WorldWideScience

Sample records for channel flow deposits

  1. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    Science.gov (United States)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic

  2. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.

    Science.gov (United States)

    Logtenberg, Hella; Lopez-Martinez, Maria J; Feringa, Ben L; Browne, Wesley R; Verpoorte, Elisabeth

    2011-06-21

    An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by laminar flow patterning. Introduction of air pockets during modification allows for control over the length of the channel section that is modified. This approach makes it possible to achieve slug flow and side-by-side flow of water : 1-octanol simultaneously within the same PDMS channel, without the need of additional structural elements. A key finding is that conditioning of the PDMS channels with 1-octanol before polymer deposition is crucial to achieving stable side-by-side flows.

  3. Deciphering Depositional Signals in the Bed-Scale Stratigraphic Record of Submarine Channels

    Science.gov (United States)

    Sylvester, Z.; Covault, J. A.

    2017-12-01

    Submarine channels are important conduits of sediment transfer from rivers and shallow-marine settings into the deep sea. As such, the stratigraphic record of submarine-channel systems can store signals of past climate- and other environmental changes in their upstream sediment-source areas. This record is highly fragmented as channels are primarily locations of sediment bypass; channelized turbidity currents are likely to leave a more complete record in areas away from and above the thalweg. However, the link between the thick-bedded axial channel deposits that record a small number of flows and the much larger number of thin-bedded turbidites forming terrace- and levee deposits is poorly understood. We have developed a relatively simple two-dimensional model that, given a number of input flow parameters (mean velocity, grain size, duration of deposition, flow thickness), predicts the thickness and composition of the turbidite that is left behind in the channel and in the overbank areas. The model is based on a Rouse-type suspended sediment concentration profile and the Garcia-Parker entrainment function. In the vertical direction, turbidites tend to rapidly become thinner and finer-grained with height above thalweg, due to decreasing concentration. High near-thalweg concentrations result in thick axial beds. However, an increase in flow velocity can result in high entrainment and no deposition at the bottom of the channel, yet a thin layer of sand and mud is still deposited higher up on the channel bank. If channel thalwegs are largely in a bypass condition, relatively minor velocity fluctuations result in a few occasionally preserved thick beds in the axis, and numerous thin turbidites - and a more complete record - on the channel banks. We use near-seafloor data from the Niger Delta slope and an optimization algorithm to show how our model can be used to invert for likely flow parameters and match the bed thickness and grain size of 100 turbidites observed in a

  4. Numerical simulation of sediment movement and deposition in a meandering channel

    International Nuclear Information System (INIS)

    Ghani, U.

    2011-01-01

    In this research work, predictions have been made for the transport and deposition of incoming sediments in an open channel. Attempt has been made to understand the behavior of sediments flowing in the channel. The geometry consisted of a meandering compound channel with a constant inflow of sediments. For this purpose, 3D version of CFD (Computational Fluid Dynamics) code FLUENT has been used as a research tool. The turbulence closure of Reynolds Averaged Navior-Stokes equation was performed with standard -turbulence model. The Lagrangian particle tracking technique available in the code has been used for modeling sediment movement and deposition. For this purpose, nine different ranges of the particle diameters were released at the inlet of the channel. Initially, the model was validated using point velocities in the downstream direction and discharge values at five cross sections along the meander wavelength. The channel used for simulation purposes had a rectangular section. Once the model validated, it was then used for simulation of sediments. The numerical modeling gave a detailed picture of sediment deposited and transported through the channel. As the model was used with - turbulence model and Lagrangian particle tracking technique and then validated, it showed that when this combination of particle tracking and turbulence closure option will be used, the prediction will be fairly good and trustworthy. A number of numerical experiments were conducted to get the impact of sediment inflow velocity and its diameter on deposition patterns. It showed that boundary shearing stresses and secondary flows had considerable impact on sediment deposition in a river bend. The current study revealed that CFD technique can be used for predicting sediment distribution patterns with reasonable confidence. Such prediction techniques are not only economical but also provide details of complex flow and sediment movement behavior which are difficult to get through

  5. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska

    Science.gov (United States)

    Skelly, Raymond L.; Bristow, Charlie S.; Ethridge, Frank G.

    2003-05-01

    Architecture of recent channel-belt deposits of the Niobrara River, northeast Nebraska, USA, records the response of a sandy braided river to rapid base-level rise. Up to 3 m of aggradation has occurred within the lower 14 km of the Niobrara River since the mid-1950s as a result of base-level rise at the confluence of the Niobrara and Missouri Rivers. Aerial photographs and channel surveys indicate that the lower Niobrara has evolved from a relatively deep, stable channel with large, bank-attached braid bars to a relatively shallow, aggrading channel with braid bars and smaller secondary channels. Architecture of channel-belt deposits associated with the recent aggradation has been defined using ground-penetrating radar (GPR) and vibracores. The channel-belt deposits exhibit a series of amalgamated channel fills and braid bar complexes (i.e., macroforms). Radar facies identified in the GPR data represent architectural elements of the braid bar complexes, large and small bedforms [two-dimensional (2-D) and three-dimensional (3-D) dunes], and channels. Individual braid bars appear to consist of basal high-flow and upper low-flow components. Preservation of the complete, high-flow bar geometry is generally incomplete due to frequent migration of smaller scale, secondary channels within the channel belt (i.e., braided channel network) at low discharges. The large-scale stratification of the braid bar deposits is dominated by cross-channel and upstream accretion. Elements of downstream accretion are also recognized. These accretion geometries have not been documented previously in similar sandy braided rivers. Braid bar deposits with low-flow modification (e.g., incision by secondary channels) are recognized in the deeper portions of the deposits imaged by GPR. Preservation of braid bars, with both high- and low-flow components, is a result of the rapid base-level rise and channel-bed aggradation experienced by the Niobrara River over the past 45 years. Recent avulsion

  6. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    Science.gov (United States)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

  7. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  8. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars

    Science.gov (United States)

    Goudge, Timothy A.; Mohrig, David; Cardenas, Benjamin T.; Hughes, Cory M.; Fassett, Caleb I.

    2018-02-01

    The Jezero crater open-basin lake contains two well-exposed fluvial sedimentary deposits formed early in martian history. Here, we examine the geometry and architecture of the Jezero western delta fluvial stratigraphy using high-resolution orbital images and digital elevation models (DEMs). The goal of this analysis is to reconstruct the evolution of the delta and associated shoreline position. The delta outcrop contains three distinct classes of fluvial stratigraphy that we interpret, from oldest to youngest, as: (1) point bar strata deposited by repeated flood events in meandering channels; (2) inverted channel-filling deposits formed by avulsive distributary channels; and (3) a valley that incises the deposit. We use DEMs to quantify the geometry of the channel deposits and estimate flow depths of ∼7 m for the meandering channels and ∼2 m for the avulsive distributary channels. Using these estimates, we employ a novel approach for assessing paleohydrology of the formative channels in relative terms. This analysis indicates that the shift from meandering to avulsive distributary channels was associated with an approximately four-fold decrease in the water to sediment discharge ratio. We use observations of the fluvial stratigraphy and channel paleohydrology to propose a model for the evolution of the Jezero western delta. The delta stratigraphy records lake level rise and shoreline transgression associated with approximately continuous filling of the basin, followed by outlet breaching, and eventual erosion of the delta. Our results imply a martian surface environment during the period of delta formation that supplied sufficient surface runoff to fill the Jezero basin without major drops in lake level, but also with discrete flooding events at non-orbital (e.g., annual to decadal) timescales.

  9. Transport of sediment through a channel network during a post-fire debris flow

    Science.gov (United States)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So

  10. Open channels in fractures maintained by deposition and erosion of colloids

    International Nuclear Information System (INIS)

    Kessler, J.H.; Hunt, J.R.

    1993-01-01

    Material in the colloidal size range is present in many natural groundwater systems at existing or proposed radioactive waste storage locations. Colloids initially suspended in the water in fractures can deposit onto the fracture surfaces, and will partially or fully clog the fracture. The amount of clogging will depend on whether the deposited colloidal material can erode from the fracture surfaces. If the fracture remains only partially clogged the unclogged regions take the form of open channels. The purpose of this paper is to assess under what conditions these open channels form. An analytical model of a steady state, average open channel width is presented which is a function of the fluid flow rate and viscosity, fracture aperture, and the permeability and shear strength of the deposited colloidal material. The implications of the presence of open channels for colloidal transport is also discussed. However, for most repository conditions the fractures are expected to fully clog with colloids

  11. Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities

    Science.gov (United States)

    Juez, C.; Thalmann, M.; Schleiss, A. J.; Franca, M. J.

    2018-05-01

    Lateral cavities are built in the banks of rivers for several purposes: to create harbors, to capture sediment, to keep a central navigable channel (i.e., Casiers de Girardon in the Rhone river) or to promote the formation of aquatic habitats if a limited amount of sediment is captured, providing hydraulic and morphologic diversity (i.e., the case of Japanese Wandos). This work is focused on this latter purpose: promotion of hydraulic and morphologic diversity. In these scenarios, an increase in the flow discharge in the main channel may, however, re-mobilize the deposit of sediment inside these lateral embayments and cause a sudden increase of the sediment concentration and turbidity in the main channel. It is thus of interest to characterize the resistance and resilience of these sedimentary deposits when the main channel is subjected to high flow or flushing events. Laboratory tests were carried out for five different normalized geometries of the cavities installed in the banks of an open channel and for five hydrographs with different levels of unsteadiness. Water depth, sediment deposit mass, sediment concentration and area covered by the settled sediments were recorded throughout each experiment. Although sediment deposits established at equilibrium before the flushing events are different depending on the geometry of the cavities, generally, they are recovered after being flushed by the high flow events. It is shown that the resistance and resilience of the sediment deposits are strongly dependent on the flow field and the mass exchange between the main channel and the cavities. This mass exchange is governed by the geometry of the cavities and the magnitude of the hydrographs applied.

  12. Erosion and deposition on a debris-flow fan

    Science.gov (United States)

    Densmore, A. L.; Schuerch, P.; Rosser, N. J.; McArdell, B. W.

    2011-12-01

    The ability of a debris flow to entrain or deposit sediment controls the downstream evolution of flow volume, and ultimately dictates both the geomorphic impact of the flow and the potential hazard that it represents. Our understanding of the patterns of, and controls on, such flow volume changes remains extremely limited, however, partly due to a poor mechanistic grasp of the interactions between debris flows and their bed and banks. In addition, we lack a good understanding of the cumulative long-term effects of sequences of flows in a single catchment-fan system. Here we begin to address these issues by using repeated terrestrial laser scanning (TLS) to characterize the detailed surface change associated with the passage of multiple debris flows on the Illgraben fan, Switzerland. We calculate surface elevation change along a 300 m study reach, and from this derive the downfan rate of flow volume change, or lag rate; for comparison, we also derive the spatially-averaged lag rate over the entire ~2 km length of the fan. Lag rates are broadly comparable over both length scales, indicating that flow behavior does not vary significantly across the fan for most flows, but importantly we find that flow volume at the fan head is a poor predictor of volume at the fan toe. The sign and magnitude of bed elevation change scale with local flow depth; at flow depths 2 m. On the Illgraben fan, this depth corresponds to a basal shear stress of 3-4 kPa. Because flow depth is in part a function of channel cross-sectional topography, which varies strongly both within and between flows, this result indicates that erosion and deposition are likely to be highly dynamic. The dependence of flow volume change on both the channel topography and the flow history may thus complicate efforts to predict debris-flow inundation areas by simple flow routing. We then apply a 2d numerical model of debris-flow fan evolution to explore the key controls on debris-flow routing and topographic

  13. Cyclic steps and superimposed antidune deposits: important elements of coarse-grained deepwater channel-levée complexes

    Science.gov (United States)

    Lang, Joerg; Brandes, Christian; Winsemann, Jutta

    2017-04-01

    The facies distribution and architecture of submarine fans can be strongly impacted by erosion and deposition by supercritical density flows. We present field examples from the Sandino Forearc Basin (southern Central America), where cyclic-step and antidune deposits represent important sedimentary facies of coarse-grained channel-levée complexes. These bedforms occur in all sub-environments of the depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. Large-scale scours (18 to 29 m deep, 18 to 25 m wide, 60 to >120 m long) with an amalgamated infill, comprising massive, normally coarse-tail graded or spaced subhorizontally stratified conglomerates and pebbly sandstones, are interpreted as deposits of the hydraulic-jump zone of cyclic steps. These cyclic steps probably formed during avulsion, when high-density flows were routed into the evolving channel. The large-scale scour fills can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump deposits. Channel fills include repetitive successions deposited by cyclic steps with superimposed antidunes. The hydraulic-jump zone of cyclic-step deposits comprises regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m wide), which are infilled by intraclast-rich conglomerates or pebbly sandstones and display normal coarse-tail grading or backsets. Laterally and vertically these deposits are associated with subhorizontally stratified, low-angle cross-stratified or sinusoidal stratified pebbly sandstones and sandstones (wavelength 0.5 to 18 m), interpreted as representing antidune deposits formed on the stoss-side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called crudely or spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation

  14. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Science.gov (United States)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  15. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    Science.gov (United States)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  16. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  17. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    Science.gov (United States)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  18. Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres

    Science.gov (United States)

    Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.

    2016-04-01

    Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the

  19. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  20. Advanced porous electrodes with flow channels for vanadium redox flow battery

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  1. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  2. Stratigraphy, sedimentology and inferred flow dynamics from the July 2015 block-and-ash flow deposits at Volcán de Colima, Mexico

    Science.gov (United States)

    Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep

    2018-01-01

    The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the

  3. A nonlinear model of flow in meandering submarine and subaerial channels

    Science.gov (United States)

    Imran, Jasim; Parker, Gary; Pirmez, Carlos

    1999-12-01

    A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.

  4. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    Science.gov (United States)

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  5. Tidal modulated flow and sediment flux through Wax Lake Delta distributary channels: Implications for delta development

    Directory of Open Access Journals (Sweden)

    K. Hanegan

    2015-03-01

    Full Text Available In this study, a Delft3D model of the Wax Lake Delta was developed to simulate flow and sediment flux through delta distributary channels. The model was calibrated for tidal constituents as well as velocity and sediment concentration across channel transects. The calibrated model was then used to simulate full spring–neap tidal cycles under constant low flow upstream boundary conditions, with grain size variation in suspended load represented using two sediment fractions. Flow and sediment flux results through distributary channel cross-sections were examined for spatial and temporal variability with the goal of characterizing the role of tides in sediment reworking and delta development. The Wax Lake Delta has prograded through channel extension, river mouth bar deposition, and channel bifurcation. Here we show that tidal modulation of currents influences suspended sand transport, and spatial acceleration through distributary channels at low tides is sufficient to suspend sand in distal reaches during lower flows. The basinward-increasing transport capacity in distributary channels indicates that erosive channel extension could be an important process, even during non-flood events.

  6. Geomorphological evolution of a fluvial channel after primary lahar deposition: Huiloac Gorge, Popocatépetl volcano (Mexico)

    Science.gov (United States)

    Tanarro, L. M.; Andrés, N.; Zamorano, J. J.; Palacios, D.; Renschler, C. S.

    2010-10-01

    Popocatépetl volcano (19°02' N, 98°62' W, 5424 m) began its most recent period of volcanic activity in December 1994. The interaction of volcanic and glacier activity triggered the formation of lahars through the Huiloac Gorge, located on the northern flank of the volcano, causing significant morphological changes in the channel. The most powerful lahars occurred in April 1995, July 1997 and January 2001, and were followed by secondary lahars that formed during the post-eruptive period. This study interprets the geomorphological evolution of the Huiloac Gorge after the January 2001 lahar. Variations in channel morphology at a 520 m-long research site located mid-way down the gorge were recorded over a 4 year period from February 2002 to March 2005, and depicted in five geomorphological maps (scale 1:200) for 14 February and 15 October 2002, 27 September 2003, 9 February 2004, and 16 March 2006. A GIS was used to calculate the surface area for the landforms identified for each map and detected changes and erosion-deposition processes of the landforms using the overlay function for different dates. Findings reveal that secondary lahars and others types of flows, like sediment-laden or muddy streamflows caused by precipitation, rapidly modified the gorge channel following the January 2001 non-eruptive lahar, a period associated with volcanic inactivity and the disappearance of the glacier once located at the headwall of the gorge. Field observations also confirmed that secondary flows altered the dynamics and geomorphological development of the channel. These flows incised and destroyed the formations generated by the primary lahars (1997 and 2001), causing a widening of the channel that continues today. After February 2004, a rain-triggered lahar and other flows infilled the channel with materials transported by these flows. The deposits on the lateral edges of the channel form terraces. A recent lull in lahar activity contrasts with the increasing instability of

  7. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    Science.gov (United States)

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  8. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  9. Fundamental changes of granular flows dynamics, deposition and erosion processes at high slope angles: insights from laboratory experiments.

    Science.gov (United States)

    Farin, Maxime; Mangeney, Anne; Roche, Olivier

    2014-05-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On steeper slopes, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing slope angle, column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect

  10. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  11. Fundamental change of granular flows dynamics, deposition and erosion processes at sufficiently high slope angles: insights from laboratory experiments

    Science.gov (United States)

    Farin, M.; Mangeney, A.; Roche, O.

    2013-12-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On slopes greater than θc, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect on

  12. Sediment–flow interactions at channel confluences: A flume study

    Directory of Open Access Journals (Sweden)

    Tonghuan Liu

    2015-06-01

    Full Text Available Sediment transport and bed morphology at channel confluences with different confluence angles and discharge ratios are analyzed through a series of flume experiments. Bed topography and sediment transport rate are measured and results are compared among different conditions. Sediment transport is intermittent and pulsating as the tributary flow mixes with the mainstream, and the sediment transport rate goes up with the increase in discharge ratio and confluence angle. With no sediment supplied from upstream of the flume, a central scour hole will form along the shear plane and develop toward the right bank, and the depth of the central scour hole increases as the confluence angle and discharge ratio increase. With heavy upstream sediment supplement, deposition will happen in the separation zone and upstream of the confluence area because of the tributary. And the deposition height is related to the discharge ratio and confluence angle. Results indicate the significant impact of confluence geometry, sediment, and flow factors on fluvial processes.

  13. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...

  14. Evolution of Fine-Grained Channel Margin Deposits behind Large Woody Debris in an Experimental Gravel-Bed Flume

    Science.gov (United States)

    ONeill, B.; Marks, S.; Skalak, K.; Puleo, J. A.; Wilcock, P. R.; Pizzuto, J. E.

    2014-12-01

    Fine grained channel margin (FGCM) deposits of the South River, Virginia sequester a substantial volume of fine-grained sediment behind large woody debris (LWD). FGCM deposits were created in a laboratory setting meant to simulate the South River environment using a recirculating flume (15m long by 0.6m wide) with a fixed gravel bed and adjustable slope (set to 0.0067) to determine how fine sediment is transported and deposited behind LWD. Two model LWD structures were placed 3.7 m apart on opposite sides of the flume. A wire mesh screen with attached wooden dowels simulated LWD with an upstream facing rootwad. Six experiments with three different discharge rates, each with low and high sediment concentrations, were run. Suspended sediment was very fine grained (median grain size of 3 phi) and well sorted (0.45 phi) sand. Upstream of the wood, water depths averaged about 0.08m, velocities averaged about 0.3 m/s, and Froude numbers averaged around 0.3. Downstream of the first LWD structure, velocities were reduced tenfold. Small amounts of sediment passed through the rootwad and fell out of suspension in the area of reduced flow behind LWD, but most of the sediment was carried around the LWD by the main flow and then behind the LWD by a recirculating eddy current. Upstream migrating dunes formed behind LWD due to recirculating flow, similar to reattachment bars documented in bedrock canyon rivers partially obstructed by debouching debris fans. These upstream migrating dunes began at the reattachment point and merged with deposits formed from sediment transported through the rootwad. Downstream migrating dunes formed along the channel margin behind the LWD, downstream of the reattachment point. FGCM deposits were about 3 m long, with average widths of about 0.8 m. Greater sediment concentration created thicker FGCM deposits, and higher flows eroded the sides of the deposits, reducing their widths.

  15. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.

    Science.gov (United States)

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali

    2017-11-01

    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  16. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  17. Impacts of channel deposition on the risk of flooding in a watershed

    Science.gov (United States)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  18. Stratigraphy and Evolution of Delta Channel Deposits, Jezero Crater, Mars

    Science.gov (United States)

    Goudge, T. A.; Mohrig, D.; Cardenas, B. T.; Hughes, C. M.; Fassett, C. I.

    2017-01-01

    The Jezero impact crater hosted an open-basin lake that was active during the valley network forming era on early Mars. This basin contains a well exposed delta deposit at the mouth of the western inlet valley. The fluvial stratigraphy of this deposit provides a record of the channels that built the delta over time. Here we describe observations of the stratigraphy of the channel deposits of the Jezero western delta to help reconstruct its evolution.

  19. Laboratory Modeling of Self-Formed Leveed Channels From Sediment-Laden Flows Entering Still Water

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.

    2004-12-01

    Self-formed leveed channels constructed by deposition of suspended sediment from sediment-laden flows entering still water are common features in nature. Such channels drive delta progradation, develop at tidal inlets and occur where mainstem river flows empty into oxbows and blocked valley lakes. Presently there is no theory for the formation of such channels. This lack of theory is partly due to a lack of field or laboratory studies that provide insight about the mechanism controlling these self-formed, propagating channels. The creation of such features in the laboratory, have proved illusive to date. Our ongoing experiments aimed at modeling the formation of floodplain tie channels provide insight into the necessary conditions for levee formation and channel growth. Under conditions of steady water discharge, constant sediment feed rate, unimodal sediment distribution and invariant basin stage we are able to create subaqueous lateral bars (submerged levees) along the margins of a sediment laden jet. Our results highlight the sensitivity of channel formation to issues of scaling and experimental design. In the laboratory, levee formation has only been possible with the use of plastic particles (specific gravity ~1.5); complete bed alluviation and dune formation results from the use of particles with specific gravities of ~ 2.65 across a range grain diameters and shapes. We hypothesize this effect is related to high entrainment thresholds relative to suspension thresholds of small (< 100 mm) natural particles under conditions of reduced turbulence in laboratory scaled flows. Additionally, both the width to depth ratio and the form of the outlet channel introducing the sediment laden flow into the experimental basin exert a strong control on sedimentation pattern and levee growth. Continuing experiments are focused on generating emergent channel levees and a basin ward propagation of the channel by adjusting the form of the feed channel, varying basin stage, and

  20. HYTRAN: hydraulic transient code for investigating channel flow stability

    International Nuclear Information System (INIS)

    Kao, H.S.; Cardwell, W.R.; Morgan, C.D.

    1976-01-01

    HYTRAN is an analytical program used to investigate the possibility of hydraulic oscillations occurring in a reactor flow channel. The single channel studied is ordinarily the hot channel in the reactor core, which is parallel to other channels and is assumed to share a constant pressure drop with other channels. Since the channel of highest thermal state is studied, provision is made for two-phase flow that can cause a flow instability in the channel. HYTRAN uses the CHATA(1) program to establish a steady-state condition. A heat flux perturbation is then imposed on the channel, and the flow transient is calculated as a function of time

  1. Steady turbulent flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1979-01-01

    After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river

  2. Steady flow in shallow channel bends

    OpenAIRE

    De Vriend, H.J.

    1981-01-01

    Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause important deformations of the main velocity distribution. The model is also used to investigate simplified computation methods for shallow channels. The usual 'shallow water approximation' is shown to...

  3. Characteristics of two-phase flows in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

    2016-12-15

    Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.

  4. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  5. Carbonate Channel-Levee Systems Influenced by Mass-Transport Deposition, Browse Basin, Australia

    Science.gov (United States)

    Dunlap, D.; Janson, X.; Sanchez-Phelps, C.; Covault, J. A.

    2017-12-01

    Submarine channels are primary conduits for clastic sediment transport to deep-water basins, thereby controlling the location of marine depocenters and sediment bypass. The evolution and depositional character of submarine channels have broad implications to sediment dispersal, sediment quality, and hydrocarbon exploration potential. Siliciclastic channel systems have been extensively studied in modern environments, seismic and outcrop; however, carbonate channel-levee deposits have only recently been explored. Here we utilize newly released high-resolution (90 Hz) seismic-reflection data from the Australian Browse Basin to document the influence of mass-transport complex (MTC) deposition on the stratigraphic architecture of carbonate channel-levee systems. The 2014 vintage seismic survey is 2500 km2 and hosts numerous large Miocene-age carbonate channel-levee complexes basinward of the shelf edge. Regional horizons and individual channel forms were mapped. Channels range from 200-300 m wide and are bounded by high-relief levee-overbank wedges (>100 ms TWTT). These channels extend across the survey area >70 km. The leveed-channels were sourced from middle and late Miocene slope gullies linked to platform carbonates. Slope-attached and locally derived MTC's are evident throughout the Miocene section likely related to periods of basin inversion and shelf-edge gully incision. We interpret that regionally extensive (>1000 km2) slope-attached MTC's can shut down a channel-levee system and trigger the initiation of a new system, whereas more locally derived (wasting and turbidity currents, which informs depositional models of carbonate slope systems and calls for re-evaluation of the controls on stratigraphic patterns in mixed siliciclastic-carbonate deep-water basins.

  6. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  7. Age, distribution, and significance within a sediment budget, of in-channel depositional surfaces in the Normanby River, Queensland, Australia

    Science.gov (United States)

    Pietsch, T. J.; Brooks, A. P.; Spencer, J.; Olley, J. M.; Borombovits, D.

    2015-06-01

    We present the results of investigations into alluvial deposition in the catchment of the Normanby River, which flows into Princess Charlotte Bay (PCB) in the northern part of the Great Barrier Reef Lagoon. Our focus is on the fine fraction (bank attached bars or inset or inner floodplains, these more or less flat-lying surfaces within the macro-channel have hitherto received little attention in sediment budgeting models. We use high resolution LiDAR based mapping combined with optical dating of exposures cut into these in-channel deposits to compare their aggradation rates with those found in other depositional zones in the catchment, namely the floodplain and coastal plain. In total 59 single grain OSL dates were produced across 21 stratigraphic profiles at 14 sites distributed though the 24 226 km2 catchment. In-channel storage in these inset features is a significant component of the contemporary fine sediment budget (i.e. recent decades/last century), annually equivalent to more than 50% of the volume entering the channel network from hillslopes and subsoil sources. Therefore, at the very least, in-channel storage of fine material needs to be incorporated into sediment budgeting exercises. Furthermore, deposition within the channel has occurred in multiple locations coincident in time with accelerated sediment production following European settlement. Generally, this has occurred on a subset of the features we have examined here, namely linear bench features low in the channel. This suggests that accelerated aggradation on in-channel depositional surfaces has been in part a response to accelerated erosion within the catchment. The entire contribution of ~ 370 kilotonnes per annum of fine sediment estimated to have been produced by alluvial gully erosion over the last ~ 100 years can be accounted for by that stored as in-channel alluvium. These features therefore can play an important role in mitigating the impact on the receiving water of accelerated erosion.

  8. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    Science.gov (United States)

    Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.

  9. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  10. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  11. Helium-air counter flow in rectangular channels

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki

    2004-01-01

    This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)

  12. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    Science.gov (United States)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an

  13. MHD-flow in slotted channels with conducting walls

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.

    1994-07-01

    A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data

  14. MMOSS-I: a CANDU multiple-channel thermosyphoning flow stability model

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Huynh, H [Hydro-Quebec, Montreal, PQ (Canada)

    1996-12-31

    This paper presents a multiple-channel flow stability model, dubbed MMOSS, developed to predict the conditions for the onset of flow oscillations in a CANDU-type multiple-channel heat transport system under thermosyphoning conditions. The model generalizes that developed previously to account for the effects of any channel flow reversal. Two-phase thermosyphoning conditions are predicted by thermalhydraulic codes for some postulated accident scenarios in CANDU. Two-phase thermosyphoning experiments in the multiple-channel RD-14M facility have indicated that pass-to-pass out-of-phase oscillations in the loop conditions caused the flow in some of the heated channels to undergo sustained reversal in direction. This channel flow reversal had significant effects on the channel and loop conditions. It is, therefore, important to understand the nature of the oscillations and be able to predict the conditions for the onset of the oscillations or for stable flow in RD-14M and the reactor. For stable flow conditions, oscillation-induced channel flow reversal is not expected. MMOSS was developed for a figure-of-eight system with any number of channels. The system characteristic equation was derived from a linearization of the conservation equations. In this paper, the MMOSS characteristic equation is solved for a system of N identical channel assemblies. The resulting model is called MMOSS-I. This simplification provides valuable physical insight and reasonably accurate results. MMOSS-I and a previously-developed steady-state model THERMOSYPHON are used to predict thermosyphoning flow stability maps for RD-14M and the Gentilly 2 reactor. (author). 11 refs., 7 figs.

  15. Evaluation of droplet deposition in rod bundle

    International Nuclear Information System (INIS)

    Ji, W.; Gu, C.Y.; Anglart, H.

    1997-01-01

    Deposition model for droplets in gas droplet two-phase flow in rod bundle is developed in this work using the Lagrangian method. The model is evaluated in a 9-rod bundle geometry. The deposition coefficient in the bundle geometry are compared with that in round tube. The influences of the droplet size and gas mass flow rate on deposition coefficient are investigated. Furthermore, the droplet motion is studied in more detail by dividing the bundle channel into sub-channels. The results show that the overall deposition coefficient in the bundle geometry is close to that in the round tube with the diameter equal to the bundle hydraulic diameter. The calculated deposition coefficient is found to be higher for higher gas mass flux and smaller droplets. The study in the sub-channels show that the ratio between the local deposition coefficient for a sub-channel and the averaged value for the whole bundle is close to a constant value, deviations from the mean value for all the calculated cases being within the range of ±13%. (author)

  16. Improving flow distribution in influent channels using computational fluid dynamics.

    Science.gov (United States)

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  17. Steady flow in shallow channel bends

    NARCIS (Netherlands)

    De Vriend, H.J.

    1981-01-01

    Making use of a mathematical model solving the complete NavierStokes equations for steady flow in coiled rectangular pipes, fully-developed laminar flow in shallow curved channels is analysed physically and mathematically. Transverse convection of momentum by the secondary flow is shown to cause

  18. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  19. Method of removing crud deposited on fuel element clusters

    International Nuclear Information System (INIS)

    Yokota, Tokunobu; Yashima, Akira; Tajima, Jun-ichiro.

    1982-01-01

    Purpose: To enable easy elimination of claddings deposited on the surface of fuel element. Method: An operator manipulates a pole from above a platform, engages the longitudinal flange of the cover to the opening at the upper end of a channel box and starts up a suction pump. The suction amount of the pump is set such that water flow becomes within the channel box at greater flow rate than the operational flow rate in the channel box of the fuel element clusters during reactor operation. This enables to remove crud deposited on the surface of individual fuel elements with ease and rapidly without detaching the channel box. (Moriyama, K.)

  20. Effect of aspect ratio on relationship between flow resistance and flow regime of two-phase flow in rectangular channel

    International Nuclear Information System (INIS)

    Yan Chaoxing; Yan Changqi; Sun Licheng; Xing Dianchuan; Wang Yang

    2013-01-01

    On the basis of visual observation, the effects of aspect ratio on relationship between flow resistance and flow regime were investigated experimentally for two-phase flow in three rectangular channels with the same cross-section width of 43 mm and different heights of 1.41, 3 and 10 mm, respectively. According to the criteria in terms of restriction factor C o , the former two channels belong to narrow channel, whereas the last one is conventional channel. The experimental results show that the two-phase pressure drops in rectangular channel with different aspect ratios have different variation trends with the increase of the gas velocity. For the 10 mm channel, the gravitational pressure drop makes the major percentage of total pressure drop at low gas velocity while the frictional pressure drop is dominant for the 1.41 mm and 3 mm channels. With the increase of the gas flow rate, the frictional pressure drop contributes more to total pressure drop. The range of churn flow can be distinguished from its pressure drop characteristic in 10 mm channel. (authors)

  1. Pressure data for various flow channels in proton exchange membrane (PEM) fuel cell

    International Nuclear Information System (INIS)

    Cho, Son Ah; Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-01-01

    Micro flow channels in flow plates of fuel cells have become much narrower and longer to improve reactant flow distribution leading to increase of pumping power. Therefore it is very important to minimize the pressure drops in the flow channel because increased pumping power reduces overall efficiency. We investigated pressure drops in a micro flow channel at the anode and cathode compared to pressure losses for cold flow in straight, bended and serpentine channels. The results show that friction factors for cold flow channels could be used for parallel and bended flow channel designs for fuel cells. Pressure drop in the serpentine flow channel is the lowest among all flow channels due to bypass flow across the gas diffusion layer under reactive flow condition, although its pressure drop is highest for a cold flow condition. So the effect of bypass flow for serpentine flow channels should be considered when designing flow channels

  2. Analysis of flow distribution instability in parallel thin rectangular multi-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)

    2016-08-15

    Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.

  3. Experimental investigation on flow patterns of gas-liquid two-phase upward flow through packed channel with spheres

    International Nuclear Information System (INIS)

    Zhang Nan; Sun Zhongning; Zhao Zhongnan

    2011-01-01

    Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)

  4. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  5. Investigation on flow patterns and transition characteristics in a tube-bundle channel

    International Nuclear Information System (INIS)

    Xiang Wenyuan; Lu Yonghong; Zhao Guisheng

    2012-01-01

    Tube-bundle channels have been widely used in condenser-evaporator and other industrial heat-exchange equipment. The characteristics of two-phase flow patterns and their transitions for refrigerant R-113 through a vertical tube-bundle channel are experimentally investigated using high-speed camera. Experiments show that there are four main flow patterns in the tube-bundle channel, which are bubbly flow, bubbly-churn flow, churn flow and annular flow. And in the same cross-section of tube- bundle channels, it is shown that there might be different flow patterns in different sub-channels. The flow pattern transitions exhibit unsynchronized in different sub-channels. On the basis of experimental research, the flow pattern map is drawn and analyses are made on the comparison of differences between boiling flow patterns in a circular tube and those in a tube-bundle channel. (authors)

  6. Flow around turbulence promoters in parallel channel, (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    1983-01-01

    Effects of walls on shedding vortex in developed channel flow were investigated putting a cylinder at the center of channels or on a wall for the value of w/d from 2 to 4. Results were compared with the uniform flow result. When a cylinder was put at the center of the channels, non-dimensional frequency plotted against Reynolds number agreed with the uniform flow result at low Reynolds number. However, it increased rapidly with Reynolds number, then it lay considerably above the uniform flow results at high Reynolds number. When a cylinder was put on a wall, non-dimensional frequency was considerably lower than the uniform flow result in the cases of w/d = 3 and 4. In the case of w/d = 2, however, frequency was higher than the uniform flow result at high Reynolds number. In all cases in the present study, the transition Reynolds number increased with decrease in the value of w/d. These results indicate that the increase in shedding frequency was due to the shift in velocity distribution from Poiseuille parabora in the wake region, which obviously increased with Reynolds number and with decrease in channel width. (author)

  7. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    Science.gov (United States)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with

  8. Regimes of Two-Phase Flow in Short Rectangular Channel

    Science.gov (United States)

    Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.

    2009-08-01

    Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.

  9. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    Science.gov (United States)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  10. Flow model for open-channel reach or network

    Science.gov (United States)

    Schaffranek, R.W.

    1987-01-01

    Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)

  11. Numerical simulation of secondary flow in bubbly turbulent flow in sub-channel

    International Nuclear Information System (INIS)

    Ikeno, Tsutomu; Kataoka, Isao

    2009-01-01

    Secondary flow in bubbly turbulent flow in sub-channel was simulated by using an algebraic turbulence stress model. The mass, momentum, turbulence energy and bubble diffusion equations were used as fundamental equation. The basis for these equations was the two-fluid model: the equation of liquid phase was picked up from the equation system theoretically derived for the gas-liquid two-fluid turbulent flow. The fundamental equation was transformed onto a generalized coordinate system fitted to the computational domain in sub-channel. It was discretized for the SIMPLE algorism using the finite-volume method. The shape of sub-channel causes a distortion of the computational mesh, and orthogonal nature of the mesh is sometimes broken. An iterative method to satisfy a requirement for the contra-variant velocity was introduced to represent accurate symmetric boundary condition. Two-phase flow at a steady state was simulated for different magnitude of secondary flow and void fraction. The secondary flow enhanced the momentum transport in sub-channel and accelerated the liquid phase in the rod gap. This effect was slightly mitigated when the void fraction increased. The acceleration can contribute to effective cooling in the rod gap. The numerical result implied a phenomenon of industrial interest. This suggested that experimental approach is necessary to validate the numerical model and to identify the phenomenon. (author)

  12. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Science.gov (United States)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  13. Occurrence of inter-eruption debris flow and hyperconcentrated flood-flow deposits on Vesuvio volcano, Italy

    Science.gov (United States)

    Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.

    2001-02-01

    In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.

  14. Remote sensing information acquisition of paleo-channel sandstone-type uranium deposit in Nuheting area

    International Nuclear Information System (INIS)

    Liu Jianjun

    2000-01-01

    The author briefly describes the genesis and ore-formation mechanism of paleo-channel sandstone-type uranium deposit in Nuheting area. Techniques such as remote sensing digital image data processing and data enhancement, as well as 3-dimension quantitative analysis of drill hole data are applied to extract information on metallogenic environment of paleo-channel sandstone-type uranium deposit and the distribution of paleo-channel

  15. Channelling of flow through fractures in rock

    International Nuclear Information System (INIS)

    Bourke, P.J.

    1987-05-01

    A method of mapping the channelling of flow in rock fractures formed by contacts between rock faces and of measuring the effective apertures of channels has been developed. Some typical results are given. (author)

  16. Study of gas-water flow in horizontal rectangular channels

    Science.gov (United States)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.

  17. Discussion on several problems on the mineralization of paleo-channel sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Huang Shijie

    1997-01-01

    On the basis of comprehensively analyzing paleo-channel sandstone type uranium deposits at home and abroad, the author discusses the division of mineralization types of paleo-channel sandstone type uranium deposits, and analyzes the metallogenic geologic conditions such as regional geologic background, climatic and geomorphological conditions, basement and sedimentary cover, characteristics of paleo-valley and paleo-channel, mineralization features as well as epigenetic metallogenic process. Future prospecting direction is also proposed

  18. Submarine flow discharge changes as a way to explain incission-overspilling and other cycles in submarine channel sequences

    Science.gov (United States)

    Milana, J. P.; Kneller, B.; Dykstra, M.

    2009-04-01

    Many studies mainly made in subsurface slopes systems using 3D seismics supported by drill data, suggest that these environments behave cyclically, with the geological time at proximal and intermediate positions in the slope, divided in times in which erosion and elaboration of deep channels prevail and thus bypass of the sediment towards lower areas, and epochs in which accumulation prevails occurring by the development of depositional leveés and eventual widening of the channel system with some over spilling possible. To understand which are the ruling mechanisms of these cycles we study in detail the depositional processes that occur at the Rosario Fm (Baja Ca, Mexico), one of the best exposed canyon and channel-levee systems. We centered this study in the gravel fractions of the system assuming that they would indicate the transport modes of the most energetic flows. After analyzing both the bed structure and facies, and the particular conglomerate fabric at certain types of large-scale bed structures, we concluded that conglomerate deposition was by simple traction mechanisms, quite comparable to what occurs at some highly concentrated and fast fluvial streams. The main difference to fluvial hyperconcentrated tractive flows lies on bedform types and scales, as bed architecture might be at one order of scale larger than fluvial systems. Most of these conglomerates can thus be explained as deposited by known bedload mechanisms, without the need to call for hypothetical mechanisms as traction-carpet freezing, sweep fallout, etc. The bedload dominated flows responsible for gravel transport produced the bed structures due to migration of three main bedforms at different balances of erosion/accumulation. These three bedforms are gravel waves, a subcritical bedform comparable to gravel dunes, capable to produce very large-scale through cross stratification at a linguoid bedform crest type reach and large-scale (2-3 m thick) sets of gravel planar cross

  19. Some properties of a channeling model of fracture flow

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.; Neretnieks, I.

    1986-12-01

    The Gamma distribution and the log-normal distribution were used to describe the density distribution of the apertures within a channel. For every set of parameter values (correlation length, and the parameters of the distributions) 95 different statistically equivalent channels were generated. The aperture distribution along the channels are then used to determine the total channel volume, the hydraulic conductivity and the flow rate and residence time for a given gradient. The volumes of the channels were found to vary little whereas the hydraulic conductivity, which is primarily determined by the smallest aperture along the channels, varies considerably. For a wide density distribution the hydraulic conductivity easily spans several orders of magnitude. The flow rate and the velocity variations are primarily influenced by the conductivity variations and are only to a small extent influenced by the volume variations in the channel. The average specific area of the whole channel exhibits small variations. The hydraulic and transport properties of hypothetical fractures containing several channels are investigated by randomly picking several of the generated channels, coupling them in parallel and subjecting them to the same hydraulic head difference. The flow rate and residence time distribution of the coupled channels is used to investigate the dispersion properties of the fracture. It was found that the dispersion expressed as Peclet numbers was on the order of 1 to 4 for most of the distributions used but could attain very large Peclet numbers for (unrealistically) narrow aperture distributions. Simulations of breakthrough curves for tracers in single fracture flow experiments indicate that when few channels participate and the dispersion in the individual channels is small, the breakthrough curve is expected not to be entirely smooth but to contain distinct plateaus. This property has been noted in several experiments. (orig./HP)

  20. Displaced/re-worked rhodolith deposits infilling parts of a complex Miocene multistorey submarine channel: A case history from the Sassari area (Sardinia, Italy)

    Science.gov (United States)

    Murru, Marco; Bassi, Davide; Simone, Lucia

    2015-08-01

    In the Sassari area (north-western Sardinia, Italy), the Miocene Porto Torres sub-basin sequences represent the complex multistorey mixed carbonate-siliciclastic submarine feature called the Sassari Channel. During the late Burdigalian-early Serravallian, repeated terrigenous supplies from uplifted Paleozoic crystalline substrata fed the Sassari Channel system by means of turbidity and locally hyper-concentrated turbidity flows. Shelfal areas were the source of terrigenous clasts, but open shelf rhodalgal/foramol carbonate areas were very productive and largely also contributed to the channel infilling. Re-worked sands and skeletal debris were discontinuously re-sedimented offshore as pure terrigenous, mixed and/or carbonate deposits. Major sediment supply was introduced between the latest Burdigalian and the start of the middle Langhian, during which a large amount of carbonate, mixed and siliciclastic sediments reached the Porto Torres Basin (Sassari Channel I). Contributions from shallow proximal source areas typify the lower intervals (Unit A) in marginal sectors of the channel. Upward, these evolve into autochthonous rhodolith deposits, winnowed by strong currents in relatively shallow well lit settings within a complex network of narrow tidally-controlled channels (Unit D) locally bearing coral assemblages. Conversely, re-sedimented rhodoliths from the Units B and C accumulated under conditions of higher turbidity. In deeper parts of the channel taxonomically diversified rhodoliths point to the mixing of re-deposited skeletal components from different relatively deep bathmetric settings. In the latest early Langhian, major re-sedimentation episodes, resulting in large prograding bodies (Unit D), triggered by repeated regression pulses in a frame of persistent still stand. During these episodes photophile assemblages dwelled in the elevated margin sectors of the channel. A significant latest early Langhian drop in relative sea-level resulted in impressive mass

  1. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    Science.gov (United States)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  2. Heating limits of boiling downward two-phase flow in parallel channels

    International Nuclear Information System (INIS)

    Fukuda, Kenji; Kondoh, Tetsuya; Hasegawa, Shu; Sakai, Takaaki.

    1989-01-01

    Flow characteristics and heating limits of downward two-phase flow in single or parallel multi-channels are investigated experimentally and analytically. The heating section used is made of glass tube, in which the heater tube is inserted, and the flow regime inside it is observed. In single channel experiments with low flow rate conditions, it is found that, initially, gas phase which flows upward against the downward liquid phase flow condenses and diminishes as it flows up being cooled by inflowing liquid. However, as the heating power is increased, some portion of the gas phase reaches the top and accumulates to form an liquid level, which eventually causes the dryout. On the other hand, for high flow rate condition, the flooding at the bottom of the heated section is the cause of the dryout. In parallel multi-channels experiments, reversed (upward) flow which leads to the dryout is observed in some of these channels for low flow rate conditions, while the situation is the same to the single channel case for high flow rate conditions. Analyses are carried out to predict the onset of dryout in single channel using the drift flux model as well as the Wallis' flooding correlation. Above-mentioned two types of the dryout and their boundary are predicted which agree well with the experimental results. (author)

  3. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-05-15

    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  4. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  5. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  6. Potential effects of elevated base flow and midsummer spike flow experiments on riparian vegetation along the Green River

    Science.gov (United States)

    Friedman, Jonathan M.

    2018-01-01

    The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow

  7. Linear predictions of supercritical flow instability in two parallel channels

    International Nuclear Information System (INIS)

    Shah, M.

    2008-01-01

    A steady state linear code that can predict thermo-hydraulic instability boundaries in a two parallel channel system under supercritical conditions has been developed. Linear and non-linear solutions of the instability boundary in a two parallel channel system are also compared. The effect of gravity on the instability boundary in a two parallel channel system, by changing the orientation of the system flow from horizontal flow to vertical up-flow and vertical down-flow has been analyzed. Vertical up-flow is found to be more unstable than horizontal flow and vertical down flow is found to be the most unstable configuration. The type of instability present in each flow-orientation of a parallel channel system has been checked and the density wave oscillation type is observed in horizontal flow and vertical up-flow, while the static type of instability is observed in a vertical down-flow for the cases studied here. The parameters affecting the instability boundary, such as the heating power, inlet temperature, inlet and outlet K-factors are varied to assess their effects. This study is important for the design of future Generation IV nuclear reactors in which supercritical light water is proposed as the primary coolant. (author)

  8. Computation of gradually varied flow in compound open channel ...

    Indian Academy of Sciences (India)

    The flow of water in an open channel can be treated as steady, gradually varied flow for ... channel between two nodes is treated as a single reach to calculate the loss ... dition at control points and (iii) critical depth is also required to verify the ...

  9. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  10. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard...... field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy...

  11. Automatic detection of buried channel deposits from dense laser altimetry data

    NARCIS (Netherlands)

    Possel, B.M.J.; Lindenbergh, R.C.; Storms, J.E.A.

    2010-01-01

    The formation of the current Rhine-Meuse delta mainly took place during the last 12 000 years. Consecutive avulsions, i.e. sudden changes in the course of river channels, resulted in a complicated pattern of sandy channel deposits, surrounded by peat and clay. Knowledge of this pattern is not only

  12. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  13. Channel Extension in Deep-Water Distributive Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and deltaic environments, avulsion cycles in submarine fans are relatively poorly understood due to the difficulty of observing deep ocean processes, either over short timescales needed to measure the hydrodynamics of active turbidity currents, or over longer timescales needed for the morphodynamic evolution of individual distributary channels and avulsion events. Here we report the results of over 80 experiments in a 5m x 3m x1m deep tank using saline (NaCl) density flows carrying low-density plastic sediment (SG 1.5) flowing down an inclined ramp. These experiments were designed to investigate trends observed in earlier self-organized experimental submarine fans with well-developed avulsion cycles, in which distributive lobes were observed to form on relatively high slopes. In particular, we were interested in investigating the relationship between channel extension length (distance from the inlet to the point where the flow becomes de-channelized, transitioning into a mouth-bar/lobe) and slope. The results of the experiments are clear but counter-intuitive. Channels appear to extend in discrete segments and channel extension length is inversely related to slope over a wide range of slopes (5-17 degrees). In addition, channel extension seems largely independent of inlet flow density (salt concentration) over the experimental range (10-24 g/cc). Measurements of densimetric Froude number (Fr') indicate Fr' increases downstream to near critical conditions at the channel lobe transition. Our preliminary interpretation is that distributary channels become unstable due to

  14. Flow Convergence Caused by a Salinity Minimum in a Tidal Channel

    Directory of Open Access Journals (Sweden)

    John C. Warner

    2006-12-01

    Full Text Available Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1 A simple one-dimensional (1D finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2 A three-dimensional (3D hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3 A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to

  15. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  16. Numerical investigation of flow instability in parallel channels with supercritical water

    International Nuclear Information System (INIS)

    Shitsi, Edward; Debrah, Seth Kofi; Agbodemegbe, Vincent Yao; Ampomah-Amoako, Emmanuel

    2017-01-01

    Highlights: •Supercritical flow instability in parallel channels is investigated. •Flow dynamics and heat transfer characteristics are analyzed. •Mass flow rate, pressure, heating power, and axial power shape have significant effects on flow instability. •Numerical results are validated with experimental results. -- Abstract: SCWR is one of the selected Gen IV reactors purposely for electricity generation in the near future. It is a promising technology with higher efficiency compared to current LWRs but without the challenges of heat transfer and its associated flow instability. Supercritical flow instability is mainly caused by sharp change in the coolant properties around the pseudo-critical point of the working fluid and research into this phenomenon is needed to address concerns of flow instability at supercritical pressures. Flow instability in parallel channels at supercritical pressures is investigated in this paper using a three dimensional (3D) numerical tool (STAR-CCM+). The dynamics characteristics such as amplitude and period of out-of-phase inlet mass flow oscillation at the heated channel inlet, and heat transfer characteristic such as maximum outlet temperature of the heated channel outlet temperature oscillation are discussed. Influences of system parameters such as axial power shape, pressure, mass flow rate, and gravity are discussed based on the obtained mass flow and temperature oscillations. The results show that the system parameters have significant effect on the amplitude of the mass flow oscillation and maximum temperature of the heated outlet temperature oscillation but have little effect on the period of the mass flow oscillation. The amplitude of mass flow oscillation and maximum temperature of the heated channel outlet temperature oscillation increase with heating power. The numerical results when compared to experiment data show that the 3D numerical tool (STAR-CCM+) could capture dynamics and heat transfer characteristics of

  17. Dynamical eigenfunction decomposition of turbulent channel flow

    Science.gov (United States)

    Ball, K. S.; Sirovich, L.; Keefe, L. R.

    1991-01-01

    The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Loeve (K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the Navier-Stokes equations at a Reynolds number Re(tau) = 80 (based on the wall shear velocity and channel half-width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field onto these eigenfunctions. The resulting expansion captures 90 percent of the turbulent energy with significantly fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the original basis functions.

  18. Slumping and a sandbar deposit at the Cretaceous-Tertiary boundary in the El Tecolote section (northeastern Mexico): An impact-induced sediment gravity flow

    Science.gov (United States)

    Soria, Ana R.; Liesa, Carlos L.; Mata, Maria Pilar; Arz, José A.; Alegret, Laia; Arenillas, Ignacio; Meléndez, Alfonso

    2001-03-01

    Slumps affecting uppermost Méndez Formation marls, as well as the spherulitic layer and basal part of the sandy deposits of the Cretaceous-Tertiary (K-T) boundary clastic unit, are described at the new K-T El Tecolote section (northeastern Mexico). These K-T clastic deposits represent sedimentation at middle-bathyal water depths in channel and nonchannel or levee areas of reworked materials coming from environments ranging from outer shelf to shallower slope via a unidirectional, high- to low-density turbidite flow. We emphasize the development and accretion of a lateral bar in a channel area from a surging low-density turbidity current and under a high-flow regime. The slumps discovered on land and the sedimentary processes of the K-T clastic unit reflect destabilization and collapse of the continental margin, support the mechanism of gravity flows in the deep sea, and represent important and extensive evidence for the impact effects in the Gulf of México triggered by the Chicxulub event.

  19. Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows

    Science.gov (United States)

    Im, Hyung Jae; Lee, Jae Hwa

    2017-09-01

    It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.

  20. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  1. Couple stress fluid flow in a rotating channel with peristalsis

    Science.gov (United States)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  2. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    Science.gov (United States)

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  4. Natural convection heat transfer between vertical channel with flow resistance at the lower end

    International Nuclear Information System (INIS)

    Iwamoto, S.; Nishimura, S.; Ishihara, I.

    2003-01-01

    For natural convection in the geometrically complicated channel, the convection flow is suppressed by flow resistance due to such channel itself and the lopsided flow may take place. This could result in serious influences on the heat transfer in the channel. In order to investigate fundamentally the natural convection flow and heat transfer in such the channel, the vertical channel in which wall was heated with uniform heat flux and the flow resistance was given by small clearance between the lower end of channel and a wide horizontal floor. Flow pattern was observed by illuminating smoke filled in the channel and heat transfer rate was measured. (author)

  5. Technical note: Development of a Linear Flow Channel Reactor for ...

    African Journals Online (AJOL)

    Technical note: Development of a Linear Flow Channel Reactor for sulphur removal ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... 000 mg∙ℓ-1 Na2SO4 solution) and the Liner Flow Channel Reactors (surface area ...

  6. Study on parallel-channel asymmetry in supercritical flow instability experiment

    International Nuclear Information System (INIS)

    Xiong Ting; Yu Junchong; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang

    2013-01-01

    Due to the urgent need for experimental study on supercritical water flow instability, the parallel-channel asymmetry which determines the feasibility of such experiments was studied with the experimental and numerical results in parallel dual channel. The evolution of flow rates in the experiments was analyzed, and the steady-state characteristics as well as transient characteristics of the system were obtained by self-developed numerical code. The results show that the asymmetry of the parallel dual channel would reduce the feasibility of experiments. The asymmetry of flow rates is aroused by geometrical asymmetry. Due to the property variation characteristics of supercritical water, the flow rate asymmetry is enlarged while rising beyond the pseudo critical point. The extent of flow rate asymmetry is affected by the bulk temperature and total flow rate; therefore the experimental feasibility can be enhanced by reducing the total flow rate. (authors)

  7. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    International Nuclear Information System (INIS)

    Choi, Gil Sik; Chang, Soon Heung; Jeong, Yong Hoon

    2016-01-01

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  8. Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...

    African Journals Online (AJOL)

    Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...

  9. Depositional patterns of the Mississippi Fan surface: Evidence from GLORIA II and high-resolution seismic profiles

    Science.gov (United States)

    Twichell, David C.; Kenyon, Neil H.; Parson, Lindsay M.; McGregor, Bonnie A.

    1991-01-01

    GLORIA long-range side-scan sonar imagery and 3.5-kHz seismic-reflection profiles depict a series of nine elongate deposits with generally high-backscatter surfaces covering most of the latest fanlobe sequence of the Mississippi Fan in the eastern Gulf of Mexico. The youngest deposit is a “slump” that covers a 250 by 100 km area of the middle and upper fan. The remaining mapped deposits, termed depositional lobes, are long (as much as 200 km) and relatively thin (less than 35 m thick) bodies. Small channels and lineations on the surface of many of these depositional lobes radiate from a single, larger main channel that is the conduit through which sediment has been supplied to these surficial deposits on the fan. The 3.5-kHz profiles show that adjacent depositional lobes overlap one another rather than interfingering, indicating that only one lobe was an active site of deposition at a time. Shifting of the depositional sites appears to be caused by both aggradation and avulsion. The chronology developed from the overlapping relations indicates the oldest of the mapped depositional lobes are on the lowermost fan, and the youngest are further up the fan. Depositional lobes on the lower fan consist of a series of smaller, elongate features with high-backscatter surfaces (540 km in length) located at the ends of previously unrecognized small channels (turbidity currents and/or debris flows, sand flows, or mud flows appear to be the dominant transport process constructing these depositional lobes. Channelized flow is an important mechanism for transporting sediment away from the main channel on this fan and the resulting facies created by these small flows are laterally discontinuous.

  10. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  11. Micro-channel convective boiling heat transfer with flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch

    2009-07-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  12. Experimental study on downward two-phase flow in narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.H.; Jeong, J.H. [Pusan National Univ., Busan (Korea, Republic of)

    2014-07-01

    Adiabatic vertical two-phase flow of air and water through narrow rectangular channels was investigated. This study involved the observation of flow using a high speed camera and flow regimes were determined by image processing program using a MATLAB. The flows regimes in channel with downward flow are similar to those found by previous studies with upward flow. The flow regimes in downward flow at low liquid velocity are different from the previous studies in upward flow. The flow regimes can be classified into bubbly, cap-bubbly, slug and churn flow. (author)

  13. Drag reduction statistics in a channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Bernal, Jose A. [Instituto Politecnico Nacional, LABINTHAP-SEPI-ESIME, Edif. 5, 3er piso Col. Lindavista, Mexico DF 07738 (Mexico); Hassan, Yassin A.; Gutierrez-Torres, Claudia del C. [Nuclear Engineering Department, Texas A and M University, College Station, TX 77843-3123 (United States)

    2005-07-01

    Full text of publication follows: Methods to reduce the drag have been studied for many years because of the promising payoffs that can be attained. In this investigation, the evaluation of statistics such as skewness, flatness, spectra of the stream-wise velocity fluctuations is performed for single phase flow and for two phase flow. Micro-bubbles with an average diameter of 30 {mu}m and a local void fraction of 4.8 % were produced by electrolysis and injected inside the boundary layer. This value of void fraction produced a 38.45 % decrease of the drag. The experiments were conducted in a channel flow at a Reynolds number Re 5128 (considering half height of the channel, the bulk velocity and the kinematics viscosity of the water). The channel was made of acrylic due to the optical properties of this material; its dimensions are 3.85 m long, 0.206 m wide and 0.056 m high. A pressure transducer that ranges from 0 to 35 Pa is located in the test station to measure the pressure drop in single phase flow; this pressure value is used to calculate the shear wall stress. The shear wall stress of two phase flow was measured from the velocity fields obtained from Particle Image Velocimetry (PIV) technique. PIV was utilized to measure instantaneous velocity fields in the stream-wise-normal (x-y) plane. The use of low-local values of void fraction caused a reduction of undesirable speckles effects and an absence of extreme brightness provoked by high bubble saturation. The measurements were carried out in the upper wall of the channel at 3.15 m downstream the inlet's channel. The PIV system is formed by a CCD camera with a resolution of 1008 x 1018 pixels and a double pulse laser with a maximum power 400 mJ and a wavelength of 532 nm (green light). The laser beam was transformed into a sheet of light by an array of cylindrical lenses. Two hundred frames with an area of 1.28 cm{sup 2} were recorded to obtain one hundred velocity fields. The time separation between

  14. Drag reduction statistics in a channel flow

    International Nuclear Information System (INIS)

    Jimenez-Bernal, Jose A.; Hassan, Yassin A.; Gutierrez-Torres, Claudia del C.

    2005-01-01

    Full text of publication follows: Methods to reduce the drag have been studied for many years because of the promising payoffs that can be attained. In this investigation, the evaluation of statistics such as skewness, flatness, spectra of the stream-wise velocity fluctuations is performed for single phase flow and for two phase flow. Micro-bubbles with an average diameter of 30 μm and a local void fraction of 4.8 % were produced by electrolysis and injected inside the boundary layer. This value of void fraction produced a 38.45 % decrease of the drag. The experiments were conducted in a channel flow at a Reynolds number Re 5128 (considering half height of the channel, the bulk velocity and the kinematics viscosity of the water). The channel was made of acrylic due to the optical properties of this material; its dimensions are 3.85 m long, 0.206 m wide and 0.056 m high. A pressure transducer that ranges from 0 to 35 Pa is located in the test station to measure the pressure drop in single phase flow; this pressure value is used to calculate the shear wall stress. The shear wall stress of two phase flow was measured from the velocity fields obtained from Particle Image Velocimetry (PIV) technique. PIV was utilized to measure instantaneous velocity fields in the stream-wise-normal (x-y) plane. The use of low-local values of void fraction caused a reduction of undesirable speckles effects and an absence of extreme brightness provoked by high bubble saturation. The measurements were carried out in the upper wall of the channel at 3.15 m downstream the inlet's channel. The PIV system is formed by a CCD camera with a resolution of 1008 x 1018 pixels and a double pulse laser with a maximum power 400 mJ and a wavelength of 532 nm (green light). The laser beam was transformed into a sheet of light by an array of cylindrical lenses. Two hundred frames with an area of 1.28 cm 2 were recorded to obtain one hundred velocity fields. The time separation between consecutive pulses

  15. The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel

    Directory of Open Access Journals (Sweden)

    F. Rooniyan

    2014-02-01

    Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .

  16. Effects of grid spacer with mixing vane on entrainments and depositions in two-phase annular flows

    Directory of Open Access Journals (Sweden)

    Akimaro Kawahara

    2015-06-01

    Full Text Available The effects of mixing vanes (MVs attached to a grid spacer on the characteristics of air–water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV, the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.

  17. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  18. Complete Flow Blockage of a Fuel Channel for Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Park, Suki

    2015-01-01

    The CHF correlation suitable for narrow rectangular channels are implemented in RELAP5/MOD3.3 code for the analyses, and the behavior of fuel temperatures and MCHFR(minimum critical heat flux ratio) are compared between the original and modified codes. The complete flow blockage of fuel channel for research reactor is analyzed using original and modified RELAP5/MOD3.3 and the results are compared each other. The Sudo-Kaminaga CHF correlation is implemented into RELAP5/MOD3.3 for analyzing the behavior of fuel adjacent to the blocked channel. A flow blockage of fuel channels can be postulated by a foreign object blocking cooling channels of fuels. Since a research reactor with plate type fuel has isolated fuel channels, a complete flow blockage of one fuel channel can cause a failure of adjacent fuel plates by the loss of cooling capability. Although research reactor systems are designed to prevent foreign materials from entering into the core, partial flow blockage accidents and following fuel failures are reported in some old research reactors. In this report, an analysis of complete flow blockage accident is presented for a 15MW pool-type research reactor with plate type fuels. The fuel surface experience different heat transfer regime in the results from original and modified RELAP5/MOD3.3. By the discrepancy in heat transfer mode of two cases, a fuel melting is expected by the modified RELAP5/MOD3.3, whereas the fuel integrity is ensured by the original code

  19. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    Science.gov (United States)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  20. Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA

    Science.gov (United States)

    Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.

    2010-12-01

    The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run

  1. Measurements of local two-phase flow parameters in a boiling flow channel

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Park, Goon-CherI; Chung, Moon Ki; Song, Chul Hwa

    1998-01-01

    Local two-phase flow parameters were measured lo investigate the internal flow structures of steam-water boiling flow in an annulus channel. Two kinds of measuring methods for local two-phase flow parameters were investigated. These are a two-conductivity probe for local vapor parameters and a Pitot cube for local liquid parameters. Using these probes, the local distribution of phasic velocities, interfacial area concentration (IAC) and void fraction is measured. In this study, the maximum local void fraction in subcooled boiling condition is observed around the heating rod and the local void fraction is smoothly decreased from the surface of a heating rod to the channel center without any wall void peaking, which was observed in air-water experiments. The distributions of local IAC and bubble frequency coincide with those of local void fraction for a given area-averaged void fraction. (author)

  2. Information problems and deposit constraints at banks

    OpenAIRE

    Jith Jayaratne; Donald Morgan

    1997-01-01

    Following the investment-cash flow literature, we test whether bank lending is constrained by the availability of insured deposits--a necessary condition for the existence of bank lending channel of monetary policy. We treat insured deposits as a type of "internal fund," similar to cash flows. We use a simple model to sort out the possible identification issues in interpreting a lending-deposit correlation, including reverse causality and omitted variable bias. To minimize the latter, we spli...

  3. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  4. Experimental investigations on the deposition and remobilization of aerosol particles in turbulent flows

    International Nuclear Information System (INIS)

    Barth, Thomas

    2014-01-01

    deposition and resuspension of monodisperse single particles in a horizontal turbulent channel flow was studied. The systematic variation of the experimental boundary conditions allows for the quantification of the influences of particle size, surface roughness, and fluid velocity. In the second and third part of this thesis, the deposition and resuspension of a particle multilayer between periodic steps and in a pebble bed was studied to explore the complex interaction between the turbulent flow and the particles, respectively. The findings of this thesis are a contribution to the source term analysis of HTR related accidental depressurizations. Furthermore, the database can be applied to CFD code developments for the numerical simulation of particle transport processes in turbulent flows.

  5. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    Science.gov (United States)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  6. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead...... to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  7. Extraction of Multithread Channel Networks With a Reduced-Complexity Flow Model

    Science.gov (United States)

    Limaye, Ajay B.

    2017-10-01

    Quantitative measures of channel network geometry inform diverse applications in hydrology, sediment transport, ecology, hazard assessment, and stratigraphic prediction. These uses require a clear, objectively defined channel network. Automated techniques for extracting channels from topography are well developed for convergent channel networks and identify flow paths based on land-surface gradients. These techniques—even when they allow multiple flow paths—do not consistently capture channel networks with frequent bifurcations (e.g., in rivers, deltas, and alluvial fans). This paper uses multithread rivers as a template to develop a new approach for channel extraction suitable for channel networks with divergences. Multithread channels are commonly mapped using observed inundation extent, and I generalize this approach using a depth-resolving, reduced-complexity flow model to map inundation patterns for fixed topography across an arbitrary range of discharge. A case study for the Platte River, Nebraska, reveals that (1) the number of bars exposed above the water surface, bar area, and the number of wetted channel threads (i.e., braiding index) peak at intermediate discharge; (2) the anisotropic scaling of bar dimensions occurs for a range of discharge; and (3) the maximum braiding index occurs at a corresponding reference discharge that provides an objective basis for comparing the planform geometry of multithread rivers. Mapping by flow depth overestimates braiding index by a factor of 2. The new approach extends channel network extraction from topography to the full spectrum of channel patterns, with the potential for comparing diverse channel patterns at scales from laboratory experiments to natural landscapes.

  8. Hydraulics of subaqueous ash flows as deduced from their deposits

    Science.gov (United States)

    Doronzo, Domenico M.; Dellino, Pierfrancesco

    2012-09-01

    Subaqueous ash flows are gravity currents consisting of a mixture of sea water and ash particles. Also called volcaniclastic turbidity currents (VTCs), they can be generated because of remobilization of pyroclastic fall deposits, which are emplaced into the sea around a volcanic island, as well as far away, during an explosive eruption. The VTC upper part is the turbulent transport system for the flow, whereas the viscous basal one is the depositional system. Typical sequences of VTC deposits are characterized by cross-laminations, planar and convolute laminations, and massive beds, which reflect the stratified nature of the flow. Here, the analysis of some VTC hydraulic parameters is presented in order to depict flow behavior and sedimentation during deposition. A reverse engineering approach is proposed, which consists of calculating hydraulic parameters by starting from deposit features. The calculated values show that a VTC is homogeneously-turbulent for most of the thickness, but is viscous at its base. First, cross-laminations are directly acquired over the rough pre-existing seafloor, then planar or convolute laminations aggrade over the newly formed substrate. Finally, fine-grained suspended particles gently settle and cap the flow deposit.

  9. Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-07-01

    In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.

  10. Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4 Channels for Nanoparticle Separations

    Directory of Open Access Journals (Sweden)

    Zengchao You

    2017-03-01

    Full Text Available The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP using Asymmetrical Flow Field-Flow Fractionation (AF4 was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD and limit of quantification (LOQ obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.

  11. A review on the analysis and experiment of fluid flow and mixing in micro-channels

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon

    2007-01-01

    The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail

  12. Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Niu Zhisheng

    2010-01-01

    Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.

  13. On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels

    Directory of Open Access Journals (Sweden)

    Safari Mir-Jafar-Sadegh

    2014-03-01

    Full Text Available The condition of incipient motion and deposition are of the essential issues for the study of sediment transport. This phenomenon is of great importance to hydraulic engineers for designing sewers, drainage, as well as other rigid boundary channels. This is a study carried out with the objectives of describing the effect of cross-sectional shape on incipient motion and deposition of particles in rigid boundary channels. In this research work, the experimental data given by Loveless (1992 and Mohammadi (2005 are used. On the basis of the critical velocity approach, a new incipient motion equation for a V-shaped bottom channel and incipient deposition of sediment particles equations for rigid boundary channels having circular, rectangular, and U-shaped cross sections are obtained. New equations were compared to the other incipient motion equations. The result shows that the cross-sectional shape is an important factor for defining the minimum velocity for no-deposit particles. This study also distinguishes incipient motion of particles from incipient deposition for particles. The results may be useful for designing fixed bed channels with a limited deposition condition.

  14. THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2010-10-01

    Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.

  15. Complete energetic description of hydrokinetic turbine impact on flow channel dynamics

    Science.gov (United States)

    Brasseale, E.; Kawase, M.

    2016-02-01

    Energy budget analysis on tidal channels quantifies and demarcates the impacts of marine renewables on environmental fluid dynamics. Energy budget analysis assumes the change in total kinetic energy within a volume of fluid can be described by the work done by each force acting on the flow. In a numerically simulated channel, the balance between energy change and work done has been validated up to 5% error.The forces doing work on the flow include pressure, turbulent dissipation, and stress from the estuary floor. If hydrokinetic turbines are installed in an estuarine channel to convert tidal energy into usable power, the dynamics of the channel change. Turbines provide additional pressure work against the flow of the channel which will slow the current and lessen turbulent dissipation and bottom stress. These losses may negatively impact estuarine circulation, seafloor scour, and stratification.The environmental effects of turbine deployment have been quantified using a three dimensional, Reynolds-averaged, Navier-Stokes model of an idealized flow channel situated between the ocean and a large estuarine basin. The channel is five kilometers wide, twenty kilometers long and fifty meters deep, and resolved to a grid size of 10 meters by 10 meters by 1 meter. Tidal currents are simulated by an initial difference in sea surface height across the channel of 160 centimeters from the channel entrance to the channel exit. This creates a pressure gradient which drives flow through the channel. Tidal power turbines are represented as disks that force the channel in proportion to the strength of the current. Three tidal turbines twenty meters in diameters have been included in the model to simulate the impacts of a pilot scale test deployment.This study is the first to appreciate the energetic impact of marine renewables in a three dimensional model through the energy equation's constituent terms. This study provides groundwork for understanding and predicting the

  16. Study of flow instabilities in double-channel natural circulation boiling systems

    International Nuclear Information System (INIS)

    Durga Prasad, Gonella V.; Pandey, Manmohan; Pradhan, Santosh K.; Gupta, Satish K.

    2008-01-01

    Natural circulation boiling systems consisting of parallel channels can undergo different types of oscillations (in-phase or out-of-phase) depending on the geometric parameters and operating conditions. Disturbances in one channel affect the flow in other channels, which triggers thermal-hydraulic oscillations. In the present work, the modes of oscillation under different operating conditions and channel-to-channel interaction during power fluctuations and on-power refueling in a double-channel natural circulation boiling system are investigated. The system is modeled using a lumped parameter mathematical model and RELAP5/MOD3.4. Parametric studies are carried out for an equal-power double-channel system, at different operating conditions, with both the models, and the results are compared. Instabilities, non-linear oscillations, and effects of recirculation loop dynamics and geometric parameters on the mode of oscillations, are studied using the lumped model. The two channels oscillate out-of-phase in Type-I region, but in Type-II region, both the modes of oscillation are observed under different conditions. Channel-to-channel interaction and on-power refueling studies are carried out using the RELAP model. At high powers, disturbances in one channel significantly affect the stability of the other channel. During on-power refueling, a near-stagnation condition or low-velocity reverse flow can occur, the possibility of reverse flow being higher at lower pressures

  17. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    Science.gov (United States)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed

  18. Mass transfer in horizontal flow channels with thermal gradients

    International Nuclear Information System (INIS)

    Bendrich, G.; Shemilt, L.W.

    1997-01-01

    Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)

  19. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  20. Multi-scale viscosity model of turbulence for fully-developed channel flows

    International Nuclear Information System (INIS)

    Kriventsev, V.; Yamaguchi, A.; Ninokata, H.

    2001-01-01

    The full text follows. Multi-Scale Viscosity (MSV) model is proposed for estimation of the Reynolds stresses in turbulent fully-developed flow in a straight channel of an arbitrary shape. We assume that flow in an ''ideal'' channel is always stable, i.e. laminar, but turbulence is developing process of external perturbations cased by wall roughness and other factors. We also assume that real flows are always affected by perturbations of every scale lower than the size of the channel. And the turbulence is generated in form of internal, or ''turbulent'' viscosity increase to preserve stability of ''disturbed'' flow. The main idea of MSV can be expressed in the following phenomenological rule: A local deformation of axial velocity can generate the turbulence with the intensity that keeps the value of local turbulent Reynolds number below some critical value. Here, the local turbulent Reynolds number is defined as a product of value of axial velocity deformation for a given scale and generic length of this scale divided by accumulated value of laminar and turbulent viscosity of lower scales. In MSV, the only empirical parameter is the critical Reynolds number that is estimated to be around 100. It corresponds for the largest scale which is hydraulic diameter of the channel and, therefore represents the regular Reynolds number. Thus, the value Re=100 corresponds to conditions when turbulent flow can appear in case of ''significant'' (comparable with size of channel) velocity disturbance in boundary and/or initial conditions for velocity. Of course, most of real flows in channels with relatively smooth walls remain laminar for this small Reynolds number because of absence of such ''significant'' perturbations. MSV model has been applied to the fully-developed turbulent flows in straight channels such as a circular tube and annular channel. Friction factor and velocity profiles predicted with MSV are in a very good agreement with numerous experimental data. Position of

  1. A numerical study of the complex flow structure in a compound meandering channel

    Science.gov (United States)

    Moncho-Esteve, Ignacio J.; García-Villalba, Manuel; Muto, Yasu; Shiono, Koji; Palau-Salvador, Guillermo

    2018-06-01

    In this study, we report large eddy simulations of turbulent flow in a periodic compound meandering channel for three different depth conditions: one in-bank and two overbank conditions. The flow configuration corresponds to the experiments of Shiono and Muto (1998). The predicted mean streamwise velocities, mean secondary motions, velocity fluctuations, turbulent kinetic energy as well as mean flood flow angle to meandering channel are in good agreement with the experimental measurements. We have analyzed the flow structure as a function of the inundation level, with particular emphasis on the development of the secondary motions due to the interaction between the main channel and the floodplain flow. Bed shear stresses have been also estimated in the simulations. Floodplain flow has a significant impact on the flow structure leading to significantly different bed shear stress patterns within the main meandering channel. The implications of these results for natural compound meandering channels are also discussed.

  2. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  3. Modeling on bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2011-01-01

    A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)

  4. Debris-flow activity in abandoned channels of the Manival torrent reconstructed with LiDAR and tree-ring data

    Directory of Open Access Journals (Sweden)

    J. Lopez Saez

    2011-05-01

    Full Text Available Hydrogeomorphic processes are a major threat in many parts of the Alps, where they periodically damage infrastructure, disrupt transportation corridors or even cause loss of life. Nonetheless, past torrential activity and the analysis of areas affected during particular events remain often imprecise. It was therefore the purpose of this study to reconstruct spatio-temporal patterns of past debris-flow activity in abandoned channels on the forested cone of the Manival torrent (Massif de la Chartreuse, French Prealps. A Light Detecting and Ranging (LiDAR generated Digital Elevation Model (DEM was used to identify five abandoned channels and related depositional forms (lobes, lateral levees in the proximal alluvial fan of the torrent. A total of 156 Scots pine trees (Pinus sylvestris L. with clear signs of debris flow events was analyzed and growth disturbances (GD assessed, such as callus tissue, the onset of compression wood or abrupt growth suppression. In total, 375 GD were identified in the tree-ring samples, pointing to 13 debris-flow events for the period 1931–2008. While debris flows appear to be very common at Manival, they have only rarely propagated outside the main channel over the past 80 years. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of four patterns of debris-flow routing and led to the determination of three preferential breakout locations. Finally, the results of this study demonstrate that the temporal distribution of debris flows did not exhibit significant variations since the beginning of the 20th century.

  5. Occurrence and prevention of enhanced oxide deposition in boiler flow control orifices

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Thomas, D.M.; Garbett, K.; Bignold, G.J.

    1989-10-01

    Once-through boilers, such as those of the AGRs, incorporate flow control orifices at the boiler inlet to ensure a satisfactory flow distribution and stability in the parallel flow paths of the boiler. Deposition of corrosion products in the flow control orifice leads to changes in the orifice pressure loss characteristics, which could lead to problems of flow maldistribution within the boiler, and any adverse consequences resulting from this, such as tube overheating. To date, AGR boiler inlet orifices have not suffered significant fouling due to corrosion products in the boiler feedwater. However, oxide deposition in orifices has been observed in other plants, and in experimental loops operating under conditions very similar to those at inlet to AGR boilers. The lack of deposition in AGR flow control orifices is therefore somewhat surprising. This Report describes studies carried out to examine the factors controlling oxide deposition in flow control orifices, the intention of the work being to explain why deposition has not occurred in AGR boilers to date, and to provide means of preventing deposition in the future should this prove necessary. (author)

  6. Turbulent flow through channels in a viscously deforming matrix

    Science.gov (United States)

    Meyer, Colin; Hewitt, Ian; Neufeld, Jerome

    2017-11-01

    Channels of liquid melt form within a surrounding solid matrix in a variety of natural settings, for example, lava tubes and water flow through glaciers. Channels of water on the underside of glaciers, known as Rothlisberger (R-) channels, are essential components of subglacial hydrologic systems and can control the rate of glacier sliding. Water flow through these channels is turbulent, and dissipation melts open the channel while viscous creep of the surrounding closes the channel leading to the possibility of a steady state. Here we present an analogous laboratory experiment for R-channels. We pump warm water from the bottom into a tank of corn syrup and a channel forms. The pressure is lower in the water than in the corn syrup, therefore the syrup creeps inward. At the same time, the water ablates the corn syrup through dissolution and shear erosion, which we measure by determining the change in height of the syrup column over the course of the experiment. We find that the creep closure is much stronger than turbulent ablation which leads to traveling solitary waves along the water-syrup interface. These waves or `magmons' have been previously observed in experiments and theory for laminar magma melt conduits. We compliment our experiments with numerical simulations. David Crighton Fellowship.

  7. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.; van Steen, M.S.H.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, C.

    2014-01-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic

  8. Flow through a very porous obstacle in a shallow channel.

    Science.gov (United States)

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  9. Simplified numerical model for predicting onset of flow instability in parallel heated channels

    International Nuclear Information System (INIS)

    Noura Rassoul; El-Khider Si-Ahmed; Tewfik Hamidouche; Anis Bousbia-Salah

    2005-01-01

    Full text of publication follows: Flow instabilities are undesirable phenomena in heated channels since change in flow rate affects the local heat transfer characteristics and may results in premature burnout. For instance, two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially the MTR fuel type Research Reactors. For heated parallel channels, the negative-sloped segment of the pressure drop-flow rate characteristics (demand curve) of a boiling channel becomes negative. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. Furthermore, as a consequence of this flow decrease, different types of flow instabilities that may appear can also induce (density wave) flow oscillations of constant amplitude or diverging amplitude. The present work focuses on a numerical simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of flow instability by varying input flow rate without any consideration to density wave oscillations. By the way, the axial void distribution is provided. The numerical model is based on the finite difference method which transform the partial differential conservation equations of Mass, Momentum and Energy, in algebraic equations. Closure relationships as the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory Thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code-to code verification using the results of RELAP5/Mod 3.2 code. (authors)

  10. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  11. Flow of liquid metals in curved channels under a transversely applied magnetic field, (3)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou.

    1979-01-01

    With the development of electromagnetic pumps in nuclear, metallurgical and casting industries, investigations of not only laminar flow but also transient and turbulent flows in magnetohydrodynamic (MHD) channels are the matters of much concern. However, it is no exaggeration to say that there was no investigation of transient and turbulent flows in curved MHD channels. In this report, the influences of Reynolds number, Hartmann number, radius of curvature and aspect ratio on the coefficient of friction in transient and turbulent flow channels are discussed. In transient flow region, the curve representing the product of the coefficient of channel friction in curved channels and Reynolds number has no clear transition point in the flow of comparatively small Hartmann number. However, as the intensity of magnetic field is increased, the curve transfers to the transition due to the effect of suppressing secondary flow, and if the magnetic field is further increased, it was found that it approached the crisis-free type transition. In turbulent flow region, the coefficient of channel friction can be expressed approximately by the empirical equation given first in this report. Also the effect of magnetic field on the turbulent flow in curved channels can be explained by using Hartmann effect, turbulence suppression effect, and the effect of suppressing secondary flow based on Lorentz's force. (Wakatsuki, Y.)

  12. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    Science.gov (United States)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  13. Flow and heat transfer in a curved channel

    Science.gov (United States)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  14. Experimental study of fluid flow in the entrance of a sinusoidal channel

    International Nuclear Information System (INIS)

    Oviedo-Tolentino, F.; Romero-Mendez, R.; Hernandez-Guerrero, A.; Giron-Palomares, B.

    2008-01-01

    An experimental flow visualization study of the entrance section of channels formed with sinusoidal plates was made. The experiments were conducted in a water tunnel and a laser illuminated particle tracking was used as the technique of flow visualization. The geometric parameters of the plates were maintained constant while the distance between plates, phase angle, and the Reynolds number were varied during the experiments. The flow regimes that were found in the experiments are steady, unsteady and significantly-mixed flows. Instabilities of the flow first appear near the exit of the channel, and move closer to the inlet waves as the Reynolds number grows, but in the first wave from inlet the flow is always steady. The results show that, for all other parameters fixed, the Reynolds number at which unsteady flow first appears grows with the distance between plates. The phase angle that best promotes unsteady flow depends on the average distance between plates: for certain average distance between plates, there is a phase angle that best disturbs the flow. For the set of parameters used in this experiment, a channel with eight waves is sufficiently long and the flow features presented in the first eight waves of a longer channel will be similar to what was observed here

  15. THERMOSS: a thermohydraulic model of flow stagnation in a horizontal fuel channel

    International Nuclear Information System (INIS)

    Gulshani, P.; Caplan, M.Z.; Spinks, N.J.

    1984-01-01

    Following a postulated inlet-side small break in the CANDU reactor, emergency coolant is injected to refull the horizontal fuel channels and remove the decay heat. As part of the accident analysis, the effects of loss of forced circulation during the accident are predicted. A break size exists for which, at the end of pump rundown, the break force balances the natural circulation force and the channel flow is reduced to near zero. The subcooled, stagnant channel condition is referred to as the standing-start condition. Subsequently, the channel coolant boils and stratifies. Eventually the steam flow from the channel heats up the endfitting to the saturation temperature and reaches the vertical feeder. The resulting buoyancy-induced flow then refills the channel. One dimensional, two-fluid conservation equations are solved in closed form to predict the duration of stagnation. In this calculation the channel water level is an important intermediate variable because it determines the amount of steam production

  16. Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher

    International Nuclear Information System (INIS)

    Tahara, M.; Suzuki, Y.; Abe, N.; Kurita, T.; Hamazaki, R.; Kojima, Y.

    2008-01-01

    Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in

  17. Topology optimization of Channel flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.

    2005-01-01

    function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...

  18. Drag reduction in a turbulent channel flow using a passivity-based approach

    Science.gov (United States)

    Heins, Peter; Jones, Bryn; Sharma, Atul

    2013-11-01

    A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.

  19. Flow field induced particle accumulation inside droplets in rectangular channels.

    Science.gov (United States)

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  20. Instability of shallow open channel flow with lateral velocity gradients

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A C; Izumi, N, E-mail: adriano@eng.hokudai.ac.jp, E-mail: nizumi@eng.hokudai.ac.jp [River and Watershed Engineering Laboratory, Hokkaido University, Sapporo, 060-8628 (Japan)

    2011-12-22

    The turbulent flow in a wide rectangular open channel partially covered with vegetation is studied using linear stability analysis. In the base state normal flow condition, the water depth is constant and the transverse velocity vanishes, while there is a lateral gradient in the streamwise velocity with an inflexion point at the boundary between the vegetated zone and the main channel. The Reynolds stress is expressed by introducing the eddy viscosity, which is obtained from assuming a logarithmic distribution of the velocity near the bed. Perturbation expansions are introduced to the streamwise and transverse velocities, as well as to the water depth. The system of governing equations was solved in order to determine the maximum growth rate of the perturbations as a function of parameters which describe physical characteristics of the channel and the flow.

  1. Experimental Investigation of Pressure Drop and Pressure Distribution Along a Heated Channel in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Aharon, Y.; Hochbaum, I.; Shai, I.

    2002-01-01

    The state of knowledge relating to pressure drop in subcooled boiling region is very unsatisfactory. That pressure drop is an important factor in considering the design of nuclear reactors because of the possibility of flow excursion during a two phase flow in the channels. In operational systems with multiple flow channels, an increase in pressure drop in one flow channel, can cause the flow to be diverted to other channels. A burnout can occur in the unstable channel

  2. Subcooled flow boiling heat transfer from microporous surfaces in a small channel

    International Nuclear Information System (INIS)

    Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong

    2011-01-01

    The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)

  3. Study on particle deposition in vertical square ventilation duct flows by different models

    International Nuclear Information System (INIS)

    Zhang Jinping; Li Angui

    2008-01-01

    A proper representation of the air flow in a ventilation duct is crucial for adequate prediction of the deposition velocity of particles. In this paper, the mean turbulent air flow fields are predicted by two different numerical models (the Reynolds stress transport model (RSM) and the realizable k-εmodel). Contours of mean streamwise velocity deduced from the k-ε model are compared with those obtained from the Reynolds stress transport model. Dimensionless deposition velocities of particles in downward and upward ventilation duct flows are also compared based on the flow fields presented by the two different numerical models. Trajectories of the particles are tracked using a one way coupling Lagrangian eddy-particle interaction model. Thousands of individual particles are released in the represented flow, and dimensionless deposition velocities are evaluated for the vertical walls in fully developed smooth vertical downward and upward square duct flows generated by the RSM and realizable k-ε model. The effects of particle diameter, dimensionless relaxation time, flow direction and air speed in vertical upward and downward square duct flows on the particle deposition velocities are discussed. The effects of lift and gravity on the particle deposition velocities are evaluated in vertical flows presented by the RSM. It is shown that the particle deposition velocities based on the RSM and realizable k-εmodel have subtle differences. The flow direction and the lift force significantly affect the particle deposition velocities in vertical duct flows. The simulation results are compared with earlier experimental data and the numerical results for fully developed duct flows. It is shown that the deposition velocities predicted are in agreement with the experimental data and the numerical results

  4. Flow predictions for MHD channels with an approximation for three-dimensional effects

    International Nuclear Information System (INIS)

    Blottner, F.G.

    1978-01-01

    A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time

  5. Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes

    Science.gov (United States)

    Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.

    2018-04-01

    A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.

  6. Noise control of subsonic cavity flows using plasma actuated receptive channels

    International Nuclear Information System (INIS)

    Gupta, Arnob Das; Roy, Subrata

    2014-01-01

    We introduce a passive receptive rectangular channel at the trailing edge of an open rectangular cavity to reduce the acoustic tones generated due to coherent shear layer impingement. The channel is numerically tested at Mach 0.3 using an unsteady three-dimensional large eddy simulation. Results show reduction in pressure fluctuations in the cavity due to which sound pressure levels are suppressed. Two linear dielectric barrier discharge plasma actuators are placed inside the channel to enhance the flow through it. Specifically, acoustic suppression of 7 dB was obtained for Mach 0.3 flow with the plasma actuated channel. Also, the drag coefficient for the cavity reduced by over three folds for the channel and over eight folds for the plasma actuated channel. Such a channel can be useful in noise and drag reduction for various applications, including weapons bay, landing gear and branched piping systems. (fast track communication)

  7. Flow behaviour in a CANDU horizontal fuel channel from stagnant subcooled initial conditions

    International Nuclear Information System (INIS)

    Caplan, M.Z.; Gulshani, P.; Holmes, R.W.; Wright, A.C.D.

    1984-01-01

    The flow behaviour in a CANDU primary system with horizontal fuel channels is described following a small inlet header break. With the primary pumps running, emergency coolant injection is in the forward direction so that the channel outlet feeders remain warmer than the inlet thereby promoting forward natural circulation. However, the break force opposes the forward driving force. Should the primary pumps run down after the circuit has refilled, there is a break size for which the natural circulation force is balanced by the break force and channels could, theoretically, stagnate. Result of visualization and of full-size channel tests on channel flow behaviour from an initially stagnant channel condition are discussed. After a channel stagnation, the decay power heats the coolant to saturation. Steam is then formed and the coolant stratifies. The steam expands into the subcooled water in the end fitting in a chugging type of flow regime due to steam condensation. After the end fitting reaches the saturation temperature, steam is able to penetrate into the vertical feeder thereby initiating a large buoyancy induced flow which refills the channel. The duration of stagnation is shown to be sensitive to small asymmetries in the initial conditions. A small initial flow can significantly shorten the occurrence and/or duration of boiling as has been confirmed by reactor experience. (author)

  8. Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow

    Directory of Open Access Journals (Sweden)

    Laurent Schindfessel

    2015-08-01

    Full Text Available Despite the ratio of incoming discharges being recognized as a key parameter in open-channel confluence hydrodynamics, little is known about the flow patterns when the tributary provides more than 90% of the total discharge. This paper offers a systematic study of flow features when the tributary becomes increasingly dominant in a 90° confluence with a fixed concordant bed. Large-eddy simulations are used to investigate the three-dimensional complex flow patterns for three different discharge ratios. It is found that the tributary flow impinges on the opposing bank when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream channel of the confluence, which induces significant changes in the incoming velocity distribution. Moreover, it results in stronger helicoidal cells in the downstream channel, along with zones of upwelling flow. In turn, the changed flow patterns also influence the mixing layer and the flow recovery. Finally, intermittent events of stronger upwelling flow are discerned. Improved understanding of flow patterns at confluences where the tributary is dominant is applicable to both engineering and earth sciences.

  9. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  10. Effects of storm waves on rapid deposition of sediment in the Yangtze Estuary channel

    Directory of Open Access Journals (Sweden)

    Xu Fumin

    2008-03-01

    Full Text Available Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.

  11. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    Science.gov (United States)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  12. Laboratorial studies on the seepage impact in open-channel flow turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Granados, Oscar; Kostecki, Stanislaw, E-mail: Oscar.Herrera-Granados@pwr.wroc.pi [Institute of Geotechnics and Hydro-engineering (I-10), Wroclaw University of Technology. Plac Grunwaldzki 9 D-2 p.112. 50-377 Wroclaw (Poland)

    2011-12-22

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  13. Laboratorial studies on the seepage impact in open-channel flow turbulence

    International Nuclear Information System (INIS)

    Herrera Granados, Oscar; Kostecki, Stanislaw

    2011-01-01

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  14. A Flow-Channel Analysis for the Mars Hopper

    Energy Technology Data Exchange (ETDEWEB)

    W. Spencer Cooley

    2013-02-01

    The Mars Hopper is an exploratory vehicle designed to fly on Mars using carbon dioxide from the Martian atmosphere as a rocket propellant. The propellent gasses are thermally heated while traversing a radioisotope ther- mal rocket (RTR) engine’s core. This core is comprised of a radioisotope surrounded by a heat capacitive material interspersed with tubes for the propellant to travel through. These tubes, or flow channels, can be manu- factured in various cross-sectional shapes such as a special four-point star or the traditional circle. Analytical heat transfer and computational fluid dynamics (CFD) anal- yses were performed using flow channels with either a circle or a star cross- sectional shape. The nominal total inlet pressure was specified at 2,805,000 Pa; and the outlet pressure was set to 2,785,000 Pa. The CO2 inlet tem- perature was 300 K; and the channel wall was 1200 K. The steady-state CFD simulations computed the smooth-walled star shape’s outlet temper- ature to be 959 K on the finest mesh. The smooth-walled circle’s outlet temperature was 902 K. A circle with a surface roughness specification at 0.01 mm gave 946 K and at 0.1 mm yielded 989 K. The The effects of a slightly varied inlet pressure were also examined. The analytical calculations were based on the mass flow rates computed in the CFD simulations and provided significantly higher outlet temperature results while displaying the same comparison trends. Research relating to the flow channel heat transfer studies was also done. Mathematical methods to geometrically match the cross-sectional areas of the circle and star, along with a square and equilateral triangle, were derived. A Wolfram Mathematica 8 module was programmed to analyze CFD results using Richardson Extrapolation and calculate the grid convergence index (GCI). A Mathematica notebook, also composed, computes and graphs the bulk mean temperature along a flow channel’s length while the user dynam- ically provides the input

  15. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels

    International Nuclear Information System (INIS)

    Saleh, H.; Hashim, I.

    2010-01-01

    The present analysis is concerned with flow reversal phenomena of the fully-developed laminar combined free and forced MHD convection in a vertical parallel-plate channel. The effect of viscous dissipation is taken into account. Flow reversal adjacent to the cold (or hot) wall is found to exist within the channel as Gr/Re is above (or below) a threshold value. Parameter zones for the occurrence of reversed flow are presented. (fundamental areas of phenomenology(including applications))

  16. Sedimentary architecture and depositional environment of Kudat Formation, Sabah, Malaysia

    Science.gov (United States)

    Ghaheri, Samira; Suhaili, Mohd; Sapari, Nasiman; Momeni, Mohammadsadegh

    2017-12-01

    Kudat Formation originated from deep marine environment. Three lithofacies association of deep marine turbidity channel was discovered in three Members of the Kudat Formation in Kudat Peninsula, Sabah, Malaysia. Turbidite and deep marine architecture elements was described based on detailed sedimentological studies. Four architecture elements were identified based on each facies association and their lithology properties and character: inner external levee that was formed by turbidity flows spill out from their confinement of channel belt; Lobes sheet that was formed during downslope debris flows associated with levee; Channel fill which sediments deposited from high to low density currents with different value of sediment concentration; and overbank terrace which was formed by rapid suspension sedimentation. The depositional environment of Kudat Formation is shelf to deep marine fan.

  17. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  18. Non-Darcy behavior of two-phase channel flow.

    Science.gov (United States)

    Xu, Xianmin; Wang, Xiaoping

    2014-08-01

    We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.

  19. Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows

    Directory of Open Access Journals (Sweden)

    Qikun Wang

    2017-06-01

    Full Text Available In this paper, the hydrodynamic mechanism of moving particles in laminar micro-channel flows was numerically investigated. A hydrodynamic criterion was proposed to determine whether particles in channel flows can form a focusing pattern or not. A simple formula was derived to demonstrate how the focusing position varies with Reynolds number and particle size. Based on this proposed criterion, a possible hydrodynamic mechanism was discussed as to why the particles would not be focused if their sizes were too small or the channel Reynolds number was too low. The Re-λ curve (Re, λ respectively represents the channel-based Reynolds number and the particle’s diameter scaled by the channel was obtained using the data fitting with a least square method so as to obtain a parameter range of the focusing pattern. In addition, the importance of the particle rotation to the numerical modeling for the focusing of particles was discussed in view of the hydrodynamics. This research is expected to deepen the understanding of the particle transport phenomena in bounded flow, either in micro or macro fluidic scope.

  20. Numerical solution of incompressible flow through branched channels

    Czech Academy of Sciences Publication Activity Database

    Louda, Petr; Kozel, K.; Příhoda, Jaromír; Beneš, L.; Kopáček, T.

    2011-01-01

    Roč. 46, č. 1 (2011), s. 318-324 ISSN 0045-7930 R&D Projects: GA ČR GA103/09/0977; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * branched channel * EARSM turbulence model Subject RIV: BK - Fluid Dynamics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793010003506

  1. Propagation of a channelized debris-flow: experimental investigation and parameters identification for numerical modelling

    Science.gov (United States)

    Termini, Donatella

    2013-04-01

    Recent catastrophic events due to intense rainfalls have mobilized large amount of sediments causing extensive damages in vast areas. These events have highlighted how debris-flows runout estimations are of crucial importance to delineate the potentially hazardous areas and to make reliable assessment of the level of risk of the territory. Especially in recent years, several researches have been conducted in order to define predicitive models. But, existing runout estimation methods need input parameters that can be difficult to estimate. Recent experimental researches have also allowed the assessment of the physics of the debris flows. But, the major part of the experimental studies analyze the basic kinematic conditions which determine the phenomenon evolution. Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The experiments, carried out in a laboratory flume appositely constructed, were planned in order to evaluate the influence of different geometrical parameters (such as the slope and the geometrical characteristics of the confluences to the main channel) on the propagation phenomenon of the debris flow and its deposition. Thus, the aim of the present work is to give a contribution to defining input parameters in runout estimation by numerical modeling. The propagation phenomenon is analyzed for different concentrations of solid materials. Particular attention is devoted to the identification of the stopping distance of the debris flow and of the involved parameters (volume, angle of depositions, type of material) in the empirical predictive equations available in literature (Rickenmanm, 1999; Bethurst et al. 1997). Bethurst J.C., Burton A., Ward T.J. 1997. Debris flow run-out and landslide sediment delivery model tests. Journal of hydraulic Engineering, ASCE, 123(5), 419-429 Rickenmann D. 1999. Empirical relationships

  2. Static flow instability in subcooled flow boiling in parallel channels

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-01-01

    A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime

  3. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  4. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін

    2010-01-01

    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  5. The feasible study of the water flow in the micro channel with the Y-junction and narrow structure for various flow rates

    Directory of Open Access Journals (Sweden)

    Jasikova D.

    2015-01-01

    Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.

  6. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    Science.gov (United States)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael

    2013-04-01

    The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.

  7. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  8. Modeling on bubbly to churn flow pattern transition in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2012-01-01

    A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)

  9. Biased and flow driven Brownian motion in periodic channels

    Science.gov (United States)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  10. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  11. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  12. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  13. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    Science.gov (United States)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  14. The stress generated by non-Brownian fibers in turbulent channel flow simulations

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.

    2007-01-01

    Turbulent fiber suspension channel flow is studied using direct numerical simulation. The effect of the fibers on the fluid mechanics is governed by a stress tensor, involving the distribution of fiber position and orientation. Properties of this function in channel flow are studied by computing the

  15. Effect of flow rate distribution at the inlet on hydrodynamic mixing in narrow rectangular multi-channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2008-01-01

    Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)

  16. Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.

  17. Analysis on depositional system and discussion on ore-formation conditions of channel sandstone type uranium deposit. Taking Dongsheng area, Ordos meso-cenozoic basin as an example

    International Nuclear Information System (INIS)

    Wu Rengui; Yu Dagan; Zhu Minqiang; Zhou Wanpeng; Chen Anping

    2003-01-01

    Applying the theory of depositional system, the depositional facies and depositional systems of the Zhiluo Formation in Dongsheng area are systematically analysed, and the authors proposed that sediments of the Zhiluo Formation are of fluvial facies, and streams of the Zhiluo time experienced three evolution stages, namely: the early braided stream, the middle low sinuosity meandering stream and the late high sinuosity meandering stream. Based on features of paleoclimatic evolution, the Zhiluo Formation is divided into two lithological members. The lower lithological member consists of sediments of braided and low sinuosity meandering streams under humid-ward paleoclimatic conditions forming grey sedimentary formation. The upper member is composed of sediments of meandering streams under arid-hot paleoclimatic conditions representing complex-colored (mainly red) sedimentary formation. It is suggested that uranium mineralization in the study area is of channel sandstone type and controlled by braided channel sediments. Besides, the ore-formation conditions for channel sandstone type uranium deposit are preliminarily discussed

  18. Predictive techniques for river channel evolution and maintenance

    Science.gov (United States)

    Nelson, J.M.

    1996-01-01

    Predicting changes in alluvial channel morphology associated with anthropogenic and natural changes in flow and/or sediment supply is a critical part of the management of riverine systems. Over the past few years, advances in the understanding of the physics of sediment transport in conjunction with rapidly increasing capabilities in computational fluid dynamics have yielded now approaches to problems in river mechanics. Techniques appropriate for length scales ranging from reaches to bars and bedforms are described here. Examples of the use of these computational approaches are discussed for three cases: (1) the design of diversion scenarios that maintain channel morphology in steep cobble-bedded channels in Colorado, (2) determination of channel maintenance flows for the preservation of channel islands in the Snake River in Idaho, and (3) prediction of the temporal evolution of deposits in lateral separation zones for future assessment of the impacts of various dam release scenarios on lateral separation deposits in the Colorado River in Grand Canyon. With continued development of their scientific and technical components, the methodologies described here can provide powerful tools for the management of river environments in the future.

  19. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard

    2015-09-25

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.

  20. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    Science.gov (United States)

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Channel Incision Driven by Suburbanization: Impacts to Riparian Groundwater Flow and Overbank Flow Frequency

    Science.gov (United States)

    Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.

    2005-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain

  2. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA

    Science.gov (United States)

    Whaling, A. R.; Shaw, J.

    2017-12-01

    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta

  3. Flow of two stratified fluids in an open channel with addition of fluids along the channel length

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1980-01-01

    It is shown that two stably stratified fluids flowing in an open channel have two critical flow conditions. The one at higher flowrates is equivalent to the choked flow condition of a single fluid over a broad-crested weir, when the Froude number is unity. The lower critical condition imposes restrictions, which define the system if fluids are added progressively along the channel length and the flowrates increase from low to high values. However, if the flowrate does not become sufficiently large to pass through the lower critical condition, this condition will then define a form of choking, which again determines the system. It is shown that an important special case, with the proportional flowrates of the two fluids kept constant, has an analytical solution in which the relative depths of the fluids is a constant along the channel. Other systems must be solved numerically. (orig.)

  4. Analysis of Two Phase Natural Circulation Flow in the Cooling Channel of the PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J; Ha, K. S; Rhee, B. W; Kim, H. Y [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Decay heat and sensible heat of the relocated and spread corium are removed by the natural circulation flow at the bottom and side wall of the core catcher and the top water cooling of the corium. The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. As shown in Fig. 1, the engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting in the PECS. To maintain the integrity of the ex-vessel core catcher, however, it is necessary that the coolant be sufficiently circulated along the inclined cooling channel to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. For this reason, a verification experiment on the cooling capability of the EU-APR1400 core catcher has been performed in the CE (Cooling Experiment)-PECS facility at KAERI. Preliminary simulations of two-phase natural circulation in the CE-PECS were performed to predict two-phase flow characteristics and to determine the natural circulation mass flow rate in the flow channel. In this study, simulations of two-phase natural circulation in a real core catcher of the PECS have been performed to determine the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code.

  5. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    Science.gov (United States)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  6. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  7. Computation of a turbulent channel flow using PDF method

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author)

  8. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  9. Mathematical model of melt flow channel granulator

    Directory of Open Access Journals (Sweden)

    A. A. Kiselev

    2016-01-01

    Full Text Available Granulation of carbohydrate-vitamin-mineral supplements based on molasses is performed at a high humidity (26 %, so for a stable operation of granulator it is necessary to reveal its melt flow pattern. To describe melt non-isothermal flow in the granulator a mathematical model with following initial equations: continuity equation, motion equation and rheological equation – was developed. The following assumptions were adopted: the melt flow in the granulator is a steady laminar flow; inertial and gravity forces can be ignored; melt is an incompressible fluid; velocity gradient in the flow direction is much smaller than in the transverse direction; the pressure gradient over the cross section of the channel is constant; the flow is hydrodynamically fully developed; effects impact on the channel inlet and outlet may be neglected. Due to the assumptions adopted, it can be considered that in this granulator only velocity components in the x-direction are significant and all the members of the equation with the components and their derivatives with respect to the coordinates y and z can be neglected. The resulting solutions were obtained: the equation for the mean velocity, the equation for determining the volume flow, the formula for calculating of mean time of the melt being in the granulator, the equation for determining the shear stress, the equation for determining the shear rate and the equation for determining the pressure loss. The results of calculations of the equations obtained are in complete agreement with the experimental data; deviation range is 16–19 %. The findings about the melt movement pattern in granulator allowed developing a methodology for calculating a rational design of the granulator molding unit.

  10. Asymptotic analysis of the average, steady, isotherml flow in coupled, parallel channels

    International Nuclear Information System (INIS)

    Lund, K.O.

    1976-01-01

    The conservation equations of mass and momentum are derived for the average flow of gases in coupled, parallel channels, or rod bundles. In the case of gas-cooled rod bundles the pitch of the rods is relatively large so the flows in the channels are strongly coupled. From this observation a perturbation parameter is derived and the descriptive equations are scaled using this parameter, which represents the ratio of the axial flow area to the transverse flow area, and which is of the order of 10 -3 in current gas-cooled fast breeder reactor designs. By expanding the velocities into perturbation series the equations for two channels are solved as an initial value problem, and the results compared to a finite difference solution of the same problem. The N-channel problem is solved to the lowest order as a two-point boundary value problem with the pressures specified at the inlet and the outlet. It is concluded from the study that asymptotic methods are effective in solving the flow problems of rod bundles; however, further work is required to evaluate the possible computational advantages of the methods

  11. Transport coefficients for laminar and turbulent flow through a four-cusp channel

    International Nuclear Information System (INIS)

    Souza Dutra, A. de; Parise, J.A.R.; Souza Mendes, P.R. de.

    1986-01-01

    The heat transfer coefficients for laminar and turbulent flow in a four-cusp channel were determined. A numerical solution was developed for laminar flow an and experimental study for turbulent flow was carried out. Systematic variations of the Reynolds number were done in the range 900-30000. The results show that the heat transfer coefficients for the four-cusp channel are much lower than the coefficients for the circular tube. (author) [pt

  12. Molten Fuel Mass Assessment for Channel Flow Blockage Event in CANDU6

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Kim, Yong Bae; Choi, Hoon; Park, Dong Hwan

    2011-01-01

    In CANDU6, a fuel channel flow blockage causes a sudden reduction of flow through the blocked channel. Depending on the severity of the blockage, the reduced flow through the channel can result in severe heat up of the fuel, hence possibly leading to pressure tube and calandria tube failure. If the calandria tube does not fail the fuel and sheath would continue to heat up, and ultimately melting could occur. Eventually, molten material runs down onto the pressure tube. Even a thin layer of molten material in contact with the pressure tube causes the pressure tube and calandreia tube to heat up rapidly. The thermal transient is so rapid that failure temperatures are reached quickly. After channel failure, the contents of the channel, consisting of superheated coolant, fission products and possibly overheated of molten fuel, are rapidly discharged into the moderator. Fuel discharged into the moderator is quenched and cooled. The rapid discharge of hot fuel and coolant into the calandria causes the moderator pressure and temperature to increase, which may cause damage to some in-core components. Thus, the assessment results of molten fuel mass are inputs to the in-core damage analysis. In this paper, the analysis methodology and results of molten fuel mass assessment for the channel flow blockage event are presented

  13. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Science.gov (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  14. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania

    Science.gov (United States)

    Brush, Lucien M.

    1961-01-01

    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent

  15. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar....... According to the model, the predominant tantalum growth species is TaCl3. The temperature is shown to have a pronounced effect onthe morphology and rate of deposition of the tantalum and an apparent change in deposition mechanism occurs between 850–900 °C, resulting in the deposition rate at 900 °C being...

  16. Secondary flow in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2004-01-01

    Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in

  17. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  18. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Directory of Open Access Journals (Sweden)

    D. Milan

    2018-04-01

    Full Text Available Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  19. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2018-04-01

    Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  20. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  1. Colloidal Asphaltene Deposition and Aggregation in Capillary Flow: Experiments and Mesoscopic Simulation

    Science.gov (United States)

    Boek, Edo S.; Ladva, Hemant K.; Crawshaw, John P.; Padding, Johan T.

    2008-07-01

    The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment and simulation. For the simulation, we have used the stochastic rotation dynamics (SRD) method, in which the solvent hydrodynamic emerges from the collisions between the solvent particles, while the Brownian motion emerges naturally from the interactions between the colloidal asphaltene particles and the solvent. The asphaltene colloids interact through a screened Coulomb potential. We vary the well depth ɛ∝ and the flow rate v to obtain Peflow≫1 (hydrodynamic interactions dominate) and Re≪1 (Stokes flow). In the simulations, we impose a pressure drop over the capillary length and measure the corresponding solvent flow rate. We observe that the transient solvent flow rate decreases when the asphaltene particles become more "sticky". For a well depth ɛ∝ = 2kBT, a monolayer deposits on the capillary wall. With an increasing well depth, the capillary becomes totally blocked. The clogging is transient for ɛ∝ = 5kBT, but appears to be permanent for ɛ∝ = 10-20 kBT. We compare our simulation results with flow experiments in glass capillaries, where we use extracted asphaltenes in toluene, reprecipitated with n-heptane. In the experiments, the dynamics of asphaltene precipitation and deposition were monitored in a slot capillary using optical microscopy under flow conditions similar to those used in the simulation. Maintaining a constant flow rate of 5 μL min-1, we found that the pressure drop across the capillary first increased slowly, followed by a sharp increase, corresponding to a complete local blockage of the capillary. Doubling the flow rate to 10 μL min-1, we observe that the initial deposition occurs faster but the deposits are subsequently entrained by the flow. We

  2. Wall-cooling-induced mixed-convection flow recirculation in a vertical square-array multi-rod channel

    International Nuclear Information System (INIS)

    Luangdilok, W.; Todreas, N.E.

    1989-01-01

    This work investigated the structure of penetrative flow recirculation and associated flow conditions in a multi-rod channel induced by interassembly heat transfer that causes cooling through channel walls. Three investigation approaches, experimental, numerical, and analytical were employed in a complimentary fashion. Physical experiments involved water flow visualization and temperature measurement in a 4x4 rod square channel. Numerical experiments involved 3-dimensional simulations of water and sodium flow in a 2x2-rod channels. An approximate reverse flow model including Prandtl number effect was developed. A correlating equation based on the model and experiments was verified for water to correctly predict the trend of the 4x4-rod experimental penetration depth data. (orig.)

  3. Wastewater diffusive dilution and sedimentation of the fine contaminated particles for nonuniform flow in open channels

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2018-01-01

    Full Text Available The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniformity factor to the calculation of diffusion dilution of wastewater and prediction of river processes. So the effect of the flow non-uniformity on the diffusion model of pollutants dilution and diffusion coefficient have been investigated. Formulas for the concentration profiles calculating and the average concentration of fine particulate matter in nonuniform gradually varied flow were presented. The deposition length of suspended contaminants were received, based on the hydraulic resistance laws of nonuniform gradually varied flow.

  4. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    Directory of Open Access Journals (Sweden)

    Tisovský Tomáš

    2017-01-01

    Full Text Available Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  5. Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji

    1999-01-01

    Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)

  6. Effects of T-type Channel on Natural Convection Flows in Airflow-Path of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyeong Uk; Kim, Hyoung Jin; Cho, Chun Hyung [KORAD, Daejeon (Korea, Republic of)

    2016-05-15

    The natural convection flows occurring in airflow-path are not simple due to complex flow-path configurations such as horizontal ducts, bent tube and annular flow-path. In addition, 16 T type channels acting as the shroud are attached vertically and 16 channel supporting the canister are attached horizontally on the inner surface of over-pack. The existence and nonexistence of T type channels have influences on the flow fields in airflow- path. The concrete storage cask has to satisfy the requirements to secure the thermal integrity under the normal, off-normal, and accident conditions. The present work is aiming at investigating the effects of T type channels on the flows in airflow-path under the normal conditions using the FLUENT 16.1 code. In order to focus on the flows in airflow-path, fuel regions in the canister are regarded as a single cylinder with heat sources and other components are fully modeled. This study investigated the flow fields in airflow-path of concrete storage cask, numerically. It was found that excepting for the fuel regions, maximum temperatures on other components were evaluated below allowable values. The location of maximum velocities depended on support channels, T type channels and flow area. The flows through air inlets developed along annular flow- path with forming the hot plumes. According to the existence and nonexistence of T type channel, the plume behavior showed the different flow patterns.

  7. Paleo-hydraulic Reconstructions of Topographically Inverted River Deposits on Earth and Mars

    Science.gov (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2015-12-01

    River deposits are one of the keys to understanding the history of flowing water and sediment on Earth and Mars. Deposits of some ancient Martian rivers have been topographically inverted resulting in sinuous ridges visible from orbit. However, it is unclear what aspects of the fluvial deposits these ridges represent, so reconstructing paleo-hydraulics from ridge geometry is complicated. Most workers have assumed that ridges represent casts of paleo-river channels, such that ridge widths and slopes, for example, can be proxies for river widths and slopes at some instant in time. Alternatively, ridges might reflect differential erosion of extensive channel bodies, and therefore preserve a rich record of channel conditions and paleoenvironment over time. To explore these hypotheses, we examined well exposed inverted river deposits in the Jurassic Morrison and Early Cretaceous Cedar Mountain Formations across the San Rafael Swell of central Utah. We mapped features on foot and by UAV, measured stratigraphic sections and sedimentary structures to constrain deposit architecture and river paleo-hydraulics, and used field observations and drainage network analyses to constrain recent erosion. Our work partly confirms earlier work in that the local trend of the ridge axis generally parallels paleo-flow indicators. However, ridge relief is much greater than reconstructed channel depths, and ridge widths vary from zero to several times the reconstructed channel width. Ridges instead appear to record a rich history of channel lateral migration, floodplain deposition, and soil development over significant time. The ridge network is disjointed owing to active modern fluvial incision and scarp retreat. Our results suggest that ridge geometry alone contains limited quantitative information about paleo-rivers, and that stratigraphic sections and observations of sedimentary structures within ridge-forming deposits are necessary to constrain ancient river systems on Mars.

  8. Study on cocurrent downtake gas-liquid flow in a vertical channel

    International Nuclear Information System (INIS)

    Lozovetskij, V.V.

    1978-01-01

    Hydraulic resistance and liquid stall from the film surface at cocurrent film and gas downflow in vertical channel in measurement range of reynolds number from 100 to 1260 for the film and from 1.2x10 4 to 10 5 for gas are studied. For downflow two regimes are characteristic: purely annular, that is separate phase flow regime, and the regime of stall and carrying liquid droplets from the film surface, that is annular dispersed flow regime. The existence boundaries of both regimes are determined and criterial equations for pressure drop calculation are obtained. It is established experimentally that at sufficient range from the liquid input place on the working zone the established two-phase flow takes place. In their nucleus two areas can be singled out, which differ by the flow density values of stalled liquid: central, having the permanent flow density value and area adjacent to the film surface, the liquid in the combs of waves making a significant contribution to the flow density value. At equal flooding density with the relative gas speed increase, the flow density value of stalled liquid in the channel central part increase. A similar result also takes place at flooding density increase at permanent relative speed. Flooding density and relative speed increase leads to levelling stalled liquid distribution about the channel cross section

  9. LATE PLIOCENE-HOLOCENE DEBRIS FLOW DEPOSITS IN THE IONIAN SEA (EASTERN MEDITERRANEAN

    Directory of Open Access Journals (Sweden)

    GIOVANNI ALOISI DE LARDEREL

    1997-11-01

    Full Text Available Widespread coring of the Eastern Mediterranean Basin has outlined the existence of a systematic relation between lithology of debris flow deposits and physiographic setting. Whilst the topographic highs are characterized by pelagic sedimentation, the basin floors are alternatively subject to pelagic sedimentation and re-sedimentation pro cesses. Amongst the latters, turbidity flows and debris flows are the most common transport mechanisms.In this paper we present the study of the debris flow pro cess in the Ionian Sea using visual description of cores, grain size, carbonate content and smear slide analysis carried out on gravity and piston cores recovered over the past 20 years. A distinction has been made between debris flow deposits originating from the continental margins (North Africa and Malta Escarpment and those emplaced in the small basins amidst the Calabrian and Mediterranean ridges "Cobblestone Topography". As a result of the difference in setting, the former debris flow deposits include a great variety of lithologies and ages whilst the latter involve the pelagic sediments forming the typical Eastern Mediterranean Plio-Quaternary succession. A detailed study of clast and matrix structures makes it possible to describe the flows in terms of existing classifications of sediment gravity flows and to assume a clast support mechanism. Finally, biostratigraphy coupled with the presence of widespread marker beds enabled us to estimate the age of emplacement of the deposits and to hypothesize a triggering mechanism for flow initiation. Three flows are strictly related to the pelagic turbidite named homogenite, triggered by the explosive eruption of the Santorini volcano (Minoan eruption and therefore have an estimated age of 3,500 BP. The other deposits have ages ranging from 9,000 BP to about 70,000 BP and were originated by debris flows triggered by events such as earthquakes and glacial low sea level stands.    

  10. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  11. NUMERICAL INVESTIGATION OF CURVATURE AND TORSION EFFECTS ON WATER FLOW FIELD IN HELICAL RECTANGULAR CHANNELS

    Directory of Open Access Journals (Sweden)

    A. H. ELBATRAN

    2015-07-01

    Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.

  12. Theoretical investigation of flow regime for boiling water two-phase flow in horizontal rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua

    2005-01-01

    The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)

  13. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems.

    Science.gov (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.

    1997-03-01

    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  14. Deviations of Atmospheric Coastal Flow from the Open-channel Hydraulics Analogy

    Science.gov (United States)

    Rahn, D. A.; Parish, T. R.; Juliano, T. W.

    2017-12-01

    Low-level atmospheric flow along the coast of California bears resemblance to open-channel engineering applications referred to as hydraulic flow. During the warm season, strong equatorward wind is common near the surface. A marked temperature inversion separates the cool, moist marine air and the warm, dry free troposphere aloft. The low-level flow is bounded laterally by the coastal topography. Given the high wind speed in the shallow marine layer, the flow is often supercritical (Fr > 1). Features resembling oblique compression jumps and expansion fans occur near concave and convex bends in the coastline and impact wind energy production, wind stress on the ocean surface, and propagation of electromagnetic waves by modifying the vertical refractivity gradient. An aircraft collected fine-scale measurements offshore of southern California to test how well the observed features conform to the single-layer hydraulic approximation. Although the open-channel framework captures major features of the flow as indicated by prior work, the detailed measurements reveal when the analogy breaks down. The assumption of a passive upper layer can be violated due to mesoscale pressure gradients aloft and lee troughing associated with offshore flow, which can enhance the thinning of the marine layer associated with the expansion fan. The sharp interface between layers can be eroded when Ri becomes low, Kelvin-Helmholtz instability develops, and the structure of the lower atmosphere is drastically altered. This is poorly simulated in operational weather forecast models due to their relatively coarse grid spacing. The layer associated with the expansion fan rarely keeps its identity into the Santa Barbara Channel. An increase of surface heat flux and vertical mixing as the flow moves over warmer sea surface temperatures in the channel rapidly erodes the layer. Only one flight captured a hydraulic jump between the supercritical flow in the expansion fan and the subcritical flow

  15. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Marston, Jeremy O.; Radu, Andrea I.; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2015-01-01

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water

  16. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  17. Venusian channels and valleys - Distribution and volcanological implications

    Science.gov (United States)

    Komatsu, Goro; Baker, Victor R.; Gulick, Virginia C.; Parker, Timothy J.

    1993-01-01

    An updated map is presented which shows the distribution of more than 200 channels and valleys on Venus. A large number of channels are concentrated in equatorial regions characterized by highlands, rift and fracture zones, an associated volcanic features. Many channels associated with flow deposits are similar to typical terrestrial lava drainage channels. They are associated with a wide range of volcanic edifices. More than half of the sinuous rilles are associated with coronae, coronalike features, or arachnoids. Corona volcanism driven by mantle plume events may explain this association. Many valley network are observed in highlands and in association with coronae, coronalike features, or arachnoids. This indicates that highlands and coronae provided fractures and flow-viscosity lavas, both of which seem to be required for network formation by lava sapping processes. Canali-type channels have a unique distribution limited to some plains regions.

  18. Pena Blanca uranium deposits and ash-flow tuffs relationship

    International Nuclear Information System (INIS)

    Magonthier, M.

    1987-01-01

    The Pena Blanca uranium deposits (Chihuahua, Mexico) are associated with a Tertiary sequence of ash-flow tuffs. Stratigraphic control is dominant and uranium mineralization occurs in stratiform and fracture-controlled deposits within 44 My-old units: Nopal Rhyolite and Escuadra Rhyolite. These units consist of highly vapor-phase crystallized ash-flow tuffs. They contain sanidine, quartz and granophyric phenocrysts, and minor ferromagnesian silicates. Nopal and Escuadra units are high-silica alkali-rich rhyolites that have a primary potassic character. The trace-element chemistry shows high concentrations in U-Th-Rb-Cs and low contents in Ba-Sr-Eu. These chemical properties imply a genetic relationship between deposits and host-units. The petrochemical study show that the Nopal Rhyolite and Escuadra Rhyolite are the source of U and of hydrothermal solutions [fr

  19. Scalar statistics in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Boersma, B.J.; Pecnik, R.

    2017-01-01

    Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive

  20. Flow Hydrodynamics across Open Channel Flows with Riparian Zones: Implications for Riverbank Stability

    Directory of Open Access Journals (Sweden)

    Da Liu

    2017-09-01

    Full Text Available Riverbank vegetation is of high importance both for preserving the form (morphology and function (ecology of natural river systems. Revegetation of riverbanks is commonly used as a means of stream rehabilitation and management of bank instability and erosion. In this experimental study, the effect of different riverbank vegetation densities on flow hydrodynamics across the channel, including the riparian zone, are reported and discussed. The configuration of vegetation elements follows either linear or staggered arrangements as vegetation density is progressively increased, within a representative range of vegetation densities found in nature. Hydrodynamic measurements including mean streamwise velocity and turbulent intensity flow profiles are recorded via acoustic Doppler velocimetry (ADV—both at the main channel and within the riverbank. These results show that for the main channel and the toe of riverbank, turbulence intensity for the low densities (λ ≈ 0 to 0.12 m−1 can increase up to 40% compared the case of high densities (λ = 0.94 to 1.9 m−1. Further analysis of these data allowed the estimation of bed-shear stresses, demonstrating 86% and 71% increase at the main channel and near the toe region, for increasing densities (λ = 0 to 1.9 m−1. Quantifying these hydrodynamic effects is important for assessing the contribution of physically representative ranges of riparian vegetation densities on hydrogeomorphologic feedback.

  1. Textural and rheological evolution of basalt flowing down a lava channel

    Science.gov (United States)

    Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan

    2014-06-01

    The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.

  2. Seismic Facies of Pleistocene–Holocene Channel-fill Deposits in Bawean Island and Adjacent Waters, Southeast Java Sea

    Directory of Open Access Journals (Sweden)

    Ali Albab

    2017-08-01

    Full Text Available The late Pleistocene-Holocene stratigraphic architecture of the Bawean Island and surrounding waters, southeast Java Sea has been analyzed by using sparker seismic profiles. Geological interpretation of these seismic profiles revealed the widespread distribution of paleochannels with different shape and size in the present-day Java Sea. Two channel types can be distinguished based on its morphology: U-shaped channels in the western part and V-shaped channels in the eastern part. The stratigraphic successions were grouped into two major seismic units separated by different seismic boundaries. Characters of marine and fluvial deposits were determined based on seismic boundaries and internal reflectors. Three seismic facies can be identified within late Pleistocene – Holocene incised channel fills associated with SB2. The internal structure of incised-channels consist of chaotic reflector at the bottom, covered by parallel–sub parallel and almost reflection-free indicating the homogenous sediment deposited during the succession.

  3. Experimental investigation on flow instability of forced circulation in a vertical mini-rectangular channel

    International Nuclear Information System (INIS)

    Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying

    2015-01-01

    An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)

  4. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  5. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  6. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2011-12-22

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.

  7. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  8. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these

  9. Turbulent oscillating channel flow subjected to a free-surface stress.

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number

  10. Mechanics of Bingham Flow in an Open Channel

    OpenAIRE

    荻原, 能男; 宮沢, 直季; 三浦, 美香

    1988-01-01

    In this paper, the velocity distribution on turbulent Bingham flow in an open channel is derived theoretically and the fitness of this distribution is examined by comparing with results of experiment using the fluid of water and bentonite mixture which shows the behavior of Bingham flow. The results show that the theoretical turbulent velocity distribution obtained here conforms to results of experiment in the region of lower bentonite concentration. By experiment, the empirical fomulae to es...

  11. Flow around turbulence promoters in parallel channel, 1

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu; Okamoto, Yoshizo

    1982-01-01

    Flow characteristics in relation to heat transfer characteristics in parallel channel with turbulence promoters were studied experimentally. Flow visualization experiments were made in paralle channel with one or two turbulence promoters for Reynolds number region of 100 lt = Resub(w) lt = 3,600. The vortex patterns behind one promoter were that a steady vortex was formed for low Reynolds number and vortex was shed for high Reynolds number,. For higher Reynolds number, it was observed that shedding vortex caused other vortices or disappeared itself randomly. The results indicate that the shedding vortices will augment heat transfer, whereas the steady vortex will give rise to deterioration in heat transfer. This inference agrees with the experimental results of Hishida et al. The results of two promoters experiment showed that the maximum performance of promoter would be attained at p/d -- 7. This agrees with the results formerly studied by other investigators. (author)

  12. Gas flow rate and powder flow rate effect on properties of laser metal deposited Ti6Al4V

    CSIR Research Space (South Africa)

    Pityana, S

    2013-03-01

    Full Text Available . The powder flow rate and the gas flow rate were varied to study their effect on the physical, metallurgical and mechanical properties of the deposits. The physical properties studied are: the track width, the track height and the deposit weight...

  13. Aggradation of Leveed Channels and Their Flood Plains in Arroyo Bottoms

    Science.gov (United States)

    Vincent, K. R.

    2005-12-01

    Many arroyos that formed by incision more than a century ago in the southwestern United States are currently filling with sediment. This reversal of processes is important because it causes changes in riparian ecology, erosion hazards, ground water recharge, and sediment supply to downstream. Along the Rio Puerco and Chaco Wash in New Mexico, we examined the geometry and facies of channel and floodplain stratigraphy exposed in trenches, used high-resolution dating of the sedimentary beds, and used photographs and other historical evidence to investigate the processes of aggradation in naturally leveed channels within arroyos. Prior to the onset of aggradation, the streambeds were composed of sand and had low relief, and arroyo walls retreated rapidly due to stream undermining. Aggradation began with the formation of sand levees at the margins of the streambeds, followed by formation of newer levees increasingly closer to the thalweg. These levees coincide with rows of woody shrubs (tamarisk and willow), plants that germinated in moist sand along the high-water marks of moderate flows, and survived because subsequent periods lacked flows large enough to remove them. Flow entering a row of woody shrubs decelerates, promoting deposition of suspended sand. Stream flows in this setting are always turbid but do not have the rheology of debris flows. The rows of shrubs probably are a requirement for initial formation of sand levees on low relief streambeds in this setting. As new levees formed closer to the thalweg the channel effectively narrowed, and smaller discharges overtopped the levees adjacent to the channel. Those closer levees accumulated sand most rapidly, leaving the suspended sand concentration depleted by the time water reached more distant ones. All levees aggraded vertically. As the main channel narrowed it acquired a roughly trapezoidal-shape (Top Width/Depth ~ 9 to 5) with banks inclined close to the angle of repose. In addition, sediment deposited on

  14. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  15. Transitional inertialess instabilities in driven multilayer channel flows

    Science.gov (United States)

    Papaefthymiou, Evangelos; Papageorgiou, Demetrios

    2016-11-01

    We study the nonlinear stability of viscous, immiscible multilayer flows in channels driven both by a pressure gradient and/or gravity in a slightly inclined channel. Three fluid phases are present with two internal interfaces. Novel weakly nonlinear models of coupled evolution equations are derived and we concentrate on inertialess flows with stably stratified fluids, with and without surface tension. These are 2 × 2 systems of second-order semilinear parabolic PDEs that can exhibit inertialess instabilities due to resonances between the interfaces - mathematically this is manifested by a transition from hyperbolic to elliptic behavior of the nonlinear flux functions. We consider flows that are linearly stable (i.e the nonlinear fluxes are hyperbolic initially) and use the theory of nonlinear systems of conservation laws to obtain a criterion (which can be verified easily) that can predict nonlinear stability or instability (i.e. nonlinear fluxes encounter ellipticity as they evolve spatiotemporally) at large times. In the former case the solution decays asymptotically to its base state, and in the latter nonlinear traveling waves emerge. EPSRC Grant Numbers EP/K041134 and EP/L020564.

  16. Strong Flows of Bottom Water in Abyssal Channels of the Atlantic

    Science.gov (United States)

    Morozov, E. G.

    Analysis of bottom water transport through the abyssal channels of the Atlantic Ocean is presented. The study is based on recent observations in the Russian expeditions and historical data. A strong flow of Antarctic Bottom Water from the Argentine Basin to the Brazil Basin through the Vema Channel is observed on the basis of lowered profilers and anchored buoys with current meters. The further flow of bottom water in the Brazil Basin splits in the northern part of the basin. Part of the bottom water flows to the East Atlantic through the Romanche and Chain fracture zones. The other part follows the bottom topography and flows to the northwester into the North American Basin. Part of the northwesterly flow propagates through the Vema Fracture Zone into the Northeastern Atlantic. This flow generally fills the bottom layer in the Northeastern Atlantic basins. The flows of bottom waters through the Romanche and Chain fracture zones do not spread to the Northeast Atlantic due to strong mixing in the equatorial zone and enhanced transformation of bottom water properties.

  17. Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel

    International Nuclear Information System (INIS)

    Choi, Gil Sik; Chang, Soon Heung

    2014-01-01

    From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future

  18. Review of Critical Heat Flux Correlations for Upward Flow in a Vertical Thin Rectangular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    From the view point of safety, this type of fuel has higher resistance to earthquake and external impact. The cross section of coolant flow channel in the reactor core composed with the plate fuel is a thin rectangular shape. Thermal-hydraulic characteristics of this thin rectangular channel are different with those of general circular rod fuel bundle flow channel. Accordingly it could be thought that the CHF correlation in a thin rectangular channel is different with that in a circular channel, for which a large number of researches on CHF prediction have been carried out. The objective of this paper is to review previous researches on CHF in a thin rectangular channel, summarize the important conclusion and propose the new simple CHF correlation, which is based on the data set under high pressure and high flow rate condition. The researches on CHF in rectangular channel have been partially carried out according to the pressure, heated surface number, heated surface wettability effect, flow driving force and flow direction conditions. From the literature researches on CHF for upward flow in a vertical thin rectangular channel, some CHF prediction methods were reviewed and compared. There is no universal correlation which can predict CHF at all conditions, but generally, Katto empirical correlation is known to be useful at high pressure and high flow rate. The new simple correlation was developed from the restricted data set, the CHF prediction capacity of which is better than that of Katto. Even though the prediction consistency of the new simple correlation is lower, MAE and RMS error decreased quite. For the more development of the new simple CHF correlation, the more advanced regression analysis method and theoretical analysis should be studied in future.

  19. Modelling of flow and heat transfer in PV cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.

  20. First direct observations linking confined supercritical turbidity currents to their depositional architecture and facies characteristics

    Science.gov (United States)

    Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.

    2017-12-01

    Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally

  1. Free-Molecular Gas Flow in Narrow (Nanoscale) Channel

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Roldugin, V.I.; Žďanov, V.M.; Ždímal, Vladimír

    2014-01-01

    Roč. 87, č. 4 (2014), s. 802-814 ISSN 1062-0125 Grant - others:BRFFI(BY) T12P-018; RFBR(RU) 12-08-90009 Institutional support: RVO:67985858 Keywords : narrow channels * free-molecular gas flow * surface diffusion Subject RIV: CF - Physical ; Theoretical Chemistry

  2. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    Science.gov (United States)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  3. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  4. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  5. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2012-12-01

    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  6. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  7. Research status of fast flows and shocks in laboratory plasmas. Supersonic plasma flow and shock waves in various magnetic channels

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Ando, Akira

    2007-01-01

    Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)

  8. Ultrasonic flow-through filtration of microparticles in a microfluidic channel using frequency sweep technique

    International Nuclear Information System (INIS)

    Seo, Dae Cheol; Ahn, Bong Young; Cho, Seung Hyun; Siddique, A. K. M. Ariful Haque; Kim, Cheol Gi

    2013-01-01

    Many studies have been conducted on the filtration of microparticles using the acoustic radiation force of ultrasonic standing wave. The present work concerns a flow-through particle filtration method by utilizing frequency varying ultrasound. The periodical frequency sweep of the ultrasonic standing wave translocates particles across a microchannel, where particles in fluid flow are filtrated without barriers. The present filtration technique in a microfluidic channel was proposed conceptually in the 1990s. However, its experimental realization on actual particles in a microfluidic channel has not been carried out in a notable way. Several sizes of polystyrene microspheres (10 µm to 90 µm) and silicon carbide (SiC) particles (37 µm) suspended in water were applied as a test sample. For filtration of those particles, a Y-branched microfluidic channel with one inlet and two outlets was made out of steel and acrylic as a form of modulized device. Ultrasound of a few MHz in band frequency (1.75 MHz to 3.05 MHz) was transmitted into one side of the channel wall to generate a standing wave field in fluid flow. The periodical frequency sweep operation showed successful filtration performance, whereby particles in water flowed into one outlet and purified water flowed into the other outlet of the Y branch of the channel.

  9. Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...

    African Journals Online (AJOL)

    The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...

  10. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians

    Science.gov (United States)

    Łapcik, Piotr

    2018-02-01

    Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.

  11. Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel

    Science.gov (United States)

    Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik

    2017-11-01

    We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.

  12. Measurement channel of neutron flow based on software

    International Nuclear Information System (INIS)

    Rivero G, T.; Benitez R, J. S.

    2008-01-01

    The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a

  13. The influence of flow obstructions on flooding phenomena in vertical channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; Farello, G.E.; Setaro, T.

    1988-01-01

    Flooding phenomenon limits the stability of a liquid film falling downwards along the walls of a channel inside which an upwards gas flow takes place. As known, this entrainment effect can completely prevent the liquid fall from its natural flow. A local reduction of the flow channel cross section, due for instance to an obstruction, will affect the flooding parameters, depending on the position at which the obstruction is located and on the obstruction flow cross section. The present work deals with an air-water experiment carried out with a transparent circular duct test section, inside which it is possible to insert orifices having several diameters, to test the influence of the obstruction on flooding parameters. Predictions by the correlations available in literature are compared and a method to evaluate the influence of the obstruction is proposed

  14. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2017-01-01

    In this study, the gaseliquid flow through an interdigitated anode flow field of a PEM water electrolysis cell (PEMEC) is analysed using a three-dimensional, transient, computational fluid dynamics (CFD) model. To account for two-phase flow, the volume of fluid (VOF) method in ANSYS Fluent 17...... of the channel. The model is capable of revealing effect of different bubble shapes/lengths in the outgoing channel. Shape and the sequence of the bubbles affect the water flow distribution in the ATL. The model presented in this work is the first step in the development of a comprehensive CFD model...

  15. More Than Flow: Revisiting the Theory of Four Channels of Flow

    Directory of Open Access Journals (Sweden)

    Ching-I Teng

    2012-01-01

    Full Text Available Flow (FCF theory has received considerable attention in recent decades. In addition to flow, FCF theory proposed three influential factors, that is, boredom, frustration, and apathy. While these factors have received relatively less attention than flow, Internet applications have grown exponentially, warranting a closer reexamination of the applicability of the FCF theory. Thus, this study tested the theory that high/low levels of skill and challenge lead to four channels of flow. The study sample included 253 online gamers who provided valid responses to an online survey. Analytical results support the FCF theory, although a few exceptions were noted. First, skill was insignificantly related to apathy, possibly because low-skill users can realize significant achievements to compensate for their apathy. Moreover, in contrast with the FCF theory, challenge was positively related to boredom, revealing that gamers become bored with difficult yet repetitive challenges. Two important findings suggest new directions for FCF theory.

  16. Three-Dimensional, Numerical Investigation of Flow and Heat Transfer in Rectangular Channels Subject to Partial Blockage

    KAUST Repository

    Salama, Amgad; El-Amin, Mohamed; Sun, Shuyu

    2014-01-01

    Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.

  17. Three-Dimensional, Numerical Investigation of Flow and Heat Transfer in Rectangular Channels Subject to Partial Blockage

    KAUST Repository

    Salama, Amgad

    2014-08-25

    Numerical simulation of flow and heat transfer in two adjacent channels is conducted with one of the channels partially blocked. This system simulates typical channels of a material testing reactor. The blockage is assumed due to the buckling of one of the channel plates inward along its width. The blockage ratio considered in this work is defined as the ratio between the cross-sectional area of the blocked and the unblocked channel. In this work, we consider a blockage ratio of approximately 40%. However, the blockage is different along the width of the channel, ranging from 0% at the end of the channel to 90% in the middle. The channel walls are sandwiching volumetric heat sources that vary spatially as chopped cosine functions. Interesting patterns are highlighted and investigated. The reduction in the flow area of one channel results in the flow redistributing among the two channels according to the changes in their hydraulic conductivities. The results of the numerical simulations show that the maximum wall temperature in the blocked channel is well below the boiling temperature at the operating pressure.

  18. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  19. Analytical study of narrow channel flow for a spallation target system design

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Shafiqul; Monde, Masanori [Saga Univ., Saga (Japan); Terada, Atsuhiko; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    Heat transfer and pressure drop characteristics under fully developed turbulent water flow condition were analyzed over a two-dimensional narrow rectangular channel whose height is H=1.2 mm. The channel configuration and water flow condition simulate forced convection cooling of a spallation target system components design such as a solid target and a proton beam window. The high-Reynolds number form of the standard k - {epsilon} and RNG k - {epsilon} models employing wall functions for the Reynolds number (Re) range of 7,000 to 22,000 were used in the analyses. As for heat transfer characteristics of a smooth channel, the Nusselt number obtained by the standard k - {epsilon} model agreed very well with the Dittus-Boelter correlation. No significant differences in friction factors for the smooth channel were observed for these two models, which agreed well with the Blasius correlation. However, the standard k - {epsilon} model could not predict friction factors well for the rib-roughened channel. (author)

  20. Analytical study of narrow channel flow for a spallation target system design

    International Nuclear Information System (INIS)

    Islam, Md. Shafiqul; Monde, Masanori; Terada, Atsuhiko; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-07-01

    Heat transfer and pressure drop characteristics under fully developed turbulent water flow condition were analyzed over a two-dimensional narrow rectangular channel whose height is H=1.2 mm. The channel configuration and water flow condition simulate forced convection cooling of a spallation target system components design such as a solid target and a proton beam window. The high-Reynolds number form of the standard k - ε and RNG k - ε models employing wall functions for the Reynolds number (Re) range of 7,000 to 22,000 were used in the analyses. As for heat transfer characteristics of a smooth channel, the Nusselt number obtained by the standard k - ε model agreed very well with the Dittus-Boelter correlation. No significant differences in friction factors for the smooth channel were observed for these two models, which agreed well with the Blasius correlation. However, the standard k - ε model could not predict friction factors well for the rib-roughened channel. (author)

  1. Luminal flow amplifies stent-based drug deposition in arterial bifurcations.

    Directory of Open Access Journals (Sweden)

    Vijaya B Kolachalama

    2009-12-01

    Full Text Available Treatment of arterial bifurcation lesions using drug-eluting stents (DES is now common clinical practice and yet the mechanisms governing drug distribution in these complex morphologies are incompletely understood. It is still not evident how to efficiently determine the efficacy of local drug delivery and quantify zones of excessive drug that are harbingers of vascular toxicity and thrombosis, and areas of depletion that are associated with tissue overgrowth and luminal re-narrowing.We constructed two-phase computational models of stent-deployed arterial bifurcations simulating blood flow and drug transport to investigate the factors modulating drug distribution when the main-branch (MB was treated using a DES. Simulations predicted extensive flow-mediated drug delivery in bifurcated vascular beds where the drug distribution patterns are heterogeneous and sensitive to relative stent position and luminal flow. A single DES in the MB coupled with large retrograde luminal flow on the lateral wall of the side-branch (SB can provide drug deposition on the SB lumen-wall interface, except when the MB stent is downstream of the SB flow divider. In an even more dramatic fashion, the presence of the SB affects drug distribution in the stented MB. Here fluid mechanic effects play an even greater role than in the SB especially when the DES is across and downstream to the flow divider and in a manner dependent upon the Reynolds number.The flow effects on drug deposition and subsequent uptake from endovascular DES are amplified in bifurcation lesions. When only one branch is stented, a complex interplay occurs - drug deposition in the stented MB is altered by the flow divider imposed by the SB and in the SB by the presence of a DES in the MB. The use of DES in arterial bifurcations requires a complex calculus that balances vascular and stent geometry as well as luminal flow.

  2. Numerical simulation of particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.

    2001-01-01

    This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,

  3. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  4. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  5. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman

    2012-01-01

    Solid thin films have been deposited on stainless steel 202 (SS 202) substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD) reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in g...

  6. Flow analysis of an innovative compact heat exchanger channel geometry

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Reulet, F.; Millan, P.

    2016-01-01

    Highlights: • An innovative compact heat transfer technology is proposed. • Experimental measurements are shown to validate the CFD model. • CFD simulations show various flow mechanisms. • Flow analysis is performed to study physical phenomena enhancing heat transfer. - Abstract: In the framework of CEA R&D program to develop an industrial prototype of sodium-cooled fast reactor named ASTRID, the present work aims to propose an innovative compact heat exchanger technology to provide solid technological basis for the utilization of a Brayton gas-power conversion system, in order to avoid the energetic sodium–water interaction if a traditional Rankine cycle was used. The aim of the present work is to propose an innovative compact heat exchanger channel geometry to potentially enhance heat transfer in such components. Hence, before studying the innovative channel performance, a solid experimental and numerical database is necessary to perform a preliminary thermal–hydraulic analysis. To do that, two experimental test sections are used: a Laser Doppler Velocimetry (LDV) test section and a Particle Image Velocimetry (PIV) test section. The acquired experimental database is used to validate the Anisotropic Shear Stress Transport (ASST) turbulence model. Results show a good agreement between LDV, PIV and ASST data for the pure aerodynamic flow. Once validated the numerical model, the innovative channel flow analysis is performed. Principal and secondary flow has been analyzed, showing a high swirling flow in the bend region and demonstrating that mixing actually occurs in the mixing zone. This work has to be considered as a step forward the preposition of a reliable high-performance component for application to ASTRID reactor as well as to any other industrial power plant dealing needing compact heat exchangers.

  7. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  8. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  9. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  10. Visualized investigation on flow regimes for vertical upward steam–water flow in a heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang

    2012-01-01

    Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.

  11. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2010-12-01

    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  12. The effect of the flow direction inside the header on two-phase flow distribution in parallel vertical channels

    International Nuclear Information System (INIS)

    Marchitto, A.; Fossa, M.; Guglielmini, G.

    2012-01-01

    Uniform fluid distribution is essential for efficient operation of chemical-processing equipment such as contactors, reactors, mixers, burners and in most refrigeration equipment, where two phases are acting together. To obtain optimum distribution, proper consideration must be given to flow behaviour in the distributor, flow conditions upstream and downstream of the distributor, and the distribution requirements (fluid or phase) of the equipment. Even though the principles of single phase distribution have been well developed for more than three decades, they are frequently not taken in the right account by equipment designers when a mixture is present, and a significant fraction of process equipment consequently suffers from maldistribution. The experimental investigation presented in this paper is aimed at understanding the main mechanisms which drive the flow distribution inside a two-phase horizontal header in order to design improved distributors and to optimise the flow distribution inside compact heat exchanger. Experimentation was devoted to establish the influence of the inlet conditions and of the channel/distributor geometry on the phase/mass distribution into parallel vertical channels. The study is carried out with air–water mixtures and it is based on the measurement of component flow rates in individual channels and on pressure drops across the distributor. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2–1.2 and 1.5–16.5 m/s, respectively. In order to control the main flow direction inside the header, different fitting devices were tested; the insertion of a co-axial, multi-hole distributor inside the header has confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of

  13. Flow and heat transfer in parallel channel attached with equally-spaced ribs, 2

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Takizuka, Takakazu

    1980-09-01

    Using a computer code for the analysis of the flow and heat transfer in a parallel channel attached with equally-spaced ribs, calculations are performed when a pitch to rib-width ratio is 7 : 1, a rib-width to rib-height ratio is 2 : 1 and a channel-height to rib-height is 3 : 1. Assuming that the fluid properties and the heat-flux at the wall of this channel are constant, characteristics of the flow and heat transfer are analyzed in the range of Reynolds number from 10 to 250. The following results are obtained: (1) The separation region behind a rib grows downstream with the increase of Reynolds number. (2) The pressure drop of ribbed channel is greater than that of the smooth channel, and increases as Reynolds number increases. (3) The mean Nusselt number of ribbed channel is about 10 - 11 at the upper wall and about 7.5 at the lower wall in the range of Reynolds number from 10 to 250. (author)

  14. The hydraulic geometry of narrow and deep channels; evidence for flow optimisation and controlled peatland growth

    Science.gov (United States)

    Nanson, Rachel A.; Nanson, Gerald C.; Huang, He Qing

    2010-04-01

    At-a-station and bankfull hydraulic geometry analyses of peatland channels at Barrington Tops, New South Wales, Australia, reveal adjustments in self-forming channels in the absence of sediment load. Using Rhodes ternary diagram, comparisons are made with hydraulic geometry data from self-forming channels carrying bedload in alluvial settings elsewhere. Despite constraints on channel depths caused at some locations by the restricted thickness of peat, most stations have cohesive, near-vertical, well-vegetated banks, and width/depth (w/d) ratios of ∼ 2 that are optimal for sediment-free flow. Because banks are strong, resist erosion and can stand nearly vertical, and depth is sometimes constrained, adjustments to discharge are accommodated largely by changes in velocity. These findings are consistent with the model of maximum flow efficiency and the overarching least action principle in open channels. The bankfull depth of freely adjusting laterally active channels in clastic alluvium is well known to be related to the thickness of floodplain alluvium and a similar condition appears to apply to these swamps that grow in situ and are formed almost entirely of organic matter. The thickness of peat in these swamps rarely exceeds that required to form a bankfull channel of optimum w/d ratio for the transport of sediment-free water. Swamp vegetation is highly dependent on proximity to the water table. To maintain a swamp-channel and associated floodplain system, the channels must flow with sufficient water much of the time; they not only offer an efficient morphology for flow but do so in a way that enables bankfull conditions to occur many times a year. They also prevent the swamp from growing above a level linked to the depth of the channel. Once the channel attains the most efficient cross section, further growth of the swamp vertically is restricted by enhanced flow velocities and limited flow depths. This means that the volume of peat in such swamps is determined

  15. A thermal analysis computer programme package for the estimation of KANUPP coolant channel flows and outlet header temperature distribution

    International Nuclear Information System (INIS)

    Siddiqui, M.S.

    1992-06-01

    COFTAN is a computer code for actual estimation of flows and temperatures in the coolant channels of a pressure tube heavy water reactor. The code is being used for Candu type reactor with coolant flowing 208 channels. The simulation model first performs the detailed calculation of flux and power distribution based on two groups diffusion theory treatment on a three dimensional mesh and then channel powers, resulting from the summation of eleven bundle powers in each of the 208 channels, are employed to make actual estimation of coolant flows using channel powers and channel outlet temperature monitored by digital computers. The code by using the design flows in individual channels and applying a correction factor based on control room monitored flows in eight selected channels, can also provide a reserve computational tool of estimating individual channel outlet temperatures, thus providing an alternate arrangements for checking Rads performance. 42 figs. (Orig./A.B.)

  16. The transverse dynamics of flow in a tidal channel within a greater strait

    Science.gov (United States)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2018-02-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  17. CHANGE: A numerical model for three-dimensional modelling of channelized flow in rock: Theory and design

    International Nuclear Information System (INIS)

    Billaux, D.; Long, J.C.S.; Peterson, J.E. Jr.

    1990-03-01

    A model for channelized flow in three-dimensional, random networks of fractures has been developed. In this model, the fractures are disc-shaped discontinuities in an impermeable matrix. Within each fracture, flow occurs only in a network of random channels. The channels in each fracture can be generated independently with random distributions of length, conductivity, and orientation in the fracture plane. Boundary conditions are specified on the sides of a ''flow region,'' and at the intersections of the channels with interior ''holes'' specified by the user to simulate boreholes or drifts. This code is part of a set of programs used to generate two-dimensional or three-dimensional random fracture networks, plot them, compute flow through them and analyze the results. 8 refs., 13 figs

  18. Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study

    Science.gov (United States)

    Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur

    2018-04-01

    This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself

  19. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  20. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  1. Effect of flow field with converging and diverging channels on proton exchange membrane fuel cell performance

    International Nuclear Information System (INIS)

    Zehtabiyan-Rezaie, Navid; Arefian, Amir; Kermani, Mohammad J.; Noughabi, Amir Karimi; Abdollahzadeh, M.

    2017-01-01

    Highlights: • Effect of converging and diverging channels on fuel cell performance. • Over rib flow is observed from converging channels to neighbors. • Proposed flow field enriches oxygen level and current density in catalyst layer. • Net output power is enhanced more than 16% in new flow field. - Abstract: In this study, a novel bipolar flow field design is proposed. This new design consists of placed sequentially converging and diverging channels. Numerical simulation of cathode side is used to investigate the effects of converging and diverging channels on the performance of proton exchange membrane fuel cells. Two models of constant and variable sink/source terms were implemented to consider species consumption and production. The distribution of oxygen mole fraction in gas diffusion and catalyst layers as a result of transverse over rib velocity is monitored. The results indicate that the converging channels feed two diverging neighbors. This phenomenon is a result of the over rib velocity which is caused by the pressure difference between the neighboring channels. The polarization curves show that by applying an angle of 0.3° to the channels, the net electrical output power increases by 16% compared to the base case.

  2. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  3. Stream flow - its estimation, uncertainty and interaction with groundwater and floodplains

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang

    , floodplain hydraulics and sedimentation patterns has been investigated along a restored channel section of Odense stream, Denmark. Collected samples of deposited sediment, organic matter and phosphorus on the floodplain were compared with results from a 2D dynamic flow model. Three stage dependent flow...... regimes were predicted by the flow model with shifting primary overbank flow and zones of flow confluence. These dynamic flow patterns were found to correlate with the spatial deposition of total phosphorus (11.4 g m-2), organic matter (0.65 kg m-2) and sediment (4.72 kg m-2), and zones of major total...... sediment deposition coincided with the flow confluence zones. The revealed complex spatially and temporally changing floodplain flow pattern was found to play a decisive role for the deposition processes. The interaction between stream flow and groundwater from catchment to point scale has been...

  4. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  5. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    Science.gov (United States)

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Morphological elements of the Lofoten Basin Channel - implications for the properties of the latest turbidity currents

    Science.gov (United States)

    Laberg, J. S.; Forwick, M.; Johannesen, H. B.; Ivanov, M.; Kenyon, N. H.; Vorren, T. O.

    2009-04-01

    A modern turbidite system, the Andøya Canyon - Lofoten Basin Channel and associated deposits, is located on the continental margin offshore northern Norway (Laberg et al., 2005; 2007). Based on swath bathymetry, side-scan sonar records, and high-resolution seismic data, the Lofoten Basin Channel can be followed from the mouth of the canyon at the base of the continental slope into the abyssal plain of the Lofoten Basin. The proximal part of the channel is a straight erosional feature, up to 30 m deep and about 3 km wide with poorly developed levees. Coring retrieved sandy turbidites deposited both on the channel floor and on its levees. Thus, some of the most recent flows were sandy, up to 3 km wide and more than 30 m high in order to overspill the channel. About 50 km off the mouth of the Andøya Canyon, the Lofoten Basin Channel joins with another channel entering from the northeast. Beyond there is a complex sea floor morphology including one main channel, several smaller channels and various erosional features. The main channel terminates 20 - 30 km to the southwest. Further into the basin an elongated, positive lobe-formed deposit is located. In front of it part of an older, smaller lobe is seen. The main channel is continuing into the deepest part of the Lofoten Basin where it terminates at about 3200 m water depth. About 20 - 25 km from its termination the channel splits into several smaller (up to 500 m wide and 10 - 30 m high), meandering channels. The inter-channel areas are dominated by down-flow elongated scour marks, some located near and in parallel with the channels. These were probably formed by smaller flows confined by the meandering channels. Other scour marks are oriented parallel to the overall flow direction and were probably formed by larger unconfined flows that overtopped and moved independently of the meandering channels. The latter may have been up to an order of magnitude wider and higher compared to the confined flows. A depositional

  7. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  8. Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow.

    Science.gov (United States)

    Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A

    2018-03-01

    Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.

  9. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2009-11-01

    Full Text Available In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  10. Thermodynamics of a natural draught-cooled container deposit for radioactive materials

    International Nuclear Information System (INIS)

    Schoenfeld, R.; Dorst, H.J.

    1982-01-01

    This article interprets a calculation model for the determination of heat dissipation and temperature distribution of cooling air within an intermediate container deposit cooled with air by natural draught for self-heating materials. The mathematical modelling of the physical processes in the flowing medium 'air' takes place stationarily and one-dimensionelly in flow direction. The calculation model is based on known procedures for the convective heat transmission, for the description of channel flow, and for the determination of pressure losses. It provides the thermodynamic characteristic data which are required for an engineering and safety design of a container deposit. (orig.) [de

  11. Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2010-01-01

    PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution......-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow....

  12. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    Science.gov (United States)

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  13. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  14. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  15. Particle resuspension from a multi-layer deposit by turbulent flow

    International Nuclear Information System (INIS)

    Fromentin, A.

    1989-09-01

    The aim of this work was to contribute to the understanding and quantification of particle resuspension from a bed exposed to a turbulent flow. The PARESS experiment has been set up and conducted. Multi-layer deposits of particles were created by allowing aerosols to settle on steel plates under conditions typical of a nuclear reactor containment following a severe accident. These were then exposed to a controlled turbulent airflow (U ∞ =5-25 m/s) in a wind tunnel and the evolution of the resuspension flux as a function of time was measured. The resuspension flux F r decreased with exposure time to the airflow t, according to a power law F r = a.t -b [kg/m 2 .s]. The parameters a and b depend on the flow velocity and the nature of the deposit. A new semi-empirical model, based on the comparison between the distributions of adhesive forces holding the particles on the deposit and aerodynamic forces tending to remove them, has been developed to simulate the stochastic nature of particle resuspension. This model is able to predict the experimentally observed decrease of the resuspension flux as a function of time and its dependence on flow velocity. Based on the results of the PARESS experiment, an empirical global relationship, which ignores the fine effects due to the nature of the different deposits, has been proposed. It appears that the resuspension flux is approximately proportinal to the cube of the flow velocity, and that a pseudo threshold velocity exists below which virtually no resuspension occurs. (author) 57 figs., 1 tab., 79 refs

  16. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...

  17. Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.

    1979-01-01

    A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air

  18. Rarefied gas flows through a curved channel: Application of a diffusion-type equation

    Science.gov (United States)

    Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki

    2010-11-01

    Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.

  19. Analysis of the Onset of Flow Instability in rectangular heated channel using drift flux model

    International Nuclear Information System (INIS)

    El-Hadjen, H.; Balistrou, M.; Hamidouche, T.; Bousbia-Salah, A.

    2005-01-01

    Two-phase flow excursion (Ledinegg) instability in boiling channels is of great concern in the design and operation of numerous practical systems especially in Research Reactors. Such instability can lead to significant reduction in channel flow, thereby causing premature burnout of the heated channel before the CHF point. The present work focuses on a simulation of pressure drop in forced convection boiling in vertical narrow and parallel uniformly heated channels. The objective is to determine the point of Onset of Flow Instability (OFI) by varying input flow rate. The axial void distribution is also provided. The numerical model is based on the finite difference method which transforms the partial differential conservation equation of mass, momentum and energy, in algebraic equations. Closure relationships based upon the drift flux model and other constitutive equations are considered to determine the channel pressure drop under steady state boiling conditions. The model validation is performed by confronting the calculations with the Oak Ridge National Laboratory thermal Hydraulic Test Loop (THTL) experimental data set. Further verification of this model is performed by code- to code verification using the results of RELAP5/Mod 3.2 code. (author)

  20. Contribution of large-scale coherent structures towards the cross flow in two interconnected channels

    International Nuclear Information System (INIS)

    Mahmood, A.; Rohde, M.; Hagen, T.H.J.J. van der; Mudde, R.F.

    2009-01-01

    Single phase cross flow through a gap region joining two vertical channels has been investigated experimentally for Reynolds numbers, based on the channels hydraulic diameter, ranging from 850 to 21000. The flow field in the gap region is investigated by 2D-PIV and the inter channel mass transfer is quantified by the tracer injection method. Experiments carried out for variable gap heights and shape show the existence of a street of large-scale counter rotating vortices on either side of the channel-gap interface, resulting from the mean velocity gradient in the gap and the main channel region. The appearance of the coherent vortices is subject to a threshold associated with the difference between the maximum and the minimum average stream wise velocities in the channel and the gap region, respectively. The auto power spectral density of the cross velocity component in the gap region exhibits a slope of -3 in the inertial range, indicating the 2D nature of these vortices. The presence of the large-scale vortices enhances the mass transfer through the gap region by approximately 63% of the mass transferred by turbulent mixing alone. The inter-channel mass transfer, due to cross flow, is found to be dependent not only on the large-scale vortices characteristics, but also on the gap geometry. (author)

  1. Numerical analysis of steady state fluid flow in a two-dimensional wavy channel

    International Nuclear Information System (INIS)

    Gorji, M.; Hosseinzadeh, E.

    2007-01-01

    A simple geometry of the flow passage that may be used to enhance the heat transfer rate is called wavy and periodic channel. Wavy channel can provide significant heat transfer augmentation and was always important for heat transfer engineering and so far many researches have been done in this field. In this paper, the effects of channel geometry and Reynolds number on the heat transfer coefficient, heat flux and pressure drop for the laminar fully developed flow in a two dimensional channel whereas the walls are considered fix temperature is numerically investigated. The problem is solved for channel with one and two wavy walls and comparisons with the straight channel, in the same flow rate, have been performed. Results indicate that, by decreasing the channel wave length and the distance between the channel walls the pressure drop, heat flux and heat transfer coefficient increase. Results and Conclusions: The following conclusion may be drawn: 1. In a specified channel, for the fluid flow with the constant Reynolds number, by decreasing the wave length from 0.2 m to 0.1 m, the pressure drop, heat flux and heat transfer coefficient increase by 37% , 54% and 29% respectively, whereas by decreasing the wave length from the same value the above mentioned parameters decrease to 108% , 143% and 47% respectively. 2. In a specified wave length, where the amplitude and the Reynolds number is constant, by increasing the distance between the walls from 0.15 m to 0.25 m, the pressure drop, heat flux and heat transfer coefficient decrease by 41% ,8% and 7.8% respectively. References [1] J.C. Burns, T. Parks, J. Fluid Mesh, 29(1967), 405-416. [2] J.L. Goldestein, E.M. Sparrow, ASME J. Heat Transfer, 99 (1977), 187. [3] J.E.O. Brain, E.M. Sparrow, ASME J. Heat Transfer, 104 (1982), 410 [4] N. Sanie, S. Dini, ASME J. Heat Transfer, 115 (1993), 788. [5] G. Wang, P. Vanka, Int. J. Heat Mass Transfer, 38 (17) (1995), 3219. [6] T.A. Rush, T.A. Newell, A.M. Jacobi, Int, J. Heat Mass

  2. Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Limin, Zheng [Shanghai Nuclear Engineering Research and Design Inst., SH (China); Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime

    1997-08-01

    The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms{sup -1} and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D{sub hy}=0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm{sup -2}s{sup -1} (water flow velocity, 5-15 ms{sup -1}); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within {+-}18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within {+-}16%. (author)

  3. Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel

    International Nuclear Information System (INIS)

    Zheng Limin; Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime.

    1997-08-01

    The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms -1 and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D hy =0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm -2 s -1 (water flow velocity, 5-15 ms -1 ); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within ±18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within ±16%. (author)

  4. Numerical study of mixed convection heat transfer enhancement in a channel with active flow modulation

    Science.gov (United States)

    Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim

    2017-06-01

    A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.

  5. Cross-equatorial flow through an abyssal channel under the complete Coriolis force: Two-dimensional solutions

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    The component of the Coriolis force due to the locally horizontal component of the Earth's rotation vector is commonly neglected, under the so-called traditional approximation. We investigate the role of this "non-traditional" component of the Coriolis force in cross-equatorial flow of abyssal ocean currents. We focus on the Antarctic Bottom Water (AABW), which crosses from the southern to the northern hemisphere through the Ceara abyssal plain in the western Atlantic ocean. The bathymetry in this region resembles a northwestward channel, connecting the Brazil Basin in the south to the Guyana Basin in the north. South of the equator, the AABW leans against the western continental rise, consistent with a northward flow in approximate geostrophic balance. The AABW then crosses to the other side of the abyssal channel as it crosses the equator, and flows into the northern hemisphere leaning towards the east against the Mid-Atlantic Ridge. The non-traditional component of the Coriolis force is strongest close to the equator. The traditional component vanishes at the equator, being proportional to the locally vertical component of the Earth's rotation vector. The weak stratification of the abyssal ocean, and subsequent small internal deformation radius, defines a relatively short characteristic horizontal lengthscale that tends to make non-traditional effects more prominent. Additionally, the steep gradients of the channel bathymetry induce large vertical velocities, which are linked to zonal accelerations by the non-traditional components of the Coriolis force. We therefore expect non-traditional effects to play a substantial role in cross-equatorial transport of the AABW. We present asymptotic steady solutions for non-traditional shallow water flow through an idealised abyssal channel, oriented at an oblique angle to the equator. The current enters from the south, leaning up against the western side of the channel in approximate geostrophic balance, and crosses the

  6. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  7. A mathematical model of the flow and bed topography in curved channels

    NARCIS (Netherlands)

    Olesen, K.W.

    1985-01-01

    A two-dimensional horizontal mathematical model of the flow and bed topography in alluvial channel bends is presented. The applicability of the model is restricted to channels of which the width-depth ratio is large, the Froude number is small, bed load is dominant and grain sorting effects are

  8. The development of radiotracer methods for laminar flow measurements in small channels

    International Nuclear Information System (INIS)

    Gardner, R.P.; Dunn, T.S.

    1977-01-01

    A general tracer principle is identified for the determination of laminar flow rate in channels of constant cross section. It is based on the development of a mathematical model that relates the detector response to the tracer initial condition and the pertinent flow parameters in the channel. The flow rate and other flow parameters of interest are obtained by fitting the model predictions to the experimental responses obtained. The principle is generally applied by: (1) injecting the tracer in a reproducible way so that a known initial condition is obtained, (2) monitoring the resulting tracer concentration at a suitable downstream point, and (3) obtaining the flow rate and other flow parameters of interest by a nonlinear search for the minimum reduced chi 2 value obtained from model predictions and experimental responses. Considerations pertinent to the principle and general method are discussed in this present part while two specific methods are treated in Parts II and III. (Int. J. Appl. Radiat. Isot.; 28: p355 and p369). (author)

  9. Blood flow analysis with considering nanofluid effects in vertical channel

    Science.gov (United States)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  10. Sediment control - an appropriate solution for small irrigation channels

    International Nuclear Information System (INIS)

    Shoag, M.A.

    2002-01-01

    Sediment control is one of the key factors considered prior to the design of an irrigation channel. When the channel takes off from its headworks, its slope is usually smaller than that of the parent stream to obtain required head. If the sediment load is heavy then the channel can not maintain equilibrium since the high influx can not be transported fully due to its small gradient. This results in the deposition of part incoming sediment in the channel itself. A typical irrigation intake suitable for small schemes, which consists of a simple settling basin with double orifice: one at the inlet from the river and the other at the outlet to the canal. The basin is provided with a side spill weir near its downstream end, to discharge flows in excess of the maximum canal capacity. This paper deals with the experimental study of such an arrangement. Different flows were run covering a range of levels in the river, from minimum to flood flows to check the hydraulic performance of the layout and in particular to study its effectiveness in settling sediment at low flows and avoiding excessive sediment input to the canal during flood. (author)

  11. Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC

    Directory of Open Access Journals (Sweden)

    Elif Eker

    2013-08-01

    Full Text Available In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant.The results show that increasing the channel width while the cell width remains constant decreases the current density.

  12. Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field

    International Nuclear Information System (INIS)

    Wang Xiaodong; Yan Weimon; Duan Yuanyuan; Weng Fangbor; Jung Guobin; Lee Chiyuan

    2010-01-01

    This work numerically investigates the effect of the channel size on the cell performance of proton exchange membrane (PEM) fuel cells with serpentine flow fields using a three-dimensional, two-phase model. The local current densities in the PEM, oxygen mass flow rates and liquid water concentrations at the interface of the cathode gas diffusion layer and catalyst layer were analyzed to understand the channel size effect. The predictions show that smaller channel sizes enhance liquid water removal and increase oxygen transport to the porous layers, which improve cell performance. Additionally, smaller channel sizes also provide more uniform current density distributions in the cell. However, as the channel size decreases, the total pressure drops across the cell increases, which leads to more pump work. With taking into account the pressure losses, the optimal cell performance occurs for a cell with a flow channel cross-sectional area of 0.535 x 0.535 mm 2 .

  13. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  14. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yang; Wen, Meimei [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Kim, Chang Nyung, E-mail: cnkim@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of); Yang, Shangjing [Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Kyunggi-do, 446-701 (Korea, Republic of)

    2017-04-15

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  15. Imbalance of the liquid-metal flow and heat extraction in a manifold with sub-channels having locally different eletric conductivity

    International Nuclear Information System (INIS)

    Luo, Yang; Wen, Meimei; Kim, Chang Nyung; Yang, Shangjing

    2017-01-01

    In this study, the characteristics of liquid metal (LM) magnetohydrodynamic (MHD) flow and convective heat transfer in a manifold with three sub-channels having locally different electric conductivity are investigated with the use of commercial code CFX, allowing an imbalance in flow rate among the sub-channels, which can be used for intensive cooling of the region with higher heat load in the blanket. In a manifold with co-flow multiple sub-channels, the electrical current can cross the fluid regions and channel walls, thus influencing the flow distribution in each sub-channel. In the present study, cases with various arrangements of the electric conductivity in different parts of the channel walls are investigated, yielding different distributions of the current and fluid flow in different cases. Here, the mechanism governing the imbalance in mass flow rate among the sub-channels is discussed. The interdependency of the fluid velocity, current and electric potential of LM MHD flows in the three sub-channels are analyzed in detail. The results show that, in the sub-channel surrounded by the walls with lower electric conductivity, higher axial velocity and superior heat extraction can be obtained, with an effective cooling associated with higher velocity, where the higher velocity is closely related to the distribution of the electromotive component of the current in the flow field.

  16. Regional exploration for channel and playa uranium deposits in Western Australia using groundwater

    International Nuclear Information System (INIS)

    Noble, R.R.P.; Gray, D.J.; Reid, N.

    2011-01-01

    Shallow calcrete aquifers in the central north of the Yilgarn Craton in Western Australia are the host to numerous secondary carnotite U deposits. Sampling and analysis of approximately 1400 shallow aquifer groundwaters were conducted to test if U mineralisation of this type may be found using a >5 km sample spacing. Results show this can be achieved. All the economic deposits and most of the minor deposits and occurrences are associated with groundwater that has carnotite (KUO 2 VO 4 ) approaching or exceeding saturated conditions. Soluble U concentrations alone identified the largest deposit (Yeelirrie) and several smaller deposits, but this parameter was not as successful as the mineral saturation indices. Palaeodrainage distribution and thickness of cover combined with surface drainage and catchment boundaries provided background information of U primary sources and for areas with the highest exploration potential for channel and playa U deposits. Granites in the SE of the study area are less prospective with regard to secondary U deposits. Groundwater geochemistry in conjunction with palaeodrainage mapping may greatly improve exploration through cover where radiometric geophysics is not effective. The study of regional, shallow groundwater for U shows multiple benefits for mineral exploration, the economy and potable water quality.

  17. Upgrade of Dhruva fuel channel flow instrumentation

    International Nuclear Information System (INIS)

    Gadgil, Kaustubh; Awale, P.K.; Sengupta, C.; Sumanth, P.; Roy, Kallol

    2014-01-01

    Dhruva, a 100 MW Heavy Water moderated and cooled, vertical tank-type Research Reactor, using metallic natural Uranium fuel has flow instrumentation for all the 144 fuel channels, consisting of venturi and triplicate DP gauges for each fuel channel. These gauges provide contacts for generation of reactor trip on low flow through fuel channel. These DP gauges were facing numerous generic and ageing related failures over the years and was also difficult to maintain owing to obsolescence. While considering an upgrade for these DP gauges, it was also planned to replace the existing Coolant Low Flow Trip (CLFT) system with a computer based Reactor Trip Logic System (RTLS). Being a retrofit job, the existing panels for mounting the gauges, cable layout, impulse tubing layout, etc. were retained, thereby simplifying the site execution, reducing reactor down time and also reducing person-milli-Sievert consumption. A customized Electronic DP Indicating Switch (EDPIS) was conceptualized for achieving these objectives. Such a design, utilizing a standard DP transmitter with customized electronic circuitry, was developed, evaluated and finalized after a series of factory trials, field trials and prototyping. The instrument design included contact input for existing CLFT system and also provision for 4-20 mA current output for the proposed computer based RTLS. The display and form factor of the instrument remained identical to older one and ensures familiarity of O and M personnel. Since EDPIS is classified as Safety Class IA, stringent type tests, hardware FMEA and V and V of the micro-controller software were carried out as per the requirements laid down by relevant standards for qualification of these instruments. Being a customized instrument, the manufacturing process was closely monitored and was followed by stringent QA plan and acceptance tests. A total of 396 gauges were replaced in a phased manner during scheduled fuelling outages and thereby did not affect reactor

  18. Dynamics of superfluid helium-3 in flow channels with restricted geometries

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The dynamics of superfluid helium-3 in flow channels with transverse sizes smaller than the mean free path of quasiparticles with respect to collisions with each other is considered, taking into account the diffusive reflection of quasiparticles from the walls. For quasiclassical Green functions the boundary conditions obtained by Ovchinnikov for the similar problem in superconductors have been used. Equations are derived defining the behavior of the difference between chemical potentials of normal and superfluid components of helium-3. These equations describe a phenomenon similar to the branch imbalance (or charge imbalance) in superconductors, and determine the relaxation depth of the pressure gradient in superfluid helium-3. The time-dependent GinzburgLandau equations are also obtained for the order parameter in the case when the transverse size of the channel is close to the critical value when the superfluid transition temperature goes to zero. The approach makes it possible to study theoretically effects related to the overcritical flows of superfluid helium-3 through narrow channels under pressure

  19. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    Science.gov (United States)

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  20. Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, M.M.

    1985-01-01

    The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt

  1. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    Science.gov (United States)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  2. Measurement of the rate of droplet deposition in vertical upward and downward annular flows

    International Nuclear Information System (INIS)

    Murakami, Toshihiro; Okawa, Tomio; Takei, Rei

    2008-01-01

    The deposition rate of droplets was measured for vertical annular two-phase flows in a small diameter tube by means of the double film extraction technique. The test section was a round tube of 5 mm in inside diameter, air and water were used as test fluids, and the flow direction was set to upward and downward; the system pressure and the flow rates of gas and liquid phases were changed parametrically. If the droplet velocity relative to the continuous gas phase is in the equilibrium state, the shear induced lift force acting on droplets is directed toward the tube centerline in upflow while toward the tube wall in downflow. Particular attention was therefore paid to the effect of flow direction. It was shown experimentally that the deposition rate of droplets in downward flow is greater than that in upward flow. The difference in the measured deposition rate may be attributed to the direction of lift force acting on droplets. (author)

  3. Flow discharge prediction in compound channels using linear genetic programming

    Science.gov (United States)

    Azamathulla, H. Md.; Zahiri, A.

    2012-08-01

    SummaryFlow discharge determination in rivers is one of the key elements in mathematical modelling in the design of river engineering projects. Because of the inundation of floodplains and sudden changes in river geometry, flow resistance equations are not applicable for compound channels. Therefore, many approaches have been developed for modification of flow discharge computations. Most of these methods have satisfactory results only in laboratory flumes. Due to the ability to model complex phenomena, the artificial intelligence methods have recently been employed for wide applications in various fields of water engineering. Linear genetic programming (LGP), a branch of artificial intelligence methods, is able to optimise the model structure and its components and to derive an explicit equation based on the variables of the phenomena. In this paper, a precise dimensionless equation has been derived for prediction of flood discharge using LGP. The proposed model was developed using published data compiled for stage-discharge data sets for 394 laboratories, and field of 30 compound channels. The results indicate that the LGP model has a better performance than the existing models.

  4. Trade flows as a channel for the transmission of business cycles

    OpenAIRE

    J.M. BERK

    1997-01-01

    The interdependence between business cycles of different countries has grown in recent decades. Many factors act as conductors of cyclical fluctuations between countries. In this context, the influence of trade flows in the global transmission of business cycles is examined. The author aims to identify empirically the line of causality of international cyclical movements as suggested by trade flows, presenting an estimate of the quantitive importance of trade flows as transmission channel.

  5. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication

    International Nuclear Information System (INIS)

    Hu, Huan; Cunningham, Brian T; King, William P; Zhuo, Yue; Oruc, Muhammed E

    2014-01-01

    Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels using a heated atomic force microscopy (AFM) tip. The heated AFM tip deposits polymer nanowires where needed to serve as etch mask to fabricate silicon molds through one step of etching. PDMS nanofluidic channels are easily fabricated through replicate molding using the silicon molds. Various shapes of nanofluidic channels with either straight or curvilinear features are demonstrated. The width of the nanofluidic channels is 500 nm, and is determined by the deposited polymer nanowire width. The height of the channel is 400 nm determined by the silicon etching time. Ion conductance measurement on one single curvy shaped nanofluidic channel exhibits the typical ion conductance saturation phenomenon as the ion concentration decreases. Moreover, fluorescence imaging of fluid flowing through a fabricated nanofluidic channel demonstrates the channel integrity. This TBN process is seamlessly compatible with existing nanofabrication processes and can be used to achieve new types of nanofluidic devices. (paper)

  6. Effect of the Aligned Flow Obstacles on Downward-Facing CHF in an Inclined Rectangular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ui ju; Son, Hong Hyun; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang, Seoul (Korea, Republic of)

    2016-05-15

    The cooling channel consists of the inclined (10 .deg. ) portion of the downward facing heating channel and vertical portion of the heating channel. Features unique to flow boiling with the downward-facing heater surface in the inclined cooling channel where the studs are installed have drawn a considerable attention. That's because prior studies on boiling crisis indicate the orientation of the heated wall can exert substantial influence on CHF. Especially, the concentration of the vapor near the downward facing heater surface makes this region susceptible to premature boiling crisis when compared to vertical or upward-facing heated wall. Also, the installed studs could cause a partial flow blockage, and distort the flow streamline. Due to the distortion, stagnation points may occur in the cooling channel, promoting the concentration of the vapor near the heated wall. Then, the locally degraded heat transfer around the points may result in the formation of vapor pocket. The primary objective of this study is to make available experimental data on the CHF values varying the shape of studs and to improve understanding of the mechanism of flow boiling crisis associated with the aligned flow obstructions by means of visual experimental study. This study presents experimental data for subcooled flow boiling of water at atmospheric pressure and low mass flux conditions. The major outcomes from this investigation can be summarized as follows: (1) The CHF value from bare test section is -320kW/m{sup 2} , significantly lower than the values from the existing correlations even considering the uncertainty in the experiments. (2) The CHF value is remarkably decreased as columnar structures are installed in the channel. It is confirmed that formation and extinction of local dryout occurs repeatedly just behind the first stud at heat flux of -160 kW/m{sup 2}.

  7. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Tominaga, Akira; Fukano, Tohru

    2004-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some case the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the burnout mechanism near the spacer is not still clear. In the present paper we discus the influence of the flow obstacle on the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel. (author)

  8. Modelling of supercritical turbulent flow over transversal ribs in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 16, č. 1 (2009), s. 65-74 ISSN 1802-1484 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent flow in open channels * flow over obstacles Subject RIV: BK - Fluid Dynamics

  9. Robust boundary treatment for open-channel flows in divergence-free incompressible SPH

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-03-01

    A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.

  10. Dynamics of flow behind backward-facing step in a narrow channel

    Directory of Open Access Journals (Sweden)

    Uruba V.

    2013-04-01

    Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  11. Plasma flow in a pressure pulsed argon cascade arc

    NARCIS (Netherlands)

    de Haas, J.C.M.; Bol, L.; Kroesen, G.M.W.; Timmermans, C.J.; Timmermans, C.J.

    1985-01-01

    Flowing thermal plasmas are frequently used e . g. in welding, cutting, plasma deposition and testing materials at high temperatures . In most of the applications the geometry is complex . In the cascade arc the argon plasma flows through a straight circular channel with a constant area. The study

  12. Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario Formation, Mexico

    Science.gov (United States)

    Hansen, Larissa; Callow, Richard; Kane, Ian; Kneller, Ben

    2017-08-01

    Thin-bedded turbidites deposited by sediment gravity flows that spill from submarine channels often contain significant volumes of sand in laterally continuous beds. These can make up over 50% of the channel-belt fill volume, and can thus form commercially important hydrocarbon reservoirs. Thin-bedded turbidites can be deposited in environments that include levees and depositional terraces, which are distinguished on the basis of their external morphology and internal architecture. Levees have a distinctive wedge shaped morphology, thinning away from the channel, and confine both channels (internal levees) and channel-belts (external levees). Terraces are flat-lying features that are elevated above the active channel within a broad channel-belt. Despite the ubiquity of terraces and levees in modern submarine channel systems, the recognition of these environments in outcrop and in the subsurface is challenging. In this outcrop study of the Upper Cretaceous Rosario Formation (Baja California, Mexico), lateral transects based on multiple logged sections of thin-bedded turbidites reveal systematic differences in sandstone layer thicknesses, sandstone proportion, palaeocurrents, sedimentary structures and ichnology between channel-belt and external levee thin-bedded turbidites. Depositional terrace deposits have a larger standard deviation in sandstone layer thicknesses than external levees because they are topographically lower, and experience a wider range of turbidity current sizes overspilling from different parts of the channel-belt. The thickness of sandstone layers within external levees decreases away from the channel-belt while those in depositional terraces are less laterally variable. Depositional terrace environments of the channel-belt are characterized by high bioturbation intensities, and contain distinctive trace fossil assemblages, often dominated by ichnofabrics of the echinoid trace fossil Scolicia. These assemblages contrast with the lower

  13. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia

    Science.gov (United States)

    Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam

    2018-02-01

    This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient

  14. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

    International Nuclear Information System (INIS)

    Armellini, A.; Casarsa, L.; Mucignat, C.

    2011-01-01

    The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

  15. On the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2003-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss the influence of the flow obstacle on the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel. (author)

  16. Flow Through A Horizontal Porous Channel With A Harmonic ...

    African Journals Online (AJOL)

    In this research work we provide a finite element solution to the problem of the flow through a horizontal channel with a harmonic pressure gradient. Results obtained shows that the velocity and temperature increases with time and that a turning point occurs in the temperature profile due to the viscous dissipation effect.

  17. Laboratory Experiments on Meandering Meltwater Channels

    Science.gov (United States)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  18. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    Science.gov (United States)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  19. Premature and stable critical heat flux for downward flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon; Jo, Daeseong

    2014-01-01

    It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date. In this regards, subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In this study, CHF for downward flow of water under low pressure in narrow rectangular channel was experimentally investigated. For conditions such as downward flow, narrow rectangular channel and low pressure, it has been deduced from literature that flow instability could largely influence on triggering CHF at lower heat flux, i. e. premature CHF. Total 54 CHF data, which includes premature and stable data was obtained for various fluid conditions and system configurations including inlet stiffness. The upper and lower boundaries of CHF were newly proposed based on the experiment

  20. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  1. A new scripting library for modeling flow and transport in fractured rock with channel networks

    Science.gov (United States)

    Dessirier, Benoît; Tsang, Chin-Fu; Niemi, Auli

    2018-02-01

    Deep crystalline bedrock formations are targeted to host spent nuclear fuel owing to their overall low permeability. They are however highly heterogeneous and only a few preferential paths pertaining to a small set of dominant rock fractures usually carry most of the flow or mass fluxes, a behavior known as channeling that needs to be accounted for in the performance assessment of repositories. Channel network models have been developed and used to investigate the effect of channeling. They are usually simpler than discrete fracture networks based on rock fracture mappings and rely on idealized full or sparsely populated lattices of channels. This study reexamines the fundamental parameter structure required to describe a channel network in terms of groundwater flow and solute transport, leading to an extended description suitable for unstructured arbitrary networks of channels. An implementation of this formalism in a Python scripting library is presented and released along with this article. A new algebraic multigrid preconditioner delivers a significant speedup in the flow solution step compared to previous channel network codes. 3D visualization is readily available for verification and interpretation of the results by exporting the results to an open and free dedicated software. The new code is applied to three example cases to verify its results on full uncorrelated lattices of channels, sparsely populated percolation lattices and to exemplify the use of unstructured networks to accommodate knowledge on local rock fractures.

  2. Critical heat flux for flow boiling of water in mini-channels

    International Nuclear Information System (INIS)

    Zhang, Weizhong; Mishima, Kaichiro; Hibiki, Takashi

    2007-01-01

    Critical heat flux (CHF) is a limiting factor when flow boiling is applied to dissipate high heat flux in mini-channels. In view of practical importance of critical heat flux correlations in engineering design and prediction, this study presents an evaluation of existing CHF correlations for flow boiling of water with available databases taken from small-diameter tubes, and then develops a new, simple CHF correlation for flow boiling in mini-channel. Three correlations by Bowring, Katto and Shah are evaluated with available CHF data in the literature for saturated flow boiling, and three correlations by Inasaka-Nariai, Celata et al. and Hall-Mudawar evaluated with the CHF data for subcooled flow boiling. The Hall-Mudawar correlation and the Shah correlation appear to be the most reliable tools for CHF prediction in the subcooled and saturated flow boiling regions, respectively. In order to avoid the defect of predictive discontinuities often encountered when applying previous correlations, a simple, nondimensional, inlet conditions dependent CHF correlation for saturated flow boiling has been formulated. Its functional form is determined by application of the artificial neural network and parametric trend analyses to the collected database. Superiority of this new correlation has been verified by the collected database. It has a mean deviation of 16.8% for this collected databank, smallest among all tested correlations. Compared to many inordinately complex correlations, this new correlation consists only of one single equation. (author)

  3. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  4. Direct numerical simulation of turbulent velocity-, pressure- and temperature-fields in channel flows

    International Nuclear Information System (INIS)

    Goetzbach, G.

    1977-10-01

    For the simulation of non stationary, three-dimensional, turbulent flow- and temperature-fields in channel flows with constant properties a method is presented which is based on a finite difference scheme of the complete conservation equations for mass, momentum and enthalpie. The fluxes of momentum and heat within the grid cells are described by sub-grid scale models. The sub-grid scale model for momentum introduced here is for the first time applicable to small Reynolds-numbers, rather coarse grids, and channels with space dependent roughness distributions. (orig.) [de

  5. Numerical simulations of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with various flow channel designs

    International Nuclear Information System (INIS)

    Jiao, Kui; Zhou, Yibo; Du, Qing; Yin, Yan; Yu, Shuhai; Li, Xianguo

    2013-01-01

    Highlights: ► Simulations of CO poisoning in HT-PEMFC with different flow channels are conducted. ► Parallel and serpentine designs result in least and most CO effects, respectively. ► General CO distributions in CLs are similar with different flow channel designs. - Abstract: The performance of high temperature proton exchange membrane fuel cell (HT-PEMFC) is significantly affected by the carbon monoxide (CO) in hydrogen fuel, and the flow channel design may influence the CO poisoning characteristics by changing the reactant flow. In this study, three-dimensional non-isothermal simulations are carried out to investigate the comprehensive flow channel design and CO poisoning effects on the performance of HT-PEMFCs. The numerical results show that when pure hydrogen is supplied, the interdigitated design produces the highest power output, the power output with serpentine design is higher than the two parallel designs, and the parallel-Z and parallel-U designs have similar power outputs. The performance degradation caused by CO poisoning is the least significant with parallel flow channel design, but the most significant with serpentine and interdigitated designs because the cross flow through the electrode is stronger. At low cell voltages (high current densities), the highest power outputs are with interdigitated and parallel flow channel designs at low and high CO fractions in the supplied hydrogen, respectively. The general distributions of absorbed hydrogen and CO coverage fractions in anode catalyst layer (CL) are similar for the different flow channel designs. The hydrogen coverage fraction is higher under the channel than under the land, and is also higher on the gas diffusion layer (GDL) side than on the membrane side; and the CO coverage distribution is opposite to the hydrogen coverage distribution

  6. Experimental studies on the flow through soft tubes and channels

    Indian Academy of Sciences (India)

    Experiments conducted in channels/tubes with height/diameter less than. 1 mm with soft walls made ... two types of flows are very similar, the treatment of the surface is very different. The experimen- tal set-up ...... The qualitative features of the ...

  7. Experimental control of natural perturbations in channel flow

    OpenAIRE

    Juillet , Fabien; Mckeon , J.; Schmid , Peter J.

    2014-01-01

    International audience; A combined approach using system identification and feed-forward control design has been applied to experimental laminar channel flow in an effort to reduce the naturally occurring disturbance level. A simple blowing/suction strategy was capable of reducing the standard deviation of the measured sensor signal by 45 %, which markedly exceeds previously obtained results under comparable conditions. A comparable reduction could be verified over a significant streamwise ex...

  8. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  9. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.

    2011-01-01

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  10. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  11. Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yojina, Jiraporn; Ngamsaad, Waipot; Nuttavut, Narin; Triampo, Darapond; Lenbury, Yongwimon; Sriyab, Somchai; Triampo, Wannapong [Faculty of Science, Mahidol University, Bangkok (Thailand); Kanthang, Paisan [Rajamangala University of Technology, Bangkok (Thailand)

    2010-10-15

    In this work, mesoscopic modeling via a computational lattice Boltzmann method (LBM) is used to investigate the flow pattern phenomena and the physical properties of the flow field around one and two square obstacles inside a two-dimensional channel with a fixed blockage ratio,{beta} =14 , centered inside a 2D channel, for a range of Reynolds numbers (Re) from 1 to 300. The simulation results show that flow patterns can initially exhibit laminar flow at low Re and then make a transition to periodic, unsteady, and, finally, turbulent flow as the Re get higher. Streamlines and velocity profiles and a vortex shedding pattern are observed. The Strouhal numbers are calculated to characterize the shedding frequency and flow dynamics. The effect of the layouts or configurations of the obstacles are also investigated, and the possible connection between the mixing process and the appropriate design of a chemical mixing system is discussed

  12. Effects of elevated line sources on turbulent mixing in channel flow

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2016-11-01

    Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.

  13. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  14. The application of μPIV technique in the study of magnetic flows in a micro-channel

    International Nuclear Information System (INIS)

    Nguyen, N.T.; Wu, Z.G.; Huang, X.Y.; Wen, C.-Y..

    2005-01-01

    In this preliminary experimental study, micro-scale particle image velocimetry (μPIV) was adopted for the first time to get the quantitative information of magnetic flows in a micro-channel. The μPIV consists of an inverted florescent microscope, a Q-switch Nd:YAG laser and a CCD camera. The florescent liquid with particles of 3 μm diameter was blended homogeneously with the prepared magnetic fluid. A permanent magnet approached and left one end of the micro-channel. The response of the magnetic fluid was recorded with the μPIV simultaneously. The flow features validate the feasibility of using μPIV technique in the study of magnetic flows in a micro-channel. μPIV provides a promising experimental tool for visualization and quantitative measurement of magnetic micro-flows

  15. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  16. SFR inverse modelling Part 2. Uncertainty factors of predicted flow in deposition tunnels and uncertainty in distribution of flow paths from deposition tunnels

    International Nuclear Information System (INIS)

    Holmen, Johan

    2007-10-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is operating the SFR repository for low- and intermediate-level nuclear waste. An update of the safety analysis of SFR was carried out by SKB as the SAFE project (Safety Assessment of Final Disposal of Operational Radioactive Waste). The aim of the project was to update the safety analysis and to produce a safety report. The safety report has been submitted to the Swedish authorities. This study is a continuation of the SAFE project, and concerns the hydrogeological modelling of the SFR repository, which was carried out as part of the SAFE project, it describes the uncertainty in the tunnel flow and distributions of flow paths from the storage tunnels. Uncertainty factors are produced for two different flow situations, corresponding to 2,000 AD (the sea covers the repository) and 4,000 AD (the sea has retreated form the repository area). Uncertainty factors are produced for the different deposition tunnels. The uncertainty factors are discussed in Chapter 2 and two lists (matrix) of uncertainty factors have been delivered as a part of this study. Flow paths are produced for two different flow situations, corresponding to 2,000 AD (the sea covers the repository) and 5,000 AD (the sea has retreated form the repository area). Flow paths from the different deposition tunnels have been simulated, considering the above discussed base case and the 60 realisation that passed all tests of this base case. The flow paths are presented and discussed in Chapter 3 and files presenting the results of the flow path analyses have been delivered as part of this study. The uncertainty factors (see Chapter 2) are not independent from the flow path data (see Chapter 3). When stochastic calculations are performed by use of a transport model and the data presented in this study is used as input to such calculations, the corresponding uncertainty factors and flow path data should be used. This study also includes a brief discussion of

  17. PIV Measurements of Turbulent Flow in a Channel with Solid or Perforated Ribs

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2011-01-01

    Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart. For ...

  18. Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor

    International Nuclear Information System (INIS)

    Davis, Jonathan T; Esposito, Daniel V

    2017-01-01

    The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal–insulator–semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime. (paper)

  19. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    Science.gov (United States)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first

  20. On the stability of the production of bubbles in yield-stress fluid using flow-focusing and T-junction devices

    Science.gov (United States)

    Laborie, B.; Rouyer, F.; Angelescu, D. E.; Lorenceau, E.

    2016-06-01

    We investigate experimentally the stability of bubble production in yield-stress fluids (YSF) and highly viscous silicone oil, using flow-focusing and T-junction devices. When the exit channel is initially pre-filled with the fluid and the gas is pressure-driven, the production is highly unstable, despite a regular frequency of bubble production in the junction. As observed for pressure-driven bubble trains in Newtonian fluids, we report that two mechanisms can explain these observations: (i) drastic reduction of the hydrodynamic pressure drop along the channel during the transient bubble production, which induces a rapid increase of the gas flow rate and (ii) thin film deposition resulting in a cascade of plug break-up and bubble coalescence. While the drastic reduction of the pressure drop is inevitable in such two-phase flows, we show that modifying the surfaces of the channel can help to stabilize the system when the continuous phase is a YSF. To do so, we measure the thickness of the film deposited on the channel wall for rough and smooth channels. Our results are rationalized by introducing the inverse of the Bingham number Bi-1 comparing the viscous stress to the yield stress. For Bi-1 ≥ 1, a fast fluidization process associated to efficient deposition of YSF on the channel wall leads to a rapid destabilization of bubble production. However, for Bi-1 < 1, the deposition driven by capillarity can be hindered by the wall-slip induced by the existence of the yield stress: the thickness of the deposited film is very thin and corresponds to the equivalent roughness of the channels. It is typically 40 μm thick for rough surfaces and below the limit of resolution of our set-up for smooth surfaces. In this regime of Bi-1 and for smooth surfaces, the length of the plugs barely vanishes, thus the start-up flow is less prone to destabilization. These results therefore potentially open routes to steady production of aerated YSF on smooth channels in the regime of

  1. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  2. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls

    International Nuclear Information System (INIS)

    Buren, Mandula; Jian, Yongjun; Chang, Long

    2014-01-01

    In this paper a perturbation method is introduced to study the electromagnetohydrodynamic (EMHD) flow in a microparallel channel with slightly corrugated walls. The corrugations of the two walls are periodic sinusoidal waves of small amplitude either in phase or half-period out of phase, and the perturbation solutions of velocity and volume flow rate are obtained. Using numerical computation the effects of the corrugations on the flow are graphically analysed. The results show that the influence of corrugation on the flow decreases with Hartmann number. The phase difference of wall corrugations becomes unimportant when the wavenumber is greater than 3 or when the Hartmann number is greater than 4. With the increase in wavenumber, the decreasing effects of corrugations on the flow increase. When the wavenumber is smaller than the threshold wavenumber (it is a function of Hartmann number) and the wall corrugations are half-period out of phase, the corrugations can enhance the mean velocity of EMHD flow. However, the mean velocity is always decreased when the corrugations are in phase. (paper)

  3. Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration

    CERN Document Server

    Pozorski, Jacek

    2017-01-01

    The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

  4. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels

    Science.gov (United States)

    Daniele Tonina; John M. Buffington

    2011-01-01

    Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...

  5. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... and that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In the implemented...

  6. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  7. Mechanism of falling water limitation in two-phase counter flow through single hole vertical channel

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ohnuki, Akira

    1983-01-01

    In the safety evaluation at the time of loss coolant accident, which is a credible accident in LWRs, recently main effort has been concentrated to the optimum evaluation calculation, and the grasp of vapor-liquid two-phase flow phenomena has become important. As one of the important phenomena, there is the limitation of falling water in two-phase counter flow through a vertical channel. This phenomenon is divided into the limitation of falling water stored in an upper plenum to a core through an upper core-supporting plate and a tie plate at the time of reflooding, and the limitation of falling emergency core-cooling water in downcomer channels at the time of reflooding in PWRs, under the presence of rising steam flow. In both cases, the evaluation of the quantity of falling water is important, because it contributes directly to core cooling. In this research, in order to clarify the mechanism of limitation of falling water in two-phase vertical counter flow, first, two-phase flow of air-water system through a single-hole vertical channel was taken up, and the effect of main parameters was experimentally studied. At the same time, the theoretical investigation was performed, and the comparison with the experimental results obtained so far was carried out. The different mechanisms for short and long channels gave the good results. (Kako, I.)

  8. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  9. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    Science.gov (United States)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in

  10. Discharge on boiling in a channel: effect of channel geometry on the performance characteristics of determining metals in a liquid flow by atomic emission spectrometry

    International Nuclear Information System (INIS)

    Zuev, B.K.; Yagov, V.V.; Grachev, A.S.

    2006-01-01

    Discharge on boiling in a channel was studied as a new atomization and excitation source for spectrochemical analysis in a flow of electrolyte solutions. The discharge arises between the liquid walls of a vapor lock formed in the channel of a dielectric membrane because of the rapid Joule heating of the liquid in the channel. The effect of channel geometry on the reproducibility of the integrated light intensity was studied. The background radiation spectrum was measured over the range 220-900 nm, and the possibility of determining alkali and alkaline earth metals in a flow was studied. The parameters of linear calibration equations and the detection limits for these metals are given [ru

  11. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  12. Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels

    Science.gov (United States)

    Black, John H.; Woodman, Nicholas D.; Barker, John A.

    2017-03-01

    Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.

  13. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology.

    Science.gov (United States)

    Mandal, Sandip; Khakhar, D V

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology-the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  14. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology

    Science.gov (United States)

    Mandal, Sandip; Khakhar, D. V.

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology—the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  15. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  16. An experimental investigation of flow instability between two heated parallel channels with supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xi; Xiao, Zejun, E-mail: fabulous_2012@sina.com; Yan, Xiao; Li, Yongliang; Huang, Yanping

    2014-10-15

    Highlights: • Flow instability experiment between two heated channels with supercritical water is carried out. • Two kinds of out of phase flow instability are found and instability boundaries under different working conditions are obtained. • Dynamics characteristics of flow instability are analyzed. - Abstract: Super critical water reactor (SCWR) is the generation IV nuclear reactor in the world. Under normal operation, water enters SCWR from cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change of temperature, there is a huge density change in the core, which could result in potential flow instability and the safety of reactor would be threatened consequently. So it is necessary to carry out relevant investigation in this field. An experimental investigation which concerns with out of phase flow instability between two heated parallel channels with supercritical water has been carried out in this paper. Due to two INCONEL 625 pipes with a thickness of 6.5 mm are adopted, more experimental results are attained. To find out the influence of axial power shape on the onset of flow instability, each heated channel is divided into two sections and the heating power of each section can be controlled separately. Finally the instability boundaries are obtained under different inlet temperatures, axial power shapes, total inlet mass flow rates and system pressures. The dynamics characteristics of out of phase oscillation are also analyzed.

  17. October 2005 Debris Flows at Panabaj, Guatemala:Hazard Assessment

    Science.gov (United States)

    Sheridan, M. F.; Connor, C.; Connor, L.; Stinton, A.; Galacia, O. R.; Barrios, G.

    2007-05-01

    Eastern channel are up to 16.7°. Also, this channel thalweg steepens dramatically to 12.8° just above the alluvial fan. Flow velocities in channelized sections were estimated by superelevation at bends at two locations for each of the two flow branches. In measured cross sectional areas between 144 and 160 m2 the calculated velocities ranged from 8.3-10.6 ms-1 yielding fluxes between 1280 and 1680 m3s- 1. The fluxes for the two flows are surprisingly similar. The planimetric area inundated by the Western flow is approximately 180,000 m2 and the area inundated by the Eastern debris flow is 77,000 m2. On reaching the gently-sloping (2.8°) depositional fan where the village of Panabaj is located, the flows thinned to 0.5-3.0 m and spread laterally as a broad sheet flow bounded by distinct flow fronts of 0.30-0.6 m height. Although thin, the flows had sufficient power to sweep away most of the concrete block houses in their paths. Based on observations of high water marks preserved on buildings, up to 40% of the flow by volume consisted of water and fine grained sediments that have been dewatered from the deposit during and since deposition.

  18. Deep groundwater flow at Palmottu

    International Nuclear Information System (INIS)

    Niini, H.; Vesterinen, M.; Tuokko, T.

    1993-01-01

    Further observations, measurements, and calculations aimed at determining the groundwater flow regimes and periodical variations in flow at deeper levels were carried out in the Lake Palmottu (a natural analogue study site for radioactive waste disposal in southwestern Finland) drainage basin. These water movements affect the migration of radionuclides from the Palmottu U-Th deposit. The deep water flow is essentially restricted to the bedrock fractures which developed under, and are still affected by, the stress state of the bedrock. Determination of the detailed variations was based on fracture-tectonic modelling of the 12 most significant underground water-flow channels that cross the surficial water of the Palmottu area. According to the direction of the hydraulic gradient the deep water flow is mostly outwards from the Palmottu catchment but in the westernmost section it is partly towards the centre. Estimation of the water flow through the U-Th deposit by the water-balance method is still only approximate and needs continued observation series and improved field measurements

  19. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  20. Development of gas-liquid two-phase flow measurement technique in narrow channel. Application of micro wire-mesh sensor to the flow between parallel plates

    International Nuclear Information System (INIS)

    Ito, Daisuke; Kikura, Hiroshige; Aritomi, Masanori

    2009-01-01

    A novel two-phase flow measuring technique based on local electrical conductivity measurement was developed for clarifications of three-dimensional flow structure in gas-liquid two-phase flow in a narrow channel. The measuring method applies the principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in a cross-section of a flow channel. In this technique, the electrodes are fixed on the inside of the walls facing each other, and the local void fractions were obtained by the electrical conductivity measurement between electrodes arranged on each wall. Therefore, the flow structure and the bubble behavior can be investigated by three-dimensional void fraction distributions in the channel with narrow gap. In this paper, a micro Wire-Mesh Sensor (μWMS) which has the gap of 3 mm was developed, and the instantaneous void fraction distributions were measured. From the measured distributions, three-dimensional bubble distributions were reconstructed, and bubble volumes and bubble velocities were estimated. (author)

  1. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    Science.gov (United States)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow

  2. A three-dimensional model of PEM fuel cells with serpentine flow channels

    International Nuclear Information System (INIS)

    Nguyen, P.T.; Berning, T.; Bang, M.; Djilali, N.

    2003-01-01

    A three-dimensional computational model of PEM fuel cell with serpentine flow field channels is presented in this paper. This model presents a comprehensive account for all important transport phenomena in fuel cell such as heat transfer, mass transfer, electrode kinetics, and potential fields in the membrane and gas diffusion layers. A new approach of solving for the potential losses across the cell was also developed in this model. The dependency of local current density on oxygen concentration and activation overpotential is fully addressed in this model. The computational domain consists of serpentine gas flow channels, porous gas diffusion layers, catalyst layers, and a membrane. Results obtained from this model are in good agreement with experimental results. (author)

  3. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  4. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  5. Effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2009-01-01

    In order to further understand the effect of the configuration of the corner in a narrow rectangular channel on flow and heat transfer, flow field and temperature field in a narrow rectangular channel were numerical simulated by using CFD code CFX10.0. The results show under the condition of equal quantity of heat of solid which is obtained by decreasing the solid of the corner, the distributions of inside wall temperature for the orthogonal and circular type configurations of the corner are almost the same as that of the archetypal configuration, and those can simulate heat transfer of the archetypal con- figuration. Under the condition of equal Re, secondary flow and friction pressure of the orthogonal type configuration are almost the same as those of the circular type configuration, which shows that the circular type configuration of the corner in a narrow channel can substituted for the archetypal configuration to simulate flow and heat transfer in a narrow rectangular channel. (authors)

  6. The relationship between dynamic and average flow rates of the coolant in the channels of complex shape

    Science.gov (United States)

    Fedoseev, V. N.; Pisarevsky, M. I.; Balberkina, Y. N.

    2018-01-01

    This paper presents interconnection of dynamic and average flow rates of the coolant in a channel of complex geometry that is a basis for a generalization model of experimental data on heat transfer in various porous structures. Formulas for calculation of heat transfer of fuel rods in transversal fluid flow are acquired with the use of the abovementioned model. It is shown that the model describes a marginal case of separated flows in twisting channels where coolant constantly changes its flow direction and mixes in the communicating channels with large intensity. Dynamic speed is suggested to be identified by power for pumping. The coefficient of proportionality in general case depends on the geometry of the channel and the Reynolds number (Re). A calculation formula of the coefficient of proportionality for the narrow line rod packages is provided. The paper presents a comparison of experimental data and calculated values, which shows usability of the suggested models and calculation formulas.

  7. Paleo-channel deposition of natural uranium at a US Air Force landfill

    International Nuclear Information System (INIS)

    Young, Carl; Weismann, Joseph; Caputo, Daniel

    2007-01-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 μg/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up

  8. Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels

    KAUST Repository

    Radu, Andrea I.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M.; Picioreanu, Cristian

    2012-01-01

    )/nanofiltration (NF) feed channels. Simulations performed in channels with or without spacer filaments describe how higher liquid velocities lead to less overall biomass amount in the channel by increasing the shear stress. In all studied cases at constant feed flow

  9. Hermite-Pade approximation approach to hydromagnetic flows in convergent-divergent channels

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    The problem of two-dimensional, steady, nonlinear flow of an incompressible conducting viscous fluid in convergent-divergent channels under the influence of an externally applied homogeneous magnetic field is studied using a special type of Hermite-Pade approximation approach. This semi-numerical scheme offers some advantages over solutions obtained by using traditional methods such as finite differences, spectral method, shooting method, etc. It reveals the analytical structure of the solution function and the important properties of overall flow structure including velocity field, flow reversal control and bifurcations are discussed. (author)

  10. Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention

    Science.gov (United States)

    Schwindt, Sebastian; Franca, Mário J.; Reffo, Alessandro; Schleiss, Anton J.

    2018-03-01

    Sediment traps with partially open check dams are crucial elements for flood protection in alpine regions. The trapping of sediment is necessary when intense sediment transport occurs during floods that may endanger urban areas at downstream river reaches. In turn, the unwanted permanent trapping of sediment during small, non-hazardous floods can result in the ecological and morphological degradation of downstream reaches. This study experimentally analyses a novel concept for permeable sediment traps. For ensuring the sediment transfer up to small floods, a guiding channel implemented in the deposition area of a sediment trap was systematically studied. The bankfull discharge of the guiding channel corresponds to a dominant morphological discharge. At the downstream end of the guiding channel, a permeable barrier (check dam) triggers sediment retention and deposition. The permeable barrier consists of a bar screen for mechanical deposition control, superposed to a flow constriction for the hydraulic control. The barrier obstructs hazardous sediment transport for discharges that are higher than the bankfull discharge of the guiding channel without the risk of unwanted sediment flushing (massive self-cleaning).

  11. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2015-10-01

    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  12. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  13. A flow-through cell with integrated coulometric pH actuator

    NARCIS (Netherlands)

    Bohm, S.; Olthuis, Wouter; Bergveld, Piet

    1998-01-01

    A flow-through cell with integrated coulometric actuator capable of controlling the pH of a flowing liquid is presented. The cell, consisting of a rectangular channel with a noble metal actuator electrode deposited on the bottom, enables the titration of a moving liquid without the need for pumps

  14. Multiplex multivariate recurrence network from multi-channel signals for revealing oil-water spatial flow behavior.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Yang, Yu-Xuan; Cai, Qing

    2017-03-01

    The exploration of the spatial dynamical flow behaviors of oil-water flows has attracted increasing interests on account of its challenging complexity and great significance. We first technically design a double-layer distributed-sector conductance sensor and systematically carry out oil-water flow experiments to capture the spatial flow information. Based on the well-established recurrence network theory, we develop a novel multiplex multivariate recurrence network (MMRN) to fully and comprehensively fuse our double-layer multi-channel signals. Then we derive the projection networks from the inferred MMRNs and exploit the average clustering coefficient and the spectral radius to quantitatively characterize the nonlinear recurrent behaviors related to the distinct flow patterns. We find that these two network measures are very sensitive to the change of flow states and the distributions of network measures enable to uncover the spatial dynamical flow behaviors underlying different oil-water flow patterns. Our method paves the way for efficiently analyzing multi-channel signals from multi-layer sensor measurement system.

  15. On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size

    Directory of Open Access Journals (Sweden)

    Chong Liu

    2011-09-01

    Full Text Available In this work, we investigate the validity of the Navier-Stokes (NS equations for nanoscale liquid flows through molecular dynamics simulations. We focus on the role of channel size by considering the fluid-wall interaction. Liquid flows between two planar parallel walls driven by an external force with channel size ranging from 2 to 80 nm are studied. The volumetric flux is computed and the dependence of the volumetric flux on the channel size is explained both qualitatively and quantitatively. It is found that the flow is sensitive to the fluid-wall binding energy and the classical fluid mechanics falls apart in small nanochannels. However, the wall effects become insignificant and the NS equations are valid when the channel size is larger than about 150 molecular diameters (∼ 50 nm.

  16. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  17. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    International Nuclear Information System (INIS)

    Harvel, G.D.; Chang, J.S.

    1997-01-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results

  18. Modeling flow, sediment transport and morphodynamics in rivers

    Science.gov (United States)

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  19. DNS of multifluid flows in a vertical channel undergoing topology changes

    Science.gov (United States)

    Lu, Jiacai; Tryggvason, Gretar

    2017-11-01

    Multifluid flows in a vertical channel are examined by direct numerical simulations, for situations where the topology of the interface separating the different fluids changes. Several bubbles are initially placed in a turbulent channel flow at a sufficiently high void fraction so that the bubbles collide and the liquid film between them becomes very thin. This film is ruptured at a predetermined thickness and the bubbles are allowed to coalesce. For low Weber numbers the bubbles continue to coalesce, eventually forming one large bubble. At high Weber numbers, on the other hand, the large bubbles break up again, sometimes undergoing repeated coalescence and breakup. The evolution of various integral quantities, such as the average flow rate, wall-shear, and interface area are monitored and compared for different governing parameters. Various averages of the flow field and the phase distribution, over planes parallel to the walls, are examined and compared, and the microstructure of bubbles, at statistically steady state, is examined using low order probability functions. Supported by the Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725.

  20. Three dimensional computation of turbulent flow in meandering channels

    Energy Technology Data Exchange (ETDEWEB)

    Van Thinh Nguyen

    2000-07-01

    In this study a finite element calculation procedure together with two-equation turbulent model k-{epsilon} and mixing length are applied to the problem of simulating 3D turbulent flow in closed and open meandering channels. Near the wall a special approach is applied in order to overcome the weakness of the standard k-{epsilon} in the viscous sub-layer. A specialized shape function is used in the special near wall elements to capture accurately the strong variations of the mean flow variables in the viscosity-affected near wall region. Based on the analogy of water and air flows, a few characteristics of hydraulic problems can be examined in aerodynamic models, respectively. To study the relationships between an aerodynamic and a hydraulic model many experiments have been carried out by Federal Waterway Engineering and Research Institute of Karlsruhe, Germany. In order to test and examine the results of these physical models, an appropriated numerical model is necessary. The numerical mean will capture the limitations of the experimental setup. The similarity and the difference between an aerodynamic and a hydraulic model will be found out by the results of numerical computations and will be depicted in this study. Despite the presence of similarities between the flow in closed channels and the flow in open channels, it should be stated that the presence of a free surface in the open channel introduces serious complications to three dimensional computation. A new unknown, which represents the position of nodes on this free surface, is introduced. A special approach is required for solving this unknown. A procedure surface tracking is applied to the free surface boundary like a moving boundary. Grid nodes on the free surface are free to move in such a way that they belong to the spines, which are the generator lines to define the allowed motion of the nodes on the free surface. (orig.) [German] Die numerische Simulation ist heute ein wichtiges Hilfsmittel fuer die

  1. Critical heat flux of subcooled flow boiling in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime

    1999-01-01

    In relation to the high-heat-load devices such as a solid-target cooling channel of a high-intensity neutron source, burnout experiments were performed to obtain critical heat flux (CHF) data systematically for vertical upward flow in one-side heated rectangular channels. One of the objectives of this study was to study an extensibility of existing CHF correlations and models, which were proposed for a round tube, to rectangular channels for design calculation. Existing correlations and models were reviewed and compared with obtained data. Sudo's thin liquid layer dryout model, Griffel correlation and Bernath correlation were in good agreement with the experimental data for short-heated-length and low inlet water temperature conditions. (author)

  2. Experimental Investigation on Zonal Structure in Drag-Reducing Channel Flow with Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Masaaki Motozawa

    2011-01-01

    Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.

  3. An expression for the water-sediment moving layer in unsteady flows valid for open channels and embankments

    Directory of Open Access Journals (Sweden)

    A. M. Berta

    2010-05-01

    Full Text Available During the floods, the effects of sediment transport in river beds are particulary significant and can be studied through the evolution of the water-sediment layer which moves in the lower part of a flow, named "moving layer". Moving layer variations along rivers lead to depositions and erosions and are typically unsteady, but are often tackled with expressions developed for steady (equilibrium conditions. In this paper, we develop an expression for the moving layer in unsteady conditions and calibrate it with experimental data. During laboratory tests, we have in fact reproduced a rapidly changing unsteady flow by the erosion of a granular steep slope. Results have shown a clear tendency of the moving layer, for fixed discharges, toward equilibrium conditions. Knowing the equilibrium achievement has presented many difficulties, being influenced by the choice of the equilibrium expression and moreover by the estimation of the parameters involved (for example friction angle. Since we used only data relevant to hyper-concentrated mono-dimensional flows for the calibration – occurring for slope gradients in the range 0.03–0.20 – our model can be applied both on open channels and on embankments/dams, providing that the flows can be modelled as mono-dimensional, and that slopes and applied shear stress levels fall within the considered ranges.

  4. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  5. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    International Nuclear Information System (INIS)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug

    2008-01-01

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  6. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    Science.gov (United States)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain

  7. Fluid-structure-interaction of a flag in a channel flow

    Science.gov (United States)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  8. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Tasaka, Kanji; Kawasaki, Yuji.

    1988-01-01

    The annular transition in the rod bundle is interesting because the small gaps between rods exist in the flow area. This is a very important phenomenon in the boiloff accident of nuclear reactor core. As a first attempt, the effect of small gaps in the flow area was studied by using the vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and the transition model was proposed. The model gives a good prediction of the wide range of previous experiments including the data taken in the channels with small gaps. (author)

  9. Annular flow transition model in channels of various shapes

    International Nuclear Information System (INIS)

    Osakabe, M.; Tasaka, K.; Kawasaki, Y.

    1989-01-01

    Annular transition in a rod bundle is interesting because small gaps exist between rods in the flow area. This is a very important phenomenon in a boiloff accident of a nuclear reactor core. This paper reports, as a first attempt, the effect of small gaps in the flow area was studied by using vertical rectangular ducts with different narrow gaps (2 x 100, 5 x 100, 10 x 100 mm). Based on the experimental results, the transition void fraction was defined and a transition model is proposed. The model gives a good prediction for a wide range of previous experiments including the data taken in channels with small gaps

  10. Architecture and quantitative assessment of channeled clastic deposits, Shihezi sandstone (Lower Permian, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Chengye Jia

    2017-02-01

    Full Text Available Lower Permian Shihezi sandstone in Ordos Basin is the largest gas reservoir in China. Architecture elements of channel, overbank and floodplain facies of braided channel deposits were identified through an outcrops survey, and their proportion of channel facies have been quantitatively estimated from well logging. Characteristics of architecture elements, such as sand thickness, bounding surfaces and lithofacies were investigated through outcrops and core. Petrology of Shihezi sandstone has also been studied in detail. Analysis on sandstone components shows that monocrystalline quartz with approximately 76% bulk volume, and lithic up to 5%–45% bulk volume, are the two main components. Litharenite and lithic quartz sandstone are the main rock types. Compaction is concluded by former researchers as the control factor of low permeability. Examination through thin section reveals that secondary pores developed well in coarse sand. Inter-granular dissolution is included as the positive effect to increasing porosity, and is concluded as the control factor to the generation of net pay. Scale of coarse grained channel fills and channel bar sandstone bodies are quantitatively estimated. Strike-oriented, dip-oriented, and vertical distribution of channel fills and channel bar sandstone bodies have been investigated. The geometry of sand bodies can be depicted as an elongated lens. Subsurface mapping reveals that channel sandstone bodies distribute widely from both lateral and longitudinal cross section profiles, and are poorly connected.

  11. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas

    Science.gov (United States)

    Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.

    2005-07-01

    As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.

  12. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions: Effect of ribs

    International Nuclear Information System (INIS)

    Mucignat, C.; Armellini, A.; Casarsa, L.

    2013-01-01

    Highlights: • Detailed PIV and Stereo PIV investigation on a rotating test section. • Static channel: absence of guiding effect for inclined ribs. • Static channel: the ribs influence significantly the flow also at the trailing edge. • Rotating channel: opposite flow features with respect to the static case. • The analyzed flow features justify the previously observed thermal performances. -- Abstract: The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled

  13. Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel

    International Nuclear Information System (INIS)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol

    2010-01-01

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  14. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  15. Twenty-four-hour exposure to altered blood flow modifies endothelial Ca2+-activated K+ channels in rat mesenteric arteries

    DEFF Research Database (Denmark)

    Hilgers, Rob H P; Janssen, Ger M J; Fazzi, Gregorio E

    2010-01-01

    We tested the hypothesis that changes in arterial blood flow modify the function of endothelial Ca2+-activated K+ channels [calcium-activated K+ channel (K(Ca)), small-conductance calcium-activated K+ channel (SK3), and intermediate calcium-activated K+ channel (IK1)] before arterial structural...... remodeling. In rats, mesenteric arteries were exposed to increased [+90%, high flow (HF)] or reduced blood flow [-90%, low flow (LF)] and analyzed 24 h later. There were no detectable changes in arterial structure or in expression level of endothelial nitric-oxide synthase, SK3, or IK1. Arterial relaxing...... arteries, the balance between the NO/prostanoid versus EDHF response was unaltered. However, the contribution of IK1 to the EDHF response was enhanced, as indicated by a larger effect of TRAM-34 and a larger residual NS309-induced relaxation in the presence of UCL 1684. Reduction of blood flow selectively...

  16. An experimental study of two-phase flow instability on two parallel channel with low steam quality

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu shaorong; Bo Jinhai; Yao Meisheng; Han Bing; Zhang Youjie

    1988-01-01

    An experimental result of two-phase flow instability on two parallel channel natural circulation with low steam quality is presented. The comparison of instability in the single channel and that in parallel channel is given. The effect of unequal inlet resistance coefficient and unequal power on the parallel channel instability is described and the behaviour of instability with equal exit steam quality in the two channel is investigated

  17. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes

    Science.gov (United States)

    Lang, Jörg; Winsemann, Jutta

    2013-10-01

    The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions

  18. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  19. Theoretical investigations on two-phase flow instability in parallel channels under axial non-uniform heating

    International Nuclear Information System (INIS)

    Lu, Xiaodong; Wu, Yingwei; Zhou, Linglan; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Zhang, Hong

    2014-01-01

    Highlights: • We developed a model based on homogeneous flow model to analyze two-phase flow instability in parallel channels. • The influence of axial non-uniform heating on the system stability has been investigated. • Influences of various factors on system instability under cosine heat flux have been studied. • The system under top-peaked heat flux is the most stable system. - Abstract: Two-phase flow instability in parallel channels heated by axial non-uniform heat flux has been theoretically studied in this paper. The system control equations of parallel channels were established based on the homogeneous flow model in two-phase region. Semi-implicit finite-difference scheme and staggered mesh method were used to discretize the equations, and the difference equations were solved by chasing method. Cosine, bottom-peaked and top-peaked heat fluxes were used to study the influence of non-uniform heating on two-phase flow instability of the parallel channels system. The marginal stability boundaries (MSB) of parallel channels and three-dimensional instability spaces (or instability reefs) under different heat flux conditions have been obtained. Compared with axial uniform heating, axial non-uniform heating will affect the system stability. Cosine and bottom-peaked heat fluxes can destabilize the system stability in high inlet subcooling region, while the opposite effect can be found in low inlet subcooling region. However, top-peaked heat flux can enhance the system stability in the whole region. In addition, for cosine heat flux, increasing the system pressure or inlet resistance coefficient can strengthen the system stability, and increasing the heating power will destabilize the system stability. The influence of inlet subcooling number on the system stability is multi-valued under cosine heat flux

  20. Kinematics and statistics of dense, slow granular flow through vertical channels

    Science.gov (United States)

    Ananda, K. S.; Moka, Sudheshna; Nott, Prabhu R.

    We have investigated the flow of dry granular materials through vertical channels in the regime of dense slow flow using video imaging of the particles adjacent to a transparent wall. Using an image processing technique based on particle tracking velocimetry, the video movies were analysed to obtain the velocities of individual particles. Experiments were conducted in two- and three-dimensional channels. In the latter, glass beads and mustard seeds were used as model granular materials, and their translational velocities were measured. In the former, aluminium disks with a dark diametral stripe were used and their translational velocities and spin were measured. Experiments in the three-dimensional channels were conducted for a range of the channel width W, and for smooth and rough sidewalls. As in earlier studies, we find that shearing takes place predominantly in thin layers adjacent to the walls, while the rest of the material appears to move as a plug. However, there are large velocity fluctuations even in the plug, where the macroscopic deformation rate is negligibly small. The thickness of the shear layer, scaled by the particle diameter dp, increases weakly with W/dp. The experimental data for the velocity field are in good agreement with the Cosserat plasticity model proposed recently. We also measured the mean spin of the particles in the two-dimensional channel, and its deviation from half the vorticity. There is a clear, measurable deviation, which too is in qualitative agreement with the Cosserat plasticity model. The statistics of particle velocity and spin fluctuations in the two-dimensional channel were analysed by determining their probability distribution function, and their spatial and temporal correlation. They were all found to be broadly similar to previous observations for three-dimensional channels, but some differences are evident. The spatial correlation of the velocity fluctuations are much stronger in the two-dimensional channel, implying

  1. SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow

    Science.gov (United States)

    Raghunath, Sriram; Brereton, Giles

    2011-11-01

    DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.

  2. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  3. Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Serdeczny, Marcin P.; Pedersen, David B.

    2018-01-01

    -based additive manufacturing, as well as the surface roughness of the fabricated part. Under the assumptions of an isothermal Newtonian fluid and a creeping laminar flow, the deposition flow is controlled by two parameters: the gap distance between the extrusion nozzle and the substrate, and the velocity ratio...

  4. Thermal and hydrodynamic characteristics of forced and mixed convection flow through vertical rectangular channels

    Directory of Open Access Journals (Sweden)

    Hanafi Abdalla S.

    2008-01-01

    Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is

  5. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.

    Science.gov (United States)

    Gong, Hua; Bickham, Bryce P; Woolley, Adam T; Nordin, Gregory P

    2017-08-22

    While there is great interest in 3D printing for microfluidic device fabrication, to-date the achieved feature sizes have not been in the truly microfluidic regime (uses a 385 nm LED, which dramatically increases the available selection of UV absorbers for resin formulation compared to 3D printers with 405 nm LEDs. Beginning with 20 candidate absorbers, we demonstrate the evaluation criteria and process flow required to develop a high-resolution resin. In doing so, we introduce a new mathematical model for characterizing the resin optical penetration depth based only on measurement of the absorber's molar absorptivity. Our final resin formulation uses 2-nitrophenyl phenyl sulfide (NPS) as the UV absorber. We also develop a novel channel narrowing technique that, together with the new resin and 3D printer resolution, enables small flow channel fabrication. We demonstrate the efficacy of our approach by fabricating 3D serpentine flow channels 41 mm long in a volume of only 0.12 mm 3 , and by printing high aspect ratio flow channels prototyping and fabrication.

  6. Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters

    Science.gov (United States)

    Kim, H. S.; Chen, H. C.

    2017-12-01

    The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.

  7. Computer simulations of channel meandering and the formation of point bars: Linking channel dynamics to the preserved stratigraphy

    Science.gov (United States)

    Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.

    2012-12-01

    Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001

  8. Modification of Turbulence Structures in a Channel Flow by Uniform Magnetic Fluxes

    Science.gov (United States)

    Lee, D.; Choi, H.; Kim, J.

    1997-11-01

    Effects of electromagnetic forcing on the near-wall turbulence are investigated by applying a uniform magnetic flux in a turbulent channel flow in the streamwise and spanwise directions, respectively. The base flow is a fully developed turbulent channel flow and the direct numerical simulation technique is used. The electromagnetic force induced from the magnetic fluxes reduces the intensity of the wall-layer structures and thus drag is significantly reduced. The wall-normal and spanwise velocity fluctuations and the Reynolds shear stress decrease with the increased magnetic flux in both directions. The streamwise velocity fluctuations increase with the streamwise magnetic flux, whereas they decrease with the spanwise magnetic flux. It is also shown that the spanwise magnetic flux is much more effective than the streamwise magnetic flux in reducing the skin-friction drag. Instantaneous Lorentz force vectors show that the flow motions by the near-wall vortices are directly inhibited by the spanwise magnetic flux, while they are less effectively inhibited by the streamwise magnetic flux. Other turbulence statistics that reveal the effects of the applied magnetic forcing will be presented. ^* Supported by KOSEF Contract No. 965-1008-003-2 and ONR Grant No. N00014-95-1-0352.

  9. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, Mohamed N.; Wang, Q. X.; Alshareef, Husam N.

    2014-01-01

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling

  10. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G. C.

    2011-01-01

    An analysis is carried out to study a steady magnetohydrodynamic (MHD) boundary layer flow of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel. The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls. The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls. The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations. The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model. The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls, even in the absence of a magnetic field. Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter. It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid. The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physically. (fundamental areas of phenomenology(including applications))

  11. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    Science.gov (United States)

    Eaton, L. Scott; Morgan, Benjamin A.; Kochel, R. Craig; Howard, Alan D.

    2003-01-01

    A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains.The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum.Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for

  12. A Novel Through Capacity Model for One-way Channel Based on Characteristics of the Vessel Traffic Flow

    Directory of Open Access Journals (Sweden)

    Yuanyuan Nie

    2017-09-01

    Full Text Available Vessel traffic flow is a key parameter for channel-through capacity and is of great significance to vessel traffic management, channel and port design and navigational risk evaluation. Based on the study of parameters of characteristics of vessel traffic flow related to channel-through capacity, this paper puts forward a brand-new mathematical model for one-way channel-through capacity in which parameters of channel length, vessel arrival rate and velocity difference in different vessels are involved and a theoretical calculating mechanism for the channel-through capacity is provided. In order to verify availability and reliability of the model, extensive simulation studies have been carried out and based on the historical AIS data, an analytical case study on the Xiazhimen Channel validating the proposed model is presented. Both simulation studies and the case study show that the proposed model is valid and all relative parameters can be readjusted and optimized to further improve the channel-through capacity. Thus, all studies demonstrate that the model is valuable for channel design and vessel management.

  13. Effect of Flow Channel Shape on Performance in Reverse Electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kilsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Deok Han; Kim, Daejoong [Sogang Univ., Seoul (Korea, Republic of)

    2017-05-15

    Reverse electrodialysis (RED), which generates electrical energy from the difference in concentration of two solutions, has been actively studied owing to its high potential and the increased interest in renewable energy resulting from the Paris Agreement on climate change. For RED commercialization, its power density needs to be maximized, and therefore various methods have been discussed. In this paper, the power density was measured using various flow shapes based on the aspect ratio, opening ratio, and number of distribution channels. We found that the power density is enhanced with a decrease in the aspect ratio and an increase in the opening ratio and number of distribution channels.

  14. Three dimensional numerical investigation of flow mixing in curved tubes and mass transfer in T-channel junction

    International Nuclear Information System (INIS)

    Pandey, Pradeep; Nayak, A.K.; Vijayan, P.K.

    2014-01-01

    Three dimensional flow patterns appearing in geometries such as curved pipes and T-channel junctions have important applications and are attractive for research. Unlike the flow in a straight tube, fluid motion in a curved tube is not parallel to the axis of bend, owing to the presence of centrifugal effects. It is characterized by a secondary flow in a cross-sectional plane normal to the main flow. Consequently, secondary flow separation near the inner wall is observed in the developing region. The strength of the secondary flow is greatly influenced by the curvature ratio and in turn, a non-dimensional parameter called the Dean Number. Secondary flow increases flow resistance, resulting in a larger pressure drop along the bend. The location of the maximum axial velocity gets shifted towards the outer wall. Flow in a T-channel junction is also a configuration of great significance. The simulations of the present work show that flow at low Reynolds numbers (Re ≤ 115) is steady and symmetric. For low Reynolds numbers, flow in the downstream channel remains highly segregated about the centerline. The appearance of vortices in the T-channel junction does little to redistribute concentration when flow remains symmetric. With increasing Reynolds number, transition takes place towards asymmetric flow. The incoming flow field gets redistributed at the center-plane and the dividing streamline becomes increasingly distorted. The flow field is characterized by thin elongated fluid interfaces across which momentum diffusion takes place. Flow at higher Reynolds numbers (Re ≥ 250) becomes unsteady in which unstable stagnation stream traces move periodically leftward and rightward at top and bottom walls. Trajectories of mass-less particles show greater dwelling in the junction as compared to those of finite mass particle. The numerical simulation is carried out in the present work using ANUPRAVAHA, a general purpose CFD solver developed at IIT Kanpur in collaboration with

  15. Stratigraphic Stacking of Deepmarine Channel Levee Turbidites: Scales of Cyclicity and their Origin. Examples from the Laingsburg Fm. (Karoo, South Africa) and the Rosario Fm. (Baja, Mexico)

    Science.gov (United States)

    Kane, I. A.; Hodgson, D.

    2009-12-01

    Thinning upwards of the turbidite beds that form deepmarine channel levees is a common motif reported from modern and recent levees on the seafloor, from subsurface examples, and from outcropping ancient examples. Because levees are thought to be built by deposition from turbidity currents superelevated over their channel form, the volume and style of overbank deposition are controlled primarily by the relationship between levee height (i.e., thalweg to crest) and flow thickness, determining the amount of overspill. Thus stratigraphic variability of turbidite thickness is explained by some change in either or both of those factors, which may arise autocyclicly or allocyclicly. Variation in the ratio of intra-channel and extra-channel deposition can be an autocyclic stratigraphic response, e.g., in bypass dominated systems, thalweg aggradation may be retarded with respect to levee aggradation, hence as levee relief increases, flows become more confined and, given a relatively narrow range of flow sizes, the volume of overbank flow and deposit thickness decrease with stratigraphic height. However, the same stratigraphic response of the levee may occur due to allocyclic flow magnitude variation, i.e., through decreasing flow magnitude. In both the autocyclic and allocyclic case the stratigraphic response of the levee may be one of thinning upwards, even if the overall system response may be one of progradation (autocyclic bypassing case) or retrogradation (allocyclic decreasing flow magnitude case), with entirely different connotations for sequence stratigraphic interpretation. Here we report examples of different scales of bed thickness cyclicity (both thickening and thinning upward cycles superimposed by smaller scale cycles) within levees of the Rosario Formation, Baja California, Mexico, and from the Laingsburg Formation, Karoo, South Africa, and, together with published examples, discuss criteria for the recognition, and drivers of, autocyclic and allocyclic bed

  16. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  17. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  18. Development of a flow restrictor for CANDU fuel channels

    International Nuclear Information System (INIS)

    Schroeter, F.; Antonaccio, C.; Masciotra, H.; Klink, A.

    2013-01-01

    Due to the creep and neutron growth phenomena experienced by the components inside the reactor during operation of CNE it is expected that both the fuel channels and the Liquid Injection lances increase their permanent deformation. One of the deformation types that these two components experiment is the SAG, which is what happens with any beam supported on their extremes to which a load is applied, except for this case that due to creep and neutronic effect growth, part of the deformation is not elastic and increases with time To solve or avoid this condition, two solutions exist, one is to replace the pressure tubes, forcing the calandria tube to recover to a near to original position or to design a device that permits defueling of the channel without modifying the pressure drop and in this way not to affect the distribution of coolant in the core. In some channels it was decided to replace the pressure tube and in others it was decided to defuel them proposing a design for a flow restrictor. (author

  19. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  20. Long-term contraction of pyroclastic flow deposits at Augustine Volcano using InSAR

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2013-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. The volcano's nearly symmetrical central cone reaches an altitude of 1260 m, and the surrounding island is composed almost entirely of volcanic deposits. It is the youngest and most frequently active volcano in the lower Cook Inlet, with at least seven known eruptions since the beginning of written records in 1812. Its two most recent eruptions occurred during March-August 1986, and January-March 2006 The 1986 and 2006 Augustine eruptions produced significant pyroclastic flow deposits (PFDs) on the island, both which have been well mapped by previous studies. Subsidence of material deposited by these pyroclastic flows has been measured by InSAR data, and can be attributed to at least four processes: (1) initial, granular settling; (2) thermal contraction; (3) loading of 1986 PFDs from overlying 2006 deposits; and (4) continuing subsidence of 1986 PFDs buried beneath 2006 flows. For this paper, SAR data for PFDs from Augustine Volcano were obtained from 1992 through 2005, from 2006-2007, and from 2007-2011. These time frames provided InSAR data for long-term periods after both 1986 and 2006 eruptions. From time-series analysis of these datasets, deformation rates of 1986 PFDs and 2006 PFDs were determined, and corrections applied where newer deposits were emplaced over old deposits. The combination of data sets analyzed in this study enabled, for the first time, an analysis of long and short term subsidence rates of volcanic deposits emplaced by the two eruptive episodes. The generated deformation time series provides insight into the significance and duration of the initial settling period and allows us to study the thermal regime and heat loss of the PFDs. To extract quantitative information about thermal properties and composition of the PFDs, we measured the thickness

  1. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Roelofs, F.; Dehbi, A.

    2015-01-01

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions

  2. Heat transfer in droplet-laden turbulent channel flow with phase transition in the presence of a thin film of water

    NARCIS (Netherlands)

    Bukhvostova, A.; Kuerten, J.G.M.; Geurts, B.J.; Grigoriadis, D.G.E.; Geurts, B.J.; Kuerten, H.; Fröhlich, J.; Armenio, V.

    2018-01-01

    In the field of multiphase systems droplet-laden channel flow presents a challenging topic not only because of how turbulent flow influences the mass and heat transfer properties of droplets but also how droplets modulate the flow. In this contribution we focus on droplet-laden turbulent channel

  3. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Science.gov (United States)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  4. Large Eddy Simulation of turbulent flows in compound channels with a finite element code

    International Nuclear Information System (INIS)

    Xavier, C.M.; Petry, A.P.; Moeller, S.V.

    2011-01-01

    This paper presents the numerical investigation of the developing flow in a compound channel formed by a rectangular main channel and a gap in one of the sidewalls. A three dimensional Large Eddy Simulation computational code with the classic Smagorinsky model is introduced, where the transient flow is modeled through the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite Element Method, Taylor-Galerkin scheme and linear hexahedrical elements are applied. Numerical results of velocity profile show the development of a shear layer in agreement with experimental results obtained with Pitot tube and hot wires. (author)

  5. Experimental study of flow patterns near tube support structures

    International Nuclear Information System (INIS)

    Rummens, H.E.C.; Turner, C.W.

    1994-07-01

    Extensive blockage of broached support plates in steam generators has occurred at the Bruce A Nuclear Generating Station (NGS), forcing unit derating in 1988 March. Blockage has also been found on the lower broached plates of the Pickering B and Point Lepreau NGSs. Water chemistry and operating conditions are known to influence fouling directly. We suspect that flow patterns also play a role, that these patterns are influenced by the geometry of steam generator (SG) components, and that particularly the broached plate design actively creates an environment favorable to deposition. Experiments are in progress to examine the flow patterns near various tube supports: the broached plate, two types of lattice bars, and the formed bars. Preliminary tests in an air/water loop with 1/2- and 7-tube SG mockups containing the tube supports have been completed. Flow patterns were visualized using injected air bubbles. Local velocities and turbulence levels were measured using a laser technique, which confirmed observations of flow recirculation and stagnation. Axial pressure profiles were measured to determine overall resistance coefficients, and to identify local pressure extremes. Some visualization tests were also carried out on an artificially fouled broached plate. Based on results to date, several deposition mechanisms are proposed: deposition of particles in stagnant regions, deposition of solubles due to flashing in low-pressure regions, and deposition in smaller channels due to steam migration toward larger channels. A qualitative assessment of the tube support designs based on these mechanisms implies that the relative resistances to fouling are: (WORST) broach plate << lattice bars << formed bars (BEST). As the air/water simulation shows only hydraulic flow patterns, further tests will be done in a simple liquid/vapor Freon loop to examine thermal effects. (author). 3 refs., 10 figs

  6. A Preliminary Experimental Study on Flow Boiling CHF Characteristics of Ballooned Channel

    International Nuclear Information System (INIS)

    Kim, Yong Jin; Song, Sub Lee; Chang, Soon Heung; Moon, Sang Ki

    2013-01-01

    The purpose of this research is to measure heat transfer characteristics experimentally and to develop correlation based on experimental data. Experiments are in progress. The result of preliminary experimental test of ballooned channel was reported. The trends of CHF value for deformed channel is not usual as normal smooth tube. The spot of CHF was moved by changing different experimental cases. The transition of flow pattern at neck of deformation is considered as main factor of changing CHF trends. More cases are under operation and analysis based on flow dynamics are developing. Cladding is one of the most important parts in nuclear power plant because it is second barrier of radiation leakage from nuclear fuel. Originally, cladding keeps its integrity in 1200 .deg. C and 150bar, which is normal operation state of nuclear power plant. However, integrity of cladding can be deformed by more severe conditions caused by accident. In case of LOCA, high temperature, oxidation and thermal shock induced by safety injection can deform cladding. Main problem of deformed cladding is blockage of cooled to prevent core melt accident. Change of flow path by blockage affects flow of safety coolant, heat transfer coefficient and critical heat flux of rod bundles. Until now, there are insufficient heat transfer data for deformed flow path compared to normal flow path. In order to enhance safety of nuclear power plant after accident, it should be clarified that how deformed cladding affects heat transfer

  7. Correlation between interstitial flow and pore structure in packed bed. 1st Report. Axial velocity measurement using MRI and visualization of axial channel flow; Juten sonai ryudo to kugeki kozo no sokan. 1. MRI ni yoru jikuhoko ryusoku bunpu no keisoku to jikiuhoko channel ryu no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-25

    Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)

  8. On the dynamics of compound bedforms in high-energy tidal channels: field observations in the German Bight and the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Winter, Christian; Becker, Marius

    2010-01-01

    erosion in the trough is due to a combination of low flow velocity and the development of an armour layer of shell lag-deposits. Regarding secondary-bedform height, both tidal channels displayed a general increase with increasing mean flow velocity and a general decrease with decreasing mean flow velocity...

  9. MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER

    Directory of Open Access Journals (Sweden)

    A. S. Sidorenko

    2015-01-01

    Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The

  10. Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet

    Science.gov (United States)

    Sahu, M. K.; Pandey, K. M.; Chatterjee, S.

    2018-05-01

    In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.

  11. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Directory of Open Access Journals (Sweden)

    Amir Eshghinejadfard

    2017-09-01

    Full Text Available Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ=2 or 4 or spherical (λ=1. Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM. In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling. Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  12. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Science.gov (United States)

    Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique

    2017-09-01

    Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  13. Statistical Investigation on Coherent Vortex Structure in Turbulent Drag Reducing Channel Flow with Blown Polymer Solution

    International Nuclear Information System (INIS)

    Ishitsuka, Shota; Motozawa, Masaaki; Kawaguchi, Yasuo; Iwamoto, Kaoru; Ando, Hirotomo; Senda, Tetsuya

    2011-01-01

    Coherent vortex structure in turbulent drag-reducing channel flow with blown polymer solution from the wall was investigated. As a statistical analysis, we carried out Galilean decomposition, swirling strength and linear stochastic estimation of the PIV data obtained by the PIV measurement in x – y plane. Reynolds number based on bulk velocity and channel height was set to 40000. As a result, the angle of shear layer that cleared up by using Galilean decomposition becomes small in the drag-reducing flow. Q3 events were observed near the shear layer. In addition, as a result of linear stochastic estimation (LSE) based on swirling strength, we confirmed that the velocity under the vortex core is strong in the water flow. This result shows Q2 (ejection) are dominant in the water flow. However, in the drag-reducing flow with blown polymer solution, the velocity above the vortex core become strong, that is, Q4 (sweep) events are relatively strong around the vortex core. This is the result of Q4 events to come from the channel center region because the polymer solution does not exist in this region. The typical structure like this was observed in the drag -reducing flow with blown polymer solution from the wall.

  14. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  15. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  16. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Science.gov (United States)

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  17. Heat transfer and hydraulic resistance in steam-water mixture flow with large void fractions in an annular channel

    International Nuclear Information System (INIS)

    Dzarasov, Yu.I.

    1976-01-01

    Results of studies for a vapour-water dispersive-ring flow in the heated tore channel are presented. The work area has been a vertical tore channel with external and internal cross-section diameters equal to 12 and 6 mm, respectively, and with the internal heated wall of 1000 mm and 2500 mm long, respectively. The medium moves upward with the pressure 35 and 70 bar. Local heat emission factors α as a function of the channel height have been determined with measuring wall-flow temperature difference at the outlet cross-section. It has been noted that in addition to dependence of the α factor from heat emission q, the factor is also greatly affected by the mass speed and steam content X with the growth of which α increases. The model of the flow explaining the effect of X upon α has been proposed. It has been found that convective heat emission under boiling of the vapour-water mixture in the channels is determined not only by the flow rate but by the amount of liquid in the flow and particular, by the amount of liquid setting at the heating surface

  18. Modeling the flow of activated H2 + CH4 mixture by deposition of diamond nanostructures

    Directory of Open Access Journals (Sweden)

    Plotnikov Mikhail

    2017-01-01

    Full Text Available Algorithm of the direct simulation Monte Carlo method for the flow of hydrogen and methane mixture in a cylindrical channel is developed. Heterogeneous reactions on tungsten channel surfaces are included into the model. Their effects on flows are analyzed. A one-dimensional approach based on the solution of equilibrium chemical kinetics equations is used to analyze gas-phase methane decomposition. The obtained results may be useful for optimization of gas-dynamic sources of activated gas diamond synthesis.

  19. DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kondo, S.; Snead, L.L.

    2009-01-01

    High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 deg. C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed.

  20. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    Science.gov (United States)

    Twichell, David C.; Schwab, William C.; Nelson, C. Hans; Kenyon, Neil H.; Lee, Homa J.

    1992-01-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  1. 2008 High-Flow Experiment at Glen Canyon Dam-Morphologic Response of Eddy-Deposited Sandbars and Associated Aquatic Backwater Habitats along the Colorado River in Grand Canyon National Park

    Science.gov (United States)

    Grams, Paul E.; Schmidt, John C.; Andersen, Matthew E.

    2010-01-01

    The March 2008 high-flow experiment (HFE) at Glen Canyon Dam resulted in sandbar deposition and sandbar reshaping such that the area and volume of associated backwater aquatic habitat in Grand Canyon National Park was greater following the HFE. Analysis of backwater habitat area and volume for 116 locations at 86 study sites, comparing one month before and one month after the HFE, shows that total habitat area increased by 30 percent to as much as a factor of 3 and that volume increased by 80 percent to as much as a factor of 15. These changes resulted from an increase in the area and elevation of sandbars, which isolate backwaters from the main channel, and the scour of eddy return-current channels along the bank where the habitat occurs. Because of this greater relief on the sandbars, backwaters were present across a broader range of flows following the HFE than before the experiment. Reworking of sandbars during diurnal fluctuating flow operations in the first 6 months following the HFE caused sandbar erosion and a reduction of backwater size and abundance to conditions that were 5 to 14 percent greater than existed before the HFE. In the months following the HFE, erosion of sandbars and deposition in eddy return-current channels caused reductions of backwater area and volume. However, sandbar relief was still greater in October 2008 such that backwaters were present across a broader range of discharges than in February 2008. Topographic analyses of the sandbar and backwater morphologic data collected in this study demonstrate that steady flows are associated with a greater amount of continuously available backwater habitat than fluctuating flows, which result in a greater amount of intermittently available habitat. With the exception of the period immediately following the HFE, backwater habitat in 2008 was greater for steady flows associated with dam operations of relatively lower monthly volume (about 227 m3/s) than steady flows associated with dam operations

  2. Kinematics of flow and sediment particles at entrainment and deposition

    Science.gov (United States)

    Antico, Federica; Sanches, Pedro; Aleixo, Rui; Ferreira, Rui M. L.

    2015-04-01

    A cohesionless granular bed subjected to a turbulent open-channel flow is analysed. The key objective is to clarify the kinematics of entrainment and deposition of individual sediment particles. In particular, we quantify a) the turbulent flow field in the vicinity of particles at the instants of their entrainment and of their deposition; b) the initial particle velocity and the particle velocity immediately before returning to rest. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameters in the range 0.007 to 0.03. Froude numbers ranged from 0.63 to 0.95 while boundary Reynolds numbers were in the range 130 to 300. It was observed that the bed featured patches of regular arrangements: face centered cubic (fcc) or hexagonal close packing (hcp) blocks alternate with and body centered cubic (bcc) blocks. The resulting bed surface exhibits cleavage lines between blocks and there are spatial variations of bed elevation. The option for artificial sediment allowed for a simplified description of particle positioning at the instant of entrainment. In particular support and pivoting angles are found analytically. Skin friction angles were determind experimentally. The only relevant variables are exposure (defined as the ratio of the actual frontal projection of the exposed area to the area of a circle with 5 mm diameter) and protrusion (defined as the vertical distance between the apex of the particle and the mean local bed elevation

  3. Analysis of Poiseuille Flow Property in Two-Dimensional Mi-cro Channels of Microfluidic Pneumatic Micro-Valve

    Science.gov (United States)

    Yang, Shaohua; Long, Wei; Chen, Yajun

    2018-03-01

    In this paper, the control mechanism and mathematical description of the microfluidic flow in the microfluidic process of the PDMS membrane type pneumatic micro-valve were studied. The velocity and pressure variation law of the velocity field inside micro valve was analyzed by numerical simulation method. The influence of the two kinds of inlet drive modes on the working effect and the pressure flow characteristics of the pneumatic micro-valve was studied. The structure of the elastic solid valve diaphragm under the dual action of the airway and the liquid channel was analyzed. Deformation and stress distribution. The results show that the gas flow in the gas flow channel under the diaphragm by the vacuum part of the role of the formation of a suction gas vortex, pressure-driven mode was easier under the diaphragm to produce a strong gas vortex, resulting in internal and external pressure to promote diaphragm cut-off liquid channel; In the pressure pneumatic mode, the stress at both ends of the diaphragm was smaller, the membrane was not easy to tear failure.

  4. Coherent Vortical Structures and Their Relation to Hot/Cold Spots in a Thermal Turbulent Channel Flow

    Directory of Open Access Journals (Sweden)

    Suranga Dharmarathne

    2018-02-01

    Full Text Available Direct numerical simulations of a turbulent channel flow with a passive scalar at R e τ = 394 with blowing perturbations is carried out. The blowing is imposed through five spanwise jets located near the upstream end of the channel. Behind the blowing jets (about 1 D , where D is the jet diameter, we observe regions of reversed flow responsible for the high temperature region at the wall: hot spots that contribute to further heating of the wall. In between the jets, low pressure regions accelerate the flow, creating long, thin, streaky structures. These structures contribute to the high temperature region near the wall. At the far downstream of the jet (about 3 D , flow instabilities (high shear created by the blowing generate coherent vortical structures. These structures move hot fluid near the wall to the outer region of the channel; thereby, these are responsible for cooling of the wall. Thus, for engineering applications where cooling of the wall is necessary, it is critical to promote the generation of coherent structures near the wall.

  5. Diffusion of disintegration products of radioactive gases in circular and flat channels

    International Nuclear Information System (INIS)

    Ingham, D.B.

    1975-01-01

    The problem of steady state diffusion of the decaying products resulting from the disintegration of a radioactive gas flowing through circular and flat channels is presented. Axial diffusion is neglected and a small diffusion parameter is assumed. Results are obtained for the axial displacement and density distribution of atoms deposited on the walls when the laminar flow is Poiseuille and plug. These results can be used to determine diffusion coefficients of disintegration products. (author)

  6. The Mobility and Dispersal of Augmented Gravel in Upland Channels: a Knowledge-limited Practise in Supply-limited Channels

    Science.gov (United States)

    Downs, P. W.; Gilvear, D. J.

    2017-12-01

    Most river restoration research has been directed at rivers in the highly populated alluvial lowlands: significantly less is known about effectively rehabilitating upland channels, in part because the dynamics of sediment transfer are less well understood. Upland gravel augmentation is thus both a somewhat unproven method for rehabilitating degraded aquatic habitats in sediment-poor reaches, but also a natural experiment in better understanding sediment dynamics in steep, hydraulically-complex river channels. Monitoring on the River Avon in SW England since Water Year (WY) 2015 uses seismic impact plates, RFID-tagged particles and detailed channel bed mapping to establish the mobility rates of augmented particles, their dispersal distances and settling locations relative to flows received. Particles are highly, and equally, mobile: in WY2015, 17 sub-bankfull flows moved at least 60% of augmented particles with volumetric movement non-linearly correlated to flow energy but not to particle size. Waning rates of transport over the year suggest supply limitations. This relationship breaks down early in WY2017 where a two-year flow event moved 40% of the particles in just two months - confounding factors may include particle mass differences and particle supplies from upstream. Median particle travel distances correlate well to energy applied and suggest a long-tailed fan of dispersal with supplemental controls including channel curvature, boulder presence and stream power. Locally, particles are deposited preferentially around boulders and in sheltered river margins but also perched in clusters above the low-flow channel. High tracer mobility makes median transport distances highly dependent on the survey length - in WY2017 some particles travelled 300 m in a 3-month period that included the two-year flood event. Further, in WY2017 median transport distance as a function of volumetric transport suggested significant transport beyond the target reach. The observed

  7. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  8. Effects of flow depth and wall roughness on turbulence in compound channels

    International Nuclear Information System (INIS)

    Prinos, P.; Townsend, R.; Tavoularis, S.

    1985-01-01

    Current methods for estimating discharge in compound channels often lead to large errors. The error is largely due to momentum transfer mechanism (MTM) generated in the junction regions of the flow field (between adjacent deep and shallow zones). The MTM adversely affects system conveyance, particularly when the velocity differential between the deep and shallow zones is large. Improved prediction methods, therefore, will necessarily reflect the MTM's presence and its effect on the compound flow field. The mechanism's influence on system hydraulics is best examined by analysing the related turbulence characteristics in the junction zones of the compound section. Townsend reported increased turbulence levels in the junction region between a main channel and its shallower flood plain zone and Elsawy, McKee and McKeogh found that observed normal turbulent stresses in a similar region were of the same order of magnitude as the apparent shear stress on the junction's vertical interface plane. The objective of the present study is to measure turbulent stresses in the junction region of a symmetrical compound open channel and examine their dependence on relative depth and relative boundary roughness. Further details of this phase of the larger study are presented elsewhere. (author)

  9. Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI

  10. Suppression of the secondary flow in a suction channel of a large centrifugal pump

    International Nuclear Information System (INIS)

    Torii, D; Nagahara, T; Okihara, T

    2013-01-01

    The suction channel configuration of a large centrifugal pump with a 90-degree bend was studied in detail to suppress the secondary flow at the impeller inlet for improving suction performance. Design of experiments (DOE) and computational fluid dynamics (CFD) were used to evaluate the sensitivity of several primary design parameters of the suction channel. A DOE is a powerful tool to clarify the sensitivity of objective functions to design parameters with a minimum of trials. An L9 orthogonal array was adopted in this study and nine suction channels were designed, through which the flow was predicted by steady state calculation. The results indicate that a smaller bend radius with a longer straight nozzle, distributed between the bend and the impeller, suppresses the secondary flow at the impeller inlet. An optimum ratio of the cross sectional areas at the bend inlet and outlet was also confirmed in relationship to the contraction rate of the downstream straight nozzle. These findings were obtained by CFD and verified by experiments. The results will aid the design of large centrifugal pumps with better suction performance and higher reliability

  11. Identification of flow structures in fully developed canonical and wavy channels by means of modal decomposition techniques

    Science.gov (United States)

    Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio

    2018-04-01

    A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.

  12. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA

    Science.gov (United States)

    Pavlowsky, Robert T.; Lecce, Scott A.; Owen, Marc R.; Martin, Derek J.

    2017-12-01

    The Old Lead Belt of southeastern Missouri was one of the leading producers of Pb ore for more than a century (1869-1972). Large quantities of contaminated mine waste have been, and continue to be, supplied to local streams. This study assessed the magnitude and spatial distribution of mining-contaminated legacy sediment stored in channel and floodplain deposits of the Big River in the Ozark Highlands of southeastern Missouri. Although metal concentrations decline downstream from the mine sources, the channel and floodplain sediments are contaminated above background levels with Pb and Zn along its entire 171-km length below the mine sources. Mean concentrations in floodplain cores > 2000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn extend 40-50 km downstream from the mining area in association with the supply of fine tailings particles that were easily dispersed downstream in the suspended load. Mean concentrations in channel bed and bar sediments ranging from 1400 to 1700 mg kg- 1 for Pb extend 30 km below the mines, while Zn concentrations of 1000-3000 mg kg- 1 extend 20 km downstream. Coarse dolomite fragments in the 2-16 mm channel sediment fraction provide significant storage of Pb and Zn, representing 13-20% of the bulk sediment storage mass in the channel and can contain concentrations of > 4000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn. These coarse tailings have been transported a maximum distance of only about 30 km from the source over a period of 120 years for an average of about 250 m/y. About 37% of the Pb and 9% of the Zn that was originally released to the watershed in tailings wastes is still stored in the Big River. A total of 157 million Mg of contaminated sediment is stored along the Big River, with 92% of it located in floodplain deposits that are typically contaminated to depths of 1.5-3.5 m. These contaminated sediments store a total of 188,549 Mg of Pb and 34,299 Mg of Zn, of which 98% of the Pb and 95% of the Zn are stored in floodplain

  13. On the sedimentation problems in water abstraction channels at power plant sites at tidal estuaries

    International Nuclear Information System (INIS)

    Jensen, J.; Arns, A.; Frank, T.; Meiswinkel, R.; Richei, A.

    2010-01-01

    The required cooling water supply of a nuclear power plant the required flow deepness in the water abstraction channels has to be provided. Since the abstraction channels are usually in main stream orientation of the river periodic sedimentation occur, that have to be removed by dredging techniques. Especially in tidal estuaries the complex flow situation induces transport mechanisms that have to be studied in order to develop cost saving and effective measures and procedures to reduce the sedimentation and pollutants deposition. The authors recommend experimental determinations of the sold material transport and numerical hydrodynamic transport modeling to identify the transport pathways.

  14. Influence of a k-type Roughness on the Behaviour of Turbulence in an Unsteady Channel Flow

    International Nuclear Information System (INIS)

    Seddighi, Mehdi; He Shuisheng; Vardy, Alan E; Orlandi, Paolo

    2011-01-01

    Direct Numerical Simulations (DNS) have been carried out for a spatially fully developed turbulent channel flow with one smooth wall and one k-type rough-wall surface to study the influence of a square bar roughness on the behaviour of unsteady turbulent flow. The flow state under investigation is a uniform acceleration from an initially steady turbulent flow. Results are compared with simulations of flows in a smooth wall channel undergoing a similar acceleration, and with quasi-steady behaviour obtained using steady flow simulations. The turbulence in the wall region and the buffer layer of an accelerating flow with a rough wall shows strikingly different behaviour from that of corresponding flows with smooth walls. The characteristic long delays in the response of the streamwise turbulent velocity and the different behaviours of the three turbulent velocity components that are exhibited in smooth wall flows are not seen in the rough wall flow. This is attributed to different turbulent production mechanisms in the two types of flows. Important differences are also seen in the wall shear stress responses one wall is rough and when both walls are smooth.

  15. Unstable fluid flow in a water-cooled heating channel

    International Nuclear Information System (INIS)

    Delayre, R.; Saunier, J.P.

    1961-01-01

    Experimental investigations of the instable behavior of a pressurized water flow in forced convection in a heating channel, with subcooled or bulk boiling have been carried. Tests were conducted at 1140, 850 and 570 psi. The test section was 35 in. high, surmounted by a 25.4 in. riser, these sections were by-passed by a pipe where the flow was between 1 and 4 times the flow in the test section. The water velocity (in the test section) was between 1.6 and 6.6 ft/s. Under certain conditions oscillations with a period of several seconds and perfectly stable have been observed. A mathematical model has been defined and a good agreement obtained for the main characteristics of the oscillations. It seems that the dimensions of the riser have a determining effect: the inception of bulk boiling gives an important variation of the driving head which can generate oscillations due to the non-zero delay for the system to reach its equilibrium. (author) [fr

  16. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  17. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  18. Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling

    Science.gov (United States)

    Gomez, C.; Lavigne, F.; Sri Hadmoko, D.; Wassmer, P.

    2018-03-01

    Semeru Volcano is an active stratovolcano located in East Java (Indonesia), where historic lava flows, occasional pyroclastic flows and vulcanian explosions (on average every 5 min to 15 min) generate a stock of material that is remobilized by lahars, mostly occurring during the rainy season between October and March. Every year, several lahars flow down the Curah Lengkong Valley on the South-east flank of the volcano, where numerous lahar studies have been conducted. In the present contribution, the objective was to study the spatial distribution of boulder-size clasts and try to understand how this distribution relates to the valley morphology and to the dynamic and deposition dynamic of lahars. To achieve this objective, the method relies on a combination of (1) aerial photogrammetry-derived geospatial data on boulders' distribution, (2) ground penetrating radar data collected along a 2 km series of transects and (3) a CFD model of flow to analyse the results from the deposits. Results show that <1 m diameter boulders are evenly distributed along the channel, but that lava flow deposits visible at the surface of the river bed and SABO dams increase the concentration of clasts upstream of their position. Lateral input of boulders from collapsing lava-flow deposits can bring outsized clasts in the system that tend to become trapped at one location. Finally, the comparison between the CFD simulation and previous research using video imagery of lahars put the emphasis the fact that there is no direct link between the sedimentary units observed in the field and the flow that deposited them. Both grain size, flow orientation, matrix characteristics can be very different in a deposit for one single flow, even in confined channels like the Curah Lengkong.

  19. Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...

    African Journals Online (AJOL)

    The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...

  20. Effects of Parallel Channel Interactions on Two-Phase Flow Split in ...

    African Journals Online (AJOL)

    The tests would aid the development of a realistic transient computer model for tracking the distribution of two-phase flows into the multiple parallel channels of a Nuclear Reactor, during Loss of Coolant Accidents (LOCA), and were performed at the General Electric Nuclear Energy Division Laboratory, California. The test ...