Comparison of Pilot Symbol Embedded Channel Estimation Algorithms
Directory of Open Access Journals (Sweden)
P. Kadlec
2009-12-01
Full Text Available In the paper, algorithms of the pilot symbol embedded channel estimation are compared. Attention is turned to the Least Square (LS channel estimation and the Sliding Correlator (SC algorithm. Both algorithms are implemented in Matlab to estimate the Channel Impulse Response (CIR of a channel exhibiting multi-path propagation. Algorithms are compared from the viewpoint of computational demands, influence of the Additive White Gaussian Noise (AWGN, an embedded pilot symbol and a computed CIR over the estimation error.
Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation
Kim, Sunwoo
This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
A Novel OFDM Channel Estimation Algorithm with ICI Mitigation over Fast Fading Channels
Directory of Open Access Journals (Sweden)
C. Tao
2010-06-01
Full Text Available Orthogonal frequency-division multiplexing (OFDM is well-known as a high-bit-rate transmission technique, but the Doppler frequency offset due to the high speed movement destroys the orthogonality of the subcarriers resulting in the intercarrier interference (ICI, and degrades the performance of the system at the same time. In this paper a novel OFDM channel estimation algorithm with ICI mitigation based on the ICI self-cancellation scheme is proposed. With this method, a more accurate channel estimation is obtained by comb-type double pilots and then ICI coefficients can be obtained to mitigate the ICI on each subcarrier under the assumption that the channel impulse response (CIR varies in a linear fashion. The theoretical analysis and simulation results show that the bit error rate (BER and spectral efficiency performances are improved significantly under high-speed mobility conditions (350 km/h – 500 km/h in comparison to ZHAO’s ICI self-cancellation scheme.
A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation
Directory of Open Access Journals (Sweden)
Guomin Li
2016-12-01
Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.
Directory of Open Access Journals (Sweden)
Liu KJ Ray
2002-01-01
Full Text Available Orthogonal frequency division multiplexing (OFDM is an effective technique for the future 3G communications because of its great immunity to impulse noise and intersymbol interference. The channel estimation is a crucial aspect in the design of OFDM systems. In this work, we propose a channel estimation algorithm based on a time-frequency polynomial model of the fading multipath channels. The algorithm exploits the correlation of the channel responses in both time and frequency domains and hence reduce more noise than the methods using only time or frequency polynomial model. The estimator is also more robust compared to the existing methods based on Fourier transform. The simulation shows that it has more than improvement in terms of mean-squared estimation error under some practical channel conditions. The algorithm needs little prior knowledge about the delay and fading properties of the channel. The algorithm can be implemented recursively and can adjust itself to follow the variation of the channel statistics.
DEFF Research Database (Denmark)
Shutin, Dmitriy; Fleury, Bernard Henri
2011-01-01
In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless...... channels. The application context of the algorithm considered in this contribution is parameter estimation from channel sounding measurements for radio channel modeling purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in two respects: i) by monotonically minimizing...... parametric sparsity priors for the weights of the multipath components. We revisit the Gaussian sparsity priors within the sparse VB-SAGE framework and extend the results by considering Laplace priors. The structure of the VB-SAGE algorithm allows for an analytical stability analysis of the update expression...
Sparse Adaptive Channel Estimation Based on lp-Norm-Penalized Affine Projection Algorithm
Directory of Open Access Journals (Sweden)
Yingsong Li
2014-01-01
Full Text Available We propose an lp-norm-penalized affine projection algorithm (LP-APA for broadband multipath adaptive channel estimations. The proposed LP-APA is realized by incorporating an lp-norm into the cost function of the conventional affine projection algorithm (APA to exploit the sparsity property of the broadband wireless multipath channel, by which the convergence speed and steady-state performance of the APA are significantly improved. The implementation of the LP-APA is equivalent to adding a zero attractor to its iterations. The simulation results, which are obtained from a sparse channel estimation, demonstrate that the proposed LP-APA can efficiently improve channel estimation performance in terms of both the convergence speed and steady-state performance when the channel is exactly sparse.
A Fast Iterative Bayesian Inference Algorithm for Sparse Channel Estimation
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri
2013-01-01
representation of the Bessel K probability density function; a highly efficient, fast iterative Bayesian inference method is then applied to the proposed model. The resulting estimator outperforms other state-of-the-art Bayesian and non-Bayesian estimators, either by yielding lower mean squared estimation error...
Application of a Channel Estimation Algorithm to Spectrum Sensing in a Cognitive Radio Context
Directory of Open Access Journals (Sweden)
Vincent Savaux
2014-01-01
Full Text Available This paper deals with spectrum sensing in an orthogonal frequency division multiplexing (OFDM context, allowing an opportunistic user to detect a vacant spectrum resource in a licensed band. The proposed method is based on an iterative algorithm used for the joint estimation of noise variance and frequency selective channel. It can be seen as a second-order detector, since it is performed by means of the minimum mean square error criterion. The main advantage of the proposed algorithm is its capability to perform spectrum sensing, noise variance estimation, and channel estimation in the presence of a signal. Furthermore, the sensing duration is limited to only one OFDM symbol. We theoretically show the convergence of the algorithm, and we derive its analytical detection and false alarm probabilities. Furthermore, we show that the detector is very efficient, even for low SNR values, and is robust against a channel uncertainty.
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
Wolf, Michael
2012-01-01
A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.
A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.
Savaux, Vincent
2014-01-01
This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is pr
Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm
Directory of Open Access Journals (Sweden)
Jinsheng Yang
2012-01-01
Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.
An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications
Directory of Open Access Journals (Sweden)
Lingyi Han
2016-09-01
Full Text Available The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC and estimation of signal parameters via rotation invariant technique (ESPRIT cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS method called improved turbo compressed channel sensing (ITCCS. It iteratively updates the soft information between the linear minimum mean square error (LMMSE estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle
Peterson, Harold; Koshak, William J.
2009-01-01
An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.
Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio
2018-03-01
To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Christensen, Lars P.B.; Larsen, Jan
2006-01-01
A general Variational Bayesian framework for iterative data and parameter estimation for coherent detection is introduced as a generalization of the EM-algorithm. Explicit solutions are given for MIMO channel estimation with Gaussian prior and noise covariance estimation with inverse-Wishart prior....... Simulation of a GSM-like system provides empirical proof that the VBEM-algorithm is able to provide better performance than the EM-algorithm. However, if the posterior distribution is highly peaked, the VBEM-algorithm approaches the EM-algorithm and the gain disappears. The potential gain is therefore...
Channel Estimation on the (EW RLS Algorithm Model of MIMO OFDM in Wireless Communication
Directory of Open Access Journals (Sweden)
Sarnin Suzi Seroja
2016-01-01
(correspond to different mobility speeds and Monte Carlo simulations are performed and the MSE and BER performance versus SNR are obtained by averaging over 10000 channel realization. For comparisons, the BER performance is also presented for perfectly known channel at the receiver. In all the simulations, perfect synchronization between the transmitter and the receiver is assumed.
Efficient channel estimation in massive MIMO systems - a distributed approach
Al-Naffouri, Tareq Y.
2016-01-01
We present two efficient algorithms for distributed estimation of channels in massive MIMO systems. The two cases of 1) generic, and 2) sparse channels is considered. The algorithms estimate the impulse response for each channel observed
DEFF Research Database (Denmark)
2015-01-01
A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....
Directory of Open Access Journals (Sweden)
Aitzol Astigarraga
2016-01-01
Full Text Available Brain-Computer Interfaces (BCIs have become a research field with interesting applications, and it can be inferred from published papers that different persons activate different parts of the brain to perform the same action. This paper presents a personalized interface design method, for electroencephalogram- (EEG- based BCIs, based on channel selection. We describe a novel two-step method in which firstly a computationally inexpensive greedy algorithm finds an adequate search range; and, then, an Estimation of Distribution Algorithm (EDA is applied in the reduced range to obtain the optimal channel subset. The use of the EDA allows us to select the most interacting channels subset, removing the irrelevant and noisy ones, thus selecting the most discriminative subset of channels for each user improving accuracy. The method is tested on the IIIa dataset from the BCI competition III. Experimental results show that the resulting channel subset is consistent with motor-imaginary-related neurophysiological principles and, on the other hand, optimizes performance reducing the number of channels.
Efficient channel estimation in massive MIMO systems - a distributed approach
Al-Naffouri, Tareq Y.
2016-01-21
We present two efficient algorithms for distributed estimation of channels in massive MIMO systems. The two cases of 1) generic, and 2) sparse channels is considered. The algorithms estimate the impulse response for each channel observed by the antennas at the receiver (base station) in a coordinated manner by sharing minimal information among neighboring antennas. Simulations demonstrate the superior performance of the proposed methods as compared to other methods.
Bayesian Inference Methods for Sparse Channel Estimation
DEFF Research Database (Denmark)
Pedersen, Niels Lovmand
2013-01-01
This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...
The Extended-Window Channel Estimator for Iterative Channel-and-Symbol Estimation
Directory of Open Access Journals (Sweden)
Barry John R
2005-01-01
Full Text Available The application of the expectation-maximization (EM algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE. The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.
D-BLAST OFDM with Channel Estimation
Directory of Open Access Journals (Sweden)
Du Jianxuan
2004-01-01
Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.
A new adaptive blind channel identification algorithm
International Nuclear Information System (INIS)
Peng Dezhong; Xiang Yong; Yi Zhang
2009-01-01
This paper addresses the blind identification of single-input multiple-output (SIMO) finite-impulse-response (FIR) systems. We first propose a new adaptive algorithm for the blind identification of SIMO FIR systems. Then, its convergence property is analyzed systematically. It is shown that under some mild conditions, the proposed algorithm is guaranteed to converge in the mean to the true channel impulse responses in both noisy and noiseless cases. Simulations are carried out to demonstrate the theoretical results.
A review of channel selection algorithms for EEG signal processing
Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq
2015-12-01
Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.
Estimation error algorithm at analysis of beta-spectra
International Nuclear Information System (INIS)
Bakovets, N.V.; Zhukovskij, A.I.; Zubarev, V.N.; Khadzhinov, E.M.
2005-01-01
This work describes the estimation error algorithm at the operations with beta-spectrums, as well as compares the theoretical and experimental errors by the processing of beta-channel's data. (authors)
Distributive estimation of frequency selective channels for massive MIMO systems
Zaib, Alam
2015-12-28
We consider frequency selective channel estimation in the uplink of massive MIMO-OFDM systems, where our major concern is complexity. A low complexity distributed LMMSE algorithm is proposed that attains near optimal channel impulse response (CIR) estimates from noisy observations at receive antenna array. In proposed method, every antenna estimates the CIRs of its neighborhood followed by recursive sharing of estimates with immediate neighbors. At each step, every antenna calculates the weighted average of shared estimates which converges to near optimal LMMSE solution. The simulation results validate the near optimal performance of proposed algorithm in terms of mean square error (MSE). © 2015 EURASIP.
Multimodal Estimation of Distribution Algorithms.
Yang, Qiang; Chen, Wei-Neng; Li, Yun; Chen, C L Philip; Xu, Xiang-Min; Zhang, Jun
2016-02-15
Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.
Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.
Giridhar, K.
The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal
Perceived Speech Quality Estimation Using DTW Algorithm
Directory of Open Access Journals (Sweden)
S. Arsenovski
2009-06-01
Full Text Available In this paper a method for speech quality estimation is evaluated by simulating the transfer of speech over packet switched and mobile networks. The proposed system uses Dynamic Time Warping algorithm for test and received speech comparison. Several tests have been made on a test speech sample of a single speaker with simulated packet (frame loss effects on the perceived speech. The achieved results have been compared with measured PESQ values on the used transmission channel and their correlation has been observed.
Channel Estimation in DCT-Based OFDM
Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing
2014-01-01
This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439
Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models
Directory of Open Access Journals (Sweden)
Marius Pesavento
2004-08-01
Full Text Available A novel algebraic method for the simultaneous estimation of MIMO channel parameters from channel sounder measurements is developed. We consider a parametric multipath propagation model with P discrete paths where each path is characterized by its complex path gain, its directions of arrival and departure, time delay, and Doppler shift. This problem is treated as a special case of the multidimensional harmonic retrieval problem. While the well-known ESPRIT-type algorithms exploit shift-invariance between specific partitions of the signal matrix, the rank reduction estimator (RARE algorithm exploits their internal Vandermonde structure. A multidimensional extension of the RARE algorithm is developed, analyzed, and applied to measurement data recorded with the RUSK vector channel sounder in the 2 GHz band.
Relative Pose Estimation Algorithm with Gyroscope Sensor
Directory of Open Access Journals (Sweden)
Shanshan Wei
2016-01-01
Full Text Available This paper proposes a novel vision and inertial fusion algorithm S2fM (Simplified Structure from Motion for camera relative pose estimation. Different from current existing algorithms, our algorithm estimates rotation parameter and translation parameter separately. S2fM employs gyroscopes to estimate camera rotation parameter, which is later fused with the image data to estimate camera translation parameter. Our contributions are in two aspects. (1 Under the circumstance that no inertial sensor can estimate accurately enough translation parameter, we propose a translation estimation algorithm by fusing gyroscope sensor and image data. (2 Our S2fM algorithm is efficient and suitable for smart devices. Experimental results validate efficiency of the proposed S2fM algorithm.
Multi-Channel Maximum Likelihood Pitch Estimation
DEFF Research Database (Denmark)
Christensen, Mads Græsbøll
2012-01-01
In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...
Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.
2017-10-01
A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.
Estimation of channel impulse response and FPGA simulation
Directory of Open Access Journals (Sweden)
YU Longjie
2015-02-01
Full Text Available Wideband code division multiple access (WCDMA is a 3G wireless communication network.The common pilot channel in downlink of WCDMA provides an effective method to estimate the channel impulse response.In this paper,universal software radio peripheral (USRP is utilized to sample and process WCDMA signal which is emitted by China Unicom base station.Firstly,the received signal is pre-processed with filtering and down-sampling.Secondly,fast algorithm of WCDMA cell search is fulfilled.Thirdly,frequency shift caused by USRP′s crystal oscillator is checked and compensated.Eventually,channel impulse response is estimated.In this paper,MATLAB is used to describe the above algorithm and field programmable gate array (FPGA is used to simulate algorithm.In the process of simulation,pipeline and IP core multiplexing are introduced.In the case of 32 MHz clock frequency,FPGA simulation time is 80.861 ms.Simulation results show that FPGA is able to estimate the channel impulse response quickly and accurately with less hardware resources.
Channel Access Algorithm Design for Automatic Identification System
Institute of Scientific and Technical Information of China (English)
Oh Sang-heon; Kim Seung-pum; Hwang Dong-hwan; Park Chan-sik; Lee Sang-jeong
2003-01-01
The Automatic Identification System (AIS) is a maritime equipment to allow an efficient exchange of the navigational data between ships and between ships and shore stations. It utilizes a channel access algorithm which can quickly resolve conflicts without any intervention from control stations. In this paper, a design of channel access algorithm for the AIS is presented. The input/output relationship of each access algorithm module is defined by drawing the state transition diagram, dataflow diagram and flowchart based on the technical standard, ITU-R M.1371. In order to verify the designed channel access algorithm, the simulator was developed using the C/C++ programming language. The results show that the proposed channel access algorithm can properly allocate transmission slots and meet the operational performance requirements specified by the technical standard.
Superimposed Training-Based Channel Estimation for MIMO Relay Networks
Directory of Open Access Journals (Sweden)
Xiaoyan Xu
2012-01-01
Full Text Available We introduce the superimposed training strategy into the multiple-input multiple-output (MIMO amplify-and-forward (AF one-way relay network (OWRN to perform the individual channel estimation at the destination. Through the superposition of a group of additional training vectors at the relay subject to power allocation, the separated estimates of the source-relay and relay-destination channels can be obtained directly at the destination, and the accordance with the two-hop AF strategy can be guaranteed at the same time. The closed-form Bayesian Cramér-Rao lower bound (CRLB is derived for the estimation of two sets of flat-fading MIMO channel under random channel parameters and further exploited to design the optimal training vectors. A specific suboptimal channel estimation algorithm is applied in the MIMO AF OWRN using the optimal training sequences, and the normalized mean square error performance for the estimation is provided to verify the Bayesian CRLB results.
RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization
Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.
Efficient optimal joint channel estimation and data detection for massive MIMO systems
Alshamary, Haider Ali Jasim
2016-08-15
In this paper, we propose an efficient optimal joint channel estimation and data detection algorithm for massive MIMO wireless systems. Our algorithm is optimal in terms of the generalized likelihood ratio test (GLRT). For massive MIMO systems, we show that the expected complexity of our algorithm grows polynomially in the channel coherence time. Simulation results demonstrate significant performance gains of our algorithm compared with suboptimal non-coherent detection algorithms. To the best of our knowledge, this is the first algorithm which efficiently achieves GLRT-optimal non-coherent detections for massive MIMO systems with general constellations.
Subspace Based Blind Sparse Channel Estimation
DEFF Research Database (Denmark)
Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki
2012-01-01
The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...
H∞ Channel Estimation for DS-CDMA Systems: A Partial Difference Equation Approach
Directory of Open Access Journals (Sweden)
Wei Wang
2013-01-01
Full Text Available In the communications literature, a number of different algorithms have been proposed for channel estimation problems with the statistics of the channel noise and observation noise exactly known. In practical systems, however, the channel parameters are often estimated using training sequences which lead to the statistics of the channel noise difficult to obtain. Moreover, the received signals are corrupted not only by the ambient noises but also by multiple-access interferences, so the statistics of observation noises is also difficult to obtain. In this paper, we will investigate the H∞ channel estimation problem for direct-sequence code-division multiple-access (DS-CDMA communication systems with time-varying multipath fading channels. The channel estimator is designed by applying a partial difference equation approach together with the innovation analysis theory. This method can give a sufficient and necessary condition for the existence of an H∞ channel estimator.
A Developed ESPRIT Algorithm for DOA Estimation
Fayad, Youssef; Wang, Caiyun; Cao, Qunsheng; Hafez, Alaa El-Din Sayed
2015-05-01
A novel algorithm for estimating direction of arrival (DOAE) for target, which aspires to contribute to increase the estimation process accuracy and decrease the calculation costs, has been carried out. It has introduced time and space multiresolution in Estimation of Signal Parameter via Rotation Invariance Techniques (ESPRIT) method (TS-ESPRIT) to realize subspace approach that decreases errors caused by the model's nonlinearity effect. The efficacy of the proposed algorithm is verified by using Monte Carlo simulation, the DOAE accuracy has evaluated by closed-form Cramér-Rao bound (CRB) which reveals that the proposed algorithm's estimated results are better than those of the normal ESPRIT methods leading to the estimator performance enhancement.
An efficient quantum algorithm for spectral estimation
Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth
2017-03-01
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.
GSM Channel Equalization Algorithm - Modern DSP Coprocessor Approach
Directory of Open Access Journals (Sweden)
M. Drutarovsky
1999-12-01
Full Text Available The paper presents basic equations of efficient GSM Viterbi equalizer algorithm based on approximation of GMSK modulation by linear superposition of amplitude modulated pulses. This approximation allows to use Ungerboeck form of channel equalizer with significantly reduced arithmetic complexity. Proposed algorithm can be effectively implemented on the Viterbi and Filter coprocessors of new Motorola DSP56305 digital signal processor. Short overview of coprocessor features related to the proposed algorithm is included.
A Novel Comb-Pilot Transform Domain Frequency Diversity Channel Estimation for OFDM System
Directory of Open Access Journals (Sweden)
L. Liu
2009-12-01
Full Text Available Due to implementation complexity, the transform domain channel estimation based on training symbols or comb-type pilots has been paid more attention because of its efficient algorithm FFT/IFFT. However, in a comb-type OFDM system, the length of the channel impulse response is much smaller than the pilot number. In this case, the comb-pilot transform domain channel estimation only works as interpolation like the Least Squares (LS algorithm, but loses the noise suppression function. In this paper, we propose a novel frequency diversity channel estimation method via grouped pilots combining. With this estimator, not only the channel frequency response on non-pilot subcarriers can be interpolated, but also the noise can be better suppressed. Moreover, it does not need prior statistical characteristics of the wireless channel.
Remote optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.
2014-01-22
This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system are capsulized without time stamp and then transmitted to the network node at which the filter is located. The probabilities of time delays are assumed to be known. The event-driven estimation scheme is applied in this paper and the estimate of the states is updated only at each time instant when any measurement arrives. To capture the feature of communication, the system considered is augmented, and the arrived measurements are regarded as the uncertain observations of the augmented system. The corresponding optimal estimation algorithm is proposed and additionally, a numerical simulation represents the performance of this work. © 2014 The authors. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
ZAP: a distributed channel assignment algorithm for cognitive radio networks
Junior , Paulo Roberto ,; Fonseca , Mauro; Munaretto , Anelise; Viana , Aline ,; Ziviani , Artur
2011-01-01
Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR) networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another ...
Optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.; Liu, Bo
2013-01-01
This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.
Optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.
2013-04-01
This paper is concerned with the optimal estimation of linear systems over unreliable communication channels with random delays. The measurements are delivered without time stamp, and the probabilities of time delays are assumed to be known. Since the estimation is time-driven, the actual time delays are converted into virtual time delays among the formulation. The receiver of estimation node stores the sum of arrived measurements between two adjacent processing time instants and also counts the number of arrived measurements. The original linear system is modeled as an extended system with uncertain observation to capture the feature of communication, then the optimal estimation algorithm of systems with uncertain observations is proposed. Additionally, a numerical simulation is presented to show the performance of this work. © 2013 The Franklin Institute.
A Robust Threshold for Iterative Channel Estimation in OFDM Systems
Directory of Open Access Journals (Sweden)
A. Kalaycioglu
2010-04-01
Full Text Available A novel threshold computation method for pilot symbol assisted iterative channel estimation in OFDM systems is considered. As the bits are transmitted in packets, the proposed technique is based on calculating a particular threshold for each data packet in order to select the reliable decoder output symbols to improve the channel estimation performance. Iteratively, additional pilot symbols are established according to the threshold and the channel is re-estimated with the new pilots inserted to the known channel estimation pilot set. The proposed threshold calculation method for selecting additional pilots performs better than non-iterative channel estimation, no threshold and fixed threshold techniques in poor HF channel simulations.
Unification of Frequency direction Pilot-symbol Aided Channel Estimation (PACE) for OFDM
DEFF Research Database (Denmark)
Rom, Christian; Manchón, Carles Navarro; Deneire, Luc
2007-01-01
their specificities, namely the presence of virtual subcarriers and non-sample-spaced channels. To ease this choice, we propose a unified presentation of estimators encompassing most of the algorithms that can be found in literature, which only differ by the assumptions made on the channel. This unification leads...
Energy-efficient power allocation of two-hop cooperative systems with imperfect channel estimation
Amin, Osama
2015-06-08
Recently, much attention has been paid to the green design of wireless communication systems using energy efficiency (EE) metrics that should capture all energy consumption sources to deliver the required data. In this paper, we formulate an accurate EE metric for cooperative two-hop systems that use the amplify-and-forward relaying scheme. Different from the existing research that assumes the availability of perfect channel state information (CSI) at the communication cooperative nodes, we assume a practical scenario, where training pilots are used to estimate the channels. The estimated CSI can be used to adapt the available resources of the proposed system in order to maximize the EE. Two estimation strategies are assumed namely disintegrated channel estimation, which assumes the availability of channel estimator at the relay, and cascaded channel estimation, where the relay is not equipped with channel estimator and only forwards the received pilot(s) in order to let the destination estimate the cooperative link. The channel estimation cost is reflected on the EE metric by including the estimation error in the signal-to-noise term and considering the energy consumption during the estimation phase. Based on the formulated EE metric, we propose an energy-aware power allocation algorithm to maximize the EE of the cooperative system with channel estimation. Furthermore, we study the impact of the estimation parameters on the optimized EE performance via simulation examples.
Shibli, Hussain J.
2013-06-01
Opportunistic schedulers rely on the feedback of all users in order to schedule a set of users with favorable channel conditions. While the downlink channels can be easily estimated at all user terminals via a single broadcast, several key challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources (air-time) required for feedback transmission grows linearly with the number of users. In this paper, we tackle the above challenges and propose a Bayesian based scheduling algorithm that 1) reduces the air-time required to identify the strong users, and 2) is agnostic to the statistics of the feedback channels and utilizes the a priori statistics of the additive noise to identify the strong users. Numerical results show that the proposed algorithm reduces the feedback air-time while improving detection in the presence of fading and noisy channels when compared to recent compressed sensing based algorithms. Furthermore, the proposed algorithm achieves a sum-rate throughput close to that obtained by noiseless dedicated feedback systems. © 2013 IEEE.
Angular Domain Data-Assisted Channel Estimation for Pilot Decontamination in Massive MIMO
Directory of Open Access Journals (Sweden)
Yihenew Beyene
2017-01-01
Full Text Available Massive Multiple-Input-Multiple-Output (M-MIMO system is a promising technology that offers to mobile networks substantial increase in throughput. In Time-Division Duplexing (TDD, the uplink training allows a Base Station (BS to acquire Channel State Information (CSI for both uplink reception and downlink transmission. This is essential for M-MIMO systems where downlink training pilots would consume large portion of the bandwidth. In densely populated areas, pilot symbols are reused among neighboring cells. Pilot contamination is the fundamental bottleneck on the performance of M-MIMO systems. Pilot contamination effect in antenna arrays can be mitigated by treating the channel estimation problem in angular domain where channel sparsity can be exploited. In this paper, we introduce a codebook that projects the channel into orthogonal beams and apply Minimum Mean-Squared Error (MMSE criterion to estimate the channel. We also propose data-aided channel covariance matrix estimation algorithm for angular domain MMSE channel estimator by exploiting properties of linear antenna array. The algorithm is based on simple linear operations and no matrix inversion is involved. Numerical results show that the algorithm performs well in mitigating pilot contamination where the desired channel and other interfering channels span overlapping angle-of-arrivals.
Improvement of Source Number Estimation Method for Single Channel Signal.
Directory of Open Access Journals (Sweden)
Zhi Dong
Full Text Available Source number estimation methods for single channel signal have been investigated and the improvements for each method are suggested in this work. Firstly, the single channel data is converted to multi-channel form by delay process. Then, algorithms used in the array signal processing, such as Gerschgorin's disk estimation (GDE and minimum description length (MDL, are introduced to estimate the source number of the received signal. The previous results have shown that the MDL based on information theoretic criteria (ITC obtains a superior performance than GDE at low SNR. However it has no ability to handle the signals containing colored noise. On the contrary, the GDE method can eliminate the influence of colored noise. Nevertheless, its performance at low SNR is not satisfactory. In order to solve these problems and contradictions, the work makes remarkable improvements on these two methods on account of the above consideration. A diagonal loading technique is employed to ameliorate the MDL method and a jackknife technique is referenced to optimize the data covariance matrix in order to improve the performance of the GDE method. The results of simulation have illustrated that the performance of original methods have been promoted largely.
Single-Channel Blind Estimation of Reverberation Parameters
DEFF Research Database (Denmark)
Doire, C.S.J.; Brookes, M. D.; Naylor, P. A.
2015-01-01
The reverberation of an acoustic channel can be characterised by two frequency-dependent parameters: the reverberation time and the direct-to-reverberant energy ratio. This paper presents an algorithm for blindly determining these parameters from a single-channel speech signal. The algorithm uses...
DFT-based channel estimation and noise variance estimation techniques for single-carrier FDMA
Huang, G; Nix, AR; Armour, SMD
2010-01-01
Practical frequency domain equalization (FDE) systems generally require knowledge of the channel and the noise variance to equalize the received signal in a frequency-selective fading channel. Accurate channel estimate and noise variance estimate are thus desirable to improve receiver performance. In this paper we investigate the performance of the denoise channel estimator and the approximate linear minimum mean square error (A-LMMSE) channel estimator with channel power delay profile (PDP) ...
Improved Sparse Channel Estimation for Cooperative Communication Systems
Directory of Open Access Journals (Sweden)
Guan Gui
2012-01-01
Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.
Xu, Li; Shan, Lin; Adachi, Fumiyuki
2014-01-01
In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012
Energy-balanced algorithm for RFID estimation
Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan
2016-10-01
RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.
A decentralized scheduling algorithm for time synchronized channel hopping
Directory of Open Access Journals (Sweden)
Andrew Tinka
2011-09-01
Full Text Available Time Synchronized Channel Hopping (TSCH is an existing Medium Access Control scheme which enables robust communication through channel hopping and high data rates through synchronization. It is based on a time-slotted architecture, and its correct functioning depends on a schedule which is typically computed by a central node. This paper presents, to our knowledge, the first scheduling algorithm for TSCH networks which both is distributed and which copes with mobile nodes. Two variations on scheduling algorithms are presented. Aloha-based scheduling allocates one channel for broadcasting advertisements for new neighbors. Reservation- based scheduling augments Aloha-based scheduling with a dedicated timeslot for targeted advertisements based on gossip information. A mobile ad hoc motorized sensor network with frequent connectivity changes is studied, and the performance of the two proposed algorithms is assessed. This performance analysis uses both simulation results and the results of a field deployment of floating wireless sensors in an estuarial canal environment. Reservation-based scheduling performs significantly better than Aloha-based scheduling, suggesting that the improved network reactivity is worth the increased algorithmic complexity and resource consumption.
Analysis of Traffic Parameter Estimation and Its Impacts on Wireless Channel
Institute of Scientific and Technical Information of China (English)
徐玉滨; 沙学军; 强蔚
2004-01-01
Wide band or broadband access was paid much attention with the development of radio transmission technique. The wireless access control procedure play an important role in this type of system and efficiency of control algorithm has a great impact on throughput of channel resource. Based on wide band network control model and the characteristics of radio channel, this paper proposed a channel traffic estimation method and then performed a dynamic parameter control procedure and give detail analysis on estimation error and its impact on channel throughput and delay performance. Computation and simulation of system performance show a positive solution on system design.
Conveyance estimation in channels with emergent bank vegetation ...
African Journals Online (AJOL)
Emergent vegetation along the banks of a river channel influences its conveyance considerably. The total channel discharge can be estimated as the sum of the discharges of the vegetated and clear channel zones calculated separately. The vegetated zone discharge is often negligible, but can be estimated using ...
Concurrent signal combining and channel estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2011-08-30
In the reception of digital information transmitted on a communication channel, a characteristic exhibited by the communication channel during transmission of the digital information is estimated based on a communication signal that represents the digital information and has been received via the communication channel. Concurrently with the estimating, the communication signal is used to decide what digital information was transmitted.
ZAP: a distributed channel assignment algorithm for cognitive radio networks
Directory of Open Access Journals (Sweden)
Munaretto Anelise
2011-01-01
Full Text Available Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another challenge is the optimization of network capacity through interference minimization. In contrast to related work, ZAP addresses these challenges with a fully distributed approach based only on local (neighborhood knowledge, while significantly reducing computational costs and the number of messages required for channel assignment. Simulations confirm the efficiency of ZAP in terms of (i the performance tradeoff between different metrics and (ii the fast achievement of a suitable assignment solution regardless of network size and density.
A Demosaicking Algorithm with Adaptive Inter-Channel Correlation
Directory of Open Access Journals (Sweden)
Joan Duran
2015-12-01
Full Text Available Most common cameras use a CCD sensor device measuring a single color per pixel. Demosaicking is the interpolation process by which one can infer a full color image from such a matrix of values, thus interpolating the two missing components per pixel. Most demosaicking methods take advantage of inter-channel correlation locally selecting the best interpolation direction. The obtained results look convincing except when local geometry cannot be inferred from neighboring pixels or channel correlation is low. In these cases, these algorithms create interpolation artifacts such as zipper effect or color aliasing. This paper discusses the implementation details of the algorithm proposed in [J. Duran, A. Buades, ``Self-Similarity and Spectral Correlation Adaptive Algorithm for Color Demosaicking'', IEEE Transactions on Image Processing, 23(9, pp. 4031--4040, 2014]. The proposed method involves nonlocal image self-similarity in order to reduce interpolation artifacts when local geometry is ambiguous. It further introduces a clear and intuitive manner of balancing how much channel-correlation must be taken advantage of.
International Nuclear Information System (INIS)
Vysotskij, V.G.
1997-01-01
An algorithm for diagnostics of the state of measuring channels of an information computer system with usage of analysis of statistical channel characteristics is presented. An algorithm for testing the generalized state of the NPP technological equipment is proposed
A global algorithm for estimating Absolute Salinity
McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.
2012-12-01
The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).
Li, Husheng; Betz, Sharon M.; Poor, H. Vincent
2007-05-01
This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.
The split symbol moments SNR estimator in narrow-band channels
Shah, Biren; Hinedi, Sami
1990-01-01
The split symbol moments estimator is an algorithm that is designed to estimate symbol SNR in the presence of additive white Gaussian noise. The performance of the algorithm in band-limited channels is examined, and the effects of the resulting intersymbol interference are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance-prediction purposes. The results are also validated through digital simulations.
A Channelization-Based DOA Estimation Method for Wideband Signals
Directory of Open Access Journals (Sweden)
Rui Guo
2016-07-01
Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.
Detection-Guided Fast Affine Projection Channel Estimator for Speech Applications
Directory of Open Access Journals (Sweden)
Yan Wu Jennifer
2007-04-01
Full Text Available In various adaptive estimation applications, such as acoustic echo cancellation within teleconferencing systems, the input signal is a highly correlated speech. This, in general, leads to extremely slow convergence of the NLMS adaptive FIR estimator. As a result, for such applications, the affine projection algorithm (APA or the low-complexity version, the fast affine projection (FAP algorithm, is commonly employed instead of the NLMS algorithm. In such applications, the signal propagation channel may have a relatively low-dimensional impulse response structure, that is, the number m of active or significant taps within the (discrete-time modelled channel impulse response is much less than the overall tap length n of the channel impulse response. For such cases, we investigate the inclusion of an active-parameter detection-guided concept within the fast affine projection FIR channel estimator. Simulation results indicate that the proposed detection-guided fast affine projection channel estimator has improved convergence speed and has lead to better steady-state performance than the standard fast affine projection channel estimator, especially in the important case of highly correlated speech input signals.
Efficient collaborative sparse channel estimation in massive MIMO
Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.
2015-01-01
We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.
Efficient collaborative sparse channel estimation in massive MIMO
Masood, Mudassir
2015-08-12
We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.
Gorshtein, Albert; Levy, Omri; Katz, Gilad; Sadot, Dan
2013-09-23
Blind channel estimation is critical for digital signal processing (DSP) compensation of optical fiber communications links. The overall channel consists of deterministic distortions such as chromatic dispersion, as well as random and time varying distortions including polarization mode dispersion and timing jitter. It is critical to obtain robust acquisition and tracking methods for estimating these distortions effects, which, in turn, can be compensated by means of DSP such as Maximum Likelihood Sequence Estimation (MLSE). Here, a novel blind estimation algorithm is developed, accompanied by inclusive mathematical modeling, and followed by extensive set of real time experiments that verify quantitatively its performance and convergence. The developed blind channel estimation is used as the basis of an MLSE receiver. The entire scheme is fully implemented in a 65 nm CMOS Application Specific Integrated Circuit (ASIC). Experimental measurements and results are presented, including Bit Error Rate (BER) measurements, which demonstrate the successful data recovery by the MLSE ASIC under various channel conditions and distances.
A global algorithm for estimating Absolute Salinity
Directory of Open Access Journals (Sweden)
T. J. McDougall
2012-12-01
Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.
When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg^{−1} in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.
To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.
Directory of Open Access Journals (Sweden)
Hongjun Xu
2011-07-01
Full Text Available A channel and delay estimation algorithm for both positive and negative delay, based on the distributed Alamouti scheme, has been recently discussed for base-station–based asynchronous cooperative systems in frequency-flat fading channels. This paper extends the algorithm, the maximum likelihood estimator, to work in frequency-selective fading channels. The minimum mean square error (MMSE performance of channel estimation for both packet schemes and normal schemes is discussed in this paper. The symbol error rate (SER performance of equalisation and detection for both time-reversal space-time block code (STBC and single-carrier STBC is also discussed in this paper. The MMSE simulation results demonstrated the superior performance of the packet scheme over the normal scheme with an improvement in performance of up to 6 dB when feedback was used in the frequency-selective channel at a MSE of 3 x 10^{–2}. The SER simulation results showed that, although both the normal and packet schemes achieved similar diversity orders, the packet scheme demonstrated a 1 dB coding gain over the normal scheme at a SER of 10^{–5}. Finally, the SER simulations showed that the frequency-selective fading system outperformed the frequency-flat fading system.
Mathematical models for estimating radio channels utilization when ...
African Journals Online (AJOL)
Definition of the radio channel utilization indicator is given. Mathematical models for radio channels utilization assessment by real-time flows transfer in the wireless self-organized network are presented. Estimated experiments results according to the average radio channel utilization productivity with and without buffering of ...
Propagation channel characterization, parameter estimation, and modeling for wireless communications
Yin, Xuefeng
2016-01-01
Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...
Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems
Directory of Open Access Journals (Sweden)
Makoto Yoshida
2009-01-01
Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.
Remote optimal state estimation over communication channels with random delays
Mahmoud, Magdi S.; Al-Sunni, Fouad; Liu, Bo
2014-01-01
This paper considers the optimal estimation of linear systems over unreliable communication channels with random delays. In this work, it is assumed that the system to be estimated is far away from the filter. The observations of the system
Application of the Evidence Procedure to the Estimation of Wireless Channels
Directory of Open Access Journals (Sweden)
Fleury Bernard H
2007-01-01
Full Text Available We address the application of the Bayesian evidence procedure to the estimation of wireless channels. The proposed scheme is based on relevance vector machines (RVM originally proposed by M. Tipping. RVMs allow to estimate channel parameters as well as to assess the number of multipath components constituting the channel within the Bayesian framework by locally maximizing the evidence integral. We show that, in the case of channel sounding using pulse-compression techniques, it is possible to cast the channel model as a general linear model, thus allowing RVM methods to be applied. We extend the original RVM algorithm to the multiple-observation/multiple-sensor scenario by proposing a new graphical model to represent multipath components. Through the analysis of the evidence procedure we develop a thresholding algorithm that is used in estimating the number of components. We also discuss the relationship of the evidence procedure to the standard minimum description length (MDL criterion. We show that the maximum of the evidence corresponds to the minimum of the MDL criterion. The applicability of the proposed scheme is demonstrated with synthetic as well as real-world channel measurements, and a performance increase over the conventional MDL criterion applied to maximum-likelihood estimates of the channel parameters is observed.
mathematical models for estimating radio channels utilization
African Journals Online (AJOL)
2017-08-08
Aug 8, 2017 ... Mathematical models for radio channels utilization assessment by real-time flows transfer in ... data transmission networks application having dynamic topology ..... Journal of Applied Mathematics and Statistics, 56(2): 85–90.
Low-Complexity Bayesian Estimation of Cluster-Sparse Channels
Ballal, Tarig; Al-Naffouri, Tareq Y.; Ahmed, Syed
2015-01-01
This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.
Low-Complexity Bayesian Estimation of Cluster-Sparse Channels
Ballal, Tarig
2015-09-18
This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Energy Technology Data Exchange (ETDEWEB)
Wang, Shilian, E-mail: wangsl@nudt.edu.cn; Zhang, Zhili [College of Electrical Science and Engineering, National University of Defense Technology, Changsha, 410073, P R China (China)
2015-01-15
A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
Multicarrier chaotic communications in multipath fading channels without channel estimation
Directory of Open Access Journals (Sweden)
Shilian Wang
2015-01-01
Full Text Available A multi-carrier chaotic shift keying(MC-CSK communication scheme with low probability of interception(LPI is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.
An information-guided channel-hopping scheme for block-fading channels with estimation errors
Yang, Yuli
2010-12-01
Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.
Bidirectional Fano Algorithm for Lattice Coded MIMO Channels
Al-Quwaiee, Hessa
2013-05-08
Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS). Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree search can bridge the gap between SD and MMSE. The sequential decoder provides an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values. In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the
Automatic bounding estimation in modified NLMS algorithm
International Nuclear Information System (INIS)
Shahtalebi, K.; Doost-Hoseini, A.M.
2002-01-01
Modified Normalized Least Mean Square algorithm, which is a sign form of Nlm based on set-membership (S M) theory in the class of optimal bounding ellipsoid (OBE) algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a special but popular case of measurement noise, a simple algorithm has been proposed. With some simulation examples the performance of algorithm is compared with Modified Normalized Least Mean Square
Low Complexity Iterative Joint Channel Estimation and Multiuser Detection for DS-CDMA
DEFF Research Database (Denmark)
Christensen, Søren Skovgård; Kocian, Alexander; Fleury, Bernard Henri
2004-01-01
Previously the SAGE algorithm was applied to sub-optimal yet efficient Joint data Detection and channel Estimation (JDE) for DS-CDMA of moderate time complexity. Modifying the expectation and maximization steps of the SAGE-JDE scheme, it is possible to obtain an efficient receiver architecture...
Doppler-shift estimation of flat underwater channel using data-aided least-square approach
Directory of Open Access Journals (Sweden)
Weiqiang Pan
2015-03-01
Full Text Available In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.
Doppler-shift estimation of flat underwater channel using data-aided least-square approach
Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing
2015-06-01
In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.
Sparse Channel Estimation for MIMO-OFDM Two-Way Relay Network with Compressed Sensing
Directory of Open Access Journals (Sweden)
Aihua Zhang
2013-01-01
Full Text Available Accurate channel impulse response (CIR is required for equalization and can help improve communication service quality in next-generation wireless communication systems. An example of an advanced system is amplify-and-forward multiple-input multiple-output two-way relay network, which is modulated by orthogonal frequency-division multiplexing. Linear channel estimation methods, for example, least squares and expectation conditional maximization, have been proposed previously for the system. However, these methods do not take advantage of channel sparsity, and they decrease estimation performance. We propose a sparse channel estimation scheme, which is different from linear methods, at end users under the relay channel to enable us to exploit sparsity. First, we formulate the sparse channel estimation problem as a compressed sensing problem by using sparse decomposition theory. Second, the CIR is reconstructed by CoSaMP and OMP algorithms. Finally, computer simulations are conducted to confirm the superiority of the proposed methods over traditional linear channel estimation methods.
Algorithms for Brownian first-passage-time estimation
Adib, Artur B.
2009-09-01
A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.
Minimum Probability of Error-Based Equalization Algorithms for Fading Channels
Directory of Open Access Journals (Sweden)
Janos Levendovszky
2007-06-01
Full Text Available Novel channel equalizer algorithms are introduced for wireless communication systems to combat channel distortions resulting from multipath propagation. The novel algorithms are based on newly derived bounds on the probability of error (PE and guarantee better performance than the traditional zero forcing (ZF or minimum mean square error (MMSE algorithms. The new equalization methods require channel state information which is obtained by a fast adaptive channel identification algorithm. As a result, the combined convergence time needed for channel identification and PE minimization still remains smaller than the convergence time of traditional adaptive algorithms, yielding real-time equalization. The performance of the new algorithms is tested by extensive simulations on standard mobile channels.
Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems
Zaib, Alam
2016-07-22
By virtue of large antenna arrays, massive MIMO systems have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. This paper addresses uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. We propose an efficient distributed minimum mean square error (MMSE) algorithm that can achieve near optimal channel estimates at low complexity by exploiting the strong spatial correlation among antenna array elements. The proposed method involves solving a reduced dimensional MMSE problem at each antenna followed by a repetitive sharing of information through collaboration among neighboring array elements. To further enhance the channel estimates and/or reduce the number of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze the effect of pilot contamination on channel MSE. The simulation results validate our analysis and show near optimal performance of the proposed estimation algorithms.
Directory of Open Access Journals (Sweden)
Waqas Rehan
2016-09-01
Full Text Available Wireless sensor networks (WSNs have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM, that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI and the average of the link quality indicator (LQI of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC algorithm in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC algorithm, that can perform channel quality estimation on the basis of both current and past values of channel rank estimation
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end
International Nuclear Information System (INIS)
Zhao Huidong; Hei Yong; Qiao Shushan; Ye Tianchun
2012-01-01
An optimized channel estimation algorithm based on a time-spread structure in OFDM low-voltage power line communication (PLC) systems is proposed to achieve a lower bit error rate (BER). This paper optimizes the best maximum multi-path delay of the linear minimum mean square error (LMMSE) algorithm in time-domain spread OFDM systems. Simulation results indicate that the BER of the improved method is lower than that of conventional LMMSE algorithm, especially when the signal-to-noise ratio (SNR) is lower than 0 dB. Both the LMMSE algorithm and the proposed algorithm are implemented and fabricated in CSMC 0.18 μm technology. This paper analyzes and compares the hardware complexity and performance of the two algorithms. Measurements indicate that the proposed channel estimator has better performance than the conventional estimator.
Evaluation of an automated single-channel sleep staging algorithm
Directory of Open Access Journals (Sweden)
Wang Y
2015-09-01
Full Text Available Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard F Kaplan1 1General Sleep Corporation, Euclid, OH, 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: We previously published the performance evaluation of an automated electroencephalography (EEG-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM Sleep, against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years, including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2 were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM
CFO and channel estimation for MISO-OFDM systems
Ladaycia, Abdelhamid
2017-11-02
This study deals with the joint channel and carrier frequency offset (CFO) estimation in a Multiple Input Single Output (MISO) communications system. This problem arises in OFDM (Orthogonal Frequency Division Multiplexing) based multi-relay transmission protocols such that the geo-routing one proposed by A. Bader et al in 2012. Indeed, the outstanding performance of this multi-hop relaying scheme relies heavily on the channel and CFO estimation quality at the PHY layer. In this work, two approaches are considered: The first is based on estimating the overall channel (including the CFO) as a time-varying one using an adaptive scheme under the assumption of small or moderate CFOs while the second one performs separately, the channel and CFO parameters estimation based on the considered data model. The two solutions are analyzed and compared in terms of performance, cost and convergence rate.
Weighted-noise threshold based channel estimation for OFDM ...
Indian Academy of Sciences (India)
Existing optimal time-domain thresholds exhibit suboptimal behavior for completely unavailable KCS ... Compared with no truncation case, truncation improved the MSE ... channel estimation errors has been studied. ...... Consumer Electron.
A Fast LMMSE Channel Estimation Method for OFDM Systems
Directory of Open Access Journals (Sweden)
Zhou Wen
2009-01-01
Full Text Available A fast linear minimum mean square error (LMMSE channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the fast Fourier transform (FFT operation. Therefore, the computational complexity can be reduced significantly. The normalized mean square errors (NMSEs of the proposed method and the conventional LMMSE estimation have been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER.
Bidirectional Fano Algorithm for Lattice Coded MIMO Channels
Al-Quwaiee, Hessa
2013-01-01
channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered
Advanced Channel Estimation and Multiuser Detection in GSM
DEFF Research Database (Denmark)
Arildsen, Thomas; Blauendahl, Jesper
A single-antenna interference cancellation-capable data detector employing the SAGE-algorithm for GSM downlink transmission with co-channel interference has been designed and tested. Two scenarios were considered: First, a frequency-flat Rayleigh fading scenario with synchronously received users...
On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation
Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim
2014-01-01
We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.
On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation
Rezki, Zouheir
2014-12-01
We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.
Adaptive estimation and discrimination of Holevo-Werner channels
Directory of Open Access Journals (Sweden)
Cope Thomas P. W.
2017-12-01
Full Text Available The class of quantum states known as Werner states have several interesting properties, which often serve to illuminate unusual properties of quantum information. Closely related to these states are the Holevo- Werner channels whose Choi matrices are Werner states. Exploiting the fact that these channels are teleportation covariant, and therefore simulable by teleportation, we compute the ultimate precision in the adaptive estimation of their channel-defining parameter. Similarly, we bound the minimum error probability affecting the adaptive discrimination of any two of these channels. In this case, we prove an analytical formula for the quantum Chernoff bound which also has a direct counterpart for the class of depolarizing channels. Our work exploits previous methods established in [Pirandola and Lupo, PRL 118, 100502 (2017] to set the metrological limits associated with this interesting class of quantum channels at any finite dimension.
A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.
Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan
2015-01-01
In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.
A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.
Directory of Open Access Journals (Sweden)
Yuanfu Mo
Full Text Available In a vehicular ad hoc network (VANET, the periodic exchange of single-hop status information broadcasts (beacon frames produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.
On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation
Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim
2011-01-01
imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a
Energy-Efficient Channel Estimation in MIMO Systems
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The emergence of MIMO communications systems as practical high-data-rate wireless communications systems has created several technical challenges to be met. On the one hand, there is potential for enhancing system performance in terms of capacity and diversity. On the other hand, the presence of multiple transceivers at both ends has created additional cost in terms of hardware and energy consumption. For coherent detection as well as to do optimization such as water filling and beamforming, it is essential that the MIMO channel is known. However, due to the presence of multiple transceivers at both the transmitter and receiver, the channel estimation problem is more complicated and costly compared to a SISO system. Several solutions have been proposed to minimize the computational cost, and hence the energy spent in channel estimation of MIMO systems. We present a novel method of minimizing the overall energy consumption. Unlike existing methods, we consider the energy spent during the channel estimation phase which includes transmission of training symbols, storage of those symbols at the receiver, and also channel estimation at the receiver. We develop a model that is independent of the hardware or software used for channel estimation, and use a divide-and-conquer strategy to minimize the overall energy consumption.
Novel Method for 5G Systems NLOS Channels Parameter Estimation
Directory of Open Access Journals (Sweden)
Vladeta Milenkovic
2017-01-01
Full Text Available For the development of new 5G systems to operate in mm bands, there is a need for accurate radio propagation modelling at these bands. In this paper novel approach for NLOS channels parameter estimation will be presented. Estimation will be performed based on LCR performance measure, which will enable us to estimate propagation parameters in real time and to avoid weaknesses of ML and moment method estimation approaches.
Dermoune, Azzouz; Simon, Eric Pierre
2017-12-01
This paper is a theoretical analysis of the maximum likelihood (ML) channel estimator for orthogonal frequency-division multiplexing (OFDM) systems in the presence of unknown interference. The following theoretical results are presented. Firstly, the uniqueness of the ML solution for practical applications, i.e., when thermal noise is present, is analytically demonstrated when the number of transmitted OFDM symbols is strictly greater than one. The ML solution is then derived from the iterative conditional ML (CML) algorithm. Secondly, it is shown that the channel estimate can be described as an algebraic function whose inputs are the initial value and the means and variances of the received samples. Thirdly, it is theoretically demonstrated that the channel estimator is not biased. The second and the third results are obtained by employing oblique projection theory. Furthermore, these results are confirmed by numerical results.
DEFF Research Database (Denmark)
De Carvalho, Elisabeth; Omar, Samir; Slock, Dirk
2013-01-01
We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low...... to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML......, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML...
Sequential bayes estimation algorithm with cubic splines on uniform meshes
International Nuclear Information System (INIS)
Hossfeld, F.; Mika, K.; Plesser-Walk, E.
1975-11-01
After outlining the principles of some recent developments in parameter estimation, a sequential numerical algorithm for generalized curve-fitting applications is presented combining results from statistical estimation concepts and spline analysis. Due to its recursive nature, the algorithm can be used most efficiently in online experimentation. Using computer-sumulated and experimental data, the efficiency and the flexibility of this sequential estimation procedure is extensively demonstrated. (orig.) [de
Rank-defective millimeter-wave channel estimation based on subspace-compressive sensing
Directory of Open Access Journals (Sweden)
Majid Shakhsi Dastgahian
2016-11-01
Full Text Available Millimeter-wave communication (mmWC is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS and mobile sets (MS. Unlike the conventional MIMO systems, Millimeter-wave (mmW systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level.
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
EDMC: An enhanced distributed multi-channel anti-collision algorithm for RFID reader system
Zhang, YuJing; Cui, Yinghua
2017-05-01
In this paper, we proposes an enhanced distributed multi-channel reader anti-collision algorithm for RFID environments which is based on the distributed multi-channel reader anti-collision algorithm for RFID environments (called DiMCA). We proposes a monitor method to decide whether reader receive the latest control news after it selected the data channel. The simulation result shows that it improves interrogation delay.
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm
Institute of Scientific and Technical Information of China (English)
Haidong Xu; Mingyan Jiang; Kun Xu
2015-01-01
The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
An Improved User Selection Algorithm in Multiuser MIMO Broadcast with Channel Prediction
Min, Zhi; Ohtsuki, Tomoaki
In multiuser MIMO-BC (Multiple-Input Multiple-Output Broadcasting) systems, user selection is important to achieve multiuser diversity. The optimal user selection algorithm is to try all the combinations of users to find the user group that can achieve the multiuser diversity. Unfortunately, the high calculation cost of the optimal algorithm prevents its implementation. Thus, instead of the optimal algorithm, some suboptimal user selection algorithms were proposed based on semiorthogonality of user channel vectors. The purpose of this paper is to achieve multiuser diversity with a small amount of calculation. For this purpose, we propose a user selection algorithm that can improve the orthogonality of a selected user group. We also apply a channel prediction technique to a MIMO-BC system to get more accurate channel information at the transmitter. Simulation results show that the channel prediction can improve the accuracy of channel information for user selections, and the proposed user selection algorithm achieves higher sum rate capacity than the SUS (Semiorthogonal User Selection) algorithm. Also we discuss the setting of the algorithm threshold. As the result of a discussion on the calculation complexity, which uses the number of complex multiplications as the parameter, the proposed algorithm is shown to have a calculation complexity almost equal to that of the SUS algorithm, and they are much lower than that of the optimal user selection algorithm.
Performance Evaluation of Proportional Fair Scheduling Algorithm with Measured Channels
DEFF Research Database (Denmark)
Sørensen, Troels Bundgaard; Pons, Manuel Rubio
2005-01-01
subjected to measured channel traces. Specifically, we applied measured signal fading recorded from GSM cell phone users making calls on an indoor wireless office system. Different from reference channel models, these measured channels have much more irregular fading between users, which as we show...
A Motion Estimation Algorithm Using DTCWT and ARPS
Directory of Open Access Journals (Sweden)
Unan Y. Oktiawati
2013-09-01
Full Text Available In this paper, a hybrid motion estimation algorithm utilizing the Dual Tree Complex Wavelet Transform (DTCWT and the Adaptive Rood Pattern Search (ARPS block is presented. The proposed algorithm first transforms each video sequence with DTCWT. The frame n of the video sequence is used as a reference input and the frame n+2 is used to find the motion vector. Next, the ARPS block search algorithm is carried out and followed by an inverse DTCWT. The motion compensation is then carried out on each inversed frame n and motion vector. The results show that PSNR can be improved for mobile device without depriving its quality. The proposed algorithm also takes less memory usage compared to the DCT-based algorithm. The main contribution of this work is a hybrid wavelet-based motion estimation algorithm for mobile devices. Other contribution is the visual quality scoring system as used in section 6.
Algorithm of the managing systems state estimation
Directory of Open Access Journals (Sweden)
Skubilin M. D.
2010-02-01
Full Text Available The possibility of an electronic estimation of automatic and automated managing systems state is analyzed. An estimation of a current state (functional readiness of technical equipment and person-operator as integrated system allows to take operatively adequate measures on an exception and-or minimisation of consequences of system’s transition in a supernumerary state. The offered method is universal enough and can be recommended for normalisation of situations on transport, mainly in aircraft.
Comparison of two global digital algorithms for Minkowski tensor estimation
DEFF Research Database (Denmark)
The geometry of real world objects can be described by Minkowski tensors. Algorithms have been suggested to approximate Minkowski tensors if only a binary image of the object is available. This paper presents implementations of two such algorithms. The theoretical convergence properties...... are confirmed by simulations on test sets, and recommendations for input arguments of the algorithms are given. For increasing resolutions, we obtain more accurate estimators for the Minkowski tensors. Digitisations of more complicated objects are shown to require higher resolutions....
Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks
Orlov, Yu.; Fedorov, S.; Samuylov, A.; Gaidamaka, Yu.; Molchanov, D.
2017-07-01
The problem of channel quality estimation for devices in a wireless 5G network is formulated. As a performance metrics of interest we choose the signal-to-interference-plus-noise ratio, which depends essentially on the distance between the communicating devices. A model with a plurality of moving devices in a bounded three-dimensional space and a simulation algorithm to determine the distances between the devices for a given motion model are devised.
Orientation estimation algorithm applied to high-spin projectiles
International Nuclear Information System (INIS)
Long, D F; Lin, J; Zhang, X M; Li, J
2014-01-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)
Orientation estimation algorithm applied to high-spin projectiles
Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.
2014-06-01
High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.
Channel estimation for physical layer network coding systems
Gao, Feifei; Wang, Gongpu
2014-01-01
This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa
Efficient optimal joint channel estimation and data detection for massive MIMO systems
Alshamary, Haider Ali Jasim; Xu, Weiyu
2016-01-01
show that the expected complexity of our algorithm grows polynomially in the channel coherence time. Simulation results demonstrate significant performance gains of our algorithm compared with suboptimal non-coherent detection algorithms. To the best
Error Estimation for the Linearized Auto-Localization Algorithm
Directory of Open Access Journals (Sweden)
Fernando Seco
2012-02-01
Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.
Using transformation algorithms to estimate (co)variance ...
African Journals Online (AJOL)
REML) procedures by a diagonalization approach is extended to multiple traits by the use of canonical transformations. A computing strategy is developed for use on large data sets employing two different REML algorithms for the estimation of ...
Directory of Open Access Journals (Sweden)
Bickel David R
2010-01-01
Full Text Available Abstract Background Sustained research on the problem of determining which genes are differentially expressed on the basis of microarray data has yielded a plethora of statistical algorithms, each justified by theory, simulation, or ad hoc validation and yet differing in practical results from equally justified algorithms. Recently, a concordance method that measures agreement among gene lists have been introduced to assess various aspects of differential gene expression detection. This method has the advantage of basing its assessment solely on the results of real data analyses, but as it requires examining gene lists of given sizes, it may be unstable. Results Two methodologies for assessing predictive error are described: a cross-validation method and a posterior predictive method. As a nonparametric method of estimating prediction error from observed expression levels, cross validation provides an empirical approach to assessing algorithms for detecting differential gene expression that is fully justified for large numbers of biological replicates. Because it leverages the knowledge that only a small portion of genes are differentially expressed, the posterior predictive method is expected to provide more reliable estimates of algorithm performance, allaying concerns about limited biological replication. In practice, the posterior predictive method can assess when its approximations are valid and when they are inaccurate. Under conditions in which its approximations are valid, it corroborates the results of cross validation. Both comparison methodologies are applicable to both single-channel and dual-channel microarrays. For the data sets considered, estimating prediction error by cross validation demonstrates that empirical Bayes methods based on hierarchical models tend to outperform algorithms based on selecting genes by their fold changes or by non-hierarchical model-selection criteria. (The latter two approaches have comparable
Directory of Open Access Journals (Sweden)
Biguesh Mehrzad
2004-01-01
Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.
On the secrecy capacity of the wiretap channel with imperfect main channel estimation
Rezki, Zouheir
2014-10-01
We study the secrecy capacity of fast fading channels under imperfect main channel (between the transmitter and the legitimate receiver) estimation at the transmitter. Lower and upper bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate follows from a standard wiretap code in which a simple on-off power control is employed along with a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and eavesdropper channels and is the best known upper bound so far. The upper and lower bounds coincide with recently derived ones in case of perfect main CSI. Furthermore, the upper bound is tight in case of no main CSI, where the secrecy capacity is equal to zero. Asymptotic analysis at high and low signal-to-noise ratio (SNR) is also given. At high SNR, we show that the capacity is bounded by providing upper and lower bounds that depend on the channel estimation error. At low SNR, however, we prove that the secrecy capacity is asymptotically equal to the capacity of the main channel as if there were no secrecy constraint. Numerical results are provided for i.i.d. Rayleigh fading channels.
Directory of Open Access Journals (Sweden)
Markku Renfors
2007-12-01
Full Text Available The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs. In order to achieve this incremental performance, the estimation of line-of-sight (LOS delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs and their enhanced variants (i.e., feedback code tracking loops are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2, and PT with Teager Kaiser (TK operator, which will be denoted herein as PT(Diff2 and PT(TK, respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK as well as the newly proposed BOC modulation
An Algorithm for Induction Motor Stator Flux Estimation
Directory of Open Access Journals (Sweden)
STOJIC, D. M.
2012-08-01
Full Text Available A new method for the induction motor stator flux estimation used in the sensorless IM drive applications is presented in this paper. Proposed algorithm advantageously solves problems associated with the pure integration, commonly used for the stator flux estimation. An observer-based structure is proposed based on the stator flux vector stationary state, in order to eliminate the undesired DC offset component present in the integrator based stator flux estimates. By using a set of simulation runs it is shown that the proposed algorithm enables the DC-offset free stator flux estimated for both low and high stator frequency induction motor operation.
Multiuser detection and channel estimation: Exact and approximate methods
DEFF Research Database (Denmark)
Fabricius, Thomas
2003-01-01
subtractive interference cancellation with hyperbolic tangent tentative decision device, in statistical mechanics and machine learning called the naive mean field approach. The differences between the proposed algorithms lie in how the bias is estimated/approximated. We propose approaches based on a second...... propose here to use accurate approximations borrowed from statistical mechanics and machine learning. These give us various algorithms that all can be formulated in a subtractive interference cancellation formalism. The suggested algorithms can e ectively be seen as bias corrections to standard...... of the Junction Tree Algorithm, which is a generalisation of Pearl's Belief Propagation, the BCJR, sum product, min/max sum, and Viterbi's algorithm. Although efficient algoithms, they have an inherent exponential complexity in the number of users when applied to CDMA multiuser detection. For this reason we...
Iterative importance sampling algorithms for parameter estimation
Morzfeld, Matthias; Day, Marcus S.; Grout, Ray W.; Pau, George Shu Heng; Finsterle, Stefan A.; Bell, John B.
2016-01-01
In parameter estimation problems one computes a posterior distribution over uncertain parameters defined jointly by a prior distribution, a model, and noisy data. Markov Chain Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on high performance computing systems because samples are drawn independently. However, finding a suitable proposal distribution is ...
Validation of Core Temperature Estimation Algorithm
2016-01-20
based on an extended Kalman filter , which was developed using field data from 17 young male U.S. Army soldiers with core temperatures ranging from...CTstart, v) %KFMODEL estimate core temperature from heart rate with Kalman filter % This version supports both batch mode (operate on entire HR time...CTstart = 37.1; % degrees Celsius end if nargin < 3 v = 0; end %Extended Kalman Filter Parameters a = 1; gamma = 0.022^2; b_0 = -7887.1; b_1
Application of genetic algorithms for parameter estimation in liquid chromatography
International Nuclear Information System (INIS)
Hernandez Torres, Reynier; Irizar Mesa, Mirtha; Tavares Camara, Leoncio Diogenes
2012-01-01
In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography
Power system static state estimation using Kalman filter algorithm
Directory of Open Access Journals (Sweden)
Saikia Anupam
2016-01-01
Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.
An O(NlogN Algorithm for Region Definition Using Channels/Switchboxes and Ordering Assignment
Directory of Open Access Journals (Sweden)
Jin-Tai Yan
1996-01-01
Full Text Available For a building block placement, the routing space can be further partitioned into channels and switchboxes. In general, the definition of switchboxes releases the cyclic channel precedence constraints and further yields a safe routing ordering process. However, switchbox routing is more difficult than channel routing. In this paper, an O(NlogN region definition and ordering assignment (RDAOA algorithm is proposed to minimize the number of switchboxes for the routing phase, where N is the number of vertices in a channel precedence graph. Several examples have been tested on the proposed algorithm, and the experimental results are listed and compared.
CFO and channel estimation for MISO-OFDM systems
Ladaycia, Abdelhamid; Abed-Meraim, Karim; Bader, Ahmed; Alouini, Mohamed-Slim
2017-01-01
-relay transmission protocols such that the geo-routing one proposed by A. Bader et al in 2012. Indeed, the outstanding performance of this multi-hop relaying scheme relies heavily on the channel and CFO estimation quality at the PHY layer. In this work, two
Directory of Open Access Journals (Sweden)
Imran Khan
2018-01-01
Full Text Available Uplink and Downlink channel estimation in massive Multiple Input Multiple Output (MIMO systems is an intricate issue because of the increasing channel matrix dimensions. The channel feedback overhead using traditional codebook schemes is very large, which consumes more bandwidth and decreases the overall system efficiency. The purpose of this paper is to decrease the channel estimation overhead by taking the advantage of sparse attributes and also to optimize the Energy Efficiency (EE of the system. To cope with this issue, we propose a novel approach by using Compressed-Sensing (CS, Block Iterative-Support-Detection (Block-ISD, Angle-of-Departure (AoD and Structured Compressive Sampling Matching Pursuit (S-CoSaMP algorithms to reduce the channel estimation overhead and compare them with the traditional algorithms. The CS uses temporal-correlation of time-varying channels to produce Differential-Channel Impulse Response (DCIR among two CIRs that are adjacent in time-slots. DCIR has greater sparsity than the conventional CIRs as it can be easily compressed. The Block-ISD uses spatial-correlation of the channels to obtain the block-sparsity which results in lower pilot-overhead. AoD quantizes the channels whose path-AoDs variation is slower than path-gains and such information is utilized for reducing the overhead. S-CoSaMP deploys structured-sparsity to obtain reliable Channel-State-Information (CSI. MATLAB simulation results show that the proposed CS based algorithms reduce the feedback and pilot-overhead by a significant percentage and also improve the system capacity as compared with the traditional algorithms. Moreover, the EE level increases with increasing Base Station (BS density, UE density and lowering hardware impairments level.
Parameter Estimation of Damped Compound Pendulum Using Bat Algorithm
Directory of Open Access Journals (Sweden)
Saad Mohd Sazli
2016-01-01
Full Text Available In this study, the parameter identification of the damped compound pendulum system is proposed using one of the most promising nature inspired algorithms which is Bat Algorithm (BA. The procedure used to achieve the parameter identification of the experimental system consists of input-output data collection, ARX model order selection and parameter estimation using bat algorithm (BA method. PRBS signal is used as an input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the autoregressive with exogenous input (ARX model. The performance of the model is validated using mean squares error (MSE between the actual and predicted output responses of the models. Finally, comparative study is conducted between BA and the conventional estimation method (i.e. Least Square. Based on the results obtained, MSE produce from Bat Algorithm (BA is outperformed the Least Square (LS method.
Algorithms for estimating blood velocities using ultrasound
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2000-01-01
Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...... are parallel to the skin surface. Angling the transducer will often disturb the flow, and new techniques for finding transverse velocities are needed. The various approaches for determining transverse velocities will be explained. This includes techniques using two-dimensional correlation (speckle tracking...
Algorithms for non-linear M-estimation
DEFF Research Database (Denmark)
Madsen, Kaj; Edlund, O; Ekblom, H
1997-01-01
In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...
On Channel Estimation for OFDM/TDM Using MMSE-FDE in a Fast Fading Channel
Directory of Open Access Journals (Sweden)
Gacanin Haris
2009-01-01
Full Text Available Abstract MMSE-FDE can improve the transmission performance of OFDM combined with time division multiplexing (OFDM/TDM, but knowledge of the channel state information and the noise variance is required to compute the MMSE weight. In this paper, a performance evaluation of OFDM/TDM using MMSE-FDE with pilot-assisted channel estimation over a fast fading channel is presented. To improve the tracking ability against fast fading a robust pilot-assisted channel estimation is presented that uses time-domain filtering on a slot-by-slot basis and frequency-domain interpolation. We derive the mean square error (MSE of the channel estimator and then discuss a tradeoff between improving the tracking ability against fading and the noise reduction. The achievable bit error rate (BER performance is evaluated by computer simulation and compared with conventional OFDM. It is shown that the OFDM/TDM using MMSE-FDE achieves a lower BER and a better tracking ability against fast fading in comparison with conventional OFDM.
Radaydeh, Redha Mahmoud Mesleh
2010-01-01
The performance of transmit antenna selection for threshold-based maximal ratio combining (MRC) diversity receivers in the presence of multiple co-channel interfering signals is studied. The impact of imperfect channel estimation of desired user signals is considered, and the effect of phase and time misalignments between desired and undesired signals is incorporated in the analysis. Precise formulation for Nakagami-m faded interfering signals is presented. The analysis is applicable for arbitrary transmit antenna selection, which is based on the receiver combined signal-to-noise ratios (SNRs) or combined signal-to-interference-plus-noise ratios (SINRs) for different transmit channels. New expressions for the distribution of combined SINR and outage probability performance are derived considering SNR-based as well as SINR-based selection algorithms. The results can be used to study the performance of different system architectures under various channel conditions when the implementation complexity is of interest. ©2010 IEEE.
Applicability of genetic algorithms to parameter estimation of economic models
Directory of Open Access Journals (Sweden)
Marcel Ševela
2004-01-01
Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.
Directory of Open Access Journals (Sweden)
Simoens Frederik
2006-01-01
Full Text Available This paper concerns channel tracking in a multiantenna context for correlated flat-fading channels obeying a Gauss-Markov model. It is known that data-aided tracking of fast-fading channels requires a lot of pilot symbols in order to achieve sufficient accuracy, and hence decreases the spectral efficiency. To overcome this problem, we design a code-aided estimation scheme which exploits information from both the pilot symbols and the unknown coded data symbols. The algorithm is derived based on a factor graph representation of the system and application of the sum-product algorithm. The sum-product algorithm reveals how soft information from the decoder should be exploited for the purpose of estimation and how the information bits can be detected. Simulation results illustrate the effectiveness of our approach.
Efficient AM Algorithms for Stochastic ML Estimation of DOA
Directory of Open Access Journals (Sweden)
Haihua Chen
2016-01-01
Full Text Available The estimation of direction-of-arrival (DOA of signals is a basic and important problem in sensor array signal processing. To solve this problem, many algorithms have been proposed, among which the Stochastic Maximum Likelihood (SML is one of the most concerned algorithms because of its high accuracy of DOA. However, the estimation of SML generally involves the multidimensional nonlinear optimization problem. As a result, its computational complexity is rather high. This paper addresses the issue of reducing computational complexity of SML estimation of DOA based on the Alternating Minimization (AM algorithm. We have the following two contributions. First using transformation of matrix and properties of spatial projection, we propose an efficient AM (EAM algorithm by dividing the SML criterion into two components. One depends on a single variable parameter while the other does not. Second when the array is a uniform linear array, we get the irreducible form of the EAM criterion (IAM using polynomial forms. Simulation results show that both EAM and IAM can reduce the computational complexity of SML estimation greatly, while IAM is the best. Another advantage of IAM is that this algorithm can avoid the numerical instability problem which may happen in AM and EAM algorithms when more than one parameter converges to an identical value.
Transmission dose estimation algorithm for in vivo dosimetry
International Nuclear Information System (INIS)
Yun, Hyong Geun; Shin, Kyo Chul; Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo
2002-01-01
Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ±0.5%. For elongated radiation field, the errors were limited to ±1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings
Transmission dose estimation algorithm for in vivo dosimetry
Energy Technology Data Exchange (ETDEWEB)
Yun, Hyong Geun; Shin, Kyo Chul [Dankook Univ., Seoul (Korea, Republic of); Huh, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan [Seoul National Univ., Seoul (Korea, Republic of); Lee, Hyoung Koo [Catholic Univ., Seoul (Korea, Republic of)
2002-07-01
Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with an acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within {+-}0.5%. For elongated radiation field, the errors were limited to {+-}1.0%. The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.
Channel estimation in DFT-based offset-QAM OFDM systems.
Zhao, Jian
2014-10-20
Offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) exhibits enhanced net data rates compared to conventional OFDM, and reduced complexity compared to Nyquist FDM (N-FDM). However, channel estimation in discrete-Fourier-transform (DFT) based offset-QAM OFDM is different from that in conventional OFDM and requires particular study. In this paper, we derive a closed-form expression for the demultiplexed signal in DFT-based offset-QAM systems and show that although the residual crosstalk is orthogonal to the decoded signal, its existence degrades the channel estimation performance when the conventional least-square method is applied. We propose and investigate four channel estimation algorithms for offset-QAM OFDM that vary in terms of performance, complexity, and tolerance to system parameters. It is theoretically and experimentally shown that simple channel estimation can be realized in offset-QAM OFDM with the achieved performance close to the theoretical limit. This, together with the existing advantages over conventional OFDM and N-FDM, makes this technology very promising for optical communication systems.
Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems
Directory of Open Access Journals (Sweden)
Hakan A. Çırpan
2002-05-01
Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.
Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation
Directory of Open Access Journals (Sweden)
Namyong Kim
2016-06-01
Full Text Available The minimum error entropy (MEE algorithm is known to be superior in signal processing applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum weight and the properties of robustness against impulsive noise, a normalized version of the MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power of input entropy that is estimated recursively for reducing its computational complexity. The proposed algorithm yields lower minimum MSE (mean squared error and faster convergence speed simultaneously than the original MEE algorithm does in the equalization simulation. On the condition of the same convergence speed, its performance enhancement in steady state MSE is above 3 dB.
Data-driven algorithm to estimate friction in automobile engine
DEFF Research Database (Denmark)
Stotsky, Alexander A.
2010-01-01
Algorithms based on the oscillations of the engine angular rotational speed under fuel cutoff and no-load were proposed for estimation of the engine friction torque. The recursive algorithm to restore the periodic signal is used to calculate the amplitude of the engine speed signal at fuel cutoff....... The values of the friction torque in the corresponding table entries are updated at acquiring new measurements of the friction moment. A new, data-driven algorithm for table adaptation on the basis of stepwise regression was developed and verified using the six-cylinder Volvo engine....
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
A flexible fuzzy regression algorithm for forecasting oil consumption estimation
International Nuclear Information System (INIS)
Azadeh, A.; Khakestani, M.; Saberi, M.
2009-01-01
Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.
On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation
Rezki, Zouheir
2011-11-01
The ergodic secrecy capacity of the wiretap channel is known when the main channel (between the transmitter and the legitimate receiver) state information (CSI) is perfect at the transmitter and the coherence period is sufficiently large to enable random coding arguments in each block. In a fast fading scenario, when the codeword length spans many coherence periods, the secrecy capacity is still not known. In this paper, we present a framework that characterizes this secrecy capacity under imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and the eavesdropper channels. The upper and the lower bounds coincide with recently derived ones in the perfect main CSI extreme. Furthermore, the lower bound matches the upper bound in no main CSI extreme, where the secrecy capacity is equal to zero. Numerical results are provided for independent identically distributed (i.i.d.) Rayleigh fading channels. © 2011 IEEE.
Zhou, Xinyu
2016-03-15
A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.
Zhou, Xinyu; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim
2016-01-01
A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.
Global stereo matching algorithm based on disparity range estimation
Li, Jing; Zhao, Hong; Gu, Feifei
2017-09-01
The global stereo matching algorithms are of high accuracy for the estimation of disparity map, but the time-consuming in the optimization process still faces a curse, especially for the image pairs with high resolution and large baseline setting. To improve the computational efficiency of the global algorithms, a disparity range estimation scheme for the global stereo matching is proposed to estimate the disparity map of rectified stereo images in this paper. The projective geometry in a parallel binocular stereo vision is investigated to reveal a relationship between two disparities at each pixel in the rectified stereo images with different baselines, which can be used to quickly obtain a predicted disparity map in a long baseline setting estimated by that in the small one. Then, the drastically reduced disparity ranges at each pixel under a long baseline setting can be determined by the predicted disparity map. Furthermore, the disparity range estimation scheme is introduced into the graph cuts with expansion moves to estimate the precise disparity map, which can greatly save the cost of computing without loss of accuracy in the stereo matching, especially for the dense global stereo matching, compared to the traditional algorithm. Experimental results with the Middlebury stereo datasets are presented to demonstrate the validity and efficiency of the proposed algorithm.
Estimation of electricity demand of Iran using two heuristic algorithms
International Nuclear Information System (INIS)
Amjadi, M.H.; Nezamabadi-pour, H.; Farsangi, M.M.
2010-01-01
This paper deals with estimation of electricity demand of Iran based on economic indicators using Particle Swarm Optimization (PSO) Algorithm. The estimation is based on Gross Domestic Product (GDP), population, number of customers and average price electricity by developing two different estimation models: a linear model and a non-linear model. The proposed models are obtained based upon available actual data of 21 years; since 1980-2000. Then the models obtained are used to estimate the electricity demand of the target years; for a period of time e.g. 2001-2006 and the results obtained are compared with the actual demand during this period. Furthermore, to validate the results obtained by PSO, genetic algorithm (GA) is applied to solve the problem. The results show that the PSO is a useful optimization tool for solving the problem using two developed models and can be used as an alternative solution to estimate the future electricity demand.
Contributions in Radio Channel Sounding, Modeling, and Estimation
DEFF Research Database (Denmark)
Pedersen, Troels
2009-01-01
This thesis spans over three strongly related topics in wireless communication: channel-sounding, -modeling, and -estimation. Three main problems are addressed: optimization of spatio-temporal apertures for channel sounding; estimation of per-path power spectral densities (psds); and modeling...... relies on a ``propagation graph'' where vertices represent scatterers and edges represent the wave propagation conditions between scatterers. The graph has a recursive structure, which permits modeling of the transfer function of the graph. We derive a closed-form expression of the infinite......-bounce impulse response. This expression is used for simulation of the impulse response of randomly generated propagation graphs. The obtained realizations exhibit the well-observed exponential power decay versus delay and specular-to-diffuse transition....
Use of trapezoidal shaping algorithm in the digital multi-channel system
International Nuclear Information System (INIS)
Wang Jihong; Wang Lianghou; Fang Zongliang
2011-01-01
It discusses one kind of digital filter technology-trapezoidal algorithm based on actual need of studying the digital multi-channel. Firstly, demonstrating the feasibility of the arithmetic with theoretical analysis; secondly, predigesting the process of the arithmetic; thirdly, simulating with MATLAB; lastly, using the arithmetic to measure data. The result of testing indicates trapezoidal shaping algorithm accords with the need of digital multi-channel shaping extraordinary. The best filter can be obtained by means of setting parameter due to superiority of digital multi-channel. (authors)
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network
Directory of Open Access Journals (Sweden)
Sangil Choi
2016-12-01
Full Text Available Wireless mesh networks (WMNs have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM. In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.
Liao, Anwen
2017-11-01
Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising technique for the future 5G wireless communications. Due to a large number of antennas but a much smaller number of radio frequency (RF) chains, estimating the high-dimensional mmWave massive MIMO channel will bring the large pilot overhead. To overcome this challenge, this paper proposes a super-resolution channel estimation scheme based on two-dimensional (2D) unitary ESPRIT algorithm. By exploiting the angular sparsity of mmWave channels, the continuously distributed angle of arrivals/departures (AoAs/AoDs) can be jointly estimated with high accuracy. Specifically, by designing the uplink training signals at both base station (BS) and mobile station (MS), we first use low pilot overhead to estimate a low-dimensional effective channel, which has the same shift-invariance of array response as the high-dimensional mmWave MIMO channel to be estimated. From the low-dimensional effective channel, the superresolution estimates of AoAs and AoDs can be jointly obtained by exploiting the 2D unitary ESPRIT channel estimation algorithm. Furthermore, the associated path gains can be acquired based on the least squares (LS) criterion. Finally, we can reconstruct the high-dimensional mmWave MIMO channel according to the obtained AoAs, AoDs, and path gains. Simulation results have confirmed that the proposed scheme is superior to conventional schemes with a much lower pilot overhead.
Liao, Anwen; Gao, Zhen; Wu, Yongpeng; Wang, Hua; Alouini, Mohamed-Slim
2017-01-01
Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising technique for the future 5G wireless communications. Due to a large number of antennas but a much smaller number of radio frequency (RF) chains, estimating the high-dimensional mmWave massive MIMO channel will bring the large pilot overhead. To overcome this challenge, this paper proposes a super-resolution channel estimation scheme based on two-dimensional (2D) unitary ESPRIT algorithm. By exploiting the angular sparsity of mmWave channels, the continuously distributed angle of arrivals/departures (AoAs/AoDs) can be jointly estimated with high accuracy. Specifically, by designing the uplink training signals at both base station (BS) and mobile station (MS), we first use low pilot overhead to estimate a low-dimensional effective channel, which has the same shift-invariance of array response as the high-dimensional mmWave MIMO channel to be estimated. From the low-dimensional effective channel, the superresolution estimates of AoAs and AoDs can be jointly obtained by exploiting the 2D unitary ESPRIT channel estimation algorithm. Furthermore, the associated path gains can be acquired based on the least squares (LS) criterion. Finally, we can reconstruct the high-dimensional mmWave MIMO channel according to the obtained AoAs, AoDs, and path gains. Simulation results have confirmed that the proposed scheme is superior to conventional schemes with a much lower pilot overhead.
Flux estimation algorithms for electric drives: a comparative study
Koteich , Mohamad
2016-01-01
International audience; This paper reviews the stator flux estimation algorithms applied to the alternating current motor drives. The so-called voltage model estimation, which consists of integrating the back-electromotive force signal, is addressed. However, in practice , the pure integration is prone to drift problems due to noises, measurement error, stator resistance uncertainty and unknown initial conditions. This limitation becomes more restrictive at low speed operation. Several soluti...
A Fast DOA Estimation Algorithm Based on Polarization MUSIC
Directory of Open Access Journals (Sweden)
R. Guo
2015-04-01
Full Text Available A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC.
Geomagnetic matching navigation algorithm based on robust estimation
Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan
2017-08-01
The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.
Directory of Open Access Journals (Sweden)
P. Beinschob
2010-11-01
Full Text Available In this paper we present a novel approach in Multiple-Input Multiple Output (MIMO Orthogonal Frequency Division Multiplexing (OFDM channel estimation technique based on a Decision Directed Recursive Least Squares (RLS algorithm in which no pilot symbols need to be integrated in the data after a short initial preamble. The novelty and key concept of the proposed technique is the block-wise causal and anti-causal RLS processing that yields two independent processings of RLS along with the associated decisions. Due to the usage of low density parity check (LDPC channel code, the receiver operates with soft information, which enables us to introduce a new modification of the Turbo principle as well as a simple information combining approach based on approximated aposteriori log-likelihood ratios (LLRs. Although the computational complexity is increased by both of our approaches, the latter is relatively less complex than the former. Simulation results show that these implementations outperform the simple RLS-DDCE algorithm and yield lower bit error rates (BER and more accurate channel estimates.
A Novel DOA Estimation Algorithm Using Array Rotation Technique
Directory of Open Access Journals (Sweden)
Xiaoyu Lan
2014-03-01
Full Text Available The performance of traditional direction of arrival (DOA estimation algorithm based on uniform circular array (UCA is constrained by the array aperture. Furthermore, the array requires more antenna elements than targets, which will increase the size and weight of the device and cause higher energy loss. In order to solve these issues, a novel low energy algorithm utilizing array base-line rotation for multiple targets estimation is proposed. By rotating two elements and setting a fixed time delay, even the number of elements is selected to form a virtual UCA. Then, the received data of signals will be sampled at multiple positions, which improves the array elements utilization greatly. 2D-DOA estimation of the rotation array is accomplished via multiple signal classification (MUSIC algorithms. Finally, the Cramer-Rao bound (CRB is derived and simulation results verified the effectiveness of the proposed algorithm with high resolution and estimation accuracy performance. Besides, because of the significant reduction of array elements number, the array antennas system is much simpler and less complex than traditional array.
An Application of Data Mining Algorithms for Shipbuilding Cost Estimation
Kaluzny, B.L.; Barbici, S.; Berg, G.; Chiomento, R.; Derpanis,D.; Jonsson, U.; Shaw, R.H.A.D.; Smit, M.C.; Ramaroson, F.
2011-01-01
This article presents a novel application of known data mining algorithms to the problem of estimating the cost of ship development and construction. The work is a product of North Atlantic Treaty Organization Research and Technology Organization Systems Analysis and Studies 076 Task Group “NATO
Head pose estimation algorithm based on deep learning
Cao, Yuanming; Liu, Yijun
2017-05-01
Head pose estimation has been widely used in the field of artificial intelligence, pattern recognition and intelligent human-computer interaction and so on. Good head pose estimation algorithm should deal with light, noise, identity, shelter and other factors robustly, but so far how to improve the accuracy and robustness of attitude estimation remains a major challenge in the field of computer vision. A method based on deep learning for pose estimation is presented. Deep learning with a strong learning ability, it can extract high-level image features of the input image by through a series of non-linear operation, then classifying the input image using the extracted feature. Such characteristics have greater differences in pose, while they are robust of light, identity, occlusion and other factors. The proposed head pose estimation is evaluated on the CAS-PEAL data set. Experimental results show that this method is effective to improve the accuracy of pose estimation.
Optimal complex exponentials BEM and channel estimation in doubly selective channel
International Nuclear Information System (INIS)
Song, Lijun; Lei, Xia; Yu, Feng; Jin, Maozhu
2016-01-01
Over doubly selective channel, the optimal complex exponentials BEM (CE-BEM) is required to characterize the transmission in transform domain in order to reducing the huge number of the estimated parameters during directly estimating the impulse response in time domain. This paper proposed an improved CE-BEM to alleviating the high frequency sampling error caused by conventional CE-BEM. On the one hand, exploiting the improved CE-BEM, we achieve the sampling point is in the Doppler spread spectrum and the maximum sampling frequency is equal to the maximum Doppler shift. On the other hand we optimize the function and dimension of basis in CE-BEM respectively ,and obtain the closed solution of the EM based channel estimation differential operator by exploiting the above optimal BEM. Finally, the numerical results and theoretic analysis show that the dimension of basis is mainly depend on the maximum Doppler shift and signal-to-noise ratio (SNR), and if fixing the number of the pilot symbol, the dimension of basis is higher, the modeling error is smaller, while the accuracy of the parameter estimation is reduced, which implies that we need to achieve a tradeoff between the modeling error and the accuracy of the parameter estimation and the basis function influences the accuracy of describing the Doppler spread spectrum after identifying the dimension of the basis.
DEFF Research Database (Denmark)
Pedersen, Leif Toudal; Tonboe, Rasmus T.; Høyer, Jacob
channels as well as the combination of data from multiple sources such as microwave radiometry, scatterometry and numerical weather prediction. Optimal estimation is data assimilation without a numerical model for retrieving physical parameters from remote sensing using a multitude of available information......Global multispectral microwave radiometer measurements have been available for several decades. However, most current sea ice concentration algorithms still only takes advantage of a very limited subset of the available channels. Here we present a method that allows utilization of all available....... The methodology is observation driven and model innovation is limited to the translation between observation space and physical parameter space Over open water we use a semi-empirical radiative transfer model developed by Meissner & Wentz that estimates the multispectral AMSR brightness temperatures, i...
An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm
Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En
2015-01-01
A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction. PMID:26287193
Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En
2015-08-13
A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.
A fast color image enhancement algorithm based on Max Intensity Channel
Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui
2014-03-01
In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details.
Novel coherent receivers for AF distributed STBC using disintegrated channel estimation
Khan, Fahd Ahmed; Chen, Yunfei; Alouini, Mohamed-Slim
2011-01-01
For a single relay network, disintegrated channel estimation (DCE), where the source-relay channel is estimated at the relay and the relay-destination channel is estimated at the destination, gives better performance than the cascaded channel estimation. We derive novel receivers for the relay network with disintegrated channel estimation. The derived receivers do not require channel estimation at the destination, as they use the received pilot signals and the source-relay channel estimate for decoding directly. We also consider the effect of quantized source-relay channel estimate on the performance of the designed receivers. Simulation results show that a performance gain of up to 2.2 dB can be achieved by the new receivers, compared with the conventional mismatched coherent receiver with DCE. © 2011 IEEE.
Novel coherent receivers for AF distributed STBC using disintegrated channel estimation
Khan, Fahd Ahmed
2011-05-01
For a single relay network, disintegrated channel estimation (DCE), where the source-relay channel is estimated at the relay and the relay-destination channel is estimated at the destination, gives better performance than the cascaded channel estimation. We derive novel receivers for the relay network with disintegrated channel estimation. The derived receivers do not require channel estimation at the destination, as they use the received pilot signals and the source-relay channel estimate for decoding directly. We also consider the effect of quantized source-relay channel estimate on the performance of the designed receivers. Simulation results show that a performance gain of up to 2.2 dB can be achieved by the new receivers, compared with the conventional mismatched coherent receiver with DCE. © 2011 IEEE.
Minimum Mean-Square Error Single-Channel Signal Estimation
DEFF Research Database (Denmark)
Beierholm, Thomas
2008-01-01
This topic of this thesis is MMSE signal estimation for hearing aids when only one microphone is available. The research is relevant for noise reduction systems in hearing aids. To fully benefit from the amplification provided by a hearing aid, noise reduction functionality is important as hearin...... algorithm. Although performance of the two algorithms is found comparable then the particle filter algorithm is doing a much better job tracking the noise.......-impaired persons in some noisy situations need a higher signal to noise ratio for speech to be intelligible when compared to normal-hearing persons. In this thesis two different methods to approach the MMSE signal estimation problem is examined. The methods differ in the way that models for the signal and noise...... inference is performed by particle filtering. The speech model is a time-varying auto-regressive model reparameterized by formant frequencies and bandwidths. The noise is assumed non-stationary and white. Compared to the case of using the AR coefficients directly then it is found very beneficial to perform...
Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia
Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve
2014-01-01
A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.
High-dimensional quantum channel estimation using classical light
CSIR Research Space (South Africa)
Mabena, Chemist M
2017-11-01
Full Text Available stream_source_info Mabena_20007_2017.pdf.txt stream_content_type text/plain stream_size 960 Content-Encoding UTF-8 stream_name Mabena_20007_2017.pdf.txt Content-Type text/plain; charset=UTF-8 PHYSICAL REVIEW A 96, 053860... (2017) High-dimensional quantum channel estimation using classical light Chemist M. Mabena CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa and School of Physics, University of the Witwatersrand, Johannesburg 2000, South...
Research reactor loading pattern optimization using estimation of distribution algorithms
Energy Technology Data Exchange (ETDEWEB)
Jiang, S. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Ziver, K. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); AMCG Group, RM Consultants, Abingdon (United Kingdom); Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Franklin, S. J.; Phillips, H. J. [Imperial College, Reactor Centre, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7TE (United Kingdom)
2006-07-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)
Research reactor loading pattern optimization using estimation of distribution algorithms
International Nuclear Information System (INIS)
Jiang, S.; Ziver, K.; Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H.; Franklin, S. J.; Phillips, H. J.
2006-01-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K eff ) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K eff with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Directory of Open Access Journals (Sweden)
Kai Lin
2016-07-01
Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.
Directory of Open Access Journals (Sweden)
Schoeneich Hendrik
2006-01-01
Full Text Available Channel estimation schemes suitable for interleave-division multiple access (IDMA systems are presented. Training and data are superimposed. Training-based and semiblind linear channel estimators are derived and their performance is discussed and compared. Monte Carlo simulation results are presented showing that the derived channel estimators in conjunction with a superimposed pilot sequence and chip-by-chip processing are able to track fast-fading frequency-selective channels. As opposed to conventional channel estimation techniques, the BER performance even improves with increasing Doppler spread for typical system parameters. An error performance close to the case of perfect channel knowledge can be achieved with high power efficiency.
A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.
Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng
2017-09-08
Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.
Parameter Estimation of Damped Compound Pendulum Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Saad Mohd Sazli
2016-01-01
Full Text Available This paper present the parameter identification of damped compound pendulum using differential evolution algorithm. The procedure used to achieve the parameter identification of the experimental system consisted of input output data collection, ARX model order selection and parameter estimation using conventional method least square (LS and differential evolution (DE algorithm. PRBS signal is used to be input signal to regulate the motor speed. Whereas, the output signal is taken from position sensor. Both, input and output data is used to estimate the parameter of the ARX model. The residual error between the actual and predicted output responses of the models is validated using mean squares error (MSE. Analysis showed that, MSE value for LS is 0.0026 and MSE value for DE is 3.6601×10-5. Based results obtained, it was found that DE have lower MSE than the LS method.
A Pulse Rate Estimation Algorithm Using PPG and Smartphone Camera.
Siddiqui, Sarah Ali; Zhang, Yuan; Feng, Zhiquan; Kos, Anton
2016-05-01
The ubiquitous use and advancement in built-in smartphone sensors and the development in big data processing have been beneficial in several fields including healthcare. Among the basic vitals monitoring, pulse rate monitoring is the most important healthcare necessity. A multimedia video stream data acquired by built-in smartphone camera can be used to estimate it. In this paper, an algorithm that uses only smartphone camera as a sensor to estimate pulse rate using PhotoPlethysmograph (PPG) signals is proposed. The results obtained by the proposed algorithm are compared with the actual pulse rate and the maximum error found is 3 beats per minute. The standard deviation in percentage error and percentage accuracy is found to be 0.68 % whereas the average percentage error and percentage accuracy is found to be 1.98 % and 98.02 % respectively.
Improved quantum backtracking algorithms using effective resistance estimates
Jarret, Michael; Wan, Kianna
2018-02-01
We investigate quantum backtracking algorithms of the type introduced by Montanaro (Montanaro, arXiv:1509.02374). These algorithms explore trees of unknown structure and in certain settings exponentially outperform their classical counterparts. Some of the previous work focused on obtaining a quantum advantage for trees in which a unique marked vertex is promised to exist. We remove this restriction by recharacterizing the problem in terms of the effective resistance of the search space. In this paper, we present a generalization of one of Montanaro's algorithms to trees containing k marked vertices, where k is not necessarily known a priori. Our approach involves using amplitude estimation to determine a near-optimal weighting of a diffusion operator, which can then be applied to prepare a superposition state with support only on marked vertices and ancestors thereof. By repeatedly sampling this state and updating the input vertex, a marked vertex is reached in a logarithmic number of steps. The algorithm thereby achieves the conjectured bound of O ˜(√{T Rmax }) for finding a single marked vertex and O ˜(k √{T Rmax }) for finding all k marked vertices, where T is an upper bound on the tree size and Rmax is the maximum effective resistance encountered by the algorithm. This constitutes a speedup over Montanaro's original procedure in both the case of finding one and the case of finding multiple marked vertices in an arbitrary tree.
Adaptive algorithm for mobile user positioning based on environment estimation
Directory of Open Access Journals (Sweden)
Grujović Darko
2014-01-01
Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes
AN EVOLUTIONARY ALGORITHM FOR CHANNEL ASSIGNMENT PROBLEM IN WIRELESS MOBILE NETWORKS
Directory of Open Access Journals (Sweden)
Yee Shin Chia
2012-12-01
Full Text Available The channel assignment problem in wireless mobile network is the assignment of appropriate frequency spectrum to incoming calls while maintaining a satisfactory level of electromagnetic compatibility (EMC constraints. An effective channel assignment strategy is important due to the limited capacity of frequency spectrum in wireless mobile network. Most of the existing channel assignment strategies are based on deterministic methods. In this paper, an adaptive genetic algorithm (GA based channel assignment strategy is introduced for resource management and to reduce the effect of EMC interferences. The most significant advantage of the proposed optimization method is its capability to handle both the reassignment of channels for existing calls as well as the allocation of channel to a new incoming call in an adaptive process to maximize the utility of the limited resources. It is capable to adapt the population size to the number of eligible channels for a particular cell upon new call arrivals to achieve reasonable convergence speed. The MATLAB simulation on a 49-cells network model for both uniform and nonuniform call traffic distributions showed that the proposed channel optimization method can always achieve a lower average new incoming call blocking probability compared to the deterministic based channel assignment strategy.
Space-Time Coded MC-CDMA: Blind Channel Estimation, Identifiability, and Receiver Design
Directory of Open Access Journals (Sweden)
Li Hongbin
2002-01-01
Full Text Available Integrating the strengths of multicarrier (MC modulation and code division multiple access (CDMA, MC-CDMA systems are of great interest for future broadband transmissions. This paper considers the problem of channel identification and signal combining/detection schemes for MC-CDMA systems equipped with multiple transmit antennas and space-time (ST coding. In particular, a subspace based blind channel identification algorithm is presented. Identifiability conditions are examined and specified which guarantee unique and perfect (up to a scalar channel estimation when knowledge of the noise subspace is available. Several popular single-user based signal combining schemes, namely the maximum ratio combining (MRC and the equal gain combining (EGC, which are often utilized in conventional single-transmit-antenna based MC-CDMA systems, are extended to the current ST-coded MC-CDMA (STC-MC-CDMA system to perform joint combining and decoding. In addition, a linear multiuser minimum mean-squared error (MMSE detection scheme is also presented, which is shown to outperform the MRC and EGC at some increased computational complexity. Numerical examples are presented to evaluate and compare the proposed channel identification and signal detection/combining techniques.
Schoeneich Hendrik; Hoeher Peter Adam
2006-01-01
Channel estimation schemes suitable for interleave-division multiple access (IDMA) systems are presented. Training and data are superimposed. Training-based and semiblind linear channel estimators are derived and their performance is discussed and compared. Monte Carlo simulation results are presented showing that the derived channel estimators in conjunction with a superimposed pilot sequence and chip-by-chip processing are able to track fast-fading frequency-selective channels. As opposed ...
Françoise Benz
2004-01-01
ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...
Françoise Benz
2004-01-01
ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...
The PARAFAC-MUSIC Algorithm for DOA Estimation with Doppler Frequency in a MIMO Radar System
Directory of Open Access Journals (Sweden)
Nan Wang
2014-01-01
Full Text Available The PARAFAC-MUSIC algorithm is proposed to estimate the direction-of-arrival (DOA of the targets with Doppler frequency in a monostatic MIMO radar system in this paper. To estimate the Doppler frequency, the PARAFAC (parallel factor algorithm is firstly utilized in the proposed algorithm, and after the compensation of Doppler frequency, MUSIC (multiple signal classification algorithm is applied to estimate the DOA. By these two steps, the DOA of moving targets can be estimated successfully. Simulation results show that the proposed PARAFAC-MUSIC algorithm has a higher accuracy than the PARAFAC algorithm and the MUSIC algorithm in DOA estimation.
International Nuclear Information System (INIS)
Lu, Ning; Qin, Jun; Yang, Kun; Sun, Jiulin
2011-01-01
Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time. -- Highlights: → A simple and efficient algorithm to estimate GSR from geostationary satellite data. → ANN model fully exploits both the information from satellite and ground measurements. → Good performance of the ANN model is comparable to that of the classical models. → Surface elevation and infrared information enhance GSR inversion.
Reliable Ant Colony Routing Algorithm for Dual-Channel Mobile Ad Hoc Networks
Directory of Open Access Journals (Sweden)
YongQiang Li
2018-01-01
Full Text Available For the problem of poor link reliability caused by high-speed dynamic changes and congestion owing to low network bandwidth in ad hoc networks, an ant colony routing algorithm, based on reliable path under dual-channel condition (DSAR, is proposed. First, dual-channel communication mode is used to improve network bandwidth, and a hierarchical network model is proposed to optimize the dual-layer network. Thus, we reduce network congestion and communication delay. Second, a comprehensive reliable path selection strategy is designed, and the reliable path is selected ahead of time to reduce the probability of routing restart. Finally, the ant colony algorithm is used to improve the adaptability of the routing algorithm to changes of network topology. Simulation results show that DSAR improves the reliability of routing, packet delivery, and throughput.
Holland, Katherine D; Bouley, Thomas M; Horn, Paul S
2017-07-01
Variants in neuronal voltage-gated sodium channel α-subunits genes SCN1A, SCN2A, and SCN8A are common in early onset epileptic encephalopathies and other autosomal dominant childhood epilepsy syndromes. However, in clinical practice, missense variants are often classified as variants of uncertain significance when missense variants are identified but heritability cannot be determined. Genetic testing reports often include results of computational tests to estimate pathogenicity and the frequency of that variant in population-based databases. The objective of this work was to enhance clinicians' understanding of results by (1) determining how effectively computational algorithms predict epileptogenicity of sodium channel (SCN) missense variants; (2) optimizing their predictive capabilities; and (3) determining if epilepsy-associated SCN variants are present in population-based databases. This will help clinicians better understand the results of indeterminate SCN test results in people with epilepsy. Pathogenic, likely pathogenic, and benign variants in SCNs were identified using databases of sodium channel variants. Benign variants were also identified from population-based databases. Eight algorithms commonly used to predict pathogenicity were compared. In addition, logistic regression was used to determine if a combination of algorithms could better predict pathogenicity. Based on American College of Medical Genetic Criteria, 440 variants were classified as pathogenic or likely pathogenic and 84 were classified as benign or likely benign. Twenty-eight variants previously associated with epilepsy were present in population-based gene databases. The output provided by most computational algorithms had a high sensitivity but low specificity with an accuracy of 0.52-0.77. Accuracy could be improved by adjusting the threshold for pathogenicity. Using this adjustment, the Mendelian Clinically Applicable Pathogenicity (M-CAP) algorithm had an accuracy of 0.90 and a
Sparse Covariance Matrix Estimation by DCA-Based Algorithms.
Phan, Duy Nhat; Le Thi, Hoai An; Dinh, Tao Pham
2017-11-01
This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.
Directory of Open Access Journals (Sweden)
Masoumeh Soflaei
2014-01-01
Full Text Available One of the most important problems of reliable communications in shallow water channels is intersymbol interference (ISI which is due to scattering from surface and reflecting from bottom. Using adaptive equalizers in receiver is one of the best suggested ways for overcoming this problem. In this paper, we apply the family of selective regressor affine projection algorithms (SR-APA and the family of selective partial update APA (SPU-APA which have low computational complexity that is one of the important factors that influences adaptive equalizer performance. We apply experimental data from Strait of Hormuz for examining the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE of SR-APA and SPU-APA decrease by 5.8 (dB and 5.5 (dB, respectively, in comparison with least mean square (LMS algorithm. Also the families of SPU-APA and SR-APA have better convergence speed than LMS type algorithm.
Directory of Open Access Journals (Sweden)
Xia Liu
2010-01-01
Full Text Available This paper reports investigations on the effect of antenna mutual coupling on performance of training-based Multiple-Input Multiple-Output (MIMO channel estimation. The influence of mutual coupling is assessed for two training-based channel estimation methods, Scaled Least Square (SLS and Minimum Mean Square Error (MMSE. It is shown that the accuracy of MIMO channel estimation is governed by the sum of eigenvalues of channel correlation matrix which in turn is influenced by the mutual coupling in transmitting and receiving array antennas. A water-filling-based procedure is proposed to optimize the training signal transmission to minimize the MIMO channel estimation errors.
Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System
Directory of Open Access Journals (Sweden)
Yao Kung
2002-01-01
Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.
Directory of Open Access Journals (Sweden)
Wenjing Zhao
2018-01-01
Full Text Available SGK (sequential generalization of K-means dictionary learning denoising algorithm has the characteristics of fast denoising speed and excellent denoising performance. However, the noise standard deviation must be known in advance when using SGK algorithm to process the image. This paper presents a denoising algorithm combined with SGK dictionary learning and the principal component analysis (PCA noise estimation. At first, the noise standard deviation of the image is estimated by using the PCA noise estimation algorithm. And then it is used for SGK dictionary learning algorithm. Experimental results show the following: (1 The SGK algorithm has the best denoising performance compared with the other three dictionary learning algorithms. (2 The SGK algorithm combined with PCA is superior to the SGK algorithm combined with other noise estimation algorithms. (3 Compared with the original SGK algorithm, the proposed algorithm has higher PSNR and better denoising performance.
Model parameters estimation and sensitivity by genetic algorithms
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca
2003-01-01
In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The
One-Channel Surface Electromyography Decomposition for Muscle Force Estimation
Directory of Open Access Journals (Sweden)
Wentao Sun
2018-05-01
Full Text Available Estimating muscle force by surface electromyography (sEMG is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs in two steps: (1 learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2 extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.
Estimating Traffic Accidents in Turkey Using Differential Evolution Algorithm
Akgüngör, Ali Payıdar; Korkmaz, Ersin
2017-06-01
Estimating traffic accidents play a vital role to apply road safety procedures. This study proposes Differential Evolution Algorithm (DEA) models to estimate the number of accidents in Turkey. In the model development, population (P) and the number of vehicles (N) are selected as model parameters. Three model forms, linear, exponential and semi-quadratic models, are developed using DEA with the data covering from 2000 to 2014. Developed models are statistically compared to select the best fit model. The results of the DE models show that the linear model form is suitable to estimate the number of accidents. The statistics of this form is better than other forms in terms of performance criteria which are the Mean Absolute Percentage Errors (MAPE) and the Root Mean Square Errors (RMSE). To investigate the performance of linear DE model for future estimations, a ten-year period from 2015 to 2024 is considered. The results obtained from future estimations reveal the suitability of DE method for road safety applications.
A generic EEG artifact removal algorithm based on the multi-channel Wiener filter
Somers, Ben; Francart, Tom; Bertrand, Alexander
2018-06-01
Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.
Experiences with serial and parallel algorithms for channel routing using simulated annealing
Brouwer, Randall Jay
1988-01-01
Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.
Using Genetic Algorithm to Estimate Hydraulic Parameters of Unconfined Aquifers
Directory of Open Access Journals (Sweden)
Asghar Asghari Moghaddam
2009-03-01
Full Text Available Nowadays, optimization techniques such as Genetic Algorithms (GA have attracted wide attention among scientists for solving complicated engineering problems. In this article, pumping test data are used to assess the efficiency of GA in estimating unconfined aquifer parameters and a sensitivity analysis is carried out to propose an optimal arrangement of GA. For this purpose, hydraulic parameters of three sets of pumping test data are calculated by GA and they are compared with the results of graphical methods. The results indicate that the GA technique is an efficient, reliable, and powerful method for estimating the hydraulic parameters of unconfined aquifer and, further, that in cases of deficiency in pumping test data, it has a better performance than graphical methods.
Kim, Hyo-Su; Kim, Dong-Hoi
The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.
Performance Analysis of Iterative Decoding Algorithms for PEG LDPC Codes in Nakagami Fading Channels
Directory of Open Access Journals (Sweden)
O. Al Rasheed
2013-11-01
Full Text Available In this paper we give a comparative analysis of decoding algorithms of Low Density Parity Check (LDPC codes in a channel with the Nakagami distribution of the fading envelope. We consider the Progressive Edge-Growth (PEG method and Improved PEG method for the parity check matrix construction, which can be used to avoid short girths, small trapping sets and a high level of error floor. A comparative analysis of several classes of LDPC codes in various propagation conditions and decoded using different decoding algorithms is also presented.
An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean
Lee, Kwon Ho
2016-04-01
The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).
An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm
Directory of Open Access Journals (Sweden)
Ying-Lun Chen
2015-08-01
Full Text Available A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO, and the feature extraction is carried out by the generalized Hebbian algorithm (GHA. To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.
Directory of Open Access Journals (Sweden)
Meher Krishna Patel
2017-01-01
Full Text Available This paper presents an adaptive multiuser transceiver scheme for DS-CDMA systems in which pilot symbols are added to users’ data to estimate complex channel fading coefficients. The performance of receiver antenna diversity with maximal ratio combining (MRC technique is analyzed for imperfect channel estimation in flat fading environments. The complex fading coefficients are estimated using least mean square (LMS algorithm and these coefficients are utilized by the maximal ratio combiner for generating the decision variable. Probability of error in closed form is derived. Further, the effect of pilot signal power on bit error rate (BER and BER performance of multiplexed pilot and data signal transmission scenario are investigated. We have compared the performance of added and multiplexed pilot-data systems and concluded the advantages of both systems. The proposed CDMA technique uses the chaotic sequence as spreading sequence. Assuming proper synchronization, the computer simulation results demonstrate the better bit error rate performance in the presence of channel estimator in the chaotic based CDMA system and the receiver antenna diversity technique further improves the performance of the proposed system. Also, no channel estimator is required if there is no phase distortion to the transmitted signal.
Motion estimation for video coding efficient algorithms and architectures
Chakrabarti, Indrajit; Chatterjee, Sumit Kumar
2015-01-01
The need of video compression in the modern age of visual communication cannot be over-emphasized. This monograph will provide useful information to the postgraduate students and researchers who wish to work in the domain of VLSI design for video processing applications. In this book, one can find an in-depth discussion of several motion estimation algorithms and their VLSI implementation as conceived and developed by the authors. It records an account of research done involving fast three step search, successive elimination, one-bit transformation and its effective combination with diamond search and dynamic pixel truncation techniques. Two appendices provide a number of instances of proof of concept through Matlab and Verilog program segments. In this aspect, the book can be considered as first of its kind. The architectures have been developed with an eye to their applicability in everyday low-power handheld appliances including video camcorders and smartphones.
Fast Parabola Detection Using Estimation of Distribution Algorithms
Directory of Open Access Journals (Sweden)
Jose de Jesus Guerrero-Turrubiates
2017-01-01
Full Text Available This paper presents a new method based on Estimation of Distribution Algorithms (EDAs to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results show that the proposed method outperforms the comparative methods in terms of execution time about 93.61% on synthetic images and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed method can be highly suitable for different medical applications.
A modified estimation distribution algorithm based on extreme elitism.
Gao, Shujun; de Silva, Clarence W
2016-12-01
An existing estimation distribution algorithm (EDA) with univariate marginal Gaussian model was improved by designing and incorporating an extreme elitism selection method. This selection method highlighted the effect of a few top best solutions in the evolution and advanced EDA to form a primary evolution direction and obtain a fast convergence rate. Simultaneously, this selection can also keep the population diversity to make EDA avoid premature convergence. Then the modified EDA was tested by means of benchmark low-dimensional and high-dimensional optimization problems to illustrate the gains in using this extreme elitism selection. Besides, no-free-lunch theorem was implemented in the analysis of the effect of this new selection on EDAs. Copyright Â© 2016 Elsevier Ireland Ltd. All rights reserved.
A Two-Channel Training Algorithm for Hidden Markov Model and Its Application to Lip Reading
Directory of Open Access Journals (Sweden)
Foo Say Wei
2005-01-01
Full Text Available Hidden Markov model (HMM has been a popular mathematical approach for sequence classification such as speech recognition since 1980s. In this paper, a novel two-channel training strategy is proposed for discriminative training of HMM. For the proposed training strategy, a novel separable-distance function that measures the difference between a pair of training samples is adopted as the criterion function. The symbol emission matrix of an HMM is split into two channels: a static channel to maintain the validity of the HMM and a dynamic channel that is modified to maximize the separable distance. The parameters of the two-channel HMM are estimated by iterative application of expectation-maximization (EM operations. As an example of the application of the novel approach, a hierarchical speaker-dependent visual speech recognition system is trained using the two-channel HMMs. Results of experiments on identifying a group of confusable visemes indicate that the proposed approach is able to increase the recognition accuracy by an average of 20% compared with the conventional HMMs that are trained with the Baum-Welch estimation.
A Survey of Wireless Fair Queuing Algorithms with Location-Dependent Channel Errors
Directory of Open Access Journals (Sweden)
Anca VARGATU
2011-01-01
Full Text Available The rapid development of wireless networks has brought more and more attention to topics related to fair allocation of resources, creation of suitable algorithms, taking into account the special characteristics of wireless environment and insurance fair access to the transmission channel, with delay bound and throughput guaranteed. Fair allocation of resources in wireless networks requires significant challenges, because of errors that occur only in these networks, such as location-dependent and bursty channel errors. In wireless networks, frequently happens, because interference of radio waves, that a user experiencing bad radio conditions during a period of time, not to receive resources in that period. This paper analyzes some resource allocation algorithms for wireless networks with location dependent errors, specifying the base idea for each algorithm and the way how it works. The analyzed fair queuing algorithms differ by the way they treat the following aspects: how to select the flows which should receive additional services, how to allocate these resources, which is the proportion received by error free flows and how the flows affected by errors are compensated.
Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim
2010-01-01
The performance of transmit antenna selection for threshold-based maximal ratio combining (MRC) diversity receivers in the presence of multiple co-channel interfering signals is studied. The impact of imperfect channel estimation of desired user
Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM
Directory of Open Access Journals (Sweden)
Berger ChristianR
2010-01-01
Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.
International Nuclear Information System (INIS)
Taleyarkhan, R.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.
1988-01-01
The work described in this paper is focused on the development, verification and benchmarking of the NUFREQ-NPW code at Westinghouse, USA for best estimate prediction of multi-channel core stability margins in US BWRs. Various models incorporated into NUFREQ-NPW are systematically compared against the Westinghouse channel stability analysis code MAZDA, which the Mathematical Model was developed in an entirely different manner. The NUFREQ-NPW code is extensively benchmarked against experimental stability data with and without nuclear reactivity feedback. Detailed comparisons are next performed against nuclear-coupled core stability data. A physically based algorithm is developed to correct for the effect of flow development on subcooled boiling. Use of this algorithm (to be described in the full paper) captures the peak magnitude as well as the resonance frequency with good accuracy
the simple mono-canal algorithm for the temperature estimating of ...
African Journals Online (AJOL)
30 juin 2010 ... the brightness temperature (Tb) at the sensor level. This algorithm ..... des attributs de textures et de la fusion de segmentations: application à la zone ... retreved from thermal infrared single channel remote sensing data. 2004 ...
Channel Estimation for Filter Bank Multicarrier Systems in Low SNR Environments
Energy Technology Data Exchange (ETDEWEB)
Driggs, Jonathan; Sibbett, Taylor; Moradiy, Hussein; Farhang-Boroujeny, Behrouz
2017-05-01
Channel estimation techniques are crucial for reliable communications. This paper is concerned with channel estimation in a filter bank multicarrier spread spectrum (FBMCSS) system. We explore two channel estimator options: (i) a method that makes use of a periodic preamble and mimics the channel estimation techniques that are widely used in OFDM-based systems; and (ii) a method that stays within the traditional realm of filter bank signal processing. For the case where the channel noise is white, both methods are analyzed in detail and their performance is compared against their respective Cramer-Rao Lower Bounds (CRLB). Advantages and disadvantages of the two methods under different channel conditions are given to provide insight to the reader as to when one will outperform the other.
Effective Scheme of Channel Tracking and Estimation for Mobile WiMAX DL-PUSC System
Directory of Open Access Journals (Sweden)
Phuong Thi Thu Pham
2010-01-01
Full Text Available This paper introduces an effective joint scheme of channel estimation and tracking for downlink partial usage of subchannel (DL-PUSC mode of mobile WiMAX system. Based on the pilot pattern of this particular system, some channel estimation methods including conventional interpolations and a more favorable least-squares line fitting (LSLF technique are comparatively studied. Besides, channel estimation performance can be remarkably improved by taking advantage of channel tracking derived from the preamble symbol. System performances in terms of packet error rate (PER and user link throughput are investigated in various channels adopted from the well-known ITU models for mobile environments. Simulation results show a significant performance enhancement when the proposed joint scheme is utilized, at least 5 dB, compared to only commonly used channel estimation approaches.
The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.
Energy Technology Data Exchange (ETDEWEB)
Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan
2010-09-01
Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.
Low-sampling-rate ultra-wideband channel estimation using equivalent-time sampling
Ballal, Tarig
2014-09-01
In this paper, a low-sampling-rate scheme for ultra-wideband channel estimation is proposed. The scheme exploits multiple observations generated by transmitting multiple pulses. In the proposed scheme, P pulses are transmitted to produce channel impulse response estimates at a desired sampling rate, while the ADC samples at a rate that is P times slower. To avoid loss of fidelity, the number of sampling periods (based on the desired rate) in the inter-pulse interval is restricted to be co-prime with P. This condition is affected when clock drift is present and the transmitted pulse locations change. To handle this case, and to achieve an overall good channel estimation performance, without using prior information, we derive an improved estimator based on the bounded data uncertainty (BDU) model. It is shown that this estimator is related to the Bayesian linear minimum mean squared error (LMMSE) estimator. Channel estimation performance of the proposed sub-sampling scheme combined with the new estimator is assessed in simulation. The results show that high reduction in sampling rate can be achieved. The proposed estimator outperforms the least squares estimator in almost all cases, while in the high SNR regime it also outperforms the LMMSE estimator. In addition to channel estimation, a synchronization method is also proposed that utilizes the same pulse sequence used for channel estimation. © 2014 IEEE.
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Pilot power optimization for AF relaying using maximum likelihood channel estimation
Wang, Kezhi
2014-09-01
Bit error rates (BERs) for amplify-and-forward (AF) relaying systems with two different pilot-symbol-aided channel estimation methods, disintegrated channel estimation (DCE) and cascaded channel estimation (CCE), are derived in Rayleigh fading channels. Based on these BERs, the pilot powers at the source and at the relay are optimized when their total transmitting powers are fixed. Numerical results show that the optimized system has a better performance than other conventional nonoptimized allocation systems. They also show that the optimal pilot power in variable gain is nearly the same as that in fixed gain for similar system settings. andcopy; 2014 IEEE.
Frequency domain based LS channel estimation in OFDM based Power line communications
Bogdanović, Mario
2015-01-01
This paper is focused on low voltage power line communication (PLC) realization with an emphasis on channel estimation techniques. The Orthogonal Frequency Division Multiplexing (OFDM) scheme is preferred technology in PLC systems because of its effective combat with frequency selective fading properties of PLC channel. As the channel estimation is one of the crucial problems in OFDM based PLC system because of a problematic area of PLC signal attenuation and interference, the improved LS est...
Directory of Open Access Journals (Sweden)
Xiaoyang Liu
2017-01-01
Full Text Available In order to analyze the channel estimation performance of near space high altitude platform station (HAPS in wireless communication system, the structure and formation of HAPS are studied in this paper. The traditional Least Squares (LS channel estimation method and Singular Value Decomposition-Linear Minimum Mean-Squared (SVD-LMMS channel estimation method are compared and investigated. A novel channel estimation method and model are proposed. The channel estimation performance of HAPS is studied deeply. The simulation and theoretical analysis results show that the performance of the proposed method is better than the traditional methods. The lower Bit Error Rate (BER and higher Signal Noise Ratio (SNR can be obtained by the proposed method compared with the LS and SVD-LMMS methods.
Channel processor in 2D cluster finding algorithm for high energy physics application
International Nuclear Information System (INIS)
Paul, Rourab; Chakrabarti, Amlan; Mitra, Jubin; Khan, Shuaib A.; Nayak, Tapan; Mukherjee, Sanjoy
2016-01-01
In a Large Ion Collider Experiment (ALICE) at CERN 1 TB/s (approximately) data comes from front end electronics. Previously, we had 1 GBT link operated with a cluster clock frequencies of 133 MHz and 320 MHz in Run 1 and Run 2 respectively. The cluster algorithm proposed in Run 1 and 2 could not work in Run 3 as the data speed increased almost 20 times. Older version cluster algorithm receives data sequentially as a stream. It has 2 main sub processes - Channel Processor, Merging process. The initial step of channel processor finds a peak Q max and sums up pads (sensors) data from -2 time bin to +2 time bin in the time direction. The computed value stores in a register named cluster fragment data (cfd o ). The merging process merges cfd o in pad direction. The data streams in Run 2 comes sequentially, which processed by the channel processor and merging block in a sequential manner with very less resource over head. In Run 3 data comes parallely, 1600 data from 1600 pads of a single time instant comes at each 200 ns interval (5 MHz) which is very challenging to process in the budgeted resource platform of Arria 10 FPGA hardware with 250 to 320 MHz cluster clock
Pandey, P.; De Ridder, K.; van Lipzig, N.
2009-04-01
Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of
Directory of Open Access Journals (Sweden)
Jiangang Liu
Full Text Available Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of genes with no obvious functional relevance to the biological effect the model intends to predict that can make it challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power Estimation Algorithm (PPEA, which estimates the predictive power of each individual transcript through an iterative two-way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies that: (1 PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small number of iterations, (2 the top ranked transcripts tend to be functionally related to the phenotype they are intended to predict, (3 using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as qRT-PCR as a biomarker, and (4 more importantly, we were able to demonstrate that a small number of genes identified from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and drug responses.
A Detection Algorithm for the BOC Signal Based on Quadrature Channel Correlation
Directory of Open Access Journals (Sweden)
Bo Qian
2018-01-01
Full Text Available In order to solve the problem of detecting a BOC signal, which uses a long-period pseudo random sequence, an algorithm is presented based on quadrature channel correlation. The quadrature channel correlation method eliminates the autocorrelation component of the carrier wave, allowing for the extraction of the absolute autocorrelation peaks of the BOC sequence. If the same lag difference and height difference exist for the adjacent peaks, the BOC signal can be detected effectively using a statistical analysis of the multiple autocorrelation peaks. The simulation results show that the interference of the carrier wave component is eliminated and the autocorrelation peaks of the BOC sequence are obtained effectively without demodulation. The BOC signal can be detected effectively when the SNR is greater than −12 dB. The detection ability can be improved further by increasing the number of sampling points. The higher the ratio of the square wave subcarrier speed to the pseudo random sequence speed is, the greater the detection ability is with a lower SNR. The algorithm presented in this paper is superior to the algorithm based on the spectral correlation.
Abuzaid, Abdulrahman I.
2014-09-01
Efficient receiver designs for cooperative communication systems are becoming increasingly important. In previous work, cooperative networks communicated with the use of $L$ relays. As the receiver is constrained, it can only process $U$ out of $L$ relays. Channel shortening and reduced-rank techniques were employed to design the preprocessing matrix. In this paper, a receiver structure is proposed which combines the joint iterative optimization (JIO) algorithm and our proposed threshold selection criteria. This receiver structure assists in determining the optimal $U-{opt}$. Furthermore, this receiver provides the freedom to choose $U ≤ U-{opt}$ for each frame depending upon the tolerable difference allowed for mean square error (MSE). Our study and simulation results show that by choosing an appropriate threshold, it is possible to gain in terms of complexity savings without affecting the BER performance of the system. Furthermore, in this paper the effect of channel estimation errors is investigated on the MSE performance of the amplify-and-forward (AF) cooperative relaying system.
A Study of an Iterative Channel Estimation Scheme of FS-FBMC System
Directory of Open Access Journals (Sweden)
YongJu Won
2017-01-01
Full Text Available A filter bank multicarrier on offset-quadrature amplitude modulation (FBMC/OQAM system is an alternative multicarrier modulation scheme that does not need cyclic prefix (CP even in the presence of a multipath fading channel by the properties of prototype filter. The FBMC/OQAM system can be implemented either by using the poly-phase network with fast fourier transform (PPN-FFT or by using the extended FFT on a frequency-spreading (FS domain. In this paper, we propose an iterative channel estimation scheme for each sub channel of a FBMC/OQAM system over a frequency-spreading domain. The proposed scheme first estimates the channel using the received pilot signal in the subchannel domain and interpolates the estimated channel to fine frequency-spreading domain. Then the channel compensated FS domain pilot is despread again to modify the channel state information (CSI estimation. Computer simulation shows that the proposed method outperforms the conventional FBMC/OQAM channel estimator in a frequency selective channel.
Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
Chen, Duan
2017-11-01
In this work, we propose a fractional Poisson-Nernst-Planck model to describe ion permeation in gated ion channels. Due to the intrinsic conformational changes, crowdedness in narrow channel pores, binding and trapping introduced by functioning units of channel proteins, ionic transport in the channel exhibits a power-law-like anomalous diffusion dynamics. We start from continuous-time random walk model for a single ion and use a long-tailed density distribution function for the particle jump waiting time, to derive the fractional Fokker-Planck equation. Then, it is generalized to the macroscopic fractional Poisson-Nernst-Planck model for ionic concentrations. Necessary computational algorithms are designed to implement numerical simulations for the proposed model, and the dynamics of gating current is investigated. Numerical simulations show that the fractional PNP model provides a more qualitatively reasonable match to the profile of gating currents from experimental observations. Meanwhile, the proposed model motivates new challenges in terms of mathematical modeling and computations.
Modern optimization algorithms for fault location estimation in power systems
Directory of Open Access Journals (Sweden)
A. Sanad Ahmed
2017-10-01
Full Text Available This paper presents a fault location estimation approach in two terminal transmission lines using Teaching Learning Based Optimization (TLBO technique, and Harmony Search (HS technique. Also, previous methods were discussed such as Genetic Algorithm (GA, Artificial Bee Colony (ABC, Artificial neural networks (ANN and Cause & effect (C&E with discussing advantages and disadvantages of all methods. Initial data for proposed techniques are post-fault measured voltages and currents from both ends, along with line parameters as initial inputs as well. This paper deals with several types of faults, L-L-L, L-L-L-G, L-L-G and L-G. Simulation of the model was performed on SIMULINK by extracting initial inputs from SIMULINK to MATLAB, where the objective function specifies the fault location with a very high accuracy, precision and within a very short time. Future works are discussed showing the benefit behind using the Differential Learning TLBO (DLTLBO was discussed as well.
PERFORMANCE OF THE ZERO FORCING PRECODING MIMO BROADCAST SYSTEMS WITH CHANNEL ESTIMATION ERRORS
Institute of Scientific and Technical Information of China (English)
Wang Jing; Liu Zhanli; Wang Yan; You Xiaohu
2007-01-01
In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum capacity and BER performance are consistent with those of the perfect Channel State Information (CSI)with only a performance degradation.
Directory of Open Access Journals (Sweden)
Chuii Khim Chong
2012-06-01
Full Text Available This paper introduces an improved Differential Evolution algorithm (IDE which aims at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. Metabolic pathway data are expected to be of significant help in the development of efficient tools in kinetic modeling and parameter estimation platforms. Many computation algorithms face obstacles due to the noisy data and difficulty of the system in estimating myriad of parameters, and require longer computational time to estimate the relevant parameters. The proposed algorithm (IDE in this paper is a hybrid of a Differential Evolution algorithm (DE and a Kalman Filter (KF. The outcome of IDE is proven to be superior than Genetic Algorithm (GA and DE. The results of IDE from experiments show estimated optimal kinetic parameters values, shorter computation time and increased accuracy for simulated results compared with other estimation algorithms
Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.
Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi
2017-05-28
In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.
CHANNEL ESTIMATION FOR ZT DFT-s-OFDM
DEFF Research Database (Denmark)
2018-01-01
A signal modulated according to zero-tail discrete Fourier transform spread orthogonal frequency division multiplexing (ZT DFT-s-OFDM) is received over a channel. The signal is down-sampled into a first sequence comprising N samples, N corresponding to the number of used subcarriers. The first Nh...
Conveyance estimation in channels with emergent bank vegetation
African Journals Online (AJOL)
2009-03-20
Mar 20, 2009 ... tion of the transverse distribution of the depth-averaged velocity. Recommendations ... resistance coefficient, and the coefficient for the vegetation interface. ... on the channel hydraulics, including the turbulence structure. (e.g. Choi .... characteristics within the zone as well as the flow conditions in the clear ...
Evaluating Prognostics Performance for Algorithms Incorporating Uncertainty Estimates
National Aeronautics and Space Administration — Uncertainty Representation and Management (URM) are an integral part of the prognostic system development.1As capabilities of prediction algorithms evolve, research...
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Particle Filtering for Multiple Access DS/CDMA Systems DS/CDMA Channel Estimation
Directory of Open Access Journals (Sweden)
Rafael Oliveira Ribeiro
2013-09-01
Full Text Available This article discusses computational implementation aspects and performance of a Bayesian methodology, namely particle filter (PF. The PF channel estimation technique is directly applied to the channel coefficients estimation of DS/CDMA systems. Simulation results for non-line-of-sight (NLOS Rayleigh fading channel propagation have indicated that the bootstrap PF estimator is capable to provide RMSE in the range of [10-3 ; 10-2] for a wide range of multiple access interference (MAI levels and signal-noise ratio (SNR, and still be able to offer robustness to near-far ratio (NFR effect.
Jet pairing algorithm for the 6-jet Higgs channel via energy chi-square criterion
International Nuclear Information System (INIS)
Magallanes, J.B.; Arogancia, D.C.; Gooc, H.C.; Vicente, I.C.M.; Bacala, A.M.; Miyamoto, A.; Fujii, K.
2002-01-01
Study and discovery of the Higgs bosons at JLC (Joint Linear Collider) is one of the tasks of ACFA (Asian Committee for future Accelerators)-JLC Group. The mode of Higgs production at JLC is e + e - → Z 0 H 0 . In this paper, studies are concentrated on the Higgsstrahlung process and the selection of its signals by getting the right jet-pairing algorithm of 6-jet final state at 300 GeV assuming that Higgs boson mass is 120 GeV and luminosity is 500 fb -1 . The total decay width Γ (H 0 → all) and the efficiency of the signals at the JLC are studied utilizing the 6-jet channel. Out of the 91,500 Higgsstrahlung events, 4,174 6-jet events are selected. PYTHIA Monte Carlo Generator generates the 6-jet Higgsstrahlung channel according to the Standard Model. The generated events are then simulated by Quick Simulator using the JCL parameters. After tagging all 6 quarks which correspond to the 6-jet final state of the Higgsstrahlung, the mean energy of the Z, H, and W's are obtained. Having calculated these information, the event energy chi-square is defined and it is found that the correct combination have generally smaller value. This criterion can be used to find correct jet-pairing algorithm and as one of the cuts for the background signals later on. Other chi-definitions are also proposed. (S. Funahashi)
Directory of Open Access Journals (Sweden)
Jingbo Zhang
2018-01-01
Full Text Available In the field of cognitive radio spectrum sensing, the adaptive silence period management mechanism (ASPM has improved the problem of the low time-resource utilization rate of the traditional silence period management mechanism (TSPM. However, in the case of the low signal-to-noise ratio (SNR, the ASPM algorithm will increase the probability of missed detection for the primary user (PU. Focusing on this problem, this paper proposes an improved adaptive silence period management (IA-SPM algorithm which can adaptively adjust the sensing parameters of the current period in combination with the feedback information from the data communication with the sensing results of the previous period. The feedback information in the channel is achieved with frequency resources rather than time resources in order to adapt to the parameter change in the time-varying channel. The Monte Carlo simulation results show that the detection probability of the IA-SPM is 10–15% higher than that of the ASPM under low SNR conditions.
International Nuclear Information System (INIS)
Damek, Nawel; Kamoun, Samira
2011-01-01
In this communication, two recursive parametric estimation algorithms are analyzed and applied to an squirrelcage asynchronous machine located at the research ''Unit of Automatic Control'' (UCA) at ENIS. The first algorithm which, use the transfer matrix mathematical model, is based on the gradient principle. The second algorithm, which use the state-space mathematical model, is based on the minimization of the estimation error. These algorithms are applied as a key technique to estimate asynchronous machine with unknown, but constant or timevarying parameters. Stator voltage and current are used as measured data. The proposed recursive parametric estimation algorithms are validated on the experimental data of an asynchronous machine under normal operating condition as full load. The results show that these algorithms can estimate effectively the machine parameters with reliability.
Channel estimation in few mode fiber mode division multiplexing transmission system
Hei, Yongqiang; Li, Li; Li, Wentao; Li, Xiaohui; Shi, Guangming
2018-03-01
It is abundantly clear that obtaining the channel state information (CSI) is of great importance for the equalization and detection in coherence receivers. However, to the best of the authors' knowledge, in most of the existing literatures, CSI is assumed to be perfectly known at the receiver. So far, few literature discusses the effects of imperfect CSI on MDM system performance caused by channel estimation. Motivated by that, in this paper, the channel estimation in few mode fiber (FMF) mode division multiplexing (MDM) system is investigated, in which two classical channel estimation methods, i.e., least square (LS) method and minimum mean square error (MMSE) method, are discussed with the assumption of the spatially white noise lumped at the receiver side of MDM system. Both the capacity and BER performance of MDM system affected by mode-dependent gain or loss (MDL) with different channel estimation errors have been studied. Simulation results show that the capacity and BER performance can be further deteriorated in MDM system by the channel estimation, and an 1e-3 variance of channel estimation error is acceptable in MDM system with 0-6 dB MDL values.
Al-Salihi, Hayder Qahtan Kshash; Nakhai, Mohammad Reza
2017-01-01
Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel estimation requires prior knowledge of channel sp...
Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.
2017-11-01
The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.
The MISO Wiretap Channel with Noisy Main Channel Estimation in the High Power Regime
Rezki, Zouheir
2017-02-07
We improve upon our previous upper bound on the secrecy capacity of the wiretap channel with multiple transmit antennas and single-antenna receivers, with noisy main channel state information (CSI) at the transmitter (CSI-T). Specifically, we show that if the main CSI error does not scale with the power budget at the transmitter P̅, then the secrecy capacity is )bounded above essentially by log log (P̅ yielding a secure degree of freedom (sdof) equal to zero. However, if the main CSI error scales as O(P̅-β), for β ∈ [0,1], then the sdof is equal to β.
The MISO Wiretap Channel with Noisy Main Channel Estimation in the High Power Regime
Rezki, Zouheir; Chaaban, Anas; Alomair, Basel; Alouini, Mohamed-Slim
2017-01-01
We improve upon our previous upper bound on the secrecy capacity of the wiretap channel with multiple transmit antennas and single-antenna receivers, with noisy main channel state information (CSI) at the transmitter (CSI-T). Specifically, we show that if the main CSI error does not scale with the power budget at the transmitter P̅, then the secrecy capacity is )bounded above essentially by log log (P̅ yielding a secure degree of freedom (sdof) equal to zero. However, if the main CSI error scales as O(P̅-β), for β ∈ [0,1], then the sdof is equal to β.
An Accurate FFPA-PSR Estimator Algorithm and Tool for Software Effort Estimation
Directory of Open Access Journals (Sweden)
Senthil Kumar Murugesan
2015-01-01
Full Text Available Software companies are now keen to provide secure software with respect to accuracy and reliability of their products especially related to the software effort estimation. Therefore, there is a need to develop a hybrid tool which provides all the necessary features. This paper attempts to propose a hybrid estimator algorithm and model which incorporates quality metrics, reliability factor, and the security factor with a fuzzy-based function point analysis. Initially, this method utilizes a fuzzy-based estimate to control the uncertainty in the software size with the help of a triangular fuzzy set at the early development stage. Secondly, the function point analysis is extended by the security and reliability factors in the calculation. Finally, the performance metrics are added with the effort estimation for accuracy. The experimentation is done with different project data sets on the hybrid tool, and the results are compared with the existing models. It shows that the proposed method not only improves the accuracy but also increases the reliability, as well as the security, of the product.
Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System
Directory of Open Access Journals (Sweden)
Raulefs Ronald
2004-01-01
Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.
Liang Yang,
2013-06-01
In this paper, we consider the performance of a two-way amplify-and-forward relaying network (AF TWRN) in the presence of unequal power co-channel interferers (CCI). Specifically, we first consider AF TWRN with an interference-limited relay and two noisy-nodes with channel estimation errors and CCI. We derive the approximate signal-to-interference plus noise ratio expressions and then use them to evaluate the outage probability, error probability, and achievable rate. Subsequently, to investigate the joint effects of the channel estimation error and CCI on the system performance, we extend our analysis to a multiple-relay network and derive several asymptotic performance expressions. For comparison purposes, we also provide the analysis for the relay selection scheme under the total power constraint at the relays. For AF TWRN with channel estimation error and CCI, numerical results show that the performance of the relay selection scheme is not always better than that of the all-relay participating case. In particular, the relay selection scheme can improve the system performance in the case of high power levels at the sources and small powers at the relays.
Yang, Liang
2013-04-01
In this paper, we consider the performance of a two-way amplify-and-forward relaying network (AF TWRN) in the presence of unequal power co-channel interferers (CCI). Specifically, we consider AF TWRN with an interference-limited relay and two noisy-nodes with channel estimation error and CCI. We derive the approximate signal-to-interference plus noise ratio expressions and then use these expressions to evaluate the outage probability and error probability. Numerical results show that the approximate closed-form expressions are very close to the exact ones. © 2013 IEEE.
Multi-objective mixture-based iterated density estimation evolutionary algorithms
Thierens, D.; Bosman, P.A.N.
2001-01-01
We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability
The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models
GROENEBOOM, PIET; JONGBLOED, GEURT; WELLNER, JON A.
2008-01-01
In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non-parametric M-estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in quantum physics.
Directory of Open Access Journals (Sweden)
Yuxiang He
2018-01-01
Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.
Hard Ware Implementation of Diamond Search Algorithm for Motion Estimation and Object Tracking
International Nuclear Information System (INIS)
Hashimaa, S.M.; Mahmoud, I.I.; Elazm, A.A.
2009-01-01
Object tracking is very important task in computer vision. Fast search algorithms emerged as important search technique to achieve real time tracking results. To enhance the performance of these algorithms, we advocate the hardware implementation of such algorithms. Diamond search block matching motion estimation has been proposed recently to reduce the complexity of motion estimation. In this paper we selected the diamond search algorithm (DS) for implementation using FPGA. This is due to its fundamental role in all fast search patterns. The proposed architecture is simulated and synthesized using Xilinix and modelsim soft wares. The results agree with the algorithm implementation in Matlab environment.
DEFF Research Database (Denmark)
Pittalà, Fabio; Hauske, Fabian N.; Ye, Yabin
2012-01-01
Efficient channel estimation for signal equalization and OPM based on short CAZAC sequences with QPSK and 8PSK constellation formats is demonstrated in a 224-Gb/s PDM 16-QAM optical linear transmission system....
2-D DOA Estimation of LFM Signals Based on Dechirping Algorithm and Uniform Circle Array
Directory of Open Access Journals (Sweden)
K. B. Cui
2017-04-01
Full Text Available Based on Dechirping algorithm and uniform circle array(UCA, a new 2-D direction of arrival (DOA estimation algorithm of linear frequency modulation (LFM signals is proposed in this paper. The algorithm uses the thought of Dechirping and regards the signal to be estimated which is received by the reference sensor as the reference signal and proceeds the difference frequency treatment with the signal received by each sensor. So the signal to be estimated becomes a single-frequency signal in each sensor. Then we transform the single-frequency signal to an isolated impulse through Fourier transform (FFT and construct a new array data model based on the prominent parts of the impulse. Finally, we respectively use multiple signal classification (MUSIC algorithm and rotational invariance technique (ESPRIT algorithm to realize 2-D DOA estimation of LFM signals. The simulation results verify the effectiveness of the algorithm proposed.
Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method
Directory of Open Access Journals (Sweden)
Li Husheng
2005-01-01
Full Text Available For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact of channel estimation errors on multiuser detection (MUD is analyzed under the framework of the replica method. System performance is obtained in the large system limit for optimal MUD, linear MUD, and turbo MUD, and is validated by numerical results for finite systems.
On the estimation of channel power distribution for PHWRs (Paper No. HMT-66-87)
International Nuclear Information System (INIS)
Parikh, M.V.; Kumar, A.N.; Krishnamohan, B.; Bhaskara Rao, P.
1987-01-01
In the case of PHWRs the estimation of channel power distribution is an important safety criteria. In this paper two methods based on theoretical estimation and the measured parameter are described. The comparison made shows good agreement in the prediction of channel power by both the methods. A parametric study in one of the measured parameters is also made which gives better agreement in results obtained. (author). 3 tabs
A Novel Modification of PSO Algorithm for SML Estimation of DOA
Directory of Open Access Journals (Sweden)
Haihua Chen
2016-12-01
Full Text Available This paper addresses the issue of reducing the computational complexity of Stochastic Maximum Likelihood (SML estimation of Direction-of-Arrival (DOA. The SML algorithm is well-known for its high accuracy of DOA estimation in sensor array signal processing. However, its computational complexity is very high because the estimation of SML criteria is a multi-dimensional non-linear optimization problem. As a result, it is hard to apply the SML algorithm to real systems. The Particle Swarm Optimization (PSO algorithm is considered as a rather efficient method for multi-dimensional non-linear optimization problems in DOA estimation. However, the conventional PSO algorithm suffers two defects, namely, too many particles and too many iteration times. Therefore, the computational complexity of SML estimation using conventional PSO algorithm is still a little high. To overcome these two defects and to reduce computational complexity further, this paper proposes a novel modification of the conventional PSO algorithm for SML estimation and we call it Joint-PSO algorithm. The core idea of the modification lies in that it uses the solution of Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT and stochastic Cramer-Rao bound (CRB to determine a novel initialization space. Since this initialization space is already close to the solution of SML, fewer particles and fewer iteration times are needed. As a result, the computational complexity can be greatly reduced. In simulation, we compare the proposed algorithm with the conventional PSO algorithm, the classic Altering Minimization (AM algorithm and Genetic algorithm (GA. Simulation results show that our proposed algorithm is one of the most efficient solving algorithms and it shows great potential for the application of SML in real systems.
Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J
2016-04-01
Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of -4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and -5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of -5.6 to 5.2 bpm and a bias of -0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available.
Multi-channel PSD Estimators for Speech Dereverberation
DEFF Research Database (Denmark)
Kuklasinski, Adam; Doclo, Simon; Gerkmann, Timo
2015-01-01
densities (PSDs). We first derive closed-form expressions for the mean square error (MSE) of both PSD estimators and then show that one estimator – previously used for speech dereverberation by the authors – always yields a better MSE. Only in the case of a two microphone array or for special spatial...... distributions of the interference both estimators yield the same MSE. The theoretically derived MSE values are in good agreement with numerical simulation results and with instrumental speech quality measures in a realistic speech dereverberation task for binaural hearing aids....
Energy Technology Data Exchange (ETDEWEB)
Kagie, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lanterman, Aaron D. [Georgia Inst. of Technology, Atlanta, GA (United States)
2017-12-01
This paper addresses parameter estimation for an optical transient signal when the received data has been right-censored. We develop an expectation-maximization (EM) algorithm to estimate the amplitude of a Poisson intensity with a known shape in the presence of additive background counts, where the measurements are subject to saturation effects. We compare the results of our algorithm with those of an EM algorithm that is unaware of the censoring.
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu
2017-08-01
Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
A predictor-corrector algorithm to estimate the fractional flow in oil-water models
International Nuclear Information System (INIS)
Savioli, Gabriela B; Berdaguer, Elena M Fernandez
2008-01-01
We introduce a predictor-corrector algorithm to estimate parameters in a nonlinear hyperbolic problem. It can be used to estimate the oil-fractional flow function from the Buckley-Leverett equation. The forward model is non-linear: the sought- for parameter is a function of the solution of the equation. Traditionally, the estimation of functions requires the selection of a fitting parametric model. The algorithm that we develop does not require a predetermined parameter model. Therefore, the estimation problem is carried out over a set of parameters which are functions. The algorithm is based on the linearization of the parameter-to-output mapping. This technique is new in the field of nonlinear estimation. It has the advantage of laying aside parametric models. The algorithm is iterative and is of predictor-corrector type. We present theoretical results on the inverse problem. We use synthetic data to test the new algorithm.
Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab
2014-01-01
Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.
ROBUST ALGORITHMS OF PARAMETRIC ESTIMATION IN SOME STABILIZATION PROBLEMS
Directory of Open Access Journals (Sweden)
A.A. Vedyakov
2016-07-01
Full Text Available Subject of Research.The tasks of dynamic systems provision in the stable state by means of ensuring of trite solution stability for various dynamic systems in the education regime with the aid of their parameters tuning are considered. Method. The problems are solved by application of ideology of the robust finitely convergent algorithms creation. Main Results. The concepts of parametric algorithmization of stability and steady asymptotic stability are introduced and the results are presented on synthesis of coarsed gradient algorithms solving the proposed tasks for finite number of iterations with the purpose of the posed problems decision. Practical Relevance. The article results may be called for decision of practical stabilization tasks in the process of various engineering constructions and devices operation.
Sharp probability estimates for Shor's order-finding algorithm
Bourdon, P. S.; Williams, H. T.
2006-01-01
Let N be a (large positive integer, let b > 1 be an integer relatively prime to N, and let r be the order of b modulo N. Finally, let QC be a quantum computer whose input register has the size specified in Shor's original description of his order-finding algorithm. We prove that when Shor's algorithm is implemented on QC, then the probability P of obtaining a (nontrivial) divisor of r exceeds 0.7 whenever N exceeds 2^{11}-1 and r exceeds 39, and we establish that 0.7736 is an asymptotic lower...
Comparison of parameter estimation algorithms in hydrological modelling
DEFF Research Database (Denmark)
Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan
2006-01-01
Local search methods have been applied successfully in calibration of simple groundwater models, but might fail in locating the optimum for models of increased complexity, due to the more complex shape of the response surface. Global search algorithms have been demonstrated to perform well......-Marquardt-Levenberg algorithm (implemented in the PEST software), when applied to a steady-state and a transient groundwater model. The results show that PEST can have severe problems in locating the global optimum and in being trapped in local regions of attractions. The global SCE procedure is, in general, more effective...... and provides a better coverage of the Pareto optimal solutions at a lower computational cost....
Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system
Wang, Daobin; Yuan, Lihua; Lei, Jingli; wu, Gang; Li, Suoping; Ding, Runqi; Wang, Dongye
2017-12-01
In this paper, we focus on analysis of the preamble-based joint estimation for channel and laser-frequency offset (LFO) in coherent optical filter bank multicarrier systems with offset quadrature amplitude modulation (CO-FBMC/OQAM). In order to reduce the noise impact on the estimation accuracy, we proposed an estimation method based on inter-frame averaging. This method averages the cross-correlation function of real-valued pilots within multiple FBMC frames. The laser-frequency offset is estimated according to the phase of this average. After correcting LFO, the final channel response is also acquired by averaging channel estimation results within multiple frames. The principle of the proposed method is analyzed theoretically, and the preamble structure is thoroughly designed and optimized to suppress the impact of inherent imaginary interference (IMI). The effectiveness of our method is demonstrated numerically using different fiber and LFO values. The obtained results show that the proposed method can improve transmission performance significantly.
Subjective and Objective Quality Assessment of Single-Channel Speech Separation Algorithms
DEFF Research Database (Denmark)
Mowlaee, Pejman; Saeidi, Rahim; Christensen, Mads Græsbøll
2012-01-01
Previous studies on performance evaluation of single-channel speech separation (SCSS) algorithms mostly focused on automatic speech recognition (ASR) accuracy as their performance measure. Assessing the separated signals by different metrics other than this has the benefit that the results...... are expected to carry on to other applications beyond ASR. In this paper, in addition to conventional speech quality metrics (PESQ and SNRloss), we also evaluate the separation systems output using different source separation metrics: blind source separation evaluation (BSS EVAL) and perceptual evaluation...... that PESQ and PEASS quality metrics predict well the subjective quality of separated signals obtained by the separation systems. From the results it is observed that the short-time objective intelligibility (STOI) measure predict the speech intelligibility results....
A virtually blind spectrum efficient channel estimation technique for mimo-ofdm system
International Nuclear Information System (INIS)
Ullah, M.O.
2015-01-01
Multiple-Input Multiple-Output antennas in conjunction with Orthogonal Frequency-Division Multiplexing is a dominant air interface for 4G and 5G cellular communication systems. Additionally, MIMO- OFDM based air interface is the foundation for latest wireless Local Area Networks, wireless Personal Area Networks, and digital multimedia broadcasting. Whether it is a single antenna or a multi-antenna OFDM system, accurate channel estimation is required for coherent reception. Training-based channel estimation methods require multiple pilot symbols and therefore waste a significant portion of channel bandwidth. This paper describes a virtually blind spectrum efficient channel estimation scheme for MIMO-OFDM systems which operates well below the Nyquist criterion. (author)
Sliding-MOMP Based Channel Estimation Scheme for ISDB-T Systems
Directory of Open Access Journals (Sweden)
Ziji Ma
2016-01-01
Full Text Available Compressive sensing based channel estimation has shown its advantage of accurate reconstruction for sparse signal with less pilots for OFDM systems. However, high computational cost requirement of CS method, due to linear programming, significantly restricts its implementation in practical applications. In this paper, we propose a reduced complexity channel estimation scheme of modified orthogonal matching pursuit with sliding windows for ISDB-T (Integrated Services Digital Broadcasting for Terrestrial system. The proposed scheme can reduce the computational cost by limiting the searching region as well as making effective use of the last estimation result. In addition, adaptive tracking strategy with sliding sampling window can improve the robustness of CS based methods to guarantee its accuracy of channel matrix reconstruction, even for fast time-variant channels. The computer simulation demonstrates its impact on improving bit error rate and computational complexity for ISDB-T system.
Ahmed, Sajid
2017-05-12
The estimation of angular-location and range of a target is a joint optimization problem. In this work, to estimate these parameters, by meticulously evaluating the phase of the received samples, low complexity sequential and joint estimation algorithms are proposed. We use a single-input and multiple-output (SIMO) system and transmit frequency-modulated continuous-wave signal. In the proposed algorithm, it is shown that by ignoring very small value terms in the phase of the received samples, fast-Fourier-transform (FFT) and two-dimensional FFT can be exploited to estimate these parameters. Sequential estimation algorithm uses FFT and requires only one received snapshot to estimate the angular-location. Joint estimation algorithm uses two-dimensional FFT to estimate the angular-location and range of the target. Simulation results show that joint estimation algorithm yields better mean-squared-error (MSE) for the estimation of angular-location and much lower run-time compared to conventional MUltiple SIgnal Classification (MUSIC) algorithm.
Ahmed, Sajid; Jardak, Seifallah; Alouini, Mohamed-Slim
2017-01-01
The estimation of angular-location and range of a target is a joint optimization problem. In this work, to estimate these parameters, by meticulously evaluating the phase of the received samples, low complexity sequential and joint estimation algorithms are proposed. We use a single-input and multiple-output (SIMO) system and transmit frequency-modulated continuous-wave signal. In the proposed algorithm, it is shown that by ignoring very small value terms in the phase of the received samples, fast-Fourier-transform (FFT) and two-dimensional FFT can be exploited to estimate these parameters. Sequential estimation algorithm uses FFT and requires only one received snapshot to estimate the angular-location. Joint estimation algorithm uses two-dimensional FFT to estimate the angular-location and range of the target. Simulation results show that joint estimation algorithm yields better mean-squared-error (MSE) for the estimation of angular-location and much lower run-time compared to conventional MUltiple SIgnal Classification (MUSIC) algorithm.
Directory of Open Access Journals (Sweden)
Yuncheng Bu
2018-03-01
Full Text Available The multi-baseline synthetic aperture radar (SAR tomography (TomoSAR system is employed in such applications as disaster remote sensing, urban 3-D reconstruction, and forest carbon storage estimation. This is because of its 3-D imaging capability in a single-pass platform. However, a high 3-D resolution of TomoSAR is based on the premise that the channel imbalance and antenna phase center (APC position are precisely known. If this is not the case, the 3-D resolution performance will be seriously degraded. In this paper, a unified algorithm for channel imbalance and APC position calibration of a single-pass multi-baseline TomoSAR system is proposed. Based on the maximum likelihood method, as well as the least squares and the damped Newton method, we can calibrate the channel imbalance and APC position. The algorithm is suitable for near-field conditions, and no phase unwrapping operation is required. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.
PREDICTION BASED CHANNEL-HOPPING ALGORITHM FOR RENDEZVOUS IN COGNITIVE RADIO NETWORKS
Directory of Open Access Journals (Sweden)
Dhananjay Kumar
2012-12-01
Full Text Available Most common works for rendezvous in cognitive radio networks deal only with two user scenarios involving two secondary users and variable primary users and aim at reducing the time-to-rendezvous. A common control channel for the establishment of communication is not considered and hence the work comes under the category of ‘Blind Rendezvous’. Our work deal with multi-user scenario and provides a methodology for the users to find each other in the very first time slot spent for rendezvous or otherwise called the firstattempt- rendezvous. The secondary users make use of the history of past communications to enable them to predict the frequency channel that the user expects the rendezvous user to be. Our approach prevents greedy decision making between the users involved by the use of a cut-off time period for attempting rendezvous. Simulation results show that the time-to-rendezvous (TTR is greatly reduced upon comparison with other popular rendezvous algorithms.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Zheng, E-mail: 19994035@sina.com [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Wang, Jun; Zhou, Bihua [National Defense Key Laboratory on Lightning Protection and Electromagnetic Camouflage, PLA University of Science and Technology, Nanjing 210007 (China); Zhou, Shudao [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044 (China)
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
International Nuclear Information System (INIS)
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-01-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm
Application of the Levenberg-Marquardt Scheme to the MUSIC Algorithm for AOA Estimation
Directory of Open Access Journals (Sweden)
Joon-Ho Lee
2013-01-01
can be expressed in a least squares form. Based on this observation, we present a rigorous Levenberg-Marquardt (LM formulation of the MUSIC algorithm for simultaneous estimation of an azimuth and an elevation. We show a convergence property and compare the performance of the LM-based MUSIC algorithm with that of the standard MUSIC algorithm via Monte-Carlo simulation. We also compare the performance of the MUSIC algorithm with that of the Capon algorithm both for the standard implementation and for the LM-based implementation.
Manifold absolute pressure estimation using neural network with hybrid training algorithm.
Directory of Open Access Journals (Sweden)
Mohd Taufiq Muslim
Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.
Manifold absolute pressure estimation using neural network with hybrid training algorithm.
Muslim, Mohd Taufiq; Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli
2017-01-01
In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.
Estimate-Merge-Technique-based algorithms to track an underwater ...
Indian Academy of Sciences (India)
D V A N Ravi Kumar
2017-07-04
Jul 4, 2017 ... In this paper, two novel methods based on the Estimate Merge Technique ... mentioned advantages of the proposed novel methods is shown by carrying out Monte Carlo simulation in .... equations are converted to sequential equations to make ... estimation error and low convergence time) at feasibly high.
A Kalman-based Fundamental Frequency Estimation Algorithm
DEFF Research Database (Denmark)
Shi, Liming; Nielsen, Jesper Kjær; Jensen, Jesper Rindom
2017-01-01
Fundamental frequency estimation is an important task in speech and audio analysis. Harmonic model-based methods typically have superior estimation accuracy. However, such methods usually as- sume that the fundamental frequency and amplitudes are station- ary over a short time frame. In this pape...
Directory of Open Access Journals (Sweden)
Dan Yang
2017-04-01
Full Text Available To solve the problem of multi-fault blind source separation (BSS in the case that the observed signals are under-determined, a novel approach for single channel blind source separation (SCBSS based on the improved tensor-based singular spectrum analysis (TSSA is proposed. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, TSSA method can be employed to extract the multi-fault features from the measured single-channel vibration signal. However, SCBSS based on TSSA still has some limitations, mainly including unsatisfactory convergence of TSSA in many cases and the number of source signals is hard to accurately estimate. Therefore, the improved TSSA algorithm based on canonical decomposition and parallel factors (CANDECOMP/PARAFAC weighted optimization, namely CP-WOPT, is proposed in this paper. CP-WOPT algorithm is applied to process the factor matrix using a first-order optimization approach instead of the original least square method in TSSA, so as to improve the convergence of this algorithm. In order to accurately estimate the number of the source signals in BSS, EMD-SVD-BIC (empirical mode decomposition—singular value decomposition—Bayesian information criterion method, instead of the SVD in the conventional TSSA, is introduced. To validate the proposed method, we applied it to the analysis of the numerical simulation signal and the multi-fault rolling bearing signals.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
A FPC-ROOT Algorithm for 2D-DOA Estimation in Sparse Array
Directory of Open Access Journals (Sweden)
Wenhao Zeng
2016-01-01
Full Text Available To improve the performance of two-dimensional direction-of-arrival (2D DOA estimation in sparse array, this paper presents a Fixed Point Continuation Polynomial Roots (FPC-ROOT algorithm. Firstly, a signal model for DOA estimation is established based on matrix completion and it can be proved that the proposed model meets Null Space Property (NSP. Secondly, left and right singular vectors of received signals matrix are achieved using the matrix completion algorithm. Finally, 2D DOA estimation can be acquired through solving the polynomial roots. The proposed algorithm can achieve high accuracy of 2D DOA estimation in sparse array, without solving autocorrelation matrix of received signals and scanning of two-dimensional spectral peak. Besides, it decreases the number of antennas and lowers computational complexity and meanwhile avoids the angle ambiguity problem. Computer simulations demonstrate that the proposed FPC-ROOT algorithm can obtain the 2D DOA estimation precisely in sparse array.
Nagy, Ivan
2017-01-01
This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms.
Ridge Distance Estimation in Fingerprint Images: Algorithm and Performance Evaluation
Directory of Open Access Journals (Sweden)
Tian Jie
2004-01-01
Full Text Available It is important to estimate the ridge distance accurately, an intrinsic texture property of a fingerprint image. Up to now, only several articles have touched directly upon ridge distance estimation. Little has been published providing detailed evaluation of methods for ridge distance estimation, in particular, the traditional spectral analysis method applied in the frequency field. In this paper, a novel method on nonoverlap blocks, called the statistical method, is presented to estimate the ridge distance. Direct estimation ratio (DER and estimation accuracy (EA are defined and used as parameters along with time consumption (TC to evaluate performance of these two methods for ridge distance estimation. Based on comparison of performances of these two methods, a third hybrid method is developed to combine the merits of both methods. Experimental results indicate that DER is 44.7%, 63.8%, and 80.6%; EA is 84%, 93%, and 91%; and TC is , , and seconds, with the spectral analysis method, statistical method, and hybrid method, respectively.
Directory of Open Access Journals (Sweden)
Changgan SHU
2014-09-01
Full Text Available In the standard root multiple signal classification algorithm, the performance of direction of arrival estimation will reduce and even lose effect in circumstances that a low signal noise ratio and a small signals interval. By reconstructing and weighting the covariance matrix of received signal, the modified algorithm can provide more accurate estimation results. The computer simulation and performance analysis are given next, which show that under the condition of lower signal noise ratio and stronger correlation between signals, the proposed modified algorithm could provide preferable azimuth estimating performance than the standard method.
Analysis of the Command and Control Segment (CCS) attitude estimation algorithm
Stockwell, Catherine
1993-01-01
This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.
Directory of Open Access Journals (Sweden)
Tingting Jin
2017-04-01
Full Text Available Multichannel synthetic aperture radar (SAR is a significant breakthrough to the inherent limitation between high-resolution and wide-swath (HRWS compared with conventional SAR. Moving target indication (MTI is an important application of spaceborne HRWS SAR systems. In contrast to previous studies of SAR MTI, the HRWS SAR mainly faces the problem of under-sampled data of each channel, causing single-channel imaging and processing to be infeasible. In this study, the estimation of velocity is equivalent to the estimation of the cone angle according to their relationship. The maximum likelihood (ML based algorithm is proposed to estimate the radial velocity in the existence of Doppler ambiguities. After that, the signal reconstruction and compensation for the phase offset caused by radial velocity are processed for a moving target. Finally, the traditional imaging algorithm is applied to obtain a focused moving target image. Experiments are conducted to evaluate the accuracy and effectiveness of the estimator under different signal-to-noise ratios (SNR. Furthermore, the performance is analyzed with respect to the motion ship that experiences interference due to different distributions of sea clutter. The results verify that the proposed algorithm is accurate and efficient with low computational complexity. This paper aims at providing a solution to the velocity estimation problem in the future HRWS SAR systems with multiple receive channels.
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Małgorzata Stramska
2013-02-01
Full Text Available The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2 in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.
Estimation of MIMO channel capacity from phase-noise impaired measurements
DEFF Research Database (Denmark)
Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri
2008-01-01
Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown t...... matrix. It is shown by means of Monte Carlo simulations assuming a measurementbased phase noise model, that the MIMO channel capacity can be estimated accurately for signal to noise ratios up to about 35 dB......Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown...... that phase noise of the transmitter and receiver local oscillators, when it is assumed to be a white Gaussian random process, can cause large errors of the estimated channel capacity of a low-rank MIMO channel when the standard channel matrix estimator is used. Experimental evidence shows that consecutive...
International Nuclear Information System (INIS)
Siddiqui, M.S.
1992-06-01
COFTAN is a computer code for actual estimation of flows and temperatures in the coolant channels of a pressure tube heavy water reactor. The code is being used for Candu type reactor with coolant flowing 208 channels. The simulation model first performs the detailed calculation of flux and power distribution based on two groups diffusion theory treatment on a three dimensional mesh and then channel powers, resulting from the summation of eleven bundle powers in each of the 208 channels, are employed to make actual estimation of coolant flows using channel powers and channel outlet temperature monitored by digital computers. The code by using the design flows in individual channels and applying a correction factor based on control room monitored flows in eight selected channels, can also provide a reserve computational tool of estimating individual channel outlet temperatures, thus providing an alternate arrangements for checking Rads performance. 42 figs. (Orig./A.B.)
Performance evaluation of an automated single-channel sleep–wake detection algorithm
Directory of Open Access Journals (Sweden)
Kaplan RF
2014-10-01
Full Text Available Richard F Kaplan,1 Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard R Bootzin3 1General Sleep Corporation, Euclid, OH, USA; 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA; 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: A need exists, from both a clinical and a research standpoint, for objective sleep measurement systems that are both easy to use and can accurately assess sleep and wake. This study evaluates the output of an automated sleep–wake detection algorithm (Z-ALG used in the Zmachine (a portable, single-channel, electroencephalographic [EEG] acquisition and analysis system against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Overnight laboratory PSG studies from 99 subjects (52 females/47 males, 18–60 years, median age 32.7 years, including both normal sleepers and those with a variety of sleep disorders, were assessed. PSG data obtained from the differential mastoids (A1–A2 were assessed by Z-ALG, which determines sleep versus wake every 30 seconds using low-frequency, intermediate-frequency, and high-frequency and time domain EEG features. PSG data were independently scored by two to four certified PSG technologists, using standard Rechtschaffen and Kales guidelines, and these score files were combined on an epoch-by-epoch basis, using a majority voting rule, to generate a single score file per subject to compare against the Z-ALG output. Both epoch-by-epoch and standard sleep indices (eg, total sleep time, sleep efficiency, latency to persistent sleep, and wake after sleep onset were compared between the Z-ALG output and the technologist consensus score files. Results: Overall, the sensitivity and specificity for detecting sleep using the Z-ALG as compared to the technologist consensus are 95.5% and 92.5%, respectively, across all subjects, and the positive predictive value and the
Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers
Directory of Open Access Journals (Sweden)
Ohno Shuichi
2011-01-01
Full Text Available Abstract In this article, design of preamble for channel estimation and pilot symbols for pilot-assisted channel estimation in orthogonal frequency division multiplexing system with null subcarriers is studied. Both the preambles and pilot symbols are designed to minimize the l 2 or the l ∞ norm of the channel estimate mean-squared errors (MSE in frequency-selective environments. We use convex optimization technique to find optimal power distribution to the preamble by casting the MSE minimization problem into a semidefinite programming problem. Then, using the designed optimal preamble as an initial value, we iteratively select the placement and optimally distribute power to the selected pilot symbols. Design examples consistent with IEEE 802.11a as well as IEEE 802.16e are provided to illustrate the superior performance of our proposed method over the equi-spaced equi-powered pilot symbols and the partially equi-spaced pilot symbols.
Directory of Open Access Journals (Sweden)
Kavitha SRINIVASAN
2014-09-01
Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
Usefulness of an enhanced Kitaev phase-estimation algorithm in quantum metrology and computation
Kaftal, Tomasz; Demkowicz-Dobrzański, Rafał
2014-12-01
We analyze the performance of a generalized Kitaev's phase-estimation algorithm where N phase gates, acting on M qubits prepared in a product state, may be distributed in an arbitrary way. Unlike the standard algorithm, where the mean square error scales as 1 /N , the optimal generalizations offer the Heisenberg 1 /N2 error scaling and we show that they are in fact very close to the fundamental Bayesian estimation bound. We also demonstrate that the optimality of the algorithm breaks down when losses are taken into account, in which case the performance is inferior to the optimal entanglement-based estimation strategies. Finally, we show that when an alternative resource quantification is adopted, which describes the phase estimation in Shor's algorithm more accurately, the standard Kitaev's procedure is indeed optimal and there is no need to consider its generalized version.
GPS Signal Offset Detection and Noise Strength Estimation in a Parallel Kalman Filter Algorithm
National Research Council Canada - National Science Library
Vanek, Barry
1999-01-01
.... The variance of the noise process is estimated and provided to the second algorithm, a parallel Kalman filter structure, which then adapts to changes in the real-world measurement noise strength...
Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables
International Nuclear Information System (INIS)
Zwierz, Marcin; Perez-Delgado, Carlos A.; Kok, Pieter
2010-01-01
We reveal a close relationship between quantum metrology and the Deutsch-Jozsa algorithm on continuous-variable quantum systems. We develop a general procedure, characterized by two parameters, that unifies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant, the procedure implements either the parameter-estimation protocol or the Deutsch-Jozsa algorithm. The parameter-estimation part of the procedure attains the Heisenberg limit and is therefore optimal. Due to the use of approximate normalizable continuous-variable eigenstates, the Deutsch-Jozsa algorithm is probabilistic. The procedure estimates a value of an unknown parameter and solves the Deutsch-Jozsa problem without the use of any entanglement.
A survey on OFDM channel estimation techniques based on denoising strategies
Directory of Open Access Journals (Sweden)
Pallaviram Sure
2017-04-01
Full Text Available Channel estimation forms the heart of any orthogonal frequency division multiplexing (OFDM based wireless communication receiver. Frequency domain pilot aided channel estimation techniques are either least squares (LS based or minimum mean square error (MMSE based. LS based techniques are computationally less complex. Unlike MMSE ones, they do not require a priori knowledge of channel statistics (KCS. However, the mean square error (MSE performance of the channel estimator incorporating MMSE based techniques is better compared to that obtained with the incorporation of LS based techniques. To enhance the MSE performance using LS based techniques, a variety of denoising strategies have been developed in the literature, which are applied on the LS estimated channel impulse response (CIR. The advantage of denoising threshold based LS techniques is that, they do not require KCS but still render near optimal MMSE performance similar to MMSE based techniques. In this paper, a detailed survey on various existing denoising strategies, with a comparative discussion of these strategies is presented.
Directory of Open Access Journals (Sweden)
Sonia Aïssa
2008-05-01
Full Text Available This paper investigates the effects of channel estimation error at the receiver on the achievable rate of distributed space-time block coded transmission. We consider that multiple transmitters cooperate to send the signal to the receiver and derive lower and upper bounds on the mutual information of distributed space-time block codes (D-STBCs when the channel gains and channel estimation error variances pertaining to different transmitter-receiver links are unequal. Then, assessing the gap between these two bounds, we provide a limiting value that upper bounds the latter at any input transmit powers, and also show that the gap is minimum if the receiver can estimate the channels of different transmitters with the same accuracy. We further investigate positioning the receiving node such that the mutual information bounds of D-STBCs and their robustness to the variations of the subchannel gains are maximum, as long as the summation of these gains is constant. Furthermore, we derive the optimum power transmission strategy to achieve the outage capacity lower bound of D-STBCs under arbitrary numbers of transmit and receive antennas, and provide closed-form expressions for this capacity metric. Numerical simulations are conducted to corroborate our analysis and quantify the effects of imperfect channel estimation.
A Sparse Bayesian Learning Algorithm With Dictionary Parameter Estimation
DEFF Research Database (Denmark)
Hansen, Thomas Lundgaard; Badiu, Mihai Alin; Fleury, Bernard Henri
2014-01-01
This paper concerns sparse decomposition of a noisy signal into atoms which are specified by unknown continuous-valued parameters. An example could be estimation of the model order, frequencies and amplitudes of a superposition of complex sinusoids. The common approach is to reduce the continuous...
Optimal power allocation for SM-OFDM systems with imperfect channel estimation
International Nuclear Information System (INIS)
Yu, Feng; Song, Lijun; Lei, Xia; Xiao, Yue; Jiang, Zhao Xiang; Jin, Maozhu
2016-01-01
This paper analyses the bit error rate (BER) of the spatial modulation orthogonal frequency division multiplex (SM-OFDM) system and derives the optimal power allocation between the data and the pilot symbols by minimizing the upper bound for the BER operating with imperfect channel estimation. Furthermore, we prove the proposed optimal power allocation scheme applies to all generalized linear interpolation techniques with the minimum mean square error (MMSE) channel estimation . Simulation results show that employing the proposed optimal power allocation provides a substantial gain in terms of the average BER performance for the SM-OFDM system compared to its equal-power-allocation counterpart.
Use of artificial neural network in estimating channel power distribution of a 220 MWe PHWR
International Nuclear Information System (INIS)
Dubey, B.P.; Chandra, A.K.; Govindarajan, G.; Jagannathan, V.; Kataria, S.K.
1998-01-01
Knowledge of the distribution of power in all the 306 channels of a Pressurised Heavy Water Reactor (PHWR) as a result of the movement of one or more of the four regulating rods is important from the operation and maintenance point view of the reactor. Conventional computer codes available for this purpose take several minutes to calculate the channel power distribution on PC-AT/486. An Artificial Neural network (ANN), based on the RPROP algorithm has been developed and employed in predicting channel power distribution of a 220 MWe Indian PHWR as a result of a perturbation caused by the movement of one or more of the four regulating rods of the reactor. The ANN based system produces the result of an analysis much faster than that produced by a conventional computer code usually employed for this application. The ANN based system is rugged, accurate and fast, and therefore, has potential to be used in real-time applications. (author)
Chang, Yaping; Qin, Dahe; Ding, Yongjian; Zhao, Qiudong; Zhang, Shiqiang
2018-06-01
The long-term change of evapotranspiration (ET) is crucial for managing water resources in areas with extreme climates, such as the Tibetan Plateau (TP). This study proposed a modified algorithm for estimating ET based on the MOD16 algorithm on a global scale over alpine meadow on the TP in China. Wind speed and vegetation height were integrated to estimate aerodynamic resistance, while the temperature and moisture constraints for stomatal conductance were revised based on the technique proposed by Fisher et al. (2008). Moreover, Fisher's method for soil evaporation was adopted to reduce the uncertainty in soil evaporation estimation. Five representative alpine meadow sites on the TP were selected to investigate the performance of the modified algorithm. Comparisons were made between the ET observed using the Eddy Covariance (EC) and estimated using both the original and modified algorithms. The results revealed that the modified algorithm performed better than the original MOD16 algorithm with the coefficient of determination (R2) increasing from 0.26 to 0.68, and root mean square error (RMSE) decreasing from 1.56 to 0.78 mm d-1. The modified algorithm performed slightly better with a higher R2 (0.70) and lower RMSE (0.61 mm d-1) for after-precipitation days than for non-precipitation days at Suli site. Contrarily, better results were obtained for non-precipitation days than for after-precipitation days at Arou, Tanggula, and Hulugou sites, indicating that the modified algorithm may be more suitable for estimating ET for non-precipitation days with higher accuracy than for after-precipitation days, which had large observation errors. The comparisons between the modified algorithm and two mainstream methods suggested that the modified algorithm could produce high accuracy ET over the alpine meadow sites on the TP.
A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite
Directory of Open Access Journals (Sweden)
Jong Won Eun
2000-12-01
Full Text Available It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.
Valderrama, Joaquin T.; de la Torre, Angel; Van Dun, Bram
2018-02-01
Objective. Artifact reduction in electroencephalogram (EEG) signals is usually necessary to carry out data analysis appropriately. Despite the large amount of denoising techniques available with a multichannel setup, there is a lack of efficient algorithms that remove (not only detect) blink-artifacts from a single channel EEG, which is of interest in many clinical and research applications. This paper describes and evaluates the iterative template matching and suppression (ITMS), a new method proposed for detecting and suppressing the artifact associated with the blink activity from a single channel EEG. Approach. The approach of ITMS consists of (a) an iterative process in which blink-events are detected and the blink-artifact waveform of the analyzed subject is estimated, (b) generation of a signal modeling the blink-artifact, and (c) suppression of this signal from the raw EEG. The performance of ITMS is compared with the multi-window summation of derivatives within a window (MSDW) technique using both synthesized and real EEG data. Main results. Results suggest that ITMS presents an adequate performance in detecting and suppressing blink-artifacts from a single channel EEG. When applied to the analysis of cortical auditory evoked potentials (CAEPs), ITMS provides a significant quality improvement in the resulting responses, i.e. in a cohort of 30 adults, the mean correlation coefficient improved from 0.37 to 0.65 when the blink-artifacts were detected and suppressed by ITMS. Significance. ITMS is an efficient solution to the problem of denoising blink-artifacts in single-channel EEG applications, both in clinical and research fields. The proposed ITMS algorithm is stable; automatic, since it does not require human intervention; low-invasive, because the EEG segments not contaminated by blink-artifacts remain unaltered; and easy to implement, as can be observed in the Matlab script implemeting the algorithm provided as supporting material.
Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen
2012-10-01
This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.
Directory of Open Access Journals (Sweden)
Iman Yousefi
2015-01-01
Full Text Available This paper presents parameter estimation of Permanent Magnet Synchronous Motor (PMSM using a combinatorial algorithm. Nonlinear fourth-order space state model of PMSM is selected. This model is rewritten to the linear regression form without linearization. Noise is imposed to the system in order to provide a real condition, and then combinatorial Orthogonal Projection Algorithm and Recursive Least Squares (OPA&RLS method is applied in the linear regression form to the system. Results of this method are compared to the Orthogonal Projection Algorithm (OPA and Recursive Least Squares (RLS methods to validate the feasibility of the proposed method. Simulation results validate the efficacy of the proposed algorithm.
Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.
Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo
2016-01-01
In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.
Renewable Energy Power Generation Estimation Using Consensus Algorithm
Ahmad, Jehanzeb; Najm-ul-Islam, M.; Ahmed, Salman
2017-08-01
At the small consumer level, Photo Voltaic (PV) panel based grid tied systems are the most common form of Distributed Energy Resources (DER). Unlike wind which is suitable for only selected locations, PV panels can generate electricity almost anywhere. Pakistan is currently one of the most energy deficient countries in the world. In order to mitigate this shortage the Government has recently announced a policy of net-metering for residential consumers. After wide spread adoption of DERs, one of the issues that will be faced by load management centers would be accurate estimate of the amount of electricity being injected in the grid at any given time through these DERs. This becomes a critical issue once the penetration of DER increases beyond a certain limit. Grid stability and management of harmonics becomes an important consideration where electricity is being injected at the distribution level and through solid state controllers instead of rotating machinery. This paper presents a solution using graph theoretic methods for the estimation of total electricity being injected in the grid in a wide spread geographical area. An agent based consensus approach for distributed computation is being used to provide an estimate under varying generation conditions.
Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison
Directory of Open Access Journals (Sweden)
Olympia Roeva
2005-12-01
Full Text Available In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming problem subject to nonlinear differential-algebraic constraints. This problem is known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based local optimization methods fail to arrive satisfied solutions. To overcome their limitations, the use of different genetic algorithms as stochastic global optimization methods is explored. These algorithms are proved to be very suitable for the optimization of highly non-linear problems with many variables. Genetic algorithms can guarantee global optimality and robustness. These facts make them advantageous in use for parameter identification of fermentation models. A comparison between simple, modified and multi-population genetic algorithms is presented. The best result is obtained using the modified genetic algorithm. The considered algorithms converged very closely to the cost value but the modified algorithm is in times faster than other two.
Experimental Results of Novel DoA Estimation Algorithms for Compact Reconfigurable Antennas
Directory of Open Access Journals (Sweden)
Henna Paaso
2017-01-01
Full Text Available Reconfigurable antenna systems have gained much attention for potential use in the next generation wireless systems. However, conventional direction-of-arrival (DoA estimation algorithms for antenna arrays cannot be used directly in reconfigurable antennas due to different design of the antennas. In this paper, we present an adjacent pattern power ratio (APPR algorithm for two-port composite right/left-handed (CRLH reconfigurable leaky-wave antennas (LWAs. Additionally, we compare the performances of the APPR algorithm and LWA-based MUSIC algorithms. We study how the computational complexity and the performance of the algorithms depend on number of selected radiation patterns. In addition, we evaluate the performance of the APPR and MUSIC algorithms with numerical simulations as well as with real world indoor measurements having both line-of-sight and non-line-of-sight components. Our performance evaluations show that the DoA estimates are in a considerably good agreement with the real DoAs, especially with the APPR algorithm. In summary, the APPR and MUSIC algorithms for DoA estimation along with the planar and compact LWA layout can be a valuable solution to enhance the performance of the wireless communication in the next generation systems.
Channel Equalization and Phase Estimation for Reduced-Guard-Interval CO-OFDM Systems
Zhuge, Qunbi
Reduced-guard-interval (RGI) coherent optical (CO) orthogonal frequency-division multiplexing (OFDM) is a potential candidate for next generation 100G beyond optical transports, attributed to its advantages such as high spectral efficiency and high tolerance to optical channel impairments. First of all, we review the coherent optical systems with an emphasis on CO-OFDM systems as well as the optical channel impairments and the general digital signal processing techniques to combat them. This work focuses on the channel equalization and phase estimation of RGI CO-OFDM systems. We first propose a novel equalization scheme based on the equalization structure of RGI CO-OFDM to reduce the cyclic prefix overhead to zero. Then we show that intra-channel nonlinearities should be considered when designing the training symbols for channel estimation. Afterwards, we propose and analyze the phenomenon of dispersion-enhanced phase noise (DEPN) caused by the interaction between the laser phase noise and the chromatic dispersion in RGI CO-OFDM transmissions. DEPN induces a non-negligible performance degradation and limits the tolerant laser linewidth. However, it can be compensated by the grouped maximum-likelihood phase estimation proposed in this work.
PERFORMANCE ANALYSIS OF PILOT BASED CHANNEL ESTIMATION TECHNIQUES IN MB OFDM SYSTEMS
Directory of Open Access Journals (Sweden)
M. Madheswaran
2011-12-01
Full Text Available Ultra wideband (UWB communication is mainly used for short range of communication in wireless personal area networks. Orthogonal Frequency Division Multiplexing (OFDM is being used as a key physical layer technology for Fourth Generation (4G wireless communication. OFDM based communication gives high spectral efficiency and mitigates Inter-symbol Interference (ISI in a wireless medium. In this paper the IEEE 802.15.3a based Multiband OFDM (MB OFDM system is considered. The pilot based channel estimation techniques are considered to analyze the performance of MB OFDM systems over Liner Time Invariant (LTI Channel models. In this paper, pilot based Least Square (LS and Least Minimum Mean Square Error (LMMSE channel estimation technique has been considered for UWB OFDM system. In the proposed method, the estimated Channel Impulse Responses (CIRs are filtered in the time domain for the consideration of the channel delay spread. Also the performance of proposed system has been analyzed for different modulation techniques for various pilot density patterns.
Khan, Fahd Ahmed
2012-04-01
New coherent receivers are derived for a pilot-symbol-aided distributed space-time block-coded system with imperfect channel state information which do not perform channel estimation at the destination by using the received pilot signals directly for decoding. The derived receivers are based on new metrics that use distribution of the channels and the noise to achieve improved symbol-error-rate (SER) performance. The SER performance of the derived receivers is further improved by utilizing the decision history in the receivers. The decision history is also incorporated in the existing Euclidean metric to improve its performance. Simulation results show that, for 16-quadrature-amplitude-modulation in a Rayleigh fading channel, a performance gain of up to 2.5 dB can be achieved for the new receivers compared with the conventional mismatched coherent receiver. © 2012 IEEE.
Basis expansion model for channel estimation in LTE-R communication system
Directory of Open Access Journals (Sweden)
Ling Deng
2016-05-01
Full Text Available This paper investigates fast time-varying channel estimation in LTE-R communication systems. The Basis Expansion Model (BEM is adopted to fit the fast time-varying channel in a high-speed railway communication scenario. The channel impulse response is modeled as the sum of basis functions multiplied by different coefficients. The optimal coefficients are obtained by theoretical analysis. Simulation results show that a Generalized Complex-Exponential BEM (GCE-BEM outperforms a Complex-Exponential BEM (CE-BEM and a polynomial BEM in terms of Mean Squared Error (MSE. Besides, the MSE of the CE-BEM decreases gradually as the number of basis functions increases. The GCE-BEM has a satisfactory performance with the serious fading channel.
Two-pass imputation algorithm for missing value estimation in gene expression time series.
Tsiporkova, Elena; Boeva, Veselka
2007-10-01
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different
Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wang, Dexin; Yang, Liuqing; Florita, Anthony; Alam, S.M. Shafiul; Elgindy, Tarek; Hodge, Bri-Mathias
2016-08-01
The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the help of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Directory of Open Access Journals (Sweden)
Chih-Feng Chao
2015-01-01
Full Text Available Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
An algorithm to estimate the volume of the thyroid lesions using SPECT
International Nuclear Information System (INIS)
Pina, Jorge Luiz Soares de; Mello, Rossana Corbo de; Rebelo, Ana Maria
2000-01-01
An algorithm was developed to estimate the volume of the thyroid and its functioning lesions, that is, those which capture iodine. This estimate is achieved by the use of SPECT, Single Photon Emission Computed Tomography. The algorithm was written in an extended PASCAL language subset and was accomplished to run on Siemens ICON System, a special Macintosh environment that controls the tomographic image acquisition and processing. In spite of be developed for the Siemens DIACAN gamma camera, the algorithm can be easily adapted for the ECAN camera. These two Cameras models are among the most common ones used in Nuclear Medicine in Brazil Nowadays. A phantom study was used to validate the algorithm that have shown that a threshold of 42% of maximum pixel intensity of the images it is possible to estimate the volume of the phantoms with an error of 10% in the range of 30 to 70 ml. (author)
FPGA based, DSP integrated, 8-channel SIMCON, ver. 3.0. Initial results for 8-channel algorithm
Energy Technology Data Exchange (ETDEWEB)
Giergusiewicz, W.; Koprek, W.; Jalmuzna, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems
2005-07-01
The paper describes design, construction and initial measurements of an eight channel electronic LLRF device predicted for building of the control system for the VUV-FEL accelerator at DESY (Hamburg). The device, referred in the paper to as the SIMCON 3.0 (from the SC cavity simulator and controller) consists of a 16 layer, VME size, PCB, a large FPGA chip (VirtexII-4000 by Xilinx), eight fast ADCs and four DACs (by Analog Devices). To our knowledge, the proposed device is the first of this kind for the accelerator technology in which there was achieved (the FPGA based) DSP latency below 200 ns. With the optimized data transmission system, the overall LLRF system latency can be as low as 500 ns. The SIMCON 3.0 sub-system was applied for initial tests with the ACC1 module of the VUV FEL accelerator (eight channels) and with the CHECHIA test stand (single channel), both at the DESY. The promising results with the SIMCON 3.0. encouraged us to enter the design of SIMCON 3.1. possessing 10 measurement and control channels and some additional features to be reported in the next technical note. SIMCON 3.0. is a modular solution, while SIMCON 3.1. will be an integrated board of the all-in-one type. Two design approaches - modular and all-in-one, after branching off in this version of the Simcon, will be continued. (orig.)
Digital baseline estimation method for multi-channel pulse height analyzing
International Nuclear Information System (INIS)
Xiao Wuyun; Wei Yixiang; Ai Xianyun
2005-01-01
The basic features of digital baseline estimation for multi-channel pulse height analysis are introduced. The weight-function of minimum-noise baseline filter is deduced with functional variational calculus. The frequency response of this filter is also deduced with Fourier transformation, and the influence of parameters on amplitude frequency response characteristics is discussed. With MATLAB software, the noise voltage signal from the charge sensitive preamplifier is simulated, and the processing effect of minimum-noise digital baseline estimation is verified. According to the results of this research, digital baseline estimation method can estimate baseline optimally, and it is very suitable to be used in digital multi-channel pulse height analysis. (authors)
Capacity estimation and verification of quantum channels with arbitrarily correlated errors.
Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie
2018-01-02
The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.
Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.
On the BER and capacity analysis of MIMO MRC systems with channel estimation error
Yang, Liang
2011-10-01
In this paper, we investigate the effect of channel estimation error on the capacity and bit-error rate (BER) of a multiple-input multiple-output (MIMO) transmit maximal ratio transmission (MRT) and receive maximal ratio combining (MRC) systems over uncorrelated Rayleigh fading channels. We first derive the ergodic (average) capacity expressions for such systems when power adaptation is applied at the transmitter. The exact capacity expression for the uniform power allocation case is also presented. Furthermore, to investigate the diversity order of MIMO MRT-MRC scheme, we derive the BER performance under a uniform power allocation policy. We also present an asymptotic BER performance analysis for the MIMO MRT-MRC system with multiuser diversity. The numerical results are given to illustrate the sensitivity of the main performance to the channel estimation error and the tightness of the approximate cutoff value. © 2011 IEEE.
On the BER and capacity analysis of MIMO MRC systems with channel estimation error
Yang, Liang; Alouini, Mohamed-Slim
2011-01-01
In this paper, we investigate the effect of channel estimation error on the capacity and bit-error rate (BER) of a multiple-input multiple-output (MIMO) transmit maximal ratio transmission (MRT) and receive maximal ratio combining (MRC) systems over
DEFF Research Database (Denmark)
Pittalà, Fabio; Msallem, Majdi; Hauske, Fabian N.
2012-01-01
We propose a non-weighted feed-forward equalization method with filter update by averaging channel estimations based on short CAZAC sequences. Three averaging methods are presented and tested by simulations in a time-varying 2×2 MIMO optical system....
Estimation and Mitigation of Channel Non-Reciprocity in Massive MIMO
Raeesi, Orod; Gokceoglu, Ahmet; Valkama, Mikko
2018-05-01
Time-division duplex (TDD) based massive MIMO systems rely on the reciprocity of the wireless propagation channels when calculating the downlink precoders based on uplink pilots. However, the effective uplink and downlink channels incorporating the analog radio front-ends of the base station (BS) and user equipments (UEs) exhibit non-reciprocity due to non-identical behavior of the individual transmit and receive chains. When downlink precoder is not aware of such channel non-reciprocity (NRC), system performance can be significantly degraded due to NRC induced interference terms. In this work, we consider a general TDD-based massive MIMO system where frequency-response mismatches at both the BS and UEs, as well as the mutual coupling mismatch at the BS large-array system all coexist and induce channel NRC. Based on the NRC-impaired signal models, we first propose a novel iterative estimation method for acquiring both the BS and UE side NRC matrices and then also propose a novel NRC-aware downlink precoder design which utilizes the obtained estimates. Furthermore, an efficient pilot signaling scheme between the BS and UEs is introduced in order to facilitate executing the proposed estimation method and the NRC-aware precoding technique in practical systems. Comprehensive numerical results indicate substantially improved spectral efficiency performance when the proposed NRC estimation and NRC-aware precoding methods are adopted, compared to the existing state-of-the-art methods.
Shibli, Hussain J.; Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.
2013-01-01
challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources
Adaptive Variance Scaling in Continuous Multi-Objective Estimation-of-Distribution Algorithms
P.A.N. Bosman (Peter); D. Thierens (Dirk); D. Thierens (Dirk)
2007-01-01
htmlabstractRecent research into single-objective continuous Estimation-of-Distribution Algorithms (EDAs) has shown that when maximum-likelihood estimations are used for parametric distributions such as the normal distribution, the EDA can easily suffer from premature convergence. In this paper we
Comparing algorithms for estimating foliar biomass of conifers in the Pacific Northwest
Crystal L. Raymond; Donald. McKenzie
2013-01-01
Accurate estimates of foliar biomass (FB) are important for quantifying carbon storage in forest ecosystems, but FB is not always reported in regional or national inventories. Foliar biomass also drives key ecological processes in ecosystem models. Published algorithms for estimating FB in conifer species of the Pacific Northwest can yield signifi cantly different...
Low-sampling-rate ultra-wideband channel estimation using a bounded-data-uncertainty approach
Ballal, Tarig
2014-01-01
This paper proposes a low-sampling-rate scheme for ultra-wideband channel estimation. In the proposed scheme, P pulses are transmitted to produce P observations. These observations are exploited to produce channel impulse response estimates at a desired sampling rate, while the ADC operates at a rate that is P times less. To avoid loss of fidelity, the interpulse interval, given in units of sampling periods of the desired rate, is restricted to be co-prime with P. This condition is affected when clock drift is present and the transmitted pulse locations change. To handle this situation and to achieve good performance without using prior information, we derive an improved estimator based on the bounded data uncertainty (BDU) model. This estimator is shown to be related to the Bayesian linear minimum mean squared error (LMMSE) estimator. The performance of the proposed sub-sampling scheme was tested in conjunction with the new estimator. It is shown that high reduction in sampling rate can be achieved. The proposed estimator outperforms the least squares estimator in most cases; while in the high SNR regime, it also outperforms the LMMSE estimator. © 2014 IEEE.
Directory of Open Access Journals (Sweden)
Liangliang Wei
2018-02-01
Full Text Available To effectively de-noise the Gaussian white noise and periodic narrow-band interference in the background noise of partial discharge ultra-high frequency (PD UHF signals in field tests, a novel de-noising method, based on a single-channel blind source separation algorithm, is proposed. Compared with traditional methods, the proposed method can effectively de-noise the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals. Then, the single-channel detected PD signal is converted into multi-channel signals by singular value decomposition (SVD, and background noise is separated from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is estimated and recovered by the l1-norm minimization method. The proposed de-noising method was applied on the simulation test and field test detected signals, and the de-noising performance of the different methods was compared. The simulation and field test results demonstrate the effectiveness and correctness of the proposed method.
Directory of Open Access Journals (Sweden)
Ted W. Sammis
2013-09-01
Full Text Available Net radiation is a key component of the energy balance, whose estimation accuracy has an impact on energy flux estimates from satellite data. In typical remote sensing evapotranspiration (ET algorithms, the outgoing shortwave and longwave components of net radiation are obtained from remote sensing data, while the incoming shortwave (RS and longwave (RL components are typically estimated from weather data using empirical equations. This study evaluates the accuracy of empirical equations commonly used in remote sensing ET algorithms for estimating RS and RL radiation. Evaluation is carried out through comparison of estimates and observations at five sites that represent different climatic regions from humid to arid. Results reveal (1 both RS and RL estimates from all evaluated equations well correlate with observations (R2 ≥ 0.92, (2 RS estimating equations tend to overestimate, especially at higher values, (3 RL estimating equations tend to give more biased values in arid and semi-arid regions, (4 a model that parameterizes the diffuse component of radiation using two clearness indices and a simple model that assumes a linear increase of atmospheric transmissivity with elevation give better RS estimates, and (5 mean relative absolute errors in the net radiation (Rn estimates caused by the use of RS and RL estimating equations varies from 10% to 22%. This study suggests that Rn estimates using recommended incoming radiation estimating equations could improve ET estimates.
Directory of Open Access Journals (Sweden)
Hayley Evers-King
2017-08-01
Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
International Nuclear Information System (INIS)
Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo
2004-01-01
In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)
A Streaming Algorithm for Online Estimation of Temporal and Spatial Extent of Delays
Directory of Open Access Journals (Sweden)
Kittipong Hiriotappa
2017-01-01
Full Text Available Knowing traffic congestion and its impact on travel time in advance is vital for proactive travel planning as well as advanced traffic management. This paper proposes a streaming algorithm to estimate temporal and spatial extent of delays online which can be deployed with roadside sensors. First, the proposed algorithm uses streaming input from individual sensors to detect a deviation from normal traffic patterns, referred to as anomalies, which is used as an early indication of delay occurrence. Then, a group of consecutive sensors that detect anomalies are used to temporally and spatially estimate extent of delay associated with the detected anomalies. Performance evaluations are conducted using a real-world data set collected by roadside sensors in Bangkok, Thailand, and the NGSIM data set collected in California, USA. Using NGSIM data, it is shown qualitatively that the proposed algorithm can detect consecutive occurrences of shockwaves and estimate their associated delays. Then, using a data set from Thailand, it is shown quantitatively that the proposed algorithm can detect and estimate delays associated with both recurring congestion and incident-induced nonrecurring congestion. The proposed algorithm also outperforms the previously proposed streaming algorithm.
Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.
2013-01-01
We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.
Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika
2014-01-01
Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
International Nuclear Information System (INIS)
Zheng Hong; Liu Xu; Wei Min
2015-01-01
In order to improve the accuracy of the battery state of charge (SOC) estimation, in this paper we take a lithium-ion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate. Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. (paper)
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Estimating the chance of success in IVF treatment using a ranking algorithm.
Güvenir, H Altay; Misirli, Gizem; Dilbaz, Serdar; Ozdegirmenci, Ozlem; Demir, Berfu; Dilbaz, Berna
2015-09-01
In medicine, estimating the chance of success for treatment is important in deciding whether to begin the treatment or not. This paper focuses on the domain of in vitro fertilization (IVF), where estimating the outcome of a treatment is very crucial in the decision to proceed with treatment for both the clinicians and the infertile couples. IVF treatment is a stressful and costly process. It is very stressful for couples who want to have a baby. If an initial evaluation indicates a low pregnancy rate, decision of the couple may change not to start the IVF treatment. The aim of this study is twofold, firstly, to develop a technique that can be used to estimate the chance of success for a couple who wants to have a baby and secondly, to determine the attributes and their particular values affecting the outcome in IVF treatment. We propose a new technique, called success estimation using a ranking algorithm (SERA), for estimating the success of a treatment using a ranking-based algorithm. The particular ranking algorithm used here is RIMARC. The performance of the new algorithm is compared with two well-known algorithms that assign class probabilities to query instances. The algorithms used in the comparison are Naïve Bayes Classifier and Random Forest. The comparison is done in terms of area under the ROC curve, accuracy and execution time, using tenfold stratified cross-validation. The results indicate that the proposed SERA algorithm has a potential to be used successfully to estimate the probability of success in medical treatment.
Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid
2017-10-01
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
Directory of Open Access Journals (Sweden)
Petrella Angelo
2010-01-01
Full Text Available The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM systems based on offset quadrature amplitude modulation (OQAM in multipath channels is considered. In particular, the joint maximum-likelihood (ML estimator for carrier-frequency offset (CFO, amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite
Jong Won Eun
2000-01-01
It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifet...
Sparse Channel Estimation Including the Impact of the Transceiver Filters with Application to OFDM
DEFF Research Database (Denmark)
Barbu, Oana-Elena; Pedersen, Niels Lovmand; Manchón, Carles Navarro
2014-01-01
Traditionally, the dictionary matrices used in sparse wireless channel estimation have been based on the discrete Fourier transform, following the assumption that the channel frequency response (CFR) can be approximated as a linear combination of a small number of multipath components, each one......) and receive (demodulation) filters. Hence, the assumption of the CFR being sparse in the canonical Fourier dictionary may no longer hold. In this work, we derive a signal model and subsequently a novel dictionary matrix for sparse estimation that account for the impact of transceiver filters. Numerical...... results obtained in an OFDM transmission scenario demonstrate the superior accuracy of a sparse estimator that uses our proposed dictionary rather than the classical Fourier dictionary, and its robustness against a mismatch in the assumed transmit filter characteristics....
Directory of Open Access Journals (Sweden)
V. Jayaraj
2010-08-01
Full Text Available A Non-linear adaptive decision based algorithm with robust motion estimation technique is proposed for removal of impulse noise, Gaussian noise and mixed noise (impulse and Gaussian with edge and fine detail preservation in images and videos. The algorithm includes detection of corrupted pixels and the estimation of values for replacing the corrupted pixels. The main advantage of the proposed algorithm is that an appropriate filter is used for replacing the corrupted pixel based on the estimation of the noise variance present in the filtering window. This leads to reduced blurring and better fine detail preservation even at the high mixed noise density. It performs both spatial and temporal filtering for removal of the noises in the filter window of the videos. The Improved Cross Diamond Search Motion Estimation technique uses Least Median Square as a cost function, which shows improved performance than other motion estimation techniques with existing cost functions. The results show that the proposed algorithm outperforms the other algorithms in the visual point of view and in Peak Signal to Noise Ratio, Mean Square Error and Image Enhancement Factor.
Extended reactance domain algorithms for DoA estimation onto an ESPAR antennas
Harabi, F.; Akkar, S.; Gharsallah, A.
2016-07-01
Based on an extended reactance domain (RD) covariance matrix, this article proposes new alternatives for directions of arrival (DoAs) estimation of narrowband sources through an electronically steerable parasitic array radiator (ESPAR) antennas. Because of the centro symmetry of the classic ESPAR antennas, an unitary transformation is applied to the collected data that allow an important reduction in both computational cost and processing time and, also, an enhancement of the resolution capabilities of the proposed algorithms. Moreover, this article proposes a new approach for eigenvalues estimation through only some linear operations. The developed DoAs estimation algorithms based on this new approach has illustrated a good behaviour with less calculation cost and processing time as compared to other schemes based on the classic eigenvalues approach. The conducted simulations demonstrate that high-precision and high-resolution DoAs estimation can be reached especially in very closely sources situation and low sources power as compared to the RD-MUSIC algorithm and the RD-PM algorithm. The asymptotic behaviours of the proposed DoAs estimators are analysed in various scenarios and compared with the Cramer-Rao bound (CRB). The conducted simulations testify the high-resolution of the developed algorithms and prove the efficiently of the proposed approach.
Extended Kalman Filter Channel Estimation for Line-of-Sight Detection in WCDMA Mobile Positioning
Directory of Open Access Journals (Sweden)
Abdelmonaem Lakhzouri
2003-12-01
Full Text Available In mobile positioning, it is very important to estimate correctly the delay between the transmitter and the receiver. When the receiver is in line-of-sight (LOS condition with the transmitter, the computation of the mobile position in two dimensions becomes straightforward. In this paper, the problem of LOS detection in WCDMA for mobile positioning is considered, together with joint estimation of the delays and channel coefficients. These are very challenging topics in multipath fading channels because LOS component is not always present, and when it is present, it might be severely affected by interfering paths spaced at less than one chip distance (closely spaced paths. The extended Kalman filter (EKF is used to estimate jointly the delays and complex channel coefficients. The decision whether the LOS component is present or not is based on statistical tests to determine the distribution of the channel coefficient corresponding to the first path. The statistical test-based techniques are practical, simple, and of low computation complexity, which is suitable for WCDMA receivers. These techniques can provide an accurate decision whether LOS component is present or not.
MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.
2017-01-01
This paper presents a brief synthesis and useful performance analysis of different attitude filtering algorithms (attitude determination algorithms, attitude estimation algorithms, and nonlinear observers) applied to Low Earth Orbit Satellite in terms of accuracy, convergence time, amount of memory, and computation time. This latter is calculated in two ways, using a personal computer and also using On-board computer 750 (OBC 750) that is being used in many SSTL Earth observation missions. The use of this comparative study could be an aided design tool to the designer to choose from an attitude determination or attitude estimation or attitude observer algorithms. The simulation results clearly indicate that the nonlinear Observer is the more logical choice.
An algorithm for 3D target scatterer feature estimation from sparse SAR apertures
Jackson, Julie Ann; Moses, Randolph L.
2009-05-01
We present an algorithm for extracting 3D canonical scattering features from complex targets observed over sparse 3D SAR apertures. The algorithm begins with complex phase history data and ends with a set of geometrical features describing the scene. The algorithm provides a pragmatic approach to initialization of a nonlinear feature estimation scheme, using regularization methods to deconvolve the point spread function and obtain sparse 3D images. Regions of high energy are detected in the sparse images, providing location initializations for scattering center estimates. A single canonical scattering feature, corresponding to a geometric shape primitive, is fit to each region via nonlinear optimization of fit error between the regularized data and parametric canonical scattering models. Results of the algorithm are presented using 3D scattering prediction data of a simple scene for both a densely-sampled and a sparsely-sampled SAR measurement aperture.
State estimation and synchronization of pendula systems over digital communication channels
Fradkov, A. L.; Andrievsky, B.; Ananyevskiy, M.
2014-04-01
The recent results on nonlinear systems synchronization and control under communication constraints are applied to the remote state estimation and synchronization for a class of exogenously excited nonlinear Lurie systems. State estimation of the chain of diffusively coupled pendulums over the digital communication channel with limited capacity is experimentally studied. Advantage of the adaptive coding procedure under the conditions of the plant model uncertainty and irregular disturbances is shown. Quality of the estimation is evaluated by means of the experiments with the multi-pendulum set-up. Experimental study of master-slave synchronization over network (local network, wireless network) for the system with two cart-pendulums is presented.
Energy Technology Data Exchange (ETDEWEB)
Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Sinyavin, D N; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)
2014-11-30
A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)
Directory of Open Access Journals (Sweden)
O.V. Kostyrka
2016-09-01
Full Text Available At the organization of a covert communication channel a number of requirements are imposed on used steganography algorithms among which one of the main are: resistance to attacks against the built-in message, reliability of perception of formed steganography message, significant throughput of a steganography communication channel. Aim: The aim of this research is to modify the steganography method, developed by the author earlier, which will allow to increase the throughput of the corresponding covert communication channel when saving resistance to attacks against the built-in message and perception reliability of the created steganography message, inherent to developed method. Materials and Methods: Modifications of a steganography method that is steady against attacks against the built-in message which is carrying out the inclusion and decoding of the sent (additional information in spatial domain of the image allowing to increase the throughput of the organized communication channel are offered. Use of spatial domain of the image allows to avoid accumulation of an additional computational error during the inclusion/decoding of additional information due to “transitions” from spatial domain of the image to the area of conversion and back that positively affects the efficiency of decoding. Such methods are considered as attacks against the built-in message: imposing of different noise on a steganography message, filtering, lossy compression of a ste-ganography message where the JPEG and JPEG2000 formats with different quality coefficients for saving of a steganography message are used. Results: It is shown that algorithmic implementations of the offered methods modifications remain steady against the perturbing influences, including considerable, provide reliability of perception of the created steganography message, increase the throughput of the created steganography communication channel in comparison with the algorithm implementing
International Nuclear Information System (INIS)
Lee, Jung Uk; Sun, Ju Young; Won, Mooncheol
2013-01-01
In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ∼ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung Uk [Samsung Electroics, Suwon (Korea, Republic of); Sun, Ju Young; Won, Mooncheol [Chungnam Nat' l Univ., Daejeon (Korea, Republic of)
2013-12-15
In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ∼ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner.
Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun
2018-03-01
Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.
Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui
2017-07-01
Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.
International Nuclear Information System (INIS)
Singh, Sonveer; Agrawal, Sanjay
2016-01-01
Highlights: • Thermal modeling of novel dual channel semitransparent photovoltaic thermal hybrid module. • Efficiency maximization and performance evaluation of dual channel photovoltaic thermal module. • Annual performance has been evaluated for Srinagar, Jodhpur, Bangalore and New Delhi (India). • There are improvements in results for optimized system as compared to un-optimized system. - Abstract: The work has been carried out in two steps; firstly the parameters of hybrid dual channel semitransparent photovoltaic thermal module has been optimized using a fuzzyfied genetic algorithm. During the course of optimization, overall exergy efficiency is considered as an objective function and different design parameters of the proposed module have been optimized. Fuzzy controller is used to improve the performance of genetic algorithms and the approach is called as a fuzzyfied genetic algorithm. In the second step, the performance of the module has been analyzed for four cities of India such as Srinagar, Bangalore, Jodhpur and New Delhi. The performance of the module has been evaluated for daytime 08:00 AM to 05:00 PM and annually from January to December. It is to be noted that, an average improvement occurs in electrical efficiency of the optimized module, simultaneously there is also a reduction in solar cell temperature as compared to un-optimized module.
Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.
Energy Technology Data Exchange (ETDEWEB)
Matulef, Kevin Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-02-01
The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewer resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.
Group-SMA Algorithm Based Joint Estimation of Train Parameter and State
Directory of Open Access Journals (Sweden)
Wei Zheng
2015-03-01
Full Text Available The braking rate and train arresting operation is important in the train braking performance. It is difficult to obtain the states of the train on time because of the measurement noise and a long calculation time. A type of Group Stochastic M-algorithm (GSMA based on Rao-Blackwellization Particle Filter (RBPF algorithm and Stochastic M-algorithm (SMA is proposed in this paper. Compared with RBPF, GSMA based estimation precisions for the train braking rate and the control accelerations were improved by 78% and 62%, respectively. The calculation time of the GSMA was decreased by 70% compared with SMA.
Directory of Open Access Journals (Sweden)
Kaifeng Yang
2014-01-01
Full Text Available A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics.
Yang, Kaifeng; Mu, Li; Yang, Dongdong; Zou, Feng; Wang, Lei; Jiang, Qiaoyong
2014-01-01
A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics.
Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
International Nuclear Information System (INIS)
Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.
2016-01-01
A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.
Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
Energy Technology Data Exchange (ETDEWEB)
Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.
2016-03-11
A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.
Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences
Directory of Open Access Journals (Sweden)
Guo Bao-long
2004-09-01
Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.
Multiple estimation channel decoupling and optimization method based on inverse system
Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng
2018-03-01
This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.
Estimation of Channel-Forming Discharge and Large-Event Geomorphic Response Using HEC-RAS
Hamilton, P.; Strom, K.; Hosseiny, S. M. H.
2015-12-01
The goal of the present work was to consider the functionality and applicability of HEC-RAS sediment transport simulations in two situations. The first was as a mode for obtaining quick estimates of the effective discharge, one measure of channel-forming discharge, and the second was as a mode to quickly estimate sediment transport and the commensurate potential erosion and deposition during large flood events. Though there are many other sediment transport and morphodynamic models available, e.g., CCHE1D, Nays2DH, we were interested in using HEC-RAS since this is the model of choice for many regulatory bodies, e.g., FEMA, cities, and counties. This makes using the sediment transport capability of HEC-RAS a natural extension of models that already otherwise exist and are well calibrated. In first looking at the utility of these models, we wanted to estimate the effective discharge of streams. Effective discharge is one way of defining the channel-forming discharge for a stream and is therefore an important parameter in natural channel design and restoration efforts. By running this range of floods, one can easily obtain an estimate for recurrence interval most responsible for moving the majority of sediment over a long time period. Results were compared to data collected within our research group on the Brazos River (TX). Effective discharge is an important estimate, particularly in understanding the equilibrium channel condition. Nevertheless, large floods are contemporaneously catastrophic and understanding their potential effects is desirable. Finally, we performed some sensitivity analysis to better understand the underlying assumptions of the various sediment transport model options and how they might affect the outcome of the aforementioned computations.
Aniba, Ghassane
2011-04-01
This paper presents an optimal adaptive modulation (AM) algorithm designed using a cross-layer approach which combines truncated automatic repeat request (ARQ) protocol and packet combining. Transmissions are performed over multiple-input multiple-output (MIMO) Nakagami fading channels, and retransmitted packets are not necessarily modulated using the same modulation format as in the initial transmission. Compared to traditional approach, cross-layer design based on the coupling across the physical and link layers, has proven to yield better performance in wireless communications. However, there is a lack for the performance analysis and evaluation of such design when the ARQ protocol is used in conjunction with packet combining. Indeed, previous works addressed the link layer performance of AM with truncated ARQ but without packet combining. In addition, previously proposed AM algorithms are not optimal and can provide poor performance when packet combining is implemented. Herein, we first show that the packet loss rate (PLR) resulting from the combining of packets modulated with different constellations can be well approximated by an exponential function. This model is then used in the design of an optimal AM algorithm for systems employing packet combining, truncated ARQ and MIMO antenna configurations, considering transmission over Nakagami fading channels. Numerical results are provided for operation with or without packet combining, and show the enhanced performance and efficiency of the proposed algorithm in comparison with existing ones. © 2011 IEEE.
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2017-06-01
Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.
Vilnrotter, V. A.; Rodemich, E. R.
1994-01-01
An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2014-01-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model
Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation
Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.
2016-05-01
Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.
Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
International Nuclear Information System (INIS)
Oliva, Diego; Abd El Aziz, Mohamed; Ella Hassanien, Aboul
2017-01-01
Highlights: •We modify the whale algorithm using chaotic maps. •We apply a chaotic algorithm to estimate parameter of photovoltaic cells. •We perform a study of chaos in whale algorithm. •Several comparisons and metrics support the experimental results. •We test the method with data from real solar cells. -- Abstract: The using of solar energy has been increased since it is a clean source of energy. In this way, the design of photovoltaic cells has attracted the attention of researchers over the world. There are two main problems in this field: having a useful model to characterize the solar cells and the absence of data about photovoltaic cells. This situation even affects the performance of the photovoltaic modules (panels). The characteristics of the current vs. voltage are used to describe the behavior of solar cells. Considering such values, the design problem involves the solution of the complex non-linear and multi-modal objective functions. Different algorithms have been proposed to identify the parameters of the photovoltaic cells and panels. Most of them commonly fail in finding the optimal solutions. This paper proposes the Chaotic Whale Optimization Algorithm (CWOA) for the parameters estimation of solar cells. The main advantage of the proposed approach is using the chaotic maps to compute and automatically adapt the internal parameters of the optimization algorithm. This situation is beneficial in complex problems, because along the iterative process, the proposed algorithm improves their capabilities to search for the best solution. The modified method is able to optimize complex and multimodal objective functions. For example, the function for the estimation of parameters of solar cells. To illustrate the capabilities of the proposed algorithm in the solar cell design, it is compared with other optimization methods over different datasets. Moreover, the experimental results support the improved performance of the proposed approach
Genetic algorithm-based improved DOA estimation using fourth-order cumulants
Ahmed, Ammar; Tufail, Muhammad
2017-05-01
Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.
Pandey, Praveen; De Ridder, Koen; van Looy, Stijn; van Lipzig, Nicole
2010-05-01
Clouds play an important role in Earth's climate system. As they affect radiation hence photolysis rate coefficients (ozone formation),they also affect the air quality at the surface of the earth. Thus, a satellite remote sensing technique is used to retrieve the cloud properties for air quality research. The geostationary satellite, Meteosat Second Generation (MSG) has onboard, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The channels in the wavelength 0.6 µm and 1.64 µm are used to retrieve cloud optical thickness (COT). The study domain is over Europe covering a region between 35°N-70°N and 5°W-30°E, centred over Belgium. The steps involved in pre-processing the EUMETSAT level 1.5 images are described, which includes, acquisition of digital count number, radiometric conversion using offsets and slopes, estimation of radiance and calculation of reflectance. The Sun-earth-satellite geometry also plays an important role. A semi-analytical cloud retrieval algorithm (Kokhanovsky et al., 2003) is implemented for the estimation of COT. This approach doesn't involve the conventional look-up table approach, hence it makes the retrieval independent of numerical radiative transfer solutions. The semi-analytical algorithm is implemented on a monthly dataset of SEVIRI level 1.5 images. Minimum reflectance in the visible channel, at each pixel, during the month is accounted as the surface albedo of the pixel. Thus, monthly variation of COT over the study domain is prepared. The result so obtained, is compared with the COT products of Satellite Application Facility on Climate Monitoring (CM SAF). Henceforth, an approach to assimilate the COT for air quality research is presented. Address of corresponding author: Praveen Pandey, VITO- Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium E-mail: praveen.pandey@vito.be
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S
2005-05-15
Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Directory of Open Access Journals (Sweden)
Qingyang Xu
2014-01-01
Full Text Available Estimation of distribution algorithm (EDA is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
Optimal Superimposed Training Sequences for Channel Estimation in MIMO-OFDM Systems
Directory of Open Access Journals (Sweden)
Ratnam V. Raja Kumar
2010-01-01
Full Text Available In this work an iterative time domain Least Squares (LS based channel estimation method using superimposed training (ST for a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system over time varying frequency selective fading channels is proposed. The performance of the channel estimator is analyzed in terms of the Mean Square Estimation Error (MSEE and its impact on the uncoded Bit Error Rate (BER of the MIMO-OFDM system is studied. A new selection criterion for the training sequences that jointly optimizes the MSEE and the BER of the OFDM system is proposed. Chirp based sequences are proposed and shown to satisfy the same. These are compared with the other sequences proposed in the literature and are found to yield a superior performance. The sequences, one for each transmitting antenna, offers fairness through providing equal interference in all the data carriers unlike earlier proposals. The effectiveness of the mathematical analysis presented is demonstrated through a comparison with the simulation studies. Experimental studies are carried out to study and validate the improved performance of the proposed scheme. The scheme is applied to the IEEE 802.16e OFDM standard and a case is made with the required design of the sequence.
Comparison Study on the Battery SoC Estimation with EKF and UKF Algorithms
Directory of Open Access Journals (Sweden)
Hongwen He
2013-09-01
Full Text Available The battery state of charge (SoC, whose estimation is one of the basic functions of battery management system (BMS, is a vital input parameter in the energy management and power distribution control of electric vehicles (EVs. In this paper, two methods based on an extended Kalman filter (EKF and unscented Kalman filter (UKF, respectively, are proposed to estimate the SoC of a lithium-ion battery used in EVs. The lithium-ion battery is modeled with the Thevenin model and the model parameters are identified based on experimental data and validated with the Beijing Driving Cycle. Then space equations used for SoC estimation are established. The SoC estimation results with EKF and UKF are compared in aspects of accuracy and convergence. It is concluded that the two algorithms both perform well, while the UKF algorithm is much better with a faster convergence ability and a higher accuracy.
A New Missing Values Estimation Algorithm in Wireless Sensor Networks Based on Convolution
Directory of Open Access Journals (Sweden)
Feng Liu
2013-04-01
Full Text Available Nowadays, with the rapid development of Internet of Things (IoT applications, data missing phenomenon becomes very common in wireless sensor networks. This problem can greatly and directly threaten the stability and usability of the Internet of things applications which are constructed based on wireless sensor networks. How to estimate the missing value has attracted wide interest, and some solutions have been proposed. Different with the previous works, in this paper, we proposed a new convolution based missing value estimation algorithm. The convolution theory, which is usually used in the area of signal and image processing, can also be a practical and efficient way to estimate the missing sensor data. The results show that the proposed algorithm in this paper is practical and effective, and can estimate the missing value accurately.
A physics-based algorithm for the estimation of bearing spall width using vibrations
Kogan, G.; Klein, R.; Bortman, J.
2018-05-01
Evaluation of the damage severity in a mechanical system is required for the assessment of its remaining useful life. In rotating machines, bearings are crucial components. Hence, the estimation of the size of spalls in bearings is important for prognostics of the remaining useful life. Recently, this topic has been extensively studied and many of the methods used for the estimation of spall size are based on the analysis of vibrations. A new tool is proposed in the current study for the estimation of the spall width on the outer ring raceway of a rolling element bearing. The understanding and analysis of the dynamics of the rolling element-spall interaction enabled the development of a generic and autonomous algorithm. The algorithm is generic in the sense that it does not require any human interference to make adjustments for each case. All of the algorithm's parameters are defined by analytical expressions describing the dynamics of the system. The required conditions, such as sampling rate, spall width and depth, defining the feasible region of such algorithms, are analyzed in the paper. The algorithm performance was demonstrated with experimental data for different spall widths.
Tan, Jun; Nie, Zaiping
2018-05-12
Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.
Directory of Open Access Journals (Sweden)
Stefan Berger
2010-01-01
Full Text Available Channel estimation protocols for wireless two-hop networks with amplify-and-forward (AF relays are compared. We consider multiuser relaying networks, where the gain factors are chosen such that the signals from all relays add up coherently at the destinations. While the destinations require channel knowledge in order to decode, our focus lies on the channel estimates that are used to calculate the relay gains. Since knowledge of the compound two-hop channels is generally not sufficient to do this, the protocols considered here measure all single-hop coefficients in the network. We start from the observation that the direction in which the channels are measured determines (1 the number of channel uses required to estimate all coefficient and (2 the need for global carrier phase reference. Four protocols are identified that differ in the direction in which the first-hop and the second-hop channels are measured. We derive a sensible measure for the accuracy of the channel estimates in the presence of additive noise and phase noise and compare the protocols based on this measure. Finally, we provide a quantitative performance comparison for a simple single-user application example. It is important to note that the results can be used to compare the channel estimation protocols for any two-hop network configuration and gain allocation scheme.
Performance comparison of extracellular spike sorting algorithms for single-channel recordings.
Wild, Jiri; Prekopcsak, Zoltan; Sieger, Tomas; Novak, Daniel; Jech, Robert
2012-01-30
Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (psorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (palgorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Dessì, Alessia; Pani, Danilo; Raffo, Luigi
2014-01-01
Non-invasive fetal electrocardiography is still an open research issue. The recent publication of an annotated dataset on Physionet providing four-channel non-invasive abdominal ECG traces promoted an international challenge on the topic. Starting from that dataset, an algorithm for the identification of the fetal QRS complexes from a reduced number of electrodes and without any a priori information about the electrode positioning has been developed, entering into the top ten best-performing open-source algorithms presented at the challenge. In this paper, an improved version of that algorithm is presented and evaluated exploiting the same challenge metrics. It is mainly based on the subtraction of the maternal QRS complexes in every lead, obtained by synchronized averaging of morphologically similar complexes, the filtering of the maternal P and T waves and the enhancement of the fetal QRS through independent component analysis (ICA) applied on the processed signals before a final fetal QRS detection stage. The RR time series of both the mother and the fetus are analyzed to enhance pseudoperiodicity with the aim of correcting wrong annotations. The algorithm has been designed and extensively evaluated on the open dataset A (N = 75), and finally evaluated on datasets B (N = 100) and C (N = 272) to have the mean scores over data not used during the algorithm development. Compared to the results achieved by the previous version of the algorithm, the current version would mark the 5th and 4th position in the final ranking related to the events 1 and 2, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. On dataset A, the algorithm achieves 0.982 median sensitivity and 0.976 median positive predictivity. (paper)
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
Directory of Open Access Journals (Sweden)
MILIVOJEVIC, Z. N.
2010-02-01
Full Text Available In this paper the fundamental frequency estimation results of the MP3 modeled speech signal are analyzed. The estimation of the fundamental frequency was performed by the Picking-Peaks algorithm with the implemented Parametric Cubic Convolution (PCC interpolation. The efficiency of PCC was tested for Catmull-Rom, Greville and Greville two-parametric kernel. Depending on MSE, a window that gives optimal results was chosen.
Research of Subgraph Estimation Page Rank Algorithm for Web Page Rank
Directory of Open Access Journals (Sweden)
LI Lan-yin
2017-04-01
Full Text Available The traditional PageRank algorithm can not efficiently perform large data Webpage scheduling problem. This paper proposes an accelerated algorithm named topK-Rank，which is based on PageRank on the MapReduce platform. It can find top k nodes efficiently for a given graph without sacrificing accuracy. In order to identify top k nodes，topK-Rank algorithm prunes unnecessary nodes and edges in each iteration to dynamically construct subgraphs，and iteratively estimates lower/upper bounds of PageRank scores through subgraphs. Theoretical analysis shows that this method guarantees result exactness. Experiments show that topK-Rank algorithm can find k nodes much faster than the existing approaches.
Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm.
Yu, Feng; Mao, Zhizhong; Yuan, Ping; He, Dakuo; Jia, Mingxing
2017-09-01
This paper focuses on the recursive parameter estimation for the single input single output Hammerstein-Wiener system model, and the study is then extended to a rarely mentioned multiple input single output Hammerstein-Wiener system. Inspired by the extended Kalman filter algorithm, two basic recursive algorithms are derived from the first and the second order Taylor approximation. Based on the form of the first order approximation algorithm, a modified algorithm with larger parameter convergence domain is proposed to cope with the problem of small parameter convergence domain of the first order one and the application limit of the second order one. The validity of the modification on the expansion of convergence domain is shown from the convergence analysis and is demonstrated with two simulation cases. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-User Identification-Based Eye-Tracking Algorithm Using Position Estimation
Directory of Open Access Journals (Sweden)
Suk-Ju Kang
2016-12-01
Full Text Available This paper proposes a new multi-user eye-tracking algorithm using position estimation. Conventional eye-tracking algorithms are typically suitable only for a single user, and thereby cannot be used for a multi-user system. Even though they can be used to track the eyes of multiple users, their detection accuracy is low and they cannot identify multiple users individually. The proposed algorithm solves these problems and enhances the detection accuracy. Specifically, the proposed algorithm adopts a classifier to detect faces for the red, green, and blue (RGB and depth images. Then, it calculates features based on the histogram of the oriented gradient for the detected facial region to identify multiple users, and selects the template that best matches the users from a pre-determined face database. Finally, the proposed algorithm extracts the final eye positions based on anatomical proportions. Simulation results show that the proposed algorithm improved the average F1 score by up to 0.490, compared with benchmark algorithms.
Estimating the Partition Function Zeros by Using the Wang-Landau Monte Carlo Algorithm
Energy Technology Data Exchange (ETDEWEB)
Kim, Seung-Yeon [Korea National University of Transportation, Chungju (Korea, Republic of)
2017-03-15
The concept of the partition function zeros is one of the most efficient methods for investigating the phase transitions and the critical phenomena in various physical systems. Estimating the partition function zeros requires information on the density of states Ω(E) as a function of the energy E. Currently, the Wang-Landau Monte Carlo algorithm is one of the best methods for calculating Ω(E). The partition function zeros in the complex temperature plane of the Ising model on an L × L square lattice (L = 10 ∼ 80) with a periodic boundary condition have been estimated by using the Wang-Landau Monte Carlo algorithm. The efficiency of the Wang-Landau Monte Carlo algorithm and the accuracies of the partition function zeros have been evaluated for three different, 5%, 10%, and 20%, flatness criteria for the histogram H(E).
A simple algorithm for estimation of source-to-detector distance in Compton imaging
International Nuclear Information System (INIS)
Rawool-Sullivan, Mohini W.; Sullivan, John P.; Tornga, Shawn R.; Brumby, Steven P.
2008-01-01
Compton imaging is used to predict the location of gamma-emitting radiation sources. The X and Y coordinates of the source can be obtained using a back-projected image and a two-dimensional peak-finding algorithm. The emphasis of this work is to estimate the source-to-detector distance (Z). The algorithm presented uses the solid angle subtended by the reconstructed image at various source-to-detector distances. This algorithm was validated using both measured data from the prototype Compton imager (PCI) constructed at the Los Alamos National Laboratory and simulated data of the same imager. Results show this method can be applied successfully to estimate Z, and it provides a way of determining Z without prior knowledge of the source location. This method is faster than the methods that employ maximum likelihood method because it is based on simple back projections of Compton scatter data
Shao, Zhongshi; Pi, Dechang; Shao, Weishi
2017-11-01
This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.
Directory of Open Access Journals (Sweden)
Yu Huang
Full Text Available Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.
An Efficient Code-Timing Estimator for DS-CDMA Systems over Resolvable Multipath Channels
Directory of Open Access Journals (Sweden)
Jian Li
2005-04-01
Full Text Available We consider the problem of training-based code-timing estimation for the asynchronous direct-sequence code-division multiple-access (DS-CDMA system. We propose a modified large-sample maximum-likelihood (MLSML estimator that can be used for the code-timing estimation for the DS-CDMA systems over the resolvable multipath channels in closed form. Simulation results show that MLSML can be used to provide a high correct acquisition probability and a high estimation accuracy. Simulation results also show that MLSML can have very good near-far resistant capability due to employing a data model similar to that for adaptive array processing where strong interferences can be suppressed.
A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain
Directory of Open Access Journals (Sweden)
Ibn-Elhaj E
2009-01-01
Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.
A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain
Directory of Open Access Journals (Sweden)
E. M. Ismaili Aalaoui
2009-02-01
Full Text Available Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus, in the case of the image sequences are severely corrupted by additive Gaussian (perhaps non-Gaussian noises of unknown covariance, the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper, we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms; this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation, we used the database freely available on the web.
Directory of Open Access Journals (Sweden)
Apurva Samdurkar
2018-06-01
Full Text Available Object tracking is one of the main fields within computer vision. Amongst various methods/ approaches for object detection and tracking, the background subtraction approach makes the detection of object easier. To the detected object, apply the proposed block matching algorithm for generating the motion vectors. The existing diamond search (DS and cross diamond search algorithms (CDS are studied and experiments are carried out on various standard video data sets and user defined data sets. Based on the study and analysis of these two existing algorithms a modified diamond search pattern (MDS algorithm is proposed using small diamond shape search pattern in initial step and large diamond shape (LDS in further steps for motion estimation. The initial search pattern consists of five points in small diamond shape pattern and gradually grows into a large diamond shape pattern, based on the point with minimum cost function. The algorithm ends with the small shape pattern at last. The proposed MDS algorithm finds the smaller motion vectors and fewer searching points than the existing DS and CDS algorithms. Further, object detection is carried out by using background subtraction approach and finally, MDS motion estimation algorithm is used for tracking the object in color video sequences. The experiments are carried out by using different video data sets containing a single object. The results are evaluated and compared by using the evaluation parameters like average searching points per frame and average computational time per frame. The experimental results show that the MDS performs better than DS and CDS on average search point and average computation time.
Directory of Open Access Journals (Sweden)
Pengfei Sun
Full Text Available Pose estimation aims at measuring the position and orientation of a calibrated camera using known image features. The pinhole model is the dominant camera model in this field. However, the imaging precision of this model is not accurate enough for an advanced pose estimation algorithm. In this paper, a new camera model, called incident ray tracking model, is introduced. More importantly, an advanced pose estimation algorithm based on the perspective ray in the new camera model, is proposed. The perspective ray, determined by two positioning points, is an abstract mathematical equivalent of the incident ray. In the proposed pose estimation algorithm, called perspective-ray-based scaled orthographic projection with iteration (PRSOI, an approximate ray-based projection is calculated by a linear system and refined by iteration. Experiments on the PRSOI have been conducted, and the results demonstrate that it is of high accuracy in the six degrees of freedom (DOF motion. And it outperforms three other state-of-the-art algorithms in terms of accuracy during the contrast experiment.
Wang, Rongxiao; Chen, B.; Qiu, S.; Ma, Liang; Zhu, Zhengqiu; Wang, Yiping; Qiu, Xiaogang
2018-01-01
Locating and quantifying the emission source plays a significant role in the emergency management of hazardous gas leak accidents. Due to the lack of a desirable atmospheric dispersion model, current source estimation algorithms cannot meet the requirements of both accuracy and efficiency. In
3D head pose estimation and tracking using particle filtering and ICP algorithm
Ben Ghorbel, Mahdi; Baklouti, Malek; Couvet, Serge
2010-01-01
This paper addresses the issue of 3D head pose estimation and tracking. Existing approaches generally need huge database, training procedure, manual initialization or use face feature extraction manually extracted. We propose a framework for estimating the 3D head pose in its fine level and tracking it continuously across multiple Degrees of Freedom (DOF) based on ICP and particle filtering. We propose to approach the problem, using 3D computational techniques, by aligning a face model to the 3D dense estimation computed by a stereo vision method, and propose a particle filter algorithm to refine and track the posteriori estimate of the position of the face. This work comes with two contributions: the first concerns the alignment part where we propose an extended ICP algorithm using an anisotropic scale transformation. The second contribution concerns the tracking part. We propose the use of the particle filtering algorithm and propose to constrain the search space using ICP algorithm in the propagation step. The results show that the system is able to fit and track the head properly, and keeps accurate the results on new individuals without a manual adaptation or training. © Springer-Verlag Berlin Heidelberg 2010.
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Compression and channel-coding algorithms for high-definition television signals
Alparone, Luciano; Benelli, Giuliano; Fabbri, A. F.
1990-09-01
In this paper results of investigations about the effects of channel errors in the transmission of images compressed by means of techniques based on Discrete Cosine Transform (DOT) and Vector Quantization (VQ) are presented. Since compressed images are heavily degraded by noise in the transmission channel more seriously for what concern VQ-coded images theoretical studies and simulations are presented in order to define and evaluate this degradation. Some channel coding schemes are proposed in order to protect information during transmission. Hamming codes (7 (15 and (31 have been used for DCT-compressed images more powerful codes such as Golay (23 for VQ-compressed images. Performances attainable with softdecoding techniques are also evaluated better quality images have been obtained than using classical hard decoding techniques. All tests have been carried out to simulate the transmission of a digital image from HDTV signal over an AWGN channel with P5K modulation.
Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.
2013-04-01
The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.
Habarulema, J. B.; McKinnell, L.-A.
2012-05-01
In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.
2018-03-01
This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.
International Nuclear Information System (INIS)
Bouzid, M.; Benkherouf, H.; Benzadi, K.
2011-01-01
In this paper, we propose a stochastic joint source-channel scheme developed for efficient and robust encoding of spectral speech LSF parameters. The encoding system, named LSF-SSCOVQ-RC, is an LSF encoding scheme based on a reduced complexity stochastic split vector quantizer optimized for noisy channel. For transmissions over noisy channel, we will show first that our LSF-SSCOVQ-RC encoder outperforms the conventional LSF encoder designed by the split vector quantizer. After that, we applied the LSF-SSCOVQ-RC encoder (with weighted distance) for the robust encoding of LSF parameters of the 2.4 Kbits/s MELP speech coder operating over a noisy/noiseless channel. The simulation results will show that the proposed LSF encoder, incorporated in the MELP, ensure better performances than the original MELP MSVQ of 25 bits/frame; especially when the transmission channel is highly disturbed. Indeed, we will show that the LSF-SSCOVQ-RC yields significant improvement to the LSFs encoding performances by ensuring reliable transmissions over noisy channel.
International Nuclear Information System (INIS)
Piquin, Ruben; Zanni, Pablo
2003-01-01
The widespread replacement of reactor internals generates a substantial volume of active material.It is essential to work with these components at least in a partial way before the next planned stop.Due to the fact that the reactor internals pool and the storage pools for irradiated nuclear fuel have limited capacities, it has been proposed to compact an experimental shift of 50 irradiated coolant channels, that are currently placed in storage pools.Basically the processed waste will be put in baskets at the bottom of the storage pools.The alternative choice proposes to divide an irradiation coolant channel tube into different parts: stainless steel section, zircaloy-4 section and stainless steel section with hardened zones with cobalt alloys named Estelite-6.Having planned the constructive and operative solutions, the mechanical characterization of the different parts of the channel tube remains to be done.In the present paper, the necessary compacted strength of the irradiation coolant channel tube will be estimated for the stainless steel section and for the zircaloy-4 section, starting from experiment with unirradiated material and considering effects of radiation damage and hydrides on the ductility.These results will be used to design the necessary compacted tools for the semi-industrial installation
International Nuclear Information System (INIS)
Ozturk, H.K.; Canyurt, O.E.; Hepbasli, A.; Utlu, Z.
2004-01-01
The main objective of the present study is to develop the energy input estimation equations for the residential-commercial sector (RCS) in order to estimate the future projections based on genetic algorithm (GA) notion and to examine the effect of the design parameters on the energy input of the sector. For this purpose, the Turkish RCS is given as an example. The GA Energy Input Estimation Model (GAEIEM) is used to estimate Turkey's future residential-commercial energy input demand based on gross domestic product (GDP), population, import, export, house production, cement production and basic house appliances consumption figures. It may be concluded that the three various forms of models proposed here can be used as an alternative solution and estimation techniques to available estimation techniques. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies. (author)
MicroTrack: an algorithm for concurrent projectome and microstructure estimation.
Sherbondy, Anthony J; Rowe, Matthew C; Alexander, Daniel C
2010-01-01
This paper presents MicroTrack, an algorithm that combines global tractography and direct microstructure estimation using diffusion-weighted imaging data. Previous work recovers connectivity via tractography independently from estimating microstructure features, such as axon diameter distribution and density. However, the two estimates have great potential to inform one another given the common assumption that microstructural features remain consistent along fibers. Here we provide a preliminary examination of this hypothesis. We adapt a global tractography algorithm to associate axon diameter with each putative pathway and optimize both the set of pathways and their microstructural parameters to find the best fit of this holistic white-matter model to the MRI data. We demonstrate in simulation that, with a multi-shell HARDI acquisition, this approach not only improves estimates of microstructural parameters over voxel-by-voxel estimation, but provides a solution to long standing problems in tractography. In particular, a simple experiment demonstrates the resolution of the well known ambiguity between crossing and kissing fibers. The results strongly motivate further development of this kind of algorithm for brain connectivity mapping.
Development of estimation algorithm of loose parts and analysis of impact test data
International Nuclear Information System (INIS)
Kim, Jung Soo; Ham, Chang Sik; Jung, Chul Hwan; Hwang, In Koo; Kim, Tak Hwane; Kim, Tae Hwane; Park, Jin Ho
1999-11-01
Loose parts are produced by being parted from the structure of the reactor coolant system or by coming into RCS from the outside during test operation, refueling, and overhaul time. These loose parts are mixed with reactor coolant fluid and collide with RCS components. When loose parts are occurred within RCS, it is necessary to estimate the impact point and the mass of loose parts. In this report an analysis algorithm for the estimation of the impact point and mass of loose part is developed. The developed algorithm was tested with the impact test data of Yonggwang-3. The estimated impact point using the proposed algorithm in this report had 5 percent error to the real test data. The estimated mass was analyzed within 28 percent error bound using the same unit's data. We analyzed the characteristic frequency of each sensor because this frequency effected the estimation of impact point and mass. The characteristic frequency of the background noise during normal operation was compared with that of the impact test data. The result of the comparison illustrated that the characteristic frequency bandwidth of the impact test data was lower than that of the background noise during normal operation. by the comparison, the integrity of sensor and monitoring system could be checked, too. (author)
Directory of Open Access Journals (Sweden)
Dongming Li
2017-04-01
Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC
Directory of Open Access Journals (Sweden)
Obianuju Ndili
2009-01-01
Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.
A practical algorithm for distribution state estimation including renewable energy sources
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher [Electronic and Electrical Department, Shiraz University of Technology, Modares Blvd., P.O. 71555-313, Shiraz (Iran); Firouzi, Bahman Bahmani [Islamic Azad University Marvdasht Branch, Marvdasht (Iran)
2009-11-15
Renewable energy is energy that is in continuous supply over time. These kinds of energy sources are divided into five principal renewable sources of energy: the sun, the wind, flowing water, biomass and heat from within the earth. According to some studies carried out by the research institutes, about 25% of the new generation will be generated by Renewable Energy Sources (RESs) in the near future. Therefore, it is necessary to study the impact of RESs on the power systems, especially on the distribution networks. This paper presents a practical Distribution State Estimation (DSE) including RESs and some practical consideration. The proposed algorithm is based on the combination of Nelder-Mead simplex search and Particle Swarm Optimization (PSO) algorithms, called PSO-NM. The proposed algorithm can estimate load and RES output values by Weighted Least-Square (WLS) approach. Some practical considerations are var compensators, Voltage Regulators (VRs), Under Load Tap Changer (ULTC) transformer modeling, which usually have nonlinear and discrete characteristics, and unbalanced three-phase power flow equations. The comparison results with other evolutionary optimization algorithms such as original PSO, Honey Bee Mating Optimization (HBMO), Neural Networks (NNs), Ant Colony Optimization (ACO), and Genetic Algorithm (GA) for a test system demonstrate that PSO-NM is extremely effective and efficient for the DSE problems. (author)
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
Massive-MIMO Sparse Uplink Channel Estimation Using Implicit Training and Compressed Sensing
Directory of Open Access Journals (Sweden)
Babar Mansoor
2017-01-01
Full Text Available Massive multiple-input multiple-output (massive-MIMO is foreseen as a potential technology for future 5G cellular communication networks due to its substantial benefits in terms of increased spectral and energy efficiency. These advantages of massive-MIMO are a consequence of equipping the base station (BS with quite a large number of antenna elements, thus resulting in an aggressive spatial multiplexing. In order to effectively reap the benefits of massive-MIMO, an adequate estimate of the channel impulse response (CIR between each transmit–receive link is of utmost importance. It has been established in the literature that certain specific multipath propagation environments lead to a sparse structured CIR in spatial and/or delay domains. In this paper, implicit training and compressed sensing based CIR estimation techniques are proposed for the case of massive-MIMO sparse uplink channels. In the proposed superimposed training (SiT based techniques, a periodic and low power training sequence is superimposed (arithmetically added over the information sequence, thus avoiding any dedicated time/frequency slots for the training sequence. For the estimation of such massive-MIMO sparse uplink channels, two greedy pursuits based compressed sensing approaches are proposed, viz: SiT based stage-wise orthogonal matching pursuit (SiT-StOMP and gradient pursuit (SiT-GP. In order to demonstrate the validity of proposed techniques, a performance comparison in terms of normalized mean square error (NCMSE and bit error rate (BER is performed with a notable SiT based least squares (SiT-LS channel estimation technique. The effect of channels’ sparsity, training-to-information power ratio (TIR and signal-to-noise ratio (SNR on BER and NCMSE performance of proposed schemes is thoroughly studied. For a simulation scenario of: 4 × 64 massive-MIMO with a channel sparsity level of 80 % and signal-to-noise ratio (SNR of 10 dB , a performance gain of 18 dB and 13 d
Online Estimation of Time-Varying Volatility Using a Continuous-Discrete LMS Algorithm
Directory of Open Access Journals (Sweden)
Jacques Oksman
2008-09-01
Full Text Available The following paper addresses a problem of inference in financial engineering, namely, online time-varying volatility estimation. The proposed method is based on an adaptive predictor for the stock price, built from an implicit integration formula. An estimate for the current volatility value which minimizes the mean square prediction error is calculated recursively using an LMS algorithm. The method is then validated on several synthetic examples as well as on real data. Throughout the illustration, the proposed method is compared with both UKF and offline volatility estimation.
Directory of Open Access Journals (Sweden)
Jian Zhao
2014-01-01
Full Text Available Road friction information is very important for vehicle active braking control systems such as ABS, ASR, or ESP. It is not easy to estimate the tire/road friction forces and coefficient accurately because of the nonlinear system, parameters uncertainties, and signal noises. In this paper, a robust and effective tire/road friction estimation algorithm for ABS is proposed, and its performance is further discussed by simulation and experiment. The tire forces were observed by the discrete Kalman filter, and the road friction coefficient was estimated by the recursive least square method consequently. Then, the proposed algorithm was analysed and verified by simulation and road test. A sliding mode based ABS with smooth wheel slip ratio control and a threshold based ABS by pulse pressure control with significant fluctuations were used for the simulation. Finally, road tests were carried out in both winter and summer by the car equipped with the same threshold based ABS, and the algorithm was evaluated on different road surfaces. The results show that the proposed algorithm can identify the variation of road conditions with considerable accuracy and response speed.
Alkan, Hilal; Balkaya, Çağlayan
2018-02-01
We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.
A Scalable GVT Estimation Algorithm for PDES: Using Lower Bound of Event-Bulk-Time
Directory of Open Access Journals (Sweden)
Yong Peng
2015-01-01
Full Text Available Global Virtual Time computation of Parallel Discrete Event Simulation is crucial for conducting fossil collection and detecting the termination of simulation. The triggering condition of GVT computation in typical approaches is generally based on the wall-clock time or logical time intervals. However, the GVT value depends on the timestamps of events rather than the wall-clock time or logical time intervals. Therefore, it is difficult for the existing approaches to select appropriate time intervals to compute the GVT value. In this study, we propose a scalable GVT estimation algorithm based on Lower Bound of Event-Bulk-Time, which triggers the computation of the GVT value according to the number of processed events. In order to calculate the number of transient messages, our algorithm employs Event-Bulk to record the messages sent and received by Logical Processes. To eliminate the performance bottleneck, we adopt an overlapping computation approach to distribute the workload of GVT computation to all worker-threads. We compare our algorithm with the fast asynchronous GVT algorithm using PHOLD benchmark on the shared memory machine. Experimental results indicate that our algorithm has a light overhead and shows higher speedup and accuracy of GVT computation than the fast asynchronous GVT algorithm.
Directory of Open Access Journals (Sweden)
Delaram Houshmand Kouchi
2017-05-01
Full Text Available The successful application of hydrological models relies on careful calibration and uncertainty analysis. However, there are many different calibration/uncertainty analysis algorithms, and each could be run with different objective functions. In this paper, we highlight the fact that each combination of optimization algorithm-objective functions may lead to a different set of optimum parameters, while having the same performance; this makes the interpretation of dominant hydrological processes in a watershed highly uncertain. We used three different optimization algorithms (SUFI-2, GLUE, and PSO, and eight different objective functions (R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS in a SWAT model to calibrate the monthly discharges in two watersheds in Iran. The results show that all three algorithms, using the same objective function, produced acceptable calibration results; however, with significantly different parameter ranges. Similarly, an algorithm using different objective functions also produced acceptable calibration results, but with different parameter ranges. The different calibrated parameter ranges consequently resulted in significantly different water resource estimates. Hence, the parameters and the outputs that they produce in a calibrated model are “conditioned” on the choices of the optimization algorithm and objective function. This adds another level of non-negligible uncertainty to watershed models, calling for more attention and investigation in this area.
Directory of Open Access Journals (Sweden)
Ser Javier Del
2005-01-01
Full Text Available We consider the case of two correlated sources, and . The correlation between them has memory, and it is modelled by a hidden Markov chain. The paper studies the problem of reliable communication of the information sent by the source over an additive white Gaussian noise (AWGN channel when the output of the other source is available as side information at the receiver. We assume that the receiver has no a priori knowledge of the correlation statistics between the sources. In particular, we propose the use of a turbo code for joint source-channel coding of the source . The joint decoder uses an iterative scheme where the unknown parameters of the correlation model are estimated jointly within the decoding process. It is shown that reliable communication is possible at signal-to-noise ratios close to the theoretical limits set by the combination of Shannon and Slepian-Wolf theorems.
International Nuclear Information System (INIS)
Yasin, M; Akhtar, Pervez; Pathan, Amir Hassan
2013-01-01
In this paper, we analyze the performance of adaptive blind algorithms – i.e. Kaiser Constant Modulus Algorithm (KCMA), Hamming CMA (HAMCMA) – with CMA in a wireless cellular communication system using digital modulation technique. These blind algorithms are used in digital signal processor of adaptive antenna to make it smart and change weights of the antenna array system dynamically. The simulation results revealed that KCMA and HAMCMA provide minimum mean square error (MSE) with 1.247 dB and 1.077 dB antenna gain enhancement, 75% reduction in bit error rate (BER) respectively over that of CMA. Therefore, KCMA and HAMCMA algorithms give a cost effective solution for a communication system
A new algorithm for recursive estimation of ARMA parameters in reactor noise analysis
International Nuclear Information System (INIS)
Tran Dinh Tri
1992-01-01
In this paper a new recursive algorithm for estimating the parameters of the Autoregressive Moving Average (ARMA) model from measured data is presented. The Yule-Walker equations for the case of the ARMA model are derived from the ARMA equation with innovations. The recursive algorithm is based on choosing an appropriate form of the operator functions and suitable representation of the (n + 1)-th order operator functions according to those with lower order. Two cases, when the order of the AR part is equal to that of the MA part, and the general case, were considered. (Author)
Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation
Medina, H.; Mutu, R.
2017-07-01
An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.
Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models.
Directory of Open Access Journals (Sweden)
Maarten Marsman
Full Text Available The Single Variable Exchange algorithm is based on a simple idea; any model that can be simulated can be estimated by producing draws from the posterior distribution. We build on this simple idea by framing the Exchange algorithm as a mixture of Metropolis transition kernels and propose strategies that automatically select the more efficient transition kernels. In this manner we achieve significant improvements in convergence rate and autocorrelation of the Markov chain without relying on more than being able to simulate from the model. Our focus will be on statistical models in the Exponential Family and use two simple models from educational measurement to illustrate the contribution.
Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.
2016-04-01
The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor
Cardinality Estimation Algorithm in Large-Scale Anonymous Wireless Sensor Networks
Douik, Ahmed
2017-08-30
Consider a large-scale anonymous wireless sensor network with unknown cardinality. In such graphs, each node has no information about the network topology and only possesses a unique identifier. This paper introduces a novel distributed algorithm for cardinality estimation and topology discovery, i.e., estimating the number of node and structure of the graph, by querying a small number of nodes and performing statistical inference methods. While the cardinality estimation allows the design of more efficient coding schemes for the network, the topology discovery provides a reliable way for routing packets. The proposed algorithm is shown to produce a cardinality estimate proportional to the best linear unbiased estimator for dense graphs and specific running times. Simulation results attest the theoretical results and reveal that, for a reasonable running time, querying a small group of nodes is sufficient to perform an estimation of 95% of the whole network. Applications of this work include estimating the number of Internet of Things (IoT) sensor devices, online social users, active protein cells, etc.
Directory of Open Access Journals (Sweden)
David G. Daut
2007-03-01
Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.
Directory of Open Access Journals (Sweden)
Liu Weiliang
2007-01-01
Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.
Channel Selection and Feature Projection for Cognitive Load Estimation Using Ambulatory EEG
Directory of Open Access Journals (Sweden)
Tian Lan
2007-01-01
Full Text Available We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson at 2 difficulty levels (low/high demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.
2017-04-12
measurement of CT outside of stringent laboratory environments. This study evaluated ECTempTM, a heart rate- based extended Kalman Filter CT...were lower than heart-rate based models analyzed in previous studies. As such, ECTempTM demonstrates strong potential for estimating circadian CT...control of heat transfer from the core to the extremities [11]. As such, heart rate plays a pivotal role in thermoregulation as a primary
Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim
2015-01-01
challenges. A capacitance estimation method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implemented ANN estimated the capacitance of the DC-link capacitor in a back-toback converter. Analysis of the error of the capacitance estimation is also given......In power electronic converters, reliability of DC-link capacitors is one of the critical issues. The estimation of their health status as an application of condition monitoring have been an attractive subject for industrial field and hence for the academic research filed as well. More reliable...... solutions are required to be adopted by the industry applications in which usage of extra hardware, increased cost, and low estimation accuracy are the main challenges. Therefore, development of new condition monitoring methods based on software solutions could be the new era that covers the aforementioned...
Chang, Y.; Ding, Y.; Zhao, Q.; Zhang, S.
2017-12-01
The accurate estimation of evapotranspiration (ET) is crucial for managing water resources in areas with extreme climates affected by climate change, such as the Tibetan Plateau (TP). The MOD16 ET product has also been validated and applied in many countries with various climates, however, its performance varies under different climates and regions. Several have studied ET based on satellite-based models on the TP. However, only a few studies on the performance of MOD16 in the TP with heterogeneous land cover have been reported. This study proposes an improved algorithm for estimating ET based on a proposed modified MOD16 method over alpine meadow on the TP in China. Wind speed and vegetation height were integrated to estimate aerodynamic resistance, while the temperature and moisture constraint for stomatal conductance were revised based on the technique proposed by Fisher et al. (2008). Moreover, Fisher's method for soil evaporation was introduced to decrease the uncertainty of soil evaporation estimation. Five representative alpine meadow sites on the TP were selected to investigate the performance of the modified algorithm. Comparisons between ET observed using Eddy Covariance (EC) and estimated using both the original method and modified method suggest that the modified algorithm had better performance than the original MOD16 method. This result was achieved considering that the coefficient of determination (R2) increased from 0.28 to 0.70, and the root mean square error (RMSE) decreased from 1.31 to 0.77 mm d-1. The modified algorithm also outperformed on precipitation days compared to non-precipitation days at Suli and Hulugou sites, while it performed well for both non-precipitation and precipitation days at Tanggula site. Comparisons of the 8-day ET estimation using the MOD16 product, original MOD16 method, and modified MOD16 method with observed ET suggest that MOD16 product underestimated ET over the alpine meadow of the TP during the growing season
Application of Matrix Pencil Algorithm to Mobile Robot Localization Using Hybrid DOA/TOA Estimation
Directory of Open Access Journals (Sweden)
Lan Anh Trinh
2012-12-01
Full Text Available Localization plays an important role in robotics for the tasks of monitoring, tracking and controlling a robot. Much effort has been made to address robot localization problems in recent years. However, despite many proposed solutions and thorough consideration, in terms of developing a low-cost and fast processing method for multiple-source signals, the robot localization problem is still a challenge. In this paper, we propose a solution for robot localization with regards to these concerns. In order to locate the position of a robot, both the coordinate and the orientation of a robot are necessary. We develop a localization method using the Matrix Pencil (MP algorithm for hybrid detection of direction of arrival (DOA and time of arrival (TOA. TOA of the signal is estimated for computing the distance between the mobile robot and a base station (BS. Based on the distance and the estimated DOA, we can estimate the mobile robot's position. The characteristics of the algorithm are examined through analysing simulated experiments and the results demonstrate the advantages of our method over previous works in dealing with the above challenges. The method is constructed based on the low-cost infrastructure of radio frequency devices; the DOA/TOA estimation is performed with just single value decomposition for fast processing. Finally, the MP algorithm combined with tracking using a Kalman filter allows our proposed method to locate the positions of multiple source signals.
Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels
Directory of Open Access Journals (Sweden)
Vincent Le Nir
2009-01-01
Full Text Available A cognitive radio system needs accurate knowledge of the radio spectrum it operates in. Blind modulation recognition techniques have been proposed to discriminate between single-carrier and multicarrier modulations and to estimate their parameters. Some powerful techniques use autocorrelation- and cyclic autocorrelation-based features of the transmitted signal applying to OFDM signals using a Cyclic Prefix time guard interval (CP-OFDM. In this paper, we propose a blind parameter estimation technique based on a power autocorrelation feature applying to OFDM signals using a Zero Padding time guard interval (ZP-OFDM which in particular excludes the use of the autocorrelation- and cyclic autocorrelation-based techniques. The proposed technique leads to an efficient estimation of the symbol duration and zero padding duration in frequency selective channels, and is insensitive to receiver phase and frequency offsets. Simulation results are given for WiMAX and WiMedia signals using realistic Stanford University Interim (SUI and Ultra-Wideband (UWB IEEE 802.15.4a channel models, respectively.
Directory of Open Access Journals (Sweden)
E. Romero-Aguirre
2012-01-01
Full Text Available In this paper, a configurable superimposed training (ST/data-dependent ST (DDST transmitter and architecture based on array processors (APs for DDST channel estimation are presented. Both architectures, designed under full-hardware paradigm, were described using Verilog HDL, targeted in Xilinx Virtex-5 and they were compared with existent approaches. The synthesis results showed a FPGA slice consumption of 1% for the transmitter and 3% for the estimator with 160 and 115 MHz operating frequencies, respectively. The signal-to-quantization-noise ratio (SQNR performance of the transmitter is about 82 dB to support 4/16/64-QAM modulation. A Monte Carlo simulation demonstrates that the mean square error (MSE of the channel estimator implemented in hardware is practically the same as the one obtained with the floating-point golden model. The high performance and reduced hardware of the proposed architectures lead to the conclusion that the DDST concept can be applied in current communications standards.
Verification of “Channel-Probability Model” of Grain Yield Estimation
Directory of Open Access Journals (Sweden)
ZHENG Hong-yan
2016-07-01
Full Text Available The "channel-probability model" of grain yield estimation was verified and discussed systematically by using the grain production data from 1949 to 2014 in 16 typical counties, and 6 typical districts, and 31 provinces of China. The results showed as follows:(1Due to the geographical spatial scale was large enough, different climate zones and different meteorological conditions could compensated, and grain yield estimation error was small in the scale of nation. Therefore, it was not necessary to modify the grain yield estimation error by mirco-trend and the climate year types in the scale of nation. However, the grain yield estimation in the scale of province was located at the same of a climate zone,the scale was small, so the impact of the meteorological conditions on grain yield was less complementary than the scale of nation. While the spatial scale of districts and counties was smaller, accordingly the compensation of the impact of the meteorological conditions on grain yield was least. Therefore, it was necessary to use mrico-trend amendment and the climate year types amendment to modify the grain yield estimation in districts and counties.(2Mirco-trend modification had two formulas, generally, when the error of grain yield estimation was less than 10%, it could be modified by Y×(1-K; while the error of grain yield estimation was more than 10%, it could be modified by Y/(1+K.(3Generally, the grain estimation had 5 grades, and some had 7 grades because of large error fluctuation. The parameters modified of super-high yield year and super-low yield year must be depended on the real-time crop growth and the meteorological condition. (4By plenty of demonstration analysis, it was proved that the theory and method of "channel-probability model" was scientific and practical. In order to improve the accuracy of grain yield estimation, the parameters could be modified with micro-trend amendment and the climate year types amendment. If the
Directory of Open Access Journals (Sweden)
Ramakrishna R. Nemani
2012-01-01
Full Text Available Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP, a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS in capturing the seasonal and the annual variability of GPP estimates from an optimal network of 21 FLUXNET forest towers sites. The tested indices include the Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, Leaf Area Index (LAI, and Fraction of Photosynthetically Active Radiation absorbed by plant canopies (FPAR. Our results indicated that single vegetation indices captured 50–80% of the variability of tower-estimated GPP, but no one index performed universally well in all situations. In particular, EVI outperformed the other MODIS products in tracking seasonal variations in tower-estimated GPP, but annual mean MODIS LAI was the best estimator of the spatial distribution of annual flux-tower GPP (GPP = 615 × LAI − 376, where GPP is in g C/m2/year. This simple algorithm rehabilitated earlier approaches linking ground measurements of LAI to flux-tower estimates of GPP and produced annual GPP estimates comparable to the MODIS 17 GPP product. As such, remote sensing-based estimates of GPP continue to offer a useful alternative to estimates from biophysical models, and the choice of the most appropriate approach depends on whether the estimates are required at annual or sub-annual temporal resolution.
Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret
1992-01-01
Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyun Ho [Sejong University, Sejong (Korea, Republic of); Kim, Ki Wan [Agency for Defense Development, Daejeon (Korea, Republic of)
2014-09-15
The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.
International Nuclear Information System (INIS)
Lee, Kyun Ho; Kim, Ki Wan
2014-01-01
The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem
Directory of Open Access Journals (Sweden)
Junjie Lu
2018-01-01
Full Text Available Establishing the schemes of accurate and computationally efficient performance estimation and fault diagnosis for turbofan engines has become a new research focus and challenges. It is able to increase reliability and stability of turbofan engine and reduce the life cycle costs. Accurate estimation of turbofan engine performance counts on thoroughly understanding the components’ performance, which is described by component characteristic maps and the fault of each component can be regarded as the change of characteristic maps. In this paper, a novel method based on a Levenberg–Marquardt (LM algorithm is proposed to enhance the fidelity of the performance estimation and the credibility of the fault diagnosis for the turbofan engine. The presented method utilizes the LM algorithm to figure out the operating point in the characteristic maps, preparing for performance estimation and fault diagnosis. The accuracy of the proposed method is evaluated for estimating performance parameters in the transient case with Rayleigh process noise and Gaussian measurement noise. The comparison among the extended Kalman filter (EKF method, the particle filter (PF method and the proposed method is implemented in the abrupt fault case and the gradual degeneration case and it has been shown that the proposed method has the capability to lead to more accurate result for performance estimation and fault diagnosis of turbofan engine than current popular EKF and PF diagnosis methods.
Round-Trip Delay Estimation in OPC UA Server-Client Communication Channel
Nakutis, Zilvinas; Deksnys, Vytautas; Jarusevicius, Ignas; Dambrauskas, Vilius; Cincikas, Gediminas; Kriauceliunas, Alenas
2017-01-01
In this paper an estimation of round-trip delay (RTD) in OPC UA server-client channel was investigated in various data communication networks including Ethernet, WiFi, and 3G. Testing was carried out using the developed IoT gateway device running OPC UA server and remote computer running OPC UA client. The server and the client machines were configured to operate in Virtual Private Network powered by OpenVPN. Experimental analysis revealed that RTD values are distributed in the wide range exh...
International Nuclear Information System (INIS)
Parra, J.C.; Acevedo, P.S.; Sobrino, J.A.; Morales, L.J.
2006-01-01
Four algorithms based on the technique of split-window, to estimate the land surface temperature starting from the data provided by the sensor Advanced Very High Resolution radiometer (AVHRR), on board the series of satellites of the National Oceanic and Atmospheric Administration (NOAA), are carried out. These algorithms consider corrections for atmospheric characteristics and emissivity of the different surfaces of the land. Fourteen images AVHRR-NOAA corresponding to the months of October of 2003, and January of 2004 were used. Simultaneously, measurements of soil temperature in the Carillanca hydro-meteorological station were collected in the Region of La Araucana, Chile (38 deg 41 min S; 72 deg 25 min W). Of all the used algorithms, the best results correspond to the model proposed by Sobrino and Raussoni (2000), with a media and standard deviation corresponding to the difference among the temperature of floor measure in situ and the estimated for this algorithm, of -0.06 and 2.11 K, respectively. (Author)
An Updated Algorithm for Estimation of Pesticide Exposure Intensity in the Agricultural Health Study
Directory of Open Access Journals (Sweden)
Aaron Blair
2011-12-01
Full Text Available An algorithm developed to estimate pesticide exposure intensity for use in epidemiologic analyses was revised based on data from two exposure monitoring studies. In the first study, we estimated relative exposure intensity based on the results of measurements taken during the application of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D (n = 88 and the insecticide chlorpyrifos (n = 17. Modifications to the algorithm weighting factors were based on geometric means (GM of post-application urine concentrations for applicators grouped by application method and use of chemically-resistant (CR gloves. Measurement data from a second study were also used to evaluate relative exposure levels associated with airblast as compared to hand spray application methods. Algorithm modifications included an increase in the exposure reduction factor for use of CR gloves from 40% to 60%, an increase in the application method weight for boom spray relative to in-furrow and for air blast relative to hand spray, and a decrease in the weight for mixing relative to the new weights assigned for application methods. The weighting factors for the revised algorithm now incorporate exposure measurements taken on Agricultural Health Study (AHS participants for the application methods and personal protective equipment (PPE commonly reported by study participants.
International Nuclear Information System (INIS)
Ahn, Myunghoon; Kim, Woogoon; Yim, Hyeongsoon
2016-01-01
The PI (Proportional plus Integral) controller, which is the essential functional block in control systems, can automatically perform the stable control of an important plant process while reducing the steady state error and improving the transient response. However, if the received input PV (Process Variable) is not normal due to input channel trouble, it will be difficult to control the system automatically. For this reason, many control systems are implemented to change the operation mode from automatic to manual mode in the PI controller when the failed input PV is detected. If the PI controller is in automatic mode for all the time, the control signal varies as the change of the input PV is continuously reflected in the control algorithm. In the other cases, since the controller changes into the manual mode at t=0, the control signal is fixed at the last PI controller output and thus the feedback control is not performed anymore until the operator takes an action such as the operation mode change. As a result of analysis and simulations for the controller’s operation modes in all the cases of input channel trouble, we discovered that it is more appropriate to maintain the automatic mode despite the bad quality in the PV. Therefore, we improved the control system algorithm reflecting the analysis results for the operator’s convenience and the stability of a control system
Energy Technology Data Exchange (ETDEWEB)
Ahn, Myunghoon; Kim, Woogoon; Yim, Hyeongsoon [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)
2016-10-15
The PI (Proportional plus Integral) controller, which is the essential functional block in control systems, can automatically perform the stable control of an important plant process while reducing the steady state error and improving the transient response. However, if the received input PV (Process Variable) is not normal due to input channel trouble, it will be difficult to control the system automatically. For this reason, many control systems are implemented to change the operation mode from automatic to manual mode in the PI controller when the failed input PV is detected. If the PI controller is in automatic mode for all the time, the control signal varies as the change of the input PV is continuously reflected in the control algorithm. In the other cases, since the controller changes into the manual mode at t=0, the control signal is fixed at the last PI controller output and thus the feedback control is not performed anymore until the operator takes an action such as the operation mode change. As a result of analysis and simulations for the controller’s operation modes in all the cases of input channel trouble, we discovered that it is more appropriate to maintain the automatic mode despite the bad quality in the PV. Therefore, we improved the control system algorithm reflecting the analysis results for the operator’s convenience and the stability of a control system.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Cheng, X C; Su, S J; Wang, Y K; Du, J B
2006-01-01
In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily
Energy Technology Data Exchange (ETDEWEB)
Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)
2006-10-15
In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.
Labibian, Amir; Bahrami, Amir Hossein; Haghshenas, Javad
2017-09-01
This paper presents a computationally efficient algorithm for attitude estimation of remote a sensing satellite. In this study, gyro, magnetometer, sun sensor and star tracker are used in Extended Kalman Filter (EKF) structure for the purpose of Attitude Determination (AD). However, utilizing all of the measurement data simultaneously in EKF structure increases computational burden. Specifically, assuming n observation vectors, an inverse of a 3n×3n matrix is required for gain calculation. In order to solve this problem, an efficient version of EKF, namely Murrell's version, is employed. This method utilizes measurements separately at each sampling time for gain computation. Therefore, an inverse of a 3n×3n matrix is replaced by an inverse of a 3×3 matrix for each measurement vector. Moreover, gyro drifts during the time can reduce the pointing accuracy. Therefore, a calibration algorithm is utilized for estimation of the main gyro parameters.
Efficient Maximum Likelihood Estimation for Pedigree Data with the Sum-Product Algorithm.
Engelhardt, Alexander; Rieger, Anna; Tresch, Achim; Mansmann, Ulrich
2016-01-01
We analyze data sets consisting of pedigrees with age at onset of colorectal cancer (CRC) as phenotype. The occurrence of familial clusters of CRC suggests the existence of a latent, inheritable risk factor. We aimed to compute the probability of a family possessing this risk factor as well as the hazard rate increase for these risk factor carriers. Due to the inheritability of this risk factor, the estimation necessitates a costly marginalization of the likelihood. We propose an improved EM algorithm by applying factor graphs and the sum-product algorithm in the E-step. This reduces the computational complexity from exponential to linear in the number of family members. Our algorithm is as precise as a direct likelihood maximization in a simulation study and a real family study on CRC risk. For 250 simulated families of size 19 and 21, the runtime of our algorithm is faster by a factor of 4 and 29, respectively. On the largest family (23 members) in the real data, our algorithm is 6 times faster. We introduce a flexible and runtime-efficient tool for statistical inference in biomedical event data with latent variables that opens the door for advanced analyses of pedigree data. © 2017 S. Karger AG, Basel.
International Nuclear Information System (INIS)
Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.
2016-01-01
Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.
Directory of Open Access Journals (Sweden)
Milinkovitch Michel C
2007-11-01
Full Text Available Abstract Background Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME principle (aiming at recovering the phylogeny with shortest length is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@-hard class of problems. Results In this paper, we introduce an Ant Colony Optimization (ACO algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems. Conclusion We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.
Directory of Open Access Journals (Sweden)
Min Jin
2014-01-01
Full Text Available There is recently a great deal of interest and excitement in understanding the role of inertia and acceleration in the motion equation of discrete particle swarm optimization (DPSO algorithms. It still remains unknown whether the inertia section should be abandoned and how to select the appropriate acceleration in order for DPSO to show the best convergence performance. Adopting channel assignment as a case study, this paper systematically conducts experimental filtering research on this issue. Compared with other channel assignment schemes, the proposed scheme and the selection of inertia and acceleration are verified to have the advantage to channel assignment in three respects of convergence rate, convergence speed, and the independency of the quality of initial solution. Furthermore, the experimental result implies that DSPO might have the best convergence performance when its motion equation includes an inertia section in a less medium weight, a bigger acceleration coefficient for global-search optimum, and a smaller acceleration coefficient for individual-search optimum.
Parametric estimation of the Duffing system by using a modified gradient algorithm
International Nuclear Information System (INIS)
Aguilar-Ibanez, Carlos; Sanchez Herrera, Jorge; Garrido-Moctezuma, Ruben
2008-01-01
The Letter presents a strategy for recovering the unknown parameters of the Duffing oscillator using a measurable output signal. The suggested approach employs the construction of an integral parametrization of one auxiliary output. It is calculated by measuring the difference between the output and its respective delay output. First we estimate the auxiliary output, followed by the application of a modified gradient algorithm, then we adjust the gains of the proposed linear estimator, until this error converges to zero. The convergence of the proposed scheme is shown using Lyapunov method
A burst-mode photon counting receiver with automatic channel estimation and bit rate detection
Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.
2016-04-01
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
Application of Firefly Algorithm for Parameter Estimation of Damped Compound Pendulum
Directory of Open Access Journals (Sweden)
Saad Mohd Sazli
2016-01-01
Full Text Available This paper presents an investigation into the parameter estimation of the damped compound pendulum using Firefly algorithm method. In estimating the damped compound pendulum, the system necessarily needs a good model. Therefore, the aim of the work described in this paper is to obtain a dynamic model of the damped compound pendulum. By considering a discrete time form for the system, an autoregressive with exogenous input (ARX model structures was selected. In order to collect input-output data from the experiment, the PRBS signal is used to be input signal to regulate the motor speed. Where, the output signal is taken from position sensor. Firefly algorithm (FA algorithm is used to estimate the model parameters based on model 2nd orders. The model validation was done by comparing the measured output against the predicted output in terms of the closeness of both outputs via mean square error (MSE value. The performance of FA is measured in terms of mean square error (MSE.
A new algorithm for ECG interference removal from single channel EMG recording.
Yazdani, Shayan; Azghani, Mahmood Reza; Sedaaghi, Mohammad Hossein
2017-09-01
This paper presents a new method to remove electrocardiogram (ECG) interference from electromyogram (EMG). This interference occurs during the EMG acquisition from trunk muscles. The proposed algorithm employs progressive image denoising (PID) algorithm and ensembles empirical mode decomposition (EEMD) to remove this type of interference. PID is a very recent method that is being used for denoising digital images mixed with white Gaussian noise. It detects white Gaussian noise by deterministic annealing. To the best of our knowledge, PID has never been used before, in the case of EMG and ECG separation or in other 1D signal denoising applications. We have used it according to this fact that amplitude of the EMG signal can be modeled as white Gaussian noise using a filter with time-variant properties. The proposed algorithm has been compared to the other well-known methods such as HPF, EEMD-ICA, Wavelet-ICA and PID. The results show that the proposed algorithm outperforms the others, on the basis of three evaluation criteria used in this paper: Normalized mean square error, Signal to noise ratio and Pearson correlation.
MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks
Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna
In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.
Directory of Open Access Journals (Sweden)
Chun-Xiang Shi
2009-07-01
Full Text Available The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C data. First, the capabilities of six widely-used Artificial Neural Network (ANN methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA and a Support Vector Machine (SVM, using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm imagery. The result shows that: (1 ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2 among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM and Probabilistic Neural Network (PNN. Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.
Chen, Jun; Quan, Wenting; Cui, Tingwei
2015-01-01
In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...