.8. The critical Reynolds numbers in the wide gap at all eccentricities and in the narrow gap for 0 < e < 0.5 seem to be insensitive to eccentricity. These observations and comparison of the frequencies of transverse flow oscillations at different Reynolds numbers and different eccentricities demonstrate that at least two distinct instability mechanisms are present in annular flows. The one of particular interest in this work arises in narrow gaps and is attributed to the instability of the two shear layers forming on either side of the gap. Linear stability analysis demonstrated that the basic flow in concentric annuli is stable for the considered diameter ratio and range of Reynolds numbers. In contrast, the basic flow in eccentric annuli has an azimuthal variation that contains two inflection points, thus being potentially linearly unstable.
Institute of Scientific and Technical Information of China (English)
Gérard J. Poitras; L.-Emmanuel Brizzi; Yves Gagnon
2001-01-01
The results of different numerical algorithms for the computation of unsteady fluid flows are used to visualize different variables of the flow. In particular, the instantaneous vorticity, velocity and pressure fields, along with streamline plots, are presented as a function of time inside a visualization window of the computational domain.The different forms of visualization are used to analyze the flow inside a two-dimensional channel incorporating an obstacle, which can represent several interesting flows such as the flow over electronic components, heat transfer devices and buildings.
Inception of supraglacial channelization under turbulent flow conditions
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2013-12-01
Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers
Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels
Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.
2016-05-01
In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.
CHARACTERISTICS OF FLOW RESISTANCE IN OPEN CHANNELS WITH NON-SUBMERGED RIGID VEGETATION
Institute of Scientific and Technical Information of China (English)
WU Fu-sheng
2008-01-01
The flow resistance factors of non-submerged rigid vegetation in open channels were analyzed. The formulas of drag coefficient CD and equivalent Manning's roughness coefficient nd were derived by analyzing the force of the flow of non-submerged rigid vegetation in open channel. The flow characteristics and mechanism of non-submerged rigid vegetation in open channel were studied through flume experiments.
Computation of a turbulent channel flow using PDF method
International Nuclear Information System (INIS)
The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author)
A correlation for nucleate flow boiling in small channels
Energy Technology Data Exchange (ETDEWEB)
Tran, T.N. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering]|[Argonne National Lab., IL (United States); Wambsganss, M.W. [Argonne National Lab., IL (United States); Chyu, M.C. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering; France, D.M. [Univ. of Illinois, Chicago, IL (United States). Dept. of Mechanical Engineering
1997-08-01
Compact heat exchangers are becoming more attractive for applications in which energy conservation, space saving, and cost are important considerations. Applications exist in the process industries where phase-change heat transfer realizes more compact designs and improved performance compared to single-phase heat transfer. However, there have been only a few studies in the literature reporting on phase-change heat transfer and two-phase flow in compact heat exchangers, and validated design correlations are lacking. Recent data from experiments on flow boiling of refrigerants in small channels have led researchers to conclude that nucleation is the dominant heat transfer mechanism over a broad range of heat flux and wall superheats. Local heat transfer coefficients and overall two-phase pressure drops were measured for three different refrigerants with circular and non-circular channels in a range of pressures. This data base supports the nucleate boiling mechanism, and it was used to develop a new correlation for heat transfer in nucleate flow boiling. The correlation is based on the Rohsenow boiling model, introducing a confinement number defined by Kew and Cornwell. The new correlation predicts the experimental data for nucleate flow boiling of three refrigerants within {+-}15%.
Linear Stability Analysis of Compressible Channel Flow with Porous Walls
Rahbari, Iman
2015-01-01
We have investigated the effects of permeable walls, modeled by linear acoustic impedance with zero reactance, on compressible channel flow via linear stability analysis (LSA). Base flow profiles are taken from impermeable isothermal-wall laminar and turbulent channel flow simulations at bulk Reynolds number, $Re_b$= 6900 and Mach numbers, $M_b$ = 0.2, 0.5, 0.85. For a sufficiently high value of permeability, two dominant modes are excited: a bulk pressure mode, causing symmetric expulsion and suction of mass from the porous walls (Mode 0); a standing-wave-like mode, with a pressure node at the centerline (Mode 1). In the case of turbulent mean flow profiles, both modes generate additional Reynolds shear stresses augmenting the (base) turbulent ones, but concentrated in the viscous sublayer region; the trajectories of the two modes in the complex phase velocity space follow each other very closely for values of wall permeability spanning two orders of magnitude, suggesting their coexistence. The transition fr...
Experimental studies on the flow through soft tubes and channels
Indian Academy of Sciences (India)
V Kumaran
2015-05-01
Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the ‘inviscid’ and ‘wall mode’ instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.
Polar cap flow channel events: spontaneous and driven responses
Directory of Open Access Journals (Sweden)
P. E. Sandholt
2010-11-01
Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/B_{y}<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (B_{z}<0; B_{y}<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.
FLOW STRUCTURE OF PARTLY VEGETATED OPEN-CHANNEL FLOWS WITH EELGRASS
Institute of Scientific and Technical Information of China (English)
WANG Chao; YU Ji-yu; WANG Pei-fang; GUO Peng-cheng
2009-01-01
Aquatic vegetation can influence the transport of sediment and contaminants by changing the mean velocity and turbulent flow structure in channels. It is important to understand the hydraulics of the flows over vegetation in order to manage fluvial processes. Experiments in an open-channel flume with natural vegetation were carried out to study the influence of vegetation on the flows. In a half channel with two different densities of vegetation, the flow velocity, Reynolds stresses, and turbulence intensities were measured using an Acoustic Doppler Velocimeter (ADV). We obtained velocity profiles in the lateral direction, Reynolds stresses in the vertical direction, and the flow transition between the vegetated and non-vegetated zones in different flow regimes. The results show that the streamwise velocity in the vegetated zone with higher density is almost entirely blocked. Reynolds stress distribution distinguishes with two different regions: inside and above the vegetation canopies. The turbulence intensities increase with increasing Reynolds number. The coherent vortices dominate the vertical transport of momentum and are advected clockwise between the vegetated zone and non-vegetated zone by secondary currents (a relatively minor flow superimposed on the primary flow, with significantly different speed and direction), generated by the anisotropy of the turbulence.
Stability of stratified two-phase flows in horizontal channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen
2016-01-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...
On the Analysis of Flows in Vibrating Channels
Zandi, Sahab; Mohammadi, Alireza; Floryan, Jerzy Maciej
2015-11-01
Pressure losses in channels with vibrating walls have been analyzed. Surface vibrations were assumed to have the form of travelling waves. The waves can have arbitrary profiles. The spectrally accurate immersed boundary conditions (IBC) method based on the Fourier expansions in the flow direction and the Chebyshev expansions in the transverse direction has been developed. The results show dependence of the pressure losses on the phase speed of the waves, with the waves propagating in the downstream direction reducing the pressure gradient required to maintain a fixed flow rate. A drag increase is observed when the waves propagate with a phase speed similar to the flow velocity. Analytical solution demonstrates that the drag changes result from the nonlinear interactions and vary proportionally to A2 for small enough A, where A stands for the wave amplitude. This work has been carried out with support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Implicit Large Eddy Simulation of Cavitation in Micro Channel Flows
Hickel, S; Schmidt, S J
2014-01-01
We present a numerical method for Large Eddy Simulations (LES) of compressible two-phase flows. The method is validated for the flow in a micro channel with a step-like restriction. This setup is representative for typical cavitating multi-phase flows in fuel injectors and follows an experimental study of Iben et al., 2010. While a diesel-like test fuel was used in the experiment, we solve the compressible Navier-Stokes equations with a barotropic equation of state for water and vapor and a simple phase-change model based on equilibrium assumptions. Our LES resolve all wave dynamics in the compressible fluid and the turbulence production in shear layers.
Directory of Open Access Journals (Sweden)
Szwast Maciej
2015-06-01
Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.
Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F
2016-01-01
In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...
A Flow-Channel Analysis for the Mars Hopper
Energy Technology Data Exchange (ETDEWEB)
W. Spencer Cooley
2013-02-01
The Mars Hopper is an exploratory vehicle designed to fly on Mars using carbon dioxide from the Martian atmosphere as a rocket propellant. The propellent gasses are thermally heated while traversing a radioisotope ther- mal rocket (RTR) engine’s core. This core is comprised of a radioisotope surrounded by a heat capacitive material interspersed with tubes for the propellant to travel through. These tubes, or flow channels, can be manu- factured in various cross-sectional shapes such as a special four-point star or the traditional circle. Analytical heat transfer and computational fluid dynamics (CFD) anal- yses were performed using flow channels with either a circle or a star cross- sectional shape. The nominal total inlet pressure was specified at 2,805,000 Pa; and the outlet pressure was set to 2,785,000 Pa. The CO2 inlet tem- perature was 300 K; and the channel wall was 1200 K. The steady-state CFD simulations computed the smooth-walled star shape’s outlet temper- ature to be 959 K on the finest mesh. The smooth-walled circle’s outlet temperature was 902 K. A circle with a surface roughness specification at 0.01 mm gave 946 K and at 0.1 mm yielded 989 K. The The effects of a slightly varied inlet pressure were also examined. The analytical calculations were based on the mass flow rates computed in the CFD simulations and provided significantly higher outlet temperature results while displaying the same comparison trends. Research relating to the flow channel heat transfer studies was also done. Mathematical methods to geometrically match the cross-sectional areas of the circle and star, along with a square and equilateral triangle, were derived. A Wolfram Mathematica 8 module was programmed to analyze CFD results using Richardson Extrapolation and calculate the grid convergence index (GCI). A Mathematica notebook, also composed, computes and graphs the bulk mean temperature along a flow channel’s length while the user dynam- ically provides the input
Energy Technology Data Exchange (ETDEWEB)
Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)
2015-05-15
Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.
Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2010-01-01
PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution......-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow....
The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel
Directory of Open Access Journals (Sweden)
F. Rooniyan
2014-02-01
Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .
Stability of stratified two-phase flows in horizontal channels
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED INNER BANK
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; LI Cheng-guang; ZENG Yu-hong; QIAN Zhong-dong; YANG Zhong-hua
2012-01-01
A RNG k-ε numerical model together with a laboratory measurement with Micro ADV are adopted to investigate the flow through a 180° curved open channel (a 4 m straight inflow section,a 180° curved section,and a 4m straight outflow section)partially covered with rigid vegetations on its inner bank.Under the combined action of the vegetation and the bend flow,the flow structure is complex.The stream-wise velocities in the vegetation region are much smaller than those in the non-vegetation region due to the retardation caused by the vegetation.For the same reason,no clear circulation is found in the vegetated region,while in the non-vegetation region,a slight counter-rotating circulation is found near the outer bank at both 90° and downstream curved cross-sections.A comparison between the numerical prediction and the laboratory measurement shows that the RNG k- model can well predict the flow structure of the bend flow with vegetation.Furthermore,the shear stress is analyzed based on the numerical prediction.The much smaller value in the inner vegetated region indicates that the vegetation can effectively protect the fiver bank from scouting and erosion,in other words,the sediment is more likely to be deposited in the vegetation region.
Zhang, Lynn X; Jiang, Liuwei; Willett, Daniel R; Marcus, R Kenneth
2016-02-01
Presented here is a novel implementation of polypropylene capillary-channeled polymer (C-CP) films, functionalized for bioaffinity separations and implemented as a platform for lateral flow (immuno) assays. The parallel ∼80 μm × 80 μm channels pass test solutions down the 30 mm film length via spontaneous wicking action, setting up the possibility for immobilizing different capture agents in the respective channels. The base-film modification process is divided into two steps: ultraviolet light treatment to improve hydrophillicity of the polypropylene substrate and the physical adsorption of a functionalized lipid tethered ligand (LTL) as a selective capture agent. The entire modification procedure is performed under ambient conditions in an aqueous solution without extreme pH conditions. In this demonstration, physical adsorption of a biotinylated-LTL onto the UV-treated PP surface selectively captures Texas Red-labeled streptavidin (SAv-TR) in the presence of enhanced green fluorescence protein (EGFP), which passes without retention in less than 5 s. In addition to the fluorescence imaging of the protein solutes, matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to confirm the formation of the LTL-SAv conjugates on the channel surface as well as to demonstrate an alternative means of probing the capture step. The present effort sets the groundwork for further development of C-CP films as a parallel, multi-analyte LFA platform; a format that to-date has not been described.
Energy dissipation rate limits for flow through rough channels and tidal flow across topography
Kerswell, R R
2016-01-01
An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...
Streamwise decay of localized states in channel flow
Zammert, Stefan
2016-01-01
Channel flow, the pressure driven flow between parallel plates, has exact coherent structures that show various degrees of localization. For states which are localized in streamwise direction but extended in spanwise direction, we show that they are exponentially localized, with decay constants that are different on the upstream and downstream side. We extend the analysis of Brand and Gibson, J. Fluid Mech. 750, R1 (2014), for stationary states to the case of advected structures that is needed here, and derive expressions for the decay in terms of eigenvalues and eigenfunctions of certain second order differential equations. The results are in very good agreement with observations on exact coherent structures of different transversal wave length.
Sediment–flow interactions at channel confluences: A flume study
Directory of Open Access Journals (Sweden)
Tonghuan Liu
2015-06-01
Full Text Available Sediment transport and bed morphology at channel confluences with different confluence angles and discharge ratios are analyzed through a series of flume experiments. Bed topography and sediment transport rate are measured and results are compared among different conditions. Sediment transport is intermittent and pulsating as the tributary flow mixes with the mainstream, and the sediment transport rate goes up with the increase in discharge ratio and confluence angle. With no sediment supplied from upstream of the flume, a central scour hole will form along the shear plane and develop toward the right bank, and the depth of the central scour hole increases as the confluence angle and discharge ratio increase. With heavy upstream sediment supplement, deposition will happen in the separation zone and upstream of the confluence area because of the tributary. And the deposition height is related to the discharge ratio and confluence angle. Results indicate the significant impact of confluence geometry, sediment, and flow factors on fluvial processes.
Hall Effects on MHD Flow Through a Porous Straight Channel
Directory of Open Access Journals (Sweden)
N. Bhaskara Reddy
1982-10-01
Full Text Available The effect of Hall currents on the flow of a viscous incompressible slightly conducting fluid through a porous straight channel under a uniform transverse magnetic field is considered. The pressure gradient is taken as constant quantity and the case of steady flow is obtained by taking the time since the start of the motion to be infinite. Skin friction, temperature distribution and coefficients of heat transfer at both the plates have been evaluated. The effects of Hall parameter, magnetic parameter and Reynolds number on the above physical quantities have been investigated. Velocity distribution when the pressure gradient (i varies linearly with time, and (ii decreases exponentially with time has also been evaluated.
MHD pressure driven flow of nanofluid in curved channel
Energy Technology Data Exchange (ETDEWEB)
Noreen, S. [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); Qasim, M., E-mail: mq_qau@yahoo.com [Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); Khan, Z.H. [Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa (Pakistan)
2015-11-01
The pressure driven peristaltic flow of nanofluid in a curved channel is investigated. The flow exploration demeanors the induced magnetic field. Long wavelength and low Reynolds number approach is followed. Numerical solutions are obtained by employing shooting method. The effects of substantial parameters have been portrayed and discussed on the temperature and mass distributions, stream function, magnetic force function, induced magnetic field and pressure rise per wavelength. - Highlights: • Symmetry in the profiles of u, ϕ and h{sub x} is disturbed because of curvature effects. • The magnitude of longitudinal velocity increases with curvature. • The qualitative behavior of Nt and Nb on γ and Ω is opposite. • Magnitude h{sub x} decreases with k.
Fluid flow over arbitrary bottom topography in a channel
Panda, Srikumar
2016-05-01
In this paper, two-dimensional free surface potential flow over an arbitrary bottom in a channel is considered to analyze the behavior of the free surface profile using linear theory. It is assumed that the fluid is inviscid, incompressible and flow is irrotational. Perturbation analysis in conjunction with Fourier transform technique is employed to determine the first order corrections of some important physical quantities such as free surface profile, velocity potential, etc. From the practical point of view, one arbitrary bottom topography is considered to determine the free surface profile since the free surface profile depends on the bottom topography. It is found that the free surface profile is oscillatory in nature, representing a wave propagating downstream and no wave upstream.
Measurement of turbulent flow in a narrow open channel
Directory of Open Access Journals (Sweden)
Sarkar Sankar
2016-09-01
Full Text Available The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter. The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.
Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow
Hagan, Jonathan
2013-01-01
The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.
Ramification of Channel Networks Incised by Groundwater Flow
Yi, R. S.; Seybold, H. F.; Petroff, A. P.; Devauchelle, O.; Rothman, D.
2011-12-01
The geometry of channel networks has been a source of fascination since at least Leonardo da Vinci's time. Yet a comprehensive understanding of ramification---the mechanism of branching by which a stream network acquires its geometric complexity---remains elusive. To investigate the mechanisms of ramification and network growth, we consider channel growth driven by groundwater flow as a model system, analogous to a medical scientist's laboratory rat. We test our theoretical predictions through analysis of a particularly compelling example found on the Florida Panhandle north of Bristol. As our ultimate goal is to understand ramification and growth dynamics of the entire network, we build a computational model based on the following growth hypothesis: Channels grow in the direction that captures the maximum water flux. When there are two such directions, tips bifurcate. The direction of growth can be determined from the expansion of the ground water field around each tip, where each coefficient in this expansion has a physical interpretation. The first coefficient in the expansion determines the ground water discharge, leading to a straight growth of the channel. The second term describes the asymmetry in the water field leading to a bending of the stream in the direction of maximal water flux. The ratio between the first and the third coefficient determines a critical distance rc over which the tip feels inhomogeneities in the ground water table. This initiates then the splitting of the tip. In order to test our growth hypothesis and to determine rc, we grow the Florida network backward. At each time step we calculate the solution of the ground water field and determine the appropriate expansion coefficients around each tip. Comparing this simulation result to the predicted values provides us with a stringent measure for rc and the significance of our growth hypothesis.
Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?
Quadrio, Maurizio; Hasegawa, Yosuke
2015-01-01
We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value ...
Bedrock erosion by sliding wear in channelized granular flow
Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.
2014-12-01
Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of
Three dimensional computation of turbulent flow in meandering channels
Energy Technology Data Exchange (ETDEWEB)
Van Thinh Nguyen
2000-07-01
In this study a finite element calculation procedure together with two-equation turbulent model k-{epsilon} and mixing length are applied to the problem of simulating 3D turbulent flow in closed and open meandering channels. Near the wall a special approach is applied in order to overcome the weakness of the standard k-{epsilon} in the viscous sub-layer. A specialized shape function is used in the special near wall elements to capture accurately the strong variations of the mean flow variables in the viscosity-affected near wall region. Based on the analogy of water and air flows, a few characteristics of hydraulic problems can be examined in aerodynamic models, respectively. To study the relationships between an aerodynamic and a hydraulic model many experiments have been carried out by Federal Waterway Engineering and Research Institute of Karlsruhe, Germany. In order to test and examine the results of these physical models, an appropriated numerical model is necessary. The numerical mean will capture the limitations of the experimental setup. The similarity and the difference between an aerodynamic and a hydraulic model will be found out by the results of numerical computations and will be depicted in this study. Despite the presence of similarities between the flow in closed channels and the flow in open channels, it should be stated that the presence of a free surface in the open channel introduces serious complications to three dimensional computation. A new unknown, which represents the position of nodes on this free surface, is introduced. A special approach is required for solving this unknown. A procedure surface tracking is applied to the free surface boundary like a moving boundary. Grid nodes on the free surface are free to move in such a way that they belong to the spines, which are the generator lines to define the allowed motion of the nodes on the free surface. (orig.) [German] Die numerische Simulation ist heute ein wichtiges Hilfsmittel fuer die
Hydraulics of combining flow in a right-angled compound open channel junction
Indian Academy of Sciences (India)
Sushant K Biswal; Pranab Mohapatra; K Muralidhar
2016-01-01
Although combining flows are common in natural streams, no comprehensive experimental data has been compiled to characterize the three-dimensional flow field within the compound channel confluence. The present study examines the time-averaged flow structure at confluence over a rigid bed. Current knowledge of channel confluence, based on laboratory observation indicates that cross flow interactions exert a significant influence on confluence events. Secondary current and turbulent stresses are reproduced well by the hydraulic model and found greater in the interface region as relative flow ratio decreases. Velocity fields in combining flow region arising from varying discharge ratios are presented. A zone of depression in surface elevation in compound channel junction is observed as well. The flow field in compound channel is seen to be moderately different from that of simple channel junction. This study contributes to a better knowledge of hydraulic key processes into fundamental aspect of combining flow dynamics.
The effect of wall heating on instability of channel flow
Sameen, A; Govindarajan, Rama
2006-01-01
A comprehensive study of the effect of wall heating or cooling on the linear, transient and secondary growth of instability in channel flow is conducted. The effect of viscosity stratification, heat diffusivity and of buoyancy are estimated separately, with some unexpected results. From linear stability results, it has been accepted that heat diffusivity does not affect stability. However, we show that realistic Prandtl numbers cause a transient growth of disturbances that is an order of magnitude higher than at zero Prandtl number. Buoyancy, even at fairly low levels, gives rise to high levels of subcritical energy growth. Unusually for transient growth, both of these are spanwise-independent and not in the form of streamwise vortices. At moderate Grashof numbers, exponential growth dominates, with distinct Rayleigh-Benard and Poiseuille modes for Grashof numbers upto $\\sim 25000$, which merge thereafter. Wall heating has a converse effect on the secondary instability compared to the primary, destabilising s...
DRAG REDUCTION IN A TURBULENT CHANNEL FLOW WITH HYDROPHOBIC WALL
Institute of Scientific and Technical Information of China (English)
NOURI Nowrouz Mohammad; SEKHAVAT Setareh; MOFIDI Alireza
2012-01-01
This paper investigates a theoretical prediction of friction drag reduction in turbulent channel flow which is achieved by using superhydrophobic surfaces.The effect of the hydrophobic surface is considered to be a slip boundary condition on the wall,and this new boundary condition is added to Large Eddy Simulation (LES) equations.The predicted drag reduction at Rer =180 is approximately 30％,which concurs with results obtained from Direct Numerical Simulation (DNS).An important implication of the present finding is that the near-wall turbulence structures are modified with streamwise slip velocity.In addition,a noticeable effect on the turbulence structure occurs when the slip length is greater than a certain value.
Experimental analysis of the flow structure in the laboratory model of SOFC fuel cell channels
International Nuclear Information System (INIS)
In the presented paper a flow structure in the gas channel of planar SOFC fuel cell is presented. The model taken for analysis was constructed based on the channel geometry manufactured by SOFC Power company. The shape of a channel was rectangular filled with large number of obstacles which role is to divide the flow into segments with possibly homogenous velocity distribution. The model itself was constructed from Plexiglas and the reactant gases flow was modelled by water motion. To investigate and visualize the flow structures a PIV technique was applied. Three different flow rates were taken for investigations and the flow uniformity and time dependence was studied.
More Than Flow: Revisiting the Theory of Four Channels of Flow
Directory of Open Access Journals (Sweden)
Ching-I Teng
2012-01-01
Full Text Available Flow (FCF theory has received considerable attention in recent decades. In addition to flow, FCF theory proposed three influential factors, that is, boredom, frustration, and apathy. While these factors have received relatively less attention than flow, Internet applications have grown exponentially, warranting a closer reexamination of the applicability of the FCF theory. Thus, this study tested the theory that high/low levels of skill and challenge lead to four channels of flow. The study sample included 253 online gamers who provided valid responses to an online survey. Analytical results support the FCF theory, although a few exceptions were noted. First, skill was insignificantly related to apathy, possibly because low-skill users can realize significant achievements to compensate for their apathy. Moreover, in contrast with the FCF theory, challenge was positively related to boredom, revealing that gamers become bored with difficult yet repetitive challenges. Two important findings suggest new directions for FCF theory.
Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.
2015-12-01
Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
The phase-locked mean impulse response of a turbulent channel flow
Luchini, P; Zuccher, S; Luchini, Paolo; Quadrio, Maurizio; Zuccher, Simone
2006-01-01
We describe the first DNS-based measurement of the complete mean response of a turbulent channel flow to small external disturbances. Space-time impulsive perturbations are applied at one channel wall, and the linear response describes their mean effect on the flow field as a function of spatial and temporal separations. The turbulent response is shown to differ from the response a laminar flow with the turbulent mean velocity profile as base flow.
Effect of the Flow Channel Structure on the Nanofiltration Separation Performance
Directory of Open Access Journals (Sweden)
Zhi Chen
2013-01-01
Full Text Available Two kinds of newly designed feed channels, for example, a spiral and a serpentine feed channels, for a bench-scale nanofiltration module were developed to improve the filtration performance. The experiments were carried out with the modules using a commercial flat NF membrane to investigate the effects of Reynolds number (Re and flow channel structures on the flux of permeate and Mg2+ rejection. It was shown from the experimental results that although the effects of Reynolds number on fluxes were not obvious for the two new feed channels compared with a normal flow channel structure, the Mg2+ rejections varied apparently with Re. The Mg2+ rejections were almost the same for the modules with two new feed channels and larger than that for the module with normal feed channel. The numerical simulations of fluid flow in the three kinds of feed channels were completed at Re of 4800 to explain the phenomena. The results demonstrated that there was a secondary flow in both new feed channels, which strongly influences the Mg2+ rejection. The rejection increased with increasing average shear stress at the membrane wall. The spiral feed channel was the best one among the flow channel structures investigated.
An experimental and analytical study of flow through a supersonic open channel with contoured floor
Saheli, F. P.; Dunn, B.; Marrs, K.; Kumar, A.; Peery, K. M.
1984-01-01
A wind tunnel experiment was performed to study the characteristics of supersonic airflow (M(infinity) = 2.5-3.86) through an open channel with a contoured floor. The measured static pressures along the centerline of the channel floor exhibited an unexpected rise at the end of the channel. Complex three-dimensional interactions of compression and expansion waves within the channel coupled with external flow perturbations caused by model/tunnel wall interference were the suspected sources of this flow behavior. Three-dimensional inviscid flow analysis procedures were used to investigate and explain this phenomenon. The results of the computations and the experiment are presented and discussed.
Institute of Scientific and Technical Information of China (English)
Wang Yongan; Tian Shujun; Jia Chunqiang; Cao Yuning
2008-01-01
Computational fluid dynamics (CFD) was used in conjunction with BP neural network to study the flow resistance characteristic of the combination-channel inside hydraulic manifold block (HMB).The in put parameters of the combination-channel model were confirmed to have effect on the pressure-drop by the numerical method, and a BP neural network model was accordingly constructed to predict the channel pressure-drops.The flow resistance characteristic curves of various channels were achieved, and a performance parameter was given to evaluate the through-flow characteristic of the channel according to the curves.The predictions are in agreement with the numerical computation, indicating that the method can be utilized to accurately determine the flow characteristic of the combination channel with high efficiency.
Transport of self-propelling bacteria in micro-channel flow
Costanzo, A.; Di Leonardo, R.; Ruocco, G.; Angelani, L.
2012-02-01
Understanding the collective motion of self-propelling organisms in confined geometries, such as that of narrow channels, is of great theoretical and practical importance. By means of numerical simulations we study the motion of model bacteria in 2D channels under different flow conditions: fluid at rest, steady and unsteady flow. We find aggregation of bacteria near channel walls and, in the presence of external flow, also upstream swimming, which turns out to be a very robust result. Detailed analysis of bacterial velocity and orientation fields allows us to quantify the phenomenon by varying cell density, channel width and fluid velocity. The tumbling mechanism turns out to have strong influence on velocity profiles and particle flow, resulting in a net upstream flow in the case of non-tumbling organisms. Finally we demonstrate that upstream flow can be enhanced by a suitable choice of an unsteady flow pattern.
Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.
Bittagopal Mondal; Dipankar Chatterjee
2016-01-01
The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC) since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus...
Contribution of KV7 Channels to Basal Coronary Flow and Active Response to Ischemia
DEFF Research Database (Denmark)
Khanamiri, Saereh; Soltysinska, Ewa; Jepps, Thomas A;
2013-01-01
The goal of the present study was to determine the role of KCNQ-encoded KV channels (KV7 channels) in the passive and active regulation of coronary flow in normotensive and hypertensive rats. In left anterior descending coronary arteries from normotensive rats, structurally different KV7.2 to 7....... Overall, these data establish KV7 channels as crucial regulators of coronary flow at resting and after hypoxic insult....
GATE REGULATION SPEED AND TRANSITION PROCESS OF UNSTEADY FLOW IN CHANNEL
Institute of Scientific and Technical Information of China (English)
TAN Guang-ming; DING Zhi-liang; WANG Chang-de; YAO Xiong
2008-01-01
The operation methods of channel and the speed of gate regulation have great influence on the transformation of flow in water conveyance channels. Based on characteristics method, a 1-D unsteady flow numerical model for gate regulation was established in this study. The process of water flow was simulated under different boundary conditions. The influence of gate regulation speed and channel operation methods on flow transition process was analyzed. The numerical results show that under the same conditions, with increasing regulation speed of the gate, the change rates of discharge and water level increase, while the response time of channel becomes shorter, and ultimately the discharge and water level will transit to the same equilibrium states. Moreover, the flow is easier to reach stable state, if the water level in front of the sluice is kept constant, instead of behind the sluice. This study will be important to the scheme design of automatic operation control in water conveyance channels.
Morphological impacts of flow events of varying magnitude on ephemeral channels in a semiarid region
Hooke, J. M.
2016-01-01
Flows in ephemeral channels in semiarid areas are only occasional, and channel changes are episodic; but the flash floods can be devastating and have major geomorphological impacts. Data on morphological impacts of flows in semiarid areas are needed to increase understanding of the dynamics and variability of geomorphic responses in such channels. For this purpose nine reaches of river channel in three catchments in SE Spain - the Nogalte, Torrealvilla, and Salada - have been sites for measurement of flows and their effects over the period 1997-2012. The sites encompass a range of channel size, channel morphology, substrate, vegetation, and position within the catchments. A major difference is between schist and marl bedrock areas. Peak flow stage has been recorded and topography surveyed at frequent intervals and after major flow events. Over the 16-year period, an average of 0.5 flow events per year has been recorded at the schist sites, and an average of one per year at the marl sites; but occurrence has been highly variable from year to year. Threshold daily rainfall for channel flow is mostly 15-20 mm, but higher rainfalls do not always produce flow. One to two major floods have occurred in each of the catchments in the period, including the extreme flood event of September 2012 in the Nogalte catchment. Measured morphological changes have occurred between 2 and 10 times at the monitored sites. The same size flow can have differing effects depending on the state of the system. Low flow can mobilise sediment without producing much morphological change. The long-term trajectory of the reaches and the sediment substrate has a major influence on response to events. Channel change is governed by threshold values of hydraulic conditions. The measurements provide an indication of the scale of maximum erosion and deposition that occurs within the channels and on the floodplains over a range of flow magnitudes and the flow impacts that need to be considered in
Evolution of the Detached Westward Flow Channel as Observed by the Unwin HF Radar
Makarevich, R. A.; Dyson, P. L.
2005-12-01
We examine the spatial and temporal evolution of latitudinally narrow regions with enhanced Doppler velocity observed by the Unwin TIGER HF radar equatorward of Auroral Westward Flow Channels. AWFCs were detected by both the Bruny Island and New Zealand (Unwin) TIGER radars as regions with enhanced westward convection, at about -62 deg MLAT. A second, more equatorward (~ -60 deg MLAT) channel with enhanced westward convection was detected only by the Unwin radar. The spatio-temporal behaviour of the second channel and its characteristics were found to be significantly different from those of AWFCs, e.g. both the channel and flow directions were significantly non-L-shell-aligned. We also investigate the relationship between the flow speeds within the two types of flow channels. In all cases, the second channel appeared to originate within or close to the AWFC, with the flow deviation from the magnetic L-shell direction and latitudinal separation between channels increasing with time. In sharp contrast to the AWFC that persisted for 2-3 hours, the second channel was recognizable only for 30-50 min. A relation between multiple flow channels and other subauroral phenomena such as subauroral ion drifts (SAID) and subauroral polarization streams (SAPS), and the implications of observations for models of SAID and SAPS formation are discussed.
Institute of Scientific and Technical Information of China (English)
Liu Haiyong; Liu Cunliang; Wu Wenming
2015-01-01
A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000) and three channel con-figurations with different ratios of the channel height to the impingement hole diameter (Zr=1, 3, 5) are analyzed by solving the Reynolds averaged Navier–Stokes equations with the realizable k–e turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.
Directory of Open Access Journals (Sweden)
Liu Haiyong
2015-12-01
Full Text Available A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000 and three channel configurations with different ratios of the channel height to the impingement hole diameter (Zr = 1, 3, 5 are analyzed by solving the Reynolds averaged Navier–Stokes equations with the realizable k–ε turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.
Navier-Stokes solver using Green's functions I: channel flow and plane Couette flow
Viswanath, Divakar
2012-01-01
Numerical solvers of the incompressible Navier-Stokes equations have reproduced turbulence phenomena such as the law of the wall, the dependence of turbulence intensities on the Reynolds number, and experimentally observed properties of turbulence energy production. In this article, we begin a sequence of investigations whose eventual aim is to derive and implement numerical solvers that can reach higher Reynolds numbers than is currently possible. Every time step of a Navier-Stokes solver in effect solves a linear boundary value problem. The use of Green's functions leads to numerical solvers which are highly accurate in resolving the boundary layer, which is a source of delicate but exceedingly important physical effects at high Reynolds numbers. The use of Green's functions brings with it a need for careful quadrature rules and a reconsideration of time steppers. We derive and implement Green's function based solvers for the channel flow and plane Couette flow geometries. The solvers are validated by repro...
Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.
Dou, Haiyang; Jung, Euo Chang; Lee, Seungho
2015-05-01
Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.
Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method
Directory of Open Access Journals (Sweden)
Xiao Hong
2013-08-01
Full Text Available The source codes of Lattice Boltzmann Method (LBM based on the D3Q15 model were developed in the current study. In the simulation process, the pressure boundary conditions were developed and the rectangular micro-channel flow was investigated. The Width-to-Height ratio (W/H is the main influencing parameter of the rectangular micro-channel flow in low Reynolds number condition. A smaller W/H of the rectangular micro-channel results in a greater difference of drag coefficient between LBM simulation data and empirical formula data. On the empirical data of drag coefficient approximating laminar flow, when the Reynolds number is more than 10, the drag coefficients of LBM simulation and empirical data of laminar flow are in substantial agreement. Thus, in more than 10 conditions of Reynolds number, the empirical data on laminar flow can be used in rectangular micro-channel flow.
Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels
International Nuclear Information System (INIS)
Highlights: ► Numerical and experimental study of the fuel cell with spiral channels is performed. ► Secondary vortices in cross section of the spiral channels are found. ► Enhancement in the performance of the fuel cell by the secondary vortices is discussed. ► The spiral channels also lead to a reduction in the pressure drop of the gas flow. -- Abstract: Numerical simulation of the performance of a proton exchange membrane fuel cell (PEMFC) with spiral channels is performed in this study. Experiments are also conducted to verify the numerical predictions. The spiral channel pattern produces secondary vortices which lead to enhancement in heat and mass transfer in the curved channels and appreciably improves the performance of the fuel cell. In addition, the spiral channels may also lead to a reduction in the pressure drop of the gas flow through the fuel cell. When the sizes of the outlet channels are designed to be smaller than those of the inlet channels, water flooding in the catalyst layers can be further improved. In the present study, the spiral channel pattern consists of five inlet channels and five outlet channels. Radius and area of the active zone are 28.2 mm and 2500 mm2, respectively. A comparison between the spiral and the serpentine channels shows that the average current density with the former is higher than that with the latter by 11.9%. It is found that numerical predictions are in close agreement with the experimental results.
STUDY AND APPLICATION OF STEADY FLOW AND UNSTEADY FLOW MATHEMATICAL MODEL FOR CHANNEL NETWORKS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Based on the Preissmann implicit scheme for the one-dimensional Saint-Venant equation, the mathematical model for one-dimensional river networks and canal networks was developed and the key issues on the model were expatiated particularly in this article. This model applies the method of three-steps solution for channel-junction-channel to simulate the river networks, and the Gauss elimination method was used to calculate the sparse matrix. This model was applied to simulate the tree-type irrigation canal networks, complex looped channel networks and the Lower Columbia Slough networks. The results of water level and discharge agree with the data from the Adlul and field data. The model is proved to be robust for simulating unsteady flows in river networks with various degrees of complex structure. The calculated results show that this model is useful for engineering applications in complicated river networks. Future research was recommended to focus on setting up ecological numerical model of water quality in river networks and canal networks.
Directory of Open Access Journals (Sweden)
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
Vinatier, Fabrice; Belaud, Gilles; Combemale, David
2016-01-01
Vegetation characteristics providing spatial heterogeneity at the channel reach scale can produce complex flow patterns and the relationship between plant patterns morphology and flow resistance is still an open question (Nepf 2012). Unlike experiments in laboratory, measuring the vegetation characteristics related to flow resistance on open channel in situ is difficult. Thanks to its high resolution and light weight, scanner lasers allow now to collect in situ 3D vegetation characteristics. In this study we used a 1064 nm usual Terrestrial Laser Scanner (TLS) located 5 meters at nadir above a 8 meters long equipped channel in order to both i) characterize the vegetation structure heterogeneity within the channel form a single scan (blockage factor, canopy height) and ii) to measure the 2D water level all over the channel during steady flow within a few seconds scan. This latter measuring system was possible thanks to an additive dispersive product sprinkled at the water surface. Vegetation characteristics an...
Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?
Quadrio, Maurizio; Frohnapfel, Bettina; Hasegawa, Yosuke
2016-01-01
We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value of such events explains their negligible contribution to the commonly computed statistics; however, the very existence of a difference in the PDF demonstrates that the forcing term is not entirely uninfluential. Other statistics for wall-based quantities (the two components of friction and pressure) are examined; in particular spatio-temporal autocorrelations show small differences at large temporal separations, where unfortunately the residual statistical uncertainty is still of the same order of the observed difference. Hence we suggest that the specific choice of the forcing term does not produce important statistical consequences, unless one is interested in the strongest events of high wall friction, that are underestimated by a simulation run at constant flow rate.
Surface treatment of flow channels in microfluidic devices fabricated by stereolithography.
Ohtani, Kanako; Tsuchiya, Masaki; Sugiyama, Hitomi; Katakura, Toru; Hayakawa, Masatoshi; Kanai, Toshimitsu
2014-01-01
A microfluidic device with three-dimensional flow channels was fabricated by stereolithography, and hydrophilic surface treatment of the flow channel was performed by coating the wall of the channel with a silica layer. After the treatment, the device produced monodisperse oil-in-water (O/W) emulsions. The silica layer on the channel surface was then coated with a fluorinated silane coupling agent to make it hydrophobic, thus enabling the treated device to produce monodisperse inverted water-in-oil (W/O) emulsions.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Renshaw, C.; Curtis, K.; Magilligan, F.; Dade, W.
2008-12-01
By resupplying the mainstem with water and sediment, tributaries are a primary mechanism for mitigating the impacts of flow regulation. As a result, morphological and ecological adjustments associated with flow regulation may be particularly pronounced at tributary junctions. Despite the extensive literature on how dams alter channel morphology, few studies have focused specifically on the relationship between flow regulation and consequent changes in bedload sediment transport at tributary junctions. Using historical aerial photographs, modern channel surveys, and flow modeling, we compare temporal changes between regulated and unregulated tributary junction morphology and sediment transport dynamics. In contrast to what has been observed along the Colorado River, where flow regulation has led to a reduction in the number and size of channel bars, we observe significant bar growth post-regulation along the West River in southern Vermont. In some cases exposed bar area increased more than 50 percent in the first three decades after regulation and coincides with a corresponding reduction in channel width. Revegetation of former floodplain surfaces has begun to reduce the exposed bar area. However, flow modeling indicates that the channel remains underfit with respect to the new flow regime, with the current 2- and 50-yr floods lacking sufficient competence to transport the bedload sediment discharged by tributaries. Thus even 50 years post regulation, additional morphological changes are still required for the mainstem channel to fully adjust to the new flow regime.
Application of a simple space-time averaged porous media model to flow in densely vegetated channels
Hoffmann, M.R.
2004-01-01
Traditional flow modeling in open channels uses time-averaged turbulence models. These models are valid in clear fluid, but not if dense obstructions are present in the flow field. In this article we show that newly developed flow models can describe open channel flow as flow in a porous medium. Cle
Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels
Kosaraju, Srinivas
2015-11-01
The T- and Y-shaped flow channels can be optimized for reduced pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, we studied the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same pumping power and heat generation constraints and their heat transfer performance is studied.
Extended Lubrication Theory: Estimation of Fluid Flow in Channels with Variable Geometry
Tavakol, Behrouz; Froehlicher, Guillaume; Stone, Howard A
2014-01-01
Lubrication theory is broadly applicable to the flow characterization of thin fluid films and the motion of particles near surfaces. We offer an extension to lubrication theory by considering higher-order terms of the analytical approximation to describe the fluid flow in a channel with features of a modest aspect ratio. We find good agreement between our analytical results and numerical simulations. We show that the extended lubrication theory is a robust tool for an accurate estimate of laminar fluid flow in channels with features on the order of the channel height, accounting for both smooth and sharp changes in geometry.
Heat transfer and pressure drop in serpentine {mu}DMFC flow channels
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Shou-Shing; Her, Bing-Shyan [Department of Mechanical and Electro Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)
2007-12-15
In this paper, a 3-D mathematical model incorporated with Fluent computer code is described to investigate the flow and heat transfer for developing laminar flow in the micro direct methanol fuel cell ({mu}DMFC) with serpentine flow fields. The continuity, momentum, and energy equations are simultaneously solved by a general computational fluid dynamics code. Local, channel-mean, bended region-mean, and overall channel mean friction factors and Nusselt numbers were thus calculated and discussed. Finally, overall channel mean friction factor and Nusselt number were correlated in terms of the relevant parameters. (author)
Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes
Directory of Open Access Journals (Sweden)
Ole M. Aamo
2002-07-01
Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.
FINITE-VOLUME TVD ALGORITHM FOR DAM-BREAK FLOWS IN OPEN CHANNELS
Institute of Scientific and Technical Information of China (English)
Wang Jia-song; He You-sheng
2003-01-01
A finite-volume Total Variation Diminishing (TVD) scheme is presented for modeling dam-break flows in open channels.This method is used for solving the 2D shallow water equations on arbitrary quadrilateral meshes, based upon a second-order hybrid TVD scheme with an optimum-selected limiter in the space discretization and a two-step Runge-Kutta approach in the time discretization.Verification for a circular dam-break problem is carried out by comparing the present results with others and very good agreement is shown.The present algorithm is then used to predict dam-break flow characteristics in open channels such as in furcated channels.More complicated unsteady flow characteristics in these furcated channels than in the regular channels studied previously can observed in this work.
Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations
Croze, O A; Ahmed, M; Bees, M A; Brandt, L
2012-01-01
Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...
Vertical flow of a multiphase mixture in a channel
Massoudi Mehrdad; Rao C. Lakshmana
2000-01-01
The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value pro...
Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard
2015-11-01
We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.
Understanding heat transfer in 2D channel flows including recirculation
Dirkse, M.H.; Loon, van W.K.P.; Stigter, J.D.; Bot, G.P.A.
2007-01-01
Inviscid, irrotational two-dimensional flows can be modelled using the Schwarz¿Christoffel integral. Although bounded flows including boundary layer separation and recirculation are not irrotational, a model is presented that uses the Schwarz¿Christoffel integral to model these flows. The model sepa
Control works in debris-flow channels: influence on morphology and sediment transfer
Marchi, L.
2012-04-01
Extensive torrent control works, such as grade-control dams, debris basins, deflecting walls, etc. have been implemented in the European Alps since the last decades of 19th century. These structural measures, aimed at stabilizing channels and to control sediment transport, are also widespread in Japan and are increasingly present in other mountain regions. As debris flows are one of the most destructive processes in steep mountain channels, hydraulic works are often intended to attenuate debris-flow hazard. Multi-temporal aerial photos and historic records permit evaluating the long term effects of torrent control works on the morphological settings of the channels and the delivery of sediment. The experience arising from over one century of torrent control works in debris-flow channels of the Alps permits also to improve the management of steep headwater catchments. A basic issue in the management of debris-flow channels is the recognition of success versus failure of engineering control works. Successful debris-flow control works provide benchmarks for further implementations, whereas the failure in reducing debris-flow hazard may lead to refinements in planning and design of control works or to the choice of preferring non-structural measures for coping with debris flows. Data from historical archives on debris-flow occurrence and on the performance of control works are the basic sources of information for these analyses. Moreover, when dealing with hydraulic structures for debris-flow control, it should be reminded that the artificial morphology resulting from the construction of check dams provides only a temporary stability to the channel and adjacent banks. This stresses the importance of evaluating the state of conservation and the effectiveness of control works and implies the need for their careful and continuous maintenance. Inventories of hydraulic structures, coupled with detailed data on catchment and channel topography, sediment sources and supply
Institute of Scientific and Technical Information of China (English)
WU Zhao-chun; WANG Dao-zeng
2009-01-01
e computational results agree with the measured data. By use of orthogonal curvilinear coordinate system, the methods can be easily extended to the numerical simulation of the tidal flow in a tortuous channel.
A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)
In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...
EXPERIMENTAL STUDY ON THE RELATION OF BED MORPHOLOGY WITH SURFACE FLOW IN MEANDER CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Alternate bars have the property that they migrate downstream whenever floods occur. However,in meander channels whose bend angles are larger than a critical value, the migration of bars can be suppressed, and the positions of bank erosion and flood attack also will be steady. In this study, the bed morphology in flume channels with bends of various lengths and angles is investigated at various flow discharges, and the relation of bed morphology to surface flow is investigated in detail using fluid measuring software. An effort is made to obtain guidelines for the plane shape design of meander channels. Based on the experimental results of bed topography and measurement of surface flow direction and velocity distribution, from the viewpoint of bank erosion and the concentration and dispersion of flood flow the most suitable plane shape for meandering channels is suggested through which the migration of alternate bars is suppressed.
PIV Measurements of Turbulent Flow in a Channel with Solid or Perforated Ribs
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2011-01-01
Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart...
Burnout and distribution of liquid between the flow core and wall films in narrow slot channels
Boltenko, E. A.; Shpakovskii, A. A.
2010-03-01
Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.
INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS
Directory of Open Access Journals (Sweden)
S. T. Aksentiev
2005-01-01
Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.
Directory of Open Access Journals (Sweden)
Matteo Pascotto
2013-01-01
Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.
Effect of Slip on Peristaltic Flow of Powell-Eyring Fluid in a Symmetric Channel
Directory of Open Access Journals (Sweden)
T. Hayat
2014-01-01
Full Text Available Peristaltic flow of non-Newtonian fluid in a symmetric channel with partial slip effect is examined. The non-Newtonian behavior of fluid is characterized by the constitutive equations of Powell-Eyring fluid. The motion is induced by a sinusoidal wave traveling along the flexible walls of channel. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The equations governing the flow are solved by adopting lubrication approach. Series solutions for the stream function and axial pressure gradient are obtained. Impact of slip and other emerging flow parameters is plotted and analyzed graphically.
Evaluation of RANS turbulence models for the simulation of channel flow
Hedlund, André
2014-01-01
The objective of this report is to investigate how RANS models perform on fully developed channel flow, for Re = 13 350, and the simulations are made with the open source software OpenFOAM. The velocity and turbulent kinetic energy profiles are compared with previously published DNS results. A short introduction to turbulence modelling is presented with focus on channel flow and the boundary layer. In total eleven models are evaluated, and the results are of varying quality. A convergence stu...
A MODIFIED SIMPLE ALGORITHM FOR 2-D FLOW IN OPEN CHANNEL
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For two-dimensional water flow in open channel, by discritizing hydrodynamic differential equation of conservative form, the corresponding algebraic equations were derived which involve the relationship between velocity and depth. Based on the relationship, this paper deduced a modified formula of velocity correction for SIMPLE algorithm. As a test case, the flow in a prismatic channel with two different slopes was computed and a good result was obtained.
Flow Structure and Channel Change in Chute Cutoffs On Meandering Rivers
Zinger, J. A.; Rhoads, B. L.; Best, J. L.; Johnson, K. K.
2011-12-01
Freely meandering rivers typically exhibit complex, continuously evolving patterns of planform geometry involving elongation of the channel path through lateral migration and shorting of this path through bend cutoffs. Despite the importance of cutoffs in shaping the planform geometry of meandering rivers, the fluvial processes operative immediately after initiation of a cutoff are poorly understood. Two recent chute cutoff events on a single bend on the Wabash River, IL-IN, have provided an unprecedented opportunity to document the morphologic evolution and flow structure of chute cutoffs in a large, unregulated, meandering river. Here, we present results of ADCP measurements of three-dimensional flow velocity and bed topography at these cutoffs and describe a conceptual model for the morphodynamics of chute cutoffs prior to oxbow lake formation. Our results indicate that the flow structure at upstream and downstream ends of cutoff channels, prior to plugging of the entrance and exit of the abandoned bend with sediment, is analogous to flow through diffluence - confluence units. The interaction of this flow structure with an erodible bed and banks can cause rapid widening of the upstream end of the cutoff channel and bar development i) in the main channel where velocities are reduced, and ii) in the separation zone of the cutoff channel. Over time, these patterns of deposition and erosion will lead formation of an oxbow lake and complete capture of the flow by the cutoff channel.
Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks
Directory of Open Access Journals (Sweden)
Niu Zhisheng
2010-01-01
Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.
Arsenic removal from flowing irrigation water in bangladesh: impacts of channel properties.
Lineberger, Ethan M; Badruzzaman, A Borhan M; Ali, M Ashraf; Polizzotto, Matthew L
2013-11-01
Across Bangladesh, dry-season irrigation with arsenic-contaminated well water is loading arsenic onto rice paddies, leading to increased arsenic concentrations in plants, diminished crop yields, and increased human health risks. As irrigation water flows through conveyance channels between wells and rice fields, arsenic concentrations change over space and time, indicating that channels may provide a location for removing arsenic from solution. However, few studies have systematically evaluated the processes controlling arsenic concentrations in irrigation channels, limiting the ability to manipulate these systems and enhance arsenic removal from solution. The central goal of this study was to quantify how channel design affected removal of dissolved arsenic from flowing irrigation water. Field experiments were conducted in Bangladesh using a chemically constant source of arsenic-contaminated irrigation water and an array of constructed channels with varying geometries. The resulting hydraulic conditions affected the quantity of arsenic removed from solution within the channels by promoting known hydrogeochemical processes. Channels three times the width of control channels removed ∼3 times the mass of arsenic over 32 min of flowing conditions, whereas negligible arsenic removal was observed in tarp-lined channels, which prevented soil-water contact. Arsenic removal from solution was ∼7 times higher in a winding, 200-m-long channel than in the straight, 45-m-long control channels. Arsenic concentrations were governed by oxidative iron-arsenic coprecipitation within the water column, sorption to soils, and phosphate competition. Collectively, these results suggest that better design and management of irrigation channels may play a part in arsenic mitigation strategies for rice fields in Southern Asia. PMID:25602413
Prospects for future outward migration flows : China and Southeast Asia
Ducanes, Geoffrey; Abella, Manolo I
2009-01-01
Focuses on factors that are likely to influence outward migration flow from China and the Southeast Asian region, particularly the Philippines and Indonesia, in the next two decades. It finds that while current migration streams are likely to continue in the short run, important developments in demographic, economic, political, and environmental factors which vary for the different countries - are likely to shape longer terms future migration from the region.
Flow cytometric applications of tumor biology: prospects and pitfalls
International Nuclear Information System (INIS)
A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation
Energy Technology Data Exchange (ETDEWEB)
Sun, Lan; Oosthuizen, Patrick H. [Department of Mechanical and Materials Engineering, McLaughlin Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada); McAuley, Kim B. [Department of Chemical Engineering, Dupuis Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada)
2006-10-15
A numerical study of pressure distribution and flow cross-over through the gas diffusion layer (GDL) in a PEMFC flow plate using a serpentine channel system has been undertaken for the case where the channel has a trapezoidal cross-sectional shape. The flow has been assumed to be 3-D, steady, incompressible and single-phase. The flow through the porous diffusion layer has been described using the Darcy model. The governing equations have been written in dimensionless form and solved by using the commercial CFD solver, FIDAP. The results obtained indicate that: (1) the size ratio, R, of trapezoidal cross-sectional shape has a significant effect on the flow cross-over. As R increases, the flow cross-over through GDL increases; (2) the ratio R also has a significant effect on the pressure variation in the flow field for both cross-over and no cross-over cases; (3) flow cross-over has a significant influence on the pressure variation through the channel, tending to decrease the pressure drop across the channel; (4) an increase in Re number can lead to a slight increase in the flow cross-over. (author)
Flow dynamics and concentration polarisation in spacer-filled channels
DEFF Research Database (Denmark)
Lipnizki, Jens; Jonsson, Gunnar Eigil
2002-01-01
. This phenomenon was also observed in spacer-filled channels. In this case the stripes on the surface depended on the spacer geometry. Furthermore, the experiments were used to calculate the energy consumption vs. the mass transfer coefficient for different spacers. This research can be used as a foundation...
Stone stability under decelerating open-channel flow
Hoan, N.T.; Booij, R.; Hofland, B.; Stive, M.J.F.; Verhagen, H.J.
2007-01-01
The current research is aimed at finding a proper relation between flow forces acting on the bed and the bed response. To this end, experiments were carried out in which both the bed response (quantified by a dimensionless entrainment rate) and the flow field (velocity and turbulence intensity distr
Energy Technology Data Exchange (ETDEWEB)
Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Dept. of Mechanical and Materials Engineering, Kingston, Ontario (Canada)]. E-mail: oosthuiz@me.queensu.ca; McAuley, K.B. [Queen' s Univ., Dept. of Chemical Engineering, Kingston, Ontario (Canada)
2005-07-01
It is common in a PEM fuel cell for the air to flow through serpentine channels with a square cross-section in the cathode side flow plate. There is a porous diffusion layer adjacent to the flow plate. Flow cross-over of air through the porous diffusion layer from one part of the channel to another can occur as a result of the pressure differences between different parts of the channel causing the flow rate through the channel to vary with the distance along the channel. The channel cross-sectional shape can influence both the pressure drop and the flow crossover. A numerical study of the pressure distribution and flow cross-over through the gas diffusion layer in PEM fuel cell flow plates using a serpentine channel system has therefore been undertaken for the case where the channel has a trapezoidal cross-sectional shape, the trapezoidal channel cross-sectional shape having the potential to reduce the pressure drop and to augment the flow cross-over. The flow has been assumed to be three-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer has been described using the Darcy model. The governing equations have been written in dimensionless form and solved using the commercial CFD solver, FIDAP. The solution depends on the following parameters: (i) the Reynolds number, Re, based on the mean channel width and the mean velocity; (ii) the dimensionless permeability of the gas diffusion layer (iii) the geometry of the channel cross-section; (iv) the flow channel configuration; (v) the dimensionless thickness of the gas diffusion layer. Results have been obtained for a range of Reynolds numbers and channel geometries for two dimensionless permeabilities and two flow channel configurations for a single value of the dimensionless diffusion layer thickness. (author)
Deformation of an Elastic beam due to Viscous Flow in an Embedded Channel Network
Matia, Yoav; Gat, Amir
2015-11-01
Elastic deformation due to embedded fluidic networks is currently studied in the context of soft-actuators and soft-robotic applications. In this work, we analyze the time dependent interaction between elastic deformation of a slender beam and viscous flow within a long serpentine channel, embedded in the elastic structure. The channel is positioned asymmetrically with regard to the midplane of the elastic beam, and thus pressure within the channel creates a local moment deforming the beam. We focus on creeping flows and small deformations of the elastic beam and obtain, in leading order, a convection-diffusion equation governing the pressure-field within the serpentine channel. The beam time-dependent deformation is then obtained as a function of the pressure-field and the geometry of the embedded network. This relation enables the design of complex time-dependent deformation patterns of beams with embedded channel networks. Our theoretical results were illustrated and verified by numerical computations.
Bruce NGS: A discharge channel flow simulation using MODTURC-CLAS
International Nuclear Information System (INIS)
Better understanding of the total residual chlorine (TRC) distribution and characteristics of water flow in the open discharge channel is desired to identify a representative sampling location for TRC in the cooling water discharge channel of a nuclear generating station. A three-dimensional flow simulation for Bruce NGS A was carried out using a state-of-the-art computer code MODTURC-CLAS. The results of this model are compared with data collected from a field measurement at Bruce A discharge channel in the summer of 1993. This model can be used to predict the characteristics of the discharge flows for various operating conditions of the station, and to help optimize the selection of a representative sampling point for TRC in the discharge channel. (author) 4 refs., 1 tab., 17 refs
Institute of Scientific and Technical Information of China (English)
SHAO; Xuejun; WANG; Hong; CHEN; Zhi
2004-01-01
Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY model). Simulation results were compared with observation of (i) turbulent flows in alternating point-bar type channel bends with rectangular sections, and (ii) straight open channel flows with compound cross-sections. Based on calculations of the impact of various channel curvatures on turbulence characteristics, accuracy of the three turbulence models was analyzed with observed data as a qualitative reference. It has been found out that the Launder and Ying model and the nonlinear k-ε Model are able to predict the same general trend as measured data, and the simulation of the effect of the centrifugal force on the formation of secondary currents produces a correct pattern.
Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids
Directory of Open Access Journals (Sweden)
S. Das
2015-06-01
Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.
Darcy Flow in a Wavy Channel Filled with a Porous Medium
Energy Technology Data Exchange (ETDEWEB)
Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S
2013-05-17
Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.
FIBER ORIENTATION DISTRIBUTIONS IN SLIT CHANNEL FLOWS WITH ABRUPT EXPANSION FOR FIBER SUSPENSIONS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The lattice Boltzmann method was used to investigate numerically the fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions even in the concentrated regime. The channels have a thin slit geometry with 1:4 and 1:3 expansions. Both the interactions between fibers and that between fibers and channel walls were taken into consideration. Some of numerical results are qualitatively in agreement with the experiment data. It is found that most of fibers are aligned in the flow direction in all the suspensions in the entrance region of the expansion. Fiber orientation distributions, having different patterns in different regions of the flow, depend on the expansion ratio of the channel. The mechanical fiber-fiber interaction largely affects the fiber orientation in the downstream of the expansion and in the salient corner for the cases of concentrated suspensions. The hydrodynamic interaction plays an important role on the fiber orientation in the dilute suspension.
Rahmani, Amir M; Jupiterwala, Mehlam; Colosqui, Carlos E
2015-01-01
Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displace...
Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Abstract)
DEFF Research Database (Denmark)
Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen
2016-01-01
of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the vertical upward gas-liquid flow pattern in a 0.5×1×94 mm micro-channel is both numerically and experimentally analysed. A sheet...... of titanium felt is used as a permeable wall for permeation of air to the column of water similar to the phenomenon encountered in Oxygen Evolution Reaction (OER). The transparent setup is operated in situ and the gas-liquid flow regimes are identified using a high-speed camera. The picture shows how...... the transparent cell is made which consists of a channel for the inlet air and a channel for the water-bubble flow. The transparent material is Plexiglas that is sealed with a sheet of silicon. The conventional co-current gas-liquid two-phase flow patterns, such as bubbly flow, slug flow and annular flow...
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.
2011-01-01
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Euleri
Large-eddy simulation of a mildly curved open-channel flow
Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K.
2009-01-01
After validation with experimental data, large-eddy simulation (LES) is used to study in detail the open-channel flow through a curved flume. Based on the LES results, the present paper addresses four issues. Firstly, features of the complex bicellular pattern of the secondary flow, occurring in cur
Large-eddy simulation of a curved open-channel flow over topography
Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K.
2010-01-01
Large-eddy simulation (LES) is performed of a curved open-channel flow over topography based on the laboratory experiment by Blanckaert [“Topographic steering, flow circulation, velocity redistribution and bed topography in sharp meander bends,” Water Resour. Res., doi:10.1029/2009WR008303 (in press
Flow and bathymetry in sharp open-channel bends: Experiments and predictions
Zeng, J.; Constantinescu, G.; Blanckaert, K.; Weber, L.
2008-01-01
This paper focuses on experiments and simulations conducted in very sharp open-channel bends with flat and equilibrium bathymetry, corresponding to the initial and final phases of the erosion and deposition processes, respectively. The study of flow in curved open bends is relevant for flow in natur
Flow rate-pressure drop relation for deformable shallow microfluidic channels
Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.
2013-11-01
Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.
Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow
Vrieling, A.J.
2003-01-01
This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these pas
International Nuclear Information System (INIS)
The boiling-induced natural circulation flow in the engineered cooling channel is modelled and solved by considering the conservation of mass, momentum and energy in the two-phase mixture, along with the two-phase friction drop and void fraction. The model has been applied to estimate the induced mass flow rates through a uniform and non-uniform annular gap between the reactor vessel and insulation under the IVR-ERVC conditions, and also the engineered corium cooling system of an ex-vessel core catcher during a severe accident for various system parameters including the channel gap size, inlet diameter, inlet subcooling, and wall heat flux. (author)
Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo
2013-01-01
We present new experimental results on the development of turbulent spots in channel flow. The internal structure of a turbulent spot is measured, with Time Resolved Stereoscopic Particle Image Velocimetry. We report the observation of travelling-wave-like structures at the trailing edge of the turbulent spot. Special attention is paid to the large-scale flow surrounding the spot. We show that this large-scale flow is an asymmetric quadrupole centred on the spot. We measure the time evolution of the turbulent fluctuations and the mean flow distortions and compare these with the predictions of a nonlinear reduced order model predicting the main features of subcritical transition to turbulence.
Two-phase flow boiling in small channels: A brief review
Indian Academy of Sciences (India)
Madhavi V Sardeshpande; Vivek V Ranade
2013-12-01
Boiling flows are encountered in a wide range of industrial applications such as boilers, core and steam generators in nuclear reactors, petroleum transportation, electronic cooling and various types of chemical reactors. Many of these applications involve boiling flows in conventional channels (channel size ≥ 3 mm). The key design issues in two phase flow boiling are variation in flow regimes, occurrence of dry out condition, flow instabilities, and understanding of heat transfer coefficient and vapor quality. This paper briefly reviews published experimental and modeling work in these areas. An attempt is made to provide a perspective and to present available information on boiling in small channels in terms of channel size, flow regimes, heat transfer correlations, pressure drop, critical heat flux and film thickness. An attempt is also made to identify strengths and weaknesses of published approaches and computational models of boiling in small channels. The presented discussion and results will provide an update on the state-of-the-art and will be useful to identify and plan further research in this important area.
Flow characteristics on the blade channel vortex in the Francis turbine
Guo, P. C.; Wang, Z. N.; Luo, X. Q.; Wang, Y. L.; Zuo, J. L.
2016-05-01
Depending on the long-term hydraulic development of Francis turbine, the blade channel vortex phenomenon was investigated systematically from hydraulic design, experimental and numerical computation in this paper. The blade channel vortex difference between the high water head and low water head turbine was also analyzed. Meanwhile, the relationship between the blade channel vortex and the operating stability of hydraulic turbine was also investigated. The results show that the phenomenon of blade channel vortex is an intrinsic property for Francis turbine under small flow rate condition, the turning-point of the blade channel vortex inception curve appears at low unit speed region, and the variation trend of the blade channel vortex inception curve is closely related to the blade inlet edge profile. In addition to, the vortex of the high water head turbine can generally be excluded from the stable operation region, while which is more different for the one of the low water head turbine.
Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow
Directory of Open Access Journals (Sweden)
Laurent Schindfessel
2015-08-01
Full Text Available Despite the ratio of incoming discharges being recognized as a key parameter in open-channel confluence hydrodynamics, little is known about the flow patterns when the tributary provides more than 90% of the total discharge. This paper offers a systematic study of flow features when the tributary becomes increasingly dominant in a 90° confluence with a fixed concordant bed. Large-eddy simulations are used to investigate the three-dimensional complex flow patterns for three different discharge ratios. It is found that the tributary flow impinges on the opposing bank when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream channel of the confluence, which induces significant changes in the incoming velocity distribution. Moreover, it results in stronger helicoidal cells in the downstream channel, along with zones of upwelling flow. In turn, the changed flow patterns also influence the mixing layer and the flow recovery. Finally, intermittent events of stronger upwelling flow are discerned. Improved understanding of flow patterns at confluences where the tributary is dominant is applicable to both engineering and earth sciences.
Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels
DEFF Research Database (Denmark)
Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen
2016-01-01
understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....
Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel
Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.
1989-10-01
A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.
Jan, Chyan-Deng
2014-01-01
Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, w
Unsteady Porous Channel Flow of a Conducting Fluid with Suspended Particles
Directory of Open Access Journals (Sweden)
Jagjit Pal Kaur
1988-01-01
Full Text Available The flow of a viscous incompressible fluid embedded with a small spherical particle in the presence of a transverse magnetic field in a channel has been discussed. The cross-section of the channel is a porous regular hexagonal of side 4a and the walls are non-conducting. The analysis applied to the flows with pressure gradient which are arbitrary function of time. A few particular cases, flow for impulsive pressure gradient and for constant pressure gradient have been studied. The velocity of the fluid and particle decrease with increase in the intensity of the magnetic field.
Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels
Institute of Scientific and Technical Information of China (English)
WANG; Moran; LI; Zhixin
2005-01-01
The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.
LARGE EDDY SIMULATION OF FREE SURFACE TURBULENT CHANNEL FLOW WITH HEAT TRANSFER
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In this paper, the Large Eddy Simulation (LES) was used to study the free-surface turbulent channel flow with passive heat transfer. The three-dimensional filtered incompressible Navier-Stokes equations and energy equation were numerically solved with dynamic Subgrid Scale (SGS) models for modeling turbulent stresses and heat flux. To compare the turbulent behavior of the free-surface and two-walled channel flows, the LES of two-walled turbulent channel flow was performed. The statistical quantities and flow structures of the free-surface turbulence with heat transfer in the vicinity of the free-surface were investigated. The results are also in good agreement with theoretical analysis and available results by Direct Numerical Simulation (DNS).
Fast Vortex Method for the Simulation of Flows Inside Channels With and Without Injection
Institute of Scientific and Technical Information of China (English)
YvesGAGNON; HUANGWeiguang
1993-01-01
A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls,In both cases,results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell Algorithm.Physical analyses of the numerical results are also presented.mostly in application to film cooling.
Simulation of the solidification in a channel of a water-cooled glass flow
Directory of Open Access Journals (Sweden)
G. E. Ovando Chacon
2014-12-01
Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.
Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels
Energy Technology Data Exchange (ETDEWEB)
Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)
2015-06-15
Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.
Carling, Paul; Kleinhans, Maarten; Leyland, Julian; Besozzi, Louison; Duranton, Pierre; Trieu, Hai; Teske, Roy
2014-01-01
Understanding of flow resistance of forested floodplains is essential for floodplain flow routing and floodplain reforestation projects. Although the flow resistance of grass-lined channels is well-known, flow retention due to flow-blocking by trees is poorly understood. Flow behaviour through tree-
Flow visualization study in high aspect ratio cooling channels for rocket engines
Meyer, Michael L.; Giuliani, James E.
1993-11-01
The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this
Institute of Scientific and Technical Information of China (English)
Yoichi KINOUE; Toshiaki SETOGUCHI; Mohammad MAMUN; Norimasa SHIOMI; Kenji KANEKO
2005-01-01
An experimental investigation was made into three-dimensional separated flow and the vortices within the flow separation in a decelerating channel flow generated by the suction from a porous side wall. The flows along the side and bottom walls were visualized by the surface tuft method. The turbulent internal flow was measured by the split-film probe to investigate the turbulent flow including the reverse flow. In the flow visualization for the strong decelerating flow (the suction flow ratio:0.8), two typical flow patterns appear alternatively. One is that the flow near the bottom wall separates more upstream than the flow near the top wall and a clockwise vortex can be seen in the separation region. Another is the reversal flow pattern with a counterclockwise vortex. By the turbulent flow measurement using the split-film probe, two peaks of turbulence level are observed for the strong decelerating flow case. These peaks can be related with two flow patterns mentioned above.
DEFF Research Database (Denmark)
Hilgers, Rob H P; Janssen, Ger M J; Fazzi, Gregorio E;
2010-01-01
We tested the hypothesis that changes in arterial blood flow modify the function of endothelial Ca2+-activated K+ channels [calcium-activated K+ channel (K(Ca)), small-conductance calcium-activated K+ channel (SK3), and intermediate calcium-activated K+ channel (IK1)] before arterial structural...
Trade flows as a channel for the transmission of business cycles
Berk, J.M.
1997-01-01
The interdependence between business cycles of different countries has grown in recent decades. Many factors act as conductors of cyclical fluctuations between countries. In this context, the influence of trade flows in the global transmission of business cycles is examined. The author aims to identify empirically the line of causality of international cyclical movements as suggested by trade flows, presenting an estimate of the quantitive importance of trade flows as transmission channel.
Dynamics of flow behind backward-facing step in a narrow channel
Directory of Open Access Journals (Sweden)
Uruba V.
2013-04-01
Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.
Stability characteristics of hyper-concentration flow in open channel
Institute of Scientific and Technical Information of China (English)
2008-01-01
The flow instability is related to many engineering problems and belongs to a wide-ranging research field. When the problem on the transition from the laminar to the turbulence caused by the instability of the laminar is studied,the "neutral line" and the critical Reynolds number are always taken as the criterion to judge whether a certain kind of flow is stable,whose corresponding flow medium is the clear water,that is,the single-phase Newtonian fluid. And it is not studied in the traditional in-stability theory that the hyper-concentration flow widely exists in rivers. This shortage can be covered by this research. Study shows that the instability of non-Newtonian fluid such as hyper-concentration fluid,compared with Newtonian fluid such as clear water,is influenced by not only Reynolds number,the ratio of the inertia force and the viscous force,but also many other factors such as the sediment concentration,the concentration distribution,the grain size,the volu-metric weight of the sediment and so on,which make the mechanical principle even more complex. So the results of the research can supply the scientific basis for the explanations of "slurrying river",the turbulence intensity of the flow carrying sediment and the variance of the turbulence structure.
Effects of roughness on density-weighted particle statistics in turbulent channel flows
Milici, Barbara
2015-12-01
The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
Effects of roughness on density-weighted particle statistics in turbulent channel flows
Energy Technology Data Exchange (ETDEWEB)
Milici, Barbara [Faculty of Engineering and Architecture, Cittadella Universitaria - 94100 - Enna (Italy)
2015-12-31
The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
Empirical Formulation of Flow Characteristics in Trapezoidal Channels
Gandhi, S.; Singh, R. P.
2016-05-01
Empirical relations for hydraulic jump characteristics, viz. sequent depth ratio (Y2/Y1), efficiency of jump (E2/E1) and relative length of jump (Lj/Y1) in trapezoidal channel with/without appurtenances are developed by introducing dimensionless Reynolds number, and neglecting the frictional effect for approach Froude number (varied between 2 and 10 under different conditions). Developed empirical models were also validated and compared with acquired experimental data as well as with literature data. Close fitness of the empirical models with appurtenances under varying dimensions, positions of baffle blocks provides accurate prediction of same for higher value of Froude number.
Formation and evolution of gas flow channels in the abutment pressure area
Institute of Scientific and Technical Information of China (English)
Zhang Yong; Zhang Xibin; Xu Lifeng; Zhang Jiangli; Zhou Genli
2012-01-01
The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure.The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area.Fracture and damage mechanics theory is used to understand the observations.The following two techniques were used to understand the evolution of gas flow channels:field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples.Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration.The abutment pressure affects the local stress and,hence,the local gas conduction.The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area.Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network.Gas permeability continuously increases during this time.This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.
Energy Technology Data Exchange (ETDEWEB)
Kim, Huiyung; Yun, Byongjo; Bak, Jinyeong [Pusan national university, Pusan (Korea, Republic of); Park, Jonghark; Chae, Heetaek; Park, Cheol [KAERI, Daejeon (Korea, Republic of)
2015-05-15
The new research reactor under constructing in Kijang adopts a plate-type-fuel with downward flow cooling to prevent release of radioactive substance at pool surface. The thermal hydraulic design for the narrow rectangular channel differs from that for rod bundle channel. The licensing for construction of research reactor requires thermal hydraulic safety analysis of narrow rectangular channel. In the thermal hydraulic safety analysis, critical heat flux (CHF) on the fuel surface is considerably important to determine power and safety margin. The objectives of present study are, therefore, to carry out the experiment of CHF for downward flow in narrow rectangular channel, to obtain the correlation of CHF prediction applicable to a subchannel of plate-type-fuel. CHF experiments were carried out in the narrow rectangular channel simulating plate-type-fuel for research reactors under the downward flow condition. With the investigation of CHF data of the present experiment and previous studies, a new CHF correlation was proposed for the downward flow in the subchannel of plate-type-fuel. The predicted CHF by the new CHF correlation shows good agreement with experimental data in the present study. However, the correlation was based on the limited number of experimental data under low-flow conditions. Therefore, further studies for more data are needed to generalize the CHF correlation.
Deformation of an Elastic Beam due to Viscous Flow in an Embedded Parallel Channel Network
Matia, Yoav
2015-01-01
Elastic deformation due to embedded fluidic networks is currently studied in the context of soft-actuators and soft-robotic applications. In this work, we analyze interaction between the elastic deflection of a slender beam and viscous flow within a long serpentine channel, embedded in the elastic beam. The channel is positioned asymmetrically with regard to the midplane of the beam, and thus pressure within the channel creates a local moment deforming the beam. We focus on creeping flows and small deflections of the elastic beam and obtain, in leading order, a fourth-order partial integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-dependent deformation patterns of beams with embedded channel networks, including inertia-like standing and moving wave solutions in configurations with negligible inertia.
Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars
Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.
2006-01-01
Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.
MHD mixed convection flow through a diverging channel with heated circular obstacle
Alam, Md. S.; Shaha, J.; Khan, M. A. H.; Nasrin, R.
2016-07-01
A numerical study of steady MHD mixed convection heat transfer and fluid flow through a diverging channel with heated circular obstacle is carried out in this paper. The circular obstacle placed at the centre of the channel is hot with temperature Th. The top and bottom walls are non-adiabatic. The basic nonlinear governing partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations. These equations have been solved numerically for different values of the governing parameters, namely Reynolds number (Re), Hartmann number (Ha), Richardson number (Ri) and Prandtl number (Pr) using finite element method. The streamlines, isotherms, average Nusselt number and average temperature of the fluid for various relevant dimensionless parameters are displayed graphically. The study revealed that the flow and thermal fields in the diverging channel depend significantly on the heated body. In addition, it is observed that the magnetic field acts to increase the rate of heat transfer within the channel.
DEFF Research Database (Denmark)
Olesen, Anders Christian; Kær, Søren Knudsen
2014-01-01
of liquid water towards the catalytic layer of the electrode. As opposed to the more common serpentine and parallel channels, interdigitated channels force liquid water through the porous gas diffusion layer (GDL) of the electrode. This improves the supply of water, however it increases pressure losses......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport....... While interdigitated channels have been examined for planar-square cells in detail, less is known for planar-circular cells. To examine the extent of flow maldistribution, a base case is defined and a parameter variation is conducted relative to it. In the study, the following parameters are examined...
Combined effect of free and forced convection on MHD flow in a rotating porous channel
Directory of Open Access Journals (Sweden)
D. R. V. Prasada Rao
1982-01-01
Full Text Available This paper gives a steady linear theory of the combined effect of the free and forced convection in rotating hydromagnetic viscous fluid flows in a porous channel under the action of a uniform magnetic field. The flow is governed by the Grashof number G, the Hartmann number H, the Ekman number E, and the suction Reynolds number S. The solutions for the velocity field, temperature distribution, magnetic field, mass rate of flow and the shear stresses on the channel boundaries are obtained using a perturbation method with the small parameter S. The nature of the associated boundary layers is investigated for various values of the governing flow parameters. The velocity, the temperature, and the shear stresses are discussed numerically by drawing profiles with reference to the variations in the flow parameters.
DEPTH-AVERAGED 2-D CALCULATION OF FLOW AND SEDIMENT TRANSPORT IN CURVED CHANNELS
Institute of Scientific and Technical Information of China (English)
Weiming WU; Sam S. Y. WANG
2004-01-01
The helical flow significantly affects the flow, sediment transport and morphological evolution in curved channels. A semi-empirical formula is proposed to determine the cross-stream distribution of the helical flow intensity in the developed regions of a channel bend. It is then used to evaluate the dispersion terms in the depth-averaged 2-D momentum equations and suspended-load transport equation as well as the bed-load transport angle, thus enhancing the depth-averaged 2-D model to account for the effect of helical flow. The tests in several experimental and field cases show that the enhanced depth-averaged 2-D model can much more reasonably predict the shifting of main flow from inner bank to outer bank, the erosion along outer bank and deposition along inner bank than the depth-averaged 2-D model without considering this effect.
Flow reversal and heat transfer of fully developed mixed convection in vertical channels
Cheng, Chin-Hsiang; Kou, Hong-Sen; Huang, Wen-Hsiung
1990-07-01
The present analysis is concerned with flow reversal phenomena and heat transfer characteristics of the fully developed laminar combined free and forced convection in the heated vertical channels. Three fundamental combinations of thermal boundary conditions on the respective wall surface (namely isoflux-isoflux, isoflux-isothermal, and isothermal-isothermal) are considered separately so as to investigate extensively their distinct influence on the flow pattern. Results of the velocity distribution and temperature distribution as well as the Nusselt number in terms of bulk mean temperature are carried out. Based on the analytical solutions obtained, flow reversal adjacent to the relatively colder wall is found to exist within the channel as Re/Gr is below a threshold value related to the thermal boundary conditions. Parameter zones for the occurrence of reversed flow are presented. Comparisons and verification are made using the existing numerical solutions at locations far downstream of developing flow.
Transient Taylor-Aris dispersion for time-dependent flows in straight channels
DEFF Research Database (Denmark)
Vedel, Søren; Bruus, Henrik
2012-01-01
Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra–ket forma......Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra......–ket formalism, we derive an expression for the effective solute diffusivity valid for transient Taylor–Aris dispersion in any given time-dependent, multi-frequency solvent flow through straight channels. Our theory shows that the solute dispersion may be greatly enhanced by the time-dependent parts of the flow...
Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.
2005-07-01
As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.
Flatness-based control of open-channel flow in an irrigation canal using SCADA
Rabbani, T.; Munier, S.; Dorchies, D.; Malaterre, P.O.; Bayen, A.; Litrico, X.
2009-01-01
Open channels are used to distribute water to large irrigated areas. In these systems, ensuring timely water delivery is essential to reduce operational water losses. This article derives a method for open-loop control of open channel flow, based on the Hayami model, a parabolic partial differential equation resulting from a simplification of the Saint-Venant equations. The open-loop control is represented as infinite series using differential flatness. Experimental results show the effective...
Peristaltic Flow of Phan-Thien-Tanner Fluid in an Asymmetric Channel with Porous Medium
Kuppalapalle Vajravelu; S.Sreenadh; Lakshminarayana, P; G. Sucharitha; Rashidi, M. M.
2016-01-01
This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a wave frame of reference moving with the velocity of the waveby using the long wavelength and low Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation method by choosing as the perturbation parameter. The expressions for velocity, s...
Cooling of a channeled lava flow with non-Newtonian rheology: crust formation and surface radiance
Directory of Open Access Journals (Sweden)
Stefano Santini
2011-12-01
Full Text Available We present here the results from dynamical and thermal models that describe a channeled lava flow as it cools by radiation. In particular, the effects of power-law rheology and of the presence of bends in the flow are considered, as well as the formation of surface crust and lava tubes. On the basis of the thermal models, we analyze the assumptions implicit in the currently used formulae for evaluation of lava flow rates from satellite thermal imagery. Assuming a steady flow down an inclined rectangular channel, we solve numerically the equation of motion by the finite-volume method and a classical iterative solution. Our results show that the use of power-law rheology results in relevant differences in the average velocity and volume flow rate with respect to Newtonian rheology. Crust formation is strongly influenced by power-law rheology; in particular, the growth rate and the velocity profile inside the channel are strongly modified. In addition, channel curvature affects the flow dynamics and surface morphology. The size and shape of surface solid plates are controlled by competition between the shear stress and the crust yield strength: the degree of crust cover of the channel is studied as a function of the curvature. Simple formulae are currently used to relate the lava flow rate to the energy radiated by the lava flow as inferred from satellite thermal imagery. Such formulae are based on a specific model, and consequently, their validity is subject to the model assumptions. An analysis of these assumptions reveals that the current use of such formulae is not consistent with the model.
A Computer Method of Steady Non-Uniform Gradually Varied Flow in Open Channel & in River
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regularity of its surface change, the suitable sectional dimensions of open channel or flood control work can be designed. Commonly, computation of non-uniform flow adopts the traditional methods by hand or by graphic method. The speed and precision of computation are restricted. In this paper, a software to calculate water surface profile is introduced. The software is put forward by using C++ .By means of interpolate method and dialogue between user and computer, we can calculate the water surface profile much more quickly and exactly.
Two dimensional analytical solution for a partially vegetated compound channel flow
Institute of Scientific and Technical Information of China (English)
HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong
2008-01-01
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
Numerical prediction of fiber motion in a branching channel flow of fiber suspensions
Institute of Scientific and Technical Information of China (English)
Jianzhong Lin; Shanliang Zhang; James A. Olson; Ron Marshall
2005-01-01
Fiber orientation and dispersion in the dilute fibersuspension that flows through a T-shaped branching channel are simulated numerically based on the slender-body theory. The simulated results are consistent qualitatively with the experimental data available in the literature. The results show that the spatial distribution of fibers is dependent on the fiber aspect ratio, but has no relation with the volume fraction of fiber. The content ratio of fibers near the upper wall increases monotonically with an increasing Re number, and the situation is reverse for the region near the bottom wall.The orientation of fibers depends on Re number, however, the function of fiber volume fraction and aspect ratio is negligible. The fibers near the wall and in the central region of the channel align along the flow direction at all times, but the fibers in the other parts of the channel tend to align along the flow direction only in the downstream region.
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
International Nuclear Information System (INIS)
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.
Experimental Study of Flow Field at the Outlet of Dual-Channel Burner
Institute of Scientific and Technical Information of China (English)
Yao Bin; Wang Hanfeng; Zeng Hancai; Jiao Qingfeng
2005-01-01
This paper presents an experimental study result of flow field of a dual-channel burner. In order to solve the ubiquitous problem of bad rigidity of jets in dual-channel burners, wedges with different arrangements and structural parameters were added to different positions at the outlet of the burners. Laser Particle Image Velocimetry (PIV) was used in this study to measure the flow field to investigate influence of the wedges on flow field of the dual-channel burner. Experimental study shows that fixing wedges at both right and left sides of the burner's outlet can increase the intensity of recirculation without changing the size of the recirculation zone and enhance the rigidity of jets via increasing speed of the two primary air jets at the outlet.
Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow
Joshi, Rakshitha U; Bhardwaj, Rajneesh
2015-01-01
Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...
Unsteady transonic flow control around an airfoil in a channel
Hamid, Md. Abdul; Hasan, A. B. M. Toufique; Ali, Mohammad; Mitsutake, Yuichi; Setoguchi, Toshiaki; Yu, Shen
2016-04-01
Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings (perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square (RMS) of pressure oscillation around the airfoil have been reduced with the control method.
Suppression of nano-channel ion conductance by electro-osmotic flow
Liu, Yang; Zhu, Xin; Ran, Qiushi; Dutton, Robert
2016-01-01
This theoretical study concerns a basic understanding of ion transport in nano-channels that have weakly overlapping electric double layers. Numerical simulations reveal that the electro-osmotic flow (EOF) interplays with the concentration-polarization process and drives the ion depletion zone into the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. Further analysis are conducted based on a 1-D, long channel model, and analytic expressions derived to quantitatively account for the EOF-driven ion depletion process. A limiting-conductance behavior is revealed as intrinsically different from the classical limiting-current behavior.
Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels
Wang, Ruijie; Xu, Kun; Qian, Tiezheng
2016-01-01
In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. For channels of planar surfaces, simulations are performed in a wide range of Knudsen number and our numerical results show good agreement with the literature results. For channels of ratchet surfaces, simulations are performed for both the slip and transition regimes and our numerical results not only confirm the theoretical prediction [Phys. Rev. Lett. 107, 164502 (2011)] for Knudsen number in the slip regime but also show that the off-diagonal kinetic coefficients for cross coupling effects are maximized at a Knudsen n...
Dynamics of nuclear fuel assemblies in vertical flow channels
International Nuclear Information System (INIS)
DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD
Ferrofluid magnetoviscous control of wall flow channeling in porous media
Institute of Scientific and Technical Information of China (English)
Faal; Larachi
2007-01-01
[1]Bacri,J.C.,Perzynski,R.,Shliomis,M.I.,& Burde,G.I.(1995).Negative viscosity effect in a magnetic fluid.Physical Review Letters,75(11),2128-2131.[2]Felderhof,B.U.(2001).Flow of a ferrofluid down a tube in an oscillating magnetic field.Physical Review E,64(021508),1-7.[3]Khuzir,P.,Bossis,G.,Bashtovoi,V.,& Volkova,O.(2003).Flow of magnetorheological fluid through porous media.European Journal of Mechanics B/Fluids,22,331-343.[4]McTague,J.P.(1969).Magnetoviscosity of magnetic colloids.Journal of Chemical Physics,51,133-136.[5]Odenbach,S.(2003).Magnetic fluids-Suspensions of magnetic dipoles and their magnetic control.Journal of Physics:Condensed Matter,15,S 1497-S1508.[6]Rinaldi,C.,& Zahn,M.(2002).Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields.Physics of Fluids,14,2847-2870.[7]Rosensweig,R.E.(1997).Ferrohydrodynamics.New York:Dover Publications.[8]Schumacher,K.R.,Sellien,I.,Knoke,G.S.,Cadet,T.,& Finlayson,B.A.(2003).Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field.Physical Review E,67(026308),1-11.[9]Shliomis,M.I.(1972).Effective viscosity of magnetic suspensions.Soviet Physics JETP,34,1291-1294.[10]Whitaker,S.(1999).Theory and applications of transport in porous media.Dordrecht:Kluwer Academic Press.[11]Zeuner,A.,Richter,R.,& Rehberg,I.(1998).Experiments on negative and positive magnetoviscosity in an alternating magnetic field.Physical Review E,58,62876293.
Energy Technology Data Exchange (ETDEWEB)
Kasza, K.E.; Didascalou, T.; Wambsganss, M.W.
1997-07-01
This paper describes the use of a new test apparatus employing flow visualization via ultra-high-speed video and microscope optics to study microscale nucleate boiling in a small, rectangular, heated channel. The results presented are for water. Because of confinement effects produced by the channel cross section being of the same nominal size as the individual vapor bubbles nucleating at discrete wall sites, flow regimes and heat transfer mechanisms that occur in small channels are shown to be considerably different than those in large channels. Flow visualization data are presented depicting discrete bubble/bubble and bubble/wall interactions for moderate and high heat flux. Quantitative data are also presented on nucleate bubble growth behavior for a single nucleation site in the form of growth rates, bubble sizes, and frequency of generation in the presence and absence of a thin wall liquid layer. Mechanistic boiling behavior and trends are observed which support the use of this type of research as a powerful means to gain fundamental insights into why, under some conditions, nucleate boiling heat transfer coefficients are considerably larger in small channels than in large channels.
Tree-ring records of variation in flow and channel geometry
Merigliano, M.F.; Friedman, J. M.; Scott, M. L.
2013-01-01
We review the use of tree rings to date flood disturbance, channel change, and sediment deposition, with an emphasis on rivers in semi-arid landscapes in the western United States. As watershed area decreases and aridity increases, large floods have a more pronounced and sustained effect on channel width and location, resulting in forest area-age distributions that are farther from a steady-state exponential relation. Furthermore, forests along three major snowmelt rivers in the northern Rocky Mountains, USA, have smaller than expected areas of young trees, suggesting that high flows and channel migration have decreased since the late 1800s.
Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.
Kim, Bookun; Kim, Ju Min
2016-03-01
Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of
Build up An Operational Flood Simulation from Existing 1D Channel Flow Works
Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko
2016-04-01
Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.
Two-dimensional free surface flow in branch channels by a finite-volume TVD scheme
Wang, Jiasong; He, Yousheng; Ni, Hangen
Free surface flow, in particular caused by dam-breaks in branch channels or other arbitrary geometrical rivers is an attention getting subject to the engineering practice, however the studies are few to be reported. In this paper a finite-volume total variation diminishing (TVD) scheme is presented for modeling unsteady free surface flows caused by dam-breaks in branch channels. In order to extend the finite-difference TVD scheme to finite-volume form, a mesh topology is defined relating a node and an element. The solver is implemented for the 2D shallow water equations on arbitrary quadrilateral meshes, and based upon a second-order hybrid TVD scheme with an optimum-selected limiter in the space discretization and a two-step Runge-Kutta approach in the time discretization. Verification for two typical dam-break problems is carried out by comparing the present results with others and very good agreement is obtained. The present algorithm is then used to predict the characteristics of free surface flows due to dam breaking in branch channels, for example, in a symmetrical trifurcated channel and a natural bifurcated channel, on coarse meshes and fine meshes, respectively. The characteristics of complex unsteady free surface flows in these examples are clearly shown.
Directory of Open Access Journals (Sweden)
Bittagopal Mondal
2016-01-01
Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.
Local Void Fraction Distribution and Flow Visualization in Core Catcher Coolant Channel
Energy Technology Data Exchange (ETDEWEB)
Song, K. W.; Hung, N. T.; Park, H. S.; Revankara, S. T. [POSTECH, Pohang (Korea, Republic of); Ha, K. S.; Song, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
Due to thermal induced density differences of working fluids, natural circulation two-phase flow passively removes heat from the captured corium. To have a better knowledge of cooling performance inside of the channel, it is important to know two-phase structure inside of the cooling channel. The prediction of the two-phase flow behavior has a limitation in such a complex geometry with large hydraulic diameter. Therefore, in this study, testing of two-phase natural circulation using air-water in a full height facility is conducted specifically to visualize and study the two-phase flow structure near the channel surface. By using conductivity probe, time-averaged local void fraction distribution along the channel is obtained. At the same time, mixing and bubble breakup process at the elbow-bend is observed using high speed camera videos. The impact of the two phase flow behavior near the core plate on the cooling performance is analyzed based on the results. Time-averaged local void fraction is measured and analyzed especially near the top surface of channel to predict cooling performance of core catcher system. Bubble breakup due to water ingression and the mixing phenomena are observed by high speed camera view.
Analysis and modelling of non-steady flow in pipe and channel networks
Jovic, Vinko
2013-01-01
Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book
Heterogeneous physical and chemical processes in a rarefied-gas flow in channels
Rebrov, A. K.; Yudin, I. B.
2016-05-01
A flow with physical and chemical reactions on hot surfaces is investigated. On the basis of physical experiments, determining the hydrogen-dissociation degree in rarefied gas and calculation of the flow by the method of direct simulation Monte Carlo (DSMC), it is possible to specify certain unknown constants of interaction of molecules and atoms with a tungsten surface. By the example of the hydrogen flow in a hightemperature tungsten cylindrical channel, the role of dissociation, sorption, and recombination processes is shown in a wide range of flow regimes from free-molecular to continuum.
NUMERICAL SIMULATION OF 3-D CORNER FLOWS IN A CIRCULATING WATER CHANNEL
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, a Navier-stokes procedure was developed based on a finite volume method to simulate corner flows in circulating water channel (CWC). The standard 2nd-order central scheme together with a deferred correction method was applied for the convective terms. All the other terms wrer discretized using 2nd order central differencing. The standard k-ε model was used for the approximation of turbulent flows. First. this method used to calculate the trubulent flows in a 90° bend and the computed results are in good agreements with the experiment. This method was also employed to calculate the flows in a model CWC corner.
Stability of non-parallel flow in a channel
Directory of Open Access Journals (Sweden)
Philip G. Drazin
1991-05-01
Full Text Available This is a review of several generalizations of Hiemenz's classic solution for steady two-dimensional flow of a uniform incompressible viscous fluid near a stagnation point on a bluff body. These generalizations are diverse exact solutions, steady and unsteady, two- and three-dimensional, of the Navier-Stokes equations. The solutions exhibit many types of instability and bifurcation. There are turning points, trans critical bifurcations, pitchfork bifurcations, Hopf bifurcations and Takens-Bogdanov bifurcations. The solutions also take the period-doubling and Ruelle-Takens routes to chaos.
Laws of turbulent flow in pipes and channels
International Nuclear Information System (INIS)
With a list of 322 publications, some of which have only recently been published, with 92 sketches and diagrams and 12 tables, the paper gives a survey on the prsent state of research on turbulent flow in pipes and ducts. Also included is a chapter on the analogy between impulse, heat and material transfer, which provides the basic knowledge for a quick understanding of the most recent research findings in the field of heat and material transfer which are constantly being published. (orig./AK)
Energy Technology Data Exchange (ETDEWEB)
Xi, Xi; Xiao, Zejun, E-mail: fabulous_2012@sina.com; Yan, Xiao; Li, Yongliang; Huang, Yanping
2014-10-15
Highlights: • Flow instability experiment between two heated channels with supercritical water is carried out. • Two kinds of out of phase flow instability are found and instability boundaries under different working conditions are obtained. • Dynamics characteristics of flow instability are analyzed. - Abstract: Super critical water reactor (SCWR) is the generation IV nuclear reactor in the world. Under normal operation, water enters SCWR from cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change of temperature, there is a huge density change in the core, which could result in potential flow instability and the safety of reactor would be threatened consequently. So it is necessary to carry out relevant investigation in this field. An experimental investigation which concerns with out of phase flow instability between two heated parallel channels with supercritical water has been carried out in this paper. Due to two INCONEL 625 pipes with a thickness of 6.5 mm are adopted, more experimental results are attained. To find out the influence of axial power shape on the onset of flow instability, each heated channel is divided into two sections and the heating power of each section can be controlled separately. Finally the instability boundaries are obtained under different inlet temperatures, axial power shapes, total inlet mass flow rates and system pressures. The dynamics characteristics of out of phase oscillation are also analyzed.
Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel
Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.
2004-01-01
The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
The physics of stripe patterns in turbulent channel flow determined by DNS results
Kiš, P; Herwig, H
2015-01-01
The turbulent flow in an infinitely extended plane channel is analysed by solving the Navier-Stokes equations with a DNS approach. Solutions are obtained in a numerical solution domain of finite size in the streamwise as well as in the lateral direction setting periodic boundary conditions in both directions. Their impact on large scale structures in the turbulent flow field is analysed carefully in order to avoid their suppression. When this is done appropriately well known stripe patterns in these flows can be observed and analysed especially with respect to their relative motion compared to the mean flow velocity. Various details of this stripe pattern dominated velocity field are shown. Also global parameters like the friction factor in the flow field and the Nusselt number in the temperature field are determined based on the statistics of the flow and temperature data in a very large time period that guarantees fully developed turbulent flow and heat transfer.
Oscillations in a flexible channel flow of a generalized Newtonian fluid
Goswami, Prakash; Chakraborty, Suman
2016-01-01
We study the flow of a generalized Newtonian fluid, characterized by a power-law model, through a channel consisting of a wall with a flexible membrane under longitudinal tension. It is assumed that at steady state the flow through the channel admits a constant flux unidirectional flow profile, while for the unsteady case, we employ the long wave approximation and use a set of reduced equations to describe the variation of the shape of the membrane (assumed to be massless and elastic) and the variation of the fluid-flux. By means of asymptotic expansion, multiscale analysis and full numerical solutions of the pertinent governing equations, we show that depending upon the Reynolds number and the membrane stress, the flow behaviour for a shear-thinning, shear-thickening and Newtonian fluid may be markedly different, being oscillatory for one while chaotic for the other. The results presented herein hold practical relevance for several biologically relevant processes involving transport of rheologically complex ...
Wakes from submerged obstacles in an open channel flow
Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard
2015-11-01
Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.
Duan, Y.; S. He
2016-01-01
It has been a long time since the 'abnormal' turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Stro...
Flow study in channel with the use computational fluid dynamics (CFD)
Oliveira, W. D.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.
2016-08-01
The Computational Fluid Dynamics (CFD) is a tool used to numerically simulate fluid flow behavior, and all the laws that govern the study of fluids is the mass transfer and energy, chemical reactions, hydraulic behaviors, among others applications. This tool mathematical equation solves the problem in a specific manner over a region of interest, with predetermined boundary conditions on this region. This work is to study the flow channel through the CFD technique.
Numerical Simulation of Confluence Flow in Open Channel with Dynamic Meshes Techniques
Yang, Q. Y.; T H Liu; Lu, W. Z.; Wang, X. K.
2013-01-01
Due to the interaction between branch flow and main stream at confluence zone in open channel, the water level of free surface often varies dramatically. In three dimensional simulations of confluence flow, multi-phase models are usually adopted in treating the free-surface boundary, for example, the Volume of Fluid model. The major dilemma for adopting multi-phase modes is that the method consumes more time and computation resources. In this study, the new mesh technique, the dynamic meshes,...
On the Flow of a Paramagnetic Fluid in a Differentially Heated Channel
Directory of Open Access Journals (Sweden)
H. Sadat
2011-01-01
Full Text Available In the present study, we investigate the flow of a paramagnetic fluid in a two dimensional heated channel when an external magnetic gradient is imposed. In the fully developed regime, an analytical solution shows that a flow reversal may occur; the condition of this is given n terms of the Reynolds number. Numerical simulations are then carried out for more general situations. It is shown that the analytical model gives good qualitative predictions.
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
Electro-osmotically driven MHD flow and heat transfer in micro-channel
Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.
2016-05-01
A theoretical analysis is presented for electro-osmotic flow (EOF) of blood in a hydrophobic micro-channel with externally applied magnetic field. The lumen of micro-channels is assumed to be porous medium in addition to the consideration of permeability of the channel walls. The effects of slip velocity and thermal-slip are taken into consideration. The governing equations in the electrical double layer (EDL) together with the Poisson-Boltzmann equation and the body force exerted by the applied potential are furthermore considered. The flow is governed by the non-Newtonian viscoelastic fluid model. These equations along with the thermal energy equation are approximated by assuming that the channel height is much greater than the thickness of electrical double layer consisting the stern and diffusive layers. The problem is solved analytically and the computed results have presented graphically for various values of the dimensionless parameters. The results presented here have significant impact on the therapeutic treatment in hyperthermia as well as in controlling blood flow and heat transfer in micro-channels.
Method for Flow Measurement in Microfluidic Channels Based on Electrical Impedance Spectroscopy
Arjmandi, Nima; Van Roy, Willem; Lagae, Liesbet; Borghs, Gustaaf; 10.1007/s10404-011-0843-0
2012-01-01
We have developed and characterized two novel micro flow sensors based on measuring the electrical impedance of the interface between the flowing liquid and metallic electrodes embedded on the channel walls. These flow sensors are very simple to fabricate and use, are extremely compact and can easily be integrated into most microfluidic systems. One of these devices is a micropore with two tantalum/platinum electrodes on its edges; the other is a micro channel with two tantalum /platinum electrodes placed perpendicular to the channel on its walls. In both sensors the flow rate is measured via the electrical impedance between the two metallic electrodes, which is the impedance of two metal-liquid junctions in series. The dependency of the metal-liquid junction impedance on the flow rate of the liquid has been studied. The effects of different parameters on the sensor's outputs and its noise behavior are investigated. Design guidelines are extracted and applied to achieve highly sensitive micro flow sensors wit...
Wan, Gang; Jin, Yong; Li, Haiyuan; Li, Baoming
2016-03-01
Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in a row to obtain the influence rule of their separation distance on the velocity profile at three locations and maximum velocity in the flow field. Two plasma actuators were placed symmetrically inside a channel to examine the effect of channel height and voltage on the velocity profile and flow rate. It was found that the channel height controls the distribution of flow velocity, which affected the flow rate and its direction. Increasing plasma voltage had a negative effect on the flow rate due to the generation of a larger and stronger flow vortex.
ANALYSIS AND MEASUREMENT OF STOKES LAYER FLOWS IN AN OSCILLATING NARROW CHANNEL
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The velocities of boundary layer flows between two parallel oscillating plates separated by small distance, i.e., in so called narrow channel, were theoretically and experimentally studied. The focus was on the laminar case where the Reynolds number is much smaller than the transition value. The theoretical analysis of the Stokes layer in oscillating flow over a narrow channel was made first. Then Laser Doppler Velocimeter (LDV) was employed to measure the Stokes boundary layer above an oscillating flat plate and inside the oscillating narrow channel at various numbers. At the same time, the phase angle difference along the vertical direction in both analysis and experiment were provided. The good agreements are shown between the measured results and the theoretical solution.
Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.
2015-07-01
This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.
Numerical investigation of flow through vegetated multi-stage compound cha-nnel
Institute of Scientific and Technical Information of China (English)
王雯; 槐文信; 高猛
2014-01-01
This paper addresses the problem of the renormalization group k-e turbulence modeling of a vegetated multi-stage compound channel. Results from Micro acoustic Doppler velocimeter (ADV) tests are used with time and spatial averaging (double-averaging method) in the analysis of the flow field and the characterization. Comparisons of the mean velocity, the Reynolds stress, and the turbulent energy distribution show the validity of the computational method. The mean velocity profile sees an obvious de-celeration in the terraces because of vegetation. Secondary flow exists mainly at the junction of the main channel and the vegetation region on the first terrace. The bed shear stress in the main channel is much greater than that in the terraces. The difference of the bed shear stress between two terraces is insignificant, and the presence of vegetation can effectively reduce the bed shear stress.
A stable and convergent scheme for viscoelastic flow in contraction channels
Energy Technology Data Exchange (ETDEWEB)
Trebotich, David; Colella, Phillip; Miller, Gregory
2004-02-15
We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel's formula and discretize the resulting PDEs using a semi-implicit finite difference method based on a Lax-Wendroff method for hyperbolic terms. In particular, we leave a small residual elastic term in the viscous limit by design to make the hyperbolic piece well-posed. A projection method is used to impose the incompressibility constraint. We are able to compute the full range of elastic flows in an abrupt contraction channel--from the viscous limit to the elastic limit--in a stable and convergent manner for elastic Mach numbers less than one. We demonstrate the method for unsteady Oldroyd-B and Maxwell fluids in planar contraction channels.
The Discuss of the Formula of Flow Loss and Water Using Coefficient on Seepage Proofed Channel
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
On the basis of the analysis about present water resource situation in China ,the disadvantage of the for mula of flow loss and water using coefficient on anti－seep channel which have been applying in channel de sign and water saving irrigation administration will be indicated in the paper. The characteristics of that the loss of conveying water is changeable with the flow changing have been take into account in the new formula. The formula is validated by the example of middle permeable channel (A ＝ 1.90,m ＝ 0.40). The calculate re sult is more precision. Also some formula has been given,they can be referred to the worker of the irrigation administration.
FLUX-CORRECTED TRANSPORT TECHNIQUE FOR OPEN CHANNEL FLOW. (R825200)
In modeling flow in open channels, the traditional finite difference/finite volume schemes become inefficient and warrant special numerical treatment in the presence of shocks and discontinuities. The numerical oscillations that arise by making use of a second- and higher-order s...
Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows
Several new techniques are proposed to overcome the deficiencies in the conventional formulation of the approximate Riemann solvers for one-dimensional open channel flows, which include numerical imbalance and inaccuracy in the solution of discharge. The former arises in the case of irregular geomet...
Numerical Simulation of Open-Channel Flow in 90-Degree Combining Junction
Institute of Scientific and Technical Information of China (English)
武蓉; 茅泽育
2003-01-01
Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navier-Stokes equations with the Hanjalic-Launder (H-L) modification to the k-ε turbulence model without the free surface "rigid lid" approximation with an efficient finite-volume procedure. The model can also analyze flows with separation. The model was used to analyze the relative importance of various factors and was compared with laboratory measurements. The H-L modification produced much better simulations of the separation zone size with 20% better accuracy than the standard k-ε model. The H-L modification was then used to study the characteristic of junction flows and the separation zones with different discharge ratios. The simulational results show that separation zone size decreases as the discharge ratio of the upstream main channel to the downstream channel increases.
Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks
Directory of Open Access Journals (Sweden)
Wei Zhang
2014-01-01
Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.
Flageul Cédric, Benhamadouche Sofiane, Lamballais Éric, Laurence Dominique.
2014-01-01
The present work provides budgets of turbulent heat fluxes and temperature variance for a channel flow with different thermal boundary conditions: an imposed temperature, an imposed heat flux and with conjugate heat transfer combined with an imposed heat flux at the outer wall.
Critical contribution of KV1 channels to the regulation of coronary blood flow.
Goodwill, Adam G; Noblet, Jillian N; Sassoon, Daniel; Fu, Lijuan; Kassab, Ghassan S; Schepers, Luke; Herring, B Paul; Rottgen, Trey S; Tune, Johnathan D; Dick, Gregory M
2016-09-01
Ion channels in smooth muscle control coronary vascular tone, but the identity of the potassium channels involved requires further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch-clamp experiments demonstrated significant correolide-sensitive (1-10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n = 5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3-3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P metabolism and transient ischemia. PMID:27496159
Laboratorial studies on the seepage impact in open-channel flow turbulence
Energy Technology Data Exchange (ETDEWEB)
Herrera Granados, Oscar; Kostecki, Stanislaw, E-mail: Oscar.Herrera-Granados@pwr.wroc.pi [Institute of Geotechnics and Hydro-engineering (I-10), Wroclaw University of Technology. Plac Grunwaldzki 9 D-2 p.112. 50-377 Wroclaw (Poland)
2011-12-22
In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.
Asymptotic solutions for laminar flow in a channel with uniformly accelerating rigid porous walls
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.
DISCONTINUOUS FLOW OF TURBID DENSITY CURRENTS I. CHANNEL EXPANSION AND CONTRACTION
Institute of Scientific and Technical Information of China (English)
Jiahua FAN
2005-01-01
Laboratory experiments on turbid density currents were conducted to observe the flow features of these currents with abrupt contracted and expanded reaches. Experimental data were used to determine water entrainment coefficients for both channel expansion and contraction. Expressions for turbid density currents with water entrainment coefficients in abrupt contracted and expanded reaches were derived,and compared with experimental data.
NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.
Uniform flow in open channel design techniques%明渠均匀流水力设计技术
Institute of Scientific and Technical Information of China (English)
黄民标
2013-01-01
明渠是指人工渠道、天然河道以及非满管水流的管道，明渠水流具有共同的水力特征，即具有自由表面，且自由表面上的气体大气压，依靠重力能流动。明渠水流分为恒定流与非恒定流，明渠恒定流又分为明渠均匀流与明渠非均匀流。%Open channel is the artificial channel, natural and non-full pipe flow channel pipe, open channel flow have a common hydraulic characteristics, have a free surface, and the free surface of the gas pressure, to flow by gravity. Constant flow and open channel flow into unsteady flow;open channel flow is divided into a constant uniform open channel flow and non-uniform open channel flow.
Yamamoto, Takehiro; Yamasaki, Yasuo; Tanaka, Yusuke; Mori, Noriyasu
2006-07-01
Three-dimensional flows of liquid crystalline polymers (LCPs) in a rectangular 3 to 1 abrupt contraction channel and a rectangular 1 to 3 abrupt expansion channel are numerically analyzed to investigate the molecular orientation behavior of LCPs in complex flows. A modified Doi model is used as a constitutive equation and MAC (marker and cell)-based finite difference method is employed for the numerical technique for solving the basic equations. In the contraction flow, most molecules are aligned in the flow direction near the contraction owing to elongational flow except for a vortex region. Just downstream of the contraction, the velocity overshoot occurs owing to the molecular orientation near the contraction. In the expansion flow, on the other hand, molecules near the mid-plane are aligned perpendicular to the flow direction just downstream of the expansion. This alignment is related to a concave velocity profile appeared in this region. Moreover, the decelerating flow downstream of the expansion causes a three-dimensional structure of directors called a twist structure.
A study on the stability of laminar open-channel flow over a sandy rippled bed
Institute of Scientific and Technical Information of China (English)
BAI; Yuchuan; XU; Haijue
2005-01-01
The bed of a river often features some kinds of bedform, such as sand ripples, dunes, and so on. Even if the bed is smooth initially, disturbances arising from the bed or other external sources will cause the laminar flow in an open channel to become unstable as soon as the flow develops, thereby leading to the formation of sand ripples on the bed. In return, the formation of the sand ripples will modify the instability path of the laminar flow passing over them. The wavy character of the bed will induce further instability of the flow, which is essentially different from that on a smooth bed: the neutral curve will move forward and the critical Reynolds number will decrease. The flow is unstable in response to a wider range of the disturbance wave number, or the laminar flow instability can happen more easily. The propagation speed of the sand ripples also affects the flow instability, since the stability of open channel flow over a movable bed is fundamentally different from that on a rigid bed. These instability effects are discussed in detail in this paper.
Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.
Shendruk, T N; Slater, G W
2014-04-25
Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity.
Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel
Ali, N.; Javid, K.; Sajid, M.
2016-02-01
The influence of slip and magnetic field on transport characteristics of a bio-fluid are analyzed in a curved channel. The problem is modeled in curvilinear coordinate system under the assumption that the wavelength of the peristaltic wave is larger in magnitude compared to the width of the channel. The resulting nonlinear boundary value problem (BVP) is solved using an implicit finite difference technique (FDT). The flow velocity, pressure rise per wavelength and stream function are illustrated through graphs for various values of rheological and geometrical parameters of the problem. The study reveals that a thin boundary layer exists at the channel wall for strong magnetic field. Moreover, small values of Weissenberg number counteract the curvature and make the velocity profile symmetric. It is also observed that pressure rise per wavelength in pumping region increases (decreases) by increasing magnetic field, Weissenberg number and curvature of the channel (slip parameter).
Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.
Shendruk, T N; Slater, G W
2014-04-25
Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity. PMID:24674643
Simulations of peristaltic slip-flow of hydromagnetic bio-fluid in a curved channel
Directory of Open Access Journals (Sweden)
N. Ali
2016-02-01
Full Text Available The influence of slip and magnetic field on transport characteristics of a bio-fluid are analyzed in a curved channel. The problem is modeled in curvilinear coordinate system under the assumption that the wavelength of the peristaltic wave is larger in magnitude compared to the width of the channel. The resulting nonlinear boundary value problem (BVP is solved using an implicit finite difference technique (FDT. The flow velocity, pressure rise per wavelength and stream function are illustrated through graphs for various values of rheological and geometrical parameters of the problem. The study reveals that a thin boundary layer exists at the channel wall for strong magnetic field. Moreover, small values of Weissenberg number counteract the curvature and make the velocity profile symmetric. It is also observed that pressure rise per wavelength in pumping region increases (decreases by increasing magnetic field, Weissenberg number and curvature of the channel (slip parameter.
Energy Technology Data Exchange (ETDEWEB)
Sotela Avila, Gilberto [Universidad Nacional Autonoma de Mexico (Mexico)
2001-03-01
The author shows that the computation of gradually-varied-flow profiles in prismatic compound channels involves the solution of the dynamic equation, but using the compound channel Froude number defined by Blalock and Sturm. The same equation is used for non-prismatic channels by dividing the channel into short reaches and carrying the computation step by step through an iterative process. [Spanish] El autor demuestra que los perfiles del flujo gradualmente variado en canales prismaticos de seccion compuesta se pueden determinar mediante la integracion de la llamada ecuacion dinamica, pero usando el numero de Froude definido por Blalock y Sturm para este tipo de canales. Cuando no son prismaticos, tambien se aplica la ecuacion de la energia por tramos y el calculo sigue un proceso iterativo una vez definidos los tirantes criticos multiples y la zona en que se desarrolla el perfil.
Segregation by size difference in binary suspensions of fluid droplets in channel flow.
Makino, Masato; Sugihara-Seki, Masako
2013-01-01
In channel flow of multicomponent suspensions, segregation behavior of suspended components perpendicular to the flow direction is often observed, which is considered to be caused by the differential properties of the lateral migration depending on their shape, size, flexibility, and other characteristics. In the present study, we investigate the effect of size differences between suspended components on the segregation behavior, by a two-dimensional numerical simulation for binary dispersed suspensions of fluid droplets of two different sizes subjected to a plane Poiseuille channel flow. The small and large droplets are assumed to have equal surface tensions and equal viscosity ratios of internal to external fluids. The time evolutions of the lateral positions of large and small droplets relative to the channel centerline were computed by changing the area fraction of the small droplets in a mixture with a constant total area fraction. The large droplets are found to migrate closer to the channel centerline and the small droplets are found to migrate closer to the channel wall compared to the corresponding lateral positions in mono-dispersed suspensions at the same area fractions, although the mean lateral positions of the large and small droplets in mono-dispersed suspension are comparable. This segregation behavior as well as the margination of small droplets are enhanced when the size difference between large and small droplets is increased and the area fraction of large droplets is increased. These results may arise from higher tendencies for the large droplets to approach the channel centerline compared to the small droplets, which consequently expel small droplets from the central region toward the channel walls. PMID:23863280
Bucs, Szilard S.
2015-09-25
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.
Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian
2015-12-15
Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. PMID:26433778
Directory of Open Access Journals (Sweden)
Jasikova D.
2015-01-01
Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.
Stability analysis of parallel-channel systems with forced flows under supercritical pressure
International Nuclear Information System (INIS)
Highlights: → A frequency-domain model for supercritical flow stability analysis was developed. → The marginal stability boundaries for parallel-channel system were constructed. → The sensitivities of several parameters were studied for system stability boundary. → A time-domain model was developed and applied to nonlinear stability analysis. - Abstract: The flow in the core of supercritical water reactors (SCWRs) experiences drastic change in its thermodynamic properties and transport properties near the pseudo-critical temperature, thus the core flow may be susceptible to density wave oscillation instability, which is a challenge to the system safety and must be studied carefully. This paper studies the dynamic stability characteristics of the fast-spectrum zone of a newly designed mixed-spectrum SCWR (SCWR-M), which is characterized as a parallel-channel system. A frequency-domain model has been developed for linear stability analysis, and marginal stability boundaries under several conditions for the parallel-channel system are generated, which indicate that the system normal operational condition is in the stable region. The stability of parallel-channel systems is dominated by the hottest channel. The higher the power density of the hottest channel is, the less stable the system will be. Increasing mass flow is beneficial for the system stability. Systems with uniformly axial power distribution are less stable than those with cosine-shaped or stair-shaped axial power distributions. In the time-domain, a single-phase one-dimensional model has been developed for non-linear analysis, and several perturbation transients are calculated. The results of analysis show a good agreement with that of the frequency-domain analyses, and the existence of transitional stable region has been verified.
Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin
2015-11-01
The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
ADCP measured flow current of the middle-lower Changjiang River channel
Institute of Scientific and Technical Information of China (English)
Qiang ZHANG; Yafeng SHI; Zhongyuan CHEN; Tong JIANG
2008-01-01
The water column flow velocity of 36 river sections in the river reach between Hankou (Wuhan) and Wuxue of the middle-lower Changjiang River.Their cross sectional distribution patterns in relation to the river channel morphologies were examined by using shipmounted ADCP (Acoustic Doppler Current Profiler) instrument.The results indicate four (Ⅰ-Ⅳ) types of river channel morphology associated flow patterns:Ⅰ-laterally deepening riverbed topographic pattern; Ⅱ-symmetrical to asymmetrical riverbed topographic pattern; Ⅲ-relative fiat riverbed topographic pattern,and Ⅳ-sandbar supported riverbed topographic pattern.All these correspond to the different patterns of flow velocity distribution.The maximum flow velocity is usually related to the deeper water depth,but irregular water column distribution of flow current velocity results often from the vortices' current associated with river knots.Deeper river water depth is usually identified in the river reach located slightly downstream to the river knot,where faster flow velocity occurs.Downward change in flow velocity fits semi-log law,showing an exponential decreasing flow current with the maximum flow velocity near the water surface.However,in the river reach near the river knots,the water column distribution of flow current velocity does not fit the semi-log law,showing the irregular flow current pattern.This study,in context of river catchment management,highlights the controls of riverbed morphology to the flow current structure,which will shed light on the post study of Three Gorges damming in 2009.
Axial dispersion in segmented gas-liquid flow: Effects of alternating channel curvature
Muradoglu, Metin
2010-12-01
The effects of channel curvature on the axial dispersion in segmented gas-liquid flows are studied computationally in a two-dimensional setting using a finite-volume/front-tracking method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion. The lubricating thin liquid layer that persists on the wall of a straight channel is periodically broken in the serpentine channel leading to enhanced axial dispersion. It is also found that the axial dispersion is always larger in the serpentine channel than that in the straight channel but the effects of channel curvature are more pronounced at high Peclet numbers, i.e., Pe>104. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe→∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.
Axial Dispersion in Segmented Gas-Liquid Flow: Effects of the Channel Curvature
Muradoglu, Metin
2009-11-01
The effects of channel curvature on the axial dispersion in segmented gas-liquid flows have been studied computationally in a two-dimensional setting using a front-tracking/finite-volume method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion and dispersion increases with channel curvature. It is known that there is no dispersion in straight channels since a lubricating thin liquid layer persists on the wall. However this lubricating liquid layer is periodically broken in the curved channel case leading to enhanced axial dispersion. It is found that the dispersion increases as the Peclet number (Pe) decreases both in straight and curved channels. Difference between the straight and curved channel decreases continuously as the Peclet number decreases and virtually disappears at low Peclet numbers, i.e., Pestudy. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe->∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.
Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan
2012-09-01
Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.
Taymaz Imdat; Aslan Erman; Benim Ali Cemal
2015-01-01
The Lattice Boltzmann Method is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in bluff body. In this study, a triangular prism is taken as the bluff body. Not only the momentum transport, but also the energy transport is modeled by the Lattice Boltzmann Method. A uniform lattice structure with a single time relaxation rule is us...
Shadowgraph, Schlieren and interferometry in a 2D cavitating channel flow
Energy Technology Data Exchange (ETDEWEB)
Mauger, Cyril; Mees, Loic; Michard, Marc; Azouzi, Alexandre [Universite Claude Bernard Lyon 1, Laboratoire de Mecanique des Fluides et d' Acoustique (LMFA), CNRS UMR5509, Ecole Centrale de Lyon, INSA de Lyon, Ecully (France); Valette, Stephane [Ecole Nationale d' Ingenieurs de Saint Etienne, Laboratoire de Tribologie et Dynamique des Systemes (LTDS), CNRS UMR5513, Ecole Centrale de Lyon, Saint-Etienne (France)
2012-12-15
Cavitation plays an important role in fuel atomization mechanisms, but the physics of cavitation and its impact on spray formation and injector efficiency are not well documented yet. Experimental investigations are required to support the development and the validation of numerical models and the design of tomorrow's injectors, in the context of pollutant and fuel consumption reduction. The complexity of modern injectors and the extreme conditions of injection do not facilitate experimental investigations. In this paper, experiments are conducted in a simplified geometry. The model nozzle consists of a transparent 2D micro-channel supplied with a test oil (ISO 4113). Three different optical techniques are proposed to investigate the channel flow, with the pressure drop between upstream and downstream chambers as a parameter. A shadowgraph-like imaging technique allows the observation of cavitation inception and vapor cavities development throughout the channel. The technique also reveals the presence of density gradients (pressure or temperature) in the channel flow. However, this additional information is balanced by difficulties in image interpretation, which are discussed in the paper. In addition, a combination of Schlieren technique and interferometric imaging is used to measure the density fields inside the channel. The three techniques results are carefully analyzed and confronted. These results reveal a wealth of information on the flow, with pressure waves generated by bubble collapses, turbulence in the wake of vapor cavities and bubble survival in flow regions of high pressure. Our results also show that cavitation inception is located in the shear layers between the recirculation zones and the main flow, relatively far from the inlet corner, where the pressure is minimum in average. To explain this behavior, we propose a scenario of cavitation inception based on the occurrence and the growing of instabilities in the shear layers. (orig.)
Application Guide for AFINCH (Analysis of Flows in Networks of Channels) Described by NHDPlus
Holtschlag, David J.
2009-01-01
AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.
Effect of couple stresses on hydromagnetic Eyring-Powell fluid flow through a porous channel
Directory of Open Access Journals (Sweden)
Adesanya Samuel O.
2015-01-01
Full Text Available In this paper, the flow of hydromagnetic non-Newtonian fluid under couple stresses through a porous channel is investigated using the Eyring-Powell model. The fluid is driven by an axial constant pressure gradient. Approximate solutions of the nonlinear dimensionless equations governing the fluid flow are obtained using a new modification of Adomian decomposition method (ADM. The effects of the variation of various flow parameters on both the velocity and temperature fields are deduced and discussed including surface-fluid interface friction and rate of heat transfer.
Direct Numerical Simulation of turbulent magnetohydrodynamic flows in an open-channel
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Y.; Kunugi, T.; Serizawa, A. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering
2000-10-01
In this study, Direct Numerical Simulation (DNS) of magnetohydrodynamic (MHD) flows simulated the liquid wall concept in nuclear fusion applications, i.e., turbulent open-channel flows heating under the isoflux condition at the free-surface and insulting condition at the bottom wall, was employed. The magnetic field was imposed in the spanwise direction and the erect of Lorenz force was expressed in terms of the electrostatic potential with an assumption of a low magnetic Reynolds number. As the result, new method for the thermal boundary condition at the free-surface is advanced and numerical investigation of MHD flow was conducted. (author)
Evaluation of the Natural Circulation Flow Loop with Inclined Downward Heating Channel
Energy Technology Data Exchange (ETDEWEB)
Wi, Kyung Jin; Ha, Kwang Soon; Park, Rae Joon [KAERI, Daejeon (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, Daejeon (Korea, Republic of)
2015-05-15
Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants as recently presented by Rempe et al. In general, an increase in the natural circulation mass flow rate of the coolant leads to an increase in the critical heat flux (CHF) on the hot wall, thus enhancing the thermal margin. An ex-vessel core catcher under consideration, which is one of the engineered corium cooling systems, is a passive system consisting of an inclined engineered cooling channel made of a single channel between the body of the core catcher and the inside wall of the reactor cavity. Under severe accident conditions, water is supplied from the IRWST to the engineered cooling channel. The water in the inclined channel absorbs the decay heat transferred from the corium through the carbon steel structure of the core catcher body and boils off as steam. The latter is subsequently released into the free volume of the containment above the corium spreading compartment. Water continues to flow from the IRWST to the cooling channel as a result of buoyancy-driven natural circulation. The engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting. To maintain the integrity of the ex-vessel core catcher, however, it is necessary that the water coolant be circulated at a sufficiently high rate through the inclined cooling channel for decay heat removal by downward facing boiling of the water circulated from the IRWST. KAERI performed the experimental study to evaluate the cooling performance of ex-vessel core catcher system with inclined downward facing heating surface. A scaling analysis is applied to design the test facility compared with the prototypic core catcher cooling system. The natural circulation flow experiments were performed along with the inlet subcooling, wall heat flux, and water level. The void fraction model with inclined
Textural and rheological evolution of basalt flowing down a lava channel
Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan
2014-06-01
The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.
Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation
Institute of Scientific and Technical Information of China (English)
FANG Jian; LU LiPeng; SHAO Liang
2009-01-01
The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation (LES) of compressible tur-bulent channel flows with spanwise wall oscillation (SWO). The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches. The high con-sistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field. When the coherent velocity structures are suppressed, the transportations of momentum and heat are reduced simultaneously, demonstrating the same trend. This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat. The averaged wall heat flux can be reduced with appropriate oscillating parameters.
An experimental study on turbulent-stripe structure in transitional channel flow
Tsukahara, Takahiro
2014-01-01
Turbulent stripe, which would occur in turbulent channel flows at transitional Reynolds numbers, was studied experimentally by flow visualization using reflective flake particles. In a range of bulk mean Reynolds number Re = 1700-2000, the turbulent stripe was observed to be inclined at angles of 20-30 degree against the streamwise direction, and its streamwise wave length was about 60 times of the channel half width (delta). The longitudinal streaks with the spanwise spacing of 1.6delta were found in the quasi-laminar regions. The critical Reynolds number was Re = 1300. Time traces of the streamwise velocity were measured by laser Doppler velocimetry, revealing similarity to the equilibrium turbulent puff in the transitional pipe flow.
Directory of Open Access Journals (Sweden)
Chigozie Israel-Cookey
2010-09-01
Full Text Available This paper investigates effects of thermal radiation and magnetic field on hydromagnetic Couette flow of a highly viscous fluid with temperature-dependent viscosity and thermal conductivity at constant pressure through a porous channel. The influence of the channel permeability is also assessed. The relevant governing partial differential equations have been transformed to non-linear coupled ordinary differential equations by virtue of the steady nature of the flow and are solved numerically using a marching finite difference scheme to give approximate solutions for the velocity and temperature profiles. We highlight the effects of Nahme numbers, magnetic field, radiation and permeability parameters on both profiles. The results obtained are used to give graphical illustrations of the distribution of the flow variables and are discussed.
Large-eddy simulation of suspended sediment transport in turbulent channel flow
Institute of Scientific and Technical Information of China (English)
ZHU Hai; WANG Ling-ling; TANG Hong-wu
2013-01-01
The numerical simulation of the non-cohesive sediment transport in a turbulent channel flow with a high concentration is a challenging but practical task.A modified coherent dynamic eddy model of the Large Eddy Simulation (LES) with a pick-up function is used in the present study to simulate the sediment erosion and the deposition in a turbulent channel flow.The rough wall model is used instead of the LES with the near-wall resolution to obtain the reasonable turbulent flow characteristics while avoiding the high costs in the computation.Good results are obtained,and are used to analyze the sediment transport properties.The results show that the streamwise vortices play an important role in the riverbed erosion and the sediment pick-up,which may serve as guidelines for the sediment management and the water environment protection engineering.
Prediction of post-dryout heat transfer in channels with flow obstacles
International Nuclear Information System (INIS)
Post-dryout heat transfer can occur in heated channels with an annular two-phase flow regime, when the liquid film is partly or wholly removed from the heated wall and the critical heat flux is reached and exceeded. Under such conditions the heat transfer coefficient dramatically drops as compared with the pre-dryout heat transfer regime. Due to that an accurate prediction of the post-dryout heat transfer is of interest in the heat-flux-controlled equipment, where the sudden heat transfer deterioration can lead to the heater damage. In the present paper a new method to predict post-dryout heat transfer in channels with flow obstacles is shown and validated against experimental data. The new approach takes into account the influence of flow obstacles on the dryout location and on the post-dryout heat transfer intensity, and demonstrates a significant improvement of accuracy of predictions compared with other presently available prediction methods. (author)
Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation(LES) of compressible turbulent channel flows with spanwise wall oscillation(SWO).The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches.The high consistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field.When the coherent velocity structures are suppressed,the transportations of momentum and heat are reduced simultaneously,demonstrating the same trend.This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat.The averaged wall heat flux can be reduced with appropriate oscillating parameters.
On the structural features of fiber suspensions in converging channel flow
Institute of Scientific and Technical Information of China (English)
林建忠; 张凌新
2003-01-01
The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective viscosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of the rate-of-strain tensor and the fiber orientation state; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local streamlines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of effective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds number but on the converging channel angle.
Large eddy simulation study of spanwise spacing effects on secondary flows in turbulent channel flow
Aliakbarimiyanmahaleh, Mohammad; Anderson, William
2015-11-01
The structure of turbulent flow over a complex topography composed of streamwise-aligned rows of cones with varying spanwise spacing, s is studied with large-eddy simulation (LES). Similar to the experimental study of Vanderwel and Ganapathisubramani, 2015: J. Fluid Mech., we investigate the relationship between secondary flow and s, for 0 . 25 2 , domain-scale rollers freely exist. These had previously been called ``turbulent secondary flows'' (Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.; Anderson et al., 2015: J. Fluid Mech.), but closer inspection of the statistics indicates these are a turbulent tertiary flow: they only remain ``anchored'' to the conical roughness elements for s / δ > 2 . For s / δ tertiary flows are prevented from occupying the domain by virtue of proximity to adjacent, counter-rotating tertiary flows. Turbulent secondary flows are associated with the conical roughness elements. These turbulent secondary flows emanate from individual conical topographic elements and set the roughness sublayer depth. The turbulent secondary flows remain intact for large and small spacing. For s / δ tertiary flow is not present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.
Velocity profile of turbulent sediment-laden flows in open-channels
Institute of Scientific and Technical Information of China (English)
Deyu Zhong n; Lei Zhang; Baosheng Wu; Yongqiang Wang
2015-01-01
In this paper, a study was carried out on the velocity profile of sediment-laden flows in open channels using a two-phase mixture model for two-phase flows. The governing equations for water-sediment mixtures were derived based on the two-fluid equations for solid–liquid two-phase flows. The drift velocity, a key variable involved in the two-phase mixture equations, was derived from the equation of momentum conservation for the solid phase. The drift velocity shows that the inertia of flow, particle turbulence, and collisions effect contribute to the dispersion of the sediment particles in turbulent flows. Using the two-phase mixture equation, the vertical velocity profile of open channel flows was obtained. Further analysis indicated that the distribution of the velocity over depth of water-sediment mixtures, composed of two different phases, is significantly affected by the turbulence of water-sediment mixtures and the density stratification. However, the velocity distribution is also affected by other factors including collisions between particles and particle turbulence as a basic feature of two-phase flows where interphase interactions inevitably mark their influence on the velocity distribution. Comparisons of this approach with observations for a wide range of experimental conditions are presented in this paper, which show that this approach agrees well with the experiments.
Booij, R.; Pennekamp, J.G.C.
1984-01-01
Prediction of bottom changes in rivers and tidal channels require a thorough knowledge of the secondary flow, as this flow gives rise to bottom slopes transverse to the main flow direction. In the model used in this research, the computation of the secondary flow field is based upon an, independentl
Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.
2003-01-01
Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.
Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.
Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R
2010-04-15
Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.
Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.
2009-01-01
In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.
Dynamics of the outflow and its effect on the hydraulics of two-layer exchange flows in a channel
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper reports that an experimental study is conducted to examine the dynamics of the outflow in two-layer exchange flows in a channel connecting between two water bodies with a small density difference. The experiments reveal the generation of Kelvin-Helmholtz (KH) instabilities within the hydraulically sub-critical flow region of the channel. During maximal exchange, those KH instabilities develops into large-amplitude KH waves as they escape the channel exit into the reservoir. The propagation speed ...
MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing
Institute of Scientific and Technical Information of China (English)
Krishnendu Bhattacharyya; G.C.Layek
2011-01-01
@@ An analysis is carried out to study a steady magnetohydrodynamic(MHD) boundary layer How of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel.The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls.The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls.The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations.The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model.The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls,even in the absence of a magnetic field.Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter.It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid.The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physical尔
Use of finite volume radiation for predicting the Knudsen minimum in 2D channel flow
Energy Technology Data Exchange (ETDEWEB)
Malhotra, Chetan P. [TCS Innovation Labs - TRDDC, 54 Hadapsar Industrial Estate, Pune 411013 (India); Mahajan, Roop L. [ICTAS, College of Engineering, Virginia Polytechnic Institute, VA 24061 (United States)
2014-12-09
In an earlier paper we employed an analogy between surface-to-surface radiation and free-molecular flow to model Knudsen flow through tubes and onto planes. In the current paper we extend the analogy between thermal radiation and molecular flow to model the flow of a gas in a 2D channel across all regimes of rarefaction. To accomplish this, we break down the problem of gaseous flow into three sub-problems (self-diffusion, mass-motion and generation of pressure gradient) and use the finite volume method for modeling radiation through participating media to model the transport in each sub-problem as a radiation problem. We first model molecular self-diffusion in the stationary gas by modeling the transport of the molecular number density through the gas starting from the analytical asymptote for free-molecular flow to the kinetic theory limit of gaseous self-diffusion. We then model the transport of momentum through the gas at unit pressure gradient to predict Poiseuille flow and slip flow in the 2D gas. Lastly, we predict the generation of pressure gradient within the gas due to molecular collisions by modeling the transport of the forces generated due to collisions per unit volume of gas. We then proceed to combine the three radiation problems to predict flow of the gas over the entire Knudsen number regime from free-molecular to transition to continuum flow and successfully capture the Knudsen minimum at Kn ∼ 1.
Use of finite volume radiation for predicting the Knudsen minimum in 2D channel flow
International Nuclear Information System (INIS)
In an earlier paper we employed an analogy between surface-to-surface radiation and free-molecular flow to model Knudsen flow through tubes and onto planes. In the current paper we extend the analogy between thermal radiation and molecular flow to model the flow of a gas in a 2D channel across all regimes of rarefaction. To accomplish this, we break down the problem of gaseous flow into three sub-problems (self-diffusion, mass-motion and generation of pressure gradient) and use the finite volume method for modeling radiation through participating media to model the transport in each sub-problem as a radiation problem. We first model molecular self-diffusion in the stationary gas by modeling the transport of the molecular number density through the gas starting from the analytical asymptote for free-molecular flow to the kinetic theory limit of gaseous self-diffusion. We then model the transport of momentum through the gas at unit pressure gradient to predict Poiseuille flow and slip flow in the 2D gas. Lastly, we predict the generation of pressure gradient within the gas due to molecular collisions by modeling the transport of the forces generated due to collisions per unit volume of gas. We then proceed to combine the three radiation problems to predict flow of the gas over the entire Knudsen number regime from free-molecular to transition to continuum flow and successfully capture the Knudsen minimum at Kn ∼ 1
Stability characteristics of the open channel flow above the asymmetrical irregular sand ripples
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is the smallest, which is generally symmetrical when it just appears, but as time goes on, the asymmetrical form gradually develops. Just because of this sand ripples asymmetry, it manifests the influence of the flow on the bed morphology and also the impact on the laminar flow dynamical process, especially the stability characteristics. The stability features of laminar flow on open channels with the asymmetrical sand ripples are discussed, and also the results on the symmetrical sand ripples are compared in detail.
EXPERIMENTS ON FLOW AROUND A CYLINDER IN A SCOURED CHANNEL BED
Institute of Scientific and Technical Information of China (English)
I.ISTIARTO; W.H. GRAF
2001-01-01
The flow pattern around a cylinder, installed in a scoured channel bed, was experimentally investigated. Detailed measurements of the instantaneous 3D velocities were performed by using an Acoustic Doppler Velocity Profiler (ADVP), from which the profiles of the time-averaged velocities and turbulence stresses were obtained. It is shown that the influence of the cylinder and of the scour hole alters the approach flow; this is essentially confined to the vicinity of the cylinder and to the inside of the scour hole. The horseshoe vortex is measured as a flow reversal inside the scour hole, formed by the downward flow along the cylinder face and the reversed flow at the scour bed.
Lattice Boltzmann simulation of fluid flows in two-dimensional channel with complex geometries
International Nuclear Information System (INIS)
Boundary conditions (BCs) play an essential role in lattice Boltzmann (LB) simulations. This paper investigates several most commonly applied BCs by evaluating the relative L2-norm errors of the LB simulations for two-dimensional (2-D) Poiseuille flow. It is found that the relative L2-norm error resulting from FHML's BC is smaller than that from other BCs as a whole. Then, based on the FHML's BC, it formulates an LB model for simulating fluid flows in 2-D channel with complex geometries. Afterwards, the flows between two inclined plates, in a pulmonary blood vessel and in a blood vessel with local expansion region, are simulated. The numerical results are in good agreement with the analytical predictions and clearly show that the model is effective. It is expected that the model can be extended to simulate some real biologic flows, such as blood flows in arteries, vessels with stenosises, aneurysms and bifurcations, etc. (classical areas of phenomenology)
Williams, P Stephen; Decker, Keith; Nakamura, Masayuki; Chalmers, Jeffrey J; Moore, Lee R; Zborowski, Maciej
2003-12-01
The separation performance of a split-flow thin (SPLITT) separation device depends on uniformity of channel thickness and the precise placement of the flow splitters at fixed distances between the channel walls. The observation of nonspecific crossover, that is, the transport of sample materials across the channel thickness without the influence of an applied field, has routinely been taken to indicate the presence of irregularities in splitter shape or placement. Computational fluid dynamics software may be used to predict the influence of splitter imperfections on nonspecific crossover, where it is assumed that sample transport is by convection alone. A previous study has shown how small inlet splitter imperfections can account for the relatively low levels of nonspecific crossover observed with typical annular SPLITT devices. This study, however, could not distinguish between the possible sources of nonspecific crossover; hydrodynamic lift or shear-induced diffusion could have contributed. To confirm the validity of the computational approach, a series of experiments has been carried out on a channel having a deliberately and severely bent splitter. Nonspecific crossover was measured for a range of inlet and outlet flow rate ratios, with the bent splitter placed at both the channel inlet and outlet. The severity of the splitter distortion was sufficient to produce significant nonspecific crossover over a wide range of flow conditions. Good agreement was found between experiment and prediction based on computational fluid dynamics, with experiment generally showing only slightly higher crossover than prediction. The quantitative agreement for this extreme case suggests that the contribution to nonspecific crossover due to geometrical imperfections can be well described using computational fluid dynamics. PMID:14640746
Institute of Scientific and Technical Information of China (English)
Wang Li-bing; Liu Yu-lu; Qiu Xiang
2003-01-01
In this paper, the turbulence characteristics were numerically investigated in an asymmetric turbulent channel flow and the computational results were compared with the relevant experimental data. It shows that the results are consistent with the experiments and there exist Counter-Gradient Momentum Transport(CGMT) phenomena in the central region near the smooth wall, and this region is as large as 6 percent of the channel width. In addition, a region, in which Counter-Gradient-Transport (CGT) phenomena occur more evidently, is found close to the rough wall. These results can help to gain a deeper insight into the mechanism of CGT phenomena.
The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel
Institute of Scientific and Technical Information of China (English)
S.Nadeem; E.N.Maraj
2013-01-01
In the present paper,we have investigated the peristaltic flow of hyperbolic tangent fluid in a curved channel.The governing equations of hyperbolic tangent fluid model for curved channel are derived including the effects of curvature.The highly nonlinear partial differential equations are simplified by using the wave frame transformation,long wave length and low Reynolds number assumptions.The reduced nonlinear partial differential equation is solved analytically with the help of homotopy perturbation method (HPM).The physical features of pertinent parameters have been discussed by plotting the graphs of pressure rise and stream functions.
Effect of Surface Energy Pulses on Supersonic Flow in a Channel of Variable Cross Section
Zamuraev, V. P.; Kalinina, A. P.
2016-05-01
The influence of a surface pulse-periodic supply of energy on the formation of shock-wave structures in a plane channel of variable cross section has been studied. Energy is supplied to the constant cross-section units of the channel with the flow Mach number M = 2. The time-average supplied power corresponds to the combustion of hydrogen with the excess-air coefficient from 1 to 10. The problem is solved within the framework of the Euler equations. A dimensionless approach is used to analyze the effect of sources. The applicability of the analytical relations obtained is confirmed by numerical solution of two-dimensional Euler equations.
SOME NEW DATA AND FORMULAS FOR RESISTANCE FLOW IN FLUVIAL OPEN CHANNELS
Institute of Scientific and Technical Information of China (English)
YANG Sheng-fa; HU Jiang; LI Dan-xun; WANG Xing-kui; GUO Yakun
2011-01-01
Flow resistance in fluvial open channels,especially in steep gravel-bed channels,still presents challenges to researchers and engineers.This article presents some new data from both the flume experiments and field measurements.Data analysis using the divided hydraulic radius approach shows that the relative roughness plays a significant role in the bed form resistance.A new set of formulas that incorporate the relative roughness are proposed.As compared with several existing formulas,the proposed formulas can be used to better estimate the bed form resistance.
Peristaltic flow in an asymmetric channel with convective boundary conditions and Joule heating
Institute of Scientific and Technical Information of China (English)
Abbasi Fahad Munir; Hayat Tasawar; Ahmad Bashir
2014-01-01
The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.
The characteristics of secondary flows in compound channels with vegetated floodplains
Institute of Scientific and Technical Information of China (English)
LIU Chao; SHAN Yu-qi; YANG Ke-jun; LIU Xing-nian
2013-01-01
The experiments were conducted in compound channels with vegetated floodplains for investigating the influence of vegetation types on the characteristics of secondary flows.In terms of the streamwise and transverse velocities and the depth-averaged velocity,the secondary flow coefficient,M,is proposed,with good physical meanings,and it may characterize the rotational direction and the intensity of the secondary currents.The experimental results show that,for the cases without vegetation and with grass,the rotational directions of the secondary flows are all anticlockwise while for the cases with shrubs,they are all changed to the clockwise direction in the whole cross-section.However,when trees are planted,the secondary flows rotate in the anticlockwise direction in the main channel and in the clockwise direction on the floodplain.In addition,for all cases,the intensities of the secondary currents on the floodplain are stronger than those in the main channel.
Wavenumber selection for small-wavelength Goertler vortices in curved channel flows
Dando, Andrew; Hall, Philip
1995-04-01
The problem of wavenumber selection for fully nonlinear, small-wavelength Goertler vortices in a curved channel flow is considered. These types of Goertler vortices were first considered by Hall & Lakin (1988) for an external boundary layer flow. They proved particularly amenable to asymptotic description, it was possible to consider vortices large enough so that the mean flow correction driven by them is as large as the basic state, and this prompted the authors to consider them in a curved channel flow as an initial application of the phase-equation approach to Goertler vortices. This involves the assumption that the phase variable of these Goertler vortices varies on slow spanwise and time scales, then an analysis of both inside and outside the core region, to which vortex activity is restricted, leads to a system of partial differential equations which can be solved numerically for the wavenumber. The authors consider in particular the effect on the wavenumber of the outer channel wall varying on the same slow spanwise scale as the phase variable.
Generation of hairpin vortex packet in channel flow at Reτ <= 590
Kim, Kyoungyoun
2012-11-01
The generation of hairpin vortex packet from an initial single vortex is examined by direct numerical simulation for channel flows at Reτ = 180, 395, and 590. The initial vortex structure is given by conditionally averaged flow field with the Q2 event specified at y+ = 50 in fully developed turbulent channel flow. The vortex packet formation in higher Reynolds number flows is very similar to that in Reτ =180 reported by Zhou et al. (1999, J. Fluid Mech.); the initial vortex is developed to a primary hairpin vortex (PHV) and the secondary hairpin vortex is generated upstream of PHV. As time proceeds, the vortices move downstream with almost the same convection velocity and little dispersion, forming a vortex packet. Comparison of the packet formation for different Reτ reveals that the secondary hairpin vortex is generated with time scales based on the wall units. At the time when the head of PHV has grown to the channel center, the inclination angle of the vortex packet is approximately 12 ~14° which is insensitive to Reτ , consistently with linear stochastic estimation results with PIV measurement by Christensen & Adrian (2001, J. Fluid Mech.). Supported by NRF Grant 2010-0007901.
NUMERICAL SIMULATION OF DROP MIGRATION IN CHANNEL FLOW UNDER ZERO-GRAVITY
Institute of Scientific and Technical Information of China (English)
LIU Tao; LU Xiyun
2004-01-01
The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finitedifference method coupled with the front-tracking technique. The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity. To validate the present calculation, some typical results are compared with available computational and theoretical data, which confirms that the present approach is reliable in predicting the drop migration.With respect to the drop migration in the channel flow at finite Reynolds numbers, the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions.The effects of some typical parameters, e.g., the Reynolds number, the Weber number, the viscosity ratio and the density ratio of the drop fluid to the suspending medium, and the drop size, on the migration of drops are discussed and analyzed.
On the turbulent flow around water turbines placed in an open channel: an experimental study
Sotiropoulos, F.; Chamorro, L. P.; Arndt, R.
2010-12-01
A growing interest in water turbines (using tidal, river, marine currents) has been observed during the last few years. Fundamental understanding of the turbulent flow around the water turbines is crucial to predict the potential effects of these structures on the local morphology, water flow and power available in the current, among others. In this study, a series of model water turbines (single and an aligned array) of 50 cm rotor diameter were placed in the main channel of the Saint Anthony Falls Laboratory at the University of Minnesota. The main channel is approx 2.5 m wide, 1.8 m height and 85 m long. Flow around the water turbines were analyzed under subcritical conditions. Turbine hub heights coincided with the channel mid height. A series of acoustic Doppler anemometers (ADV) were used to obtain 3 velocity components of the flow at a rate of 200 Hz. Selected streamwise and spanwise vertical planes were measured to describe the kinematics around the water turbines. Potential interactions with the lateral walls were also addressed. High order statistics (mean velocity, turbulence intensities and Reynolds stresses) as well as two point correlations and spectra were computed to infer fundamental differences and similitude with their counterparts, the wind turbines.
MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between
Directory of Open Access Journals (Sweden)
Raju T. Linga
2014-02-01
Full Text Available An unsteady magnetohydrodynamic (MHD two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities
Investigation of a corrugated channel flow with an open source PIV software
Directory of Open Access Journals (Sweden)
Sivas Deniz
2016-01-01
Full Text Available In this study, the corrugated channel flow was investigated by using an open-source particle image velocimetry (PIV software. The open-source software called OpenPIV was first verified by using images of an earlier experimental work of a vortex ring formation. The corrugated channel flow images were taken with 200 W power LED light source and a high speed camera and those images were analysed with these spatial and temporal tools of OpenPIV. Laminar, transient and turbulent flow regimes were identified when Reynolds number was below 1100, in between 1100 and 2000 and higher than 2000, respectively. The velocity vectors were found to be about 20% lower than the previous study results. The flow inside the grooves was also investigated with OpenPIV and flow characteristics at the grooves were captured when interrogation window size was lowered. The visualization of the flow was presented for different Reynolds numbers with the relative scale values. As a result of this study, OpenPIV software was determined as promising open source PIV analysis software.
Investigation of a corrugated channel flow with an open source PIV software
Sivas, Deniz; Bahadır Olcay, A.; Ahn, Hojin
2016-03-01
In this study, the corrugated channel flow was investigated by using an open-source particle image velocimetry (PIV) software. The open-source software called OpenPIV was first verified by using images of an earlier experimental work of a vortex ring formation. The corrugated channel flow images were taken with 200 W power LED light source and a high speed camera and those images were analysed with these spatial and temporal tools of OpenPIV. Laminar, transient and turbulent flow regimes were identified when Reynolds number was below 1100, in between 1100 and 2000 and higher than 2000, respectively. The velocity vectors were found to be about 20% lower than the previous study results. The flow inside the grooves was also investigated with OpenPIV and flow characteristics at the grooves were captured when interrogation window size was lowered. The visualization of the flow was presented for different Reynolds numbers with the relative scale values. As a result of this study, OpenPIV software was determined as promising open source PIV analysis software.
Lattice Boltzmann simulation of the open channel flow connecting two cascaded hydropower stations
Institute of Scientific and Technical Information of China (English)
张春泽; 程永光; 吴家阳; 刁伟
2016-01-01
This paper examines the feasibility and the efficiency of a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for simulating open channel flows in engineering practice. A MRT-LBM scheme for 2-D shallow water flows taking into account of the bed slope and the friction is proposed. The scheme’s reliability is verified by benchmark problems and the simulation capability is improved by implementing the scheme on a graphic processing unit (GPU). We use the method to analyze the flow characteristics in the connecting open channel of two cascaded hydropower stations. The flow fields and parameters such as the water depth, the flow rate, and the side-weir discharge, under different operating conditions, are analyzed. The factors affecting the accuracy and the effi-ciency are discussed. The results are found to be reasonable and may be used as a guidance in the project design. It is shown that the GPU-implemented MRT-LBM on a fine mesh can efficiently simulate two-dimensional shallow water flows in engineering practice.
Weislogel, Mark M.; Wollman, Andrew P.; Jenson, Ryan M.; Geile, John T.; Tucker, John F.; Wiles, Brentley M.; Trattner, Andy L.; DeVoe, Claire; Sharp, Lauren M.; Canfield, Peter J.; Klatte, Joerg; Dreyer, Michael E.
2015-01-01
It would be signicantly easier to design fluid systems for spacecraft if the fluid phases behaved similarly to those on earth. In this research an open 15:8 degree wedge-sectioned channel is employed to separate bubbles from a two-phase flow in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface in much the same way as would bubbles in a terrestrial environment, only the combined effects of surface tension, wetting, and conduit geometry replace the role of buoyancy. The host liquid is drawn along the channel by a pump and noncondensible gas bubbles are injected into it near the channel vertex at the channel inlet. Control parameters include bubble volume, bubble frequency, liquid volumetric flow rate, and channel length. The asymmetrically confined bubbles are driven in the cross-flow direction by capillary forces until they at least become inscribed within the section or until they come in contact with the free surface, whereupon they usually coalesce and leave the flow. The merging of bubbles enhances, but does not guarantee, the latter. The experiments are performed aboard the International Space Station as a subset of the Capillary Channel Flow experiments. The flight hardware is commanded remotely and continuously from ground stations during the tests and an extensive array of experiments is conducted identifying numerous bubble flow regimes and regime transitions depending on the ratio and magnitude of the gas and liquid volumetric flow rates. The breadth of the publicly available experiments is conveyed herein primarily by narrative and by regime maps, where transitions are approximated by simple expressions immediately useful for the purposes of design and deeper analysis.
International Nuclear Information System (INIS)
Experimental study has been performed to study periodical-boiling instability in parallel channels, which occurs at low heat fluxes and is of concern in the start-up process of an SBWR. Three channels, made of glass tubes to facilitate visual observation, are placed in bulk water and are heated with electric heaters inserted in the channels. Two types of channels of different length are used to investigate the effect of unheated risers or chimney on periodical boiling. Relationship of bubble development and flow instability is also studied. It is found that slug bubbles are usually followed by rapid boiling, which results in high fluctuation of the flow. Refilling of the subcooled water from the top causes bubble condensation. Sometimes rapid condensation occurs and results in crack sounds. The longer channel does not necessarily have better coolability and stability characteristics; the average flow rate is actually lower and fluctuation amplitude is higher compared to those for the shorter channel
The coefficientof hydraulic friction of laminar open flows in smooth channels
Directory of Open Access Journals (Sweden)
Borovkov Valeriy Stepanovich
2015-05-01
Full Text Available The article examines the dependence of the hydraulic friction coefficient of open laminar uniform streams on the relative width of channels with smooth bottom. The article presents the functional dependence that describes the hydraulic resistance in open channels with smooth bottoms.The experiments were carried out in a rectangular tray (6000×100×200. Aqueous solutions of glycerol were used as working fluids. The superficial tension and liquid density for the used liquids changed a little. The article declares that the coefficient of hydraulic friction λ in the zone of the laminar flow depends on the relative width of the channels with smooth bottom. In the article it is also shown that the Charny formula satisfactorily agrees with the theoretical formula and with the experimental data.
AN INVESTIGATION OF TURBULENT HEAT TRANSFER IN CHANNEL FLOWS BY LARGE EDDY SIMULATION
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wall of the channel was cooled and the top wall was heated. The Reynolds numbers, based on the central mean-velocity and the half-width of the channel, were chosen as 4000, 6000, 104 and 2×104, and the Prandtl number as 1.0. To validate our calculations, the present results were compared with available data obtained by Direct Numerical Simulation (DNS), which proves to be in good agreement with each other. To reveal the effects of the Reynolds number, some typical quantities, including the velocity fluctuations, temperature fluctuation, heat fluxes and turbulent Prandtl number, were studied.
Stability of fluid flow through deformable tubes and channels: An overview
Indian Academy of Sciences (India)
V Shankar
2015-05-01
The aim of this paper is to provide a systematic overview of the study of instabilities in flow past deformable solid surfaces, with particular emphasis on internal flows through tubes and channels. The subject is certainly more than five decades old, and arguably began with Kramer’s pioneering experiments on drag reduction by compliant surfaces. This was immediately followed by the theoretical studies of Benjamin and Landhal in the early 1960s. Most earlier theoretical studies were focused on stability of external flows such as boundary layers, and used relatively simple wall models composed of spring-backed plates. There has been a resurgence in the field since the mid-1980s, and more attention was focused on internal flows through deformable tubes and channels. The wall deformation was described by both phenomenological spring-backed plate models and continuum linear viscoelastic solid models. All these studies predict several types of instabilities in flow past deformable surfaces. This paper will attempt to place the various theoretical results in perspective, and to classify the instabilities predicted by various studies. Recent studies have also emphasized the importance of using a frame-invariant constitutive model, such as the neo-Hookean model, for the solid deformation. Until recently, however, the field has been dominated by theoretical and numerical studies, with very little experimental observations to corroborate the theoretical predictions. Recent experiments in flow through deformable tubes and channels indeed show instability at Reynolds number much lower than their rigid counterparts, and the experimental observations are in qualitative agreement with some of the theoretical predictions. There have also been a few studies on the non-linear aspects of the instability using the weakly non-linear formulation to determine the nature of the bifurcation at the linear instability. A brief discussion on weakly nonlinear analyses is also provided in
The effect of flow data resolution on sediment yield estimation and channel design
Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.
2016-07-01
The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.
Droplet in micro-channels: A numerical approach using an adaptive two phase flow solver
Fullana, Jose-Maria; Popinet, Stéphane; Josserand, Christophe
2015-01-01
We propose a numerical approach to study the mechanics of a flowing bubble in a constraint micro channel. Using an open source two phase flow solver (Gerris, gfs.sourceforge.net) we compute solutions of the bubble dynamics (i.e. shape and terminal velocity) induced by the interaction between the bubble movement, the Laplace pressure variation, and the lubrication film near the channel wall. Quantitative and qualitative results are presented and compared against both theory and experimental data for small Capillary numbers. We discuss the technical issues of explicit integration methods on small Capillary numbers computations, and the possibility of adding Van der Walls forces to give a more precise picture of the Droplet-based microfluidic problem.
Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow
Gerolymos, G A
2013-01-01
We investigate the fluctuations of thermodynamic state-variables in compressible aerodynamic wall-turbulence, using results of direct numerical simulation (DNS) of compressible turbulent plane channel flow. The basic transport equations governing the behaviour of thermodynamic variables (density, pressure, temperature and entropy) are reviewed and used to derive the exact transport equations for the variances and fluxes (transport by the fluctuating velocity field) of the thermodynamic fluctuations. The scaling with Reynolds and Mach number of compressible turbulent plane channel flow is discussed. Correlation coefficients and higher-order statistics of the thermodynamic fluctuations are examined. Finally, detailed budgets of the transport equations for the variances and fluxes of the thermodynamic variables from a well-resolved DNS are analysed. Implications of these results both to the understanding of the thermodynamic interactions in compressible wall-turbulence and to possible improvements in statistical...
Self-organized phenomena of pedestrian counter flow in a channel under periodic boundary conditions
Institute of Scientific and Technical Information of China (English)
Li Xiang; Duan Xiao-Yin; Dong Li-Yun
2012-01-01
In this paper we investigate self-organized phenomena such as lane formation generated by pedestrian counter flow in a channel.The lattice gas model is extended to take the effect of walkers in the opposite direction into account simultaneously when they are in the view field of a walker,i.e.,walkers tend to follow the leaders in the same direction and avoid conflicts with those walking towards them.The improved model is then used to mimic pedestrian counter flow in a channel under periodic boundary conditions.Numerical simulations show that lane formation is well reproduced,and this process is rather rapid which coincides with real pedestrian traffic.The average velocity and critical density are found to increase to some degree with the consideration of view field.
Unsteady Hydromagnetic Flow of Viscoelastic Fluid down an Open Inclined Channel
Sreekanth, S; Enkataramana, S; Reddy, R Hemadri
2011-01-01
In this paper, we study the unsteady hydromagnetic flow of a Walter's fluid (Model B') down an open inclined channel of width 2a and depth d under gravity, the walls of the channel being normal to the surface of the bottom under the influence of a uniform transverse magnetic field. A uniform tangential stress is applied at the free surface in the direction of flow. We have evaluated the velocity distribution by using Laplace transform and finite Fourier Sine transform technique. The velocity distribution has been obtained taking different form of time dependent pressure gradient g(t), viz., i) constant ii) exponential decreasing function of time and iii) Cosine function of time. The effects of magnetic parameter M, Reynolds number R and the viscoelastic parameter K are discussed on the velocity distribution in three different cases.
Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks
Landry, Christopher J.; Eichhubl, Peter; Prodanović, Maša.; Wilkins, Scott
2016-05-01
Hydrocarbon production from mudrock or shale reservoirs typically exceeds estimates based on mudrock laboratory permeability measurements, with the difference attributed to natural fractures. However, natural fractures in these reservoirs are frequently completely cemented and thus assumed not to contribute to flow. We quantify the permeability of nanoscale grain boundary channels with mean apertures of 50-130 nm in otherwise completely cemented natural fractures of the Eagle Ford Formation and estimate their contribution to production. Using scanning electron imaging of grain boundary channel network geometry and a digital rock physics workflow of image reconstruction and direct flow modeling, we estimate cement permeability to be 38-750 nd, higher than reported permeability of Eagle Ford host rock (~2 nd) based on laboratory measurements. Our results suggest that effective fracture-parallel mudrock permeability can exceed laboratory values by upward of 1 order of magnitude in shale reservoirs of high macroscopic cemented fracture volume fraction.
Analysis of Pulsatile Flow of Blood in a Porous Channel under Effect of Magnetic Field
Directory of Open Access Journals (Sweden)
Mitali Sarma
2011-11-01
Full Text Available To study the effect of magnetic field on pulsatile flow of blood in a porous channel a numerical model has been developed. An approximate solution is presented to the problem of pulsatile flow of blood in a porous channel in presence of transverse magnetic field. The blood is assumed to be an incompressible non Newtonian fluid. To reduce the equation of motion to an ordinary differential equation, a dimensionless variable is used. Numerical results were obtained for different values of the magnetic parameter, frequency parameter and Reynolds number. It is observed that when the Hartmann number increases, the fluid velocity as well as magnitude as well as magnitude of mass flux decrease.
Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks
Energy Technology Data Exchange (ETDEWEB)
Chikh, S.; Boumedien, A.; Bouhadef, K. [Institut de Genie Mecanique USTHB, El Alia, Bab Ezzouar (Algeria); Lauriat, G. [Universite de Marne-la-Vallee (France)
1998-04-01
A numerical study of forced convection enhancement in a channel intermittently heated is presented in this work. The use of porous blocks mounted on the heated parts of the channel to improve thermal performance is investigated. In order to account for the inertia, drag and boundary effects, the Brinkman-Forchheimer-extended Darcy model is adopted for the flow inside the porous regions. The effects of several parameters such as Darcy number, the block dimensions, the number of blocks and the thermal conductivity ratio are documented. The results show that the blocks may alter substantially the flow pattern depending on the permeability of the porous medium, and may improve the heat transfer and reduce the wall temperature under certain circumstances. (orig.) With 11 figs., 2 tabs., 13 refs.
Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel
Shit, G C; Ng, E Y K; 10.1002/cnm.1397
2010-01-01
Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field as well as the current density distribution across the channel. The flow phenomena for the pumping characteristics, trapping and reflux are also investigated. The results presented reveal that the velocity decreases with the increase of magnetic field as well as the coupling parameter. Moreover, the trapping fluid can be eliminated by the application of an external magnetic field. Thus, the study bears the promise of important applications in physiological systems.
Analytical Investigation of the Flow Hydrodynamics in Micro-Channels at High Zeta Potentials
Directory of Open Access Journals (Sweden)
A. Elazhary
2009-05-01
Full Text Available This paper investigates the effect of the EDL at the solid-liquid interface on the liquid flow through a micro-channel formed by two parallel plates. The complete Poisson-Boltzmann equation (without the frequently used linear approximation was solved analytically in order to determine the EDL field near the solid-liquid interface. The momentum equation was solved analytically taking into consideration the electrical body force resulting from the EDL field. Effects of the channel size and the strength of the zeta-potential on the electrostatic potential, the streaming potential, the velocity profile, the volume flow rate, and the apparent viscosity are presented and discussed. Results of the present analysis, which are based on the complete Poisson-Boltzmann equation, are compared with a simplified analysis that used a linear approximation of the Poisson-Boltzmann equation.
Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls
Directory of Open Access Journals (Sweden)
M. Fakour
2014-11-01
Full Text Available In this paper, laminar fluid flow and heat transfer in channel with permeable walls in the presence of a transverse magnetic field is investigated. Least square method (LSM for computing approximate solutions of nonlinear differential equations governing the problem. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The influence of the four dimensionless numbers: the Hartmann number, Reynolds number, Prandtl number and Eckert number on non-dimensional velocity and temperature profiles are considered. The results show analytical present method is very close to numerically method. In general, increasing the Reynolds and Hartman number is reduces the nanofluid flow velocity in the channel and the maximum amount of temperature increase and increasing the Prandtl and Eckert number will increase the maximum amount of theta.
Self-organized phenomena of pedestrian counter flow in a channel under periodic boundary conditions
Li, Xiang; Duan, Xiao-Yin; Dong, Li-Yun
2012-10-01
In this paper we investigate self-organized phenomena such as lane formation generated by pedestrian counter flow in a channel. The lattice gas model is extended to take the effect of walkers in the opposite direction into account simultaneously when they are in the view field of a walker, i.e., walkers tend to follow the leaders in the same direction and avoid conflicts with those walking towards them. The improved model is then used to mimic pedestrian counter flow in a channel under periodic boundary conditions. Numerical simulations show that lane formation is well reproduced, and this process is rather rapid which coincides with real pedestrian traffic. The average velocity and critical density are found to increase to some degree with the consideration of view field.
Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow
International Nuclear Information System (INIS)
A non-isothermal turbulent flow with the dispersed phase is modelled using the Large Eddy Simulation (LES) approach for fluid, one-way coupled with the equations of point-particle evolution. The channel is heated at both walls and isoflux boundary conditions are applied for fluid. Particle velocity and thermal statistics are computed. Of particular interest are the r.m.s. profiles and the probability density function of particle temperature in the near-wall region. We compare our findings with available reference data for particle-laden, heated channel flow. Moreover, an open issue in LES is the influence of non-resolved (residual) scales of fluid velocity and temperature fields on particles. In the present contribution, we apply a stochastic model for subfilter fluid velocity at the particle positions that aims at reconstructing the effects of the smallest scales of turbulence on particle dynamics. We analyse the impact of this model on particle thermal statistics.
Turbulent channel flow simulations using a coarse-grained extension of the Lattice Boltzmann method
Amati, G; Benzi, R; Amati, Giorgio; Succi, Sauro; Benzi, Roberto
1996-01-01
A coarse-grained version of the Lattice Boltzmann (LB) method is developed with the intent of enhancing its geometrical flexibility so as to be able to tackle a wider class of flows of engineering interest. To this purpose, the original uniform LB technique is combined with standard finite-volume techniques based upon a blend of piecewise constant and piecewise linear interpolation schemes. A series of validation tests for the three dimensional channel flow with one-dimensional (cross-channel) statistical behaviour are presented. The main conclusion is that, although the method does indeed mark a significant stride forward with respect to the original uniform LB scheme, better interpolation schemes should be developed before the coarse-grain LB can become fully competitive with modern CFD schemes.
A theoretical model of turbulent fiber suspension and its application to the channel flow
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A theoretical model of turbulent fiber suspension is developed by deriving the equations of Reynolds averaged Navier-Stokes,turbulence kinetic energy and turbulence dissipation rate with the additional term of fibers.In order to close the above equations,the equation of probability distribution function for mean fiber orientation is also derived.The theoretical model is applied to the turbulent channel flow and the corresponding equations are solved numerically.The numerical results are verified by comparisons with the experimental ones.The effects of Reynolds number,fiber concentration and fiber aspect-ratio on the velocity profile,turbulent kinetic energy and turbulent dissipation rate are analyzed.Based on the numerical data,the expression for the velocity profile in the turbulent fiber suspension channel flow,which includes the effect of Reynolds number,fiber concentration and aspect-ratio,is proposed.
Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks
Chikh, S.; Boumedien, A.; Bouhadef, K.; Lauriat, G.
A numerical study of forced convection enhancement in a channel intermittently heated is presented in this work. The use of porous blocks mounted on the heated parts of the channel to improve thermal performance is investigated. In order to account for the inertia, drag and boundary effects, the Brinkman-Forchheimer-extended Darcy model is adopted for the flow inside the porous regions. The effects of several parameters such as Darcy number, the block dimensions, the number of blocks and the thermal conductivity ratio are documented. The results show that the blocks may alter substantially the flow pattern depending on the permeability of the porous medium, and may improve the heat transfer and reduce the wall temperature under certain circumstances.
Large Eddy Simulations of particle-fluid interaction in a turbulent channel flow
International Nuclear Information System (INIS)
This paper presents a comparison between results obtained using Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) in particle-laden turbulent channel flow. In the case of LES method computations were performed using the dynamic model, Smagorinski model, with and without Van Driest damping at the wall, and without sub-grid scale turbulence modelling. The focus is on the difference in the computed forces acting on a particle in the particle equation of motion. Results for turbulent flow in a channel at Reτ = 150 are presented, focusing on point-particle statistics. DNS provides a point of reference for assessing LES with different sub-filter eddy-viscosity models.
Capillary Flows along Open Channel Conduits: the Open-Star Section
Weislogel, Mark; Chen, Yongkang; Nguyen, Thanh; Geile, John; Callahan, Michael
2014-11-01
Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of related work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an ``open-star'' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport rates. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings. NASA NNX09AP66A, Glenn Research Center.
Institute of Scientific and Technical Information of China (English)
CHANG Wei-Tze; HSIEH Shang-Hsien; YANG Fu-Ling; CHEN Chuin-Shan
2008-01-01
This paper proposes a numerical scheme that employs the discrete element method (DEM) to simulate the motion of a wet granular flow down an inclined channel.To account for the liquid influences on the dynamics between paired particles,this paper presents a wet soft-sphere contact model with liquid-modified parameters.The developed scheme takes full advantage of DEM and avoids the expensive simula-tion of the solid-liquid interactions with conventional Navier-Stokes equation solver.This wet contact model has been implemented in an in-housed parallel discrete objects simulation system-KNIGHT and ANNE/IRIS口to compute the dynamic behaviors of both dry and wet granular particles flowing down an in-dined channel.
Fabrication of micro-flow channels on graphite composite bipolar plates using microplaning
Institute of Scientific and Technical Information of China (English)
万珍平; 梁德杰; 陆龙生; 汤勇
2015-01-01
A new method of manufacturing micro-flow channels on graphite composite bipolar plate (GCBPP) microplaning using specially designed multi-tooth tool is proposed. In this method, several or even dozens of parallel micro-flow channels ranging from 100μm to 500μm in width can be produced simultaneously. But, edge chippings easily occur on the rib surface of GCBPP during microplaning due to brittleness of graphite composites. Experimental results show that edge chippings result in the increase of contact resistance between bipolar plate and carbon paper at low compaction force. While the edge chippings scarcely exert influence on the contact resistance at high compaction force. Contrary to conventional view, the edge chippings can significantly improve performance of microfuel cell and big edge chippings outperform small edge chippings. In addition, the influence of technical parameters on edge chippings was investigated in order to obtain big, but not oversized edge chippings.
Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels
Kosaraju, Srinivas
2015-11-01
T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.
Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow
Pozorski, Jacek; Knorps, Maria; Łuniewski, Mirosław
2011-12-01
A non-isothermal turbulent flow with the dispersed phase is modelled using the Large Eddy Simulation (LES) approach for fluid, one-way coupled with the equations of point-particle evolution. The channel is heated at both walls and isoflux boundary conditions are applied for fluid. Particle velocity and thermal statistics are computed. Of particular interest are the r.m.s. profiles and the probability density function of particle temperature in the near-wall region. We compare our findings with available reference data for particle-laden, heated channel flow. Moreover, an open issue in LES is the influence of non-resolved (residual) scales of fluid velocity and temperature fields on particles. In the present contribution, we apply a stochastic model for subfilter fluid velocity at the particle positions that aims at reconstructing the effects of the smallest scales of turbulence on particle dynamics. We analyse the impact of this model on particle thermal statistics.
Salama, Amgad
2014-08-25
Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.
Coherent structure extraction in turbulent channel flow using boundary adapted wavelets
Sakurai, Teluo; Schneider, Kai; Farge, Marie; Morishita, Koji; Ishihara, Takashi
2016-01-01
We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze direct numerical simulation data of turbulent channel flow computed at a friction Reynolds number of 395, and investigate the role of coherent vorticity. Thresholding of the vorticity wavelet coefficients allows to split the flow into two parts, coherent and incoherent vorticity. The coherent vorticity is reconstructed from their few intense wavelet coefficients. The statistics of the coherent part, i.e., energy and enstrophy spectra, are close to the statistics of the total flow, and moreover, the nonlinear energy budgets are very well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e., noise-like, background flow whose energy is equidistributed.
EXPERIMENTAL STUDY OF 3-D TURBULENT BEND FLOWS IN OPEN CHANNEL
Institute of Scientific and Technical Information of China (English)
LIU Yue-qin; ZHENG Shao-wen; WU Qiang
2005-01-01
A generalized bend flow model, treating a 90° single bend and 60° continuous bends, was designed to quantitatively describe 3-D turbulence mechanism of circulating not-fully-developed flow in open channels with bends.The 3-D fluctuating velocities of turbulent flow were measured and analyzed with a 3-D acoustic-Doppler velocimeter.Formula for 3-D turbulent intensity was derived using the dimension analysis approach.Expressions of vertical turbulent-intensity distributions were obtained with the multivariant-regression theory, which agree with experiment data.Distributions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded.In the bend-turbulent-flow core region, longitudinal and lateral turbulent-intensity distributions are coincident with linear distribution, but in near-wall region are coincident with the Gamma distribution.Vertical turbulent intensity distributions are coincident with the Rayleigh distribution.Herein, it is concluded that the bend turbulence is anisotropic.
Isotropic boundary adapted wavelets for coherent vorticity extraction in turbulent channel flows
Farge, Marie; Sakurai, Teluo; Yoshimatsu, Katsunori; Schneider, Kai; Morishita, Koji; Ishihara, Takashi
2015-11-01
We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze DNS data of turbulent channel flow computed at a friction-velocity based Reynolds number of 395 and investigate the role of coherent vorticity. Thresholding of the wavelet coefficients allows to split the flow into two parts, coherent and incoherent vorticity. The statistics of the former, i.e., energy and enstrophy spectra, are close to the ones of the total flow, and moreover the nonlinear energy budgets are well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e., noise-like, background flow and exhibits an almost equi-distribution of energy.
Exact coherent states and connections to turbulent dynamics in minimal channel flow
Park, Jae Sung
2015-01-01
Several new families of nonlinear three-dimensional travelling wave solutions to the Navier-Stokes equation, also known as exact coherent states, are computed for Newtonian plane Poiseuille flow. The symmetries and streak/vortex structures are reported and their possible connections to critical layer dynamics examined. While some of the solutions clearly display fluctuations that are localized around the critical layer (the surface on which the streamwise velocity matches the wave speed of the solution), for others this connection is not as clear. Dynamical trajectories along unstable directions of the solutions are computed. Over certain ranges of Reynolds number, two solution families are shown to lie on the basin boundary between laminar and turbulent flow. Direct comparison of nonlinear travelling wave solutions to turbulent flow in the same channel is presented. The state-space dynamics of the turbulent flow are organized around one of the newly-identified travelling wave families, and in particular the ...
The impact of plasma induced flow on the boundary layer in a narrow channel
Directory of Open Access Journals (Sweden)
Procházka P.
2015-01-01
Full Text Available The induced flow generated by dielectric barrier discharge (DBD actuator working in steady and unsteady regime will be used to modify properties of naturally developed boundary layer (BL in short and long rectangular perspex channel which is connected to the blow-down wind tunnel. The actuator is placed in spanwise configuration and the inlet velocities will range between 5 and 20 m•s-1. Previously, mean flow field and statistical quantities were subjugated to investigation. In this paper, there will be presented dynamical features of the BL. Oscillation pattern decomposition (OPD of influenced flow field and frequency analysis will be presented. These results should be taken into account regarding to use in the flow around a bluff body.
Wasklewicz, T.; Scheinert, C.
2016-01-01
Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.
Radu, Andrea I.
2012-04-01
A two-dimensional mathematical model coupling fluid dynamics, salt and substrate transport and biofilm development in time was used to investigate the effects of cross-flow velocity and substrate availability on biofouling in reverse osmosis (RO)/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow rate, biomass accumulation in the channel reached a steady state. Replicate simulation runs prove that the stochastic biomass attachment model does not affect the stationary biomass level achieved and has only a slight influence on the dynamics of biomass accumulation. Biofilm removal strategies based on velocity variations are evaluated. Numerical results indicate that sudden velocity increase could lead to biomass sloughing, followed however by biomass re-growth when returning to initial operating conditions. Simulations show particularities of substrate availability in membrane devices used for water treatment, e.g., the accumulation of rejected substrates at the membrane surface due to concentration polarization. Interestingly, with an increased biofilm thickness, the overall substrate consumption rate dominates over accumulation due to substrate concentration polarization, eventually leading to decreased substrate concentrations in the biofilm compared to bulk liquid. © 2012 Elsevier B.V.
Interfacial friction factors for air-water co-current stratified flow in inclined channels
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)
The experimental study of the features of water flowing through a sharpcrested weir in channel
Directory of Open Access Journals (Sweden)
Turalina Dinara
2015-01-01
Full Text Available This article contains the experimental research of water flowing through a weir in a rectangular open channel. Nine regimes of water flowrate investigated in this study. Upstream water levels partially determined for each regime. The coefficient of discharge to the weir determined from the flowrate equation. The determined coefficient of discharge value compared to the value from the Rehbock formula. The diagram of values shows the dependence of the coefficient of discharge Cd on the upstream water level yc/h. Experimental study conducted on the Armfield S16 hydraulic flow demonstrator and hydraulic bench F1-10.
Asymptotic Solutions of Algebraic Reynolds Stress Model Applied to Rough Bottom Open Channel Flow
Directory of Open Access Journals (Sweden)
Soualmia Amel
2014-05-01
Full Text Available We interpret experimental results on the structure of an open channel flow with a strong transverse variation of the bottom roughness. Knowing the wall parameters, we analyze the behavior of Reynolds stress components by using asymptotic solutions of an algebraic stress model developed in the wall and free surface regions. This analysis allowed us to emphasize effects of secondary flows on the production of turbulence near the wall, and the capability of this model to predict the normal components of the Reynolds tensor in the wall and free surface regions when the turbulent shear stresses are well predicted.
Magnetohydrodynamic Peristaltic Flow of a Pseudoplastic Fluid in a Curved Channel
Noreen, Saima; Hayat, Tasawar; Alsaedi, Ahmed
2013-05-01
A mathematical model is developed to examine the effects of an induced magnetic field on the peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict the combined elastic and viscous properties. The analysis has been carried out in the wave frame of reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained through perturbation analysis. Results for stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. The effects of significant parameters on the flow quantities are sketched and discussed.
Large-scale intermittency of liquid-metal channel flow in a magnetic field
Boeck, Thomas; Thess, Andre; Zikanov, Oleg
2008-01-01
We predict a novel flow regime in liquid metals under the influence of a magnetic field. It is characterised by long periods of nearly steady, two-dimensional flow interrupted by violent three-dimensional bursts. Our prediction has been obtained from direct numerical simulations in a channel geometry at low magnetic Reynolds number and translates into physical parameters which are amenable to experimental verification under laboratory conditions. The new regime occurs in a wide range of parameters and may have implications for metallurgical applications.
The $Re$-number dependence of the longitudinal dispersion in a turbulent channel flow
Hawkins, Christopher; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-01-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long timescales, a diffusive behavior with a constant diffusivity $K_L$, that depends \\emph{empirically} on the Reynolds number $Re$. We show that the dependence on $Re$ can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of $K_L(Re)$ depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the $K_L(Re)$ dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.
Institute of Scientific and Technical Information of China (English)
Sohail Nadeem; Safia Akram
2011-01-01
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical expression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.
Effects of Unsymmetric Flow on a Ship Traveling in a Channel
Institute of Scientific and Technical Information of China (English)
XIAJin-zhu; MIA0Quan-ming
2004-01-01
A modified Dawson's method that deals with asymmetric free-surface flow is applied to investigate the effect of the channel walls and water depth on the hydrodynamics of a ship running off the eenterline of a restricted waterway. The comparison of the numerical results with the experimental results shows that the method and the computer program are valid to predict the hydrodynamic forces and ship waves when the under keel clearance is not extremely small.The numerical results also demonstrate how the flow and pressure vary unsymmetriely on both sides of the ship and how the water depth and bank distance influence the hydrodynamic forces and ship waves.
Numerical investigation of turbulent flow and heat transfer in channel with ribs
DEFF Research Database (Denmark)
Myllerup, Lisbeth; Larsen, Poul Scheel
1999-01-01
The performance of three different low-Reynolds number turbulence models has been explored for the benchmark test of fully developed (periodic) flow in a ribbed plane channel. Results are presented for two values of the Reynolds number (based on mean velocity and hydraulic diameter), Re = 37,200 ......,200 and Re = 12,600, for which experimental data are available for the flow field and heat transfer, respectively. Comparison with experimental data includes the Nusselt number distribution along ribbed surface and profiles of mean velocity....
Heat Transfer to MHD Oscillatory Viscoelastic Flow in a Channel Filled with Porous Medium
Directory of Open Access Journals (Sweden)
Rita Choudhury
2012-01-01
Full Text Available The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.
Hall Effect in the Viscous Incompressible Flow Through a Rotating Channel Between Two Porous Walls
Directory of Open Access Journals (Sweden)
V.V. Ramana Rao
1990-07-01
Full Text Available Exact solutions for the velocity and induced magnetic field distributions, accounting for Hall currents have been obtained for the flow of a conducting porous walls under the action of a constant pressure gradient and in the presence of a uniform magnetic field transversely applied to the flow. Further, the channel is rotated with constant angular velocity about an axis perpendicular to the walls. For the purpose of mathematical simplicity, the magnetic prandtl number is assumed to be negligible. An expression for the boundary layer thickness dependent on Taylor, Hartmann, suction Reynolds numbers and Hall parameter has been obtained.
Stability and Drag Reduction in Transient Channel Flow of Fibre Suspension
Institute of Scientific and Technical Information of China (English)
游振江; 林建忠; 邵雪明; 张卫峰
2004-01-01
Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theory and natural closure approximation. Results of the stability analysis show attenuating effects of fibre additives to the flow instability. For the cases leading to transition, drag reduction rate increases with the characteristic parameter H of fibres. The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress. The theoretical results are qualitatively consistent with some typical experiments.
Particle-laden viscous channel flows - model regularization and parameter study
O'Naraigh, Lennon
2016-01-01
We characterize the flow of a viscous suspension in an inclined channel where the flow is maintained in a steady state under the competing influences of gravity and an applied pressure drop. The basic model relies on a diffusive-flux formalism. Such models are common in the literature, yet many of them possess an unphysical singularity at the channel centreline where the shear rate vanishes. We therefore present a regularization of the basic diffusive-flux model that removes this singularity. This introduces an explicit (physical) dependence on the particle size into the model equations. This approach enables us to carry out a detailed parameter study showing in particular the opposing effects of the pressure drop and gravity. Conditions for counter-current flow and complete flow reversal are obtained from numerical solutions of the model equations. These are supplemented by an analytic lower bound on the ratio of the gravitational force to the applied pressure drop necessary to bring about complete flow reve...
Numerical Analysis of Cavitating Flow of Liquid Helium inHorizontal Converging-Diverging Channel
Ishimoto, Jun; Kamijo, Kenjiro
The basic characteristics of the two-dimensional cavitating flow of liquid helium through a horizontal converging-diverging channel near the lambda point are numerically investigated to realize the further development and high performance of new multiphase superfluid cooling systems. First, the governing equations of the cavitating flow of liquid helium based on the unsteady thermal nonequilibrium multifluid model with generalized curvilinear coordinates system are presented, and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the cavitating flow of liquid helium though horizontal converging-diverging channel is shown in detail, and it is also found that the generation of superfluid counterflow against normal fluid flow based on the thermo mechanical effect is conspicuous in the large gas phase volume fraction region where the liquid- to gas-phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase.
Numerical simulation of cavitating flow of liquid helium in venturi channel
Ishimoto, Jun; Kamijo, Kenjiro
2003-01-01
The fundamental characteristics of the two-dimensional cavitating flow of liquid helium through a venturi channel near the lambda point are numerically investigated to realize the further development and high performance of new multi-phase superfluid cooling systems. First, the governing equations of the cavitating flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model with generalized curvilinear coordinates system are presented, and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the cavitating flow of liquid helium though venturi channel is shown in detail, and it is also found that the generation of superfluid counterflow against normal fluid flow based on the thermomechanical effect is conspicuous in the large gas phase volume fraction region where the liquid-to-gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase.
Contrasting turbulence–radiation interaction in supersonic channel and pipe flow
International Nuclear Information System (INIS)
Highlights: • LES-code directly coupled with RTE solver based on discrete ordinates method. • New findings due to competition between TRI and transverse curvature effects. • Changes in mean density control changes in pressure–strain correlations. • Radiative heat flux into wall reaches values of 40% of total wall heat flux. - Abstract: The Large Eddy Simulation (LES) technique is used to explore similarities and differences between turbulence–radiation interaction (TRI) in fully developed supersonic plane channel flow and axisymmetric non-swirling pipe flow, bounded by isothermal black and diffusive walls which are kept at a temperature of 800 K. The comparison between both flows is based on equal friction Mach number, friction Reynolds number, Prandtl number and ratio of specific heats. The Reynolds number is defined with the channel half-width and pipe radius. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem of the low-pass filtered compressible Navier–Stokes equations. The working fluid is water vapour and its radiative properties are accounted for using a grey gas model with a Planck mean absorption coefficient varying with temperature. Simulations have been performed for two different optical thicknesses. Results for mean flow quantities, Reynolds stresses and pressure–strain correlations are presented, contrasting radiative effects in both flows and indicating their interaction with curvature effects in the pipe. An analysis of the total enthalpy balance reveals the role of radiative heat transfer, compared to turbulent and mean molecular heat transport
Directory of Open Access Journals (Sweden)
Mandana Samari Kermani
2016-01-01
Full Text Available The interaction of spherical solid particles with turbulent eddies in a 3-D turbulent channel flow with friction Reynolds number was studied. A generalized lattice Boltzmann equation (GLBE was used for computation of instantaneous turbulent flow field for which large eddy simulation (LES was employed. The sub-grid-scale (SGS turbulence effects were simulated through a shear-improved Smagorinsky model (SISM, which can predict turbulent near wall region without any wall function. Statistical properties of particles behavior such as root mean square (RMS velocities were studied as a function of dimensionless particle relaxation time ( by using a Lagrangian approach. Combination of SISM in GLBE with particle tracking analysis in turbulent channel flow is novelty of the present work. Both GLBE and SISM solve the flow field equations locally. This is an advantage of this method and makes it easy implementing. Comparison of the present results with previous available data indicated that SISM in GLBE is a reliable method for simulation of turbulent flows which is a key point to predict particles behavior correctly.
DNS of turbulent channel flow at ReΤ=395, 590 AND Pr=0.01
International Nuclear Information System (INIS)
The paper presents results of the Direct Numerical Simulation of turbulent channel flow at friction Reynolds numbers 395 and 590 with passive scalar at Prandtl number 0.01, which corresponds to the Prandtl number of liquid sodium. Fluctuating and non-fluctuating temperature boundary conditions are analyzed and compared. Results clearly describe the minor role of the turbulent Prandtl number in the integral wall-to-fluid heat transfer. (author)
Institute of Scientific and Technical Information of China (English)
卢志明; 刘宇陆; 蒋剑波
2001-01-01
Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaus sian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.
Mixed Convection Flow of Couple Stress Fluid in a Vertical Channel with Radiation and Soret Effects
Directory of Open Access Journals (Sweden)
Kaladhar Kolla
2016-01-01
Full Text Available The radiation and thermal diffusion effects on mixed convection flow of couple stress fluid through a channel are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the Spectral Quasi-linearization Method (QLM. The results, which are discussed with the aid of the dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.
Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel
Shit, G. C.; Roy, M.; E. Y. K. Ng
2010-01-01
Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field a...
Reasoning About Information Flow Security of Separation Kernels with Channel-based Communication
Zhao, Yongwang; Sann, David; Zhang, Fuyuan; Liu, Yang
2015-01-01
Assurance of information flow security by formal methods is mandated in security certification of separation kernels. As an industrial standard for separation kernels, ARINC 653 has been complied with by mainstream separation kernels. Security of functionalities defined in ARINC 653 is thus very important for the development and certification of separation kernels. This paper presents the first effort to formally specify and verify separation kernels with ARINC 653 channel-based communication...
Development of a Methodology to Measure Aerodynamic Forces on Pin Fins in Channel Flow
Brumbaugh, Scott J
2006-01-01
The desire for smaller, faster, and more efficient products places a strain on thermal management in components ranging from gas turbine blades to computers. Heat exchangers that utilize internal cooling flows have shown promise in both of these industries. Although pin fins are often placed in the cooling channels to augment heat transfer, their addition comes at the expense of increased pressure drop. Consequently, the pin fin geometry must be judiciously chosen to achieve the desired he...
A free surface model for incompressible pipe and open channel flow.
Ersoy, Mehmet
2013-01-01
We present the full derivation of a free surface pipe or open channel model including friction, changes of section and changes of slope/topography. This 1D free surface model (also named \\textbf{FS}-model) is obtained from the incompressible 3D Navier-Stokes equation under shallow water assumptions with well-suited boundary conditions. It was introduced in the general framework of unsteady mixed flows in closed water pipes and is largely used by the engineers community.
Analytical Method in Solving Flow of Viscoelastic Fluid in a Porous Converging Channel
M. Esmaeilpour; Naeem Roshan; Negar Roshan; D.D. Ganji
2011-01-01
An analytical method, called homotopy perturbation method (HPM), is used to compute an approximation to the solution of the nonlinear differential equation governing the problem of two-dimensional and steady flow of a second-grade fluid in a converging channel. The table and figures are presented for influencing various parameters on the velocity field. The results compare well with those obtained by the numerical method. The method is straightforward and concise, and it can also be applied t...
Steady flow for incompressible fluids in domains with unbounded curved channels
Santos, Marcelo M.
2015-01-01
We give an overview on the solution of the stationary Navier-Stokes equations for non newtonian incompressible fluids established by G. Dias and M.M. Santos (Steady flow for shear thickening fluids with arbitrary fluxes, J. Differential Equations 252 (2012), no. 6, 3873-3898)*, propose a de?nition for domains with unbounded curved channels which encompasses domains with an unbounded boundary, domains with nozzles, and domains with a boundary being a punctured surface, and argue on the existen...
M. K. Chaube; Tripathi, D.; O. Anwar Bég; Shashi Sharma; PANDEY, V.S.
2015-01-01
A mathematical study on creeping flow of non-Newtonian fluids (power law model) through a nonuniform peristaltic channel, in which amplitude is varying across axial displacement, is presented, with slip effects included. The governing equations are simplified by employing the long wavelength and low Reynolds number approximations. The expressions for axial velocity, stream function, pressure gradient, and pressure difference are obtained. Computational and numerical results for velocity profi...
Nonlinear effects of energy sources and the jet at supersonic flow in the channel
Zamuraev, V. P.; Kalinina, A. P.
2016-10-01
The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.
Flow and Heat Transfer Characteristics in Rotating Two-pass Channels Cooled by Superheated Steam
Institute of Scientific and Technical Information of China (English)
WANG Wei; GAO Jianmin; XU Liang; SHI Xiaojun
2012-01-01
In a modern gas turbine,using superheated steam to cool the vane and blade for internal convection cooling is a promising alternative to traditional compressor air.However,further investigations of steam cooling need to be performed.In this paper,the three-dimensional flow and heat transfer characteristics of steam are numerically investigated in two-pass square channels with 45° ribbed walls under stationary and rotating conditions.The investigated rotation numbers are 0 and 0.24.The simulation is carried out by solving the Reynolds averaged Navier-Stokes equations employing the Reynolds stress turbulence model,cspccially considering two additional terms for Coriolis and rotational buoyancy forces caused by the rotating effect.For comparison,calculations for the air-cooled channels are done first at a Reynolds number of 25 000 and inlet coolant-to-wall density ratio of 0.13.The results are compared with the experiment data.Then the flow and heat transfer in steam-cooled channels are analyzed under the same operating conditions.The results indicate that the superheated steam has better heat transfer performance than air.Due to the combined effect of rotation,skewed ribs and 180° sharp turn,the secondary flow pattern in steam-cooled rotating two-pass channels is quite complex.This complex secondary flow pattern leads to strong anisotropic turbulence and high level of anisotropy of Reynolds stresses,which have a significant impact on the local heat transfer coefficient distributions.
PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel
International Nuclear Information System (INIS)
PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds
A Comparison of Recursive Least Squares Estimation and Kalman Filtering for Flow in Open Channels
DURDU, Ömer Faruk
2005-01-01
An integrated approach to the design of an automatic control system for canals using a Linear Quadratic Gaussian regulator based on recursive least squares estimation was developed. The one-dimensional partial differential equations describing open channel flow (Saint-Venant) equations are linearized about an average operating condition of the canal. The concept of optimal control theory is applied to drive a feedback control algorithm for constant-level control of an irrigation cana...
Directory of Open Access Journals (Sweden)
Matoušek Václav
2015-12-01
Full Text Available Gravity-driven open-channel flows carrying coarse sediment over an erodible granular deposit are studied. Results of laboratory experiments with artificial sediments in a rectangular tilting flume are described and analyzed. Besides integral quantities such as flow rate of mixture, transport concentration of sediment and hydraulic gradient, the experiments include measurements of the one-dimensional velocity distribution across the flow. A vertical profile of the longitudinal component of local velocity is measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods. Due to strong flow stratification, the velocity profile covers regions of very different local concentrations of sediment from virtually zero concentration to the maximum concentration of bed packing. The layered character of the flow results in a velocity distribution which tends to be different in the transport layer above the bed and in the sediment-free region between the top of the transport layer and the water surface. Velocity profiles and integral flow quantities are analyzed with the aim of evaluating the layered structure of the flow and identifying interfaces in the flow with a developed transport layer above the upper plane bed.
Suspended sediment dynamics in a tidal channel network under peak river flow
Achete, Fernanda Minikowski; van der Wegen, Mick; Roelvink, Dano; Jaffe, Bruce
2016-05-01
Peak river flows transport fine sediment, nutrients, and contaminants that may deposit in the estuary. This study explores the importance of peak river flows on sediment dynamics with special emphasis on channel network configurations. The Sacramento-San Joaquin Delta, which is connected to San Francisco Bay (California, USA), motivates this study and is used as a validation case. Besides data analysis of observations, we applied a calibrated process-based model (D-Flow FM) to explore and analyze high-resolution (˜100 m, ˜1 h) dynamics. Peak river flows supply the vast majority of sediment into the system. Data analysis of six peak flows (between 2012 and 2014) shows that on average, 40 % of the input sediment in the system is trapped and that trapping efficiency depends on timing and magnitude of river flows. The model has 90 % accuracy reproducing these trapping efficiencies. Modeled deposition patterns develop as the result of peak river flows after which, during low river flow conditions, tidal currents are not able to significantly redistribute deposited sediment. Deposition is quite local and mainly takes place at a deep junction. Tidal movement is important for sediment resuspension, but river induced, tide residual currents are responsible for redistributing the sediment towards the river banks and to the bay. We applied the same forcing for four different channel configurations ranging from a full delta network to a schematization of the main river. A higher degree of network schematization leads to higher peak-sediment export downstream to the bay. However, the area of sedimentation is similar for all the configurations because it is mostly driven by geometry and bathymetry.
Swain, Ratnakar; Sahoo, Bhabagrahi
2015-11-01
In this study, the fully volume conservative simplified hydrodynamic-based variable parameter McCarthy-Muskingum (VPMM) flow transport model advocated by Perumal and Price in 2013 is extended to exclusively incorporate the distributed non-uniform lateral flow in the routing scheme accounting for compound river channel flows. The revised VPMM formulation is exclusively derived from the combined form of the de Saint-Venant's continuity and momentum equations with the spatiotemporally distributed lateral flow which is solved using the finite difference box scheme. This revised model could address the earlier model limitations of: (i) non-accounting non-uniformly distributed lateral flow, (ii) ignoring floodplain flow, and (iii) non-consideration of catchment dynamics of lateral flow generation restricting its real-time application. The efficacy of the revised formulation is tested to simulate 16 years (1980-1995) river runoff from real-time storm events under scarce morpho-hydrological data conditions in a tropical monsoon-type 48 km Bolani-Gomlai reach of the Brahmani River in eastern India. The spatiotemporally distributed lateral flows generated in real-time is computed by water balance approach accounting for catchment characteristics of normalized network area function, land use land cover classes, and soil textural classes; and hydro-meteorological variables of precipitation, soil moisture, minimum and maximum temperatures, wind speed, relative humidity, and solar radiation. The multiple error measures used in this study and the simulation results reveal that the revised VPMM model has a greater practical utility in estimating the event-based and long-term meso-scale river runoff (both discharge and its stage) at any ungauged site, enhancing its application for real-time flood estimation.
Directory of Open Access Journals (Sweden)
Islam S.M. Khalil
2016-06-01
Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr-1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr-1 and 30 ml.hr-1 are calculated to be 45 μm.s-1 and 15 μm.s-1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.
An investigation of channel flow with a smooth air-water interface
Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan
2015-06-01
Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.
Turbulent structures and statistics in turbulent channel flow with two-dimensional slits
Energy Technology Data Exchange (ETDEWEB)
Makino, Soichiro [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)], E-mail: a7502126@rs.noda.tus.ac.jp; Iwamoto, Kaoru; Kawamura, Hiroshi [Department of Mechanical Engineering, Tokyo University of Science, Noda-shi, Chiba 278-8510 (Japan)
2008-06-15
Direct numerical simulation (DNS, hereafter) of turbulent channel flow with periodic two-dimensional slits has been performed in order to investigate the turbulent statistics and the turbulent structures behind the slits. The Reynolds numbers based on the friction velocity and the channel half width are 10-1500. In the wake region, the mean flow becomes asymmetric with respect to the centerline of the geometry through the Coanda effect. Large-scale vortices are generated at the height of the slit edges. These vortices become deformed in various scenarios and break up into disordered small-scale structures in the shear layers behind the slit. The small-scale vortices are convected toward the channel center. The budgets of the Reynolds stresses have been computed. The significant differences are found between the budgets in this study and those in a backward-facing step turbulence. The positive Reynolds shear stress u'v'-bar is observed owing to the flow contraction just behind the slit. The wake region was classified into several categories based upon the budgets of the Reynolds stresses and turbulent structures.
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2015-12-01
Full Text Available This article is dedicated to analyzing the heat transfer in the flow of water-based nanofluids in a channel with non-parallel stretchable walls. The magnetohydrodynamic (MHD nature of the flow is considered. Equations governing the flow are transformed into a system of nonlinear ordinary differential equations. The said system is solved by employing two different techniques, the variational iteration method (VIM and the Runge-Kutta-Fehlberg method (RKF. The influence of the emerging parameters on the velocity and temperature profiles is highlighted with the help of graphs coupled with comprehensive discussions. A comparison with the already existing solutions is also made, which are the special cases of the current problem. It is observed that the temperature profile decreases with an increase in the nanoparticle volume fraction. Furthermore, a magnetic field can be used to control the possible separation caused by the backflows in the case of diverging channels. The effects of parameters on the skin friction coefficient and Nusselt number are also presented using graphical aid. The nanoparticle volume fraction helps to reduce the temperature of the channel and to enhance the rate of heat transfer at the wall.
Flow of a Casson fluid through a locally-constricted porous channel: a numerical study
Amlimohamadi, Haleh; Akram, Maryammosadat; Sadeghy, Kayvan
2016-05-01
Flow of a Casson fluid through a two-dimensional porous channel containing a local constriction is numerically investigated assuming that the resistance offered by the porous medium obeys the Darcy's law. Treating the constriction as another porous medium which obeys the Darcy-Forcheimer model, the equations governing fluid flow in the main channel and the constriction itself are numerically solved using the finite-volume method (FVM) based on the pseudo-transient SIMPLE algorithm. It is shown that an increase in the porosity of the channel decreases the shear stress exerted on the constriction. On the other hand, an increase in the fluid's yield stress is predicted to increase the maximum shear stress experienced by the constriction near its crest. The porosity of the constriction itself is predicted to have a negligible effect on the plaque's shear stress. But, the momentum of the weak flow passing through the constriction is argued to lower the bulk fluid from separating downstream of the constriction.
Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel
Budiman, Alexander Christantho
2014-12-04
Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.
Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele
2016-02-01
An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.
Numerical Analysis of the High Speed Driven Cavity Flow in 2-D Curved Channel
Directory of Open Access Journals (Sweden)
M. M. Ashraful Alam
2016-01-01
Full Text Available Numerical experiments were carried out on the high speed driven cavity flows in 2D curved channels to investigate mainly the pressure field. A density-based algorithm in ANSYS Fluent 13.0 was used in the present URANS simulations. The SST k- ω model was used for modeling the turbulence within an unstructured mesh solver. Validation of the numerical code was accomplished, and the results showed a good agreement between the numerical simulation and experimental data. Three channels (straight, concave and convex with a nominal height of H = 4 × 10 −3 m under the transonic flow conditions were considered in the study. The cavity studied is L = 12 × 10 −3 m long with the depth ranging from D = 12 × 10 −3 m to 48 × 10 −3 m to obtain the length-to-depth ratios of L /D=1 to 1 /4. The study comprised the analysis of the cavity surface pressures and the associated flow structures. The channel configuration influenced the cavity flowfield, and that influence finally resulted in a change in the surface pressure fluctuations in the cavity. The deep cavity attenuated the flowfield oscillation inside the cavity.
Characteristics of Channeling Flow in Cultivated Horizon of Saline Rice Soil
Institute of Scientific and Technical Information of China (English)
LUO Jinming; DENG Wei; ZHANG Xiaoping; YANG Fan; LI Xiujun
2006-01-01
By applying bromide ion as tracer, the channeling flow has been quantitatively described in saline rice soil and alkaline soil of Da'an City, Jilin Province of China. Breakthrough curves of bromide ion in the saline rice soils after 1-year cultivation and 5-year cultivation and alkaline soil have been attained. Results show that the rice cultivation practice can improve the alkaline soil structure, however, it can accelerate the development of channeling flow pathway.Therefore, the channeling flow pathway has been developed widely in saline rice soil, but rarely in the alkaline soil.Three models of convection-dispersion equation (CDE), transfer functional model (TFM) and Back-Progation Network (BP Network) were used to simulate the transportation process of bromide ion. The peaks of probability density function of saline rice soil are higher with left skewed feature compared with that of the alkaline soil. It shows that the TFM and CDE can simulate the transportation process of the bromide ion in saline rice soil after 5-year cultivation, however, some deviation exists when it was used to simulate transportation process of bromide ion in saline rice soil after 1-year cultivation and alkaline soil; BP network can effectively simulate transportation process of bromide ion in both saline rice soil and alkaline soil.
Institute of Scientific and Technical Information of China (English)
仲峰泉; 刘难生; 陆夕云; 庄礼贤
2002-01-01
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.
Experimental Assessment of the Two-Phase Flow in a Large Inclined Channel
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Thanh Hung; Song, Ki Won; Revankar, Shripad T; Park, Hyun Sun [Pohang University of Science and Technology, Pohang (Korea, Republic of)
2014-10-15
In order to assess the cooling performance of the core catcher system, a model facility has been constructed in POSTECH using scaling analysis. This facility consists of horizontal, inclined and vertical section. To investigate the flow parameters in each section, the instrumentation is developed to measure two-phase characteristics such as local void fraction, bubble velocity and bubble size. To date, there has been a considerable amount of research conducted on the internal structure of two-phase flow in pipe. However, the number of attempts made on the experiment regarding large inclined channels has been still limited. One of the reasons for this lack of data is the difficulty in constructing experimental facility. In this paper, the parameters of the flow in the inclined section are presented. The inclined channel is 10 degree from the horizontal with the rectangular cross section of 300 cm{sup 2}. The distributions of local parameters are evaluated through the data of double sensor conductivity probes installed at different locations along the inclined section. The data sets of the structure of two-phase flow in an inclined large channel was acquired. The air was injected through the metal foam installed on the top surface wall of the inclined section. Water level was kept below the top of the inclined section so the amount of water was fixed during the experiment. 9 probes set up at the different locations to get the data of local two-phase parameters. The measurement at each location was conducted in 5 minutes to determine the mean value of each parameter. The result of local void fraction profiles at different locations indicates that the void distribution primarily changes along the height of the inclined section. The slug flow occurs in the channel which results in most bubbles attached to the top surface wall. This fact explains the high local void fraction near the top wall and its rapid decline towards the bottom wall of the inclined section. The
Lee, Joon Sang
The compressible filtered Navier-Stokes equations were solved using a second order accurate finite volume method with low Mach number preconditioning. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. The study focused on the effects of buoyancy and rotation on the structure of turbulence and transport processes including heat transfer. Several different physical arrangements were studied as outlined below. The effects of buoyancy were first studied in a vertical channel using large eddy simulation (LES). The walls were maintained at constant temperatures, one heated and the other cooled. Results showed that aiding and opposing buoyancy forces emerge near the heated and cooled walls, respectively. In the aiding flow, the turbulent intensities and heat transfer were suppressed at large values of Grashof number. In the opposing flow, however, turbulence was enhanced with increased velocity fluctuations. Another buoyancy study considered turbulent flow in a vertically oriented annulus. Isoflux wall boundary conditions with low and high heating were imposed on the inner wall while the outer wall was adiabatic. The results showed that the strong heating and buoyancy force caused distortions of the flow structure resulting in reduction of turbulent intensities, shear stress, and turbulent heat flux, particularly near the heated wall. Flow in an annular pipe with and without an outer wall rotation about its axis was first investigated at moderate Reynolds numbers. When the outer pipe wall was rotated, a significant reduction of turbulent kinetic energy was realized near the rotating wall. Secondly, a large eddy simulation has been performed to investigate the effect of swirl on the heat and momentum transfer in an annular pipe flow with a rotating inner wall. The simulations indicated that the Nusselt number and the wall friction coefficient increased with increasing rotation speed of the wall. It was also observed that the axial velocity
Low Reynolds number flow in rectangular cooling channels provided with low aspect ratio pin fins
Energy Technology Data Exchange (ETDEWEB)
Armellini, Alessandro; Casarsa, Luca [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, 33100 Udine (Italy); Giannattasio, Pietro, E-mail: pietro.giannattasio@uniud.i [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, 33100 Udine (Italy)
2010-08-15
The flow structures around single heat transfer promoters of different shapes (square, circular, triangular and rhomboidal) have been investigated experimentally by means of a 2-D Particle Image Velocimetry (PIV) technique. The geometrical configuration and flow conditions considered are typical of real liquid cooling channels. They include low aspect ratio pin fins confined at both ends by the walls of a rectangular channel, water flow at low Reynolds numbers (Re = 800, 1800, 2800), high core flow turbulence and undeveloped boundary layers at the position of the obstacle. In front of the pin fins the high turbulence level is found to promote a strong instability of the horseshoe vortex system that forms at the wall/obstacle junction. In particular, frequent events of break-away of the primary vortices and inrush of core fluid, which are known to enhance the wall heat transfer, are observed in the cases of square and circular pins already from Re = 1800. The near wake downstream of the obstacles appears to be influenced by streamwise oriented vortical structures produced at the wall/obstacle junction. They give rise to spanwise velocity components (up-wash flow) that lead to a three-dimensional mass recirculation behind the pins. The combination of up-wash flows, low Reynolds number and high core flow turbulence gives rise to a competition between the classical alternate vortex shedding and an irregular shedding mode characterized by the decoupling of the shear layers and the absence of well organized primary structures. At Re = 800, the irregular shedding prevails and the mean wake topology is almost insensitive to the obstacle shape. As the Reynolds number is increased, the junction flow structures reduce in size and strength, their effect on the wake flow weakens and the recirculation structures behind the obstacles differentiate significantly according to the pin shape. Besides investigating complex flow structures in geometrical and flow configurations of
International Nuclear Information System (INIS)
Quasi-diabatic two-flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities from 50 to 600 kg/m2s and saturation temperatures of 22 deg C, 31 deg C and 41 deg C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream of the heated section were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular. Dryout conditions were also characterized. Local heat transfer results were considered when investigating the presence of stratified flows. The visualized flow patterns were compared against the predictions provided by Barnea et al., Felcar et al. and Revellin and Thome. For the present database, the method recently proposed by Felcar et al. provides the best predictions. Additionally, elongated bubble velocities, frequencies and lengths were determined based on an analysis of high speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature, and is independent of bubble length. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as a linear function of the two-phase superficial velocity. (author)
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
International Nuclear Information System (INIS)
Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D2) and the largest Lyapunov exponent (λ1), with D2 being fractional and λ1 being positive. Contour maps of D2 and λ1 of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D2 and λ1 maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
Energy Technology Data Exchange (ETDEWEB)
Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2015-07-15
Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
Directory of Open Access Journals (Sweden)
C. P. Lim
2015-07-01
Full Text Available Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO and another immiscible fluid (silicone oil. A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D2 and the largest Lyapunov exponent (λ1, with D2 being fractional and λ1 being positive. Contour maps of D2 and λ1 of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D2 and λ1 maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.
Viswanath, Divakar
2014-01-01
The Kleiser-Schumann (1980) and Kim-Moin-Moser (1987) algorithms for solving the incompressible Navier-Stokes equations have been used to simulate a great variety of turbulence phenomena in plane channels and in plane Couette flow. In this article, we derive new versions of either algorithm which completely eliminate numerical differentiation in the wall-normal direction. Thanks to greater accuracy, the new versions are able to reach higher Reynolds number than currently possible. Using $10^{9}$ grid points and only $10$ compute nodes, they reach a frictional Reynolds number ($Re_{\\tau}$) of $2380$ (with bulk flow $Re=80,000$), which may be compared with the simulation of Hoyas and Jim\\'enez (2006, 2008) which reached $Re_{\\tau}=2003$. The methods derived here appear capable of going well beyond $Re_{\\tau}=2380$.
Numerical calculation of gas-liquid transient flow in channels and bends
International Nuclear Information System (INIS)
An accurate prediction of transient two-phase flow phenomena is quite important in safety analyses of nuclear reactors under normal, off-normal or accident conditions. In general, the ability to predict these thermohydraulic phenomena of two-phase flow depends on the availability of mathematical models and experimental correlations. The fluid flow and heat transfer encountered in reactor safety analyses are often very complex due to reactor geometries. Furthermore, full scale experiments with sufficient instrumentations are often extremely difficult to perform due to its size and adverse conditions. These indicate the importance of accurate two-phase flow models and constitutive relations which take into account the widely varying properties, system scales and geometrical effects. The algorithm used in this paper is Newton Block Gauss Seidel (NBGS) method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. Examples of transient two dimensional air-water flow with in channels and bends with variation of inlet slip ratio and void fraction is being presented in this paper
Interaction of a turbulent channel flow with a compliant tensegrity fabric
Luo, Haoxiang; Bewley, Thomas
2004-11-01
A non-trivial influence of the compliant surface on the statistics of near-wall turbulence has been found by direct numerical simulations of a channel flow at Re_τ=150 passing over a ``tensegrity fabric'' surface. Inspired from nature, this compliant surface model is special truss system having tensile members distinguished from the compressive members, as we have presented at previous APS meetings. Validated by a variety of flows, a pseudospectral/finite-difference flow solver with a 3D coordinate transformation is coupled with a C++ code calculating the dynamics of the tensegrity fabric to simulate the flow/structure interaction. Simulation results show that, when the structure has high stiffness and damping, the flow acts as if the interface were a solid flat wall. When the structure's stiffness and damping are reduced, it may resonate under the excitation of the flow disturbances. The resonating flow/structure interface forms a streamwise wave reminiscent of air-water interface but traveling at a much faster phase speed, a few times of the viscous velocity u_τ. Although the wave's amplitude is small, y_w^+≈ 2, it changes the near-wall turbulence significantly. Drag on the compliant surface is increased by about 17% where form drag accounts for only one third of the drag increase due to the small wall deformation. Various domain sizes have been tried in order to make sure that the structure's vibration mode is correct.
A study of transient channel flow in a transitionally rough regime
Seddighi, Mehdi; He, Shuisheng; O'Donoghue, Tom; Pokrajac, Dubravka; Vardy, Alan
2014-11-01
DNS has been used to investigate the transient behaviour of turbulence following a rapid flow acceleration from an initially turbulent flow in a channel with a smooth top wall and a roughened bottom wall made of close-packed pyramids. Simulations have been performed at various flow conditions in the transitionally rough regime with equivalent roughness heights (ks+) ranging from 12 to 42. It is shown that the transient responses of the flow over the smooth and rough walls are practically independent of each other. Also, the nature of the process over the rough wall varies strongly as the influence of the roughness increases during the early stages of the acceleration. Whereas the transient flow over the smooth-wall undergoes a process strikingly similar to laminar-turbulent bypass transition, the corresponding behaviour over the rough wall depends on the wall condition. When the equivalent roughness height of the final flow condition is below ~30, bypass-like transition dominates, although the roughness induces early transition. When ks+ > 30 , however, the rough-wall flow undergoes a highly transient process resembling roughness induced transition.
3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows
Institute of Scientific and Technical Information of China (English)
Jie ZHOU; Cheng ZENG
2009-01-01
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage.To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows,a hybrid LES-RANS model,which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model,is proposed in the present study.The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel,as well as the downstream region of a branch channel.The LES model was used to simulate the channel diversion region,where turbulent flow characteristics ate complicated.Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence.A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations.This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions.Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows
Directory of Open Access Journals (Sweden)
Jie ZHOU
2009-09-01
Full Text Available The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES model with the Reynolds-averaged Navier-Stokes (RANS model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
Effect of initial conditions on mixing within a turbulent channel flow
Germaine, Emmanuel; Mydlarski, Laurent; Cortelezzi, Luca
2011-11-01
We analyze the mixing of a passive scalar (temperature) in a turbulent channel flow for different initial conditions by means of numerical simulations. The numerical domain is a channel delimited by two parallel and infinite flat walls, simulated using periodic boundary conditions in the streamwise and spanwise directions. We consider three initial distributions of temperature, where hot and cold fluids are separated by a sharp but continuous interface that subdivides the computational domain into two identical halves. The interface is taken parallel to the walls or perpendicular to them, oriented in the streamwise or spanwise directions. We perform a direct numerical simulation of the temperature field at Reτ = 190 when the flow is fully turbulent. The numerical scheme combines an advection diffusion solver, i.e, a third-order flux integral method based on UTOPIA (Leonard et al., Appl. Math. Modeling, 1995), with a Navier-Stokes solver, i.e, spectral code released by Prof. John Gibson, http://www.channelflow.org). We quantify the time-evolution of the mixing performance of the turbulent flow using different measures of the mixing, including a negative Sobolev norm - a diagnostic currently used to asses the mixing performance of laminar flows. Finally, we discuss the influence of the initial conditions on the turbulent mixing. Funding was provided by NSERC (grants RGPIN217169 and RGPIN217184).
Dutta, Debashis; Leighton, David T
2003-07-15
Application of electrokinetic forces to drive the mobile phase diminishes analyte dispersion in open-channel liquid chromatographic columns due to minimization of shear in the flow field. However, the retentive layer coating the inner walls of such devices slows down the average convective velocity of solute molecules in its vicinity, inherently causing dispersion of analyte bands. In this article, we explore the possibility of reducing such dispersion in electrochromatographic columns by imposing a pressure-driven back flow in the system. Analysis shows that although such a strategy introduces shear in the flow field, the overall dispersion in the mobile phase is reduced. This occurs as the streamline velocity in such a system is greater near the channel walls than that in the center of the conduit, thereby allowing fluid dispersion to counteract wall retention effects. For an optimally chosen magnitude of the back flow, hydrodynamic dispersion of any target species in the mobile phase may be shown to diminish by a factor of 3 and 10/3 in a circular tube and a parallel-plate geometry, respectively. A similar reduction in slug dispersion is also realized in rectangular conduits for all aspect ratios. In trapezoidal geometries with large wedge angles or isotropically etched profiles, this reduction factor may attain values of 10 or greater.
DIRECT NUMERICAL SIMULATION OF TURBULENT HEAT TRANSFER IN A WALL-NORMAL ROTATING CHANNEL FLOW
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Direct Nmerical Simulation (DNS) of turbulent heat transfer in a wall-normal rotating channel flow has been carried out for the rotation number Nτ from 0 to 0.1, the Reynolds number 194 based on the friction velocity of non-rotating case and the half-height of the channel, and the Prandtl number 1. The objective of this study is to reveal the effects of rotation on the characteristics of turbulent flow and heat transfer. Based on the present calculated results, two typical rotation regimes are identified. When 0＜Nτ＜0.06, turbulence and thermal statistics correlated with the spanwise velocity fluctuation are enhanced since the shear rate of spanwise mean flow induced by Coriolis force increases; however, the other statistics are suppressed. When Nτ＞0.06, turbulence and thermal statistics are suppressed significantly because the Coriolis force effect plays as a dominated role in the rotating flow. Remarkable change of the direction of near-wall streak structures based on the velocity and temperature fluctuations is identified.
International Nuclear Information System (INIS)
Three-dimensional, unsteady simulations of developing turbulent flows in a rectangular channel containing a cylindrical rod have been performed to investigate their sensitivity to the choices of inlet boundary conditions and turbulence models. These effects have been examined by comparing the present predictions with experimental results and with previous predictions using the steamwise-periodic boundary condition. Among all methods, large eddy simulations (LES), employed in a downstream sub-domain of the channel as part of the segregated hybrid model, reproduced most accurately the experimental results. However, the unsteady Reynolds-averaged Navier-Stoke (URANS) simulations are still an acceptable choice for rod bundle analysis, making fairly accurate predictions with a much lower computational cost. Unsteady inviscid (Euler) simulations with a developed inlet velocity distribution predicted the onset of gap instability, which proves that this is an inviscid flow mechanism, associated with the azimuthally inflected velocity distribution. Previous URANS simulations with the streamwise-periodic boundary condition overpredicted the vortex street Strouhal number in rod-bundle flows, whereas the present URANS predictions for a developing flow with uniform inlet velocity were fairly close to the measurements. (author)
Directory of Open Access Journals (Sweden)
Hassan SafiAHMED
2010-03-01
Full Text Available This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s. A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water depth by about 75%, 125%, and 175% of its original value in cases of one-side floodplain groyne(s with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width.
Peristaltic Flow of Phan-Thien-Tanner Fluid in an Asymmetric Channel with Porous Medium
Directory of Open Access Journals (Sweden)
Kuppalapalle Vajravelu
2016-01-01
Full Text Available This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a wave frame of reference moving with the velocity of the waveby using the long wavelength and low Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation method by choosing as the perturbation parameter. The expressions for velocity, stream function and pressure gradient are obtained. The features of the flow characteristics are analyzed through graphs and the obtained results are discussed in detail. It is noticed that the peristaltic pumping gets reduced due to an increase in the phase difference of the traveling waves. It is also observed that the size of the trapping bolus is a decreasing function of the permeability parameter and the Weissenberg number. Furthermore, the results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the Peristaltic flow phenomena.
International Nuclear Information System (INIS)
Highlights: ► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. - Abstract: The performance of high temperature proton exchange membrane fuel cell (HT-PEMFC) is significantly affected by the carbon monoxide (CO) in hydrogen fuel, and the flow channel design may influence the CO poisoning characteristics by changing the reactant flow. In this study, three-dimensional non-isothermal simulations are carried out to investigate the comprehensive flow channel design and CO poisoning effects on the performance of HT-PEMFCs. The numerical results show that when pure hydrogen is supplied, the interdigitated design produces the highest power output, the power output with serpentine design is higher than the two parallel designs, and the parallel-Z and parallel-U designs have similar power outputs. The performance degradation caused by CO poisoning is the least significant with parallel flow channel design, but the most significant with serpentine and interdigitated designs because the cross flow through the electrode is stronger. At low cell voltages (high current densities), the highest power outputs are with interdigitated and parallel flow channel designs at low and high CO fractions in the supplied hydrogen, respectively. The general distributions of absorbed hydrogen and CO coverage fractions in anode catalyst layer (CL) are similar for the different flow channel designs. The hydrogen coverage fraction is higher under the channel than under the land, and is also higher on the gas diffusion layer (GDL) side than on the membrane side; and the CO coverage distribution is opposite to the hydrogen coverage distribution
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An experiment concerning the sound propaga-tion in aerated open channel flow was designed and conductedin a variable slope chute. The acquisition of sound data wasdone by the hydro-phones installed into the bottom wall of thechute. The data were analyzed and processed by the tape re-corder and a 3562A analyzer. The primary experimetal resultsindicated that the sound speed in aerated flow is varied with the air concentration and highly lower than each of the soundspeed in pure water or air. As released by the derived theoryformula, the minimum sound of 24m/s in aerated flow hap-pened when the air concentration achieved to 50%. This resultshows that the compressibility of high speed aerated flowshould be considered when the air concentration is near to50%. A criterion of compressibility of high speed aerated flowwas also giv. En in this paper.
DNS of turbulent channel flow driven by temporally periodic pressure gradient
Sakaki, Takahiko; Kawamura, Hiroshi
2001-11-01
Various direct numerical simulations ( DNS ) of turbulence are performed hitherto. In most of those DNS's, the mean flow is assumed to be steady. This is because the DNS of the turbulence with an unsteady mean flow requires more computational effort to obtain a stable statistical average. In the present study, DNS of turbulent channel flow driven by temporally-changing pressure gradient is performed. The pressure gradient is so determined that the bulk mean velocity averaged over one cycle is approximately equal to the one with a steady state Reynolds number of Re_τs=180 . Four cases with different pressure gradient histories are calculated. The each period is divided into twenty phases and statistical average is obtained for various turbulence statistics. A large number of turbulence statistics are compared with steady ones. The coherent structures is discussed in detail.
Scrutiny of mixed convection flow of a nanofluid in a vertical channel
Directory of Open Access Journals (Sweden)
M. Fakour
2014-11-01
Full Text Available The laminar fully developed nanofluid flow and heat transfer in a vertical channel are investigated. By means of a new set of similarity variables, the governing equations are reduced to a set of three coupled equations with an unknown constant, which are solved along with the corresponding boundary conditions and the mass flux conservation relation by the homotopy perturbation method (HPM. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The effects of the Grashof number (Gr, Prandtl number (Pr and Reynolds number (Re on the nanofluid flows are then investigated successively. The effects of the Brownian motion parameter (Nb, the thermophoresis parameter (Nt, and the Lewis number (Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.
Interplay between inertial and non-Newtonian effects on the flow in weakly modulated channel
Energy Technology Data Exchange (ETDEWEB)
Abu-Ramadan, E.; Khayat, R.E. [Univ. of Western Ontario, Dept. of Mechanical and Materials Engineering, London, Ontario (Canada)]. E-mail: eaburama@engga.uwo.ca; rkhayat@eng.uwo.ca
2002-07-01
The flow inside a spatially modulated channel is examined for shear-thinning and shear-thickening fluids. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable-step finite-difference scheme, to solve the problem. Since this method is intended to provide a fast and accurate alternative to conventional methods in the limit of small modulation amplitude, establishing the accuracy of the solution is critical. Numerical accuracy and convergence will be assessed, therefore. The influence of the wall geometry, inertia and non-Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation. (author)
Entropy generation during fluid flow in a channel under the effect of transverse magnetic field
Energy Technology Data Exchange (ETDEWEB)
Damseh, R.A.; Al-Odat, M.Q. [Al-Huson University College, Al-Balqa Applied University, Mechanical Engineering Department, P.O.B (50), Irbid (Jordan); Al-Nimr, M.A. [Jordan University of Science and Technology, Mechanical Engineering Department, Irbid (Jordan)
2008-06-15
Entropy generation due to fluid flow and heat transfer inside a horizontal channel made of two parallel plates under the effect of transverse magnetic field is numerically investigated. The flow is assumed to be steady, laminar, hydro-dynamically and thermally fully developed of electrically conducting fluid. Both horizontal walls are maintained at constant temperatures higher than that of the fluid. The governing equations in Cartesian coordinate are solved by an implicit finite difference technique. After the flow field and the temperature distributions are obtained, the entropy generation profiles are computed and presented graphically. The factors, which were found to affect the problem under consideration are the magnetic parameter, Eckert number, Prandtl number, and the temperature parameter ({theta}{sub {infinity}}). It was found that, entropy generation increased as all parameters involved in the present problem increased. (orig.)