WorldWideScience

Sample records for channel alpha subunit

  1. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    Science.gov (United States)

    Morel, N; Buryi, V; Feron, O; Gomez, J P; Christen, M O; Godfraind, T

    1998-11-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of alpha(1C-)b-subunit than of alpha(1C-a)-subunit. This difference was more marked at a holding potential of -100 mV than at -50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms. 4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on alpha(1C-a) than on alpha(1C-b) subunit at Vh of -100 mV and -50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages. 5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the alpha(1C-b) than for the alpha(1C-a) subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the alpha(1C-a) subunit than for the alpha(1C-b) subunit. 6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the alpha(1C-a) and alpha(1C-b) subunits of the Ca2+ channel. PMID:9846638

  2. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    OpenAIRE

    Morel, Nicole; Buryi, V; Feron, Olivier; Gomez, J. P.; Christen, M O; Godfraind, Theophile

    1998-01-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-1...

  3. An increased expression of Ca(2+) channel alpha(1A) subunit immunoreactivity in deep cerebellar neurons of rolling mouse Nagoya.

    Science.gov (United States)

    Sawada, K; Sakata-Haga, H; Ando, M; Takeda, N; Fukui, Y

    2001-12-01

    Rolling mouse Nagoya (RMN) is an ataxic mutant and carries a mutation in the gene coding for the alpha(1A) subunit of the P/Q-type Ca(2+) channel. We examined the immunohistochemical expression of the alpha(1A) subunit in deep cerebellar nuclei of RMN. The antibody used recognized residues 865-883 of the mouse alpha(1A) subunit not overlapping the altered sequences in RMN. In RMN, many neurons exhibited definite alpha(1A) subunit-staining in the medial nucleus, interposed nucleus, and lateral nucleus of deep cerebellar nuclei. The number of positive neurons in these nuclei was significantly higher in RMN than in controls. Increased expression of the alpha(1A) subunit in deep cerebellar neurons might compensate for the altered function of the P/Q-type Ca(2+) channel of RMN.

  4. The Cyclooctadepsipeptide Anthelmintic Emodepside Differentially Modulates Nematode, Insect and Human Calcium-Activated Potassium (SLO Channel Alpha Subunits.

    Directory of Open Access Journals (Sweden)

    Anna Crisford

    Full Text Available The anthelmintic emodepside paralyses adult filarial worms, via a mode of action distinct from previous anthelmintics and has recently garnered interest as a new treatment for onchocerciasis. Whole organism data suggest its anthelmintic action is underpinned by a selective activation of the nematode isoform of an evolutionary conserved Ca2+-activated K+ channel, SLO-1. To test this at the molecular level we compared the actions of emodepside at heterologously expressed SLO-1 alpha subunit orthologues from nematode (Caenorhabditis elegans, Drosophila melanogaster and human using whole cell voltage clamp. Intriguingly we found that emodepside modulated nematode (Ce slo-1, insect (Drosophila, Dm slo and human (hum kcnma1SLO channels but that there are discrete differences in the features of the modulation that are consistent with its anthelmintic efficacy. Nematode SLO-1 currents required 100 μM intracellular Ca2+ and were strongly facilitated by emodepside (100 nM; +73.0 ± 17.4%; n = 9; p < 0.001. Drosophila Slo currents on the other hand were activated by emodepside (10 μM in the presence of 52 nM Ca2+ but were inhibited in the presence of 290 nM Ca2+ and exhibited a characteristic loss of rectification. Human Slo required 300 nM Ca2+ and emodepside transiently facilitated currents (100 nM; +33.5 ± 9%; n = 8; p<0.05 followed by a sustained inhibition (-52.6 ± 9.8%; n = 8; p < 0.001. This first cross phyla comparison of the actions of emodepside at nematode, insect and human channels provides new mechanistic insight into the compound's complex modulation of SLO channels. Consistent with whole organism behavioural studies on C. elegans, it indicates its anthelmintic action derives from a strong activation of SLO current, not observed in the human channel. These data provide an important benchmark for the wider deployment of emodepside as an anthelmintic treatment.

  5. Functional properties of the CaV1.2 calcium channel activated by calmodulin in the absence of alpha2delta subunits.

    Science.gov (United States)

    Ravindran, Arippa; Kobrinsky, Evgeny; Lao, Qi Zong; Soldatov, Nikolai M

    2009-01-01

    Voltage-activated CaV1.2 calcium channels require association of the pore-forming alpha1C subunit with accessory CaVbeta and alpha2delta subunits. Binding of a single calmodulin (CaM) to alpha1C supports Ca2+-dependent inactivation (CDI). The human CaV1.2 channel is silent in the absence of CaVbeta and/or alpha2delta. Recently, we found that coexpression of exogenous CaM (CaMex) supports plasma membrane targeting, gating facilitation and CDI of the channel in the absence of CaVbeta. Here we discovered that CaMex and its Ca2+-insensitive mutant (CaM1234) rendered active alpha1C/CaVbeta channel in the absence of alpha2delta. Coexpression of CaMex with alpha1C and beta2d in calcium-channel-free COS-1 cells recovered gating of the channel and supported CDI. Voltage-dependence of activation was shifted by approximately +40 mV to depolarization potentials. The calcium current reached maximum at +40 mV (20 mM Ca2+) and exhibited approximately 3 times slower activation and 5 times slower inactivation kinetics compared to the wild-type channel. Furthermore, both CaMex and CaM1234 accelerated recovery from inactivation and induced facilitation of the calcium current by strong depolarization prepulse, the properties absent from the human vascular/neuronal CaV1.2 channel. The data suggest a previously unknown action of CaM that in the presence of CaVbeta; translates into activation of the alpha2delta-deficient calcium channel and alteration of its properties. PMID:19106618

  6. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits

    NARCIS (Netherlands)

    Pyott, Sonja J; Meredith, Andrea L; Fodor, Anthony A; Vázquez, Ana E; Yamoah, Ebenezer N; Aldrich, Richard W

    2007-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are important for regulating many essential cellular functions, from neuronal action potential shape and firing rate to smooth muscle contractility. In amphibians, reptiles, and birds, BK channels mediate the intrinsic frequenc

  7. Nomenclature for Ion channel Subunits

    OpenAIRE

    Bradley, Jonathan; Frings, Stephan; Yau, King-Wai; Reed, Randall

    2001-01-01

    Presents the nomenclature for ion channel subunits. Role of ion channels in the mediation of visual and olfactory signal transduction; Expression of ion channels in cell types and tissues; Assessment on the nucleotide sensitivity, ion conductance and calcium modulation in heteromers.

  8. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits.

    Science.gov (United States)

    Teng, Jinfeng; Iida, Kazuko; Ito, Masanori; Izumi-Nakaseko, Hiroko; Kojima, Itaru; Adachi-Akahane, Satomi; Iida, Hidetoshi

    2010-05-01

    The pore-forming component of voltage-gated calcium channels, alpha(1) subunit, contains four structurally conserved domains (I-IV), each of which contains six transmembrane segments (S1-S6). We have shown previously that a Gly residue in the S2-S3 linker of domain III is completely conserved from yeasts to humans and important for channel activity. The Gly residues in the S2-S3 linkers of domains I and II, which correspond positionally to the Gly in the S2-S3 linker of domain III, are also highly conserved. Here, we investigated the role of the Gly residues in the S2-S3 linkers of domains I and II of Ca(v)1.2. Each of the Gly residues was replaced with Glu or Gln to produce mutant Ca(v)1.2s; G182E, G182Q, G579E, G579Q, and the resulting mutants were transfected into BHK6 cells. Whole-cell patch-clamp recordings showed that current-voltage relationships of the four mutants were the same as those of wild-type Ca(v)1.2. However, G182E and G182Q showed significantly smaller current densities because of mislocalization of the mutant proteins, suggesting that Gly(182) in domain I is involved in the membrane trafficking or surface expression of alpha(1) subunit. On the other hand, G579E showed a slower voltage-dependent current inactivation (VDI) compared to Ca(v)1.2, although G579Q showed a normal VDI, implying that Gly(579) in domain II is involved in the regulation of VDI and that the incorporation of a negative charge alters the VDI kinetics. Our findings indicate that the two conserved Gly residues are important for alpha(1) subunit to become functional.

  9. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  10. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease.

    Directory of Open Access Journals (Sweden)

    Boglárka Marcsa

    Full Text Available Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.. The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360 and age-matched controls (n=300. Five single nucleotide polymorphisms (SNPs from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2 that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351. A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455. None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association.

  11. The alpha channeling effect

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  12. Na+ channel β subunits: Overachievers of the ion channel family

    OpenAIRE

    LoriLIsom; WilliamJBrackenbury

    2011-01-01

    Voltage gated Na+ channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the...

  13. Hypersecretion of the alpha-subunit in clinically non-functioning pituitary adenomas: Diagnostic accuracy is improved by adding alpha-subunit/gonadotropin ratio to levels of alpha-subunit

    DEFF Research Database (Denmark)

    Andersen, Marianne; Ganc-Petersen, Joanna; Jørgensen, Jens O L;

    2010-01-01

    In vitro, the majority of clinically non-functioning pituitary adenomas (NFPAs) produce gonadotropins or their alpha-subunit; however, in vivo, measurements of alpha-subunit levels may not accurately detect the hypersecretion of the alpha-subunit.......In vitro, the majority of clinically non-functioning pituitary adenomas (NFPAs) produce gonadotropins or their alpha-subunit; however, in vivo, measurements of alpha-subunit levels may not accurately detect the hypersecretion of the alpha-subunit....

  14. Comparative Analysis of Eubacterial DNA Polymerase Ⅲ Alpha Subunits

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qian Zhao; Jian-Fei Hu; Jun Yu

    2006-01-01

    DNA polymerase Ⅲ is one of the five eubacterial DNA polymerases that is responsible for the replication of DNA duplex. Among the ten subunits of the DNA polymerase Ⅲ core enzyme, the alpha subunit catalyzes the reaction for polymerizing both DNA strands. In this study, we extracted genomic sequences of the alpha subunit from 159 sequenced eubacterial genomes, and carried out sequencebased phylogenetic and structural analyses. We found that all eubacterial genomes have one or more alpha subunits, which form either homodimers or heterodimers.Phylogenetic and domain structural analyses as well as copy number variations of the alpha subunit in each bacterium indicate the classification of alpha subunit into four basic groups: polC, dnaE1, dnaE2, and dnaE3. This classification is of essence in genome composition analysis. We also consolidated the naming convention to avoid further confusion in gene annotations.

  15. The alpha(1G)-subunit of a voltage-dependent Ca(2+) channel is localized in rat distal nephron and collecting duct

    DEFF Research Database (Denmark)

    Andreasen, D; Jensen, B L; Hansen, P B;

    2000-01-01

    , alpha(1G)-mRNA levels in kidney regions were determined as inner medulla >> outer medulla congruent with cortex. RT-PCR analysis of microdissected rat nephron segments revealed alpha(1G) expression in the distal convoluted tubule (DCT), in the connecting tubule and cortical collecting duct (CT...... at the apical plasma membrane domains of DCT cells, CT principal cells, and IMCD principal cells....

  16. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    Science.gov (United States)

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-01

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  17. Generalized epilepsy with febrile seizures plus-associated sodium channel beta1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function.

    Science.gov (United States)

    Xu, R; Thomas, E A; Gazina, E V; Richards, K L; Quick, M; Wallace, R H; Harkin, L A; Heron, S E; Berkovic, S F; Scheffer, I E; Mulley, J C; Petrou, S

    2007-08-10

    Two novel mutations (R85C and R85H) on the extracellular immunoglobulin-like domain of the sodium channel beta1 subunit have been identified in individuals from two families with generalized epilepsy with febrile seizures plus (GEFS+). The functional consequences of these two mutations were determined by co-expression of the human brain NaV1.2 alpha subunit with wild type or mutant beta1 subunits in human embryonic kidney (HEK)-293T cells. Patch clamp studies confirmed the regulatory role of beta1 in that relative to NaV1.2 alone the NaV1.2+beta1 currents had right-shifted voltage dependence of activation, fast and slow inactivation and reduced use dependence. In addition, the NaV1.2+beta1 current entered fast inactivation slightly faster than NaV1.2 channels alone. The beta1(R85C) subunit appears to be a complete loss of function in that none of the modulating effects of the wild type beta1 were observed when it was co-expressed with NaV1.2. Interestingly, the beta1(R85H) subunit also failed to modulate fast kinetics, however, it shifted the voltage dependence of steady state slow inactivation in the same way as the wild type beta1 subunit. Immunohistochemical studies revealed cell surface expression of the wild type beta1 subunit and undetectable levels of cell surface expression for both mutants. The functional studies suggest association of the beta1(R85H) subunit with the alpha subunit where its influence is limited to modulating steady state slow inactivation. In summary, the mutant beta1 subunits essentially fail to modulate alpha subunits which could increase neuronal excitability and underlie GEFS+ pathogenesis. PMID:17629415

  18. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  19. Hypersecretion of the alpha-subunit in clinically non-functioning pituitary adenomas: Diagnostic accuracy is improved by adding alpha-subunit/gonadotropin ratio to levels of alpha-subunit

    DEFF Research Database (Denmark)

    Andersen, Marianne; Ganc-Petersen, Joanna; Jørgensen, Jens Otto Lunde;

    2010-01-01

    the reference intervals and decision limits for gonadotropin alpha-subunit, LH and FSH levels, and aratio (alpha-subunit/LH+FSH), especially taking into consideration patient gender and menstrual status. Furthermore, we wanted to examine if the diagnostic utility of alpha-subunit hypersecretion was improved...

  20. The pore region of the Kv1.2alpha subunit is an important component of recombinant Kv1.2 channel oxygen sensitivity.

    Science.gov (United States)

    Conforti, Laura; Takimoto, Koichi; Petrovic, Milan; Pongs, Olaf; Millhorn, David

    2003-06-27

    Oxygen-sensitive K(+) channels are important elements in the cellular response to hypoxia. Although much progress has been made in identifying their molecular composition, the structural components associated to their O(2)-sensitivity are not yet understood. Recombinant Kv1.2 currents expressed in Xenopus oocytes are inhibited by a decrease in O(2) availability. On the contrary, heterologous Kv2.1 channels are O(2)-insensitive. To elucidate the protein segment responsible for the O(2)-sensitivity of Kv1.2 channels, we analyzed the response to anoxia of Kv1.2/Kv2.1 chimeric channels. Expression of chimeric Kv2.1 channels each containing the S4, the S1-S3 or the S6-COOH segments of Kv1.2 polypeptide resulted in a K(+) current insensitive to anoxia. In contrast, transferring the S5-S6 segment of Kv1.2 into Kv2.1 produced an O(2)-sensitive K(+) current. Finally, mutating a redox-sensitive methionine residue (M380) of Kv1.2 polypeptide did not affect O(2)-sensitivity. Thus, the pore and its surrounding regions of Kv1.2 polypeptide confer its hypoxic inhibition. This response is independent on the redox modulation of methionine residues in this protein segment. PMID:12804584

  1. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander;

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were...... visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BK(Ca) channel alpha-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for beta1-, beta2- and beta4-subunit were shown by RT-PCR...... in porcine basilar and middle cerebral arteries. However, at the protein level, only, the beta1-subunit protein was found by western blotting....

  2. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    OpenAIRE

    Zhong Tao P; Watanabe Hiroshi; Chopra Sameer S; Roden Dan M

    2007-01-01

    Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further...

  3. Editing modifies the GABA(A) receptor subunit alpha3

    DEFF Research Database (Denmark)

    Ohlson, Johan; Pedersen, Jakob Skou; Haussler, David;

    2007-01-01

    to find selectively edited sites and combined it with bioinformatic techniques that find stem-loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the alpha3 subunit of the GABA...

  4. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans.

    Science.gov (United States)

    Putrenko, Igor; Zakikhani, Mahvash; Dent, Joseph A

    2005-02-25

    The genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists. These channels are blocked by d-tubocurarine but not by alpha-bungarotoxin. We provide evidence that two additional subunits, ACC-3 and ACC-4, interact with ACC-1 and ACC-2. The acetylcholine-binding domain of these channels appears to have diverged substantially from the acetylcholine-binding domain of nicotinic receptors. PMID:15579462

  5. Emergence of ion channel modal gating from independent subunit kinetics.

    Science.gov (United States)

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  6. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...... determined for the subunits of the native enzyme. The recombinant alpha subunit exhibited protein kinase activity which was greatest in the absence of monovalent ions. With increasing amounts of salt, alpha subunit kinase activity declined rapidly. Addition of the beta subunit led to maximum stimulation...

  7. First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2009-01-01

    The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2alpha, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2beta, noncatalytic subunit of CK2). CK2alpha belongs to the superfamily of eukaryotic protein kinases...

  8. Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper).

    Science.gov (United States)

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Saqi, M S; Clemetson, K J

    1997-04-15

    Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein. PMID:9163349

  9. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  10. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Johansson, Helle Wulf; Hay-Schmidt, Anders;

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expressed...... (RT-PCR) in nervous tissue only where also the SS4(+81) variant was dominating with little expression of the short form SS4(0). SS4(+81) was present in some cerebral vessels too. The SS2(+174) variant (STREX) was found in both blood vessels and in nervous tissue. In situ hybridization data supported...

  11. The action of calcium channel blockers on recombinant L-type calcium channel α1-subunits

    Science.gov (United States)

    Morel, Nicole; Buryi, Vitali; Feron, Olivier; Gomez, Jean-Pierre; Christen, Marie-Odile; Godfraind, Théophile

    1998-01-01

    CHO cells expressing the α1C-a subunit (cardiac isoform) and the α1C-b subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for α1C isoforms.Inward current evoked by the transfected α1 subunit was recorded by the patch-clamp technique in the whole-cell configuration.Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of α1C-b-subunit than of α1C-a-subunit. This difference was more marked at a holding potential of −100 mV than at −50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms.Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on α1C-a than on α1C-b subunit at Vh of −100 mV and −50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages.[3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the α1C-b than for the α1C-a subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the α1C-a subunit than for the α1C-b subunit.These results indicate marked differences among Ca2+ channel blockers in their selectivity for the α1C-a and α1C-b subunits of the Ca2+ channel. PMID:9846638

  12. O2-sensitive K+ channels: role of the Kv1.2 -subunit in mediating the hypoxic response.

    Science.gov (United States)

    Conforti, L; Bodi, I; Nisbet, J W; Millhorn, D E

    2000-05-01

    One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 alpha-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 alpha-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at approximately 80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 alpha-subunit is important in conferring O2 sensitivity to this channel. PMID:10790158

  13. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    Science.gov (United States)

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  14. Alpha Channeling in Rotating Plasma with Stationary Waves

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high nθ can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  15. Alpha Channeling in a Rotating Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2008-09-23

    The wave-particle α-channeling effect is generalized to include rotating plasma. Specifically, radio frequency waves can resonate with α particles in a mirror machine with E × B rotation to diffuse the α particles along constrained paths in phase space. Of major interest is that the α-particle energy, in addition to amplifying the RF waves, can directly enhance the rotation energy which in turn provides additional plasma confinement in centrifugal fusion reactors. An ancillary benefit is the rapid removal of alpha particles, which increases the fusion reactivity.

  16. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W;

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found...... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...

  17. Expression of BK Ca channels and the modulatory beta-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander;

    2009-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels contribute to electrical impulses, proper signal transmission of information and regulation of neurotransmitter release. Migraine has been proposed to be a trigeminovascular disease involving the sensory trigeminal pathways and the c......Large conductance calcium-activated potassium (BK(Ca)) channels contribute to electrical impulses, proper signal transmission of information and regulation of neurotransmitter release. Migraine has been proposed to be a trigeminovascular disease involving the sensory trigeminal pathways...... and the cerebral arteries. We hypothesize that BK(Ca) channel alpha- and beta-subunits are present in the rat and porcine trigeminal ganglion (TG) thus enabling a role in migraine. BK(Ca) channel mRNA was detected using reverse transcription polymerase chain reaction (RT-PCR) and in situ hybridization. BK(Ca...... revealed beta2- and beta 4-subunit proteins in rat and porcine TG. The present study showed BK(Ca) channel expression in rat and porcine TG. The main modulatory beta-subunits detected in TG of both species were beta2- and beta 4-subunits....

  18. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays

    DEFF Research Database (Denmark)

    Dobrowolska, G; Boldyreff, B; Issinger, O G

    1991-01-01

    The nucleotide sequence of the cDNA coding for the alpha subunit of casein kinase 2 of Zea mays has been determined. The cDNA clone contains an open reading frame of 996 nucleotides encoding a polypeptide comprising 332 amino acids. The primary amino acid sequence exhibits 75% identity to the alpha...

  19. Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D;

    2000-01-01

    in rat aorta, brain, aortic smooth muscle cells (A7r5), VSMCs, and mesangial cells. Immunolabeling with an anti-alpha(1A) antibody was positive in acid-macerated, microdissected preglomerular vessels and in A7r5 cells. Patch-clamp experiments on aortic A7r5 cells showed 22+/-4% (n=6) inhibition of inward...

  20. On the multiple roles of the voltage gated sodium channel β1 subunit in genetic diseases

    Directory of Open Access Journals (Sweden)

    Debora eBaroni

    2015-05-01

    Full Text Available Voltage-gated sodium channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are composed of a pore-forming α-subunit and associated β-subunits. The β1-subunit was the first accessory subunit to be cloned. It can be important for controlling cell excitability and modulating multiple aspects of sodium channel physiology. Mutations of β1 are implicated in a wide variety of inherited pathologies, including epilepsy and cardiac conduction diseases. This review summarizes β1-subunit related channelopathies pointing out the current knowledge concerning their genetic background and their underlying molecular mechanisms.

  1. Characterization of the alpha and beta subunits of casein kinase 2 by far-UV CD spectroscopy

    DEFF Research Database (Denmark)

    Issinger, O G; Brockel, C; Boldyreff, B;

    1992-01-01

    Although Chou-Fasman calculations of the secondary structure of recombinant casein kinase 2 subunits alpha and beta suggest they have a similar overall conformation, circular dichroism (CD) studies show that substantial differences in the conformation of the two subunits exist. In addition......, comparison of the far-UV CD spectrum of reconstituted CK-2 with the spectra of the subunits indicates that conformational changes occur in the backbone region upon association. Such changes may explain the increased enzyme activity of the holoenzyme relative to that of the alpha subunit itself. In contrast......, no changes in the far-UV CD spectrum of the alpha subunit are observed in the presence of casein or the synthetic decapeptide substrate RRRDDDSDDD. Furthermore, the alpha-helical structure of the alpha subunit (but not the beta subunit) can be increased in the presence of stoichiometric amounts of heparin...

  2. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    Science.gov (United States)

    Wieczorek, Anna; McHenry, Charles S

    2006-05-01

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  3. Folding, stability, and physical properties of the alpha subunit of bacterial luciferase.

    Science.gov (United States)

    Noland, B W; Dangott, L J; Baldwin, T O

    1999-12-01

    Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C

  4. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  5. Waves for Alpha-Channeling in Mirror Machines

    Energy Technology Data Exchange (ETDEWEB)

    A. I. Zhmoginov and N. J. Fisch

    2009-07-08

    Alpha-channeling can, in principle, be implemented in mirror machines via exciting weaklydamped modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than the alpha particle gyroradius. Assuming quasi-longitudinal or quasi-transverse wave propagation, we search systematically for suitable modes in mirror plasmas. Considering two device designs, a proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable for alpha-channeling.

  6. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+channel beta4a subunit.

    Science.gov (United States)

    Vendel, Andrew C; Rithner, Christopher D; Lyons, Barbara A; Horne, William A

    2006-02-01

    Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating. PMID:16385006

  7. Translocation of a phycoerythrin alpha subunit across five biological membranes.

    Science.gov (United States)

    Gould, Sven B; Fan, Enguo; Hempel, Franziska; Maier, Uwe-G; Klösgen, Ralf Bernd

    2007-10-12

    Cryptophytes, unicellular algae, evolved by secondary endosymbiosis and contain plastids surrounded by four membranes. In contrast to cyanobacteria and red algae, their phycobiliproteins do not assemble into phycobilisomes and are located within the thylakoid lumen instead of the stroma. We identified two gene families encoding phycoerythrin alpha and light-harvesting complex proteins from an expressed sequence tag library of the cryptophyte Guillardia theta. The proteins bear a bipartite topogenic signal responsible for the transport of nuclear encoded proteins via the ER into the plastid. Analysis of the phycoerythrin alpha sequences revealed that more than half of them carry an additional, third topogenic signal comprising a twin arginine motif, which is indicative of Tat (twin arginine transport)-specific targeting signals. We performed import studies with several derivatives of one member using a diatom transformation system, as well as intact chloroplasts and thylakoid vesicles isolated from pea. We demonstrated the different targeting properties of each individual part of the tripartite leader and show that phycoerythrin alpha is transported across the thylakoid membrane into the thylakoid lumen and protease-protected. Furthermore, we showed that thylakoid transport of phycoerythrin alpha takes place by the Tat pathway even if the 36 amino acid long bipartite topogenic signal precedes the actual twin arginine signal. This is the first experimental evidence of a protein being targeted across five biological membranes.

  8. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  9. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra

    DEFF Research Database (Denmark)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D;

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the n......Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated...... properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new......NaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission....

  10. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits.

    Science.gov (United States)

    Winters, J J; Isom, L L

    2016-01-01

    Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development. PMID:27586289

  11. Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    DEFF Research Database (Denmark)

    Nilsen, Tom O.; Ebbesson, Lars O. E.; Madsen, Steffen S.;

    2007-01-01

    This study examines changes in gill Na(+),K(+)-ATPase (NKA) alpha- and beta-subunit isoforms, Na(+),K(+),2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and...... observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous...... salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-alpha1a, -alpha1b and -alpha3 isoforms may be important for potential functional differences in NKA, both during preparatory development and...

  12. Structural determinants within residues 180-199 of the rodent. alpha. 5 nicotinic acetylcholine receptor subunit involved in. alpha. -bungarotoxin binding

    Energy Technology Data Exchange (ETDEWEB)

    McLane, K.E.; Xiadong Wu; Conti-Tronconi, B.M. (Univ. of Minnesota, St. Paul (United States))

    1991-11-05

    Synthetic peptides corresponding to sequence segments of the nicotinic acetylcholine receptor (nAChR) {alpha} subunits have been used to identify regions that contribute to formation of the binding sites for cholinergic ligands. The authors have previously defined {alpha}-bungarotoxin ({alpha}-BTX) binding sequences between residues 180 and 199 of a putative rat neuronal nAChR {alpha} subunit, designated {alpha}5, and between residues 181 and 200 of the chick neuronal {alpha}7 and {alpha}8 subunits. These sequences are relatively divergent compared with the Torpedo and muscle nAChR {alpha}1 {alpha}-BTX binding sites, which indicates a serious limitation of predicting functional domains of proteins based on homology in general. Given the highly divergent nature of the {alpha}5 sequence, they were interested in determining the critical amino acid residues for {alpha}-BTX binding. In the present study, the effects of single amino acid substitutions of Gly or Ala for each residue of the rat {alpha}(180-199) sequence were tested, using a competition assay, in which peptides compete for {sup 125}I-{alpha}-BTX binding with native Torpedo nAChR. These results indicate that a disulfide bridge between the vicinal cysteines at positions 191 and 192 of the {alpha}5 sequence is not an absolute requirement for {alpha}-BTX binding activity.

  13. Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels

    Science.gov (United States)

    Zhong, Ling; Guo, Xiying; Weng, Anxi; Xiao, Feng; Zeng, Wenping; Zhang, Yan; Ding, Jiuping; Hou, Panpan

    2016-01-01

    Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activation and complete inactivation. However, how the β2 subunit modulates the Drosophila Slo1 channel remains elusive. In this study, by comparing the different functional effects on heterogeneous BK(β2) channel, we found that Drosophila Slo1/β2 channel exhibits “paralyzed”-like and incomplete inactivation as well as slow activation. Further, we determined three different modulations between mammalian and Drosophila BK(β2) channels: 1) dSlo1/β2 doesn’t have complete inactivation. 2) β2(K33,R34,K35) delays the dSlo1/Δ3-β2 channel activation. 3) dSlo1/β2 channel has enhanced pre-inactivation than mSlo1/β2 channel. The results in our study provide insights into the different modulations of β2 subunit between mammalian and Drosophila Slo1/β2 channels and structural basis underlie the activation and pre-inactivation of other BK(β) complexes. PMID:27755549

  14. Further evidence for clustering of human GABA[sub A] receptor subunit genes: Localization of the [alpha][sub 6]-subunit gene (GABRA6) to distal chromosome 5q by linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, A.A.; Kamphuis, W.; Darlison, M.G. (MRC Molecular Neurobiology Unit, Cambride (United Kingdom)); Bailey, M.E.S.; Johnson, K.J. (Charing Cross and Westminster Medical School, London (United Kingdom)); Riley, B.P. (St. Mary' s Hospital Medical School, London (United Kingdom)); Siciliano, M.J. (Univ. of Texas M.D. Anderson Cancer Center, Houston, TX (United States))

    1994-03-15

    GABA[sub A] receptors are hetero-oligomeric ion-channel complexes that are composed of combinations of [alpha], [beta], [gamma], and [delta] subunits and play a major role in inhibitory neurotransmission in the mammalian brain. The authors report here a microsatellite polymorphism within the human [alpha][sub 6]-subunit gene (GABRA6). Mapping of this marker in a human-hamster hybrid cell-line panel and typing of the repeat in the Centre d'Etude du Polymorphisme Humain (CEPH) reference families enabled the localization of this gene to chromosome 5q and established its linkage to the GABA[sub A] receptor [alpha][sub 1]-subunit gene (GA-BRA1) with a maximum lod score (Z[sub max]) of 39.87 at a [theta] of 0.069 (males) and 0.100 (females). These results reveal the clustering of GABRA6, GABRA1, and the GABA[sub A] receptor [gamma][sub 2]-subunit gene (GABRG2) on distal chromosome 5q. 17 refs., 1 fig., 1 tab.

  15. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    Science.gov (United States)

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  16. Studies of double-labeled mouse thyrotropin and free alpha-subunits to estimate relative fucose content

    International Nuclear Information System (INIS)

    The composition and structure of the complex oligosaccharides of thyrotropin (TSH) and free alpha-subunits are not well established, but are believed to be important determinants of the biological properties of these glycoproteins. We employed a simple double-label technique to learn the relative fucose content of mouse thyrotropin and free alpha-subunits. Thyrotropic tumor minces were incubated simultaneously with [35S]methionine and [3H]fucose. Thyrotropin and free alpha-subunits were labeled with both isotopes, and the ratio of 3H/35S was higher in free alpha-subunits than in thyrotropin; free alpha-subunits were approximately fivefold richer in fucose than was thyrotropin. The 3H/35S ratio was not substantially altered in TSH or free alpha-subunits secreted after a brief incubation with 10(-7) M thyrotropin-releasing hormone. Species which incorporated [3H]fucose were resistant to endoglycosidase H. Thus, mouse free alpha-subunits secreted by thyrotropic tumor are relatively rich in fucose. Double-isotope labeling using an amino acid and a sugar appears to be a useful technique for studies of the glycoprotein hormones

  17. Unexpected high digestion rate of cooked starch by the Ct-Maltase-Glucoamylase small intestine mucosal alpha-glucosidase subunit

    Science.gov (United States)

    For starch digestion to glucose, two luminal alpha-amylases and four gut mucosal alpha-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal alpha-glucosidases on cooked (gelatinized) starch. Gelatinized ...

  18. Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor.

    OpenAIRE

    Roberson, M S; Schoderbek, W E; Tremml, G; Maurer, R A

    1994-01-01

    Recently, a pituitary-specific enhancer was identified within the 5' flanking region of the mouse glycoprotein hormone alpha-subunit gene. This enhancer is active in pituitary cells of the gonadotrope and thyrotrope lineages and has been designated the pituitary glycoprotein hormone basal element (PGBE). In the present studies, we sought to isolate and characterize proteins which interact with the PGBE. Mutagenesis experiments identified a 14-bp imperfect palindrome that is required for bindi...

  19. Alpha Channeling in Open-System Magnetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel [Princeton Univ., NJ (United States)

    2016-06-19

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasma were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.

  20. Functional roles of γ2, γ3 and γ4, three new Ca2+ channel subunits, in P/Q-type Ca2+ channel expressed in Xenopus oocytes

    Science.gov (United States)

    Rousset, M; Cens, T; Restituito, S; Barrere, C; Black, J L; McEnery, M W; Charnet, P

    2001-01-01

    Stargazin or γ2, the product of the gene mutated in the stargazer mouse, is a homologue of the γ1 protein, an accessory subunit of the skeletal muscle L-type Ca2+ channel. γ2 is selectively expressed in the brain, and considered to be a putative neuronal Ca2+ channel subunit based mainly on homology to γ1. Two new members of the γ family expressed in the brain have recently been identified: γ3 and γ4. We have co-expressed, in Xenopus oocytes, the human γ2,γ3 and γ4 subunits with the P/Q-type (CaV2.1) Ca2+ channel and different regulatory subunits (α2-δ; β1, β2, β3 or β4). Subcellular distribution of the γ subunits confirmed their membrane localization. Ba2+ currents, recorded using two-electrode voltage clamp, showed that the effects of the γ subunits on the electrophysiological properties of the channel are, most of the time, minor. However, a fraction of the oocytes expressing β subunits displayed an unusual slow-inactivating Ba2+ current. Expression of both β and γ subunits increased the appearance of the slow-inactivating current. Our data support a role for the γ subunit as a brain Ca2+ channel modulatory subunit and suggest that β and γ subunits are involved in a switch between two regulatory modes of the P/Q-type channel inactivation. PMID:11313431

  1. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.

    Science.gov (United States)

    Dolphin, Annette C

    2016-10-01

    Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.

  2. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels

    Science.gov (United States)

    Yu, Haibo; Lin, Zhihong; Mattmann, Margrith E.; Zou, Beiyan; Terrenoire, Cecile; Zhang, Hongkang; Wu, Meng; McManus, Owen B.; Kass, Robert S.; Lindsley, Craig W.; Hopkins, Corey R.; Li, Min

    2013-01-01

    Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1–KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in diseases in brain, heart, and the respiratory system. In addition to complexities arising from existence of five KCNE subunits, KCNE1 to KCNE5, recent studies in heterologous systems suggest unorthodox stoichiometric dynamics in subunit assembly is dependent on KCNE expression levels. The resultant KCNQ1–KCNE channel complexes may have a range of zero to two or even up to four KCNE subunits coassembling per KCNQ1 tetramer. These findings underscore the need to assess the selectivity of small-molecule KCNQ1 modulators on these different assemblies. Here we report a unique small-molecule gating modulator, ML277, that potentiates both homomultimeric KCNQ1 channels and unsaturated heteromultimeric (KCNQ1)4(KCNE1)n (n < 4) channels. Progressive increase of KCNE1 or KCNE3 expression reduces efficacy of ML277 and eventually abolishes ML277-mediated augmentation. In cardiomyocytes, the slowly activating delayed rectifier potassium current, or IKs, is believed to be a heteromultimeric combination of KCNQ1 and KCNE1, but it is not entirely clear whether IKs is mediated by KCNE-saturated KCNQ1 channels or by channels with intermediate stoichiometries. We found ML277 effectively augments IKs current of cultured human cardiomyocytes and shortens action potential duration. These data indicate that unsaturated heteromultimeric (KCNQ1)4(KCNE1)n channels are present as components of IKs and are pharmacologically distinct from KCNE-saturated KCNQ1–KCNE1 channels. PMID:23650380

  3. Effect of acupuncture liver channel of points on content of G protein alpha subunits in the rat brain stem after nitroglycerin infusion%针刺肝经腧穴对偏头痛大鼠脑干组织G蛋白含量的影响

    Institute of Scientific and Technical Information of China (English)

    钟广伟; 李炜; 王素娥; 李臻琰; 文玲波

    2004-01-01

    目的研究针刺肝经腧穴对实验性偏头痛大鼠肝干组织G蛋白亚基(Gsa和Gia)含量的影响.方法通过皮下注射硝酸甘油(10mg/kg)建立实验性偏头痛大鼠模型,将动物随机分成正常对照组、生理盐水组、模型对照组和针刺治疗组,运用免疫印迹法(Western b1ot)检测脑干组织Gia和Gsa的含量.结果皮下注射硝酸甘油4h后脑干组织Gsa蛋白含量明显升高(P<0.01),Gia蛋白含量明显降低(P<0.01),Gsa/Gia蛋白比值升高;针刺治疗组与模型组比较,脑干组织中Gsa蛋白含量明显降低(P<0.01),Gia蛋白含量明显升高(P<0.01),Gsa/Gia蛋白比值降低.结论偏头痛发作可能与大鼠脑干组织G蛋白信号传导系统功能障碍有关,针刺介导的G蛋白信号通路可能是其防治偏头痛的重要机制之一.%Objective: In order to explore the effect of acupuncture the liver channel of points on the content of G protein alpha subunits in the rat brain stem after nitroglycerin infusion. Methods: The model of migraine rats were reproduced in accordance with Knynihar-tassorelli methods by infusing the NO lonor nitroglycerin [glyceryl trintrate (GTN)] i.h, then the rats were divided randomly into four groups: Normal control group, Saline control group, Model control group and Acupuncture treatment group. The content of Giα and Gsα protein in the rat brain stem was analysed by western blot method. Results: The model control group of the content of Gsα protein in the rat brain stem was significantly raised (P <0.01), the Giα protein was significantly reduced (P <0.01), and the ration of Gsα/Giα was increased by comparison with the normal control group. The acupuncture group of Gsα protein in the rat brain stem went up apparently than the model group (P <0.01), and Giα protein was slightly higher than the model group (P <0.01), resulting in reducing of Gsα/Giα rations. Conclusion: Our results provided important information for understanding how

  4. Atypical properties of a conventional calcium channel β subunit from the platyhelminth Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Schneider Toni

    2008-03-01

    Full Text Available Abstract Background The function of voltage-gated calcium (Cav channels greatly depends on coupling to cytoplasmic accessory β subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the α1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two β subunit subtypes: a structurally conventional β subunit and a variant β subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavβ subunit. Here, we focus on the modulatory phenotype of the conventional Cavβ subunit (SmCavβ using the human Cav2.3 channel as the substrate for SmCavβ and the whole-cell patch-clamp technique. Results The conventional Schistosoma mansoni Cavβ subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavβ run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavβ lends the Cav2.3/SmCavβ complex sensitivity to Na+ ions. A mutant version of the Cavβ subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. Conclusion The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavβ subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by

  5. Formation of fluorescent proteins by the attachment of phycoerythrobilin to R-phycoerythrin alpha and beta apo-subunits.

    Science.gov (United States)

    Isailovic, Dragan; Sultana, Ishrat; Phillips, Gregory J; Yeung, Edward S

    2006-11-01

    Formation of fluorescent proteins was explored after incubation of recombinant apo-subunits of phycobiliprotein R-phycoerythrin with phycoerythrobilin chromophore. Alpha and beta apo-subunit genes of R-phycoerythrin from red algae Polisiphonia boldii were cloned in plasmid pET-21d(+). Hexahistidine-tagged alpha and beta apo-subunits were expressed in Escherichia coli. Although expressed apo-subunits formed inclusion bodies, fluorescent holo-subunits were constituted after incubation of E. coli cells with phycoerythrobilin. Holo-subunits contained both phycoerythrobilin and urobilin chromophores. Fluorescence and differential interference contrast microscopy showed polar location of holo-subunit inclusion bodies in bacterial cells. Cells containing fluorescent holo-subunits were several times brighter than control cells as found by fluorescence microscopy and flow cytometry. The addition of phycoerythrobilin to cells did not show cytotoxic effects, in contrast to expression of proteins in inclusion bodies. In an attempt to improve solubility, R-phycoerythrin apo-subunits were fused to maltose-binding protein and incubated with phycoerythrobilin both in vitro and in vivo. Highly fluorescent soluble fusion proteins containing phycoerythrobilin as the sole chromophore were formed. Fusion proteins were localized by fluorescence microscopy either throughout E. coli cells or at cell poles. Flow cytometry showed that cells containing fluorescent fusion proteins were up to 10 times brighter than control cells. Results indicate that fluorescent proteins formed by attachment of phycoerythrobilin to expressed apo-subunits of phycobiliproteins can be used as fluorescent probes for analysis of cells by microscopy and flow cytometry. A unique property of these fluorescent reporters is their utility in both properly folded (soluble) subunits and subunits aggregated in inclusion bodies.

  6. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits

    Directory of Open Access Journals (Sweden)

    2005-04-01

    Full Text Available The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM cell-surface receptors. In 1996, we and others identified a superfamily of “regulator of G-protein signaling” (RGS proteins that accelerate the rate of GTP hydrolysis by Gα subunits (dubbed GTPase-accelerating protein or “GAP” activity. This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Gα subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs that serve as Gα effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Gα and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Gα subunits to 7TM receptors in the absence of conventional Gβγ dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Gα AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Gα subunits: namely, the guanine nucleotide dissociation inhibitor (GDI activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF activity of Ric‑8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Gα subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal

  7. Stoichiometry of expressed alpha(4)beta(2)delta gamma-aminobutyric acid type A receptors depends on the ratio of subunit cDNA transfected.

    Science.gov (United States)

    Wagoner, Kelly R; Czajkowski, Cynthia

    2010-05-01

    The gamma-aminobutyric acid type A receptor (GABA(A)R) is the target of many depressants, including benzodiazepines, anesthetics, and alcohol. Although the highly prevalent alphabetagamma GABA(A)R subtype mediates the majority of fast synaptic inhibition in the brain, receptors containing delta subunits also play a key role, mediating tonic inhibition and the actions of endogenous neurosteroids and alcohol. However, the fundamental properties of delta-containing GABA(A)Rs, such as subunit stoichiometry, are not well established. To determine subunit stoichiometry of expressed delta-containing GABA(A)Rs, we inserted the alpha-bungarotoxin binding site tag in the alpha(4), beta(2), and delta subunit N termini. An enhanced green fluorescent protein tag was also inserted into the beta(2) subunit to shift its molecular weight, allowing us to separate subunits using SDS-PAGE. Tagged alpha(4)beta(2)delta GABA(A)Rs were expressed in HEK293T cells using various ratios of subunit cDNA, and receptor subunit stoichiometry was determined by quantitating fluorescent alpha-bungarotoxin bound to each subunit on Western blots of surface immunopurified tagged GABA(A)Rs. The results demonstrate that the subunit stoichiometry of alpha(4)beta(2)delta GABA(A)Rs is regulated by the ratio of subunit cDNAs transfected. Increasing the ratio of delta subunit cDNA transfected increased delta subunit incorporation into surface receptors with a concomitant decrease in beta(2) subunit incorporation. Because receptor subunit stoichiometry can directly influence GABA(A)R pharmacological and functional properties, considering how the transfection protocols used affect subunit stoichiometry is essential when studying heterologously expressed alpha(4)beta(2)delta GABA(A)Rs. Successful bungarotoxin binding site tagging of GABA(A)R subunits is a novel tool with which to accurately quantitate subunit stoichiometry and will be useful for monitoring GABA(A)R trafficking in live cells.

  8. The calcium channel β2 (CACNB2 subunit repertoire in teleosts

    Directory of Open Access Journals (Sweden)

    Mueller Rachel

    2008-04-01

    Full Text Available Abstract Background Cardiomyocyte contraction is initiated by influx of extracellular calcium through voltage-gated calcium channels. These oligomeric channels utilize auxiliary β subunits to chaperone the pore-forming α subunit to the plasma membrane, and to modulate channel electrophysiology 1. Several β subunit family members are detected by RT-PCR in the embryonic heart. Null mutations in mouse β2, but not in the other three β family members, are embryonic lethal at E10.5 due to defects in cardiac contractility 2. However, a drawback of the mouse model is that embryonic heart rhythm is difficult to study in live embryos due to their intra-uterine development. Moreover, phenotypes may be obscured by secondary effects of hypoxia. As a first step towards developing a model for contributions of β subunits to the onset of embryonic heart rhythm, we characterized the structure and expression of β2 subunits in zebrafish and other teleosts. Results Cloning of two zebrafish β2 subunit genes (β2.1 and β2.2 indicated they are membrane-associated guanylate kinase (MAGUK-family genes. Zebrafish β2 genes show high conservation with mammals within the SH3 and guanylate kinase domains that comprise the "core" of MAGUK proteins, but β2.2 is much more divergent in sequence than β2.1. Alternative splicing occurs at the N-terminus and within the internal HOOK domain. In both β2 genes, alternative short ATG-containing first exons are separated by some of the largest introns in the genome, suggesting that individual transcript variants could be subject to independent cis-regulatory control. In the Tetraodon nigrovidis and Fugu rubripes genomes, we identified single β2 subunit gene loci. Comparative analysis of the teleost and human β2 loci indicates that the short 5' exon sequences are highly conserved. A subset of 5' exons appear to be unique to teleost genomes, while others are shared with mammals. Alternative splicing is temporally and

  9. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit.

    Science.gov (United States)

    Aydar, Ebru; Palmer, Christopher P; Klyachko, Vitaly A; Jackson, Meyer B

    2002-04-25

    The sigma receptor is a novel protein that mediates the modulation of ion channels by psychotropic drugs through a unique transduction mechanism depending neither on G proteins nor protein phosphorylation. The present study investigated sigma receptor signal transduction by reconstituting responses in Xenopus oocytes. Sigma receptors modulated voltage-gated K+ channels (Kv1.4 or Kv1.5) in different ways in the presence and absence of ligands. Association between Kv1.4 channels and sigma receptors was demonstrated by coimmunoprecipitation. These results indicate a novel mechanism of signal transduction dependent on protein-protein interactions. Domain accessibility experiments suggested a structure for the sigma receptor with two cytoplasmic termini and two membrane-spanning segments. The ligand-independent effects on channels suggest that sigma receptors serve as auxiliary subunits to voltage-gated K+ channels with distinct functional interactions, depending on the presence or absence of ligand.

  10. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly

    DEFF Research Database (Denmark)

    Schmitt, N; Schwarz, M; Peretz, A;

    2000-01-01

    The LQT1 locus (KCNQ1) has been correlated with the most common form of inherited long QT (LQT) syndrome. LQT patients suffer from syncopal episodes and high risk of sudden death. The KCNQ1 gene encodes KvLQT1 alpha-subunits, which together with auxiliary IsK (KCNE1, minK) subunits form IK(s) K...

  11. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles

    DEFF Research Database (Denmark)

    Guerra, B; Siemer, S; Boldyreff, B;

    1999-01-01

    The highest CK2 activity was found in mouse testicles and brain, followed by spleen, liver, lung, kidney and heart. The activity values were directly correlated with the protein expression level of the CK2 subunits alpha (catalytic) and beta (regulatory). The alpha' subunit was only detected...... found for testicles and brain. The amount of CK2beta protein in brain in comparison to the other organs (except testicles) was estimated to be ca. 2-3-fold higher whereas the ratio of CK2beta between testicles and brain was estimated to be 3-4-fold. Results from the immunoprecipitation experiments...... support the notion for the existence of free CK2beta population and/or CK2beta in complex with other protein(s) present in brain and testicles. In all other mouse organs investigated, i.e. heart, lung, liver, kidney and spleen, no comparable amount of free CK2beta was observed. This is the first...

  12. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy

    Directory of Open Access Journals (Sweden)

    Gemes Geza

    2010-01-01

    Full Text Available Abstract Background ATP-sensitive potassium (KATP channels in neurons mediate neuroprotection, they regulate membrane excitability, and they control neurotransmitter release. Because loss of DRG neuronal KATP currents is involved in the pathophysiology of pain after peripheral nerve injury, we characterized the distribution of the KATP channel subunits in rat DRG, and determined their alterations by painful axotomy using RT-PCR, immunohistochemistry and electron microscopy. Results PCR demonstrated Kir6.1, Kir6.2, SUR1 and SUR2 transcripts in control DRG neurons. Protein expression for all but Kir6.1 was confirmed by Western blots and immunohistochemistry. Immunostaining of these subunits was identified by fluorescent and confocal microscopy in plasmalemmal and nuclear membranes, in the cytosol, along the peripheral fibers, and in satellite glial cells. Kir6.2 co-localized with SUR1 subunits. Kir6.2, SUR1, and SUR2 subunits were identified in neuronal subpopulations, categorized by positive or negative NF200 or CGRP staining. KATP current recorded in excised patches was blocked by glybenclamide, but preincubation with antibody against SUR1 abolished this blocking effect of glybenclamide, confirming that the antibody targets the SUR1 protein in the neuronal plasmalemmal membrane. In the myelinated nerve fibers we observed anti-SUR1 immunostaining in regularly spaced funneled-shaped structures. These structures were identified by electron microscopy as Schmidt-Lanterman incisures (SLI formed by the Schwann cells. Immunostaining against SUR1 and Kir6.2 colocalized with anti-Caspr at paranodal sites. DRG excised from rats made hyperalgesic by spinal nerve ligation exhibited similar staining against Kir6.2, SUR1 or SUR2 as DRG from controls, but showed decreased prevalence of SUR1 immunofluorescent NF200 positive neurons. In DRG and dorsal roots proximal to axotomy SLI were smaller and showed decreased SUR1 immunofluorescence. Conclusions We

  13. Isolation and characterization of a monoclonal anti CK-2 alpha subunit antibody of the IgG1 subclass

    DEFF Research Database (Denmark)

    Schmidt-Spaniol, I; Boldyreff, B; Issinger, O G

    1992-01-01

    A monoclonal antibody was produced against the recombinant human alpha subunit of CK-2. The antibody was of the IgG1 subclass and it was isolated from serum-free cell culture media and purified by affinity chromatography on Protein G Sepharose. The antibody can be used to detect specifically the ...

  14. The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme

    DEFF Research Database (Denmark)

    Battistutta, R; Sarno, S; De Moliner, E;

    2000-01-01

    , presents a molecular twofold axis, with each peptide interacting with both alpha chains. In the derived model of the holoenzyme, the regulatory subunits are positioned on the opposite side with respect to the opening of the catalytic sites, that remain accessible to substrates and cosubstrates. The beta......The crystal structure of a complex between the catalytic alpha subunit of Zea mays CK2 and a 23-mer peptide corresponding the C-terminal sequence 181-203 of the human CK2 regulatory beta subunit has been determined at 3.16-A resolution. The complex, composed of two alpha chains and two peptides...... subunit can influence the catalytic activity both directly and by promoting the formation of the alpha2 dimer, in which each alpha chain interacts with the active site of the other. Furthermore, the two active sites are so close in space that they can simultaneously bind and phosphorylate two...

  15. Stat2 binding to the interferon-alpha receptor 2 subunit is not required for interferon-alpha signaling.

    Science.gov (United States)

    Nguyen, Vinh-Phúc; Saleh, Abu Z M; Arch, Allison E; Yan, Hai; Piazza, Flavia; Kim, John; Krolewski, John J

    2002-03-22

    The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.

  16. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits

    OpenAIRE

    Tong, XiaoYong; Porter, Lisa M.; Liu, GongXin; Dhar-Chowdhury, Piyali; Srivastava, Shekhar; Pountney, David J.; Yoshida, Hidetada; Artman, Michael; Fishman, Glenn I.; Yu, Cindy; Iyer, Ramesh; Morley, Gregory E.; Gutstein, David E.; Coetzee, William A.

    2006-01-01

    Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291: H543–H551, 2006. First published February 24, 2006; doi:10.1152/ajpheart.00051.2006.—Cardiac ATP-sensitive K+ (KATP) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression ...

  17. Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Weng, J; Kabaleeswaran, V; Li, H; Cao, Y; Bholse, R; Zhou, M

    2008-01-01

    The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structure of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.

  18. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice

    NARCIS (Netherlands)

    M.A. van Maanen; S.P. Stoof; G.J. Larosa; M.J. Vervoordeldonk; P.P. Tak

    2010-01-01

    BACKGROUND: The alpha7 subunit of nicotinic acetylcholine receptors (alpha7nAChR) can negatively regulate the synthesis and release of proinflammatory cytokines by macrophages and fibroblast-like synoviocytes in vitro. In addition, stimulation of the alpha7nAChR can reduce the severity of arthritis

  19. Expression of mRNA coding voltage - gated sodium channel α-subunit in spontaneously epileptic rat

    Institute of Scientific and Technical Information of China (English)

    DUWa; CAIJi-Qun

    2004-01-01

    OBJECTIVE Subtypes Ⅰ,Ⅱ and Ⅲ of sodium channel α- subunit mRNA were analyzed in adult rat brain of spontaneously epileptic rats, and investigated the relationship between sodium channel expression and epilepsy. METHODS Tissue samples were microdissected from occipital neocortex, CA1 and CA3 hippocampus areas and dentate gyms, observe

  20. Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment

    DEFF Research Database (Denmark)

    Rasmussen, Hanne B; Frøkjaer-Jensen, Christian; Jensen, Camilla Stampe;

    2007-01-01

    The potassium channel subunits KCNQ2 and KCNQ3 are believed to underlie the M current of hippocampal neurons. The M-type potassium current plays a key role in the regulation of neuronal excitability; however, the subcellular location of the ion channels underlying this regulation has been controv...

  1. Mice lacking the alpha4 nicotinic receptor subunit fail to modulate dopaminergic neuronal arbors and possess impaired dopamine transporter function.

    Science.gov (United States)

    Parish, C L; Nunan, J; Finkelstein, D I; McNamara, F N; Wong, J Y; Waddington, J L; Brown, R M; Lawrence, A J; Horne, M K; Drago, J

    2005-11-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) at presynaptic sites can modulate dopaminergic synaptic transmission by regulating dopamine (DA) release and uptake. Dopaminergic transmission in nigrostriatal and mesolimbic pathways is vital for the coordination of movement and is associated with learning and behavioral reinforcement. We reported recently that the D2 DA receptor plays a central role in regulating the arbor size of substantia nigra dopaminergic neurons. Given the known effects of nAChRs on dopaminergic neurotransmission, we assessed the ability of the alpha4 nAChR subunit to regulate arbor size of dopaminergic neurons by comparing responses of wild-type and alpha4 nAChR subunit knockout [alpha4(-/-)] mice to long-term exposure to cocaine, amphetamine, nicotine, and haloperidol, and after substantia nigra neurotoxic lesioning. We found that dopaminergic neurons in adult drug-naive alpha4(-/-) mice had significantly larger terminal arbors, and despite normal short-term behavioral responses to drugs acting on pre- and postsynaptic D2 DA receptors, they were unable to modulate their terminal arbor in response to pharmacological manipulation or after lesioning. In addition, although synaptosome DA uptake studies showed that the interaction of the D2 DA receptor and the dopamine transporter (DAT) was preserved in alpha4(-/-) mice, DAT function was found to be impaired. These findings suggest that the alpha4 subunit of the nAChR is an independent regulator of terminal arbor size of nigrostriatal dopaminergic neurons and that reduced functionality of presynaptic DAT may contribute to this effect by impairing DA uptake. PMID:16077034

  2. Xalpha-DVM investigation of double water molecule interactions with active sites of alpha- and beta-subunits of hemoglobin

    Science.gov (United States)

    Yuryeva, Elmira I.

    In this work, the results of Xalpha-discrete variation method calculations of the electronic structure and interatomic parameters of chemical bonding between iron (II) and oxygen molecule with and without extra electrons and protons in active site (AS) of alpha- and beta-subunits of oxyhemoglobin are presented. The Skulachev model of O2 molecule existing in respiration medium in the 2H2O form was used. The introduction of extra electrons does not change considerably the interaction of the iron atom with the O2 oxygen molecule, but strengthens the repulsion in the Fe bond N bonds. In this case, the estimated effective charge of the iron atom is +1.8/1.5e for AS of alpha-/beta-subunits of oxyhemoglobin, and the magnetic moment of iron atoms becomes zero. The deoxygenation effect of the AS of the alpha- and beta-subunits of oxyhemoglobin is due to the ability of extra protons to break down covalent attraction between the iron atom and the nearest oxygen atom and also to weakening of the repulsive component of the covalent Fe bond N interactions.

  3. Expression of ATP sensitive K+ channel subunit Kir6.1 in rat kidney

    Directory of Open Access Journals (Sweden)

    M Zhou

    2009-06-01

    Full Text Available ATP-sensitive K+ (KATP channels in kidney are considered to play roles in regulating membrane potential during the change in intracellular ATP concentration. They are composed of channel subunits (Kir6.1, Kir6.2, which are members of the inwardly rectifying K+ channel family, and sulphonylurea receptors (SUR1, SUR2A and SUR2B, which belong to the ATP-binding cassette superfamily. In the present study, we have investigated the expression and localization of Kir6.1 in rat kidney with Western blot analysis, immunohistochemistry, in situ hybridization histochemistry, and immunoelectron microscopy. Western blot analysis showed that Kir6.1 was expressed in the mitochondria and microsome fractions of rat kidney and very weakly in the membrane fractions. Immunohistochemistry revealed that Kir6.1 was widely distributed in renal tubular epithelial cells, glomerular mesangial cells, and smooth muscles of blood vessels. In immunoelectron microscopy, Kir6.1 is mainly localized in the mitochondria, endoplasmic reticulum (ER, and very weakly in cell membranes. Thus, Kir6.1 is contained in the kidney and may be a candidate of mitochondrial KATP channels.

  4. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6, pgenome-wide = 0.013. The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10, and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695* that segregated fully with the disease in both breeds (p = 2.5×10(-23. A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.

  5. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3.

    Science.gov (United States)

    Shi, Z; Li, Z; Li, Z J; Cheng, K; Du, Y; Fu, H; Khuri, F R

    2015-05-01

    The cyclin-dependent kinase (CDK) inhibitor 1A, p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle-promoting kinases, CDK2 and CDK4. Thus delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Abl enzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability and support the model that the tumor-suppressive function of Cables1 occurs at least in part through enhancing the tumor-suppressive activity of p21. PMID:24975575

  6. Tryptic mapping and membrane topology of the benzodiazepine receptor alpha-subunit

    Energy Technology Data Exchange (ETDEWEB)

    Lentes, K.U.; Venter, J.C.

    1986-05-01

    Rat brain membrane benzodiazepine receptors (BZR) were photoaffinity labelled specifically (in presence or absence of 6 ..mu..M clonazepam) with 10 nM /sup 3/H-flunitrazepam (FNZ). Digestion of the FNZ-labelled, membrane-bound BZR with 200 ..mu..g trypsin/mg membrane protein yielded H/sub 2/O-soluble BZR-fragments of molecular mass (M/sub r/) 34, 31, 28, 24, 21, 18, 16, 12, 10 and 7kDa. Because the 34kDa-peptide is the largest fragment containing a FNZ-binding site they conclude that this represents the extracellular domain of the BZR. In the remaining pellet two labelled peptides with M/sub r/ of 44kDa and 28kDa were found that required the use of detergents for their solubilization; they therefore contain the membrane anchoring domain. Digestion of the 0.5% Na-deoxycholate solubilized, intact BZR (M/sub r/ 51kDa) resulted in the same tryptic pattern as the membrane form of the receptor plus two larger fragments of M/sub r/ 45kDa and 40kDa. Arrangement of all tryptic fragments with reference to the FNZ binding site reveals a membrane topology of the BZR alpha-subunit with 67% (34kDa) for the extracellular domain, 21% (11kDa) for the membrane anchoring domain and 12% (6kDa) for a putative cytoplasmic domain. The overlap between some of the labelled fragments suggest that the BZ binding site must be located near the membrane surface of the extracellular domain.

  7. Tryptic mapping and membrane topology of the benzodiazepine receptor alpha-subunit

    International Nuclear Information System (INIS)

    Rat brain membrane benzodiazepine receptors (BZR) were photoaffinity labelled specifically (in presence or absence of 6 μM clonazepam) with 10 nM 3H-flunitrazepam (FNZ). Digestion of the FNZ-labelled, membrane-bound BZR with 200 μg trypsin/mg membrane protein yielded H2O-soluble BZR-fragments of molecular mass (M/sub r/) 34, 31, 28, 24, 21, 18, 16, 12, 10 and 7kDa. Because the 34kDa-peptide is the largest fragment containing a FNZ-binding site they conclude that this represents the extracellular domain of the BZR. In the remaining pellet two labelled peptides with M/sub r/ of 44kDa and 28kDa were found that required the use of detergents for their solubilization; they therefore contain the membrane anchoring domain. Digestion of the 0.5% Na-deoxycholate solubilized, intact BZR (M/sub r/ 51kDa) resulted in the same tryptic pattern as the membrane form of the receptor plus two larger fragments of M/sub r/ 45kDa and 40kDa. Arrangement of all tryptic fragments with reference to the FNZ binding site reveals a membrane topology of the BZR alpha-subunit with 67% (34kDa) for the extracellular domain, 21% (11kDa) for the membrane anchoring domain and 12% (6kDa) for a putative cytoplasmic domain. The overlap between some of the labelled fragments suggest that the BZ binding site must be located near the membrane surface of the extracellular domain

  8. Interaction of retinal guanylate cyclase with the alpha subunit of transducin: potential role in transducin localization.

    Science.gov (United States)

    Rosenzweig, Derek H; Nair, K Saidas; Levay, Konstantin; Peshenko, Igor V; Crabb, John W; Dizhoor, Alexander M; Slepak, Vladlen Z

    2009-02-01

    Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.

  9. Docking and molecular dynamics simulations studies of human protein kinase catalytic subunit alpha with antagonist

    Directory of Open Access Journals (Sweden)

    S. Sandeep

    2012-02-01

    Full Text Available Background: Cyclic adenosine monophosphate (cAMP dependent protein kinase A plays major role in cell signalling to undergo many cellular functions. Over expression of extracellular cAMP dependent protein kinase catalytic subunit alpha (PRKACA causes severe tumorgenesis in prostate. Thus, computer aided high throughput virtual screening and molecular dynamics simulations studies were implemented to identify the potent leads for human PRKACA.Methods: The human PRKACA crystal structure was optimized in Maestro v9.2. Fifteen recently published PRKACA inhibitors were selected for compiling 5388 structural analogs from Ligand.Info database, these were pre- pared using LigPrep. Molecular docking from lesser to higher stringency towards minor steric classes was applied subsequently to the prepared ligand dataset into PRKACA active site using Glide v5.7. Molecular dynamics simulation studies were done using Desmond v3.0 to predict the activity of PRKACA-leptosidin complex.Results: Twenty lead molecules were identified. Lead-1 was observed to have relatively the least docking score compared to the identified lead molecules and 15 published inhibitors. The PRKACA- leptosidin complex deciphered that leptosidin blocked the active site residues Thr-51, Glu-121, Val- 123, Glu-127 and Thr-183 directly through intermolecular hydrogen bonds. In molecular dynamics simulations, trajectory analysis also showed existence of water bridges between PRKACA and leptosidin.Conclusions: Docking and molecular dynamics studies revealed the better binding interaction of leptosidin with PRKACA. Leptosidin is having the better pharmacological properties thus it could be a futuristic perspective chemical compound for prostate cancer therapy.

  10. KCNE4 is an inhibitory subunit to Kv1.1 and Kv1.3 potassium channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hannne B; Hay-Schmidt, Anders;

    2003-01-01

    Kv1 potassium channels are widely distributed in mammalian tissues and are involved in a variety of functions from controlling the firing rate of neurons to maturation of T-lymphocytes. Here we show that the newly described KCNE4 beta-subunit has a drastic inhibitory effect on currents generated...... is detected in the heart and in five different parts of the brain. Having the broad distribution of Kv1 channels in mind, the demonstrated inhibitory property of KCNE4-subunits could locally and/or transiently have a dramatic influence on cellular excitability and on setting resting membrane potentials....

  11. A novel mutation in the sodium channel α1 subunit gene in a child with Dravet syndrome in Turkey

    Institute of Scientific and Technical Information of China (English)

    Mutluay Arslan; Ulu(c) Yi(s); Hande (C)a(g)layan; R1dvan Akin

    2013-01-01

    Dravet syndrome is a rare epileptic encephalopathy characterized by frequent seizures beginning in the first year of life and behavioral disorders. Mutations in the sodium channel α1 subunit gene are the main cause of this disease. We report two patients with refractory seizures and psychomotor retardation in whom the final diagnosis was Dravet syndrome with confirmed mutations in the sodium channel α1 subunit gene. The mutation identified in the second patient was a novel frame shift mutation, which resulted from the deletion of five nucleotides in exon 24.

  12. The alpha-subunit of Leishmania F1 ATP synthase hydrolyzes ATP in presence of tRNA.

    Science.gov (United States)

    Goswami, Srikanta; Adhya, Samit

    2006-07-14

    Import of tRNAs into the mitochondria of the kinetoplastid protozoon Leishmania requires the tRNA-dependent hydrolysis of ATP leading to the generation of membrane potential through the pumping of protons. Subunit RIC1 of the inner membrane RNA import complex is a bi-functional protein that is identical to the alpha-subunit of F1F0 ATP synthase and specifically binds to a subset (Type I) of importable tRNAs. We show that recombinant, purified RIC1 is a Type I tRNA-dependent ATP hydrolase. The activity was insensitive to oligomycin, sensitive to mutations within the import signal of the tRNA, and required the cooperative interaction between the ATP-binding and C-terminal domains of RIC1. The ATPase activity of the intact complex was inhibited by anti-RIC1 antibody, while knockdown of RIC1 in Leishmania tropica resulted in deficiency of the tRNA-dependent ATPase activity of the mitochondrial inner membrane. Moreover, RIC1 knockdown extracts failed to generate a membrane potential across reconstituted proteoliposomes, as shown by a rhodamine 123 uptake assay, but activity was restored by adding back purified RIC1. These observations identify RIC1 as a novel form of the F1 ATP synthase alpha-subunit that acts as the major energy transducer for tRNA import. PMID:16735512

  13. Adverse effects of AMP-activated protein kinase alpha2-subunit deletion and high-fat diet on heart function and ischemic tolerance in aged female mice.

    Science.gov (United States)

    Slámová, K; Papoušek, F; Janovská, P; Kopecký, J; Kolář, F

    2016-03-14

    AMP-activated protein kinase (AMPK) plays a role in metabolic regulation under stress conditions, and inadequate AMPK signaling may be also involved in aging process. The aim was to find out whether AMPK alpha2-subunit deletion affects heart function and ischemic tolerance of adult and aged mice. AMPK alpha2(-/-) (KO) and wild type (WT) female mice were compared at the age of 6 and 18 months. KO mice exhibited subtle myocardial AMPK alpha2-subunit protein level, but no difference in AMPK alpha1-subunit was detected between the strains. Both alpha1- and alpha2-subunits of AMPK and their phosphorylation decreased with advanced age. Left ventricular fractional shortening was lower in KO than in WT mice of both age groups and this difference was maintained after high-fat feeding. Infarct size induced by global ischemia/reperfusion of isolated hearts was similar in both strains at 6 months of age. Aged WT but not KO mice exhibited improved ischemic tolerance compared with the younger group. High-fat feeding for 6 months during aging abolished the infarct size-reduction in WT without affecting KO animals; nevertheless, the extent of injury remained larger in KO mice. The results demonstrate that adverse effects of AMPK alpha2-subunit deletion and high-fat feeding on heart function and myocardial ischemic tolerance in aged female mice are not additive. PMID:26596312

  14. beta-Hexosaminidase isozymes from cells cotransfected with alpha and beta cDNA constructs: analysis of the alpha-subunit missense mutation associated with the adult form of Tay-Sachs disease.

    OpenAIRE

    Brown, C. A.; Mahuran, D. J.

    1993-01-01

    In vitro mutagenesis and transient expression in COS cells has been used to associate a missense mutation with a clinical or biochemical phenotype. Mutations affecting the alpha-subunit of beta-hexosaminidase A (alpha beta) (E.C.3.2.1.52) result in Tay-Sachs disease. Because hexosaminidase A is heterodimeric, analysis of alpha-chain mutations is not straightforward. We examine three approaches utilizing previously identified mutations affecting alpha-chain folding. These involve transfection ...

  15. Characterization of the first honeybee Ca²⁺ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation.

    Science.gov (United States)

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Raymond, Valérie; Démares, Fabien; Quintavalle, Annabelle; Bellis, Michel; Le Conte, Yves; Chahine, Mohamed; Charnet, Pierre

    2013-07-01

    The honeybee is a model system to study learning and memory, and Ca(2+) signals play a key role in these processes. We have cloned, expressed, and characterized the first honeybee Ca(2+) channel subunit. We identified two splice variants of the Apis CaVβ Ca(2+) channel subunit (Am-CaVβ) and demonstrated expression in muscle and neurons. Although AmCaVβ shares with vertebrate CaVβ subunits the SH3 and GK domains, it beholds a unique N terminus that is alternatively spliced in the first exon to produce a long (a) and short (b) variant. When expressed with the CaV2 channels both, AmCaVβa and AmCaVβb, increase current amplitude, shift the voltage-sensitivity of the channel, and slow channel inactivation as the vertebrate CaVβ2a subunit does. However, as opposed to CaVβ2a, slow inactivation induced by Am-CaVβa was insensitive to palmitoylation but displayed a unique PI3K sensitivity. Inactivation produced by the b variant was PI3K-insensitive but staurosporine/H89-sensitive. Deletion of the first exon suppressed the sensitivity to PI3K inhibitors, staurosporine, or H89. Recording of Ba(2+) currents in Apis neurons or muscle cells evidenced a sensitivity to PI3K inhibitors and H89, suggesting that both AmCaVβ variants may be important to couple cell signaling to Ca(2+) entry in vivo. Functional interactions with phospho-inositide and identification of phosphorylation sites in AmCaVβa and AmCaVβb N termini, respectively, suggest that AmCaVβ splicing promoted two novel and alternative modes of regulation of channel activity with specific signaling pathways. This is the first description of a splicing-dependent kinase switch in the regulation of Ca(2+) channel activity by CaVβ subunit. PMID:23588376

  16. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury.

    Science.gov (United States)

    Rose, Kirstin; Ooi, Lezanne; Dalle, Carine; Robertson, Brian; Wood, Ian C; Gamper, Nikita

    2011-04-01

    Neuropathic pain is a severe health problem for which there is a lack of effective therapy. A frequent underlying condition of neuropathic pain is a sustained overexcitability of pain-sensing (nociceptive) sensory fibres. Therefore, the identification of mechanisms for such abnormal neuronal excitability is of utmost importance for understanding neuropathic pain. Despite much effort, an inclusive model explaining peripheral overexcitability is missing. We investigated transcriptional regulation of the Kcnq2 gene, which encodes the Kv7.2 subunit of membrane potential-stabilizing M channel, in peripheral sensory neurons in a model of neuropathic pain-partial sciatic nerve ligation (PSNL). We show that Kcnq2 is the major Kcnq gene transcript in dorsal root ganglion (DRG); immunostaining and patch-clamp recordings from acute ganglionic slices verified functional expression of Kv7.2 in small-diameter nociceptive DRG neurons. Neuropathic injury induced substantial downregulation of Kv7.2 expression. Levels of repressor element 1-silencing transcription factor (REST), which is known to suppress Kcnq2 expression, were upregulated in response to neuropathic injury identifying the likely mechanism of Kcnq2 regulation. Behavioural experiments demonstrated that neuropathic hyperalgesia following PSNL developed faster than the downregulation of Kcnq2 expression could be detected, suggesting that this transcriptional mechanism may contribute to the maintenance rather than the initiation of neuropathic pain. Importantly, the decrease in the peripheral M channel abundance could be functionally compensated by peripherally applied M channel opener flupirtine, which alleviated neuropathic hyperalgesia. Our work suggests a novel mechanism for neuropathic overexcitability and brings focus on M channels and REST as peripheral targets for the treatment of neuropathic pain. PMID:21345591

  17. Cloning and sequencing of the genes encoding the alpha and beta subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum.

    OpenAIRE

    Pilot, T J; Fox, J L

    1984-01-01

    Synthetic oligonucleotide probes were used to identify a cloned DNA fragment from the cyanobacterium Agmenellum quadruplicatum that contains the genes for the alpha and beta subunits of C-phycocyanin. The coding region for the alpha-subunit gene begins 108 base pairs downstream from the 3' end of the beta-subunit structural gene. The sequences of the coding regions for both genes have been determined as well as 379 base pairs of 5' flanking region, 204 base pairs of 3' flanking region, and th...

  18. O2-sensitive K+ channels: role of the Kv1.2 α-subunit in mediating the hypoxic response

    Science.gov (United States)

    Conforti, Laura; Bodi, Ilona; Nisbet, John W; Millhorn, David E

    2000-01-01

    One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 α-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 α-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at ≈80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 α-subunit is important in conferring O2 sensitivity to this channel. PMID:10790158

  19. [beta]-hexosaminidase isozymes from cells cotransfected with [alpha] and [beta] cDNA constructs: Analysis of the [alpha]-subunit missense mutation associated with the adult form of Tay-Sachs disease

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.A.; Mahuran, D.J. (Univ. of Toronto (Canada))

    1993-08-01

    In vitro mutagenesis and transient expression in COS cells has been used to associate a missense mutation with a clinical or biochemical phenotype. Mutations affecting the [alpha]-subunit of [beta]-hexosaminidase A ([alpha][beta]) (E.C.3.2.1.52) result in Tay-Sachs disease. Because hexosaminidase A is heterodimeric, analysis of [alpha]-chain mutations is not straightforward. The authors examine three approaches utilizing previously identified mutations affecting [alpha]-chain folding. These involve transfection of (1) the [alpha] cDNA alone; (2) a [beta] cDNA construct encoding a [beta]-subunit substituted at a position homologous to that of the [alpha]-subunit, and (3) both [alpha] and [beta] cDNAs. The latter two procedures amplified residual activity levels over that of patient samples, an effect not previously found with mutations affecting an [open quotes]active[close quotes] [alpha]Arg residue. This effect may help to discriminate between protein-folding and active-site mutations. The authors conclude that, with proper controls, the latter method of cotransfection can be used to evaluate the effects and perhaps to predict the clinical course of some [alpha]-chain mutations. Using this technique, they demonstrate that the adult-onset Tay-Sachs mutation, [alpha]Gly[yields]Ser[sup 269], does not directly affect [alpha][beta] dimerization but exerts an indirect effect on the dimer through destabilizing the folded [alpha]-subunit at physiological temperatures. Two other [alpha] mutations linked to more severe phenotypes appear to inhibit the initial folding of the subunit. 36 refs., 2 figs., 5 tabs.

  20. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling;

    2014-01-01

    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  1. Tay-Sachs disease in Moroccan Jews: deletion of a phenylalanine in the alpha-subunit of beta-hexosaminidase.

    OpenAIRE

    Navon, R; Proia, R L

    1991-01-01

    Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one o...

  2. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    Science.gov (United States)

    Chameau, Pascal; Qin, Yongjun; Spijker, Sabine; Smit, August Benjamin; Smit, Guus; Joëls, Marian

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Ca(v)1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the beta4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.

  3. A Common Structural Component for β-Subunit Mediated Modulation of Slow Inactivation in Different KV Channels

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Henrion, Ulrike; Schmitt, Nicole;

    2013-01-01

    inactivation by structurally dissimilar β-subunits in different KV channels. Conclusion: We propose a model in which structural changes accompanying activation and β-subunit modulation allosterically constrain the backbone carbonyl oxygen atoms via the side chain of the respective X-residue in the signature......Background/Aims: Potassium channels are tetrameric proteins providing potassium selective passage through lipid embedded proteinaceous pores with highest fidelity. The selectivity results from binding to discrete potassium binding sites and stabilization of a hydrated potassium ion in a central...... internal cavity. The four potassium binding sites, generated by the conserved TTxGYGD signature sequence are formed by the backbone carbonyls of the amino acids TXGYG. Residues KV1.5-Val481, KV4.3-Leu368 and KV7.1- Ile 313 represent the amino acids in the X position of the respective channels. Methods...

  4. Boosting of synaptic potentials and spine Ca transients by the peptide toxin SNX-482 requires alpha-1E-encoded voltage-gated Ca channels.

    Directory of Open Access Journals (Sweden)

    Andrew J Giessel

    Full Text Available The majority of glutamatergic synapses formed onto principal neurons of the mammalian central nervous system are associated with dendritic spines. Spines are tiny protuberances that house the proteins that mediate the response of the postsynaptic cell to the presynaptic release of glutamate. Postsynaptic signals are regulated by an ion channel signaling cascade that is active in individual dendritic spines and involves voltage-gated calcium (Ca channels, small conductance (SK-type Ca-activated potassium channels, and NMDA-type glutamate receptors. Pharmacological studies using the toxin SNX-482 indicated that the voltage-gated Ca channels that signal within spines to open SK channels belong to the class Ca(V2.3, which is encoded by the Alpha-1E pore-forming subunit. In order to specifically test this conclusion, we examined the effects of SNX-482 on synaptic signals in acute hippocampal slices from knock-out mice lacking the Alpha-1E gene. We find that in these mice, application of SNX-482 has no effect on glutamate-uncaging evoked synaptic potentials and Ca influx, indicating that that SNX-482 indeed acts via the Alpha-1E-encoded Ca(V2.3 channel.

  5. A network of stimulatory and inhibitory G alpha-subunits regulates olfaction in Caenorhabditis elegans.

    NARCIS (Netherlands)

    H. Lans (Hannes); S. Rademakers (Suzanne); G. Jansen (Gert)

    2004-01-01

    textabstractThe two pairs of sensory neurons of C. elegans, AWA and AWC, that mediate odorant attraction, express six Galpha-subunits, suggesting that olfaction is regulated by a complex signaling network. Here, we describe the cellular localization and functions of the six olfacto

  6. Mapping the residues of protein kinase CK2 alpha subunit responsible for responsiveness to polyanionic inhibitors

    DEFF Research Database (Denmark)

    Vaglio, P; Sarno, S; Marin, O;

    1996-01-01

    The quadruple mutation of the whole basic cluster, K74KKK77 conserved in the catalytic subunits of protein kinase CK2 and implicated in substrate recognition, not only abolishes inhibition by heparin but even induces with some peptide substrates an up to 5-fold stimulation by heparin in the 0...

  7. Alpha-emission channeling investigations of the lattice location of Li in Ge

    NARCIS (Netherlands)

    Wahl, U; Jahn, SG; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Hofsass, H

    1996-01-01

    The alpha-emission channeling and blocking technique is a direct method for lattice site determination of radioactive atoms in single crystals. Position-sensitive detection of emitted alpha-particles provides an efficient means of carrying out such experiments at very low doses (10(10)-10(11) cm(-2)

  8. The β1-subunit of Na(v1.5 cardiac sodium channel is required for a dominant negative effect through α-α interaction.

    Directory of Open Access Journals (Sweden)

    Aurélie Mercier

    Full Text Available Brugada syndrome (BrS is an inherited autosomal dominant cardiac channelopathy. Several mutations on the cardiac sodium channel Na(v1.5 which are responsible for BrS lead to misfolded proteins that do not traffic properly to the plasma membrane. In order to mimic patient heterozygosity, a trafficking defective mutant, R1432G was co-expressed with Wild Type (WT Na(v1.5 channels in HEK293T cells. This mutant significantly decreased the membrane Na current density when it was co-transfected with the WT channel. This dominant negative effect did not result in altered biophysical properties of Na(v1.5 channels. Luminometric experiments revealed that the expression of mutant proteins induced a significant reduction in membrane expression of WT channels. Interestingly, we have found that the auxiliary Na channel β(1-subunit was essential for this dominant negative effect. Indeed, the absence of the β(1-subunit prevented the decrease in WT sodium current density and surface proteins associated with the dominant negative effect. Co-immunoprecipitation experiments demonstrated a physical interaction between Na channel α-subunits. This interaction occurred only when the β(1-subunit was present. Our findings reveal a new role for β(1-subunits in cardiac voltage-gated sodium channels by promoting α-α subunit interaction which can lead to a dominant negative effect when one of the α-subunits shows a trafficking defective mutation.

  9. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G;

    1993-01-01

    CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  10. Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits

    Institute of Scientific and Technical Information of China (English)

    Zhengzheng Li; Lin Liu; Yongqiang Deng; Wei Ji; Wen Du; Pingyong Xu; Liangyi Chen; Tao Xu

    2011-01-01

    The Ca2+release-activated Ca2+(CRAC)channel pore is formed by Orail and gated by STIM1 after intracellular Ca2+store depletion.To resolve how many STIM1 molecules are required to open a CRAC channel,we fused different numbers of Orail subunits with functional two-tandem cytoplasmic domains of STIM1(residues 336-485,designated as S domain).Whole-cell patch clamp recordings of these chimeric molecules revealed that CRAC current reached maximum at a stoichiometry of four Orail and eight S domains.Further experiments indicate that two-tandem S domains specifically interact with the C-terminus of one Orail subunit,and CRAC current can be gradually increased as more Orail subunits can interact with S domains or STIM1 proteins.Our data suggest that maximal opening of one CRAC channel requires eight STIM1 molecules,and support a model that the CRAC channel activation is not in an"all-or-none"fashion but undergoes a graded process via binding of different numbers of STIM1.

  11. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S;

    2001-01-01

    )beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced......Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma......2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1...

  12. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase

    OpenAIRE

    Harpur, A G; Layton, M. J.; Das, P; Bottomley, M J; Panayotou, G.; Driscoll, P. C.; Waterfield, M D

    1999-01-01

    The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain a...

  13. Effect of pH on subunit association and heat protection of soybean alpha-galactosidase

    Science.gov (United States)

    Porter, J. E.; Sarikaya, A.; Herrmann, K. M.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1992-01-01

    Soybeans contain the enzyme alpha-galactosidase, which hydrolyzes alpha-1, 6 linkages in stachyose and raffinose to give sucrose and galactose. We have found that galactose, a competitive product inhibitor of alpha-galactosidase, strongly promotes the heat stability of the tetrameric form of the enzyme at pH 4.0 and at temperatures of up to 70 degrees C for 60 min. Stachyose and raffinose also protect alpha-galactosidase from denaturation at pH 4.0 although to a lesser extent. Glucose and mannose have little effect. At pH 7.0 the enzyme is a monomer, and galactose has no effect on the heat stability of the enzyme. In the absence of heat protection of the enzyme by added sugars, a series deactivation mechanism was found to describe the deactivation data. In comparison, a unimolecular, non-first order deactivation model applies at pH 4.0, where heat protection effects were observed. At a temperature above 60 degrees C, simple deactivation is a suitable model. The results suggest that alpha-galactosidase conformation and heat stability are directly related.

  14. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice.

    Science.gov (United States)

    Kreifeldt, Max; Le, David; Treistman, Steven N; Koob, George F; Contet, Candice

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout (KO) mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC) and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE) or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 KO mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 KO mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the treatment of alcoholism

  15. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice

    Directory of Open Access Journals (Sweden)

    Max eKreifeldt

    2013-12-01

    Full Text Available Large conductance calcium-activated potassium (BK channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 knockout mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 knockout mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the

  16. Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120.

    OpenAIRE

    McCarn, D F; R A Whitaker; Alam, J; Vrba, J M; Curtis, S E

    1988-01-01

    A cluster of genes encoding subunits of ATP synthase of Anabaena sp. strain PCC 7120 was cloned, and the nucleotide sequences of the genes were determined. This cluster, denoted atp1, consists of four F0 genes and three F1 genes encoding the subunits a (atpI), c (atpH), b' (atpG), b (atpF), delta (atpD), alpha (aptA), and gamma (atpC) in that order. Closely linked upstream of the ATP synthase subunit genes is an open reading frame denoted gene 1, which is equivalent to the uncI gene of Escher...

  17. Molecular mechanisms of benzodiazepine-induced down-regulation of GABAA receptor alpha 1 subunit protein in rat cerebellar granule cells.

    OpenAIRE

    Brown, M. J.; Bristow, D. R.

    1996-01-01

    1. Chronic benzodiazepine treatment of rat cerebellar granule cells induced a transient down-regulation of the gamma-aminobutyric acidA (GABAA) receptor alpha 1 subunit protein, that was dose-dependent (1 nM-1 microM) and prevented by the benzodiazepine antagonist flumazenil (1 microM). After 2 days of treatment with 1 microM flunitrazepam the alpha 1 subunit protein was reduced by 41% compared to untreated cells, which returned to, and remained at, control cell levels from 4-12 days of treat...

  18. Two new mutations in a late infantile Tay-Sachs patient are both in exon 1 of the beta-hexosaminidase alpha subunit gene.

    OpenAIRE

    Harmon, D L; Gardner-Medwin, D; Stirling, J L

    1993-01-01

    We have identified two new point mutations in the beta-hexosaminidase alpha subunit (HEX A) gene in a non-Jewish Tay-Sachs disease patient with an unusual late infantile onset disease phenotype. The patient was a compound heterozygote with each allele of the HEX A gene containing a different mutation in exon 1. One of these is a T to C transition in the initiation codon, expected to produce no alpha subunit and therefore a classical infantile phenotype. The unusual clinical aspects and later ...

  19. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, G H;

    1997-01-01

    Primary cultures of cerebellar granule cells, prepared from cerebella of 7-day-old rats and cultured for 4 or 8 days, were used to study the neurodifferentiative effect of a GABA(A) receptor agonist, 4,5,6,7-tetrahydroisoxazol[5,4-c]pyridin-3-ol (THIP), on the expression of the alpha6 GABA...... suggest that THIP has a trophic effect on alpha6 subunit expression, and this effect occurs only at an early developmental stage. Moreover, this study presents further evidence for the role of GABA(A) agonists, and thus the neurotransmitter, GABA, in regulating the expression of GABA(A) receptor subunits...

  20. A P-loop Mutation in G[alpha] Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, Dustin E.; Willard, Francis S.; Ramanujam, Ravikrishna; Kimple, Adam J.; Willard, Melinda D.; Naqvi, Naweed I.; Siderovski, David P. (UNC); (Singapore)

    2012-10-23

    Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active G{alpha}{beta}{gamma} heterotrimer relies on nucleotide cycling by the G{alpha} subunit: exchange of GTP for GDP activates G{alpha}, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting G{alpha} to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of G{alpha} subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that G{alpha}(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon G{alpha}{sub i1}(G42R) binding to GDP {center_dot} AlF{sub 4}{sup -} or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. G{alpha}(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with G{beta}{gamma} and GoLoco motifs in any nucleotide state. The corresponding G{alpha}{sub q}(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the G{alpha} subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two G{alpha} mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.

  1. A Common Structural Component for β-Subunit Mediated Modulation of Slow Inactivation in Different KV Channels

    Directory of Open Access Journals (Sweden)

    Nathalie Strutz-Seebohm

    2013-06-01

    Full Text Available Background/Aims: Potassium channels are tetrameric proteins providing potassium selective passage through lipid embedded proteinaceous pores with highest fidelity. The selectivity results from binding to discrete potassium binding sites and stabilization of a hydrated potassium ion in a central internal cavity. The four potassium binding sites, generated by the conserved TTxGYGD signature sequence are formed by the backbone carbonyls of the amino acids TXGYG. Residues KV1.5-Val481, KV4.3-Leu368 and KV7.1- Ile 313 represent the amino acids in the X position of the respective channels. Methods: Here, we study the impact of these residues on ion selectivity, permeation and inactivation kinetics as well as the modulation by β-subunits using site-specific mutagenesis, electrophysiological analyses and molecular dynamics simulations. Results: We identify this position as key in modulation of slow inactivation by structurally dissimilar β-subunits in different KV channels. Conclusion: We propose a model in which structural changes accompanying activation and β-subunit modulation allosterically constrain the backbone carbonyl oxygen atoms via the side chain of the respective X-residue in the signature sequence to reduce conductance during slow inactivation.

  2. Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase

    DEFF Research Database (Denmark)

    Hansen, Torben; Andersen, C B; Echwald, Søren Morgenthaler;

    1997-01-01

    % of the subjects in this population carry the gene variant in its homozygous form, and these carriers are characterized by significant reductions in whole-body glucose effectiveness and intravenous glucose disappearance constant. In itself, the gene variant does not confer an increased risk of diabetes....... of the present study were to examine for genetic variability in the human regulatory p85alpha subunit of PI3-K, to look for an association between gene variants and NIDDM in a case-control study, and to relate identified variability to potential changes in whole-body insulin sensitivity and glucose turnover.......13-0.19]). No difference in glucose disappearance constant (KG), insulin sensitivity index (SI), and glucose effectiveness (SG) was observed between wildtype and heterozygous subjects. However, compared with the combined values for wildtype and heterozygous carriers, KG was reduced by 40% (P = 0.004) and SG by 23% (P = 0...

  3. Conformational alterations resulting from mutations in cytoplasmic domains of the alpha subunit of the Na,K-ATPase

    DEFF Research Database (Denmark)

    Blostein, R; Daly, S E; MacAulay, Nanna;

    1998-01-01

    This paper summarizes experiments concerned with the functional consequences of mutations in cytoplasmic regions of the alpha 1 subunit of the Na,K-ATPase, in particular the amino terminus, the first cytoplasmic loop between transmembrane segments M2 and M3, and the major cytoplasmic loop between M...... involving substitution of a residue in the putative cation binding pocket, namely S775A in the fifth transmembrane segment (Arguello, J.M., & Lingrel, J. B. J. Biol. Chem. 270: 22764-22771, 1995). Although its K+/ATP antagonism resembles that of the foregoing cytoplasmic mutants, its vanadate sensitivity is...... unaltered suggesting that changes in apparent affinity for ATP are secondary to changes in K+ ligation. The question of cation selectivity, in particular that of Na+ versus protons, has been addressed in structure/function analysis of a cytoplasmic chimera involving the M4-M5 loop. Transport studies...

  4. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families

    Science.gov (United States)

    Kyrpides, N. C.; Woese, C. R.

    1998-01-01

    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  5. β1- and β3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Cedric James Laedermann

    2013-08-01

    Full Text Available Voltage-gated sodium channels (Navs are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V1/2 of steady-state activation and inactivation and increased Nav1.7-mediated INa density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at approximately 250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa was observed. This higher band shifted to an intermediate band (~260 kDa when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression.

  6. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    Science.gov (United States)

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  7. Antisymmetry and channel coupling contributions to the absorption for $p + \\alpha /d + ^{3}He$

    CERN Document Server

    Cooper, S G

    1997-01-01

    To understand recently established empirical p + alpha potentials, RGM calculations followed by inversion are made to study contributions of the d + 3He reaction channels and deuteron distortion effects to the p + alpha potential. An equivalent study of the d + 3He potential is also presented. The contributions of exchange non-locality to the absorption are simulated by including an phenomenological imaginary potential in the RGM. These effects alone strongly influence the shape of the imaginary potentials for both p + alpha and d + 3He. The potentials local-equivalent to the fully antisymmetrised-coupled channels calculations have a significant parity-dependence in both real and imaginary components, which for p + alpha is qualitatively similar to that found empirically. The effects on the potentials of the further inclusion of deuteron distortion are also presented. The inclusion of a spin-orbit term in the RGM, adds additional terms to the phase-equivalent potential, most notably the comparatively large im...

  8. Commitment of Satellite Cells Expressing the Calcium Channel α2δ1 Subunit to the Muscle Lineage

    Directory of Open Access Journals (Sweden)

    Tammy Tamayo

    2012-01-01

    Full Text Available Satellite cells can maintain or repair muscle because they possess stem cell properties, making them a valuable option for cell therapy. However, cell transplants into skeletal muscle of patients with muscular dystrophy are limited by donor cell attachment, migration, and survival in the host tissue. Cells used for therapy are selected based on specific markers present in the plasma membrane. Although many markers have been identified, there is a need to find a marker that is expressed at different states in satellite cells, activated, quiescent, or differentiated cell. Furthermore, the marker has to be present in human tissue. Recently we reported that the plasma membrane α2δ1 protein is involved in cell attachment and migration in myoblasts. The α2δ1 subunit forms a part of the L-type voltage-dependent calcium channel in adult skeletal muscle. We found that the α2δ1 subunit is expressed in the majority of newly isolated satellite cells and that it appears earlier than the α1 subunits and at higher levels than the β or γ subunits. We also found that those cells that expressed α2δ1 would differentiate into muscle cells. This evidence indicates that the α2δ1 may be used as a marker of satellite cells that will differentiate into muscle.

  9. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    OpenAIRE

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-01-01

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstr...

  10. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity.

    Science.gov (United States)

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S

    2011-02-25

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.

  11. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    Science.gov (United States)

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-10-25

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1. PMID:7971267

  12. Association of nicotinic acetylcholine receptor subunit alpha-4 polymorphisms with smoking behaviors in Chinese male smokers

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-jing; YANG Yan-chun; WEI Jin-xue; ZHANG Lan

    2011-01-01

    Background It has been reported that the nicotinic acetylcholine receptor subunit a4 gene (CHRNA4) might be associated with smoking behaviors in the previous studies. Up to now, there are few reports on the relationship between CHRNA4 and smoking initiation. In this study, we tried to explore the role of two polymorphisms in CHRNA4 (rs 1044396 and rs 1044397) in smoking initiation and nicotine dependence in Chinese male smokers.Methods Nine hundred and sixty-six Chinese male lifetime nonsmokers and smokers were assessed by the Fagerstr(o)m test for nicotine dependence (FTND), smoking quantity (SQ) and the heaviness of smoking index (HSI). All subjects were divided into four groups based on their tobacco use history and the FTND scores. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to find two polymorphisms of CHRNA4 in these subjects.Results The x2 test showed that rs1044396 was significantly associated with smoking initiation (x2=4.65, P=0.031),while both rs1044396 and rs1044397 were significantly associated with nicotine dependence (x2=5.42, P=0.020; x2=758,P=0.005). Furthermore, the T-G (3.9%) haplotype of rs1044396-rs1044397 showed significant association with smoking initiation (x2=6.30, P=0.012) and the C-G haplotype (58.9%) remained positive association with nicotine dependence (x2=8.64, P=0.003) after Bonferroni correction. The C-G haplotype also significantly increased the HSI (P=0.002) and FTND scores (P=0.001) after Bonferroni correction.Conclusion These findings suggest that CHRNA4 may be associated with smoking initiation and the C-G haplotype of rs1044396-rs1044397 might increase the vulnerability to nicotine dependence in Chinese male smokers.

  13. Relation between increased anxiety and reduced expression of alpha1 and alpha2 subunits of GABA(A) receptors in Wfs1-deficient mice.

    Science.gov (United States)

    Raud, Sirli; Sütt, Silva; Luuk, Hendrik; Plaas, Mario; Innos, Jürgen; Kõks, Sulev; Vasar, Eero

    2009-08-28

    Mutations in the coding region of the WFS1 gene cause Wolfram syndrome, a rare multisystem neurodegenerative disorder of autosomal recessive inheritance. In clinical studies a relation between mutations in the Wfs1 gene and increased susceptibility for mood disorders has been established. According to our previous studies, mice lacking Wfs1 gene displayed increased anxiety in stressful environment. As the GABA-ergic system plays a significant role in the regulation of anxiety, we analyzed the expression of GABA-related genes in the forebrain structures of wild-type and Wfs1-deficient mice. Experimentally naïve Wfs1-deficient animals displayed a significant down-regulation of alpha1 (Gabra1) and alpha2 (Gabra2) subunits of GABA(A) receptors in the temporal lobe and frontal cortex. Exposure of wild-type mice to the elevated plus-maze decreased levels of Gabra1 and Gabra2 genes in the temporal lobe. A similar tendency was also established in the frontal cortex of wild-type animals exposed to behavioral test. In Wfs1-deficient mice the elevated plus-maze exposure did not induce further changes in the expression of Gabra1 and Gabra2 genes. By contrast, the expression of Gad1 and Gad2 genes, enzymes responsible for the synthesis of GABA, was not significantly affected by the exposure of mice to the elevated plus-maze or by the invalidation of Wfs1 gene. Altogether, the present study demonstrates that increased anxiety of Wfs1-deficient mice is probably linked to reduced expression of Gabra1 and Gabra2 genes in the frontal cortex and temporal lobe. PMID:19477223

  14. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders;

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  15. Functional properties of the Cav1.2 calcium channel activated by calmodulin in the absence of α2δ subunits

    OpenAIRE

    Ravindran, Arippa; Kobrinsky, Evgeny; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Voltage-activated Cav1.2 calcium channels require association of the pore-forming α1C subunit with accessory Cavβ and α2δ subunits. Binding of a single calmodulin (CaM) to α1C supports Ca2+-dependent inactivation (CDI). The human Cav1.2 channel is silent in the absence of Cavβ and/or α2δ. Recently, we found that coexpression of exogenous CaM (CaMex) supports plasma membrane targeting, gating facilitation and CDI of the channel in the absence of Cavβ. Here we discovered that CaMex and its Ca2+...

  16. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    Science.gov (United States)

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits. PMID:27397895

  17. Mutations in sodium channel {beta}-subunit SCN3B are associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten Salling; Jespersen, Thomas; Nielsen, Jonas Bille;

    2011-01-01

    AIMS: Atrial fibrillation (AF) is the most frequent arrhythmia. Screening of SCN5A-the gene encoding the a-subunit of the cardiac sodium channel-has indicated that disturbances of the sodium current may play a central role in the mechanism of lone AF. We tested the hypothesis that lone AF in young...... patients is associated with genetic mutations in SCN3B and SCN4B, the genes encoding the two ß-subunits of the cardiac sodium channel. METHODS AND RESULTS: In 192 unrelated lone AF patients, the entire coding sequence and splice junctions of SCN3B and SCN4B were bidirectionally sequenced. Three non......-synonymous mutations were found in SCN3B (R6K, L10P, and M161T). Two mutations were novel (R6K and M161T). None of the mutations were present in the control group (n = 432 alleles), nor have any been previously reported in conjunction with AF. All SCN3B mutations affected residues that are evolutionarily conserved...

  18. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olesen, Søren-Peter

    2006-01-01

    The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance...

  19. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions

    OpenAIRE

    Daniela Almeida; Emanuel Maldonado; Vitor Vasconcelos; Agostinho Antunes

    2015-01-01

    Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments rangi...

  20. A derivation of the NS-alpha model and preliminary application to plane channel flow

    CERN Document Server

    Scott, K Andrea

    2010-01-01

    In this paper we consider the Navier-Stokes-$\\alpha$ (NS-$\\alpha$) model within a large-eddy simulation framework. An investigation is carried out using fully-developed turbulent channel flow at a fairly low Reynolds number. This is a flow where diffusion plays a prominent role, and presents a challenge to the nonlinear model investigated here. It is found that when $\\alpha^{2}_{k}$ is based on the mesh spacing, the NS-$\\alpha$ model has a tendency to tilt spanwise vorticity in the streamwise direction, leading to high skin friction. This is due to interaction between the spanwise vorticity, the model, and the streamwise streaks. To overcome this problem $\\alpha^{2}_{k}$ is damped in the streak affected region. Results overall demonstrate the potential of the model to reproduce some features of the DNS (helicity statistics and small-scale features), but more work is required before the full potential of the model can be achieved. In addition to the channel flow investigation, a derivation of the governing usi...

  1. Piezo proteins are pore-forming subunits of mechanically activated channels.

    Science.gov (United States)

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-03-01

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  2. Loss of ICG uptake in the process of rat hepatocarcinogenesis correlates to the disappearance of glutathione-S-transferase alpha subunit.

    OpenAIRE

    Ling, Liu; Higashi,Toshihiro; Tsuchida, Shigeki; Sato, Kiyomi; Tsuji, Takao

    1993-01-01

    Reduced indocyanine green (ICG) uptake is one of the functional changes of human hepatocellular carcinoma (HCC). To clarify the mechanisms of loss of ICG uptake, and determine which subunit of glutathione-S-transferase (GST), alpha or pi, plays a role in ICG transport in hepatocytes, an experimental HCC model was developed that used nodules induced by 2-acetylamino-fluorene (2-AAF) administration. Many of the ICG stained nodules, which consisted of benign and borderline lesions, were GST-alph...

  3. Total synthesis and expression of a gene for the alpha-subunit of bovine rod outer segment guanine nucleotide-binding protein (transducin).

    OpenAIRE

    Sakmar, T P; Khorana, H G

    1988-01-01

    To facilitate structure-function studies by site-specific mutagenesis, we have synthesized a gene for the alpha-subunit of the bovine rod outer segment (ROS) guanine nucleotide-binding protein (transducin). The gene codes for the native amino acid sequence and contains, by design, 38 unique restriction sites which are uniformly spaced. This enables mutagenesis in any part of the gene by restriction fragment replacement. The gene is 1076 base pairs in length. It was constructed from 44 synthet...

  4. Estradiol feedback effects on the alpha-subunit mRNA in the sheep pituitary gland: correlation with serum and pituitary luteinizing hormone concentrations.

    OpenAIRE

    Landefeld, T; Kepa, J.; Karsch, F.

    1984-01-01

    The effects of estradiol feedback on pituitary luteinizing hormone (LH) content, serum LH concentration, and in vitro-translated alpha subunit was examined in the ewe. Three animal models were used representing positive, negative, and no estradiol feedback. Two experiments were carried out: (i) anestrous ewes were treated acutely with five Silastic estradiol implants to induce a LH surge (positive feedback) and (ii) ovariectomized ewes were treated chronically with an estradiol implant (negat...

  5. Investigation of the Relationship Between Clinical and EEG Findings of Photosensitive Epilepsy and GABA Receptor Alpha 1 Subunit (GABRA1) Gene Mutations

    OpenAIRE

    Yavuz, E.N.; Demirkan, A.; Moen, S.; Ozdemir, O.; Catal, S.; Bebek, N.; Ozbek, U; Baykan, B.

    2011-01-01

    Objective: Although photosensitive epilepsy (PE) is commonly observed, its pathophysiology has not been clarified yet. However, relevant literature indicates that genetic factors play an important role. Our aim was to investigate whether there is a relationship between the clinical and electroencephalographic (EEG) features and the possible mutations/polymorphisms in the GABA receptor alpha 1 subunit (GABRA1) gene in patients with PE by scanning this gene. Methods: 54 patients diagnosed as ha...

  6. Localization of Na+,K+-ATPase alpha-subunit to the sinusoidal and lateral but not canalicular membranes of rat hepatocytes

    OpenAIRE

    1987-01-01

    Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+- ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase- conjugated goat anti...

  7. Deletion of Asn{sup 281} in the {alpha}-subunit of the human insulin receptor causes constitutive activation of the receptor and insulin desensitization

    Energy Technology Data Exchange (ETDEWEB)

    Desbois-Mouthon, C.; Sert-Langeron, C.; Magre, J.; Blivet, M.J. [INSERM, Paris (France)] [and others

    1996-02-01

    We studied the structure and function of the insulin receptor (IR) in two sisters with leprechaunism. The patients had inherited alterations in the IR gene and were compound heterozygotes. Their paternal IR allele carried a major deletion, including exons 10-13, which shifted the reading frame and introduced a premature chain termination codon in the IR sequence. This allele was expressed at a very low level in cultured fibroblasts (<10% of total IR messenger ribonucleic acid content) and encoded a truncated protein lacking transmembrane and tyrosine kinase domains. The maternal IR allele was deleted of 3 bp in exon 3, causing the loss of Asn{sup 281} in the {alpha}-subunit. This allele generated levels of IR messenger ribonucleic acid and cell surface receptors similar to those seen in control fibroblasts. However, IRs from patients` cells had impaired insulin binding and exhibited in vivo and in vitro constitutive activation of autophosphorylation and tyrosine kinase activity. As a result of this IR-preactivated state, the cells were desensitized to insulin stimulation of glycogen and DNA syntheses. These findings strongly suggest that Asn{sup 281} of the IR {alpha}-subunit plays a critical role in the inhibitory constraint exerted by the extracellular {alpha}-subunit over the intracellular kinase activity. 59 refs., 6 figs.

  8. The juvenile myoclonic epilepsy mutant of the calcium channel β(4) subunit displays normal nuclear targeting in nerve and muscle cells.

    Science.gov (United States)

    Etemad, Solmaz; Campiglio, Marta; Obermair, Gerald J; Flucher, Bernhard E

    2014-01-01

    Voltage-gated calcium channels regulate gene expression by controlling calcium entry through the plasma membrane and by direct interactions of channel fragments and auxiliary β subunits with promoters and the epigenetic machinery in the nucleus. Mutations of the calcium channel β(4) subunit gene (CACNB4) cause juvenile myoclonic epilepsy in humans and ataxia and epileptic seizures in mice. Recently a model has been proposed according to which failed nuclear translocation of the truncated β(4) subunit R482X mutation resulted in altered transcriptional regulation and consequently in neurological disease. Here we examined the nuclear targeting properties of the truncated β(4b(1–481)) subunit in tsA-201 cells, skeletal myotubes, and in hippocampal neurons. Contrary to expectation, nuclear targeting of β(4b(1–481)) was not reduced compared with full-length β(4b) in any one of the three cell systems. These findings oppose an essential role of the β(4) distal C-terminus in nuclear targeting and challenge the idea that the nuclear function of calcium channel β(4) subunits is critically involved in the etiology of epilepsy and ataxia in patients and mouse models with mutations in the CACNB4 gene. PMID:24875574

  9. The juvenile myoclonic epilepsy mutant of the calcium channel β4 subunit displays normal nuclear targeting in nerve and muscle cells

    Science.gov (United States)

    Etemad, Solmaz; Campiglio, Marta; Obermair, Gerald J; Flucher, Bernhard E

    2014-01-01

    Voltage-gated calcium channels regulate gene expression by controlling calcium entry through the plasma membrane and by direct interactions of channel fragments and auxiliary β subunits with promoters and the epigenetic machinery in the nucleus. Mutations of the calcium channel β4 subunit gene (CACNB4) cause juvenile myoclonic epilepsy in humans and ataxia and epileptic seizures in mice. Recently a model has been proposed according to which failed nuclear translocation of the truncated β4 subunit R482X mutation resulted in altered transcriptional regulation and consequently in neurological disease. Here we examined the nuclear targeting properties of the truncated β4b(1–481) subunit in tsA-201 cells, skeletal myotubes, and in hippocampal neurons. Contrary to expectation, nuclear targeting of β4b(1–481) was not reduced compared with full-length β4b in any one of the three cell systems. These findings oppose an essential role of the β4 distal C-terminus in nuclear targeting and challenge the idea that the nuclear function of calcium channel β4 subunits is critically involved in the etiology of epilepsy and ataxia in patients and mouse models with mutations in the CACNB4 gene. PMID:24875574

  10. Genetic Construction of Truncated and Chimeric Metalloproteins Derived from the Alpha Subunit of Acetyl-CoA Synthase from Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Huay-Keng Loke; Xiangshi Tan; Paul A. Lindahl

    2002-06-28

    In this study, a genetics-based method is used to truncate acetyl-coenzyme A synthase from Clostridium thermoaceticum (ACS), an alpha2beta2 tetrameric 310 kda bifunctional enzyme. ACS catalyzes the reversible reduction of CO2 to CO and the synthesis of acetyl-CoA from CO (or CO2 in the presence of low-potential reductants), CoA, and a methyl group bound to a corrinoid-iron sulfur protein (CoFeSP). ACS contains 7 metal-sulfur clusters of 4 different types called A, B, C, and D. The B, C, and D clusters are located in the 72 kda beta subunit while the A-cluster, a Ni-X-Fe4S4 cluster that serves as the active site for acetyl-CoA synthase activity, is located in the 82 kda alpha subunit. The extent to which the essential properties of the cluster, including catalytic, redox, spectroscopic, and substrate-binding properties, were retained as ACS was progressively truncated was determined. Acetyl-CoA synthase catalytic activity remained when the entire alpha subunit was removed, as long as CO, rather than CO2 and a low-potential reductant, was used as a substrate. Truncating an {approx} 30 kda region from the N-terminus of the alpha subunit yielded a 49 kda protein that lacked catalytic activity but exhibited A-cluster-like spectroscopic, redox, and CO binding properties. Further truncation afforded a 23 kda protein that lacked recognizable A-cluster properties except for UV-vis spectra typical of [Fe4S4]2+ clusters. Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 kda and 82 kda fragments of the alpha subunit. The chimeric proteins exhibited EPR signals that were not the simple sum of the signals from the separate proteins, suggesting magnetic interactions between clusters. This study highlights the potential for using genetics to simplify the study of complex multi-centered metalloenzymes and to generate new complex metalloenzymes with interesting properties.

  11. Mapping of the {alpha}{sub 4} subunit gene (GABRA4) to human chromosome 4 defines an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 1} gene cluster: Further evidence that modern GABA{sub a} receptor gene clusters are derived from an ancestral cluster

    Energy Technology Data Exchange (ETDEWEB)

    McLean, P.J.; Farb, D.H.; Russek, S.J. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-04-10

    We demonstrated previously that an {alpha}{sub 1}-{beta}{sub 2}-{gamma}{sub 2} gene cluster of the {gamma}-aminobutyric acid (GABA{sub A}) receptor is located on human chromosome 5q34-q35 and that an ancestral {alpha}-{beta}-{gamma} gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the {alpha}{sub 4} gene (GABRA4) maps to human chromosome 4p14-q12, defining a cluster comprising the {alpha}{sub 2}, {alpha}{sub 4}, {beta}{sub 1}, and {gamma}{sub 1} genes. The existence of an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 2} cluster on chromosome 4 and an {alpha}{sub 1}-{alpha}{sub 6}-{beta}{sub 2}-{gamma}{sub 2} cluster on chromosome 5 provides further evidence that the number of ancestral GABA{sub A} receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the {alpha} gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of a subunit should be located on human chromosome 15q11-q13 within an {alpha}{sub 5}-{alpha}{sub x}-{beta}{sub 3}-{gamma}{sub 3} gene cluster at the locus for Angelman and Prader-Willi syndromes. 34 refs., 6 figs., 1 tab.

  12. Characterization of the functional role of a flexible loop in the alpha-subunit of tryptophan synthase from Salmonella typhimurium by rapid-scanning, stopped-flow spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Brzović, P S; Hyde, C C; Miles, E W; Dunn, M F

    1993-10-01

    The function of a flexible loop (loop 6) in the alpha-subunit from the tryptophan synthase alpha 2 beta 2 bienzyme complex has been investigated utilizing rapid-scanning (RSSF) and single-wavelength (SWSF) stopped-flow spectroscopies. Loop 6 is an extended sequence of residues which connects beta-strand 6 with alpha-helix 6 in the beta/alpha-barrel fold of the alpha-subunit. Substitution of Leu for Arg179 near the base of loop 6 does not significantly affect either the association of the alpha- and beta-subunits to form the bienzyme complex or the kinetics of the reaction of indole with L-serine (L-Ser) to form L-tryptophan (L-Trp), the process catalyzed by the wild-type beta-subunit [Kawasaki, H., Bauerle, R., Zon, G., Ahmed, S., & Miles, E. W. (1987) J. Biol. Chem. 262, 10678-10683]. However, the alpha-subunit-specific ligand glycerol phosphate (GP), which is an inhibitor of the wild-type beta-reaction, is a much less effective inhibitor of the alpha R179L-catalyzed beta-reaction. Equilibrium titration studies show that the affinity of GP for the alpha-site when either L-Ser or glycine is bound at the beta-site has been reduced by nearly 100- and 200-fold, respectively. SWSF analysis of the reaction of IGP and L-Ser to form L-Trp catalyzed by the bienzyme complex revealed a 15-fold reduction in the binding affinity of the alpha-site substrate 3-indole-D-glycerol 3'-phosphate (IGP) in the reaction catalyzed by the alpha R179L mutant as compared to the wild-type enzyme. These studies show that loop 6 is important both for ligand binding to the alpha-site and for the ligand-induced conformational transition of the alpha-subunit from an "open" to a "closed" structure. Modeling studies, based on extensive structural homology of the alpha-subunit with the glycolytic enzyme triosephosphate isomerase (TIM), predict that closure of loop 6 induced by ligand binding at the alpha-active site would effectively sequester the bound substrate from the solvent and trap indole

  13. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (. cap alpha. and. beta. ) biosynthesis and degradation (in newborn brain)

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Cek-Fyne

    1978-01-01

    A DEAE-cellulose filter assay, measuring (/sup 3/H)colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin ..cap alpha.. and ..beta.. subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of (/sup 3/H)leucine. Quantitative changes of the ratio of tritium specific activities of tubulin ..cap alpha.. and ..beta.. subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the ..cap alpha.. subunit is synthesized at a more rapid rate than the ..beta.. subunit. (ERB)

  14. Antiepileptic drugs targeting sodium channels: subunit and neuron-type specific interactions

    NARCIS (Netherlands)

    X. Qiao

    2013-01-01

    Certain antiepileptic drugs (e.g. carbamazepine and lamotrigine) block sodium channels in an use-dependent manner and this mechanism contributes to the anti-convulsant properties of these drugs. There are, however, subtle differences in sodium current blocking properties of the antiepileptic drugs w

  15. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon

    2011-01-01

    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  16. Computational analysis of the R85C and R85H epilepsy mutations in Na+ channel beta1 subunits.

    Science.gov (United States)

    Thomas, E A; Xu, R; Petrou, S

    2007-07-29

    Mutations in Na+ channels cause a variety of epilepsy syndromes. Analysis of these mutations shows a range of simultaneous functional consequences, each of which may increase or decrease membrane excitability, making it difficult to predict the combined effect on neuron firing. This may be addressed by building mathematical models of Na+ channel gating and using them in neuron models to predict responses to natural stimuli. The R85C and R85H mutations of the beta1 subunit cause generalized epilepsy syndromes in humans, and an experimental study showed that these mutations shift steady-state activation in the negative direction, which predicts increased excitability, and shift fast inactivation in the negative direction, which predicts decreased excitability. In addition, the R85C also shifts slow inactivation in the negative direction. To predict changes in neuron excitability resulting from these contradictory effects we built Na+ channel models based on our earlier data and on new measurements of the rate of slow inactivation over a range of potentials. Use of these Na+ channel models in simple neuron models revealed that both mutations cause an increase in excitability but the R85H mutation was more excitable. This is due to differences in steady-state slow inactivation and to subtle differences in fast kinetics captured by the model fitting process. To understand the effect of changes in different gating processes and to provide a simple guide for interpreting changes caused by mutations, we performed a sensitivity analysis. Using the wild-type model we shifted each activation curve by +/-5 mV or altered gating rates up or down by 20%. Excitability was most sensitive to changes in voltage dependence of activation, followed by voltage dependence of inactivation and then slow inactivation. By contrast, excitability was relatively insensitive to gating rates. PMID:17604911

  17. A Trp474Cys mutation in the alpha-subunit of beta-hexosaminidase causes a subacute encephalopathic form of G{sub M2} gangliosidosis, type 1

    Energy Technology Data Exchange (ETDEWEB)

    Petroulakis, E.; Cao, Z.; Salo, T. [Univ. of Manitoba, Winnipeg (Canada)] [and others

    1994-09-01

    Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affected brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.

  18. Altered ischemic cerebral injury in mice lacking αIE subunit of the voltage-dependent Ca2+ channel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective ①To set up a stable and reproducible focal cerebral infarct modelin mice; (②To examine theinvolvement of αIE subunit of voltage-dependent Ca2 + channel in cerebral ischemic injury. Methods Male C57BL/6J Jclmice 8 ~ 12w and F4 ~ F6αIE subunit of Ca2+ channel mutant mice were both used in this study. All animals were allowedto freely access to food and water before and after operation. Animals were anesthetized with pentobarbital sodium 60mg/kg,ip. Rectal temperature was continuously monitored before, during and after operation, and maintained at (36.6 +0.1 )°C by a autoregulating pad. To produce pilot models, the middle cerebral artery (MCA) was occluded either by sur-gical ligation or electrical coagulation and in some models the common carotid artery (CCA) was surgically ligated in tan-dem. In our latter work the MCA was cut off soon after it was ligated or coagulated in order to make sure that the bloodflow was occluded completely. The MCA was coagulated or ligated with a bipolar coagulator or microsurgery suture at thesite just superior to the rhinal fissure. Twenty~four hours after the operation, the mice were anesthetized and decapitated,then their brains were dissected from the skull and put into cold artificial brain spinal fluid as soon as possible. Lmm thickcoronal sections were cut by vibratome and stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC) at 37°C for30min. Every section was photographed positively and the whole infarction volume was calculated by summing up the in-farction volumes of all sections by NIH Image System. Infarction ratio ( % ) was also calculated by the following fommula:(contralateral volume-ipsilateral undamaged volume)/contralateral volume × 100% to eliminate the influence of edema.In brief, the mutant mice were produced with gene targeting technique. F4 ~ F6 mice were used in this experiment. Alloffsprings were genotyped by the polymerase chain reaction (PCR) and the genotypes remained umknown

  19. Spermidine/spermine N-1-acetyltransferase specifically binds to the integrin alpha 9 subunit cytoplasmic domain and enhances cell migration

    OpenAIRE

    Chen, C.; Young, B A; Coleman, C S; Pegg, A E; Sheppard, D

    2004-01-01

    T he integrin alpha9beta1 is expressed on migrating cells, such as leukocytes, and binds to multiple ligands that are present at sites of tissue injury and inflammation. alpha9beta1, like the structurally related integrin alpha4beta1, mediates accelerated cell migration, an effect that depends on the beta cytoplasmic domain. alpha4beta1 enhances migration through reversible binding to the adapter protein, paxillin, but alpha9beta1-dependent migration is paxillin independent. Using yeast two-h...

  20. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge;

    1997-01-01

    Primary cultures of cerebellar granule cells, prepared from cerebella of 7-day-old rats and cultured for 4 or 8 days, were used to study the neurodifferentiative effect of a GABA(A) receptor agonist, 4,5,6,7-tetrahydroisoxazol[5,4-c]pyridin-3-ol (THIP), on the expression of the alpha6 GABA......Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however......, no significant change in [3H]Ro15-4513 binding was observed for the 56-kDa polypeptide. Immunolabeling of the alpha6 subunit using silver-enhanced, immuno-gold staining of granule cells showed a significant effect with THIP treatment only at 4 DIV and not at 8 DIV. Examination by light microscopy demonstrated...

  1. High-resolution mapping of the [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster on chromosome 15q11-q13, and localization of breakpoints in two Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett, D.; Wagstaff, J.; Woolf, E. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States)); Glatt, K. (Children' s Hospital, Boston, MA (United States)); Kirkness, E.J. (National Inst. of Alcohol Abuse and Alcoholism, Rockville, MD (United States))Lalande, M. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States) Howard Hughes Medical Inst., Boston, MA (United States))

    1993-06-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptors are a family of ligand-gated chloride channels constituting the major inhibitory neurotransmitter receptors in the nervous system. In order to determine the genomic organization of the GABA[sub A] receptor [beta]3 subunit gene (GABRB3) and [alpha]5 subunit gene (GABRA5) in chromosome 15q11-q13, the authors have constructed a high-resolution physical map using the combined techniques of field-inversion gel electrophoresis and phage genomic library screening. This map, which covers nearly 1.0 Mb, shows that GABRB3 and GABRA5 are separated by less than 100 kb and are arranged in a head-to-head configuration. GABRB3 encompasses approximately 250 kb, while GABRA5 is contained within 70 kb. This difference in size is due in large part to an intron of 150 kb within GABRB3. The authors have also identified seven putative CpG islands within a 600-kb interval. Chromosomal rearrangement breakpoints -- in one Angelman syndrome (AS) patient with an unbalanced translocation and in another patient with a submicroscopic deletion -- are located within the large GABRB3 intron. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the DNA rearrangements in these AS patients and will be valuable for mapping new genes to the AS chromosomal region. 64 refs., 6 figs., 2 tabs.

  2. Guest-free self-assembly of alpha-cyclodextrins leading to channel-type nanofibrils as mesoporous framework.

    Science.gov (United States)

    Chung, Jae Woo; Kang, Tae Jin; Kwak, Seung-Yeop

    2007-11-20

    Guest-free alpha-cyclodextrin self-assembly (alpha-CD-SA) was successfully obtained through a simple treatment such as sonication of alpha-CD in a specific solvent. From wide-angle X-ray diffraction (WAXD), it was found that the crystalline structure of alpha-CD changed upon increasing the treatment time, resulting in alpha-CD-SA in which the alpha-CDs were closely packed in the vertical direction and hexagonally aligned in the horizontal direction (what is called as "channel structure"). In particular, these structures were developed only in tetrahydrofuran (THF) as a specific solvent. In addition, it was found by inclusion experiment and field-emission scanning electron microscopy (FE-SEM) that propionic acid was able to be included into the channel of alpha-CD-SA and that alpha-CD-SA had alpha-CD bundles with a fibril-like shape, respectively. These results demonstrate that the alpha-CD-SA consists of nanofibril-like alpha-CD bundles with cylindrical nanopores open at least at one end, resulting from the dispersion of alpha-CD molecules by sonication in THF and the subsequent re-formation of strong hydrogen bonding between the alpha-CDs with the aid of THF (so-called "slow recrystallization"). Interestingly, it was observed from FE-SEM and nitrogen adsorption-desorption measurement that the alpha-CD-SA had a wormhole-like mesopore with inkbottle shape (average desorption pore size = ca. 25 nm). This mesoporous structure was considered to be attributed to the formation of a mesoporous framework by the disordered aggregation of the nanofibril-like alpha-CD bundles. PMID:17956138

  3. Amino acid microsequencing of internal tryptic peptides of heme-regulated eukaryotic initiation factor 2 alpha subunit kinase: homology to protein kinases.

    Science.gov (United States)

    Chen, J J; Pal, J K; Petryshyn, R; Kuo, I; Yang, J M; Throop, M S; Gehrke, L; London, I M

    1991-01-01

    We have purified the heme-regulated eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) kinase (HRI) from rabbit reticulocytes for amino acid microsequencing. This kinase is a single 92-kDa polypeptide and migrates in perfect alignment with 32P-labeled HRI on SDS/PAGE. Its functions of binding ATP and of autophosphorylation and eIF-2 alpha phosphorylation are inhibited by hemin. The amino acid sequences of three tryptic peptides of HRI have been obtained. A search of the data base of the National Biomedical Research Foundation reveals that these amino acid sequences are unique and that two of these three sequences show homology to protein kinases. HRI peptide P-52 contains Asp-Phe-Gly, which is the most highly conserved short stretch of amino acids in catalytic domain VII of protein kinases. HRI peptide P-74 contains the conserved amino acid residues Asp-(Met)-Tyr-Ser-(Val)-Gly-Val found in catalytic domain IX of protein kinases [Hanks, S. K., Quinn, A. M. & Hunter, T. (1988) Science 241, 42-52]. These findings are consistent with the autokinase and eIF-2 alpha kinase activities of HRI. Synthetic HRI peptide P-74 is a very potent inhibitor of eIF-2 alpha phosphorylation by HRI. Since little is known about the function of conserved domain IX, P-74 peptide may be useful in elucidating the role of this domain of protein kinases. Images PMID:1671169

  4. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle

    International Nuclear Information System (INIS)

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Cavβ1a NH2-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Cavβ1a is a gene transcription regulator. • Here, we show that TnT3 interacts with Cavβ1a. • We mapped TnT3 and Cavβ1a interaction domain. • TnT3 facilitates Cavβ1a nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation

  5. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  6. The effects of eslicarbazepine on persistent Na⁺ current and the role of the Na⁺ channel β subunits.

    Science.gov (United States)

    Doeser, Anna; Soares-da-Silva, Patricio; Beck, Heinz; Uebachs, Mischa

    2014-02-01

    Eslicarbazepine is the major active metabolite of eslicarbazepine acetate, a once-daily antiepileptic drug approved in Europe as adjunctive therapy for refractory partial-onset seizures in adults. This study was aimed to determine the effects of eslicarbazepine on persistent Na(+) currents (INaP) and the role of β subunits in modulating these effects. To study the role of β subunits of the Na(+) channel we used a mouse line genetically lacking either the β1 or β2 subunit, encoded by the SCN1B or SCN2B gene, respectively. Whole cell patch-clamp recordings were performed on CA1 neurons in hippocampal slices under control conditions and application of 300 μM eslicarbazepine. We examined INaP in acutely isolated CA1 neurons and repetitive firing in hippocampal slices of mice lacking β subunits and corresponding wild-type littermates. We found that eslicarbazepine caused a significant reduction of maximal INaP conductance and an efficient reduction of the firing rate in wild-type mice. We have shown previously a paradoxical increase of conductance of INaP caused by carbamazepine in mice lacking β1 subunits in the subthreshold range, leading to a failure in affecting neuronal firing (Uebachs et al., 2010). In contrast, eslicarbazepine did not cause this paradoxical effect on INaP in SCN1B null mice. Consequently, the effects of eslicarbazepine on repetitive firing were maintained in these animals. These results indicate that eslicarbazepine exerts effects on INaP similar to those known for carbamazepine. However, in animals lacking the β1 Na(+) channel subunit these effects are maintained. Therefore, eslicarbazepine potentially overcomes a previously described putative mechanism of resistance to established Na(+) channel acting antiepileptic drugs. PMID:24368131

  7. A double mutation in exon 6 of the [beta]-hexosaminidase [alpha] subunit in a patient with the B1 variant of Tay-Sachs disease

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, P.J. (Univ. of Western Ontario, Ontario (Canada) Child Health Research Institute, London, Ontario (Canada)); Coulter-Mackie, M.B. (Univ. of Western Ontario, Ontario (Canada) Child Health Research Institute, London, Ontario (Canada) Children' s Psychiatric Research Institute, London, Ontario (Canada))

    1992-10-01

    The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[sub 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.

  8. Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression.

    Science.gov (United States)

    Etemad, Solmaz; Obermair, Gerald J; Bindreither, Daniel; Benedetti, Ariane; Stanika, Ruslan; Di Biase, Valentina; Burtscher, Verena; Koschak, Alexandra; Kofler, Reinhard; Geley, Stephan; Wille, Alexandra; Lusser, Alexandra; Flockerzi, Veit; Flucher, Bernhard E

    2014-01-22

    The β subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 α1 subunits and thus contribute to neuronal excitability, neurotransmitter release, and calcium-induced gene regulation. In addition, certain β subunits are targeted into the nucleus, where they interact directly with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of β isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual β variants in specific neuronal functions. In the present study, an alternatively spliced β4 subunit lacking the variable N terminus (β4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGCs) and modulates P/Q-type calcium currents in tsA201 cells and CaV2.1 surface expression in neurons. Compared with the other two known full-length β4 variants (β4a and β4b), β4e is most abundantly expressed in the distal axon, but lacks nuclear-targeting properties. To determine the importance of nuclear targeting of β4 subunits for transcriptional regulation, we performed whole-genome expression profiling of CGCs from lethargic (β4-null) mice individually reconstituted with β4a, β4b, and β4e. Notably, the number of genes regulated by each β4 splice variant correlated with the rank order of their nuclear-targeting properties (β4b > β4a > β4e). Together, these findings support isoform-specific functions of β4 splice variants in neurons, with β4b playing a dual role in channel modulation and gene regulation, whereas the newly detected β4e variant serves exclusively in calcium-channel-dependent functions. PMID:24453333

  9. Silencing gamma-aminobutyric acid A receptor alpha 1 subunit expression and outward potassium current in developing cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Tao Bo; Jiang Li; Jian Li; Xingfang Li; Kaihui Xing

    2011-01-01

    We used RNA interference (RNAi) to disrupt synthesis of the cortical neuronal γ-aminobutyric acid A receptor (GABAAR) α1 in rats during development, and measured outward K+ currents during neuronal electrical activity using whole-cell patch-clamp techniques. Three pairs of small interfering RNA (siRNA) for GABAAR α1 subunit were designed using OligoEngine RNAi software. This siRNA was found to effectively inhibited GABAAR α1 mRNA expression in cortical neuronal culture in vitro, but did not significantly affect neuronal survival. Outward K+ currents were decreased, indicating that GABAAR α1 subunits in developing neurons participate in neuronal function by regulating outward K+ current.

  10. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  11. The Alternatively Spliced Form “b” of the Epithelial Sodium Channel α Subunit (α ENaC: Any Prior Evidence of its Existence?

    Directory of Open Access Journals (Sweden)

    Marlene F. Shehata

    2010-08-01

    Full Text Available The epithelial sodium channel (ENaC is critical in maintaining sodium balance across aldosterone-responsive epithelia. ENaC is a combined channel formed of three subunits (αβγ with α ENaC subunit being the most critical for channel functionality. In a previous report, we have demonstrated the existence and mRNA expression levels of four alternatively spliced forms of the α ENaC subunit denoted by -a, -b, -c and -d in kidney cortex of Dahl S and R rats. Of the four alternatively spliced forms presently identified, α ENaC-b is considered the most interesting for the following reasons: Aside from being a salt-sensitive transcript, α ENaC-b mRNA expression is ∼32 fold higher than α ENaC wildtype in kidney cortex of Dahl rats. Additionally, the splice site used to generate α ENaC-b is conserved across species. Finally, α ENaC-b mRNA expression is significantly higher in salt-resistant Dahl R rats versus salt-sensitive Dahl S rats. As such, this commentary aims to highlight some of the previously published research articles that described the existence of an additional protein band on α ENaC western blots that could account for α ENaC-b in other rat species.

  12. Action of the pyrethroid insecticide cypermethrin on rat brain IIa sodium channels expressed in xenopus oocytes.

    Science.gov (United States)

    Smith, T J; Soderlund, D M

    1998-12-01

    Pyrethroid insecticides bind to a unique site on voltage-dependent sodium channels and prolong sodium currents, leading to repetitive bursts of action potentials or use-dependent nerve block. To further characterize the site and mode of action of pyrethroids on sodium channels, we injected synthetic mRNA encoding the rat brain IIa sodium channel alpha subunit, either alone or in combination with synthetic mRNA encoding the rat sodium channel beta1 subunit, into oocytes of the frog Xenopus laevis and assessed the actions of the pyrethroid insecticide [1R,cis,alphaS]-cypermethrin on expressed sodium currents by two-electrode voltage clamp. In oocytes expressing only the rat brain IIa alpha subunit, cypermethrin produced a slowly-decaying sodium tail current following a depolarizing pulse. In parallel experiments using oocytes expressing the rat brain IIa alpha subunit in combination with the rat beta1 subunit, cypermethrin produced qualitatively similar tail currents following a depolarizing pulse and also induced a sustained component of the sodium current measured during a step depolarization of the oocyte membrane. The voltage dependence of activation and steady-state inactivation of the cypermethrin-dependent sustained current were identical to those of the peak transient sodium current measured in the absence of cypermethrin. Concentration-response curves obtained using normalized tail current amplitude as an index of the extent of sodium channel modification by cypermethrin revealed that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit increased the apparent affinity of the sodium channel binding site for cypermethrin by more than 20-fold. These results confirm that the pyrethroid binding site is intrinsic to the sodium channel alpha subunit and demonstrate that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit alters the apparent affinity of this site for pyrethroids.

  13. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    Science.gov (United States)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  14. UNC79 and UNC80, putative auxiliary subunits of the NARROW ABDOMEN ion channel, are indispensable for robust circadian locomotor rhythms in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bridget C Lear

    Full Text Available In the fruit fly Drosophila melanogaster, a network of circadian pacemaker neurons drives daily rhythms in rest and activity. The ion channel NARROW ABDOMEN (NA, orthologous to the mammalian sodium leak channel NALCN, functions downstream of the molecular circadian clock in pacemaker neurons to promote behavioral rhythmicity. To better understand the function and regulation of the NA channel, we have characterized two putative auxiliary channel subunits in Drosophila, unc79 (aka dunc79 and unc80 (aka CG18437. We have generated novel unc79 and unc80 mutations that represent strong or complete loss-of-function alleles. These mutants display severe defects in circadian locomotor rhythmicity that are indistinguishable from na mutant phenotypes. Tissue-specific RNA interference and rescue analyses indicate that UNC79 and UNC80 likely function within pacemaker neurons, with similar anatomical requirements to NA. We observe an interdependent, post-transcriptional regulatory relationship among the three gene products, as loss of na, unc79, or unc80 gene function leads to decreased expression of all three proteins, with minimal effect on transcript levels. Yet despite this relationship, we find that the requirement for unc79 and unc80 in circadian rhythmicity cannot be bypassed by increasing NA protein expression, nor can these putative auxiliary subunits substitute for each other. These data indicate functional requirements for UNC79 and UNC80 beyond promoting channel subunit expression. Immunoprecipitation experiments also confirm that UNC79 and UNC80 form a complex with NA in the Drosophila brain. Taken together, these data suggest that Drosophila NA, UNC79, and UNC80 function together in circadian clock neurons to promote rhythmic behavior.

  15. Effect of nitric oxide-induced tyrosine phosphorylation of calcium-activated potassium channel α subunit on vascular hyporesponsiveness in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rong; LIU Liang-ming; HU De-yao

    2005-01-01

    Objective: To study the effect of nitric oxide-induced tyrosine phosphorylation of large-conductance calcium-activated potassium (BKCa) channel α subunit on vascular hyporesponsiveness in rats. Methods: A total of 46 Wistar rats of either sex, weighing 250 g±20 g, were used in this study. Models of vascular hyporesponsiveness induced by hemorrhagic shock (30 mm Hg for 2 hours) in vivo and by L-arginine in vitro were established respectively. The vascular responsiveness of isolated superior mesenteric arteries to norepinephrine was observed. Tyrosine phosphorylation of BKCa α subunit was evaluated with methods of immunoprecipitation and Western blotting. Results: In the smooth muscle cells of the superior mesenteric arteries, the expression of BKCa α subunit tyrosine phosphorylation increased following hemorrhagic shock, and L-arginine could induce BKCa channel α subunit tyrosine phosphorylation in a time- and dose-dependent manner. L-NAME (Nω-nitro-L-arginine-methyl-ester), a nitric oxide synthetase inhibitor, could partly restore the decreased vasoresponsiveness of the superior mesenteric arteries after hemorrhagic shock in rats. Down-regulating the protein tyrosine phosphorylation with genistein, a widely-used special protein tyrosine kinase inhibitor, could partly improve the decreased vasoresponsiveness of the superior mesenteric arteries induced by L-arginine in vitro, while up-regulating the protein tyrosine phosphorylation with Na3VO4, a protein tyrosine phosphatase inhibitor, could further decrease the nitric oxide-induced vascular hyporesponsiveness, which could be partly ameliorated by 0.1 mmol/L tetrabutylammonium chloride (TEA), a selective BKCa inhibitor at this concentration. Conclusions: Nitric oxide can induce the tyrosine phosphorylation of BKCa α subunit, which influences the vascular hyporesponsiveness in hemorrhagic shock rats or induced by L-arginine in vitro.

  16. Reduced volume and increased training intensity elevate muscle Na+/K+ pump {alpha}2-subunit expression as well as short- and long-term work capacity in humans

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Gunnarsson, Thomas Petursson; Wendell, Jesper;

    2009-01-01

    The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners as a result of a reduced amount of training combined with speed endurance training. Seventeen runners were for a 6- to 9-wk period assigned to either a speed endurance group with a 25......% reduction in the amount of training but including speed endurance training consisting of 6-12 30-s sprint runs 3-4 times a week (SET, n=12) or a control group (CON, n=5), which continued the endurance training (about 55 km(.)wk(-1)). For SET the expression of the muscle Na(+)/K(+) pump alpha2-subunit was 68......% higher (Ptraining period. In SET, VO2-max...

  17. Alpha and beta subunits of pyruvate dehydrogenase E1 from the microsporidian Nosema locustae: mitochondrion-derived carbon metabolism in microsporidia.

    Science.gov (United States)

    Fast, N M; Keeling, P J

    2001-10-01

    Microsporidia are highly adapted eukaryotic intracellular parasites that infect a variety of animals. Microsporidia contain no recognisable mitochondrion, but recently have been shown to have evolved from fungi and to possess heat shock protein genes derived from mitochondria. These findings make it clear that microsporidian ancestors were mitochondrial, yet it remains unknown whether they still contain the organelle, and if so what its role in microsporidian metabolism might be. Here we have characterised genes encoding the alpha and beta subunits of pyruvate dehydrogenase complex E1 (PDH, EC 1.2.4.1) from the microsporidian Nosema locustae. All other amitochondriate eukaryotes studied to date have lost the PDH complex and replaced it with pyruvate:ferredoxin oxidoreductase (PFOR). Nevertheless, molecular phylogeny shows that these Nosema enzymes are most closely related to mitochondrial PDH from other eukaryotes, demonstrating that elements of mitochondrial metabolism have been retained in microsporidia, and that PDH has not been wholly lost. However, there is still no evidence for a mitochondrion in microsporidia, and neither PDH subunit is predicted to encode an amino terminal leader sequence that could function as a mitochondrion-targeting transit peptide, raising questions as to whether these proteins function in a relic organelle or in the cytosol. Moreover, it is also unclear whether these proteins remain part of the PDH complex, or whether they have been retained for another purpose. We propose that microsporidia may utilise a unique pyruvate decarboxylation pathway involving PDH, demonstrating once again the diversity of core metabolism in amitochondriate eukaryotes. PMID:11606230

  18. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    Energy Technology Data Exchange (ETDEWEB)

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M. [Oak Ridge National Lab., TN (United States)

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  19. Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.

    Science.gov (United States)

    He, Bingjun; Soderlund, David M

    2016-01-15

    We expressed rat Nav1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Nav1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~18 mV for tefluthrin and ~24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~10-14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Nav1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons.

  20. Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.

    Science.gov (United States)

    He, Bingjun; Soderlund, David M

    2016-01-15

    We expressed rat Nav1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Nav1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~18 mV for tefluthrin and ~24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~10-14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Nav1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. PMID:26708501

  1. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    Science.gov (United States)

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  2. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James;

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of recept...

  3. The Val{sup 192}Leu mutation in the {alpha}-subunit of {beta}-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.; Vavougios, G.; Hinek, A. [Univ. of Toronto (Canada)] [and others

    1996-07-01

    Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.

  4. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Pagani, Alberto; Minassi, Alberto;

    2009-01-01

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4alpha-phorbol esters was investigated by combining information from chemical modification of 4alpha-phorbol-didecanoate (4alpha-PDD, 2a), site-directed mutagenesis, Ca(2+) imaging, and electrophysiolog...... of TRPV4 activation by small molecules and obtain information for the rational design of structurally simpler ligands for this ion channel....

  5. Cosuppression of the alpha subunits of beta-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies.

    Science.gov (United States)

    Kinney, A J; Jung, R; Herman, E M

    2001-05-01

    The expression of the alpha and alpha' subunits of beta-conglycinin was suppressed by sequence-mediated gene silencing in transgenic soybean seed. The resulting seeds had similar total oil and protein content and ratio compared with the parent line. The decrease in beta-conglycinin protein was apparently compensated by an increased accumulation of glycinin. In addition, proglycinin, the precursor of glycinin, was detected as a prominent polypeptide band in the protein profile of the transgenic seed extract. Electron microscopic analysis and immunocytochemistry of maturing transgenic soybean seeds indicated that the process of storage protein accumulation was altered in the transgenic line. In normal soybeans, the storage proteins are deposited in pre-existing vacuoles by Golgi-derived vesicles. In contrast, in transgenic seed with reduced beta-conglycinin levels, endoplasmic reticulum (ER)-derived vesicles were observed that resembled precursor accumulating-vesicles of pumpkin seeds and the protein bodies accumulated by cereal seeds. Their ER-derived membrane of the novel vesicles did not contain the protein storage vacuole tonoplast-specific protein alpha-TIP, and the sequestered polypeptides did not contain complex glycans, indicating a preGolgi and nonvacuolar nature. Glycinin was identified as a major component of these novel protein bodies and its diversion from normal storage protein trafficking appears to be related to the proglycinin buildup in the transgenic seed. The stable accumulation of proteins in a protein body compartment instead of vacuolar accumulation of proteins may provide an alternative intracellular site to sequester proteins when soybeans are used as protein factories. PMID:11340189

  6. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels

    Directory of Open Access Journals (Sweden)

    Lansdell Stuart J

    2012-06-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs play an important role as excitatory neurotransmitters in vertebrate and invertebrate species. In insects, nAChRs are the site of action of commercially important insecticides and, as a consequence, there is considerable interest in examining their functional properties. However, problems have been encountered in the successful functional expression of insect nAChRs, although a number of strategies have been developed in an attempt to overcome such difficulties. Ten nAChR subunits have been identified in the model insect Drosophila melanogaster (Dα1-Dα7 and Dβ1-Dβ3 and a similar number have been identified in other insect species. The focus of the present study is the Dα5, Dα6 and Dα7 subunits, which are distinguished by their sequence similarity to one another and also by their close similarity to the vertebrate α7 nAChR subunit. Results A full-length cDNA clone encoding the Drosophila nAChR Dα5 subunit has been isolated and the properties of Dα5-, Dα6- and Dα7-containing nAChRs examined in a variety of cell expression systems. We have demonstrated the functional expression, as homomeric nAChRs, of the Dα5 and Dα7 subunits in Xenopus oocytes by their co-expression with the molecular chaperone RIC-3. Also, using a similar approach, we have demonstrated the functional expression of a heteromeric ‘triplet’ nAChR (Dα5 + Dα6 + Dα7 with substantially higher apparent affinity for acetylcholine than is seen with other subunit combinations. In addition, specific cell-surface binding of [125I]-α-bungarotoxin was detected in both Drosophila and mammalian cell lines when Dα5 was co-expressed with Dα6 and RIC-3. In contrast, co-expression of additional subunits (including Dα7 with Dα5 and Dα6 prevented specific binding of [125I]-α-bungarotoxin in cell lines, suggesting that co-assembly with other nAChR subunits can block maturation of correctly folded nAChRs in

  7. Down Regulated Expression of the β1 Subunit of the Big-conductance Ca2+ Sensitive K+ Channel in Sphincter of Oddi Cells from Rabbits Fed with a High Cholesterol Diet

    Institute of Scientific and Technical Information of China (English)

    Pang DU; Guang-Bin CUI; Ya-Rong WANG; Xiao-Yong ZHANG; Ke-Jun MA; Jing-Guo WEI

    2006-01-01

    Hypercholesterolemia, which is closely related to gallbladder bile stasis, can cause sphincter of Oddi dysfunction (SOD) by increasing the tension of sphincter of Oddi (SO). Intracellular calcium ion concentration ([Ca2+]i) could influence the tension of SO. The β1 subunit of the big-conductance Ca2+sensitive K+ channel (BKCa) can enhance the sensitivity of the BKCa channel to [Ca2+]i. Absence and decline of the BKCa channel subunit β1 could lead to many diseases. However, the relationship between hypercholesterolemia and the expression of β1 subunit is not well understood. In this study, we successfully expressed and purified the rabbit BKCa β1 subunit protein and prepared its polyclonal antibody. The specificity of the prepared antibody was determined by western blotting. A SOD rabbit model induced by a high cholesterol diet was established and the expression of the β1 subunit of SO was determined by immunohistochemical staining and western blotting. Compared with the controls, our results demonstrated that hypercholesterolemia could decrease the expression of the β1 subunit in the SO cells from rabbits. This indicates that lower expression of BKCa channel β1 subunit might induce SOD.

  8. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit.

    Science.gov (United States)

    Baeza-Richer, Carlos; Arroyo-Pardo, Eduardo; Blanco-Rojo, Ruth; Toxqui, Laura; Remacha, Angel; Vaquero, M Pilar; López-Parra, Ana M

    2015-12-01

    Numerous studies associate genetic markers with iron- and erythrocyte-related parameters, but few relate them to iron-clinical phenotypes. Novel SNP rs1375515, located in a subunit of the calcium channel gene CACNA2D3, is associated with a higher risk of anaemia. The aim of this study is to further investigate the association of this SNP with iron-related parameters and iron-clinical phenotypes, and to explore the potential role of calcium channel subunit region in iron regulation. Furthermore, we aim to replicate the association of other SNPs reported previously in our population. We tested 45 SNPs selected via systematic review and fine mapping of CACNA2D3 region, with haematological and biochemical traits in 358 women of reproductive age. Multivariate analyses include back-step logistic regression and decision trees. The results replicate the association of SNPs with iron-related traits, and also confirm the protective effect of both A allele of rs1800562 (HFE) and G allele of rs4895441 (HBS1L-MYB). The risk of developing anaemia is increased in reproductive age women carriers of A allele of rs1868505 (CACNA2D3) and/or T allele of rs13194491 (HIST1H2BJ). Association of SNPs from fine mapping with ferritin and serum iron suggests that calcium channels could be a potential pathway for iron uptake in physiological conditions.

  9. A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit.

    Science.gov (United States)

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  10. Association of alpha subunit of GABAA receptor subtype gene polymorphisms with epilepsy susceptibility and drug resistance in north Indian population.

    Science.gov (United States)

    Kumari, Ritu; Lakhan, Ram; Kalita, J; Misra, U K; Mittal, Balraj

    2010-05-01

    GABA (gamma-amino butyric acid) receptors have always been an inviting target in the etiology and treatment of epilepsy because of its role as a major inhibitory neurotransmitter in the brain. The aim of our study was to find out the possible role of single nucleotide polymorphisms (SNPs) present in GABRA1 IVS11+15 A>G (rs2279020) and GABRG2 588C>T (rs211037) genes in seizure susceptibility and pharmaco-resistance in northern Indian patients with epilepsy. A total of 395 epilepsy patients and 199 control subjects were enrolled for present study. The genotyping was done by PCR-RFLP methods. The GABRA1 IVS11+15 A>G polymorphism conferred high risk for epilepsy susceptibility at genotype 'AG' (P=0.004, OR=1.77, 95% CI=1.20-2.63), 'GG' (P=0.01, OR=1.80, 95% CI=1.15-2.80) and G allele level (P=0.001, OR=1.50, 95% CI=1.16-1.92). Moreover this polymorphism was also associated with multiple drug resistance in patients with epilepsy for homozygous variant 'GG' genotype (P=0.031, OR=1.84, 95% CI=1.05-3.23) and G allele (P=0.020, OR=1.43, 95% CI=1.05-1.95). However GABRG2 588C>T polymorphism was not found to be associated either with epilepsy susceptibility or with drug resistance. Overall results indicate differential role of different subunits of GABA(A) receptor subtypes in epilepsy susceptibility and pharmacotherapy. PMID:20356767

  11. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA Gene.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    Full Text Available Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R gene, a central determinant of black (eumelanin vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD and Recessive Red (MC1Re. A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA, a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  12. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis

    NARCIS (Netherlands)

    Varju, P; Schlett, K; Eisel, U; Madarasz, E

    2001-01-01

    NE-7C2 neuroectodermal cells derived from forebrain vesicles of p53-deficient mouse embryos (E9) produce neurons and astrocytes in vitro if induced by all-trans retinoic acid. The reproducible morphological stages of neurogenesis were correlated with the expression of various NMDA receptor subunits.

  13. Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada Syndrome mutant

    DEFF Research Database (Denmark)

    Yuan, Lei; Koivumaki, Jussi; Liang, Bo;

    2014-01-01

    Brugada Syndrome (BrS) is a rare inherited disease which can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navβ1-4 subunits have...... been linked to this disease. Here we investigated differences in expression and function between Navβ1 and Navβ1b, and whether the H162P/Navβ1b mutation found in a BrS patient is likely to be the underlying cause of disease. The impact of Navβ-subunits were investigated by patch-clamp electrophysiology...... and the obtained in vitro values were used for subsequent in silico modeling. We found that Navβ1b transcripts were expressed at higher levels than Navβ1 transcripts in the human heart. Navβ1b was found to increase the current level when co-expressed with Nav1.5, the Navβ1b/H162P mutated subunit peak current...

  14. Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of Escherichia coli RNA polymerase.

    Science.gov (United States)

    Wood, L F; Tszine, N Y; Christie, G E

    1997-11-21

    Bacteriophage P2 late transcription requires the product of the P2 ogr gene. Ogr-dependent transcription from P2 late promoters is blocked by certain point mutations affecting the alpha subunits of the host RNA polymerase. An alanine scan spanning the putative activation target in the alpha C-terminal domain (alphaCTD) was carried out to identify individual residues essential for Ogr-dependent transcription from P2 late promoters. In addition, the effects of alanine substitutions in the regions of the alphaCTD previously reported to affect CAP-dependent activation of the lac promoter and UP-element DNA binding were examined. Residues E286, V287, L289 and L290 in helix 3, and residue L300 at the beginning of helix 4, define a surface-exposed patch on the alphaCTD important for Ogr-dependent activation. These residues, adjacent to the recently identified DNA-binding determinants, constitute a newly identified activation surface for protein:protein contact. Alanine substitutions at some of the residues that affect UP-element DNA binding also impaired activation. This suggests that upstream DNA-alpha contacts, in addition to alpha-Ogr contacts, may be important in P2 late transcription. Other residues implicated in the interaction of alpha with CAP are not required for activation by Ogr, consistent with previous genetic evidence suggesting that these activators contact different sites on the alphaCTD. PMID:9398509

  15. Mapping of the human cone transducin {alpha} subunit (GNAT2) gene to 1p13 and mutation analysis in patients with Stargardt`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Magovcevic, I.; Weremowicz, S.; Morton, C.C. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    Transducin {alpha} subunits are members of a large family of G-proteins and play an important role in phototransduction in rod and cone photoreceptors. We report the localization of the human cone {alpha} transducin (GNAT2) gene using fluorescence in situ hybridization (FISH) on chromosome 1 in band p13. The recent assignment of a gene for Stargardt`s disease to the same chromosomal region by linkage analysis prompted us to investigate the possible role of GNAT2 in the pathogenesis of this disease. Stargardt`s disease is characterized by degeneration in late childhood or early adulthood of the macula of the retina, a region rich in cones. We screened patients with Stargardt`s disease, with or without peripheral cone involvement as monitored by the full-field ERG, for mutations in this gene. We investigated 66 unrelated patients including 22 with peripheral cone dysfunction for mutations in the coding region of the GNAT2 gene using polymerase chain reaction-single strand conformation polymorphism analysis (SSCP) and direct sequencing. One patient (034-16) was heterozygous for a silent change in exon VI, Asp238Asp (GAT to GAC). Two patients, one (035-005) with peripheral cone involvement and one (071-001) without peripheral cone involvement, were heterozygous for the missense change Val124Met (GTG to ATG) in exon IV. A subsequent screen of 96 unrelated, unaffected controls revealed one individual (N10) who was also heterozygous for the Val124Met alteration. We concluded that Asp238Asp and Val124Met are rare variants not causing Stargardt`s disease. Hence, no disease-specific mutations were found indicating that GNAT2 is probably not involved in the pathogenesis of most cases of Stargardt`s disease.

  16. Comparison of transcript levels and mRNA half-lives for the subunits of the branched-chain {alpha}-keto acid dehydrogenase (BCKD) complex in two human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, B.A.; Danner, D.J. [Emory Univ., Atlanta, GA (United States)

    1994-09-01

    BCKD is a mitochondrial multienzyme complex that catalyzes the committed step in catabolism of the keto acid derivatives of leucine, isoleucine and valine. Three subunits, El{alpha}, E1{beta} and E2 are specific to the complex. The subunits are nuclearly encoded from genes located on separate chromosomes, and it is not yet understood how gene expression of the components is regulated to maintain proper stoichiometry of the complex. The focus of the present study is to establish mRNA half-lives for the BCKD subunits in two human cell lines and to examine whether expression of transcripts for the subunits is similar in different cell types. HepG2 cells, a hepatocarcinoma cell line, and DG75 cells, a Burkitt`s lymphoma cell line, express comparable levels of BCKD complex based on total enzyme activity. Half-lives of the mRNAs for each subunit have been determined in HepG2 cells and are presently being defined in DG75 cells. mRNA half-lives were calculated by quantifying message levels over a 24 hour period following an actinomycin D block. Transcripts for the BCKD subunits are relatively stable in HepG2 cells with mRNA half-lives for the E1{alpha} of 11 hours, E1{beta}, 24 hours and E2, 22 hours. Steady-state message levels have been analyzed in both cell lines by RNase protection and quantified as a percentage of total RNA. mRNA levels for all three subunits are higher in DG75 cells than in HepG2 cells (E1{alpha}, 4-fold; E1{beta}, 1.9-fold; E2, 1.8-fold). Preliminary data indicates that the half-life of the E1{alpha} transcript in DG75 cells is approximately 29 hours, and it is possible that differences in steady-state levels of the mRNAs are achieved through different half-lives of the transcripts. The relationship between transcript levels and protein levels for the three subunits is being examined in both cell types.

  17. Selective expression of KCNS3 potassium channel α-subunit in parvalbumin-containing GABA neurons in the human prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Danko Georgiev

    Full Text Available The cognitive deficits of schizophrenia appear to be associated with altered cortical GABA neurotransmission in the subsets of inhibitory neurons that express either parvalbumin (PV or somatostatin (SST. Identification of molecular mechanisms that operate selectively in these neurons is essential for developing targeted therapeutic strategies that do not influence other cell types. Consequently, we sought to identify, in the human cortex, gene products that are expressed selectively by PV and/or SST neurons, and that might contribute to their distinctive functional properties. Based on previously reported expression patterns in the cortex of mice and humans, we selected four genes: KCNS3, LHX6, KCNAB1, and PPP1R2, encoding K(+ channel Kv9.3 modulatory α-subunit, LIM homeobox protein 6, K(+ channel Kvβ1 subunit, and protein phosphatase 1 regulatory subunit 2, respectively, and examined their colocalization with PV or SST mRNAs in the human prefrontal cortex using dual-label in situ hybridization with (35S- and digoxigenin-labeled antisense riboprobes. KCNS3 mRNA was detected in almost all PV neurons, but not in SST neurons, and PV mRNA was detected in >90% of KCNS3 mRNA-expressing neurons. LHX6 mRNA was detected in almost all PV and >90% of SST neurons, while among all LHX6 mRNA-expressing neurons 50% expressed PV mRNA and >44% expressed SST mRNA. KCNAB1 and PPP1R2 mRNAs were detected in much larger populations of cortical neurons than PV or SST neurons. These findings indicate that KCNS3 is a selective marker of PV neurons, whereas LHX6 is expressed by both PV and SST neurons. KCNS3 and LHX6 might be useful for characterizing cell-type specific molecular alterations of cortical GABA neurotransmission and for the development of novel treatments targeting PV and/or SST neurons in schizophrenia.

  18. Selective expression of KCNS3 potassium channel α-subunit in parvalbumin-containing GABA neurons in the human prefrontal cortex.

    Science.gov (United States)

    Georgiev, Danko; González-Burgos, Guillermo; Kikuchi, Mitsuru; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2012-01-01

    The cognitive deficits of schizophrenia appear to be associated with altered cortical GABA neurotransmission in the subsets of inhibitory neurons that express either parvalbumin (PV) or somatostatin (SST). Identification of molecular mechanisms that operate selectively in these neurons is essential for developing targeted therapeutic strategies that do not influence other cell types. Consequently, we sought to identify, in the human cortex, gene products that are expressed selectively by PV and/or SST neurons, and that might contribute to their distinctive functional properties. Based on previously reported expression patterns in the cortex of mice and humans, we selected four genes: KCNS3, LHX6, KCNAB1, and PPP1R2, encoding K(+) channel Kv9.3 modulatory α-subunit, LIM homeobox protein 6, K(+) channel Kvβ1 subunit, and protein phosphatase 1 regulatory subunit 2, respectively, and examined their colocalization with PV or SST mRNAs in the human prefrontal cortex using dual-label in situ hybridization with (35)S- and digoxigenin-labeled antisense riboprobes. KCNS3 mRNA was detected in almost all PV neurons, but not in SST neurons, and PV mRNA was detected in >90% of KCNS3 mRNA-expressing neurons. LHX6 mRNA was detected in almost all PV and >90% of SST neurons, while among all LHX6 mRNA-expressing neurons 50% expressed PV mRNA and >44% expressed SST mRNA. KCNAB1 and PPP1R2 mRNAs were detected in much larger populations of cortical neurons than PV or SST neurons. These findings indicate that KCNS3 is a selective marker of PV neurons, whereas LHX6 is expressed by both PV and SST neurons. KCNS3 and LHX6 might be useful for characterizing cell-type specific molecular alterations of cortical GABA neurotransmission and for the development of novel treatments targeting PV and/or SST neurons in schizophrenia.

  19. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  20. Molecular Cloning, Structural Analysis and Tissue Expression of Protein Phosphatase 3 Catalytic Subunit Alpha Isoform (PPP3CA Gene in Tianfu Goat Muscle

    Directory of Open Access Journals (Sweden)

    Lu Wan

    2014-02-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p < 0.01, and low expression levels were seen in cardiac muscle and soleus muscle (p > 0.05. In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  1. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    Science.gov (United States)

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S

    1998-06-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subunit AChR gene. In addition to expression in muscle cells, thymic expression was observed in both mouse lines (mainly in myoid cells in Tg1 and myoid cells and epithelial cells in Tg2). After challenge with beta-gal, Tg1 mice produced Th2-dependent anti-beta-gal antibodies, while Tg2 mice were almost unresponsive. By contrast, in a proliferation assay both Tg lines were unresponsive to beta-gal. Cells from Tg1 mice produce Th2-dependent cytokine whereas cells from Tg2 mice were nonproducing in response to beta-gal. These data indicate that the level of expression in Tg1 mice could be sufficient to induce tolerance of Th1 cells but not of Th2 cells, while both populations are tolerated in Tg2 mice. These findings are compatible with the hypothesis that AChR expression is not sufficiently abundant in MG thymus to induce a full tolerance. PMID:9616205

  2. The essential role of hippocampal alpha6 subunit-containing GABAA receptors in maternal separation stress-induced adolescent depressive behaviors.

    Science.gov (United States)

    Yang, Linjie; Xu, Ting; Zhang, Ke; Wei, Zhisheng; Li, Xuran; Huang, Mingfa; Rose, Gregory M; Cai, Xiang

    2016-10-15

    Exposure to early stressful adverse life events such as maternal separation severely impacts the development of the nervous system. Using immunohistochemistry, quantitative PCR and Western blot approaches, we found that alpha6 subunit-containing GABAA receptors (Gabra6-containing GABAA Rs) were expressed on hippocampal interneurons of adolescent rats. Maternal separation stress (MS) from postnatal day 2 to15 significantly reduced Gabra6 expression and provoked depressive behaviors such as anhedonia. Furosemide, the selective antagonist of Gabra6-containing GABAARs, strongly increased peak amplitude of evoked IPSCs at CA3-CA1 synapses and the frequency of miniature IPSPs recorded from CA1 pyramidal cells in naive control animals, and this effect was occluded in MS animals. Knockdown of Gabra6 expression in hippocampus mimicked furosemide's effect and was sufficient to produce similar depressive symptoms that were observed in MS animals. These results indicate that the Gabra6-containing GABAA R is a key modulator of hippocampal synaptic transmission and likely plays a crucial role in the pathophysiology of maternal separation-induced depression. PMID:27388150

  3. Ontogenic Changes and Differential Localization of T-type Ca2+ Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum

    Science.gov (United States)

    Aguado, Carolina; García-Madrona, Sebastián; Gil-Minguez, Mercedes; Luján, Rafael

    2016-01-01

    T-type calcium (Ca2+) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing

  4. N-type calcium channel/syntaxin/SNAP-25 complex probed by antibodies to II-III intracellular loop of the α1B subunit

    International Nuclear Information System (INIS)

    Neuronal voltage-dependent calcium channels are integral components of cellular excitation and neurosecretion. In addition to mediating the entry of calcium across the plasma membrane, both N-type and P/Q-type voltage-dependent calcium channels have been shown to form stable complexes with synaptic vesicle and presynaptic membrane proteins, indicating a structural role for the voltage-dependent calcium channels in secretion. Recently, detailed structural analyses of N-type calcium channels have identified residues amino acids 718-963 as the site in the rat α1B subunit that mediates binding to syntaxin, synaptosome-associated protein of 25andpuncsp; omitted000 mol. wt and synaptotagmin [Sheng et al. (1996) Nature 379, 451-454]. The purpose of this study was to employ site-directed antibodies to target domains within and outside of the interaction site on the rat α1B to probe potential binding sites for syntaxin/SNAP-25/synaptotagmin.Our results demonstrate that both antibodies employed in this study have access to their epitopes on the α1B as evidenced by equivalent immunoprecipitation of native [125I]omega-conotoxin GVIA-labeled α1B protein from CHAPS-solubilized preparations. The N-type voltage-dependent calcium channel immunoprecipitated by Ab CW14, the antibody directed to a domain outside of the synprint site, is associated with syntaxin and SNAP-25 with the recovery of these proteins, increasing in parallel to the recovery of α1B. However, when we used the antibody raised to an epitope within the synprint site (Ab CW8) to immunoprecipitate N-type calcium channels, the α1B was depleted of more than 65% of syntaxin and 80% of SNAP-25 when compared to the recovery of these proteins using Ab CW14. This is the first report of a defined epitope on the α1B subunit II-III loop (amino acids 863-875) whose perturbation by a site-directed antibody influences the dissociation of SNAP-25 and syntaxin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights

  5. Substrate channeling: alpha-ketobutyrate inhibition of acetohydroxy acid synthase in Salmonella typhimurium.

    OpenAIRE

    Shaw, K J; Berg, C M

    1980-01-01

    Excess alpha-ketobutyrate inhibited the growth of Salmonella typhimurium LT2 by inhibiting the acetohydroxy acid synthase-catalyzed synthesis of alpha-acetolactate (a valine precursor). As a result, cells were starved for valine, and both ilvB (encoding acetohydroxy acid synthase I) and ilvGEDA (ilvG encodes acetohydroxy acid synthase II) were derepressed. The addition of valine reversed the effects of alpha-ketobutyrate.

  6. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    OpenAIRE

    Hou, Y; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P; Kaplan, F; Mahuran, D. J.

    1996-01-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks al...

  7. A new point mutation in the beta-hexosaminidase alpha subunit gene responsible for infantile Tay-Sachs disease in a non-Jewish Caucasian patient (a Kpn mutant).

    OpenAIRE

    Tanaka, A.; Punnett, H H; K. Suzuki

    1990-01-01

    The abnormality in the gene coding for the beta-hexosaminidase alpha subunit was analyzed in a non-Jewish patient with clinically typical infantile Tay-Sachs disease. The family was Catholic, and the father and the mother were of Irish and German descent, respectively. A hitherto undescribed single nucleotide transversion was found within exon 11 (G1260----C; Trp420----Cys). The coding sequence was otherwise entirely normal. Expression in the COS I cell system confirmed that the mutant gene d...

  8. Energy sharing in the deexcitation of the {sup 90}Ru compound nucleus via the p{alpha} channel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgine, F.; Cabaussel, D.; Boivin, D.; Aieche, M.; Aleonard, M.; Barreau, G.; Chemin, J.; Doan, T.P.; Goudour, J.P.; Harston, M.; Scheurer, J. [Centre dEtudes Nucleaires de Bordeaux-Gradignan, IN2P3-CNRS, Universite Bordeaux I, BP 120, F-33175 Gradignan Cedex (France); Brondi, A.; La Rana, G.; Moro, R.; Principe, A.; Vardaci, E. [Dipartimento di Scienze Fisiche dellUniversita and Istituto Nazionale di Fisica Nucleare, Mostra dOltremare, Pad. 20, I-80125, Napoli (Italy); Curien, D. [Institut de Recherches Subatomiques, BP 20, F-67037, Strasbourg Cedex 2 (France)

    1997-12-01

    Using the 4{pi} light charged-particle detector DIAMANT in combination with the {gamma}-ray spectrometer EUROGAM II, the decay of the {sup 90}Ru compound nucleus via the p{alpha} channel was studied. These nuclei were produced at an excitation energy of 54.9 MeV and with a maximum angular momentum of 37{h_bar} by the 120 MeV {sup 32}S + {sup 58}Ni reaction. The measurement of the energy of the two particles allowed the determination of the energy distribution of the entry states. A particular behavior of the sharing of the available energy between the two particles was found: For increasing values of the entry-state energy, the mean energy for protons remains almost constant while for alpha particles it decreases. This behavior is well reproduced by the evaporation code LILITA-N95. The physics underlying the decay is discussed in the framework of the statistical model which predicts a strong correlation between the excitation energy and the angular momentum of the evaporation residue. This result encourages the use of the p{alpha} channel to select the excitation energy and the angular momentum of the evaporation residue for superdeformed band studies. {copyright} {ital 1997} {ital The American Physical Society}

  9. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Diego Armando León Rodríguez

    Full Text Available Different models of rodent maternal separation (MS have been used to investigate long-term neurobiological and behavioral changes, associated with early stress. However, few studies have involved the analysis of sex-related differences in central anxiety modulation. This study investigated whether MS during breastfeeding affected adult males and females in terms of anxiety and brain GABA-A receptor-alpha-subunit immunoreactivity. The brain areas analyzed were the amygdale (AM, hippocampus (HP, medial prefrontal cortex (mPFC, medial preoptic area (POA and paraventricular nucleus (PVN. Rats were housed under a reversed light/dark cycle (lights off at 7∶00 h with access to water and food ad libitum. Animals underwent MS twice daily during the dark cycle from postnatal day 1 to postnatal day 21. Behavior was tested when rats were 65-70 days old using the elevated plus maze and after brains were treated for immunohistochemistry. We found that separated females spent more time in the open arms and showed more head dipping behavior compared with controls. The separated males spent more time in the center of the maze and engaged in more stretching behavior than the controls. Immunohistochemistry showed that separated females had less immunostained cells in the HP, mPFC, PVN and POA, while separated males had fewer immunolabeled cells in the PFC, PVN and AM. These results could indicate that MS has gender-specific effects on anxiety behaviors and that these effects are likely related to developmental alterations involving GABA-A neurotransmission.

  10. Drosophila casein kinase I alpha regulates homolog pairing and genome organization by modulating condensin II subunit Cap-H2 levels.

    Directory of Open Access Journals (Sweden)

    Huy Q Nguyen

    Full Text Available The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein.

  11. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer

    Science.gov (United States)

    Ellis, Matthew J; Lin, Li; Crowder, Robert; Tao, Yu; Hoog, Jeremy; Snider, Jacqueline; Davies, Sherri; DeSchryver, Katherine; Evans, Dean B; Steinseifer, Jutta; Bandaru, Raj; Liu, WeiHua; Gardner, Humphrey; Semiglazov, Vladimir; Watson, Mark; Hunt, Kelly; Olson, John; Baselga, José

    2010-01-01

    Background Mutations in the alpha catalytic subunit of phosphoinositol-3-kinase (PIK3CA) occur in ~30% of ER positive breast cancers. We therefore sought to determine the impact of PIK3CA mutation on response to neoadjuvant endocrine therapy. Methods Exon 9 (helical domain - HD) and Exon 20 (kinase domain- KD) mutations in PIK3CA were determined samples from four neoadjuvant endocrine therapy trials. Interactions with clinical, pathological and biomarker response parameters were examined. Results A weak negative interaction between PIK3CA mutation status and clinical response to neoadjuvant endocrine treatment was detected (N=235 P=<0.05), but not with treatment-induced changes in Ki67-based proliferation index (N=418). Despite these findings, PIK3CA KD mutation was a favorable prognostic factor for relapse-free survival (RFS log rank P=0.02) in the P024 trial (N=153). The favorable prognostic effect was maintained in a multivariable analysis (N=125) that included the preoperative prognostic index (PEPI), an approach to predicting RFS based on post neoadjuvant endocrine therapy pathological stage, ER and Ki67 levels (HR for no PIK3CA KD mutation, 14, CI 1.9–105 P=0.01). Conclusion PIK3CA mutation status did not strongly interact with neoadjuvant endocrine therapy responsiveness in estrogen receptor positive breast cancer. Nonetheless, as with other recent studies, a favorable interaction between PIK3CA kinase domain mutation and prognosis was detected. The mechanism for the favorable prognostic impact of PIK3CA mutation status therefore remains unexplained. PMID:19844788

  12. Evaluation of Zinc-alpha-2-Glycoprotein and Proteasome Subunit beta-Type 6 Expression in Prostate Cancer Using Tissue Microarray Technology.

    LENUS (Irish Health Repository)

    2010-07-23

    Prostate cancer (CaP) is a significant cause of illness and death in males. Current detection strategies do not reliably detect the disease at an early stage and cannot distinguish aggressive versus nonaggressive CaP leading to potential overtreatment of the disease and associated morbidity. Zinc-alpha-2-glycoprotein (ZAG) and proteasome subunit beta-Type 6 (PSMB-6) were found to be up-regulated in the serum of CaP patients with higher grade tumors after 2-dimensional difference gel electrophoresis analysis. The aim of this study was to investigate if ZAG and PSMB-6 were also overexpressed in prostatic tumor tissue of CaP patients. Immunohistochemical analysis was performed on CaP tissue microarrays with samples from 199 patients. Confirmatory gene expression profiling for ZAG and PSMB-6 were performed on 4 cases using Laser Capture Microdissection and TaqMan real-time polymerase chain reaction. ZAG expression in CaP epithelial cells was inversely associated with Gleason grade (benign prostatic hyperplasia>G3>G4\\/G5). PSMB-6 was not expressed in either tumor or benign epithelium. However, strong PSMB-6 expression was noted in stromal and inflammatory cells. Our results indicate ZAG as a possible predictive marker of Gleason grade. The inverse association between grade and tissue expression with a rising serum protein level is similar to that seen with prostate-specific antigen. In addition, the results for both ZAG and PSMB-6 highlight the challenges in trying to associate the protein levels in serum with tissue expression.

  13. Effects of polymorphisms in beta1-adrenoceptor and alpha-subunit of G protein on heart rate and blood pressure during exercise test. The Finnish Cardiovascular Study.

    Science.gov (United States)

    Nieminen, Tuomo; Lehtimäki, Terho; Laiho, Jarno; Rontu, Riikka; Niemelä, Kari; Kööbi, Tiit; Lehtinen, Rami; Viik, Jari; Turjanmaa, Väinö; Kähönen, Mika

    2006-02-01

    We tested whether the Arg389Gly and Ser49Gly polymorphisms of the beta1-adrenergic receptor gene ADRB1 and the T393C polymorphism of the G protein alpha-subunit gene GNAS1 modulate heart rate (HR) and blood pressure responses during an exercise stress test. The study population comprised 890 participants (563 men and 327 women, mean age 58.1 +/- 12.6 yr) of the Finnish Cardiovascular Study. Their HR, systolic (SAP), and diastolic arterial pressures (DAP) at rest, during exercise, and 4 min after the test were measured and analyzed by repeated-measurement ANOVA (RANOVA). Genotypes were detected by TaqMan 5' nuclease assay. In all subjects, and in men and women separately, the T393C of GNAS1 was the only polymorphism with genotype x time interaction in HR over the three study phases (P = 0.04, RANOVA). None of the polymorphisms presented genotype x time interaction in SAP or DAP responses (P > 0.10, RANOVA). In all subjects at rest, the Ser49Gly polymorphism of ADRB1 tended (P = 0.06, ANOVA) to differentiate HR. Arg389Gly polymorphism of ADRB1 affected maximal SAP during exercise (P = 0.04, ANOVA) and the change in SAP from rest to maximal (P = 0.03, ANOVA). Arg389 homozygotes, particularly men, were less likely to have ventricular extrasystoles during the exercise (odds ratio = 0.68, 95% confidence interval = 0.51-0.91, P = 0.009, and odds ratio = 0.60, 95% confidence interval = 0.42-0.86, P = 0.006, respectively) than did Gly389 carriers. In conclusion, polymorphisms examined appear to have modulatory effects on hemodynamics in a clinical exercise test setting. However, the effects in absolute numbers were minor and clinically possibly insignificant. PMID:16210433

  14. Ion-Induced Dipole Interactions and Fragmentation Times : C$\\alpha$ -C$\\beta$ Chromophore Bond Dissociation Channel

    CERN Document Server

    Soorkia, Satchin; Kumar, Sunil; Pérot-Taillandier, Marie; Lucas, Bruno; Jouvet, Christophe; Barat, Michel; Fayeton, Jacqueline A

    2015-01-01

    The fragmentation times corresponding to the loss of the chromophore (C$\\alpha$-- C$\\beta$ bond dissociation channel) after photoexcitation at 263 nm have been investigated for several small peptides containing tryptophan or tyrosine. For tryptophan-containing peptides, the aromatic chromophore is lost as an ionic fragment (m/z 130), and the fragmentation time increases with the mass of the neutral fragment. In contrast, for tyrosine-containing peptides the aromatic chromophore is always lost as a neutral fragment (mass = 107 amu) and the fragmentation time is found to be fast (\\textless{}20 ns). These different behaviors are explained by the role of the postfragmentation interaction in the complex formed after the C$\\alpha$--C$\\beta$ bond cleavage.

  15. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects.

    Science.gov (United States)

    Zvejniece, Liga; Vavers, Edijs; Svalbe, Baiba; Veinberg, Grigory; Rizhanova, Kristina; Liepins, Vilnis; Kalvinsh, Ivars; Dambrova, Maija

    2015-10-01

    Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain

  16. Modeling the Scattering Polarization of the Hydrogen Ly-alpha Line Observed by CLASP in a Filament Channel

    Science.gov (United States)

    Stepan, J.; Trujillo Bueno, J.; Gunar, S.; del Pino Aleman, T.; Heinzel, P.; Kano, R.; Ishikawa, R.; Narukage, M.; Bando, T.; Winebarger, Amy; Kobayashi, K.; Auchere, F.

    2016-01-01

    The 400 arcsec spectrograph slit of CLASP crossed predominantly quiet regions of the solar chromosphere, from the limb towards the solar disk center. Interestingly, in the CLASP slit-jaw images and in the SDO images of the He I line at 304 A, we can identify a filament channel (FC) extending over more than 60 arcsec crossing the spectrograph slit. In order to interpret the peculiar spatial variation of the Q/1 and U/1 signals observed by CLASP in the hydrogen Ly-alpha line (1216 A) and in the Si Ill line (1206 A) in such a filament channel, it is necessary to perform multi-dimensional radiative transfer modeling. In this contribution, we show the first results of the two-dimensional calculations we are carrying out in given filament models, with the aim of determining the filament thermal and magnetic structure by comparing the theoretical and the observed polarization signals.

  17. Molecular basis of inherited calcium Channelopathies: role of mutations in pore-forming subunits

    Institute of Scientific and Technical Information of China (English)

    Lynn MCKEOWN; Philip ROBINSON; Owen T JONES

    2006-01-01

    The pore-forming alpha subunits of voltage-gated calcium channels contain the essential biophysical machinery that underlies calcium influx in response to cell depolarization.In combination with requisite auxiliary subunits,these pore subunits form calcium channel complexes that are pivotal to the physiology and pharmacology of diverse cells ranging from sperm to neurons.Not surprisingly,mutations in the pore subunits generate diverse pathologies,termed channelopathies,that range from failures in excitation-contraction coupling to night blindness.Over the last decade, major insights into the mechanisms of pathogenesis have been derived from animals showing spontaneous or induced mutations.In parallel,there has been considerable growth in our understanding of the workings of voltage-gated ion channels from a structure-function,regulation and cell biology perspective.Here we document our current understanding of the mutations underlying channelopathies involving the voltage-gated calcium channel alpha subunits in humans and other species.

  18. 2,2,2-Trifluoroethanol changes the transition kinetics and subunit interactions in the small bacterial mechanosensitive channel MscS.

    Science.gov (United States)

    Akitake, Bradley; Spelbrink, Robin E J; Anishkin, Andriy; Killian, J Antoinette; de Kruijff, Ben; Sukharev, Sergei

    2007-04-15

    2,2,2-Trifluoroethanol (TFE), a low-dielectric solvent, has recently been used as a promising tool to probe the strength of intersubunit interactions in membrane proteins. An analysis of inner membrane proteins of Escherichia coli has identified several SDS-resistant protein complexes that separate into subunits upon exposure to TFE. One of these was the homo-heptameric stretch-activated mechanosensitive channel of small conductance (MscS), a ubiquitous component of the bacterial turgor-regulation system. Here we show that a substantial fraction of MscS retains its oligomeric state in cold lithium-dodecyl-sulfate gel electrophoresis. Exposure of MscS complexes to 10-15 vol % TFE in native membranes or nonionic detergent micelles before lithium-dodecyl-sulfate electrophoresis results in a complete dissociation into monomers, suggesting that at these concentrations TFE by itself disrupts or critically compromises intersubunit interactions. Patch-clamp analysis of giant E. coli spheroplasts expressing MscS shows that exposure to TFE in lower concentrations (0.5-5.0 vol %) causes leftward shifts of the dose-response curves when applied extracellularly, and rightward shifts when added from the cytoplasmic side. In the latter case, TFE increases the rate of tension-dependent inactivation and lengthens the process of recovery to the resting state. MscS responses to pressure ramps of different speeds indicate that in the presence of TFE most channels reside in the resting state and only at tensions near the activation threshold does TFE dramatically speed up inactivation. The effect of TFE is reversible as normal channel activity returns 15-30 min after a TFE washout. We interpret the observed midpoint shifts in terms of asymmetric partitioning of TFE into the membrane and distortion of the bilayer lateral pressure profile. We also relate the increased rate of inactivation and subunit separation with the capacity of TFE to perturb buried interhelical contacts in proteins

  19. Molecular basis of adult-onset and chronic G sub M2 gangliosidoses in patients of Ashkenazi Jewish origin: Substitution of serine for glycine at position 269 of the. alpha. -subunit of. beta. -hexosaminidase

    Energy Technology Data Exchange (ETDEWEB)

    Paw, B.H.; Kaback, M.M.; Neufeld, E.F. (Univ. of California, Los Angeles (USA))

    1989-04-01

    Chronic and adult-onset G{sub M2} gangliosidoses are neurological disorders caused by marked deficiency of the A isoenzyme of {beta}-hexosaminidase; they occur in the Ashkenazi Jewish population, though less frequently than classic (infantile) Tay-Sachs disease. Earlier biosynthetic studies had identified a defective {alpha}-subunit that failed to associate with the {beta}-subunit. The authors have now found a guanosine to adenosine transition at the 3{prime} end of exon 7, which causes substitution of serine for glycine at position 269 of the {alpha}-subunit. An RNase protection assay was used to localize the mutation to a segment of mRNA from fibroblasts of a patient with the adult-onset disorder. That segment of mRNA (after reverse transcription) and a corresponding segment of genomic DNA were amplified by the polymerase chain reaction and sequenced by the dideoxy method. The sequence analysis, together with an assay based on the loss of a ScrFI restriction site, showed that the patient was a compound heterozygote who had inherited the 269 (Gly {yields} Ser) mutation from his father and an allelic null mutation from his mother. The 269 (Gly {yields} Ser) mutation, in compound heterozygosity with a presumed null allele, was also found in fetal fibroblasts with an association-defective phenotype and in cells from five patients with chronic G{sub M2} gangliosidosis.

  20. Saturation mutagenesis of Bradyrhizobium sp. BTAi1 toluene 4-monooxygenase at alpha-subunit residues proline 101, proline 103, and histidine 214 for regiospecific oxidation of aromatics.

    Science.gov (United States)

    Yanık-Yıldırım, K Cansu; Vardar-Schara, Gönül

    2014-11-01

    A novel toluene monooxygenase (TMO) six-gene cluster from Bradyrhizobium sp. BTAi1 having an overall 35, 36, and 38 % protein similarity with toluene o-xylene monooxygenase (ToMO) of Pseudomonas sp. OX1, toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, and toluene-para-monooxygenase (TpMO) of Ralstonia pickettii PKO1, respectively, was cloned and expressed in Escherichia coli TG1, and its potential activity was investigated for aromatic hydroxylation and trichloroethylene (TCE) degradation. The natural substrate toluene was hydroxylated to p-cresol, indicating that the new toluene monooxygenase (T4MO·BTAi1) acts as a para hydroxylating enzyme, similar to T4MO and TpMO. Some shifts in regiospecific hydroxylations were observed compared to the other wild-type TMOs. For example, wild-type T4MO·BTAi1 formed catechol (88 %) and hydroquinone (12 %) from phenol, whereas all the other wild-type TMOs were reported to form only catechol. Furthermore, it was discovered that TG1 cells expressing wild-type T4MO·BTAi1 mineralized TCE at a rate of 0.67 ± 0.10 nmol Cl(-)/h/mg protein. Saturation and site directed mutagenesis were used to generate eight variants of T4MO·BTAi1 at alpha-subunit positions P101, P103, and H214: P101T/P103A, P101S, P101N/P103T, P101V, P103T, P101V/P103T, H214G, and H214G/D278N; by testing the substrates phenol, nitrobenzene, and naphthalene, positions P101 and P103 were found to influence the regiospecific oxidation of aromatics. For example, compared to wild type, variant P103T produced four fold more m-nitrophenol from nitrobenzene as well as produced mainly resorcinol (60 %) from phenol whereas wild-type T4MO·BTAi1 did not. Similarly, variants P101T/P103A and P101S synthesized more 2-naphthol and 2.3-fold and 1.6-fold less 1-naphthol from naphthalene, respectively.

  1. Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T cells

    Science.gov (United States)

    Yan, Li; Liu, Xiao; Liu, Wei-Xia; Tan, Xiao-Qiu; Xiong, Fei; Gu, Ning; Hao, Wei; Gao, Xue; Cao, Ji-Min

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron

  2. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination.

    Science.gov (United States)

    Page, Karen M; Rothwell, Simon W; Dolphin, Annette C

    2016-09-23

    CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit. PMID:27489103

  3. Potassium channels in prostate and colonic cancer

    OpenAIRE

    Ousingsawat, Jiraporn

    2007-01-01

    Large conductance Ca2+-activated K+ channels in human prostate cancer The KCNMA1 gene encoding the alpha-subunit of BK channels is amplified and BK channel expression is enhanced in late-stage, metastatic and hormone-refractory human prostate cancer tissues, whereas benign prostate tissues show only a weak expression of BK channels. PC-3 hormone-insensitive prostate cancer cells, but not hormone-sensitive prostate cancer cells (LNCaP) and benign prostate hyperplasia cells (BPH-1), show an ...

  4. Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans

    DEFF Research Database (Denmark)

    Iaia, F. Marcello; Thomassen, Martin; Kolding, Helle;

    2008-01-01

    The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners after a change from endurance to sprint training. Fifteen runners were assigned to either a sprint training (ST, n = 8) or a control (CON, n = 7) group. ST replaced their normal training...... by 30-s sprint runs three to four times a week, whereas CON continued the endurance training ( approximately 45 km/wk). After the 4-wk sprint period, the expression of the muscle Na(+)-K(+) pump alpha(1)-subunit and Na(+)/H(+)-exchanger isoform 1 was 29 and 30% higher (P .... Furthermore, plasma K(+) concentration was reduced (P training period, whereas...

  5. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα-encoding (GNAS genomic imprinting domain are associated with performance traits

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2011-01-01

    Full Text Available Abstract Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486 were located upstream of the GNAS gene, while one SNP (rs41694646 was located in the second intron of the GNAS gene. The final SNP (rs41694656 was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646 is associated (P ≤ 0.05 with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf and gestation length. Association (P ≤ 0.01 with direct calving difficulty (i.e. due to calf size and maternal calving difficulty (i.e. due to the maternal pelvic width size was also observed at the rs

  6. Effects of Rhizoma Acori Tatarinowii extracts on gamma-aminobutyric acid type A receptor alpha 1 subunit brain expression during development in a recurrent seizure rat model

    Institute of Scientific and Technical Information of China (English)

    Liqun Liu; Ding'an Mao; Keqiang Chi; Xingfang Li; Tao Bo; Jinming Guo; Zhuwen Yi

    2011-01-01

    Extracts from Rhizoma Acori Tatarinowii (Grassleaf Sweetflag Rhizome, Shichangpu) have been shown to improve learning and memory, reduce anxiety, allay excitement, and suppress seizures. Rhizoma Acori Tatarinowii extracts interact with γ-aminobutyric acid and activate the γ-aminobutyric acid type A receptor, although few studies have addressed the precise effects of γ-aminobutyric acid type A receptor α1 subunit. In the present study, γ-aminobutyric acid type A receptor α1 subunit protein expression in the cerebral cortex and hippocampus, and pathological scores of brain injury, were significantly greater following recurrent seizures, but significantly decreased following treatment with Rhizoma Acori Tatarinowii extracts. These results indicated that Rhizoma Acori Tatarinowii extracts down-regulated γ-aminobutyric acid type A receptor α1 subunit protein expression in the cerebral cortex and hippocampus and protected seizure-induced brain injury during development.

  7. First chemical synthesis of a scorpion alpha-toxin affecting sodium channels: the Aah I toxin of Androctonus australis hector.

    Science.gov (United States)

    M'Barek, Sarrah; Fajloun, Ziad; Cestèle, Sandrine; Devaux, Christiane; Mansuelle, Pascal; Mosbah, Amor; Jouirou, Besma; Mantegazza, Massimo; Van Rietschoten, Jurphaas; El Ayeb, Mohamed; Rochat, Hervé; Sabatier, Jean-Marc; Sampieri, François

    2004-11-01

    Aah I is a 63-residue alpha-toxin isolated from the venom of the Buthidae scorpion Androctonus australis hector, which is considered to be the most dangerous species. We report here the first chemical synthesis of Aah I by the solid-phase method, using a Fmoc strategy. The synthetic toxin I (sAah I) was renatured in DMSO-Tris buffer, purified and subjected to thorough analysis and comparison with the natural toxin. The sAah I showed physico-chemical (CD spectrum, molecular mass, HPLC elution), biochemical (amino-acid composition, sequence), immunochemical and pharmacological properties similar to those of the natural toxin. The synthetic toxin was recognized by a conformation-dependent monoclonal anti-Aah I antibody, with an IC50 value close to that for the natural toxin. Following intracerebroventricular injection, the synthetic and the natural toxins were similarly lethal to mice. In voltage-clamp experiments, Na(v) 1.2 sodium channel inactivation was inhibited by the application of sAah I or of the natural toxin in a similar way. This work describes a simple protocol for the chemical synthesis of a scorpion alpha-toxin, making it possible to produce structural analogues in time.

  8. Voltage-gated calcium channel and antisense oligonucleotides thereto

    Science.gov (United States)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  9. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tan; Taylor, Jackson; Jiang, Yang [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Pereyra, Andrea S. [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Messi, Maria Laura; Wang, Zhong-Min [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Hereñú, Claudia [Department of Histology, National University of La Plata, 1900 La Plata (Argentina); Delbono, Osvaldo, E-mail: odelbono@wakehealth.edu [Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States); Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157 (United States)

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  10. Alpha Channeling with High-field Launch of Lower Hybrid Waves

    CERN Document Server

    Ochs, Ian E; Fisch, Nathaniel J

    2015-01-01

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  11. Role of human GABA(A) receptor beta3 subunit in insecticide toxicity.

    Science.gov (United States)

    Ratra, G S; Kamita, S G; Casida, J E

    2001-05-01

    The gamma-aminobutyric acid type A (GABA(A)) receptor is the target for the major insecticides alpha-endosulfan, lindane, and fipronil and for many analogs. Their action as chloride channel blockers is directly measured by binding studies with [(3)H]ethynylbicycloorthobenzoate ([(3)H]EBOB). This study tests the hypothesis that GABA(A) receptor subunit composition determines the sensitivity and selectivity of insecticide toxicity. Human receptor subtypes were expressed individually (alpha1, alpha6, beta1, beta3, and gamma2) and in combination in insect Sf9 cells. Binding parameters were similar for [(3)H]EBOB in the beta3 homooligomer, alpha1beta3gamma2 heterooligomer, and native brain membranes, but toxicological profiles were very different. Surprisingly, alpha-endosulfan, lindane, and fipronil were all remarkably potent on the recombinant beta3 homooligomeric receptor (IC50 values of 0.5-2.4 nM), whereas they were similar in potency on the alpha1beta3gamma2 subtype (IC50 values of 16-33 nM) and highly selective on the native receptor (IC50 values of 7.3, 306, and 2470 nM, respectively). The selectivity order for 29 insecticides and convulsants as IC50 ratios for native/beta3 or alpha1beta3gamma2/beta3 was as follows: fipronil > lindane > 19 other insecticides including alpha-endosulfan and picrotoxinin > 4 trioxabicyclooctanes and dithianes (almost nonselective) > tetramethylenedisulfotetramine, 4-chlorophenylsilatrane, or alpha-thujone. Specificity between mammals and insects at the target site (fipronil > lindane > alpha-endosulfan) paralleled that for toxicity. Potency at the native receptor is more predictive for inhibition of GABA-stimulated chloride uptake than that at the beta3 or alpha1beta3gamma2 receptors. Therefore, the beta3 subunit contains the insecticide target and other subunits differentially modulate the binding to confer compound-dependent specificity and selective toxicity.

  12. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells

    DEFF Research Database (Denmark)

    Tiran, Zohar; Peretz, Asher; Sines, Tal;

    2006-01-01

    Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K+ ...

  13. Molecular cloning and functional expression of the Equine K+ channel KV11.1 (Ether à Go-Go-related/KCNH2 gene) and the regulatory subunit KCNE2 from equine myocardium

    OpenAIRE

    Philip Juul Pedersen; Kirsten Brolin Thomsen; Emma Rie Olander; Frank Hauser; Maria de los Angeles Tejada; Kristian Lundgaard Poulsen; Soren Grubb; Rikke Buhl; Kirstine Calloe; Dan Arne Klaerke

    2015-01-01

    The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death-conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplai...

  14. Molecular pharmacology of the calcium channel: evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4-dihydropyridine calcium channel label, (/sup 125/I)iodipine

    Energy Technology Data Exchange (ETDEWEB)

    Glossmann, H.; Ferry, D.R.; Goll, A.; Rombusch, M.

    1984-01-01

    Radiolabeled Ca2+ antagonists (1,4-dihydropyridines, verapamil, and D-cis-diltiazem) were used to study voltage-operated Ca2+ channels in different excitable tissues. The concept of three subtypes of Ca2+ channels, represented by brain, heart, and skeletal-muscle isoreceptors for 1,4-dihydropyridines, is developed. The three subtypes are characterized by a variety of criteria. Despite the biochemical differences between the subtypes, they have the same Mr in situ by target-size analysis (Mr approximately equal to 180,000, when evaluated by (/sub 3/H)nimodipine). The concept of the metalloprotein nature of the channel and the interaction of channel drugs with the Me2+ binding sites of the ionic pore is demonstrated. Distinct but interacting drug-receptor sites of the Ca2+ channel are found by direct labeling as well as indirectly by drug competition studies. The authors distinguish between the 1,4-dihydropyridine site, the verapamil site, and the D-cis-diltiazem site. Each receptor site can exist in high and low-affinity state; the distribution of receptor sites in these states is regulated by temperature, ions, and drugs. The concept of intrinsic activity of drugs to stabilize the high-affinity state is exemplified for the 1,4-dihydropyridines. A change in the channel architecture is induced by binding of D-cis-diltiazem to its drug receptor site. This is proven by target-size analysis of the channel in situ. Partially purified t-tubule membranes from skeletal muscle are an extremely rich source of Ca2+ channel drug-receptor sites. The stoichiometry was determined in this preparation and found to be four verapamil:two 1,4-dihydropyridine:one D-cis-diltiazem site. A novel Ca2+ channel probe, (/sup 125/I)iodipine (2,200 Ci/mmol), was synthetized, and the properties of this ligand are presented.

  15. Dynamics of energy distribution in three channel alpha helix protein based on Davydov’s ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faozan; Alatas, Husin [Theoretical Physics Division, Department of Physics, Faculty of Mathematics and Sciences Bogor Agricultural University, Bogor, Indonesia, 16680 faozan@ipb.ac.id (Indonesia)

    2015-04-16

    An important aspect of many biological processes at molecular level is the transfer and storage mechanism of bioenergy released in the reaction of the hydrolysis of Adenosinetriphosphate (ATP) by biomacromolecule especially protein. Model of Soliton Davydov is a new break-through that could describe that mechanism. Here we have reformulated quantum mechanical the Davydov theory, using least action principle. Dynamical aspect of the model is analyzed by numerical calculation. We found two dynamical cases: the traveling and pinning soliton that we suggest they are related to the energy transfer and storage mechanism in the protein. Traveling and pinning soliton can be controlled by strength of coupling. In 3- channel approach, we found the breather phenomena in which its frequency is determined by interchannel coupling parameter.

  16. G-protein stimulatory subunit alpha and Gq/11α G-proteins are both required to maintain quiescent stem-like chondrocytes

    OpenAIRE

    Chagin, Andrei S; Vuppalapati, Karuna K; Kobayashi, Tatsuya; Guo, Jun; Hirai, Takao; Chen, Min; Offermanns, Stefan; Lee S Weinstein; Kronenberg, Henry M.

    2014-01-01

    Round chondrocytes in the resting zone of the growth plate provide precursors for columnar chondrocytes and have stem-like properties. Here we demonstrate that these stem-like chondrocytes undergo apoptosis in the absence of the receptor (PPR) for parathyroid hormone-related protein. We examine the possible roles of heterotrimeric G-proteins activated by the PPR. Inactivation of the G-protein stimulatory α-subunit (Gsα) leads to accelerated differentiation of columnar chondrocytes, as seen in...

  17. Dopamine D3 receptor-dependent changes in alpha6 GABAA subunit expression in striatum modulate anxiety-like behaviour: Responsiveness and tolerance to diazepam.

    Science.gov (United States)

    Leggio, Gian Marco; Torrisi, Sebastiano Alfio; Castorina, Alessandro; Platania, Chiara Bianca Maria; Impellizzeri, Agata Antonia Rita; Fidilio, Annamaria; Caraci, Filippo; Bucolo, Claudio; Drago, Filippo; Salomone, Salvatore

    2015-09-01

    Increasing evidence indicates that central dopamine (DA) neurotransmission is involved in pathophysiology of anxiety, in particular the DA receptor subtype 3 (D3R). We previously reported that D3R null mice (D3R(-/-)) exhibit low baseline anxiety levels and that acutely administrated diazepam is more effective in D3R(-/-) than in wild type (WT) when tested in the elevated plus maze test (EPM). Here we tested the hypothesis that genetic deletion or pharmacological blockade of D3R affect GABAA subunit expression, which in turn modulates anxiety-like behaviour as well as responsiveness and tolerance to diazepam. D3R(-/-) mice exhibited tolerance to diazepam (0.5mg/kg, i.p.), assessed by EPM, as fast as after 3 day-treatment, performing similarly to untreated D3R(-/-) mice; conversely, WT exhibited tolerance to diazepam after a 14-21 day-treatment. Analysis of GABAA α6 subunit mRNA expression by qPCR in striatum showed that it was about 15-fold higher in D3R(-/-) than in WT. Diazepam treatment did not modify α6 expression in D3R(-/-), but progressively increased α6 expression in WT, to the level of untreated D3R(-/-) after 14-21 day-treatment. BDNF mRNA expression in striatum was remarkably (>10-fold) increased after 3 days of diazepam-treatment in both WT and D3R(-/-); such expression level, however, slowly declined below control levels, by 14-21 days. Following a 7 day-treatment with the selective D3R antagonist SB277011A, WT exhibited a fast tolerance to diazepam accompanied by a robust increase in α6 subunit expression. In conclusion, genetic deletion or pharmacological blockade of D3R accelerate the development of tolerance to repeated administrations of diazepam and increase α6 subunit expression, a GABAA subunit that has been linked to diazepam insensitivity. Modulation of GABAA receptor by DA transmission may be involved in the mechanisms of anxiety and, if occurring in humans, may have therapeutic relevance following repeated use of drugs targeting D3R

  18. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    Directory of Open Access Journals (Sweden)

    Incilay Sinici

    Full Text Available The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively, and the GM2-activator protein (GM2AP, encoded by the GM2A gene. Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750. Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1 and a new more extensive hybrid (H2, with our documented in cellulo (live cell- based assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.

  19. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    Science.gov (United States)

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939

  20. Dynamic regulation of β1 subunit trafficking controls vascular contractility

    OpenAIRE

    Leo, M. Dennis; Bannister, John P.; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E.; Gabrick, Kyle S.; Boop, Frederick A.; Jaggar, Jonathan H.

    2014-01-01

    Plasma membrane ion channels composed of pore-forming and auxiliary subunits regulate physiological functions in virtually all cell types. A conventional view is that ion channels assemble with their auxiliary subunits prior to surface trafficking of the multiprotein complex. Arterial myocytes express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that modulate contractility and blood pressure and flow. The data here show that although most BKα subunits ar...

  1. Homology modeling of human alpha 1 beta 2 gamma 2 and house fly beta 3 GABA receptor channels and Surflex-docking of fipronil.

    Science.gov (United States)

    Cheng, Jin; Ju, Xiu-Lian; Chen, Xiang-Yang; Liu, Gen-Yan

    2009-09-01

    To further explore the mechanism of selective binding of the representative gamma-aminobutyric acid receptors (GABARs) noncompetitive antagonist (NCA) fipronil to insect over mammalian GABARs, three-dimensional models of human alpha 1 beta 2 gamma 2 and house fly beta 3 GABAR were generated by homology modeling, using the cryo-electron microscopy structure of the nicotinic acetylcholine receptor (nAChR) of Torpedo marmorata as a template. Fipronil was docked into the putative binding site of the human alpha 1 beta 2 gamma 2 and house fly beta 3 receptors by Surflex-docking, and the calculated docking energies are in agreement with experimental results. The GABA receptor antagonist fipronil exhibited higher potency with house fly beta 3 GABAR than with human alpha 1 beta 2 gamma 2 GABAR. Furthermore, analyses of Surflex-docking suggest that the H-bond interaction of fipronil with Ala2 and Thr6 in the second transmembrane segment (TM2) of these GABARs plays a relatively important role in ligand selective binding. The different subunit assemblies of human alpha 1 beta 2 gamma 2 and house fly beta 3 GABARs may result in differential selectivity for fipronil.

  2. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.

    Science.gov (United States)

    Conforti, L; Millhorn, D E

    2000-01-01

    Little is known about the molecular composition of the O2-sensitive K+ (Ko2) channels. The possibility that these channels belong to the Shaker subfamily (Kv1) of voltage-dependent K+ (Kv) channels has been raised in pulmonary artery (PA) smooth muscle cells. Numerous findings suggest that the Ko2 channel in PC12 cells is a Kv1 channel, formed by the Kv1.2 alpha subunit. The Ko2 channel in PC12 cells is a slow-inactivating voltage-dependent K+ channel of 20 pS conductance. Other Kv channels, also expressed in PC12 cells, are not inhibited by hypoxia. Selective up-regulation by chronic hypoxia of the Kv1.2 alpha subunit expression correlates with an increase O2-sensitivity of the K+ current. Other Kv1 alpha subunit genes encoding slow-inactivating Kv channels, such as Kv1.3, Kv2.1, Kv3.1 and Kv3.2 are not modulated by chronic hypoxia. The Ko2 current in PC12 cells is blocked by 5 mM externally applied tetraethylammonium chloride (TEA) and by charydbotoxin (CTX). The responses of the Kv1.2 K+ channel to hypoxia have been studied in the Xenopus oocytes and compared to those of Kv2.1, also proposed as Ko2 channel in PA smooth muscle cells. Two-electrode voltage clamp experiments show that hypoxia induces inhibition of K+ current amplitude only in oocytes injected with Kv1.2 cRNA. These data indicate that Kv1.2 K+ channels are inhibited by hypoxia. PMID:10849667

  3. Design and calibration of a two-channel low-noise heterodyne receiver for use in a CO2 laser Thomson scattering alpha particle diagnostic

    International Nuclear Information System (INIS)

    A dual channel low noise heterodyne receiver has been constructed as part of a development effort to build a carbon dioxide laser based Thomson scattering alpha particle diagnostic for a burning plasma experiment. The receiver employs two wide bandwidth (>1 GHz) HgCdTe photovoltaic mixers followed by low noise IF amplifiers. A noise equivalent power of less than 3.0 /times/ 10-20 WHz has been demonstrated. Design details and calibration methods are described. 8 refs

  4. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O;

    1992-01-01

    Recombinant human alpha subunit from casein kinase-2 (CK-2) was subjected, either alone or in combination with recombinant human beta subunit, to high temperature, tryptic digestion and urea treatment. In all three cases, it was shown that the presence of the beta subunit could drastically reduce...... alpha subunit. Therefore, a dual function for the beta subunit is proposed which confers both specificity and stability to the catalytic alpha subunit within the CK-2 holoenzyme complex. The peptide DLEPDEELEDNPNQSDL, reproducing the highly acidic amino acid 55-71 segment of the human beta subunit......, counteracts the stimulatory effect of the beta subunit on the alpha subunit activity and partially substitutes the beta subunit in conferring thermal stability to the alpha subunit. No such effect is induced by the peptide MSSSEEVSW, reproducing the N-terminal segment of the beta subunit including...

  5. Alpha Channel Key Technology Analysis in Media Work Development%媒体作品开发中的Alpha通道关键技术分析

    Institute of Scientific and Technical Information of China (English)

    李芙蓉

    2011-01-01

    In the multimedia development process works,Alpha-channel technology is the mOst critical image processing technology.The Alpha channel involves the application of a number of multimedia development software,and therefore knows the technology has some difficulty making the multimedia features and performance of the work force to some extent limited.This paper describes the Alpha channel in the popular multimedia development software in specific application methods.%在多媒体作品的开发过程中,Alpha通道技术是最关键的图像处理技术。而Alpha通道的应用涉及到了多个多媒体开发软件,因而掌握此项技术有一定的难度,使得多媒体作品的功能和表现力在一定程度上受到了限制。本文主要介绍了Alpha通道在常用的多媒体开发软件中的具体的应用方法。

  6. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    OpenAIRE

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S.

    1998-01-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subu...

  7. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies

    International Nuclear Information System (INIS)

    The purified dihydropyridine-sensitive calcium channel from skeletal muscle transverse tubules consists of several subunits, termed alpha 1, alpha 2, beta, gamma and delta. From its associated drug receptors, those for 1,4-dihydropyridines and phenylalkylamines have been shown previously by photoaffinity labeling to reside on the alpha 1 subunit. In the present study the arylazide photo-affinity ligand, (+)-cis-azidodiltiazem ((+)-cis-(2S,3S)-5-[2-(4- azidobenzoyl)aminoethyl]-2,3,4,5-tetrahydro-3-hydroxy-2-(4-methoxyphenyl )-4- oxo-1,5-benzothiazepine), and the respective tritiated derivative, (+)-cis-[3H]azidodiltiazem (45 Ci/mmol), were developed to identify directly the benzothiazepine binding subunit. (+)-cis-Azidodiltiazem binds competitively to the benzothiazepine receptor in rabbit skeletal muscle transverse tubule membranes. Upon ultraviolet irradiation of the (+)-cis-[3H]azidodiltiazem-purified calcium channel complex, the ligand photoincorporates exclusively into the alpha 1 subunit. Photoincorporation is protected by 100 microM (-)-desmethoxyverapamil and 100 microM (+)-cis-diltiazem. A polyclonal antiserum directed against (+)-cis-azidodiltiazem was employed to detect (+)-cis-azidodiltiazem immunoreactivity photoincorporated into the purified calcium channel complex, confirming the exclusive labeling of the alpha 1 subunit. Our data provide direct evidence that, together with the drug receptors for 1,4-dihydropyridines and phenylalkylamines, the benzothiazepine binding domain of skeletal muscle calcium channels is located on the alpha 1 subunit. We conclude that our anti-ligand antibodies could be used successfully to affinity purify the photolabeled proteolytic fragments of the alpha 1 subunit which are expected to form part of the benzothiazepine binding domain

  8. Cloning, expression analysis, and molecular modeling of the gamma-aminobutyric acid receptor alpha2 subunit gene from the common cutworm, Spodoptera litura.

    Science.gov (United States)

    Zuo, Hongliang; Gao, Lu; Hu, Zhen; Liu, Haiyuan; Zhong, Guohua

    2013-01-01

    Intensive research on the molecule structures of the gamma-nminobutyric acid (GABA) receptor in agricultural pests has great significance to the mechanism investigation, resistance prevention, and molecular design of novel pesticides. The GABA receptor a2 (SlGABARα2) subunit gene in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) was cloned using the technologies of reverse transcription PCR and rapid amplification of cDNA ends. The gemonic DNA sequence of SlGABARα2 has 5164 bp with 8 exons and 7 introns that were in accordance with the GT-AG splicing formula. The complete mRNA sequence of SlGABARα2 was 1965 bp, with an open reading frame of 1500 bp encoding a protein of 499 amino acids. The GABA receptor is highly conserved among insects. The conserved regions include several N-glycosylation, Oglycosylation, and phosphorylation sites, as well as 4 transmembrane domains. The identities that SlGABARα2 shared with the GABA receptor a2 subunit of Spodoptera exigua, Heliothis virescens, Chilo suppressalis, Plutella xylostella, Bombyx mori ranged from 99.2% to 87.2% at the amino acid level. The comparative 3-dimensional model of SlGABARα2 showed that its tertiary structure was composed of 4 major α-helixes located at the 4 putative transmembrane domains on one side, with some β-sheets and 1 small α-helix on the other side. SlGABARα2 may be attached to the membrane by 4 α-helixes that bind ions in other conserved domains to transport them through the membrane. The results of quantitative real time PCR demonstrated that SlGABARα2 was expressed in all developmental stages of S. litura. The relative expression level of SlGABARα2 was the lowest in eggs and increased with larval growth, while it declined slightly in pupae and reached the peak in adults. The expressions of SlGABARα2 in larvae varied among different tissues; it was extremely high in the brain but was low in the midgut, epicuticle, Malpighian tube, and fat body. PMID:23909412

  9. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis.

    Science.gov (United States)

    van Nierop, Pim; Bertrand, Sonia; Munno, David W; Gouwenberg, Yvonne; van Minnen, Jan; Spafford, J David; Syed, Naweed I; Bertrand, Daniel; Smit, August B

    2006-01-20

    We described a family of nicotinic acetylcholine receptor (nAChR) subunits underlying cholinergic transmission in the central nervous system (CNS) of the mollusc Lymnaea stagnalis. By using degenerate PCR cloning, we identified 12 subunits that display a high sequence similarity to nAChR subunits, of which 10 are of the alpha-type, 1 is of the beta-type, and 1 was not classified because of insufficient sequence information. Heterologous expression of identified subunits confirms their capacity to form functional receptors responding to acetylcholine. The alpha-type subunits can be divided into groups that appear to underlie cation-conducting (excitatory) and anion-conducting (inhibitory) channels involved in synaptic cholinergic transmission. The expression of the Lymnaea nAChR subunits, assessed by real time quantitative PCR and in situ hybridization, indicates that it is localized to neurons and widespread in the CNS, with the number and localization of expressing neurons differing considerably between subunit types. At least 10% of the CNS neurons showed detectable nAChR subunit expression. In addition, cholinergic neurons, as indicated by the expression of the vesicular ACh transporter, comprise approximately 10% of the neurons in all ganglia. Together, our data suggested a prominent role for fast cholinergic transmission in the Lymnaea CNS by using a number of neuronal nAChR subtypes comparable with vertebrate species but with a functional complexity that may be much higher.

  10. Individual response speed is modulated by variants of the gene encoding the alpha 4 sub-unit of the nicotinic acetylcholine receptor (CHRNA4).

    Science.gov (United States)

    Schneider, Katja Kerstin; Schote, Andrea B; Meyer, Jobst; Markett, Sebastian; Reuter, Martin; Frings, Christian

    2015-05-01

    Acetylcholine (ACh) is a known modulator of several domains of cognition, among them attention, memory and learning. The neurotransmitter also influences the speed of information processing, particularly the detection of targets and the selection of suitable responses. We examined the effect of the rs1044396 (C/T) polymorphism of the gene encoding the nicotinic acetylcholine receptor α4-subunit (CHRNA4) on response speed and selective visual attention. To this end, we administered a Stroop task, a Negative priming task and an exogenous Posner-Cuing task to healthy participants (n = 157). We found that the CHRNA4 rs1044396 polymorphism modulated the average reaction times (RTs) across all three tasks. Dependent on the C allele dosage, the RTs linearly increased. Homozygous T allele carriers were always fastest, while homozygous C allele carriers were always slowest. We did not observe effects of this polymorphism on selective attention. In sum, we conclude that naturally occurring variations within the cholinergic system influence an important factor of information processing. This effect might possibly be produced by the neuromodulator system rather than the deterministic system of cortical ACh. PMID:25639542

  11. Effects of hippocampal injections of a novel ligand selective for the alpha 5 beta 2 gamma 2 subunits of the GABA/benzodiazepine receptor on Pavlovian conditioning.

    Science.gov (United States)

    Bailey, David J; Tetzlaff, Julie E; Cook, James M; He, Xiaohui; Helmstetter, Fred J

    2002-07-01

    Benzodiazepine pharmacology has led to greater insight into the neural mechanisms underlying learning and anxiety. The synthesis of new compounds capable of modulating responses produced by these receptors has been made possible by the development of an isoform model of the GABA(A)/benzodiazepine receptor complex. In the current experiment, rats were pretreated with several concentrations of the novel ligand RY024 (an alpha 5 beta 2 gamma 2 -selective benzodiazepine receptor inverse agonist) in the hippocampus and were trained in a Pavlovian fear conditioning paradigm. RY024 independently produced fear-related behavior prior to training and, at the highest concentration, decreased the strength of conditioning observed 24 h after training. These data provide further evidence for the involvement of hippocampal GABA(A)/benzodiazepine receptors in learning and anxiety.

  12. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.

    Science.gov (United States)

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-12-25

    Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.

  13. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    Science.gov (United States)

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  14. Molecular cloning of the alpha subunit of complement component C8 (CpC8α) of whitespotted bamboo shark (Chiloscyllium plagiosum).

    Science.gov (United States)

    Wang, Ying; Zhang, Mengmeng; Wang, Conghui; Ye, Boping; Hua, Zichun

    2013-12-01

    Complement-mediated cytolysis is the important effect of immune response, which results from the assembly of terminal complement components (C5b-9). Among them, α subunit of C8 (C8α) is the first protein that traverses the lipid bilayer, and then initiates the recruitment of C9 molecules to form pore on target membranes. In this article, a full-length cDNA of C8α (CpC8α) is identified from the whitespotted bamboo shark (Chiloscyllium plagiosum) by RACE. The CpC8α cDNA is 2183 bp in length, encoding a protein of 591 amino acids. The deduced CpC8α exhibits 89%, 49% and 44% identity with nurse shark, frog and human orthologs, respectively. Sequence alignment indicates that the C8α is well conserved during the evolution process from sharks to mammals, with the same modular architecture as well as the identical cysteine composition in the mature protein. Phylogenetic analysis places CpC8α and nurse shark C8α in cartilaginous fish clade, in parallel with the teleost taxa, to form the C8α cluster with higher vertebrates. Hydrophobicity analysis also indicates a similar hydrophobicity of CpC8α to mammals. Finally, expression analysis revealed CpC8α transcripts were constitutively highly expressed in shark liver, with much less expression in other tissues. The well conserved structure and properties suggests an analogous function of CpC8α to mammalian C8α, though it remains to be confirmed by further study.

  15. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45Ca2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45Ca2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd2+, Ni2+, and Mg2+. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  16. Systemic radioimmunotherapy using a monoclonal antibody, anti-Tac directed toward the alpha subunit of the IL-2 receptor armed with the {alpha}-emitting radionuclides {sup 212}Bi or {sup 211}At

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, Jon N.; McGee, Edwin C.; Garmestani, Kayhan; Brechbiel, Martin W.; Yordanov, Alexander T.; Wu Chuanchu; Gansow, Otto A.; Eckelman, William C.; Bacher, John D.; Flynn, Michael; Goldman, Carolyn K.; MacLin, Melvin; Schwartz, Uwe P.; Jackson-White, Terri; Phillip, Celeste M.; Decker, Jean; Waldmann, Thomas A. E-mail: tawald@helix.nih.gov

    2004-04-01

    To exploit the fact that IL-2 receptors are expressed by T-cells responding to foreign antigens but not by resting T-cells, humanized anti-Tac (HAT) armed with alpha-emitting radionuclides {sup 212}Bi and {sup 211}At was evaluated in a cynomolgus cardiac allograft model. Control graft survival was 8.2{+-} 0.5 days compared with 14.0{+-}1.3 days (p<0.01) survival for monkeys treated with {sup 212}Bi labeled HAT and 26.7{+-}2.4 days survival (p<0.001 versus controls) with {sup 211}At labeled HAT. Thus, {sup 211}At labeled HAT may have application in organ transplantation and in treatment of IL-2 receptor expressing T-cell leukemia.

  17. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    Science.gov (United States)

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed. PMID:26535938

  18. The human [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)[sub n] repeats

    Energy Technology Data Exchange (ETDEWEB)

    Glatt, K.; Lalande, M. (Howard Hughes Medical Institute, Boston, MA (United States)); Sinnett, D. (Harvard Medical School, Boston, MA (United States))

    1994-01-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptor [beta]33 (GABRB3) and [alpha]5 (GABRA5) subunit genes have been localized to the Angelman and Prader-Willi syndrome region of chromosome 15q11-q13. GABRB3, which encompasses 250 kb, is located 100 kb proximal of GABRA5, with the two genes arranged in head-to-head transcriptional orientation. In screening 135 kb of cloned DNA within a 260-kb interval extending from within GABRB3 to the 5[prime] end of GABRA5, 10 new (CA), repeats have been identified. Five of these have been analyzed in detail and found to be highly polymorphic, with the polymorphism information content (PIC) ranging from 0.7 to 0.85 and with heterozygosities of 67 to 94%. In the clones from GABRB3/GABRA5 region, therefore, the frequency of (CA)[sub n] with PICs [ge] 0.7 is 1 per 27 kb. Previous estimates of the density of (CA)[sub n] with PICs [ge] 0.7 in the human genome have been approximately 10-fold lower. The GABRB3/GABRA5 region appears, therefore, to be enriched for highly informative (CA)[sub n]. This set of closely spaced, short tandem repeat polymorphisms will be useful in the molecular analyses of Prader-Willi and Angelman syndromes and in high-resolution studies of genetic recombination within this region. 21 refs., 2 figs., 1 tab.

  19. Expression of BKCa channels and the modulatory ß-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander;

    2009-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels contribute to electrical impulses, proper signal transmission of information and regulation of neurotransmitter release. Migraine has been proposed to be a trigeminovascular disease involving the sensory trigeminal pathways and the c......Large conductance calcium-activated potassium (BK(Ca)) channels contribute to electrical impulses, proper signal transmission of information and regulation of neurotransmitter release. Migraine has been proposed to be a trigeminovascular disease involving the sensory trigeminal pathways...

  20. De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy : a retrospective study

    NARCIS (Netherlands)

    Berkovic, SF; Harkin, L; McMahon, JM; Pelekanos, JT; Zuberi, SM; Wirrell, EC; Gill, DS; Iona, [No Value; Mulley, JC; Scheffer, IE

    2006-01-01

    Background Vaccination, particularly for pertussis, has been implicated as a direct cause of an encephalopathy with refractory seizures and intellectual impairment. We postulated that cases of so-called vaccine encephalopathy could have mutations in the neuronal sodium channel alpha 1 subunit gene (

  1. Positronium energy levels at order $m \\alpha^7$: Product contributions in the two-photon-annihilation channel

    CERN Document Server

    Adkins, Gregory S; Wang, Ruihan

    2016-01-01

    Ongoing improvements in the measurement of positronium transition intervals motivate the calculation of the $O(m \\alpha^7)$ corrections to these intervals. In this work we focus on corrections to the spin-singlet parapositronium energies involving virtual annihilation to two photons in an intermediate state. We have evaluated all contributions to the positronium S-state energy levels that can be written as the product of a one-loop correction on one side of the annihilation event and another one-loop correction on the other side. These effects contribute $\\Delta E = -0.561971(25) m \\alpha^7/\\pi^3$ to the parapositronium ground state energy.

  2. Particle-in-cell simulations of an alpha channeling scenario: electron current drive arising from lower hybrid drift instability of fusion-born ions

    Science.gov (United States)

    Cook, James; Chapman, Sandra; Dendy, Richard

    2010-11-01

    Particle-in-cell (PIC) simulations of fusion-born protons in deuterium plasmas demonstrate a key alpha channeling phenomenon for tokamak fusion plasmas. We focus on obliquely propagating modes at the plasma edge, excited by centrally born fusion products on banana orbits, known to be responsible for observations of ion cyclotron emission in JET and TFTR. A fully self-consistent electromagnetic 1D3V PIC code evolves a ring-beam distribution of 3MeV protons in a 10keV thermal deuterium-electron plasma with realistic mass ratio. A collective instability occurs, giving rise to electromagnetic field activity in the lower hybrid range of frequencies. Waves spontaneously excited by this lower hybrid drift instability undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the distribution of electron parallel velocities, which constitutes a net current. These simulations demonstrate a key building block of some alpha channeling scenarios: the direct collisionless coupling of fusion product energy into a form which can help sustain the equilibrium of the tokamak.

  3. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function.

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Yang

    Full Text Available BACKGROUND: The pH and voltage-regulated Slo3 K(+ channel, a homologue of the Ca(2+- and voltage-regulated Slo1 K(+ channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels. METHODOLOGY/PRINCIPAL FINDINGS: To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm. CONCLUSIONS/SIGNIFICANCE: These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.

  4. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Jansen-Olesen, Inger; Olesen, Jes;

    2011-01-01

    The big conductance calcium-activated K(+) channel (BK) is involved in regulating neuron and smooth muscle cell excitability. Functional diversity of BK is generated by alpha-subunit splice variation and co-expression with beta subunits. Here, we present six different splice combinations cloned...... from rat brain or cerebral vascular/meningeal tissues, of which at least three variants were previously uncharacterized (X1, X2(92), and X2(188)). An additional variant was identified by polymerase chain reaction but not cloned. Expression in Xenopus oocytes showed that the brain-specific X1 variant...... for a subpopulation of BK channels in the brain, while the "silent" truncated variants X2(92) and X2(188) may play a role as modulators of other BK channel variants in a way similar to well known beta subunits....

  5. Ligand- and subunit-specific conformational changes in the ligand-binding domain and the TM2-TM3 linker of {alpha}1 {beta}2 {gamma}2 GABAA receptors

    DEFF Research Database (Denmark)

    Wang, Qian; Pless, Stephan Alexander; Lynch, Joseph W

    2010-01-01

    Cys-loop receptor ligand binding sites are located at subunit interfaces where they are lined by loops A-C from one subunit and loops D-F from the adjacent subunit. Agonist binding induces large conformational changes in loops C and F. However, it is controversial as to whether these conformational...... directly with attached fluorophores at the same site. Here we show that ligands binding to the β2-α1 interface GABA binding site produce conformational changes at the adjacent subunit interface. This is most likely due to agonist-induced loop C closure directly altering loop F conformation at the adjacent...

  6. Phycocyanin alpha-subunit phycocyanobilin lyase.

    OpenAIRE

    Fairchild, C D; J. Zhao; Zhou, J; Colson, S E; Bryant, D A; Glazer, A. N.

    1992-01-01

    Phycobiliproteins, unlike other light-harvesting proteins involved in photosynthesis, bear covalently attached chromophores. The bilin chromophores are attached through thioether bonds to cysteine residues. The cyanobacterium Synechococcus sp. PCC 7002 has eight distinct bilin attachment sites on seven polypeptides, all of which carry the same chromophore, phycocyanobilin. When two genes in the phycocyanin operon of this organism, cpcE and cpcF, are inactivated by insertion, together or separ...

  7. Superdeformed nuclei produced in alpha xn channel in the A similar or equal to 150 mass region

    NARCIS (Netherlands)

    Stezowski, O; Beck, FA; Byrski, T; Curien, D; deFrance, G; Duchene, G; Finck, C; Gall, B; Haas, B; Khadiri, N; Kharraja, B; Prevost, D; Rigollet, C; Savajols, H; Vivien, JP; Zuber, K

    1997-01-01

    The aim of this work is to get more information about the population mechanism of superdeformed (SD) bands in the A similar or equal to 150 mass region. Usually, SD bands were populated in heavy-ion induced fusion reactions and most of them have been seen in xn exit channels. With the new generation

  8. Positronium energy levels at order $m \\alpha^7$: light-by-light scattering in the two-photon-annihilation channel

    CERN Document Server

    Adkins, Gregory S; Salinger, M D; Wang, Ruihan; Fell, Richard N

    2014-01-01

    Recent and ongoing experimental work on the positronium spectrum motivates new efforts to calculate positronium energy levels at the level of three loop corrections. We have obtained results for one set of such corrections involving light-by-light scattering of the photons produced in a two-photon virtual annihilation process. Our result is an energy shift $1.58377(8) m \\alpha^7/\\pi^3$ for the n=1 singlet state, correcting the ground state hyperfine splitting by -6.95 kHz. We also obtained a new and more precise result for the light-by-light scattering correction to the real decay of parapositronium into two photons.

  9. Attenuation of KATP channel-opener induced shortening of repolarization time by alpha 1-adrenoceptor antagonist during ischemia in canine heart.

    Science.gov (United States)

    Tanabe, T; Aikawa, M; Deguchi, Y; Yoshioka, K; Handa, S

    2000-06-01

    The purpose of the study was to determine whether a new KATP channel opener, Y 26763 (Y), can influence the electrophysiological properties in the ischemic myocardium as well as to determine whether the blunting effect of the alpha 1-adrenoceptor antagonist bunazosin (BN) on an ischemia-induced shortening of repolarization time can be related to the KATP channel activity. The anterior descending branch of the left coronary artery was ligated four times for 5 minutes, separated by 15 minutes of reperfusion (stages 1-4) to test the dose-dependent effect of drugs on repolarization. Dogs received either vehicle (n = 9), Y (0.4, 2.0, and 4.0 micrograms/kg at stages 2, 3, and 4, respectively, with 0.4 microgram/kg/min drip infusion at each of stages 2-4, n = 7), BN (0.1 mg at each of stages 2-4, n = 8), or a combination of these two drugs (BN + Y, the same dose of BN and Y in groups BN and Y, respectively, n = 9). Drugs were administered into the left atrium. The monophasic action potential (MAP) and regional electrograms were recorded. The MAP90 and the duration of the slow deflections (DSD) of the regional electrogram were used as markers of repolarization. The Vmax of the MAP and the rapid deflections (DRD) of the regional electrogram were used as markers of conduction. Y augmented an ischemia-induced shortening of MAP90 and DSD in proportion to an increase in the dose given and the plasma concentration (P DRD in the ischemic zone between periods before and after an increase in each drug dose in the four groups. None of the seven dogs developed ventricular tachycardia (VT)/ventricular fibrillation (VF) in the Y group, whereas two of the eight dogs in the BN group, three of the nine dogs in the BN + Y group, and three of the nine dogs in the control group developed VT/VF. These results suggest that the alpha 1-adrenergic blocker bunazosin blunts the shortening effect of KATP channel activator on repolarization time, and that the KATP channel opener Y may be

  10. Anion-sensitive regions of L-type CaV1.2 calcium channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Norbert Babai

    Full Text Available L-type calcium currents (I(Ca are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of I(Ca and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca(2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from approximately 75%-80% to approximately 50% by omitting beta subunits but unaffected by omitting alpha(2delta subunits. Similarly, gluconate inhibition was reduced to approximately 50% by deleting an alpha1 subunit N-terminal region of 15 residues critical for beta subunit interactions regulating open probability. Omitting beta subunits with this mutant alpha1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different beta subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from approximately 75%-80% to approximately 50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to approximately 60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to approximately 25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving beta subunit interactions with the N terminus and a short C terminal region.

  11. Dynamic regulation of β1 subunit trafficking controls vascular contractility

    Science.gov (United States)

    Leo, M. Dennis; Bannister, John P.; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E.; Gabrick, Kyle S.; Boop, Frederick A.; Jaggar, Jonathan H.

    2014-01-01

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca2+ sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types. PMID:24464482

  12. Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary.

    Science.gov (United States)

    Wulfsen, I; Hauber, H P; Schiemann, D; Bauer, C K; Schwarz, J R

    2000-03-01

    The expression of mRNA for voltage-dependent (Kv) and inward-rectifying K channels (Kir) was studied in clonal rat somato-mammotroph cells (GH3/B6 cells) and rat pituitary using reverse transcription-polymerase chain reaction (RT-PCR). In GH3/B6 cells transcripts for 16 different Kv channel alpha-subunits (seven Shaker-related: Kv1.2, Kv1.4, Kv1.5, Kv2.1, Kv3.2, Kv4.1, Kv5.1; six EAG: eag1, erg1, erg2, elk1-elk3; three KCNQ: KCNQ1-KCNQ3) and for five different Kir channel alpha-subunits (Kir1.1, Kir2.3, Kir3.2, Kir3.3, Kir6.2) were found. In addition, transcripts for a short isoform of Kvbeta2 and transcripts for Kvbeta3 subunits were present. In rat pituitary transcripts for 21 different Kv channel alpha-subunits (11 Shaker-related: Kv1.3, Kv1.4, Kv1.6, Kv2.1, Kv2.2, Kv3.2, Kv3.4, Kv4.1, Kv4.2, Kv4.3, Kv6.1; seven EAG: eag1, erg1-erg3, elk1-elk3; three KCNQ: KCNQ1-KCNQ3) and nine Kir channel alpha-subunits (Kir1.1, Kir2.2, Kir3.1-Kir3.4, Kir4.1, Kir6.1, Kir6. 2) were found. In addition, all tested auxiliary subunits (Kvbeta1-Kvbeta3, minK, SUR1, SUR2) are expressed in the pituitary. The results indicate that the macroscopic K currents in GH3/B6 and pituitary cells are presumably mediated by K channels constructed by a larger number of K channel alpha-subunits and auxiliary beta-subunits than previously distinguished electrophysiologically and pharmacologically. PMID:10718922

  13. 人源蛋白酶体α亚基6的酵母表面展示及表达优化%YEAST SURFACE DISPLAY OF HUMAN PROTEASOME SUBUNIT ALPHA 6 AND EXPRESSION ENHANCEMENT

    Institute of Scientific and Technical Information of China (English)

    唐语谦; 林影; 韩双艳; 梁世中

    2007-01-01

    为构建人源蛋白酶体α亚基6(hPSA6)的酵母表面展示体系用于抗体表位分析和研究泛素-蛋白酶体途径,并优化hPSA6的展示表达,将基因PSA6_HUMAN克隆于表达载体pICAS-H,该载体带有His.tag标签可检测表达水平.经过重组酵母的培养,用抗His.tag或抗hPSA6的单克隆抗体和荧光二抗进行免疫荧光染色,通过流式细胞仪和荧光显微镜检测到hPSA6已经成功地展示于酿酒酵母表面.通过对培养基中不同初始浓度的葡萄糖和酸水解酪素的诱导培养,发现hPSA6呈现出不同的展示水平,与对照相比,对His.tag进行免疫荧光检测观测到3%酸水解酪素诱导培养可获得超过70%的展示表达率,3%葡萄糖诱导培养可达到50%以上表达率,2%葡萄糖诱导也有接近40%表达率.考虑到葡萄糖效应和灭菌过程中高浓度的葡萄糖易碳化,采用2%葡萄糖进行诱导表达较3%更适合于hPSA6的展示表达.%To construct the yeast display system of the human proteasome subunit alpha 6(hPSA6) for epitope analysis and mechanism investigation of ubiquitin-proteasome pathway,and enhance the display expression of hPSA6, the gene PSA6_HUMAN coding hPSA6 was cloned into a yeast-displaying expression vector, pICAS-H, which had been inserted a His. Tag marker for expression level detection. As probed with a his. Tag monoclonal antibody (Mab) and corresponding Mab, hPSA6 was detected functionally by flow cytometry and fluorescence microscopy analysis which confirmed that yeast-displaying recombinant hPSA6 with highly specific affinity was expressed efficiently after 24 h cultivation of recombinant yeast MT8-1/pICAS-H-PSA6. Induced by different concentration of initial glucose and casein acid in restrictive mediums, the displayed hPSA6 expressions were compared through immunofluorescence by using anti-His Mabs. Comparing with negative control, more than 70% cells were induced to express hPSA6 in SA with 3% casein acid initially. The 3

  14. Construction and Identification of a Lentiviral Vector Expressing shRNA for RNA Interference Sheep Inhibin Alpha Subunit (INHA)%绵羊抑制素shRNA慢病毒干扰载体的构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    张瑞杰; 苗向阳

    2011-01-01

    构建并鉴定了针对绵羊抑制素α亚基(INHA)基因的shRNA(Small hairpin RNA,shRNA)慢病毒干扰载体,为进一步制备优质、高产转基因绵羊奠定基础.设计并合成4条针对绵羊INHA基因的shRNA表达序列(shRNA1、shRNA2、shRNA3、shRNA4)及2条阴性对照序列(NC1、NC2),将其分别连接到空载体pGFP-V-RS中,得到4个shRNA 表达载体(即shRNA干扰载体)pGFP-V-RS-shRNA和2个阴性对照载体pGFP-V-RS-NC;同时构建绵羊INHA的高效表达载体pIRES2-eGFP-INHA,然后将构建好的4个shRNA干扰载体及2个阴性对照载体分别与INHA高效表达载体瞬时共转染293T细胞,qPCR法进行干扰效果筛选,挑选干扰效果最佳的shRNA干扰载体构建成慢病毒干扰载体.qPCR检测结果表明,shRNA干扰载体pGFP-V-RS-shRNA3的干扰效果最好,用它构建的慢病毒干扰载体经测序验证表明其已建成功.绵羊INHA shRNA慢病毒干扰载体构建成功,为进一步制备优质高繁转基因绵羊奠定了基础.%To construct a lentiviral vector expressing shRNA for RNA interference of sheep inhibin alpha sub-unit (INHA) gene and assess its gene silencing effect in 293T cell by cotransfected with an efficiently expressional INHA vector constructed simultaneously. Make preparation for producing high quality and high fecundity transgenic sheep. Design and synthesis 4 shRNA expressing sequences ( shRNAl, shRNA2, shRNA3 , shRNA4) and 2 control sequences( NC1,NC2)for sheep INHA gene, and then attach them to a blank plasmid vector; pGFP-v-RS, thus 4 shRNA expressing vector( that is shRNA interfering vector) pGFP-V-RS-shRNAs and 2 negative control vector pG-FP-V-RS-NCs were generated; At the same time, construct an efficiently expressional vector of sheep INHA pIRES2-eGFP-INHA, then cotransfect 4 shRNA interfering vectors and 2 negative control vectors with efficiently expressional INHA vectors into 293T cell respectively and instantaneously, assess the interference effect of 4 sh

  15. New X-ray observations of IQ Aurigae and alpha2 Canum Venaticorum - Probing the magnetically channelled wind shock model in A0p stars

    CERN Document Server

    Robrade, J

    2011-01-01

    We present new X-ray observations of the A0p stars alpha^2 CVn (log Lx < 26.0 erg/s) and IQ Aur (log Lx = 29.6 erg/s) and find that their X-ray luminosities differ by at least three orders of magnitude. IQ Aur possesses a strong cool plasma component with X-ray emitting regions located well above the stellar surface, but also significant amounts of hot plasma. Further, a large X-ray flare is detected from IQ Aur, implying the presence of magnetic reconnection. Our comparison study of similar stars indicates that the occurrence of X-ray emission generated by magnetically channelled wind shocks (MCWS) strongly depends on stellar properties. X-ray emission is preferably generated by more luminous and massive objects such as IQ Aur. The MCWS scenario can consistently describe the X-ray emission of these A0p stars, assuming that the very strong magnetic confinement of the stellar wind has led to the build up of a rigidly rotating disk around the star, where magnetic reconnection and centrifugal breakout events ...

  16. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.

    Science.gov (United States)

    Elkjaer, Marie-Louise; Kwon, Tae-Hwan; Wang, Weidong; Nielsen, Jakob; Knepper, Mark A; Frøkiaer, Jørgen; Nielsen, Søren

    2002-12-01

    The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.

  17. MspA Nanopores from Subunit Dimers

    OpenAIRE

    Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated tha...

  18. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    International Nuclear Information System (INIS)

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing [14C]alanine and [3H] glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, [14C]alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. [3H]Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function

  19. Multiplicity of expression of Na+,K+-ATPase alpha-subunit isoforms in the gill of Atlantic salmon: quantification and cellular localisation in response to salinity

    DEFF Research Database (Denmark)

    Madsen, Steffen; Kiilerich, Pia; Tipsmark, Christian Kølbæk

    2009-01-01

    after SW-transfer, -subunit availability may still limit functional pump synthesis. The mRNAs of the predominant 1a and 1b isoforms were localised by in situ hybridisation in specific gill cells of both FW and SW salmon. Labelling occurred mainly in presumed chloride cells and cells deep in the filament......-rich cells (MRCs) in the gill and probably tuning of the pump performance to accomplish a net reversal of gill ion transport in hypo- and hypertonic environments....

  20. Tumor Necrosis Factor Alpha Inhibits L-Type Ca2+ Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway

    Science.gov (United States)

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca2+ channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway. PMID:27445440

  1. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway.

    Science.gov (United States)

    Reyes-García, Jorge; Flores-Soto, Edgar; Solís-Chagoyán, Héctor; Sommer, Bettina; Díaz-Hernández, Verónica; García-Hernández, Luz María; Montaño, Luis M

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.

  2. Differential expression of gill Na+,K+-ATPaseα - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    Science.gov (United States)

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Madsen, Steffen S.; McCormick, Stephen D.; Andersson, Eva; Bjornsson, Bjorn Thrandur; Prunet, Patrick; Stefansson, Sigurd O.

    2007-01-01

    This study examines changes in gill Na+,K+-ATPase (NKA) α- and β-subunit isoforms, Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3, -β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a, -α1b and -α3 isoforms may be important for potential functional

  3. Gramicidin Channels: Versatile Tools

    Science.gov (United States)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  4. 远志总皂苷对AD模型大鼠学习记忆及海马nAChRα7亚基的影响%Effects of tenuigenin on learning, memory and expression of nicotinic acetylcholine receptor subunit alpha-7 in hippocampus in Alzheimer disease rats

    Institute of Scientific and Technical Information of China (English)

    赵大鹏; 李晓峰; 陈树沙; 景玮; 邢婕; 穆俊霞; 李新毅

    2012-01-01

    目的 观察远志总皂苷(TEN)对阿尔茨海默病(AD)模型大鼠学习记忆及烟碱型乙酰胆碱受体α7(nAChRα7)亚基的影响,探讨TEN对AD干预作用的机制.方法 将雄性Wistar大鼠随机分为对照组、模型组、TEN低剂量组(12.5 mg/ mL)和TEN高剂量组(37.5 mg/mL),每组8只.模型组予腹腔注射D-半乳糖(D-gal)致衰联合IBO损毁双侧基底前脑Meynert核建立AD模型.TEN低、高剂量组在建立AD模型的同时分别予12.5 mg/mL、37.5 mg/mL的TEN灌胃8周.对照组用等体积的生理盐水代替D-半乳糖(D-gal)和IBO 注射.采用Morris水迷宫实验检测各组大鼠的逃避潜伏期(EL)、跨越原平台次数和原平台象限停留时间;用免疫组化法测各组大鼠海马区nAChRα7表达水平.结果 与对照组比较,模型组EL延长、跨越原平台次数减少、原平台象限停留时间降低、海马区nAChRα7的表达水平减小(P<0.05);与模型组比较,TEN高、低剂量组EL缩短、跨越原平台次数增加、原平台象限停留时间延长、海马区nAChRα7的表达水平增高(P<0.05).与TEN低剂量组比较,TEN高剂量组EL时间缩短(但实验第2天两组间比较无统计学差异)、跨越原平台次数增加、原平台象限停留时间延长、海马区nAChRα7表达水平均明显升高(P<0.05).结论 TEN可显著提高AD 模型大鼠海马区nAChRα7表达,这可能是TEN改善学习记忆和认知功能的机制之一.%Objective To observe the effects of Tenuigenin (TEN) on learning, memory and expression of nicotinic acetylcholine receptor subunit alpha-7 in hippocampus in rats with Alzheimer disease (AD), which was induced by D-galactose (D-gal) and ibotenic acid (IBO), so as to investigate the mechanism underlying the effect of TEN on learning and memory. Methods 32 male Wistar rats were randomly divided into the control group, the untreated AD group, the low-dose TEN treatment AD group (12. 5 mg/mL) and the high-dose TEN treatment group (37. 5

  5. Selective inhibition of a slow-inactivating voltage-dependent K+ channel in rat PC12 cells by hypoxia.

    Science.gov (United States)

    Conforti, L; Millhorn, D E

    1997-07-15

    1. Electrophysiological (single-channel patch clamp) and molecular biological experiments (reverse transcriptase-polymerase chain reaction) were performed to attempt to identify the O2-sensitive K+ channel in rat phaeochromocytoma (PC12) cells. 2. Four types of K+ channels were recorded in PC12 cells: a small-conductance K+ channel (14 pS), a calcium-activated K+ channel (KCa; 102 pS) and two K+ channels with similar conductance (20 pS). These last two channels differed in their time-dependent inactivation: one was a slow-inactivating channel, while the other belonged to the family of fast transient K+ channels. 3. The slow-inactivating 20 pS K+ channel was inhibited by hypoxia. Exposure to hypoxia produced a 50% reduction in channel activity (number of active channels in the patch x open probability). Hypoxia had no effect on the 20 pS transient K+ channels, whereas reduced O2 stimulated the KCa channels. 4. The genes encoding the alpha-subunits of slow-inactivating K+ channels for two members of the Shaker subfamily of K+ channels (Kv1.2 and Kv1.3) together with the Kv2.1, Kv3.1 and Kv3.2 channel genes were identified in PC12 cells. 5. The expression of the Shaker Kv1.2, but none of the other K+ channel genes, increased in cells exposed to prolonged hypoxia (18 h). The same cells were more responsive to a subsequent exposure to hypoxia (35% inhibition of K+ current measured in whole-cell voltage clamp) compared with the cells maintained in normoxia (19% inhibition). 6. These results indicate that the O2-sensitive K+ channel in PC12 cells is a 20 pS slow-inactivating K+ channel that is upregulated by hypoxia. This channel appears to belong to the Shaker subfamily of voltage-gated K+ channels. PMID:9263911

  6. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    OpenAIRE

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J.; Rogers, N C; J. M. Smith; Stark, G R; Gardiner, K.; Mogensen, K E

    1995-01-01

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two ...

  7. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.

    Directory of Open Access Journals (Sweden)

    Lee S Parsons

    Full Text Available BACKGROUND: Vacuolar (H(+-ATPase (V-ATPase; V(1V(o-ATPase is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V(1-ATPase - V(o-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains. METHODOLOGY/PRINCIPAL FINDINGS: To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit. CONCLUSIONS: The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.

  8. Investigation of the use of an {alpha} + Xn reaction channel to enhance the population of superdeformed states in {sup 193}Hg and {sup 195}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Zwartz, G.; Drake, T.E.; Cromaz, M. [Department of Physics, University of Toronto, Toronto, Ontario M5S-1A7 (Canada); Ward, D.; Janzen, V.; Galindo-Uribarri, A. [Chalk River Laboratories, Chalk River, Ontario K0J-1J0 (Canada); Prevost, D.; Waddington, J.; Mullins, S.M. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S-4K1 (Canada)

    2000-11-01

    A study was made to determine whether the population of superdeformed states in {sup 193}Hg and {sup 195}Hg can be enhanced by using reactions in which alpha particles are emitted. The search utilized a {sup 184}W({sup 18}O,{alpha} Xn) reaction at 115 and 120 MeV for the {sup 193}Hg study and a {sup 186}W({sup 18}O,{alpha} Xn) reaction at 105 and 110 MeV for the {sup 195}Hg study. Two known superdeformed states of {sup 193}Hg were observed. The intensities of the superdeformed states in {sup 193}Hg populated by a reaction involving the emission of an alpha particle were found to be reduced by at least a factor of four relative to the intensities of these states produced in reactions involving only the emission of neutrons and {gamma}-rays. No rotational bands built on superdeformed states in {sup 195}Hg with transition intensities >0.8% of the total {sup 195}Hg yield were found. Evidence is shown that the energy of the alpha particle that is associated with superdeformed states may be lower than that of alpha particles associated with normally deformed states. (author)

  9. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    Science.gov (United States)

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J; Rogers, N C; Smith, J M; Stark, G R; Gardiner, K; Mogensen, K E

    1995-10-16

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two are transmembrane proteins with identical extracellular and transmembrane domains but divergent cytoplasmic tails of 67 and 251 amino acids. A mutant cell line U5A, completely defective in IFN-alpha beta binding and response, has been isolated and characterized. Expression in U5A cells of the polypeptide with the long cytoplasmic domain reconstitutes a functional receptor that restores normal interferon binding, activation of the JAK/STAT signal transduction pathway, interferon-inducible gene expression and antiviral response. The IFNAR2 gene maps at 0.5 kb from the CRFB4 gene, establishing that together IFNAR2, CRFB4, IFNAR1 and AF1 form a cluster of class II cytokine receptor genes on human chromosome 21.

  10. Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides.

    Science.gov (United States)

    Silver, Kristopher S; Soderlund, David M

    2006-07-15

    Pyrazoline-type insecticides are potent inhibitors of insect and mammalian voltage-sensitive sodium channels. In mammals, there are nine sodium channel alpha subunit isoforms that have unique distributions and pharmacological properties, but no published data exist that compare the relative sensitivity of these different mammalian sodium channel isoforms to inhibition by pyrazoline-type insecticides. This study employed the Xenopus oocyte expression system to examine the relative sensitivity of rat Na(v)1.2a, Na(v)1.4, Na(v)1.5, and Na(v)1.8 sodium channel alpha subunit isoforms to the pyrazoline-type insecticides indoxacarb, DCJW, and RH 3421. Additionally, we assessed the effect of coexpression with the rat beta1 auxiliary subunit on the sensitivity of the Na(v)1.2a and Na(v)1.4 isoforms to these compounds. The relative sensitivity of the four sodium channel alpha subunits differed for each of the three compounds we examined. With DCJW, the order of sensitivity was Na(v)1.4 > Na(v)1.2a > Na(v)1.5 > Na(v)1.8. In contrast, the relative sensitivity of these isoforms to indoxacarb differed from that to DCJW: the Na(v)1.8 isoform was most sensitive, the Na(v)1.4 isoform was completely insensitive, and the sensitivities of the Na(v)1.5 and Na(v)1.2a isoforms were intermediate between these two extremes. Moreover, the pattern of sensitivity to RH 3421 among these four isoforms was different from that for either indoxacarb or DCJW: the Na(v)1.4 isoform was most sensitive to RH 3421, whereas the sensitivities of the remaining three isoforms were substantially less than that of the Na(v)1.4 isoform and were approximately equivalent. The only statistically significant effect of coexpression of either the Na(v)1.2a or Na(v)1.4 isoforms with the beta1 subunit was the modest reduction in the sensitivity of the Na(v)1.2a isoform to RH 3421. These results demonstrate that mammalian sodium channel isoforms differ in their sensitivities to pyrazoline-type insecticides.

  11. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    Science.gov (United States)

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea. PMID:12573242

  12. Subunit gamma of the oxaloacetate decarboxylase Na(+) pump: interaction with other subunits/domains of the complex and binding site for the Zn(2+) metal ion.

    Science.gov (United States)

    Schmid, Markus; Wild, Markus R; Dahinden, Pius; Dimroth, Peter

    2002-01-29

    The oxaloacetate decarboxylase Na(+) pump of Klebsiella pneumoniae is an enzyme complex composed of the peripheral alpha subunit and the two integral membrane-bound subunits beta and gamma. The alpha subunit consists of the N-terminal carboxyltransferase domain and the C-terminal biotin domain, which are connected by a flexible proline/alanine-rich linker peptide. To probe interactions between the two domains of the alpha subunit and between alpha-subunit domains and the gamma subunit, the relevant polypeptides were synthesized in Escherichia coli and subjected to copurification studies. The two alpha-subunit domains had no distinct affinity toward each other and could, therefore, not be purified as a unit on avidin-sepharose. The two domains reacted together catalytically, however, performing the carboxyl transfer from oxaloacetate to protein-bound biotin. This reaction was enhanced up to 6-fold in the presence of the Zn(2+)-containing gamma subunit. On the basis of copurification with different tagged proteins, the C-terminal biotin domain but not the N-terminal carboxyltransferase domain of the alpha subunit formed a strong complex with the gamma subunit. Upon the mutation of gamma H78 to alanine, the binding affinity to subunit alpha was lost, indicating that this amino acid may be essential for formation of the oxaloacetate decarboxylase enzyme complex. The binding residues for the Zn(2+) metal ion were identified by site-directed and deletion mutagenesis. In the gamma D62A or gamma H77A mutant, the Zn(2+) content of the decarboxylase decreased to 35% or 10% of the wild-type enzyme, respectively. Less than 5% of the Zn(2+) present in the wild-type enzyme was found if the two C-terminal gamma-subunit residues H82 and P83 were deleted. Corresponding with the reduced Zn(2+) contents in these mutants, the oxaloacetate decarboxylase activities were diminished. These results indicate that aspartate 62, histidine 77, and histidine 82 of the gamma subunit are ligands

  13. Genetic conservation of hlyA determinants and serological conservation of HlyA: basis for developing a broadly cross-reactive subunit Escherichia coli alpha-hemolysin vaccine.

    Science.gov (United States)

    O'Hanley, P; Marcus, R; Baek, K H; Denich, K; Ji, G E

    1993-03-01

    The HlyA determinant among Escherichia coli isolates from patients with symptomatic urinary tract infection was compared in this report with a prototype HlyA encoded by pSF4000 by DNA-DNA hybridization tests with 20-base synthetic oligonucleotides and monoclonal antibody binding and neutralization assays. Hybridization results demonstrated that 349 (98%) of 357 definitive reactions among 54 hemolytic strains shared homology with seven DNA probes spanning many HlyA regions corresponding to residues (R) 41 to 47, 55 to 61, 248 to 254, 306 to 312, 336 to 343, 402 to 408, and 929 to 935. Genetic divergence was identified by lack of hybridization signals among 17 to 76% of the hemolytic strains within the distal portion of a predicted hydrophobic region corresponding to R491 to 319 and within a predicted hydrophilic region corresponding to R491 to 497 and R532 to 538. Serological studies demonstrated that 26 (81%) culture supernatants of 32 hemolytic strains were bound by all 12 monoclonal anti-HlyA antibodies. Among five of six remaining strains, the culture supernatants were bound by 3 to 11 monoclonal antibody preparations. There was only one hemolytic culture supernatant that failed to be bound by any monoclonal antibody, although the strain hybridized with nine hemolysin DNA probes. In addition, hemolytic activity of all 24 different culture supernatants tested was reduced by at least twofold by one monoclonal antibody specific for R2-161. These data extend and support previous views that the HlyA determinant is conserved among E. coli strains and suggest that a broadly cross-reactive HlyA subunit vaccine can be developed.

  14. GABA receptor subunit composition relative to insecticide potency and selectivity.

    Science.gov (United States)

    Ratra, G S; Casida, J E

    2001-07-01

    Three observations on the 4-[(3)H]propyl-4'-ethynylbicycloorthobenzoate ([(3)H]EBOB) binding site in the gamma-aminobutyric acid (GABA) receptor indicate the specific target for insecticide action in human brain and a possible mechanism for selectivity. First, from published data, alpha-endosulfan, lindane and fipronil compete for the [(3)H]EBOB binding site with affinities of 0.3--7 nM in both human recombinant homooligomeric beta 3 receptors and housefly head membranes. Second, from structure-activity studies, including new data, GABAergic insecticide binding potency on the pentameric receptor formed from the beta 3 subunit correlates well with that on the housefly receptor (r=0.88, n=20). This conserved inhibitor specificity is consistent with known sequence homologies in the housefly GABA receptor and the human GABA(A) receptor beta 3 subunit. Third, as mostly new findings, various combinations of alpha 1, alpha 6, and gamma 2 subunits coexpressed with a beta 1 or beta 3 subunit confer differential insecticide binding sensitivity, particularly to fipronil, indicating that subunit composition is a major factor in insecticide selectivity.

  15. Coefficient Alpha

    OpenAIRE

    Panayiotis Panayides

    2013-01-01

    Heavy reliance on Cronbach’s alpha has been standard practice in many validation studies. However, there seem to be two misconceptions about the interpretation of alpha. First, alpha is mistakenly considered as an indication of unidimensionality and second, that the higher the value of alpha the better. The aim of this study is to clarify these misconceptions with the use of real data from the educational setting. Results showed that high alpha values can be obtained in multidimensional scale...

  16. Dravet综合征的临床特点分析及SCN1A基因新突变%Clinical Analysis of Dravet Syndrome and Novel Gene Mutation of Voltage-Gated Sodium Channel α1-Su-bunit

    Institute of Scientific and Technical Information of China (English)

    王新华; 周水珍

    2011-01-01

    Objective To study the clinical characteristics of Dravet syndrome and to screen the voltage -gated sodium channel αl -subunit( SCNI A ) of a newly diagnosed child, hoping to find the gene mutation. Methods The clinical information of 3 Dravet syndrome children were collected,the blood sample of a new diagnostic child was provided. DNA was extracted from peripheral blood leukocytes using relax gene blood DNA system. The total 26 exons of SCN1A were amplified by polymerase chain reaction( PCR), and the PCR products were screened by Denaturing high performance liquid chromatography, then the abnormal fragments were sequenced by Sanger method in order to find the mutations of SCN 1A gene. Results 1. The common manifestations of 3 Dravet syndrome cases: onset during the first year of life; in all children, the seizures were associated with febrile seizures and they changed to afebrile seizures after 1 year; the forms of seizures included clonus,myoclonus and atypical absence;the seizures were difficult to control with anti -epileptic drugs; all children presented some degree of psychomotor development delay; there were sharp - slow waves, spike - slow waves and multi spike - slow waves in EEG of diapause. 2. A missense mutation of SCNI A gene (c. 2867T > G, M956R) was found in the Dravet syndrome child, which had not been reported up to Nov.2010. Conclusions Dravet syndrome is an epileptic encephalopathy with a bad prognosis,and it needs to be differentiate it frome febrile seizures. The missense mutation of SCNIA gene supports the relationship of SCNIA mutation and Dravet syndrom.%目的 分析Dravet综合征的临床特点,并对新诊断患儿进行SCN1A基因筛查,寻找基因突变.方法收集3例Dravet综合征患儿临床资料,留取例1患儿血样标本,提取外周血白细胞基因组DNA,对SCN1A全部外显子进行PCR扩增,通过变性高效液相色谱法对PCR产物进行突变片段筛查,对于变性高效液相色谱法筛查有异常的片段

  17. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposite...

  18. Subunit structure of 6-phosphofructokinase from brewers' yeast.

    Science.gov (United States)

    Tamaki, N; Hess, B

    1975-11-01

    An analysis of 6-phosphofructokinase from brewers' yeast in the presence of sodium dodecylsulfate reveals the occurrence of four components with the following molecular weights: alpha = 140000, beta = 130000, and alpha' = 92000, beta' = 87000. It was found that the alpha- and beta-components can be converted to the alpha' and beta' components by treatment of the native preparation with hyaluronidase. A comparison of the molecular weight obtained by ultracentrifugation and gel filtration with the results obtained by dodecylsulfate electrophoresis after treatment with hyaluronidase reveals that the alpha' and beta' components are the smallest molecular structures obtained upon dissociation of the native enzyme. The mechanism of action of hyaluronidase suggests a desensitization of the alpha and beta components of the enzyme towards dodecylsulfate. Thus, in the absence of hyaluronidase treatment; only an apparent molecular weight for the alpha and beta component is obtained. The analysis indicates that the native enzyme might be composed of four different subunits with an alpha, beta, alpha' and beta' configuration. It is not excluded that the native enzyme consists only of alpha- and beta-chains.

  19. Conservation of helical bundle structure between the exocyst subunits.

    Directory of Open Access Journals (Sweden)

    Nicole J Croteau

    Full Text Available BACKGROUND: The exocyst is a large hetero-octomeric protein complex required for regulating the targeting and fusion of secretory vesicles to the plasma membrane in eukaryotic cells. Although the sequence identity between the eight different exocyst subunits is less than 10%, structures of domains of four of the subunits revealed a similar helical bundle topology. Characterization of several of these subunits has been hindered by lack of soluble protein for biochemical and structural studies. METHODOLOGY/PRINCIPAL FINDINGS: Using advanced hidden Markov models combined with secondary structure predictions, we detect significant sequence similarity between each of the exocyst subunits, indicating that they all contain helical bundle structures. We corroborate these remote homology predictions by identifying and purifying a predicted domain of yeast Sec10p, a previously insoluble exocyst subunit. This domain is soluble and folded with approximately 60% alpha-helicity, in agreement with our predictions, and capable of interacting with several known Sec10p binding partners. CONCLUSIONS/SIGNIFICANCE: Although all eight of the exocyst subunits had been suggested to be composed of similar helical bundles, this has now been validated by our hidden Markov model structure predictions. In addition, these predictions identified protein domains within the exocyst subunits, resulting in creation and characterization of a soluble, folded domain of Sec10p.

  20. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Pinna, L A;

    1998-01-01

    CK2alpha is the catalytic subunit of protein kinase CK2, an acidophilic and constitutively active eukaryotic Ser/Thr kinase involved in cell proliferation. A crystal structure, at 2.1 A resolution, of recombinant maize CK2alpha (rmCK2alpha) in the presence of ATP and Mg2+, shows the enzyme in an ...

  1. Expression and clinical significance of Na v1.7 and L -type calcium channel subunit α1 C in cervical cancer%Nav1.7与L-型钙离子通道在宫颈癌中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    李慧; 王路芳; 吴爱娣; 季鑫; 武昕

    2016-01-01

    目的:探讨钙离子通道1.7亚型(Nav 1.7)与 L -型钙离子通道在子宫颈癌中的表达及临床意义。方法:采用逆转录-聚合酶链反应(RT -PCR)方法检测60例宫颈癌组织、10例经放化疗前后的宫颈癌组织、10例正常宫颈组织中的 Nav 1.7与 L -型钙离子通道的表达。结果:Nav 1.7在宫颈癌中平均值为1.6403,在正常宫颈组织中不表达,两者相比有显著性差异(P <0.01)。Nav 1.7 mRNA 在高分化癌、中分化癌及低分化癌中的表达分别为0.9601、0.9918及1.9014,低分化组 Nav 1.7 mRNA 表达高于高、中分化组,差异有统计学意义(P <0.05)。Nav 1.7 mRNA 在宫颈癌Ⅰ-Ⅱ期的表达为0.9867,在宫颈癌Ⅲ-Ⅳ期中的表达为1.8993,差异有统计学意义(P <0.05),Nav 1.7 mRNA 在放化疗前的宫颈癌组织中表达为1.4010与放化疗后的0.3001相比,有显著性差异(P <0.01)。L -型钙离子通道α1 C 亚单位 mRNA(L -Ca2+α1 C mRNA)在正常宫颈组织中与宫颈癌组织中的灰度值的平均值为0.0914及0.3573,差异有统计学意义(P <0.05)。L -Ca2+α1 C mRNA 在高分化癌、中分化癌及低分化癌中的表达分别为0.2912、0.3043及0.4935,差异有统计学意义(P <0.05)。L -Ca2+α1 C mRNA 在宫颈癌Ⅰ-Ⅱ期中的表达为0.4754,在宫颈癌Ⅲ-Ⅳ期中的表达为0.8337,差异有统计学意义(P <0.01)。L -Ca2+α1 C mRNA 在放化疗前的宫颈癌组织中的表达为0.5316与放化疗后的0.1024相比,有显著性差异(P <0.01)。结论:Nav 1.7与 L -型钙离子通道在宫颈癌中高表达,与宫颈癌的不良预后有关。放化疗可降低 Nav 1.7与 L -型钙离子通道基因的表达,与疗效相关。%Objective:To explore expression and clinical significance of Nav 1.7 and L -type calcium channel subunit

  2. Association of the α2δ1 Subunit with Cav3.2 Enhances Membrane Expression and Regulates Mechanically Induced ATP Release in MLO-Y4 Osteocytes

    OpenAIRE

    Thompson, William R.; Majid, Amber S.; Czymmek, Kirk J; Ruff, Albert L.; García, Jesús; Duncan, Randall L.; Farach-Carson, Mary C.

    2011-01-01

    Voltage sensitive calcium channels (VSCCs) mediate signaling events in bone cells in response to mechanical loading. Osteoblasts predominantly express L-type VSCCs composed of the α1 pore-forming subunit and several auxiliary subunits. Osteocytes, in contrast, express T-type VSCCs, but a relatively small amount of L-type α1 subunits. Auxiliary VSCC subunits have several functions including modulating gating kinetics, trafficking of the channel and phosphorylation events. The influence of the ...

  3. Structure of protein kinase CK2: dimerization of the human beta-subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Mietens, U; Issinger, O G

    1996-01-01

    Protein kinase CK2 has been shown to be elevated in all so far investigated solid tumors and its catalytic subunit has been shown to serve as an oncogene product. CK2 is a heterotetrameric serine-threonine kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta...

  4. Biochemical characterization of CK2alpha and alpha' paralogues and their derived holoenzymes: evidence for the existence of a heterotrimeric CK2alpha'-holoenzyme forming trimeric complexes

    DEFF Research Database (Denmark)

    Olsen, Birgitte; Rasmussen, Tine; Niefind, Karsten;

    2008-01-01

    Altogether 2 holoenzymes and 4 catalytic CK2 constructs were expressed and characterized i.e. CK2alpha (2) (1-335) beta(2); CK2alpha'-derived holoenzyme; CK2alpha(1-335); MBP-CK2alpha'; His-tagged CK2alpha and His-tagged CK2alpha'. The two His-tagged catalytic subunits were expressed in insect......2alpha'-derived holoenzyme eluted at a position corresponding to a molecular mass of 105 kDa which is significantly below the elution of the CK2alpha (2) (1-335) beta(2) holoenzyme (145 kDa). Calmodulin was not phosphorylated by either CK2alpha (2) (1-335) beta(2) or the CK2alpha'-derived holoenzyme...

  5. Neural KCNQ (Kv7) channels

    OpenAIRE

    Brown, David A.; Passmore, Gayle M.

    2009-01-01

    KCNQ genes encode five Kv7 K+ channel subunits (Kv7.1–Kv7.5). Four of these (Kv7.2–Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which widely regulates neuronal excitability, although other subunits may contribute to M-like currents in some locations. M-channels are closed by receptors coupled to Gq such as M1 and M3 muscarinic receptors; this increases neuronal excitability and underlies some forms of c...

  6. The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABA A receptor-ionophores.

    Science.gov (United States)

    Maksay, Gábor; Thompson, Sally A; Wafford, Keith A

    2003-06-01

    Human alpha(1)beta(3) epsilon GABA(A) receptors were expressed in Xenopus oocytes and examined using the conventional two-electrode voltage-clamp technique and compared to alpha(1)beta(3)gamma(2) receptors. The effects of several GABA(A) agonists were studied, and the allosteric modulation of the channel by a number of GABAergic modulators investigated. The presence of the epsilon subunit increased the potency and efficacy of direct activation by partial GABA(A) agonists (piperidine-4-sulphonic acid and thio-4-PIOL), pentobarbital and neuro-steroids. Direct activation by 3-hydroxylated neurosteroids was restricted to 3alpha epimers, while chirality at C5 was indifferent. The 3beta-sulfate esters of pregnenolone and dehydroepiandrosterone inhibited the spontaneous currents with efficacies higher, while bicuculline methiodide and SR 95531 did so lower than picrotoxin and TBPS. Furosemide, fipronil, triphenylcyanoborate and Zn(2+) blocked the spontaneous currents of alpha(1)beta(3) epsilon receptors with different efficacies. Flunitrazepam and 4'-chlorodiazepam inhibited the spontaneous currents with micromolar potencies. In conclusion, spontaneously active alpha(1)beta(3) epsilon GABA(A) receptors can be potentiated and blocked by GABAergic agents within a broad range of efficacy.

  7. MspA nanopores from subunit dimers.

    Directory of Open Access Journals (Sweden)

    Mikhail Pavlenok

    Full Text Available Mycobacterium smegmatis porin A (MspA forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore

  8. MspA nanopores from subunit dimers.

    Science.gov (United States)

    Pavlenok, Mikhail; Derrington, Ian M; Gundlach, Jens H; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  9. Distinct conformational changes in activated agonist-bound and agonist-free glycine receptor subunits

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    glycine-free or a glycine-bound subunit. Agonist-free subunits were created by incorporating T204A and R65K mutations, which disrupted glycine binding to both (+) and (-) subunit interfaces. In heteromeric receptors comprising wild-type and R65K,T204A,R271C triple-mutant subunits, the fluorescence...... response exhibited a drastically reduced glycine sensitivity relative to the current response. Two conclusions can be drawn from this. First, because the labeled glycine-free subunits were activated by glycine binding to neighboring wild-type subunits, our results provide evidence for a cooperative...... activation mechanism. However, because the fluorescent label on glycine-free subunits does not reflect movements at the channel gate, we conclude that glycine binding also produces a local non-concerted conformational change that is not essential for receptor activation....

  10. Transcriptional regulators of Na, K-ATPase subunits

    Directory of Open Access Journals (Sweden)

    Zhiqin eLi

    2015-10-01

    Full Text Available The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits have been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-to-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.

  11. The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.

    Science.gov (United States)

    Haba, Masanori; Hatakeyama, Noboru; Kinoshita, Hiroyuki; Teramae, Hiroki; Azma, Toshiharu; Hatano, Yoshio; Matsuda, Naoyuki

    2010-08-01

    The present study examined the modulator role of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activated by the alpha-1 adrenoceptor agonist phenylephrine in ATP-sensitive K(+) channel function in intact vascular smooth muscle. We evaluated the ATP-sensitive K(+) channel function and the activity of the PI3K-Akt pathway in the rat thoracic aorta without endothelium. The PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (10(-5) M) augmented relaxation in response to the ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 3 x 10(-6) M) in aortic rings contracted with phenylephrine (3 x 10(-7) M) but not with 9,11-dideoxy-11alpha,9alpha-epoxy-methanoprostaglandin F(2alpha) (U46619; 3 x 10(-8) M), although those agents induced similar contraction. ATP-sensitive K(+) channel currents induced by levcromakalim (10(-6) M) in the presence of phenylephrine (3 x 10(-7) M) were enhanced by the nonselective alpha-adrenoceptor antagonist phentolamine (10(-7) M) and LY294002 (10(-5) M). Levels of the regulatory subunits of PI3K p85-alpha and p55-gamma increased in the membrane fraction from aortas without endothelium treated with phenylephrine (3 x 10(-7) M) but not with U46619 (3 x 10(-8) M). Phenylephrine simultaneously augmented Akt phosphorylation at Ser473 and Thr308. Therefore, activation of the PI3K-Akt pathway seems to play a role in the impairment of ATP-sensitive K(+) channel function in vascular smooth muscle exposed to alpha-1 adrenergic stimuli.

  12. Anti-tumor Necrosis Factor Alpha (Infliximab) Attenuates Apoptosis, Oxidative Stress, and Calcium Ion Entry Through Modulation of Cation Channels in Neutrophils of Patients with Ankylosing Spondylitis.

    Science.gov (United States)

    Ugan, Yunus; Nazıroğlu, Mustafa; Şahin, Mehmet; Aykur, Mehmet

    2016-08-01

    Ankylosing Spondylitis (AS) is known to be associated with increased neutrophil activation and oxidative stress, however, the mechanism of neutrophil activation is still unclear. We have hypothesized that the antioxidant and anti-tumor necrosis factor properties of infliximab may affect intracellular Ca(2+) concentration in the neutrophils of AS patients. The objective of this study was to investigate the effects of infliximab on calcium signaling, oxidative stress, and apoptosis in neutrophils of AS patients. Neutrophils collected from ten patients with AS and ten healthy controls were used in the study. In a cell viability test, the ideal non-toxic dose and incubation time of infliximab were found as 100 μM and 1 h, respectively. In some experiments, the neutrophils were incubated with the voltage-gated calcium channel (VGCC) blockers verapamil + diltiazem (V + D) and the TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB). Intracellular Ca(2+) concentration, lipid peroxidation, apoptosis, caspase 3, and caspase 9 values were high in neutrophils of AS patients and were reduced with infliximab treatment. Reduced glutathione level and glutathione peroxidase activity were low in the patients and increased with infliximab treatment. The intracellular Ca(2+) concentrations were low in 2-APB and V + D groups. In conclusion, the current study suggests that infliximab is useful against apoptotic cell death and oxidative stress in neutrophils of patients with AS, which seem to be dependent on increased levels of intracellular Ca(2+) through activation of TRPM2 and VGCC. PMID:26956056

  13. [Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421].

    Science.gov (United States)

    Chakdar, N; Sakha, S; Pabbi, S

    2014-01-01

    Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as a-and (3 subunits by SDS-PAGE and MALDI-TOE HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that alpha and beta subunits contained one and two phycocyanobilin groups as chromophores, respectively. PMID:25272755

  14. Sequenciamento e análise dos genes das subunidades alfa e beta do hormônio folículo estimulante de bovino (Bos taurus indicus Sequencing and analysis of subunits alpha and beta of the follicle stimulating hormone from bovine (Bos taurus indicus

    Directory of Open Access Journals (Sweden)

    Luci Sayori Murata

    2008-07-01

    of the subunits alpha and beta of the Bos taurus indicus follicle stimulated hormone (FSH. It to compare the results of sequencing these subunits between subunits aplha and beta from swine and Bos taurus taurus previouly published in GenBank. There was a high similarity between nucleotides and predicted amino acids in the αFSH chain of Bos taurus indicus and those of swine and buffalo. In the compare the sequence of the subunit of αFSH of Bos taurus indicus with swine showed differences in three aminoacid residues with ßFSH there was a modification in the first base of the codon, which had to an alteration in the 83 amino acid residue which in Bos taurus indicus and a glycin, this was serine in Bos taurus taurus. This modification, as well as those indentyfied in cDNA of the αFSH and ßFSH chains were confirmed by cloning. The modification of serine for glycine in position 83 was the only substitute that altered the residue in the comparson between ßFSH subunit of Bos taurus indicus and Bos taurus taurus. Nevertheles this modification showld not significantly alter the physiological properties of FSH as the glycine residue was also found in the swine ßFSH, it is therefore a specific modification which distinguishes between the ßFSH of Bos taurus taurus and Bos taurus indicus.

     

    KEY WORDS: Bovine, cloning, FSH, hormone.

  15. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway*

    Science.gov (United States)

    Yao, Jin-jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-01-01

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca2+/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca2+ and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4−/− mice but not in Nfatc2−/− mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4−/− mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  16. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway.

    Science.gov (United States)

    Yao, Jin-Jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-08-12

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  17. Buffett's Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting...

  18. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    CERN Document Server

    Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2015-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  19. Regulation of heartbeat by G protein-coupled ion channels.

    Science.gov (United States)

    Brown, A M

    1990-12-01

    The coupling of ion channels to receptors by G proteins is the subject of this American Physiological Society Walter B. Cannon Memorial "Physiology in Perspective" Lecture. This subject is particularly appropriate because it includes a molecular explanation of a homeostatic mechanism involving the autonomic nervous system and the latter subject preoccupied Dr. Cannon during most of his career. With the use of reconstitution methods, we and others have shown that heterotrimeric guanine nucleotide-binding (G) proteins couple receptors to ion channels by both membrane-delimited, direct pathways and cytoplasmic second messenger pathways. Furthermore, one set of receptors may be coupled to as many as three different sets of ion channels to form networks. Dual G protein pathways lead to the prediction of biphasic ion current responses in cell signaling, and this prediction was confirmed. In sinoatrial pacemaker cells, the pacemaking hyperpolarization-activated inward current (If) is directly regulated by the G proteins Gs and Go, and the two can act simultaneously. This could explain the classical observation that vagal inhibition of heart rate is greater during sympathetic stimulation. Because deactivation of the muscarinic response occurs much faster than the G protein alpha-subunit hydrolyzes guanosine 5'-triphosphate, we looked for accessory cellular factors. A surprising result was that the small monomeric ras G protein blocked the muscarinic pathway. The significance of this observation is unknown, but it appears that small and large G proteins may interact in ion channel signaling pathways.

  20. Alpha fetoprotein

    Science.gov (United States)

    Fetal alpha globulin; AFP ... Greater than normal levels of AFP may be due to: Cancer in testes , ovaries, biliary (liver secretion) tract, stomach, or pancreas Cirrhosis of the liver Liver cancer ...

  1. AMPA Receptors Commandeer an Ancient Cargo Exporter for Use as an Auxiliary Subunit for Signaling

    OpenAIRE

    Nadine Harmel; Barbara Cokic; Gerd Zolles; Henrike Berkefeld; Veronika Mauric; Bernd Fakler; Valentin Stein; Nikolaj Klöcker

    2012-01-01

    Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate receptors of the AMPA subtype (AMPARs). AMPARs are protein complexes of the pore-lining alpha-subunits GluA1-4 and auxiliary beta-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian brain. In heterologous reconstit...

  2. Subunit interactions and protein stability in the cyanobacterial light-harvesting proteins.

    OpenAIRE

    Plank, T; Toole, C; Anderson, L K

    1995-01-01

    Strain 4R is a phycocyanin-minus mutant of the unicellular cyanobacterium Synechocystis sp. strain 6803. Although it lacks the light-harvesting protein phycocyanin, 4R has normal levels of phycocyanin (cpc) transcripts. Sequence analysis of the cpcB gene encoding the phycocyanin beta subunit shows an insertion mutation in 4R that causes early termination of translation. Other work has shown that the phycocyanin alpha subunit and the linker proteins encoded on the cpc transcripts are all funct...

  3. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  4. Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, T M; Kristensen, Torsten;

    1985-01-01

    A comparison of the sequence of the subunit of human alpha 2-macroglobulin (alpha 2M; 1451 amino acid residues) with that of murine complement component pro-C3 (1639 amino acid residues) reveals eight extended regions of sequence similarity. These regions contain between 19% and 31% identically p...... portions, which extend beyond the COOH terminus of alpha 2M...

  5. Structural basis of slow activation gating in the cardiac IKs channel complex

    DEFF Research Database (Denmark)

    Strutz-Seebohm, Nathalie; Pusch, Michael; Wolf, Steffen;

    2011-01-01

    Accessory ß-subunits of the KCNE gene family modulate the function of various cation channel a-subunits by the formation of heteromultimers. Among the most dramatic changes of biophysical properties of a voltage-gated channel by KCNEs are the effects of KCNE1 on KCNQ1 channels. KCNQ1 and KCNE1 ar...

  6. Interaction of factor XIII subunits.

    Science.gov (United States)

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  7. Transcriptional organization of the phycocyanin subunit gene clusters of the cyanobacterium Anacystis nidulans UTEX 625.

    OpenAIRE

    Kalla, S R; Lind, L K; Lidholm, J; Gustafsson, P

    1988-01-01

    The phycocyanin subunit gene cluster is duplicated on the chromosome of the cyanobacterium Anacystis nidulans UTEX 625. The two gene clusters cpcB1A1 (left) and cpcB2A2 (right) are separated by about 2,500 base pairs, and in each cluster the beta-subunit gene is located upstream from the alpha-subunit gene. Filter hybridizations with phycocyanin-specific probes to total RNA detected at least two major transcripts that were 1,300 to 1,400 nucleotides long. Besides these major mRNA species, two...

  8. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    OpenAIRE

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G; Card, Joseph

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers 1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ protein...

  9. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  10. Different patterns of nicotinic acetylcholine receptor subunit transcription in human thymus.

    Science.gov (United States)

    Bruno, Roxana; Sabater, Lidia; Tolosa, Eva; Sospedra, Mireia; Ferrer-Francesch, Xavier; Coll, Jaume; Foz, Marius; Melms, Arthur; Pujol-Borrell, Ricardo

    2004-04-01

    Clinical observations suggest that the thymus is strongly implicated in the pathogenesis of myasthenia gravis (MG), but questions such as the level and location of nicotinic acetylcholine receptor (AChR) subunit expression that are fundamental to postulate any pathogenic mechanism, remain controversial. We have re-examined this question by combining calibrated RT-PCR and real-time PCR to study nicotinic AChR subunit mRNA expression in a panel of normal and myasthenic thymi. The results suggest that the expression of the different AChR subunits follows three distinct patterns: constitutive for, neonatal for gamma and individually variable for alpha1, beta1 and delta. Experiments using confocal laser microdissection suggest that AChR is mainly expressed in the medullary compartment of the thymus but there is not a clear compartmentalization of subunit expression. The different patterns of subunit expression may influence decisively the level of central tolerance to the subunits and explain the focusing of the T cell response to the alpha and gamma subunits. PMID:15020075

  11. $\\alpha_s$ review (2016)

    CERN Document Server

    d'Enterria, David

    2016-01-01

    The current world-average of the strong coupling at the Z pole mass, $\\alpha_s(m^2_{Z}) = 0.1181 \\pm 0.0013$, is obtained from a comparison of perturbative QCD calculations computed, at least, at next-to-next-to-leading-order accuracy, to a set of 6 groups of experimental observables: (i) lattice QCD "data", (ii) $\\tau$ hadronic decays, (iii) proton structure functions, (iv) event shapes and jet rates in $e^+e^-$ collisions, (v) Z boson hadronic decays, and (vi) top-quark cross sections in p-p collisions. In addition, at least 8 other $\\alpha_s$ extractions, usually with a lower level of theoretical and/or experimental precision today, have been proposed: pion, $\\Upsilon$, W hadronic decays; soft and hard fragmentation functions; jets cross sections in pp, e-p and $\\gamma$-p collisions; and photon F$_2$ structure function in $\\gamma\\,\\gamma$ collisions. These 14 $\\alpha_s$ determinations are reviewed, and the perspectives of reduction of their present uncertainties are discussed.

  12. Comparative identification of Ca2+ channel expression in INS-1 and rat pancreatic β cells

    Institute of Scientific and Technical Information of China (English)

    Fei Li; Zong-Ming Zhang

    2009-01-01

    AIM: To identify and compare the profile of Ca2+ channel subunit expression in INS-1 and rat pancreatic β cells. METHODS: The rat insulin-secreting INS-1 cell line was cultured in RPMI-1640 with Wistar rats employed as islet donors. Ca2+ channel subunit expression in INS-1 and isolated rat β cells were examined by reverse transcription polymerase chain reaction (RT-PCR). Absolute real-time quantitative PCR was performed in a Bio-Rad iQ5 Gradient Real Time PCR system and the data analyzed using an iQ5 system to identify the expression level of the Ca2+ channel subunits. RESULTS: In INS-1 cells, the L-type Ca2+ channel 1C subunit had the highest expression level and the TPRM2 subunit had the second highest expression. In rat β cells, the TPRC4β subunit expression was dominant and the expression of the L-type 1C subunit exceeded the 1D subunit expression about two-fold. This result agreed with other studies, confirming the important role of the L-type 1C subunit in insulinsecreting cells, and suggested that non-voltageoperated Ca2+ channels may have an important role in biphasic insulin secretion. CONCLUSION: Twelve major Ca2+ channel subunit types were identified in INS-1 and rat β cells and significant differences were observed in the expression of certain subunits between these cells.

  13. RGS12 interacts with the SNARE-binding region of the Cav2.2 calcium channel.

    Science.gov (United States)

    Richman, Ryan W; Strock, Jesse; Hains, Melinda D; Cabanilla, Nory Jun; Lau, King-Kei; Siderovski, David P; Diversé-Pierluissi, María

    2005-01-14

    Activation of GABAB receptors in chick dorsal root ganglion (DRG) neurons inhibits the Cav2.2 calcium channel in both a voltage-dependent and voltage-independent manner. The voltage-independent inhibition requires activation of a tyrosine kinase that phosphorylates the alpha1 subunit of the channel and thereby recruits RGS12, a member of the "regulator of G protein signaling" (RGS) proteins. Here we report that RGS12 binds to the SNARE-binding or "synprint" region (amino acids 726-985) in loop II-III of the calcium channel alpha1 subunit. A recombinant protein encompassing the N-terminal PTB domain of RGS12 binds to the synprint region in protein overlay and surface plasmon resonance binding assays; this interaction is dependent on tyrosine phosphorylation and yet is within a sequence that differs from the canonical NPXY motif targeted by other PTB domains. In electrophysiological experiments, microinjection of DRG neurons with synprint-derived peptides containing the tyrosine residue Tyr-804 altered the rate of desensitization of neurotransmitter-mediated inhibition of the Cav2.2 calcium channel, whereas peptides centered about a second tyrosine residue, Tyr-815, were without effect. RGS12 from a DRG neuron lysate was precipitated using synprint peptides containing phosphorylated Tyr-804. The high degree of conservation of Tyr-804 in the SNARE-binding region of Cav2.1 and Cav2.2 calcium channels suggests that this region, in addition to the binding of SNARE proteins, is also important for determining the time course of the modulation of calcium current via tyrosine phosphorylation.

  14. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, R.; Dover, K; Laezza, F; Shtraizent, N; Huang, X; Tchetchik, D; Eliseenkova, A; Goldfarb, M; Mohammadi, M; et. al.

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.

  15. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes

    Science.gov (United States)

    Caballero, Susana; Duchêne, Sebastian; Garavito, Manuel F.; Slikas, Beth; Baker, C. Scott

    2015-01-01

    A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the ‘river dolphins’, early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae). Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0,) leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three ‘river dolphins’ (Families Pontoporidae, Lipotidae and Inidae), once in the riverine Sotalia fluviatilis (but not in its marine sister taxa), once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa) and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of

  16. Initial Evidence for Adaptive Selection on the NADH Subunit Two of Freshwater Dolphins by Analyses of Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Susana Caballero

    Full Text Available A small number of cetaceans have adapted to an entirely freshwater environment, having colonized rivers in Asia and South America from an ancestral origin in the marine environment. This includes the 'river dolphins', early divergence from the odontocete lineage, and two species of true dolphins (Family Delphinidae. Successful adaptation to the freshwater environment may have required increased demands in energy involved in processes such as the mitochondrial osmotic balance. For this reason, riverine odontocetes provide a compelling natural experiment in adaptation of mammals from marine to freshwater habitats. Here we present initial evidence of positive selection in the NADH dehydrogenase subunit 2 of riverine odontocetes by analyses of full mitochondrial genomes, using tests of selection and protein structure modeling. The codon model with highest statistical support corresponds to three discrete categories for amino acid sites, those under positive, neutral, and purifying selection. With this model we found positive selection at site 297 of the NADH dehydrogenase subunit 2 (dN/dS>1.0, leading to a substitution of an Ala or Val from the ancestral state of Thr. A phylogenetic reconstruction of 27 cetacean mitogenomes showed that an Ala substitution has evolved at least four times in cetaceans, once or more in the three 'river dolphins' (Families Pontoporidae, Lipotidae and Inidae, once in the riverine Sotalia fluviatilis (but not in its marine sister taxa, once in the riverine Orcaella brevirostris from the Mekong River (but not in its marine sister taxa and once in two other related marine dolphins. We located the position of this amino acid substitution in an alpha-helix channel in the trans-membrane domain in both the E. coli structure and Sotalia fluviatilis model. In E. coli this position is located in a helix implicated in a proton translocation channel of respiratory complex 1 and may have a similar role in the NADH dehydrogenases of

  17. The $\\alpha-\\alpha$ fishbone potential revisited

    CERN Document Server

    Day, J P; Elhanafy, M; Smith, E; Woodhouse, R; Papp, Z

    2011-01-01

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $\\alpha-\\alpha$ fishbone potential by simultaneously fitting to two-$\\alpha$ resonance energies, experimental phase shifts and three-$\\alpha$ binding energies. We found that essentially a simple gaussian can provide a good description of two-$\\alpha$ and three-$\\alpha$ experimental data without invoking three-body potentials.

  18. Alpha One Foundation

    Science.gov (United States)

    ... Tested Find Support Find Doctor What Is Alpha-1? Alpha-1 Antitrypsin Deficiency (Alpha-1) is a ... results for inhaled augmentation More News Our Number One Goal: Find a cure for Alpha-1. Website ...

  19. Primary structure of human alpha 2-macroglobulin. V. The complete structure

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, Terrence M; Kristensen, Torsten;

    1984-01-01

    in the activation cleavage area (the "bait" region) are located in the sequence: -Arg681-Val-Gly-Phe-Tyr-Glu-. The molecular weight of the unmodified alpha 2-macroglobulin subunit is 160,837 and approximately 179,000, including the carbohydrate groups. The presence of possible internal homologies within the alpha 2......-macroglobulin subunit is discussed. A comparison of stretches of sequences from alpha 2-macroglobulin with partial sequence data for complement components C3 and C4 indicates that these proteins are evolutionary related. The properties of alpha 2-macroglobulin are discussed within the context of proteolytically...

  20. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility

    NARCIS (Netherlands)

    A. Herrán; C. Gutierréz-Caballero; M. Sáanchez-Martin; T. Hernández; A. Viera; J.L. Barbero; E. de Álava; D.G. de Rooij; J. Ángel Suja; E. Llano; A.M. Pendas

    2011-01-01

    The cohesin complex is a ring-shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its alpha-kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently iden

  1. Resonances in alpha-nuclei interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karpeshin, F F [Fock Institute of Physics, St Petersburg State University, RU-198504 St Petersburg (Russian Federation); La Rana, G [Instituto Nazionale di Fisica Nucleare and Dipartimento di Scienze Fisiche dell' Universita di Napoli, Monte S. Angelo, via Cintia, 80126 Naples (Italy); Vardaci, Emanuele [Instituto Nazionale di Fisica Nucleare and Dipartimento di Scienze Fisiche dell' Universita di Napoli, Monte S. Angelo, via Cintia, 80126 Naples (Italy); Brondi, Augusto [Instituto Nazionale di Fisica Nucleare and Dipartimento di Scienze Fisiche dell' Universita di Napoli, Monte S. Angelo, via Cintia, 80126 Naples (Italy); Moro, Renata [Instituto Nazionale di Fisica Nucleare and Dipartimento di Scienze Fisiche dell' Universita di Napoli, Monte S. Angelo, via Cintia, 80126 Naples (Italy); Abramovich, S N [Russian Federal Nuclear Centre VNIIEF, RU-607190 Sarov, Nizhny Novgorod Region (Russian Federation); Serov, V I [Russian Federal Nuclear Centre VNIIEF, RU-607190 Sarov, Nizhny Novgorod Region (Russian Federation)

    2007-03-15

    Tunnelling of {alpha} particles through the Coulomb barrier is considered. The main attention is given to the effect of sharp peaks arising in the case of coincidence of the {alpha} energy with that of a quasistaionary state within the barrier. The question of the {alpha}-nucleus potential is discussed in this light. The method is applied to the {alpha} decay of a compound nucleus of {sup 135}Pr. The appearance of the peaks in the spectrum of emitted particles is predicted. They can give rise to 'anomalous' properties of some neutron resonances. The peaks can also be observed in the incoming {alpha}-nucleus channel. Observation of the peaks would give unique information about the {alpha}-nucleus potential.

  2. A peptide mimic of an antigenic loop of alpha-human chorionic gonadotropin hormone: solution structure and interaction with a llama V-HH domain

    NARCIS (Netherlands)

    Ferrat, G.; Renisio, J.G.; Morelli, X.; Slootstra, J.W.; Meloen, R.; Cambillau, C.; Darbon, H.

    2002-01-01

    The X-ray structure of a ternary complex between human chorionic gonadotropin hormone (hCG) and two Fvs recognizing its alpha and beta subunits has been recently determined. The Fvs recognize the elongated hCG molecule by its two ends, one being the Leu-12-Cys-29 loop of the alpha subunit. We have d

  3. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    Science.gov (United States)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  4. Reduced Calcium Channel Function in Drosophila Disrupts Associative Learning in Larva and Behavior in Adults

    Directory of Open Access Journals (Sweden)

    Robin L. Cooper

    2008-01-01

    Full Text Available The temperature sensitive nature of a mutation in the Cacophony gene, which codes for the alpha subunit in the voltage-gated Ca2+ channel, reduces Ca2+ influx when exposed to non-permissive temperatures. We investigated the subtle nature in the impact for this mutation on whole animal function, in regards to learning and memory, in larvae and adults. The effects in acutely reducing evoked Ca2+ influx in nerve terminals during various behavioural assays greatly decreased the ability of larval Drosophila to learn, as demonstrated in associative learning assays. These assays are based on olfaction and gustation with association to light or dark environments with negative reinforces. Adult flies also showed defects in olfaction and sense of light when the animal is acutely depressed in normal Ca2+ influx within the nervous system. We demonstrated that this particular mutation does not alter cardiac function acutely. Thus, implying that the alpha 1 subunit mutation which retards neuronal function is not relevant for the pace maker and cardiac contractility as indexed by heart rate.

  5. Characterization of fimbrial subunits from Bordetella species

    NARCIS (Netherlands)

    Mooi, F.R.; Heide, H.G.J. van der; Avest, A.R. ter; Welinder, K.G.; Livey, I.; Zeijst, B.A.M. van der; Gaastra, W.

    1987-01-01

    Using antisera raised against serotype 2 and 3 fimbrial subunits from Bordetella pertussis, serologically related polypeptides were detected in Bordetella bronchiseptica, Bordetella parapertussis and Bordetella avium strains. The two B. pertussis fimbrial subunits, and three of the serologically rel

  6. Molecular cloning and phylogenetic analysis of integrins alpha v beta 1 and alpha v beta 6 of one-humped camel (Camelus dromedarius)

    DEFF Research Database (Denmark)

    Du, Junzheng; Larska, Magdalena Larska; Chang, Huiyun;

    2010-01-01

    , and 787 amino acids, respectively. The dromedary camel integrin alpha v, beta 1, and beta 6 subunit shares common structural and functional elements with their counterparts from the other species. Phylogenetic trees showed that the dromedary camel alpha v, beta 1, and beta 6 were clustered...

  7. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I;

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies.......cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  8. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Morgane Riou

    Full Text Available NMDA receptors (NMDARs form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a "proximal" position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular and functional (plasma-membrane inserted pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors.

  9. 吸烟及烟碱型乙酰胆碱受体亚单位α5基因rs17486278位点多态性对肺癌的交互作用%Interaction between smoking and nicotine acetylcholine receptor subunits alpha 5 gene rs17486278 polymorphisms on lung cancer

    Institute of Scientific and Technical Information of China (English)

    李琴; 江梅; 赵劭娟; 吴晓瑛; 周珊宇; 刘涛; 王辉; 张亚雷; 陈维清

    2015-01-01

    Objective To investigate the association and interaction between smoking and the nicotine acetylcholine receptor subunits alpha 5 (CHRNA5) gene polymorphisms on lung cancer in Chinese men.Methods A case-control study was employed with a total of 204 male lung cancer patients and 821 healthy control subjects enrolled in the study.All the subjects were interviewed under a structured questionnaire with the contents on socio-demographic status and smoking behavior.Venous blood samples were collected to measure single nucleotide polymorphism of rs17486278 in CHRNA5.A series of multivariate logistic regression models were performed to assess the association and interaction between smoking and the CHRNA5 gene polymorphisms on lung cancer.Results After controlling for potential confounding factors,data from the multivariate logistic regression analysis showed that individuals with smoking > 15 cigarettes per day would significantly increase the risk of lung cancer when compared to the non-smokers (OR =3.49,95%CI:2.29-5.32).However,no associations between CHRNA5 rs17486278 polymorphisms and lung cancer were found.Furthermore,those who smoked 1-15 cigarettes per day had a positive interactive effect between rs17486278 CC genotype and lung cancer (OR=16.13,95% CI:1.27-205.33).Results from further stratified analysis on smoking behaviors and rs17486278 genotypes indicated that when compared with non-smokers on rs 17486278 AA genotype,those individuals who smoked 1-15 cigarettes per day with rs17486278 CC genotype,individuals smoking > 15 cigarettes per day with AA genotype and individuals smoking > 15 cigarettes per day with AC genotype,all had a higher risk of developing lung cancer,with their OR value as 8.14 (95% CI:1.17-56.56),3.84 (95% CI:1.30-11.40) and 5.32(95% CI:1.78-15.93),respectively.Conclusion There was an interaction between smoking and CHRNA5 gene polymorphism on lung cancer.%目的 探讨在中国男性人群中吸烟、烟碱型

  10. Sodium channels, inherited epilepsy, and antiepileptic drugs.

    Science.gov (United States)

    Catterall, William A

    2014-01-01

    Voltage-gated sodium channels initiate action potentials in brain neurons, mutations in sodium channels cause inherited forms of epilepsy, and sodium channel blockers-along with other classes of drugs-are used in therapy of epilepsy. A mammalian voltage-gated sodium channel is a complex containing a large, pore-forming α subunit and one or two smaller β subunits. Extensive structure-function studies have revealed many aspects of the molecular basis for sodium channel structure, and X-ray crystallography of ancestral bacterial sodium channels has given insight into their three-dimensional structure. Mutations in sodium channel α and β subunits are responsible for genetic epilepsy syndromes with a wide range of severity, including generalized epilepsy with febrile seizures plus (GEFS+), Dravet syndrome, and benign familial neonatal-infantile seizures. These seizure syndromes are treated with antiepileptic drugs that offer differing degrees of success. The recent advances in understanding of disease mechanisms and sodium channel structure promise to yield improved therapeutic approaches. PMID:24392695

  11. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+.

    Science.gov (United States)

    Ishikawa, T; Marunaka, Y; Rotin, D

    1998-06-01

    The epithelial Na+ channel (ENaC), composed of three subunits (alpha, beta, and gamma), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat alpha beta gamma ENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the alpha beta gamma rENaC-expressing MDCK cells exhibited greater whole cell Na+ current at -143 mV (-1,466.2 +/- 297.5 pA) than did untransfected cells (-47.6 +/- 10.7 pA). This conductance was completely and reversibly inhibited by 10 microM amiloride, with a Ki of 20 nM at a membrane potential of -103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing alpha beta or alpha gamma subunits alone was -115.2 +/- 41.4 pA and -52.1 +/- 24.5 pA at -143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ > K+ = N-methyl-D-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be approximately 5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (Po), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na

  12. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole;

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be...... standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...

  13. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    Energy Technology Data Exchange (ETDEWEB)

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. (Weizmann Institute, Rehovoth (Israel))

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  14. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    Science.gov (United States)

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  15. G(o) transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons.

    Science.gov (United States)

    Menon-Johansson, A S; Berrow, N; Dolphin, A C

    1993-11-01

    High-voltage-activated (HVA) calcium channel currents (IBa) were recorded from acutely replated cultured dorsal root ganglion (DRG) neurons. IBa was irreversibly inhibited by 56.9 +/- 2.7% by 1 microM omega-conotoxin-GVIA (omega-CTx-GVIA), whereas the 1,4-dihydropyridine antagonist nicardipine was ineffective. The selective gamma-aminobutyric acidB (GABAB) agonist, (-)-baclofen (50 microM), inhibited the HVA IBa by 30.7 +/- 5.4%. Prior application of omega-CTx-GVIA completely occluded inhibition of the HVA IBa by (-)-baclofen, indicating that in this preparation (-)-baclofen inhibits N-type current. To investigate which G protein subtype was involved, cells were replated in the presence of anti-G protein antisera. Under these conditions the antibodies were shown to enter the cells through transient pores created during the replating procedure. Replating DRGs in the presence of anti-G(o) antiserum, raised against the C-terminal decapeptide of the G alpha o subunit, reduced (-)-baclofen inhibition of the HVA IBa, whereas replating DRGs in the presence of the anti-Gi antiserum did not. Using anti-G alpha o antisera (1:2000) and confocal laser microscopy, G alpha o localisation was investigated in both unreplated and replated neurons. G alpha o immunoreactivity was observed at the plasma membrane, neurites, attachment plaques and perinuclear region, and was particularly pronounced at points of cell-to-cell contact. The plasma membrane G alpha o immunoreactivity was completely blocked by preincubation with the immunising G alpha o undecapeptide (1 microgram.ml-1) for 1 h at 37 degrees C. A similar treatment also blocked recognition of G alpha o in brain membranes on immunoblots.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8309795

  16. Functional and genomic analyses of alpha-solenoid proteins.

    Directory of Open Access Journals (Sweden)

    David Fournier

    Full Text Available Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others. While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  17. RFI channels

    Science.gov (United States)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  18. Ligand interactions with eukaryotic translation initiation factor 2: role of the gamma-subunit.

    OpenAIRE

    Erickson, F L; Hannig, E M

    1996-01-01

    Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type stra...

  19. Molecular cloning of cDNA encoding the small subunit of Drosophila transcription initiation factor TFIIF.

    OpenAIRE

    Gong, D W; Mortin, M A; Horikoshi, M; Nakatani, Y

    1995-01-01

    Transcription initiation factor TFIIF is a tetramer consisting of two large subunits (TFIIF alpha or RAP74) and two small subunits (TFIIF beta or RAP30). We report here the molecular cloning of a Drosophila cDNA encoding TFIIF beta. The cDNA clone contains an open-reading frame encoding a 277 amino acid polypeptide having a calculated molecular mass of 32,107 Da. Comparison of the deduced amino acid sequence with the corresponding sequences from vertebrates showed only 50% identity, with four...

  20. Ion Channels and Their Roles on The Pathogenesis of Epilepsy

    Directory of Open Access Journals (Sweden)

    Ahmet Akay

    2010-04-01

    Full Text Available Ion channels especially nicotinic acethylcholine receptor channels, potassium and sodium channels play roles in the physiopathology of various types of epilepsies. They play vital roles in either providing membrane potential and in neuronal signaling. In this review, first, information about the structure and function of ion channels and then how the structure and functions of subunits of them change within a neurological disease like epilepsy will be given. [Archives Medical Review Journal 2010; 19(2.000: 72-84

  1. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy. PMID:22778854

  2. The molecular physiology of CRAC channels

    OpenAIRE

    Prakriya, Murali

    2009-01-01

    The Ca2+release-activated Ca2+ (CRAC) channel is a highly Ca2+-selective store-operated channel expressed in T cells, mast cells, and various other tissues. CRAC channels regulate critical cellular processes such as gene expression, motility, and the secretion of inflammatory mediators. The identification of Orai1, a key subunit of the CRAC channel pore, and STIM1, the endoplasmic reticulum (ER) Ca2+ sensor, have provided the tools to illuminate the mechanisms of regulation and the pore prope...

  3. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin.

    OpenAIRE

    Sottrup-Jensen, L; Folkersen, J; T. Kristensen; Tack, B F

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from the results of complete or partial sequence determination of a random selection of 38 tryptic peptides covering 685 residues of the subunit of PZP, that PZP and alpha 2M indeed are extensively homologous....

  4. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy.

    Science.gov (United States)

    Hirose, Shinichi

    2014-01-01

    The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox-Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies. PMID:25194483

  5. The carboxyl terminus of the Galpha-subunit is the latch for triggered activation of heterotrimeric G proteins.

    Science.gov (United States)

    Nanoff, Christian; Koppensteiner, Romana; Yang, Qiong; Fuerst, Elisabeth; Ahorn, Horst; Freissmuth, Michael

    2006-01-01

    The receptor-mimetic peptide D2N, derived from the cytoplasmic domain of the D(2) dopamine receptor, activates G protein alpha-subunits (G(i) and G(o)) directly. Using D2N, we tested the current hypotheses on the mechanism of receptor-mediated G protein activation, which differ by the role assigned to the Gbetagamma-subunit: 1) a receptor-prompted movement of Gbetagamma is needed to open up the nucleotide exit pathway ("gear-shift" and "lever-arm" model) or 2) the receptor first engages Gbetagamma and then triggers GDP release by interacting with the carboxyl (C) terminus of Galpha (the "sequential-fit" model). Our results with D2N were compatible with the latter hypothesis. D2N bound to the extreme C terminus of the alpha-subunit and caused a conformational change that was transmitted to the switch regions. Hence, D2N led to a decline in the intrinsic tryptophan fluorescence, increased the guanine nucleotide exchange rate, and modulated the Mg(2+) control of nucleotide binding. A structural alteration in the outer portion of helix alpha5 (substitution of an isoleucine by proline) blunted the stimulatory action of D2N. This confirms that helix alpha5 links the guanine nucleotide binding pocket to the receptor contact site on the G protein. However, neither the alpha-subunit amino terminus (as a lever-arm) nor Gbetagamma was required for D2N-mediated activation; conversely, assembly of the Galphabetagamma heterotrimer stabilized the GDP-bound species and required an increased D2N concentration for activation. We propose that the receptor can engage the C terminus of the alpha-subunit to destabilize nucleotide binding from the "back side" of the nucleotide binding pocket.

  6. 奶牛乳腺中整联蛋白alpha6、beta4表达对细胞增殖的影响%Effects on cell proliferaton and expression of integrin subunits α6 and β4 in cow mammary gland

    Institute of Scientific and Technical Information of China (English)

    赵锋; 刘畅; 高学军; 李庆章

    2012-01-01

    用组织免疫荧光和蛋白印迹检测两种整联蛋白亚基的定位和表达水平,并观察阻断它们的功能对乳腺上皮细胞增殖的影响.结果表明,奶牛乳腺中整联蛋白α6和β4主要在青春期和妊娠期的导管和腺泡的基底侧腺上皮细胞和肌上皮细胞表达,而脂肪细胞和成纤维细胞几乎无表达,α6亚基显示出基底侧极性分布,β4亚基在整个细胞膜均匀分布.阻断整联蛋白亚基功能会显著抑制细胞增殖,表明它们对于促进青春期和妊娠期导管和腺泡发育时的细胞增殖有着重要作用.%We aimed to investigate expression and faction of integrin α6 and β4 subunits in healthy Holstein cow mammary gland. Im-munofluorescence and Western blotting assay was carried out for integrin protein distribution and protein level, further their effects on mammary epithelial cells proliferation. Results showed that integrin α6 and β4 both localized on the basal side membrane of ductal or alveolar glandular epithelial cells as well as myoepithelial cells in virgin and pregnant adult mammary gland, the former showing the distribution with baso-lateral polarity, and the latter which were detcted throughout the cell membrane, were also negative in adipocytes and fibroblasts. During perinatal and lactation integrin α6 and β4 protein levels were relatively low. As key cell surface receptor subunits for laminin substrate in vitro, blocking their functions could significandy inhibit the proliferation of mammary epithelial cells. It concluded that the two integrin subunits promote cell proliferation for ducts or alveoli growth during puberty and pregnancy period.

  7. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha.

    Science.gov (United States)

    Yuan, Yong; Hilliard, George; Ferguson, Tsuneo; Millhorn, David E

    2003-05-01

    The hypoxia-inducible factor (HIF) activates the expression of genes that contain a hypoxia response element. The alpha-subunits of the HIF transcription factors are degraded by proteasomal pathways during normoxia but are stabilized under hypoxic conditions. The von Hippel-Lindau protein (pVHL) mediates the ubiquitination and rapid degradation of HIF-alpha (including HIF-1alpha and HIF-2alpha). Post-translational hydroxylation of a proline residue in the oxygen-dependent degradation (ODD) domain of HIF-alpha is required for the interaction between HIF and VHL. It has previously been established that cobalt mimics hypoxia and causes accumulation of HIF-1alpha and HIF-2alpha. However, little is known about the mechanism by which this occurs. In an earlier study, we demonstrated that cobalt binds directly to the ODD domain of HIF-2alpha. Here we provide the first evidence that cobalt inhibits pVHL binding to HIF-alpha even when HIF-alpha is hydroxylated. Deletion of 17 amino acids within the ODD domain of HIF-2alpha that are required for pVHL binding prevented the binding of cobalt and stabilized HIF-2alpha during normoxia. These findings show that cobalt mimics hypoxia, at least in part, by occupying the VHL-binding domain of HIF-alpha and thereby preventing the degradation of HIF-alpha. PMID:12606543

  8. The concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols.

    Science.gov (United States)

    Bhattacharji, Aditya; Kaplan, Benjamin; Harris, Thanawath; Qu, Xiaoguang; Germann, Markus W; Covarrubias, Manuel

    2006-11-01

    Gating of voltage-gated K(+) channels (K(v) channels) depends on the electromechanical coupling between the voltage sensor and activation gate. The main activation gate of K(v) channels involves the COOH-terminal section of the S6 segment (S6-b) and the S4-S5 linker at the intracellular mouth of the pore. In this study, we have expanded our earlier work to probe the concerted contribution of these regions to the putative amphipathic 1-alkanol site in the Shaw2 K(+) channel. In the S4-S5 linker, we found a direct energetic correlation between alpha-helical propensity and the inhibition of the Shaw2 channel by 1-butanol. Spectroscopic structural analyses of the S4-S5 linker supported this correlation. Furthermore, the analysis of chimeric Shaw2 and K(v)3.4 channels that exchanged their corresponding S4-S5 linkers showed that the potentiation induced by 1-butanol depends on the combination of a single mutation in the S6 PVPV motif (PVAV) and the presence of the Shaw2 S4-S5 linker. Then, using tandem-heterodimer subunits, we determined that this potentiation also depends on the number of S4-S5 linkers and PVAV mutations in the K(v) channel tetramer. Consistent with the critical contribution of the Shaw2 S4-S5 linker, the equivalent PVAV mutation in certain mammalian K(v) channels with divergent S4-S5 linkers conferred weak potentiation by 1-butanol. Overall, these results suggest that 1-alkanol action in Shaw2 channels depends on interactions involving the S4-S5 linker and the S6-b segment. Therefore, we propose that amphiphilic general anesthetic agents such as 1-alkanols may modulate gating of the Shaw2 K(+) channel by an interaction with its activation gate.

  9. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together.

    Science.gov (United States)

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.

  10. Ab initio alpha-alpha scattering

    CERN Document Server

    Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-01-01

    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.

  11. Risk capital allocation with autonomous subunits

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Smilgins, Aleksandrs

    2016-01-01

    Risk capital allocation problems have been widely discussed in the academic literature. We consider a set of independent subunits collaborating in order to reduce risk: that is, when subunit portfolios are merged a diversification benefit arises and the risk of the group as a whole is smaller than...

  12. The amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) opens large-conductance Ca2+-activated K+ channels and relaxes vascular smooth muscle.

    Science.gov (United States)

    Gessner, Guido; Heller, Regine; Hoshi, Toshinori; Heinemann, Stefan H

    2007-01-26

    2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) has been developed to retain the antiarrhythmic properties of the parent molecule amiodarone but to eliminate its undesired side effects. In patch-clamp experiments, KB130015 activated large-conductance, Ca2+-activated BK(Ca) channels formed by hSlo1 (alpha) subunits in HEK 293 cells. Channels were reversibly activated by shifting the open-probability/voltage (P(o)/V) relationship by about -60 mV in 3 muM intracellular free Ca2+ ([Ca2+]in). No effect on the single-channel conductance was observed. KB130015-mediated activation of BK(Ca) channels was half-maximal at 20 microM with a Hill coefficient of 2.8. BK(Ca) activation by KB130015 did not require the presence of Ca2+ and still occurred with saturating (100 microM) [Ca2+]in. Effects of the prototypic BK(Ca) activator NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one) and those of KB130015 were not additive suggesting that both activators may at least partially share a common mechanism of action. KB130015-mediated activation was observed also for BK(Ca) channels from insects and for human BK(Ca) channels with already profoundly left-shifted voltage-dependence. In contrast, human intermediate conductance Ca2+-activated channels were inhibited by KB130015. Using segments of porcine pulmonary arteries, KB130015 induced endothelium-independent vasorelaxation, half-maximal at 43 microM KB130015. Relaxation was inhibited by 1 mM tetraethylammonium, suggesting that KB130015 can activate vascular smooth muscle type BK(Ca) channels under physiological conditions. Interestingly, the shift in the P(o)/V relationship was considerably stronger (-90 mV in 3 microM [Ca2+]in) for BK(Ca) channels containing Slo-beta1 subunits. Thus, KB130015 belongs to a novel class of BK(Ca) channel openers that exert an effect depending on the subunit composition of the channel complex.

  13. Hybridization of glutamate aspartate transaminase. Investigation of subunit interaction.

    Science.gov (United States)

    Boettcher, B; Martinez-Carrion, M

    1975-10-01

    Glutamate aspartate transaminase (EC 2.6.1.1) is a dimeric enzyme with identical subunits with each active site containing pyridoxal 5'-phosphate linked via an internal Shiff's base to a lysine residue. It is not known if these sites interact during catalysis but negative cooperativity has been reported for binding of the coenzyme (Arrio-Dupont, M. (1972), Eur. J. Biochem. 30, 307). Also nonequivalence of its subunits in binding 8-anilinonaphthalene-1-sulfonate (Harris, H.E., and Bayley, P. M. (1975), Biochem. J. 145, 125), in modification of only a single tyrosine with full loss of activity (Christen, P., and Riordan, J.F. (1970), Biochemistry 9, 3025), and following modification with 5,5'-dithiobis(2-nitrobenzoic acid) (Cournil, I., and Arrio-Dupont, M. (1973), Biochemie 55, 103) has been reported. However, steady-state and transient kinetic methods as well as direct titration of the active site chromophore with substrates and substrate analogs have not revealed any cooperative phenomena (Braunstein, A. E. (1973), Enzymes, 3rd Ed. 9, 379). It was therefore decided that a more direct approach should be used to clarify the quistion of subunit interaction during the covalent phase of catalysis. To this end a hybrid method was devised in which a hybrid transaminase was prepared which contained one subunit with a functional active site while the other subunit has the internal Shiff's base reduced with NaBH4. The specific activities and amount of "actively bound" pyridoxal 5'-phosphate are both in a 2:1 ratio for the native and hybrid forms. Comparison of the steady-state kinetic properties of the hybrid and native enzyme forms shows that both forms gave parallel double reciprocal plots which is characteristic of the Ping-Pong Bi-Bi mechanism of transamination. The Km values for the substrates L-aspartic acid and alpha-ketoglutaric acid are nearly identical while the Vmax value for the hybrid is one-half the value of the native transaminase. It therefore appears that

  14. Non-adiabatic dynamics in 10Be with the microscopic alpha+alpha+n+n model

    CERN Document Server

    Ito, M

    2006-01-01

    The alpha+6He low-energy reactions and the structural changes of 10Be in the microscopic alpha+alpha+n+n model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the alpha+6He(2+) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. In the positive parity state, the enhancement originates from the no-adiabatic eigenstate generated by the radial excitation of the relative motion between two alpha-cores. On the other hand, the enhancement in the negative parity state is induced by the Landau-Zener level-crossing. These non-adiabatic processes are discussed in connection to the formation of the inversion doublet in the compound system of 10Be.

  15. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L. [Argonne National Lab., IL (United States); Maulik, P.R.; Reed, R.A.; Shipley, G. [Boston Univ., MA (United States). School of Medicine; Westbrook, E.M. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States); Scott, D.L.; Otwinowski, Z. [Yale Univ., New Haven, CT (United States)

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  16. 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jakob Nis; Mustard, Kirsty J.W.; Graham, Drew A.;

    2002-01-01

    (3)) AMPK subunits and exercise-induced AMPK activity are influenced by exercise training status, muscle biopsies were obtained from seven endurance exercise-trained and seven sedentary young healthy men. The alpha(1)- and alpha(2)-AMPK mRNA contents in trained subjects were both 117 +/- 2......), beta(2), gamma(1), gamma(2), gamma(3)) were similar in trained and sedentary subjects. At the end of 20 min of cycle exercise at 80% of peak O(2) uptake, the increase in phosphorylation of alpha-AMPK (Thr(172)) was blunted in the trained group (138 +/- 38% above rest) compared with the sedentary group...

  17. Ab initio alpha-alpha scattering

    Science.gov (United States)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  18. Ab initio alpha-alpha scattering.

    Science.gov (United States)

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  19. BK Channels in the Vascular System.

    Science.gov (United States)

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. PMID:27238270

  20. Phorbol-induced surface expression of NR2A subunit homologues in HEK293 cells

    Institute of Scientific and Technical Information of China (English)

    Chan-ying ZHENG; Xiu-juan YANG; Zhan-yan FU; Jian-hong LUO

    2006-01-01

    Aim: N-methyl-D-aspartate receptors (NMDAR) are heteromeric complexes primarily assembled from NR1 and NR2 subunits. In normal conditions, NR2 sub-units assemble into homodimers in the endoplasmic reticulum (ER). These homodimers remain in the ER until they coassemble with NR1 dimers and are trafficked to the cell surface. However, it still remains unclear whether functional homomeric NMDAR exist in physiological or pathological conditions. Methods: We transfected GFP-NR2A alone into HEK293 cells, treated the cells with PKC activator 12-myristate-13 acetate (PMA), and then detected surface NR2A sub-units with a live cell immunostaining method. We also used a series of NR2A mutants with a partial deletion of its C-terminus to identify the regions that are involved in the PMA-mediated surface expression of NR2A subunits. Results: NR2A subunits were expressed on the cell membrane after incubation with PMA (200 nmol/L,30 min), although no functional NMDA channels were detected after PMA-induced membrane trafficking. Immunostaining with an ER marker also revealed that NR2A subunits were exported from the ER after PMA treatment. Furthermore, the deletion of amino acids between 1149-1347 or 1354-1464 of NR2A inhibited PMA-induced surface expression of NR2A subunits. Conclusion: First, our data suggests that PMA treatment can induce the surface expression of homomeric NR2A subunits. Furthermore, this process is probably mediated by the NR2A C-terminal region between positions 1149 and 1464.

  1. Faddeev calculation of 3 alpha and alpha alpha Lambda systems using alpha alpha resonating-group method kernel

    CERN Document Server

    Fujiwara, Y; Kohno, M; Suzuki, Y; Baye, D; Sparenberg, J M

    2004-01-01

    We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-group method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are...

  2. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic.

    Science.gov (United States)

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M

    2008-09-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  3. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P;

    2013-01-01

    the kinetics of this process remain obscure. Using a combination of synthetic amino acid analogs and concatenated channel subunits we establish two H-bonds near the extracellular surface of the channel that endow Kv channels with a mechanism to time the entry into slow inactivation: an intra-subunit H......-bond between Asp447 and Trp434 and an inter-subunit H-bond connecting Tyr445 to Thr439. Breaking of either interaction triggers slow inactivation by means of a local disruption in the selectivity filter, while severing the Tyr445-Thr439 H-bond is likely to communicate this conformational change to the adjacent...

  4. Subunit architecture of general transcription factor TFIIH

    OpenAIRE

    Gibbons, Brian J.; Brignole, Edward J; Azubel, Maia; Murakami, Kenji; Voss, Neil R; Bushnell, David A.; Asturias, Francisco J; Kornberg, Roger D.

    2012-01-01

    Structures of complete 10-subunit yeast TFIIH and of a nested set of subcomplexes, containing 5, 6, and 7 subunits, have been determined by electron microscopy (EM) and 3D reconstruction. Consistency among all the structures establishes the location of the “minimal core” subunits (Ssl1, Tfb1, Tfb2, Tfb4, and Tfb5), and additional densities can be specifically attributed to Rad3, Ssl2, and the TFIIK trimer. These results can be further interpreted by placement of previous X-ray structures into...

  5. Cleft Lip Repair: The Hybrid Subunit Method.

    Science.gov (United States)

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach.

  6. Conformational plasticity of the catalytic subunit of protein kinase CK2 and its consequences for regulation and drug design

    DEFF Research Database (Denmark)

    Niefind, Karsten; Issinger, Olaf-Georg

    2010-01-01

    plasticity of important ATP-binding elements - the interdomain hinge region and the glycine-rich loop - was discovered. In fully active CK2alpha the hinge region is open and does not anchor the ATP ribose, but alternatively it can adopt a closed conformation, form hydrogen bonds to the ribose moiety and thus......At the first glance CK2alpha, the catalytic subunit of protein kinase CK2, is a rigid molecule: in contrast to many eukaryotic protein kinases in CK2alpha the canonical regulatory key elements like the activation segment occur exclusively in their typical active conformations. This observation fits...... well to the constitutive activity of the enzyme, meaning, its independence from phosphorylation or other characteristic control factors. Most CK2alpha structures are based on the enzyme from Zea mays, supplemented by an increasing number of human CK2alpha structures. In the latter a surprising...

  7. Structure–Function Relationships in Fungal Large-Subunit Catalases

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.; Valdez, V; Rudino-Pinera, E; Horjales, E; Hansberg, W

    2009-01-01

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.

  8. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha).

    OpenAIRE

    Reyes, J C; Barra, J.; Muchardt, C; Camus, A.; Babinet, C; Yaniv, M

    1998-01-01

    The mammalian SWI-SNF complex is an evolutionarily conserved, multi-subunit machine, involved in chromatin remodelling during transcriptional activation. Within this complex, the BRM (SNF2alpha) and BRG1 (SNF2beta) proteins are mutually exclusive subunits that are believed to affect nucleosomal structures using the energy of ATP hydrolysis. In order to characterize possible differences in the function of BRM and BRG1, and to gain further insights into the role of BRM-containing SWI-SNF comple...

  9. New Role of P/Q-type Voltage-gated Calcium Channels

    DEFF Research Database (Denmark)

    Hansen, Pernille B L

    2015-01-01

    Voltage-gated calcium channels are important for the depolarization-evoked contraction of vascular smooth muscle cells (SMCs), with L-type channels being the classical channel involved in this mechanism. However, it has been demonstrated that the CaV2.1 subunit, which encodes a neuronal isoform o...

  10. Review of alpha_s determinations

    CERN Document Server

    Pich, Antonio

    2013-01-01

    The present knowledge on the strong coupling is briefly summarized. The most precise determinations of alpha_s, at different energies, are reviewed and compared at the Z mass scale, using the predicted QCD running. The impressive agreement achieved between experimental measurements and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Freedom, establishing QCD as the fundamental theory of the strong interaction. The world average value of the strong coupling is found to be alpha_s(M_Z^2)= 0.1186 \\pm 0.0007.

  11. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Folkersen, J; Kristensen, Torsten;

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from...... is 68%, indicating a close evolutionary relationship between PZP and alpha 2M. Although the function of PZP in pregnancy is largely unknown, its close structural relationship to alpha 2M suggests analogous proteinase binding properties and a potential for being taken up in cells by receptor...

  12. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  13. Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins

    DEFF Research Database (Denmark)

    Kusk, M; Ahmed, R; Thomsen, B;

    1999-01-01

    Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric alpha2beta2 structure. For the formation of this tetrameric complex a beta-alpha dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2beta deletion mutants, we mapped domains involved...... in alpha-beta and beta-beta interactions. We also detected an intramolecular beta interaction within the amino acid stretch 132-165. Using CK2beta as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative tumor...... suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase beta subunit....

  14. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays

    DEFF Research Database (Denmark)

    Guerra, B; Niefind, K; Pinna, L A;

    1998-01-01

    The catalytic (alpha) subunit of protein kinase CK2 (CK2alpha) was originally cloned and overexpressed in the Escherichia coli strain pT7-7/BL21(DE3). The protein has been purified to homogeneity and crystallized. The crystals belong to the monoclinic space group C2, they have unit-cell parameters...... a = 142.6, b = 61.3, c = 45.6 A, beta = 103.3 degrees and diffract X-rays to at least 2.0 A resolution. The calculated crystal packing parameter is Vm = 2.47 A3 Da-1 suggesting that one CK2alpha molecule is contained in the asymmetric unit and that the solvent content of the unit cell is 50%....

  15. Expression, purification, crystallization and preliminary X-ray analysis of ORF60, the small subunit (R2) of ribonucleotide reductase from Kaposi's sarcoma-associated herpesvirus (KSHV)

    OpenAIRE

    Gurmu, Daniel; Dahlroth, Sue-Li; Haas, Juergen; Nordlund, Par; Erlandsen, Heidi

    2010-01-01

    Ribonucleotide reductase (RNR) is responsible for converting ribonucleotides to deoxyribonucleotides, which are the building blocks of DNA. The enzyme is present in all life forms as well as in some large DNA viruses such as herpesviruses. The alpha-herpesviruses and gamma-herpesviruses encode two class Ia RNR subunits, R1 and R2, while the beta-herpesvirus subfamily only encode an inactive R1 subunit. Here, the crystallization of the R2 subunit of RNR encoded by the ORF60 gene from the oncov...

  16. Accumulation of glycation products in. cap alpha. -H pig lens crystallin and its bearing to diabetic cataract genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P.; Cabezas-Cerrato, J.

    1988-01-01

    The incorporation of /sup 11/C-glucose in native pig crystalline by in vitro incubation was found, after subsequent dialysis, to affect all 5 classes of crystallin separated by Sepharose CL-6B column chromatography. Though the radioactivity of the ..cap alpha..-H fraction was three times greater than that of any of the others, autoradiographs of SDS-PAGE gels showed /sup 11/C-glucose adducts to be present in all soluble protein subunits, without there being any evidence of preferential glycation of the ..cap alpha..-H subunits. The concentration of stable glycation products in the ..cap alpha..-H chromatographic fraction of soluble crystallins is suggested to be due the addition of glycated material to this fraction as result of glycation-induced hyperaggregation, and not because the ..cap alpha..-H subunits were especially susceptible to glycation.

  17. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O;

    1992-01-01

    alpha subunit. The concentration of polylysine required for half-maximal stimulation is comparable to CK2 concentration and increases by increasing CK2 concentration, suggesting that polylysine primarily interacts with the enzyme, rather than with the peptide substrate.......The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either...... phosphorylated by either CK2 holoenzyme or the recombinant alpha subunit with 5.8-fold and 2.8-fold stimulation by polylysine, respectively. The recombinant beta subunit of CK2 is itself a good exogenous substrate for the enzyme, its phosphorylation, however, is inhibited rather than enhanced by polylysine...

  18. Complex control of GABA(A) receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Science.gov (United States)

    Mulligan, Megan K; Wang, Xusheng; Adler, Adrienne L; Mozhui, Khyobeni; Lu, Lu; Williams, Robert W

    2012-01-01

    GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal), even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer 4-100 fold

  19. Complex control of GABA(A receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Directory of Open Access Journals (Sweden)

    Megan K Mulligan

    Full Text Available GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal, even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer

  20. Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats.

    Science.gov (United States)

    Seda, Marian; Pinto, Francisco M; Wray, Susan; Cintado, Cristina G; Noheda, Pedro; Buschmann, Helmut; Candenas, Luz

    2007-11-01

    We investigated the function and expression of voltage-gated Na(+) channels (VGSC) in the uteri of nonpregnant rats using organ bath techniques, intracellular [Ca(2+)] fluorescence measurements, and RT-PCR. In longitudinally arranged whole-tissue uterine strips, veratridine, a VGSC activator, caused the rapid appearance of phasic contractions of irregular frequency and amplitude. After 50-60 min in the continuous presence of veratridine, rhythmic contractions of very regular frequency and slightly increasing amplitude occurred and were sustained for up to 12 h. Both the early and late components of the contractile response to veratridine were inhibited in a concentration-dependent manner by tetrodotoxin (TTX). In small strips dissected from the uterine longitudinal smooth muscle layer and loaded with Fura-2, veratridine also caused rhythmic contractions, accompanied by transient increases in [Ca(2+)](i), which were abolished by treatment with 0.1 microM TTX. Using end-point and real-time quantitative RT-PCR, we detected the presence of the VGSC alpha subunits Scn2a1, Scn3a, Scn5a, and Scn8a in the cDNA from longitudinal muscle. The mRNAs of the auxiliary beta subunits Scbn1b, Scbn2b, Scbn4b, and traces of Scn3b were also present. These data show for the first time that Scn2a1, Scn3a, Scn5a, and Scn8a, as well as all VGSC beta subunits are expressed in the longitudinal smooth muscle layer of the rat myometrium. In addition, our data show that TTX-sensitive VGSC are able to mediate phasic contractions maintained over long periods of time in the uteri of nonpregnant rats.

  1. Divergent evolution of a beta/alpha-barrel subclass: detection of numerous phosphate-binding sites by motif search.

    OpenAIRE

    Bork, P.; Gellerich, J.; Groth, H.; Hooft, R.; Martin, F.

    1995-01-01

    Study of the most conserved region in many beta/alpha-barrels, the phosphate-binding site, revealed a sequence motif in a few beta/alpha-barrels with known tertiary structure, namely glycolate oxidase (GOX), cytochrome b2 (Cyb2), tryptophan synthase alpha subunit (TrpA), and the indoleglycerolphosphate synthase (TrpC). Database searches identified this motif in numerous other enzyme families: (1) IMP dehydrogenase (IMPDH) and GMP reductase (GuaC); (2) phosphoribosylformimino-5-aminoimidazol c...

  2. Review of alpha_s determinations

    OpenAIRE

    Pich, Antonio

    2013-01-01

    The present knowledge on the strong coupling is briefly summarized. The most precise determinations of alpha_s, at different energies, are reviewed and compared at the Z mass scale, using the predicted QCD running. The impressive agreement achieved between experimental measurements and theoretical predictions constitutes a beautiful and very significant test of Asymptotic Freedom, establishing QCD as the fundamental theory of the strong interaction. The world average value of the strong coupl...

  3. Expression and Purification of PI3 Kinase {alpha} and Development of an ATP Depletion and an AlphaScreen PI3 Kinase Activity Assay

    DEFF Research Database (Denmark)

    Boldyreff, Brigitte; Rasmussen, Tine L; Jensen, Hans H;

    2008-01-01

    Phosphoinositide-3-kinases are important targets for drug development because many proteins in the PI3 kinase signaling pathway are mutated, hyperactivated, or overexpressed in human cancers. Here, the authors coexpressed the human class Ia PI3 kinase p110alpha catalytic domain with an N...... was optimized by testing different lipids as substrates, as well as various kinase and lipid concentrations. Furthermore, they analyzed autophosphorylation of p110alpha/p85alpha and determined the IC50 for wortmannin, a known PI3 kinase inhibitor. The IC50 for wortmannin was determined to be 7 nM. From...... a selection of substrates, phosphatidylinositol-4, 5-biphosphate turned out to be the best substrate at a concentration of 50 microM. p110alpha/p85alpha underwent autophosphorylation most prominently at the p85alpha subunit. However, in the presence of lipid substrate, the autophosphorylation was negligible...

  4. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  5. The molecular physiology of CRAC channels

    Science.gov (United States)

    Prakriya, Murali

    2011-01-01

    Summary The Ca2+release-activated Ca2+ (CRAC) channel is a highly Ca2+-selective store-operated channel expressed in T cells, mast cells, and various other tissues. CRAC channels regulate critical cellular processes such as gene expression, motility, and the secretion of inflammatory mediators. The identification of Orai1, a key subunit of the CRAC channel pore, and STIM1, the endoplasmic reticulum (ER) Ca2+ sensor, have provided the tools to illuminate the mechanisms of regulation and the pore properties of CRAC channels. Recent evidence indicates that the activation of CRAC channels by store depletion involves a coordinated series of steps, which include the redistributions of STIM1 and Orai1, direct physical interactions between these proteins, and conformational changes in Orai1, culminating in channel activation. Additional studies have revealed that the high Ca2+ selectivity of CRAC channels arises from the presence of an intrapore Ca2+ binding site, the properties of which are finely honed to occlude the permeation of the much more prevalent Na+. Structure-function studies have led to the identification of the potential pore-binding sites for Ca2+, providing a firm framework for understanding the mechanisms of selectivity and gating of the CRAC channel. This review summarizes recent progress in understanding the mechanisms of CRAC channel activation, pore properties, and modulation. PMID:19754891

  6. Shared receptor components but distinct complexes for alpha and beta interferons.

    Science.gov (United States)

    Lewerenz, M; Mogensen, K E; Uzé, G

    1998-09-25

    The type I interferon family includes 13 alpha, one omega and one beta subtypes recognized by a complex containing the receptor subunits ifnar1 and ifnar2 and their associated Janus tyrosine kinases, Tyk2 and Jak1. To investigate the reported differences in the way that alpha and beta interferons signal through the receptor, we introduced alanine-substitutions in the ifnar2 extracellular domain, and expressed the mutants in U5A cells, lacking endogenous ifnar2. A selection, designed to recover mutants that responded preferentially to alpha or beta interferon yielded three groups: I, neutral; II, sensitive to alpha interferon, partially resistant to beta interferon; III, resistant to alpha interferon, partially sensitive to beta interferon. A mutant clone, TMK, fully resistant to alpha interferon with good sensitivity to beta interferon, was characterized in detail and compared with U5A cells complemented with wild-type ifnar2 and also with Tyk2-deficient 11.1 cells, which exhibit a similar alpha-unresponsive phenotype with a partial beta interferon response. Using anti-receptor antibodies and mutant forms of beta interferon, three distinct modes of ligand interaction could be discerned: (i) alpha interferon with ifnar1 and ifnar2; (ii) beta interferon with ifnar1 and ifnar2; (iii) beta interferon with ifnar2 alone. We conclude that alpha and beta interferons signal differently through their receptors because the two ligand subtypes interact with the receptor subunits ifnar 1 and ifnar2 in entirely different ways.

  7. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  8. Kv7 Channels Can Function without Constitutive Calmodulin Tethering

    Science.gov (United States)

    Alberdi, Araitz; Alaimo, Alessandro; Etxeberría, Ainhoa; Fernández-Orth, Juncal; Zamalloa, Teresa; Roura-Ferrer, Meritxell; Villace, Patricia; Areso, Pilar; Casis, Oscar; Villarroel, Alvaro

    2011-01-01

    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function. PMID:21980481

  9. Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating.

    Science.gov (United States)

    Shen, Xin-Ming; Okuno, Tatsuya; Milone, Margherita; Otsuka, Kenji; Takahashi, Koji; Komaki, Hirofumi; Giles, Elizabeth; Ohno, Kinji; Engel, Andrew G

    2016-10-01

    We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore, which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by fourfold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration four- and eightfold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating.

  10. Regions of KCNQ K+ Channels Controlling Functional Expression

    Directory of Open Access Journals (Sweden)

    Frank eChoveau

    2012-10-01

    Full Text Available KCNQ1-5 α-subunits assemble to form K+ channels that play critical roles in the function of numerous tissues. The channels are tetramers of subunits containing six transmembrane domains. Each subunit consists of a pore region (S5-pore-S6 and a voltage sensor domain (S1-S4. Despite similar structures, KCNQ2 and KCNQ3 homomers yield small current amplitudes compared to other KCNQ homomers and KCNQ2/3 heteromers. Two major mechanisms have been suggested as governing functional expression. The first involves control of channel trafficking to the plasma membrane by the distal part of the C-terminus, containing two coiled-coiled domains, required for channel trafficking and assembly. The proximal half of the C-terminus is the crucial region for channel modulation by signaling molecules such as calmodulin, which may mediate C- and N-terminal interactions. The N-terminus of KCNQ channels has also been postulated as critical for channel surface expression. The second mechanism suggests networks of interactions between the pore helix and the selectivity filter, and between the pore helix and the S6 domain that govern KCNQ current amplitudes. Here, we summarize the role of these different regions in expression of functional KCNQ channels.

  11. Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium.

    Science.gov (United States)

    Calisto, Bárbara M; Pich, Oscar Q; Piñol, Jaume; Fita, Ignacio; Querol, Enrique; Carpena, Xavier

    2005-08-26

    The crystal structure of the eubacteria Mycoplasma genitalium ORF MG438 polypeptide, determined by multiple anomalous dispersion and refined at 2.3 A resolution, reveals the organization of S subunits from the Type I restriction and modification system. The structure consists of two globular domains, with about 150 residues each, separated by a pair of 40 residue long antiparallel alpha-helices. The globular domains correspond to the variable target recognition domains (TRDs), as previously defined for S subunits on sequence analysis, while the two helices correspond to the central (CR1) and C-terminal (CR2) conserved regions, respectively. The structure of the MG438 subunit presents an overall cyclic topology with an intramolecular 2-fold axis that superimposes the N and the C-half parts, each half containing a globular domain and a conserved helix. TRDs are found to be structurally related with the small domain of the Type II N6-adenine DNA MTase TaqI. These relationships together with the structural peculiarities of MG438, in particular the presence of the intramolecular quasi-symmetry, allow the proposal of a model for S subunits recognition of their DNA targets in agreement with previous experimental results. In the crystal, two subunits of MG438 related by a crystallographic 2-fold axis present a large contact area mainly involving the symmetric interactions of a cluster of exposed hydrophobic residues. Comparison with the recently reported structure of an S subunit from the archaea Methanococcus jannaschii highlights the structural features preserved despite a sequence identity below 20%, but also reveals important differences in the globular domains and in their disposition with respect to the conserved regions. PMID:16038930

  12. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  13. miR-1和miR-133 a对大鼠肥大心肌细胞L-型钙通道Cavβ2和α1 C亚基的调控作用%Regulation of miR-1 and miR-133 a on L-type calcium channel Cavβ2 and α1C subunits in rat cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    王玉琴; 耿鹏; 吴扬

    2015-01-01

    Objective To investigate the regulation of miR-1 and miR-133 a on L-type calcium channel β2 subunit ( Cavβ2 ) and α1C subunit during rat cardiomyocyte hypertrophy .Methods Cardiomyocyte hypertrophy was in-duced by isoproterenol (ISO, 10μmol/L).The targets of miR-1 and miR-133a were predicted by online database microCosm and Targetscan , respectively .The 3′untranslated region sequences of Cavβ2 andα1C were respectively cloned into reporter vector and then transiently transfected into HEK 293 cells.The luciferase activities of samples were measured for demonstrating the expression of luciferase reporter vector .The protein expression of Cavβ2 andα1C were evaluated by Western blot .The expression levels of Cavβ2 andα1C were inhibited by RNAi to determine theeffectsofCavβ2andα1Concardiomyocytehypertrophy.Results 1)Cavβ2wasoneofpotentialtargetsof miR-1,α1C was the one of potential targets of miR-133a.2) The luciferase activities of HEK293 cells with the plasmid containing widetype Cavβ2 3′UTR sequence or α1 C significantly decreased ( P <0.05 , P <0.01 ) . 3 ) Upregulation of the miR-1 and miR-133 a by miR-1 mimic and miR-133 a mimic transfection suppressed pro-tein expression of Cavβ2 and α1C, respectively(P<0.01, P<0.05).4)Downregulation of Cavβ2 andα1C by RNAi could markedly inhibit the increase of cell surface area ( P<0.01 ) , mRNA expression of ANP andβ-MHC (P<0.05).Conclusions Cavβ2 is the target gene of miR-1 and α1C is the target gene of miR-133a.miR-1 and miR-133a can negatively regulate the expression of L-type calcium channel Cavβ2 andα1C subunit, inhibi-ting cardiomyocyte hypertrophy.%目的:研究miR-1和miR-133a在大鼠心肌细胞肥大中对L-型钙通道β2亚基( Cavβ2)和α1C亚基的调控作用。方法异丙肾上腺素( ISO )诱导大鼠心肌细胞肥大;在线数据库microCosm 和Targetscan 预测miR-1和miR-133a的靶基因;分别构建含有Cavβ23′UTR或α1C 3′UTR的重组质粒,与miR-1

  14. Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide

    Science.gov (United States)

    Wu, Lingyun; Cao, Kun; Lu, Yanjie; Wang, Rui

    2002-01-01

    The molecular mechanisms underlying the effects of nitric oxide (NO) and carbon monoxide (CO), individually and collectively, on large-conductance calcium-activated K+ (KCa) channels were investigated in rat vascular smooth muscle cells (SMCs). Both NO and CO increased the activity of native KCa channels. Dehydrosoyasaponin-I, a specific agonist for β subunit of KCa channels, increased the open probability of native KCa channels only when it was delivered to the cytoplasmic surface of membrane. CO, but not NO, further increased the activity of native KCa channels that had been maximally stimulated by dehydrosoyasaponin-I. After treatment of SMCs with anti–KCa,β subunit antisense oligodeoxynucleotides, the stimulatory effect of NO, but not of CO, on KCa channels was nullified. CO, but not NO, enhanced the KCa current densities of heterologously expressed cloned KCa,α subunit, showing that the presence of KCa,β subunit is not a necessity for the effect of CO but essential for that of NO. Finally, pretreatment of SMCs with NO abolished the effects of subsequently applied CO or diethyl pyrocarbonate on KCa channels. In summary, the stimulatory effects of CO and NO on KCa channels rely on the specific interactions of these gases with KCa,α and KCa,β subunits. PMID:12208870

  15. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  16. Structure of Oxidized Alpha-Haemoglobin Bound to AHSP Reveals a Protective Mechanism for HAEM

    Energy Technology Data Exchange (ETDEWEB)

    Feng,L.; Zhou, S.; Gu, L.; Gell, D.; MacKay, J.; Weiss, M.; Gow, A.; Shi, Y.

    2005-01-01

    The synthesis of hemoglobin A (HbA) is exquisitely coordinated during erythrocyte development to prevent damaging effects from individual {alpha}- and {beta}-subunits. The {alpha}-hemoglobin-stabilizing protein (AHSP) binds {alpha}-hemoglobin ({alpha}Hb), inhibits the ability of {alpha}Hb to generate reactive oxygen species and prevents its precipitation on exposure to oxidant stress. The structure of AHSP bound to ferrous {alpha}Hb is thought to represent a transitional complex through which {alpha}Hb is converted to a non-reactive, hexacoordinate ferric form. Here we report the crystal structure of this ferric {alpha}Hb-AHSP complex at 2.4 Angstrom resolution. Our findings reveal a striking bis-histidyl configuration in which both the proximal and the distal histidines coordinate the haem iron atom. To attain this unusual conformation, segments of {alpha}Hb undergo drastic structural rearrangements, including the repositioning of several {alpha}-helices. Moreover, conversion to the ferric bis-histidine configuration strongly and specifically inhibits redox chemistry catalysis and haem loss from {alpha}Hb. The observed structural changes, which impair the chemical reactivity of haem iron, explain how AHSP stabilizes {alpha}Hb and prevents its damaging effects in cells.

  17. Molecular Mechanism of AHSP-Mediated Stabilization of Alpha-Hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Feng,L.; Gell, D.; Zhou, S.; Gu, L.; Kong, Y.; Li, J.; Hu, M.; Yan, N.; Lee, C.; et al.

    2005-01-01

    Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.

  18. Cloning of a novel inhibin alpha cDNA from rhesus monkey testis

    Directory of Open Access Journals (Sweden)

    Woodruff Teresa K

    2004-10-01

    Full Text Available Abstract Background Inhibins are dimeric gonadal protein hormones that negatively regulate pituitary FSH synthesis and secretion. Inhibin B is produced by testicular Sertoli cells and is the primary circulating form of inhibin in most adult male mammals. Inhibin B is comprised of the inhibin alpha subunit disulfide-linked to the inhibin/activin betaB subunit. Here we describe the cloning of the cDNAs encoding these subunits from adult rhesus monkey testis RNA. Methods The subunit cDNAs were cloned by a combination of reverse transcriptase polymerase chain reaction (RT-PCR and 5' rapid amplification of cDNA ends (RACE RT-PCR from adult rhesus monkey testis RNA. Results Both the inhibin alpha and betaB subunit nucleotide and predicted protein sequences are highly conserved with other mammalian species, particularly with humans. During the course of these investigations, a novel inhibin alpha mRNA isoform was also identified. This form, referred to as rhesus monkey inhibin alpha-variant 2, appears to derive from both alternative transcription initiation as well as alternative splicing. rmInhibin alpha-variant 2 is comprised of a novel 5' exon (exon 0, which is spliced in-frame with exon 2 of the conventional inhibin alpha isoforms (variant 1. Exon 1 is skipped in its entirety such that the pro-alpha and part of the alpha N regions are not included in the predicted protein. rmInhibin alpha -variant 2 is of relatively low abundance and its biological function has not yet been ascertained. Conclusion The data show that the predicted inhibin B protein is very similar between monkeys and humans. Therefore, studies in monkeys using recombinant human inhibins are likely to reflect actions of the homologous ligands. In addition, we have observed the first inhibin alpha subunit mRNA variant. It is possible that variants will be observed in other species as well and this may lead to novel insights into inhibin action.

  19. Liposome-Based Adjuvants for Subunit Vaccines

    DEFF Research Database (Denmark)

    Tandrup Schmidt, Signe; Foged, Camilla; Rades, Thomas

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  20. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits.

    Science.gov (United States)

    Alzayady, Kamil J; Wagner, Larry E; Chandrasekhar, Rahul; Monteagudo, Alina; Godiska, Ronald; Tall, Gregory G; Joseph, Suresh K; Yule, David I

    2013-10-11

    Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca(2+) release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca(2+), ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca(2+) signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40-3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca(2+) release. Using single channel "on-nucleus" patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.

  1. Crystal Structure of the alpha6beta6 Holoenzyme of propionyl-coenzyme A Carboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.; Sadre-Bazzaz, K; Shen, Y; Deng, B; Zhou, Z; Tong, L

    2010-01-01

    Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an {alpha}{sub 6}{beta}{sub 6} dodecamer, with a molecular mass of 750 kDa. The {alpha}-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the {beta}-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-{angstrom} resolution of a bacterial PCC {alpha}{sub 6}{beta}{sub 6} holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-{angstrom} resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the {alpha}-subunits are arranged as monomers in the holoenzyme, decorating a central {beta}{sub 6} hexamer. A hitherto unrecognized domain in the {alpha}-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the {beta}-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 {angstrom}, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the {beta}-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).

  2. Sequence stratigraphic model and Evolution of the Channelized depositional systems during Miocene in Ulleung Basin southeastern margin, East Sea

    Science.gov (United States)

    Baek, Y.; Lee, S. H.; Kim, H. J.; Jou, H. T.

    2015-12-01

    The southwestern margin of Ulleung Basin consists of broad and gentle slope continental shelf and shelf break. The sedimentary succession of the continental shelf is divided into nine sequences (S1-S9). The sedimentary succession is consists of the lower pro-graded sequences (from S2 to S6; 16.5-8.2 Ma) and upper channelized depositional sequences (S7 and S8; 8.2-5.5 Ma) in the Miocene. It progressively thickens northeast ward, suggesting a significant contribution of sediments into the basin margin. The channelized depositional system of S7 is divided into two subunits in which lower boundaries of each subunit are indicated by erosional truncation and channel incision. The underlying subunit 1 has two main streams; the progressive directions are to the NNE (a) and ENE (b). The main stream of subunit 2, developed after giving rise to the low-relief topography of the subunit 1, is only overlapping main stream (a) of subunit 1. The gentle sloped proximal-middle zone has different internal reflector, subunit 1 is characterized by parallel to chaotic reflections, whereas the subunit 2 is dominated by continuous and inclined reflectors, which can be interpreted that sediments supply is increase in subunit 2 than subunit 1. The steep sloped distal zone of channelized depositional systems connected the shelf break. The slope gradient is more slanted subunit 2 than 1. The internal structures are dis-continuous and inclined chaotic internal reflectors, which is interpreted mass transport deposits (MTDs). The slope failures commonly start near the shelf break, but some others are connected perpendicular to the main stream. The upper boundary of subunit 2 is truncated by transgressive surface. The stacking pattern of sequence 7 suggests the type-1 sequence controlled by sea level change, and the internal erosional surface in the channelized depositional systems can be interpreted that formed by tectonic or relative sea level flocculation during late Miocene in East Sea.

  3. Probing surface distribution of $\\alpha$-cluster in $^{20}$Ne via $\\alpha$-transfer reaction

    CERN Document Server

    Fukui, Tokuro; Suhara, Tadahiro; Kanada-En'yo, Yoshiko; Ogata, Kazuyuki

    2015-01-01

    Direct evidence of the $\\alpha$-cluster development in bound states has not been obtained yet although a number of experimental studies were carried out to extract the information of the clustering. In particular in conventional analyses of $\\alpha$-transfer reactions, there exist a few significant problems on reaction models, which are insufficient to qualitatively discuss the cluster structure. We aim to verify the development of the $\\alpha$-cluster structure from observables. As the first application, it is argued to extract the spatial information of the cluster structure of the $^{20}$Ne nucleus in its ground state through the cross section of the $\\alpha$-transfer reaction $^{16}$O($^6$Li,~$d$)$^{20}$Ne. For the analysis of the transfer reaction, we work with the coupled-channels Born approximation (CCBA) approach, in which the breakup effect of $^6$Li is explicitly taken into account by means of the continuum-discretized coupled-channels method (CDCC) based on the three-body $\\alpha + d + {}^{16}$O mo...

  4. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  5. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Martin, Jessica A; Garczynski, Stephen F

    2016-04-01

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.

  6. Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis.

    Science.gov (United States)

    Kikuchi, H; Wako, H; Yura, K; Go, M; Mimuro, M

    2000-09-01

    Phycobiliproteins are basic building blocks of phycobilisomes, a supra-molecular assembly for the light-capturing function of photosynthesis in cyanobacteria and red algae. One functional form of phycobiliproteins is a trimeric form consisting of three identical units having C(3) symmetry, with each unit composed of two kinds of subunits, the alpha-subunit and beta-subunit. These subunits have similar chain folds and can be divided into either globin-like or X-Y helices domains. We studied the significance of this two-domain structure for their assembled structures and biological function (light-absorption) using a normal mode analysis to investigate dynamic aspects of their three-dimensional structures. We used C-phycocyanin (C-PC) as an example, and focused on the interactions between the two domains. The normal mode analysis was carried out for the following two cases: 1) the whole subunit, including the two domains; and 2) the globin-like domain alone. By comparing the dynamic properties, such as correlative movements between residues and the fluctuations of individual residues, we found that the X-Y helices domain plays an important role not only in the C(3) symmetry assemblies of the subunits in phycobiliproteins, but also in stabilizing the light absorption property by suppressing the fluctuation of the specific Asp residues near the chromophore. Interestingly, the conformation of the X-Y helices domain corresponds to that of a module in pyruvate phosphate dikinase (PPDK). The module in PPDK is involved in the interactions of two domains, just as the X-Y helices domain is involved in the interactions of two subunits. Finally, we discuss the mechanical construction of the C-PC subunits based on the normal mode analysis.

  7. Early evolution of ionotropic GABA receptors and selective regimes acting on the mammalian-specific theta and epsilon subunits.

    Directory of Open Access Journals (Sweden)

    Christopher J Martyniuk

    Full Text Available BACKGROUND: The amino acid neurotransmitter GABA is abundant in the central nervous system (CNS of both invertebrates and vertebrates. Receptors of this neurotransmitter play a key role in important processes such as learning and memory. Yet, little is known about the mode and tempo of evolution of the receptors of this neurotransmitter. Here, we investigate the phylogenetic relationships of GABA receptor subunits across the chordates and detail their mode of evolution among mammals. PRINCIPAL FINDINGS: Our analyses support two major monophyletic clades: one clade containing GABA(A receptor alpha, gamma, and epsilon subunits, and another one containing GABA(A receptor rho, beta, delta, theta, and pi subunits. The presence of GABA receptor subunits from each of the major clades in the Ciona intestinalis genome suggests that these ancestral duplication events occurred before the divergence of urochordates. However, while gene divergence proceeded at similar rates on most receptor subunits, we show that the mammalian-specific subunits theta and epsilon experienced an episode of positive selection and of relaxed constraints, respectively, after the duplication event. Sites putatively under positive selection are placed on a three-dimensional model obtained by homology-modeling. CONCLUSIONS: Our results suggest an early divergence of the GABA receptor subunits, before the split from urochordates. We show that functional changes occurred in the lineages leading to the mammalian-specific subunit theta, and we identify the amino acid sites putatively responsible for the functional divergence. We discuss potential consequences for the evolution of mammals and of their CNS.

  8. Buffett’s Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting...

  9. K ATP channels in pig and human intracranial arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Sørensen, Mette Aaskov; Strøbech, Lotte Bjørg;

    2008-01-01

    Clinical trials suggest that synthetic ATP-sensitive K(+) (K(ATP)) channel openers may cause headache and migraine by dilating cerebral and meningeal arteries. We studied the mRNA expression profile of K(ATP) channel subunits in the pig and human middle meningeal artery (MMA) and in the pig middle...... cerebral artery (MCA). We determined the order of potency of four K(ATP) channel openers when applied to isolated pig MMA and MCA, and we examined the potential inhibitory effects of the Kir6.1 subunit specific K(ATP) channel blocker PNU-37883A on K(ATP) channel opener-induced relaxation of the isolated...... pig MMA and MCA. Using conventional RT-PCR, we detected the mRNA transcripts of the K(ATP) channel subunits Kir6.1 and SUR2B in all the examined pig and human intracranial arteries. Application of K(ATP) channel openers to isolated pig MMA and MCA in myographs caused a concentration...

  10. Effects of fractal gating of potassium channels on neuronal behaviours

    Science.gov (United States)

    Zhao, De-Jiang; Zeng, Shang-You; Zhang, Zheng-Zhen

    2010-10-01

    The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.

  11. Three-Body Model Analysis of Subbarrier alpha Transfer Reaction

    CERN Document Server

    Fukui, Tokuro; Yahiro, Masanobu

    2011-01-01

    Subbarrier alpha transfer reaction 13C(6Li,d)17O(6.356 MeV, 1/2+) at 3.6 MeV is analyzed with a alpha + d + 13C three-body model, and the asymptotic normalization coefficient (ANC) for alpha + 13C --> 17O(6.356 MeV, 1/2+), which essentially determines the reaction rate of 13C(alpha,n)16O, is extracted. Breakup effects of 6Li in the initial channel and those of 17O in the final channel are investigated with the continuum-discretized coupled-channels method (CDCC). The former is found to have a large back-coupling to the elastic channel, while the latter turns out significantly small. The transfer cross section calculated with Born approximation to the transition operator, including breakup states of 6Li, gives (C_{alpha 13C}{17O*})^2 =1.03 \\pm 0.29 fm^{-1}. This result is consistent with the value obtained by the previous DWBA calculation.

  12. Alpha-particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  13. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  14. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.

    Science.gov (United States)

    Haldar, Suranjana; Bevers, Loes E; Tosha, Takehiko; Theil, Elizabeth C

    2011-07-22

    Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of [Fe³⁺O](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) [Fe³⁺O](n) transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits. PMID:21592958

  15. Immunochemical aspects of crotoxim and its subunits

    International Nuclear Information System (INIS)

    Crotamine and crotoxin with the subunits - phospholipase A and crotapotin - were obtained by purification from Crotalus durissus terrificus venom. Interaction studies of the subunits using crotalic antiserum, indicated that: crotoxin is formed of crotapotin and phospholipase A with the molar ratio of 1 to 1; using crotapotin 125I the presence of a soluble complex was shown with the same antiserum. Immunological precipitation reactions demonstrated that crotapotin is antigenic: crotapotin and phospholipase A presented similar antigenic determinants; crotoxin antiserum reacted with each one of the submits; when the subunits are mixed to form synthetic crotoxin some antigenic determinants are masked in the process of interaction. Crotamine, interacted with crotapotin 1:1, without hidden antigenic determinants crotapotin antigenic site seems to be formed by, at least, one lysine. Enzimatical activity of phospholipase A apreared to be dependent on some reaction conditions when its arginine residues are blocked. Tyrosines of phospholipase A are more susceptible to labelling with 131I than crotapotin. Gama irradiation of aqueous solutions of the subunits produced modifications in the ultraviolet spectra. A decrease of the enzymatic activity occured as a function of radiation dosis. Immunological activities of crotapotin and phospholipase A were not altered

  16. Thermostable Subunit Vaccines for Pulmonary Delivery

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    , such as influenza, tuberculosis, and Ebola, for which no good universal vaccines exist. At least two pharmaceutical improvements are expected to help filling this gap: i) The development of thermostable vaccine dosage forms, and ii) the full exploitation of the adjuvant technology for subunit vaccines to potentiate...

  17. Nav1.5 cardiac sodium channels, regulation and clinical implications

    Directory of Open Access Journals (Sweden)

    Henry Humberto León-Ariza

    2014-10-01

    Full Text Available Voltage-gated sodium channels constitute a group of membrane proteins widely distributed thought the body. In the heart, there are at least six different isoforms, being the Nav1.5 the most abundant. The channel is composed of an α subunit that is formed by four domains of six segments each, and four much smaller β subunits that provide stability and integrate other channels into the α subunit. The function of the Nav1.5 channel is modulated by intracellular cytoskeleton proteins, extracellular proteins, calcium concentration, free radicals, and medications, among other things. The study of the channel and its alterations has grown thanks to its association with pathogenic conditions such as Long QT syndrome, Brugada syndrome, atrial fibrillation, arrhythmogenic ventricular dysplasia and complications during ischemic processes.

  18. Diastereoselective dihydroxylation and regioselective deoxygenation of dihydropyranones: a novel protocol for the stereoselective synthesis of C1-C8 and C15-C21 subunits of (+)-discodermolide.

    Science.gov (United States)

    Ramachandran, P Veeraraghavan; Prabhudas, Bodhuri; Chandra, J Subash; Reddy, M Venkat Ram

    2004-09-17

    Diastereoselective dihydroxylation of dihydropyranones and subsequent regioselective alpha-deoxygenation provides 1,3-trans-beta-hydroxy-delta-lactones stereoselectively. This protocol has been applied for the synthesis of C(1)-C(8) and C(15)-C(21) subunits of (+)-discodermolide.

  19. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  20. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor.

    Science.gov (United States)

    Almeida, E A; Huovila, A P; Sutherland, A E; Stephens, L E; Calarco, P G; Shaw, L M; Mercurio, A M; Sonnenberg, A; Primakoff, P; Myles, D G; White, J M

    1995-06-30

    Binding between sperm and egg plasma membranes is an essential step in fertilization. Whereas fertilin, a mammalian sperm surface protein, is involved in this crucial interaction, sperm receptors on the egg plasma membrane have not been identified. Because fertilin contains a predicted integrin ligand domain, we investigated the expression and function of integrin subunits in unfertilized mouse eggs. Polymerase chain reactions detected mRNAs for alpha 5, alpha 6, alpha v, beta 1, beta 3, and beta 5. Immunofluorescence revealed alpha 6 beta 1 and alpha v beta 3 on the plasma membrane. GoH3, a function-blocking anti-alpha 6 monoclonal antibody, abolished sperm binding, but a nonfunction-blocking anti-alpha 6 monoclonal antibody, a function-blocking anti-alpha v beta 3 polyclonal antibody, and an RGD peptide had no effect. Somatic cells bound sperm avidly, but only if they expressed alpha 6 beta 1. A peptide analog of the fertilin integrin ligand domain inhibited sperm binding to eggs and alpha 6 beta 1+ cells and diminished GoH3 staining of eggs. Our results indicate a novel role for the integrin alpha 6 beta 1 as a cell-cell adhesion receptor that mediates sperm-egg binding. PMID:7600577

  1. Molecular cloning and characterization of G alpha proteins from the western tarnished plant bug, Lygus hesperus

    Science.gov (United States)

    The G-alpha subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-base...

  2. Fermi Liquid Instabilities in the Spin Channel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Congjun; /Santa Barbara, KITP; Sun, Kai; Fradkin, Eduardo; /Illinois U., Urbana; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-16

    We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F{sub l}{sup a} (l > 0)). The ordered phases are classified into two classes, dubbed the {alpha} and {beta}-phases by analogy to the superfluid {sup 3}He-A and B-phases. The Fermi surfaces in the {alpha}-phases exhibit spontaneous anisotropic distortions, while those in the {beta}-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the {alpha}-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the {alpha} and {beta}-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel {beta}-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.

  3. Diagnostics for PLX-alpha

    Science.gov (United States)

    Gilmore, Mark; Hsu, Scott

    2015-11-01

    The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.

  4. Energy Efficiency Scaling Law for MIMO Broadcasting Channels

    CERN Document Server

    Xu, Jie

    2012-01-01

    This letter investigates the energy efficiency (EE) scaling law for the broadcasting channels (BC) with many users, in which the non-ideal transmit independent power consumption is taken into account. We first consider the single antenna case with $K$ users, and derive that the EE scales as $\\frac{{\\log_2 \\ln K}}{\\alpha}$ when $\\alpha > 0$ and $\\log_2 K$ when $\\alpha = 0$, where $\\alpha$ is the normalized transmit independent power. After that, we extend it to the general MIMO BC case with a $M$-antenna transmitter and $K$ users each with $N$ antennas. The scaling law becomes $\\frac{{M \\log_2 \\ln NK}}{\\alpha}$ when $\\alpha > 0$ and $ \\log_2 NK$ when $\\alpha = 0$.

  5. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies

    Directory of Open Access Journals (Sweden)

    Eleonora eSavio Galimberti

    2012-07-01

    Full Text Available Voltage-gated sodium channels (VGSC are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa and can also function as cell-adhesion molecules (CAMs. In-vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named channel partners or channel interacting proteins (ChiPs like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin, and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics. Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium channelopathies. This review will outline the structure, function and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field

  6. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    Science.gov (United States)

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  7. Intra-membrane molecular interactions of K+ channel proteins :

    Energy Technology Data Exchange (ETDEWEB)

    Moczydlowski, Edward G.

    2013-07-01

    Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

  8. Potassium channels and human epileptic phenotypes: an updated overview

    Directory of Open Access Journals (Sweden)

    Chiara eVilla

    2016-03-01

    Full Text Available Potassium (K+ channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals.This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms.

  9. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Zweben, S.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  10. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario

  11. Mining recent brain proteomic databases for ion channel phosphosite nuggets

    OpenAIRE

    Cerda, Oscar; Baek, Je-Hyun; Trimmer, James S.

    2011-01-01

    Voltage-gated ion channels underlie electrical activity of neurons and are dynamically regulated by diverse cell signaling pathways that alter their phosphorylation state. Recent global mass spectrometric–based analyses of the mouse brain phosphoproteome have yielded a treasure trove of new data as to the extent and nature of phosphorylation of numerous ion channel principal or α subunits in mammalian brain. Here we compile and review data on 347 phosphorylation sites (261 unique) on 42 diffe...

  12. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  13. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.

    Science.gov (United States)

    Lagman, David; Sundström, Görel; Ocampo Daza, Daniel; Abalo, Xesús M; Larhammar, Dan

    2012-10-01

    Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations. PMID:22814267

  14. Quantum three-body calculation of the nonresonant triple-\\alpha reaction rate at low temperatures

    CERN Document Server

    Ogata, Kazuyuki; Kamimura, Masayasu

    2009-01-01

    The triple-\\alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. Accurate description of the \\alpha-\\alpha nonresonant states significantly quenches the Coulomb barrier between the two-\\alpha's and the third \\alpha particle. Consequently, the \\alpha-\\alpha nonresonant continuum states below the resonance at 92.04 keV, i.e., the ground state of 8Be, give markedly larger contribution at low temperatures than in foregoing studies. We find about 20 orders-of-magnitude enhancement of the triple-\\alpha reaction rate around 10^7 K compared to the rate of the NACRE compilation.

  15. The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli.

    OpenAIRE

    Lund, B; Lindberg, F; Marklund, B I; Normark, S

    1987-01-01

    Uropathogenic Escherichia coli adhere to uroepithelial cells by their digalactoside alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose [alpha-D-Galp-(1----4)-beta-D-Galp or Gal alpha (1----4)Gal]-binding pili, which are composed of repeating identical subunits. The major subunit (PapA) of these pili is not required for binding, but the papF and papG gene products are essential for adhesion. Transcomplementation analysis between the pap gene cluster and a related gene cluster encoding a ...

  16. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential?

    DEFF Research Database (Denmark)

    Rossen, K; Dahlstrøm, K K; Mercurio, A M;

    1994-01-01

    We have studied the expression of alpha 6 beta 4 integrin, a carcinoma laminin receptor in ten squamous cell carcinomas (SCCs) and ten basal cell carcinomas (BCCs) of the skin in order to examine whether changes in alpha 6 beta 4 integrin expression may be related to invasive and metastatic...... potential. Monoclonal antibodies specific for each subunit were applied on cryosections, using a three step indirect peroxidase technique. In normal epidermis the basal cells expressed both the alpha 6 and the beta 4 subunits, and the expression was polarized against the basement membrane. In SCCs the...

  17. Local versus nonlocal $\\alpha\\alpha$ interactions in $3\\alpha$ description of $^{12}$C

    CERN Document Server

    Suzuki, Y; Descouvemont, P; Fujiwara, Y; Matsumura, H; Orabi, M; Theeten, M

    2008-01-01

    Local $\\alpha \\alpha$ potentials fail to describe $^{12}$C as a $3\\alpha$ system. Nonlocal $\\alpha \\alpha$ potentials that renormalize the energy-dependent kernel of the resonating group method allow interpreting simultaneously the ground state and $0^+_2$ resonance of $^{12}$C as $3\\alpha$ states. A comparison with fully microscopic calculations provides a measure of the importance of three-cluster exchanges in those states.

  18. Angular correlations and decay branching ratio for excited state of 7Li*(7,45 MeV) in reactions 7Li(alpha, alpha)7Li*

    International Nuclear Information System (INIS)

    Measurements of differential cross-sections of alpha-particle inelastic scattering by 7Li nuclei and 7Li(alpha, alpha 6Li)n, 7Li(alpha, alpha alpha)t reactions have been performed at the energy Ea = 27,2 MeV. Probability of 7Li*(7,45 MeV) decay into 6Li + n channel has been determined from the ratio of cross-sections measured in kinematically complete and incomplete experiments. The large discrepancy of this value (P 0,49 ± 0,06) and of those obtained at the study of 7Li*(7,45 MeV) decay in binary reactions can be explained by the influence of Coulomb field of accompanied alpha-particle on the decay of near-threshold resonances in three-particle reactions

  19. Single-particle cryoEM analysis at near-atomic resolution from several thousand asymmetric subunits.

    Science.gov (United States)

    Passos, Dario Oliveira; Lyumkis, Dmitry

    2015-11-01

    A single-particle cryoEM reconstruction of the large ribosomal subunit from Saccharomyces cerevisiae was obtained from a dataset of ∼75,000 particles. The gold-standard and frequency-limited approaches to single-particle refinement were each independently used to determine orientation parameters for the final reconstruction. Both approaches showed similar resolution curves and nominal resolution values for the 60S dataset, estimated at 2.9 Å. The amount of over-fitting present during frequency-limited refinement was quantitatively analyzed using the high-resolution phase-randomization test, and the results showed no apparent over-fitting. The number of asymmetric subunits required to reach specific resolutions was subsequently analyzed by refining subsets of the data in an ab initio manner. With our data collection and processing strategies, sub-nanometer resolution was obtained with ∼200 asymmetric subunits (or, equivalently for the ribosomal subunit, particles). Resolutions of 5.6 Å, 4.5 Å, and 3.8 Å were reached with ∼1000, ∼1600, and ∼5000 asymmetric subunits, respectively. At these resolutions, one would expect to detect alpha-helical pitch, separation of beta-strands, and separation of Cα atoms, respectively. Using this map, together with strategies for ab initio model building and model refinement, we built a region of the ribosomal protein eL6, which was missing in previous models of the yeast ribosome. The relevance for more routine high-resolution structure determination is discussed.

  20. Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus

    International Nuclear Information System (INIS)

    The DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus were located on the viral genome. The formation of an enzyme-guanylate covalent intermediate labeled with [alpha-32P]GTP allowed the identification of the large subunit of the capping enzyme and was used to monitor the appearance of the enzyme during the infectious cycle. This assay confirmed that after vaccinia infection, a novel 84,000-molecular-weight polypeptide corresponding to the large subunit was rapidly synthesized before viral DNA replication. Hybrid-selected cell-free translation of early viral mRNA established that vaccinia virus encoded a polypeptide identical in molecular weight with the 32P-labeled 84,000-molecular-weight polypeptide found in vaccinia virions. Like the authentic capping enzyme, this virus-encoded cell-free translation product bound specifically to DNA-cellulose. A comparison of the partial proteolytic digestion fragments generated by V8 protease, chymotrypsin, and trypsin demonstrated that the 32P-labeled large subunit and the [35S]methionine-labeled cell-free translation product were identical. The mRNA encoding the large subunit of the capping enzyme was located 3.1 kilobase pairs to the left of the HindIII D restriction fragment of the vaccinia genome. Furthermore, the mRNA was determined to be 3.0 kilobases in size, and its 5 and 3 termini were precisely located by S1 nuclease analysis

  1. Bremsstrahlung in $\\alpha$ Decay

    CERN Document Server

    Takigawa, N; Hagino, K; Ono, A; Brink, D M

    1999-01-01

    A quantum mechanical analysis of the bremsstrahlung in $\\alpha$ decay of $^{210}$Po is performed in close reference to a semiclassical theory. We clarify the contribution from the tunneling, mixed, outside barrier regions and from the wall of the inner potential well to the final spectral distribution, and discuss their interplay. We also comment on the validity of semiclassical calculations, and the possibility to eliminate the ambiguity in the nuclear potential between the alpha particle and daughter nucleus using the bremsstrahlung spectrum.

  2. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  3. Trafficking and gating of hyperpolarization-activated cyclic nucleotide-gated channels are regulated by interaction with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) and cyclic AMP at distinct sites

    NARCIS (Netherlands)

    Y. Han; Y. Noam; A.S. Lewis; J.J. Gallagher; W.J. Wadman; T.Z. Baram; D.M. Chetkovich

    2011-01-01

    Ion channel trafficking and gating are often influenced by interactions with auxiliary subunits. Tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) is an auxiliary subunit for neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. TRIP8b interacts directly w

  4. Expression of Telomerase Subunits in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    CHEN Fenghua; HU Lihua; LI Yirong; WANG Lin

    2005-01-01

    To detect the expression of telomerase subunits human telomerase reverse transcriptase, human telomerase associated protein 1 and human telomerase RNA) in gastric cancer and to examine the role that different telomerase subunits play in the gastric carcinogenesis, reverse transcription-polymerase chain reaction (RT-PCR) was used to detect telomerase subunits messenger RNA in 24 samples of gastric cancer and corresponding non-cancerous tissue. The results showed that the positive rate of hTERT mRNA from gastric cancer and corresponding non-cancerous tissues was 100 % and 25 %, respectively. The former was significantly higher than the latter (χ2 =26.4, P<0.01). The positive rate of hTEP1 mRNA from gastric cancer and corresponding non-cancerous tissues was 100 % and 91.7 %, respectively and no significant difference was found between them (χ2 =2.1, P>0.05). The positive rates of hTR for gastric cancer and corresponding non-cancerous tissues were both 100 % and no significant difference existed between them. It is concluded that in contrast to hTEP1 and hTR, the up-regulation of hTERT mRNA expression may play a more important role in the development of gastric cancer.

  5. Subunit organization in cytoplasmic dynein subcomplexes

    Science.gov (United States)

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  6. The structure of aquaporin-1 at 4.5-A resolution reveals short alpha-helices in the center of the monomer.

    Science.gov (United States)

    Mitsuoka, K; Murata, K; Walz, T; Hirai, T; Agre, P; Heymann, J B; Engel, A; Fujiyoshi, Y

    1999-12-01

    Aquaporin-1 is a water channel found in mammalian red blood cells that is responsible for high water permeability of its membrane. Our electron crystallographic analysis of the three-dimensional structure of aquaporin-1 at 4.5-A resolution confirms the previous finding that each subunit consists of a right-handed bundle of six highly tilted transmembrane helices that surround a central X-shaped structure. In our new potential map, the rod-like densities for the transmembrane helices show helically arranged protrusions, indicating the positions of side chains. Thus, in addition to the six transmembrane helices, observation of helically arranged side-chain densities allowed the identification of two short alpha-helices representing the two branches of the central X-shaped structure that extend to the extracellular and cytoplasmic membrane surfaces. The other two branches are believed to be loops connecting the short alpha-helix to a neighboring transmembrane helix. A pore found close to the center of the aquaporin-1 monomer is suggested to be the course of water flow with implications for the water selectivity. PMID:10600556

  7. Resting alpha activity predicts learning ability in alpha neurofeedback

    OpenAIRE

    Wenya eNan; Feng eWan; Mang I eVai; Agostinho eRosa

    2014-01-01

    Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the tr...

  8. Alpha particles in fusion research

    International Nuclear Information System (INIS)

    This collection of 39 (mostly view graph) presentations addresses various aspects of alpha particle physics in thermonuclear fusion research, including energy balance and alpha particle losses, transport, the influence of alpha particles on plasma stability, helium ash, the transition to and sustainment of a burning fusion plasma, as well as alpha particle diagnostics. Refs, figs and tabs

  9. Study of /sup 3/H+. cap alpha. and /sup 3/He+. cap alpha. elastic scattering in a state with zero orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Chopovskii, L. L.

    1988-12-01

    An asymptotic wave function of the relative motion of clusters at zero interaction energy is derived in the oscillator representation. The set of equations of the algebraic version of the resonating-group method (RGM) is transformed to the zero-energy limit of the relative cluster motion. The /sup 3/H+..cap alpha.. and /sup 3/He+..cap alpha.. scattering lengths are calculated in the single-channel RGM variant on the basis of the derived equations. The possibility of experimentally observing large scattering lengths for light charged clusters is predicted, viz., /similar to/10--23 F in the /sup 3/H+..cap alpha.. channel and /similar to/30--82 F in the /sup 3/He+..cap alpha.. channel.

  10. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    International Nuclear Information System (INIS)

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  11. Channel Networks

    Science.gov (United States)

    Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio; Rigon, Riccardo

    This review proceeds from Luna Leopold's and Ronald Shreve's lasting accomplishments dealing with the study of random-walk and topologically random channel networks. According to the random perspective, which has had a profound influence on the interpretation of natural landforms, nature's resiliency in producing recurrent networks and landforms was interpreted to be the consequence of chance. In fact, central to models of topologically random networks is the assumption of equal likelihood of any tree-like configuration. However, a general framework of analysis exists that argues that all possible network configurations draining a fixed area are not necessarily equally likely. Rather, a probability P(s) is assigned to a particular spanning tree configuration, say s, which can be generally assumed to obey a Boltzmann distribution: P(s) % e^-H(s)/T, where T is a parameter and H(s) is a global property of the network configuration s related to energetic characters, i.e. its Hamiltonian. One extreme case is the random topology model where all trees are equally likely, i.e. the limit case for T6 4 . The other extreme case is T 6 0, and this corresponds to network configurations that tend to minimize their total energy dissipation to improve their likelihood. Networks obtained in this manner are termed optimal channel networks (OCNs). Observational evidence suggests that the characters of real river networks are reproduced extremely well by OCNs. Scaling properties of energy and entropy of OCNs suggest that large network development is likely to effectively occur at zero temperature (i.e. minimizing its Hamiltonian). We suggest a corollary of dynamic accessibility of a network configuration and speculate towards a thermodynamics of critical self-organization. We thus conclude that both chance and necessity are equally important ingredients for the dynamic origin of channel networks---and perhaps of the geometry of nature.

  12. The corticosteroid hormone induced factor: a new modulator of KCNQ1 channels?

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Rasmussen, Hanne B;

    2006-01-01

    expression systems, we find that CHIF drastically modulates the KCNQ1 current; in the presence of CHIF, the KCNQ1 channels open at all membrane potentials. Thereby, CHIF is the first accessory subunit shown to be capable of modulating both the Na,K-pump and an ion channel. To find a possible physiological...... laevis oocytes, but recently CHIF has attracted attention as a modulatory subunit of the Na,K-pump. In renal and intestinal epithelia, the expression of CHIF is dramatically up-regulated in response to aldosterone stimulation, and regulation of epithelial ion channels by CHIF is an attractive hypothesis....... To study a potential regulatory effect of the CHIF subunit on KCNQ1 channels, co-expression experiments were performed in Xenopus laevis oocytes and mammalian CHO-K1 cells. Electrophysiological characterization was obtained by two-electrode voltage-clamp and patch-clamp, respectively. In both...

  13. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  14. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    Science.gov (United States)

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  15. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    Science.gov (United States)

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G.; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W.; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P.; Jaiswal, Siddhartha; Ebert, Benjamin L.; Rodig, Scott J.; Tyner, Jeffrey W.; Marto, Jarrod A.; Weinstock, David M.; Lane, Andrew A.

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 7 of 8 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  16. Polyunsaturated fatty acids modify the gating of Kv channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-09-01

    Full Text Available Polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, which are attributed to their capability to modulate ion channels. This PUFAs ability has been reported to be due to their effects on the gating properties of ion channels. In the present review, we will focus on the role of PUFAs on the gating of two Kv channels, Kv1.5 and Kv11.1. Kv1.5 channels are blocked by n-3 PUFAs of marine (docosahexaenoic and eicosapentaenoic acid, DHA and EPA and plant origin (alpha-linolenic acid, ALA at physiological concentrations. The blockade of Kv1.5 channels by PUFAs steeply increased in the range of membrane potentials coinciding with those of Kv1.5 channel activation, suggesting that PUFAs-channel binding may derive a significant fraction of its voltage sensitivity through the coupling to channel gating. A similar shift in the activation voltage was noted for the effects of arachidonic acid (AA and DHA on Kv1.1, Kv1.2, and Kv11.1 channels. PUFAs-Kv1.5 channel interaction is time-dependent, producing a fast decay of the current upon depolarization. Thus, Kv1.5 channel opening is a prerequisite for the PUFA-channel interaction. Similar to the Kv1.5 channels, the blockade of Kv11.1 channels by AA and DHA steeply increased in the range of membrane potentials that coincided with the range of Kv11.1 channel activation, suggesting that the PUFAs-Kv channel interactions are also coupled to channel gating. Furthermore, AA regulates the inactivation process in other Kv channels, introducing a fast voltage-dependent inactivation in non-inactivating Kv channels. These results have been explained within the framework that AA closes voltage-dependent potassium channels by inducing conformational changes in the selectivity filter, suggesting that Kv channel gating is lipid dependent.

  17. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten;

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and hERG......1b, have been shown to be co-expressed in human cardiomyocytes. In this paper, we present the electrophysiological characterization of hERG1a, hERG1b, and co-expressed hERG1a/b channels in a mammalian expression system using the whole-cell patch clamp technique. We also quantified the messenger RNA...... (mRNA) levels of hERG1a and hERG1b in human cardiac tissue, and based on the expressed ratios, we evaluated the resulting currents in Xenopus laevis oocytes. Compared to hERG1a channels, activation was faster for both hERG1b and hERG1a/b channels. The deactivation kinetics was greatly accelerated in...

  18. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  19. Design of a hyperstable 60-subunit protein icosahedron

    Science.gov (United States)

    Hsia, Yang; Bale, Jacob B.; Gonen, Shane; Shi, Dan; Sheffler, William; Fong, Kimberly K.; Nattermann, Una; Xu, Chunfu; Huang, Po-Ssu; Ravichandran, Rashmi; Yi, Sue; Davis, Trisha N.; Gonen, Tamir; King, Neil P.; Baker, David

    2016-07-01

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

  20. Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart.

    Science.gov (United States)

    Charlemagne, D; Orlowski, J; Oliviero, P; Rannou, F; Sainte Beuve, C; Swynghedauw, B; Lane, L K

    1994-01-14

    To determine if an altered expression of the Na,K-ATPase alpha isoform genes is responsible for an observed increase in cardiac glycoside sensitivity in compensatory hypertrophy, we performed Northern and slot blot analyses of RNA and specific immunological detection of Na,K-ATPase isoforms in rat hearts from normal and pressure overload-treated animals induced by abdominal aortic constriction. During the early phase of hypertrophy, the only alteration is a decrease in the alpha 2 mRNA isoform. In the compensated hypertrophied heart, the levels of the predominant alpha 1 isoform (mRNA and protein) and the beta 1 subunit mRNA are unchanged. In contrast, the alpha 2 isoform (mRNA and protein) is decreased by 35% and up to 61-64% in mild ( 55%) hypertrophy, respectively. The alpha 3 isoform (mRNA and protein), which is extremely low in adult heart, is increased up to 2-fold during hypertrophy but accounts for only approximately equal to 5% of the total alpha isoform mRNA. These findings demonstrate that, in cardiac hypertrophy, the three alpha isoforms of the Na,K-ATPase are independently regulated and that regulation occurs at a pretranslational level. The pattern of expression in hypertrophied adult heart is similar to that of the neonatal heart where the inverse regulation between the alpha 2 and alpha 3 ouabain high affinity isoforms has been reported. This suggests that distinct regulatory mechanisms controlling Na,K-ATPase isoform expression may, at least in part, be involved in the sensitivity to cardiac glycosides. PMID:8288620

  1. ALPHA MIS: Reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Lovin, J.K.; Haese, R.L.; Heatherly, R.D.; Hughes, S.E.; Ishee, J.S.; Pratt, S.M.; Smith, D.W.

    1992-02-01

    ALPHA is a powerful and versatile management information system (MIS) initiated and sponsored and by the Finance and Business Management Division of Oak Ridge National Laboratory, who maintain and develop it in concert with the Business Systems Division for its Information Center. A general-purpose MIS, ALPHA allows users to access System 1022 and System 1032 databases to obtain and manage information. From a personal computer or a data terminal, Energy Systems employees can use ALPHA to control their own report reprocessing. Using four general commands (Database, Select, Sort, and Report) they can (1) choose a mainframe database, (2) define subsets within it, (3) sequentially order a subset by one or more variables, and (4) generate a report with their own or a canned format.

  2. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Hong-shuo SUN; Zhong-ping FENG

    2013-01-01

    ATP-sensitive potassium (KATP) channels are weak,inward rectifiers that couple metabolic status to cell membrane electrical activity,thus modulating many cellular functions.An increase in the ADP/ATP ratio opens KATP channels,leading to membrane hyperpolarization.KATP channels are ubiquitously expressed in neurons located in different regions of the brain,including the hippocampus and cortex.Brief hypoxia triggers membrane hyperpolarization in these central neurons.In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction,and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults.These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke.KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future.

  3. Evaluation of the Functional Roles of Cav1.3 (α1D) Calcium Channel in Mouse Atrial and SA Node Cells

    Institute of Scientific and Technical Information of China (English)

    Nipavan; CHIAMVIMONVAT

    2005-01-01

    1 IntroductionMammalian α1 subunits of the voltage-gated Ca~(2+) channels are encoded by at least ten distinct genes. Previous data suggest that L-type Ca~(2+) channels containing Cav1.3 (α1D) subunit are expressed mainly in neurons and neuroendocrine cells, while those containing Cav1.2 (α1C) subunit are found in the brain, vascular smooth muscle and cardiac tissue. Recently, it has been shown that Cav1.3 Ca~(2+) channel is highly expressed in the cardiac tissue~([1]), especially in atrial tissue. Cav1.3 C...

  4. Thyrotropin-releasing hormone-induced depletion of G(q)alpha/G(11)alpha proteins from detergent-insensitive membrane domains.

    Science.gov (United States)

    Pesanová, Z; Novotný, J; Cerný, J; Milligan, G; Svoboda, P

    1999-12-24

    The role of detergent-insensitive membrane domains (DIMs) in desensitisation of the G protein-coupled receptor-mediated hormone response was studied in clone E2M11 of HEK293 cells which stably express high levels of both thyrotropin-releasing hormone (TRH) receptors and G(11)alpha G protein. DIMs were prepared by flotation in equilibrium sucrose density gradients and characterised by a panel of membrane markers representing peripheral, glycosylphosphatidylinositol-bound as well as integral membrane proteins (caveolin, CD29, CD55, CD59, CD147, the alpha subunit of Na, K-ATPase) and enzyme activities (alkaline phosphatase, adenylyl cyclase). Caveolin-containing DIMs represented only a small fraction of the overall pool of G(q)alpha/G(11)alpha-rich domains. Prolonged stimulation of E2M11 cells with TRH resulted in dramatic depletion of G(q)alpha/G(11)alpha from all DIMs, which was paralleled by a concomitant G(q)alpha/G(11)alpha increase in the high-density gradient fractions containing the bulk-phase membrane constituents soluble in 1% Triton X-100. Distribution of membrane markers was unchanged under these conditions. Membrane domains thus represent a substantial structural determinant of the G protein pool relevant to desensitisation of hormone action. PMID:10611479

  5. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  6. Channeling experiment

    International Nuclear Information System (INIS)

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  7. Potential relevance of alpha(1-adrenergic receptor autoantibodies in refractory hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin Wenzel

    Full Text Available BACKGROUND: Agonistic autoantibodies directed at the alpha(1-adrenergic receptor (alpha(1-AAB have been described in patients with hypertension. We implied earlier that alpha(1-AAB might have a mechanistic role and could represent a therapeutic target. METHODOLOGY/PRINCIPAL FINDINGS: To pursue the issue, we performed clinical and basic studies. We observed that 41 of 81 patients with refractory hypertension had alpha(1-AAB; after immunoadsorption blood pressure was significantly reduced in these patients. Rabbits were immunized to generate alpha(1-adrenergic receptor antibodies (alpha(1-AB. Patient alpha(1-AAB and rabbit alpha(1-AB were purified using affinity chromatography and characterized both by epitope mapping and surface plasmon resonance measurements. Neonatal rat cardiomyocytes, rat vascular smooth muscle cells (VSMC, and Chinese hamster ovary cells transfected with the human alpha(1A-adrenergic receptor were incubated with patient alpha(1-AAB and rabbit alpha(1-AB and the activation of signal transduction pathways was investigated by Western blot, confocal laser scanning microscopy, and gene expression. We found that phospholipase A2 group IIA (PLA2-IIA and L-type calcium channel (Cacna1c genes were upregulated in cardiomyocytes and VSMC after stimulation with both purified antibodies. We showed that patient alpha(1-AAB and rabbit alpha(1-AB result in protein kinase C alpha activation and transient extracellular-related kinase (EKR1/2 phosphorylation. Finally, we showed that the antibodies exert acute effects on intracellular Ca(2+ in cardiomyocytes and induce mesentery artery segment contraction. CONCLUSIONS/SIGNIFICANCE: Patient alpha(1-AAB and rabbit alpha(1-AB can induce signaling pathways important for hypertension and cardiac remodeling. Our data provide evidence for a potential clinical relevance for alpha(1-AAB in hypertensive patients, and the notion of immunity as a possible cause of hypertension.

  8. Hypoxia-inducible factor 2alpha binds to cobalt in vitro.

    Science.gov (United States)

    Yuan, Y; Beitner-Johnson, D; Millhorn, D E

    2001-11-01

    The hypoxia-inducible factor (HIF) activates the expression of genes that contain a hypoxia response element (HRE). The alpha subunit of the HIF transcription factors is degraded by proteasome pathways during normoxia, but stabilized under hypoxic conditions. It has previously been established that cobalt causes accumulation of HIF-2alpha and HIF-1alpha. However, little is known about the mechanism by which cobalt mimics hypoxia and stabilizes these transcription factors. We show here that cobalt binds directly to HIF-2alpha in vitro with a high affinity and in an oxygen-dependent manner. We found that HIF-2alpha, which had been stabilized with a proteasome inhibitor, could bind to cobalt, whereas hypoxia-stabilized HIF-2alpha could not. Mutations within the oxygen-dependent degradation domain of HIF-2alpha prevented cobalt binding and led to accumulation of HIF-2alpha during normoxia. This suggests that transition metal such as iron may play a role in regulation of HIF-2alpha in vivo. PMID:11688986

  9. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    OpenAIRE

    Gerald W Zamponi; Striessnig, Joerg; Koschak, Alexandra; Dolphin, Annette C.

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type ...

  10. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    OpenAIRE

    Albert Miklos Barth; Isabella eFerando; Istvan eMody

    2014-01-01

    GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute...

  11. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    Science.gov (United States)

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  12. The $\\alpha_S$ Dependence of Parton Distributions

    OpenAIRE

    Martin, A. D.; Stirling, W. J.; Roberts, R G

    1995-01-01

    We perform next-to-leading order global analyses of deep inelastic and related data for different fixed values of $\\alpha_S (M_Z^2)$. We present sets of parton distributions for six values of $\\alpha_S$ in the range 0.105 to 0.130. We display the $(x, Q^2)$ domains with the largest parton uncertainty and we discuss how forthcoming data may be able to improve the determination of the parton densities.

  13. Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene.

    Science.gov (United States)

    Baxter, Joyce; Moeder, Wolfgang; Urquhart, William; Shahinas, Dea; Chin, Kimberley; Christendat, Dinesh; Kang, Hong-Gu; Angelova, Magdalena; Kato, Naohiro; Yoshioka, Keiko

    2008-11-01

    We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general. PMID:18643993

  14. Diversity of heterotrimeric G-protein γ subunits in plants

    Directory of Open Access Journals (Sweden)

    Trusov Yuri

    2012-10-01

    Full Text Available Abstract Background Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX. According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

  15. Subunit structure of the phycobiliproteins of blue-green algae.

    Science.gov (United States)

    Glazer, A N; Cohen-Bazire, G

    1971-07-01

    The phycobiliproteins of the blue-green algae Synechococcus sp. and Aphanocapsu sp. were characterized with respect to homogeneity, isoelectric point, and subunit composition. Each of the biliproteins consisted of two different noncovalently associated subunits, with molecular weights of about 20,000 and 16,000 for phycocyanin, 17,500 and 15,500 for allophycocyanin, and 22,000 and 20,000 for phycoerythrin. Covalently bound chromophore was associated with each subunit.

  16. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... for Disease Control and Prevention Centre for Genetics Education (Australia) Cooley's Anemia Foundation: Fact sheet about alpha thalassemia Disease InfoSearch: Alpha-Thalassemia Genomics Education Programme (UK) Information Center for Sickle Cell and ...

  17. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  18. $\\alpha$-minimal Banach spaces

    CERN Document Server

    Rosendal, Christian

    2011-01-01

    A Banach space with a Schauder basis is said to be $\\alpha$-minimal for some countable ordinal $\\alpha$ if, for any two block subspaces, the Bourgain embeddability index of one into the other is at least $\\alpha$. We prove a dichotomy that characterises when a Banach space has an $\\alpha$-minimal subspace, which contributes to the ongoing project, initiated by W. T. Gowers, of classifying separable Banach spaces by identifying characteristic subspaces.

  19. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, B.P. (Univ. of California, San Diego, La Jolla (USA))

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  20. Alexa Fluor 546-ArIB[V11L;V16A] is a potent ligand for selectively labeling alpha 7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Hone, Arik J; Whiteaker, Paul; Mohn, Jesse L; Jacob, Michele H; McIntosh, J Michael

    2010-08-01

    The alpha7* (*denotes the possible presence of additional subunits) nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the vertebrate nervous system and implicated in neuropsychiatric disorders that compromise thought and cognition. In this report, we demonstrate that the recently developed fluorescent ligand Cy3-ArIB[V11L;V16A] labels alpha7 nAChRs in cultured hippocampal neurons. However, photobleaching of this ligand during long image acquisition times prompted us to develop a new derivative. In photostability studies, this new ligand, Alexa Fluor 546-ArIB[V11L;V16A], was significantly more resistant to bleaching than the Cy3 derivative. The classic alpha7 ligand alpha-bungarotoxin binds to alpha1* and alpha9* nAChRs. In contrast, Alexa Fluor 546-ArIB[V11L;V16A] potently (IC(50) 1.8 nM) and selectively blocked alpha7 nAChRs but not alpha1* or alpha9* nAChRs expressed in Xenopus oocytes. Selectivity was further confirmed by competition binding studies of native nAChRs in rat brain membranes. The fluorescence properties of Alexa Fluor 546-ArIB[V11L;V16A] were assessed using human embryonic kidney-293 cells stably transfected with nAChRs; labeling was observed on cells expressing alpha7 but not cells expressing alpha3beta2, alpha3beta4, or alpha4beta2 nAChRs. Further imaging studies demonstrate that Alexa Fluor 546-ArIB[V11L;V16A] labels hippocampal neurons from wild-type mice but not from nAChR alpha7 subunit-null mice. Thus, Alexa Fluor 546-ArIB[V11L;V16A] represents a potent and selective ligand for imaging alpha7 nAChRs.